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Abstract
For N a compact manifold without boundary and ¢(r) a smooth family of metrics on
N, let C(N) be the manifold with boundary

C(N)= N x[0,00) 3 (z,7)

with metric dr? +72g(r). A manifold with conic singularities is a metric space which
is a smooth Riemannian manifold outside of a subset of isolated singularities, each
isomorphic in some neighborhood to a metric cone of type C(N). The Laplacian on
k-forms on C'(N) can be written as

A(r)

HA(,.) = —63 + —;5—

with A(r) a smooth family of second order operators on the cross-sectional manifold
N. For certain operators A(r) I show that the Laplacian on C(N) is not essentially
self-adjoint and that the self-adjoint extensions of Hj,(,) are parameterized by the
Lagrangian Grassmannian of a symplectic vector space. I define a manifold with
boundary on which the heat kernels for these extensions are smooth functions conor-
mal to the boundary faces, and give a complete asymptotic expansion at the boundary
faces. For dimN = 0 or A(r) = A constant in r, I show that the heat kernels for
the various self-adjoint extensions can be written in terms of the heat kernel for the
Friedrichs extension of the operator, and when dim N = 0 and with A(r) =k > —1/4
a constant, x and a constant parameterizing the self-adjoint extension can be recov-

ered from the coefficients in expansion of the trace of the heat kernel at ¢t = 0.
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INTRODUCTION

This thesis is concerned with the study of the heat kernels of operators defined
on manifolds with conic singularities. These are metric spaces which have a finite
singular set with dense compliment equal to a smooth Riemannian manifold, and
with each singular point having a neighborhood isometric to a metric cone.

The metric cone C(N) for N a compact manifold without boundary is defined to
be the manifold with boundary C(N) = N x [0,00) 3 (z,r) with metric

dr? +rig(r)

for g(r) a smooth family of metrics on N. I describe the heat kernels for the Laplacian
A4 on C(N) with the cross-sectional metric g(r) constant in 7 when dim N > 0. The
Laplacian A, is defined on the space of smooth compactly supported forms vanishing
to infinite order at the boundary N x {0}. The heat kernel E(r,r’,z,7’,) for a self-
adjoint extension of the Laplacian on C(N) is a distribution on the manifold with

corners
X =[0,00)> x N x N x [0,00) 3 (r, 7', z, 7', 1)
satisfying

0y — DG)E(r,7',z,2',t) =0, E(r,r,z,z,0) = 0r z) (1", ).

The heat space X for C(N) will be a manifold with corners constructed from X by
a parabolic blow-up, first along the submanifold (0,0, z,z,0) in X corresponding to

the singularity in the operator, and then along the diagonal
Ao = {(r,r.z,2,0) € X;r € R*,z € N}

corresponding to the singularity in the initial data. I show that E(r,r',z,2',t) is a
function conormal to the boundary faces of the heat space X and classify the terms
in the asymptotic expansions at the boundary faces.

Denote by A¥(N) the space of k-forms on N. Under the rescaling

(AF(N), AFHN)) = (5 5AR(), rFm 3 AR (V)

the Laplacian on k-forms on C(N) becomes an operator of the form

HA=—63+'A—(;)'
r
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where A(r) is a family of second order elliptic operators on C®(N; A* @& A*~1) de-
pending smoothly on r [8]. Let ¢(z) be an eigen form for A(r) with eigen value «,

then there is a real valued function v(x) such that

riv®y(z)  v(k) >0
2 In(r)v(z) v(k) =0

r

Wr(rz) =) () = {

are generalized homogeneous k-forms for H 4.

If 1 > v(k) >0, ¥t (r,z) and ¥~ (r,x) are square integrable and H4 is not essen-
tially self-adjoint. This can only occur for form values near the middle dimension m /2
of the cone C'(N). If there are eigen k-forms for A(r) with 1 > v(k;) > 0 for eigen
values {k;}?_,, the self-adjoint extensions of H4 are fixed by including in the domain
a p-dimensional subspace of the vector space spanned by {wf ?_,. Ishow that for op-
erators H 4 that are not essentially self-adjoint, the p-dimensional subspace that fixes
the self-adjoint extension determines the powers and coeflicients in the expansion of
the heat kernel at the front face on the blown-up space X.

The simplest example of an operator of type H,4 is when N is zero dimensional and

A(r) = k(r) is a compactly supported real valued function on the positive real line,
H,=0>—k(r)r?  k(0)>-1/4.

When x(0) < —1/4 the operator is no longer semi-bounded. Using separation of
variables, the heat kernels for the various self-adjoint extensions of this differential
operator are used to construct the heat kernels of self-adjoint extensions of the oper-
ator H4 with dim N > 0.

For 3/4 > k(0) > —1/4 there is a two dimensional vector space of generalized
harmonic eigen-functions for H, spanned by functions {¢(r),¢-(r)}. Inclusion of
a vector from this space in the domain of the operator fixes the self-adjoint exten-
sion, and these extensions are parameterized by © € PR corresponding to the vector
064 (r) + b-(r).

The asymptotics for the heat kernel trace for the Friedrichs extension of the differ-
ential operator Hy4 = 8, — k72 with x > 3/4 a constant is treated by Callias in [1].
For k ir} this range, the operator is essentially self-adjoint, and Callias computes the

modified trace

tr(e s — e tH)(0) = /K + 1/4



where H = 82, as well as the asymptotic expansion as t | 0. There results are partially
extended in [2] [3] to the the variable coefficient operators of type H, where s(r) is a
smooth function satisfying certain regularity conditions. I show that _for © # +, the
modified trace of the heat kernel Eg(z,z',t), for H, a differential operator with s
constant defined on Dg, can be written in terms of the modified trace of the Friedrich’s
heat kernel F,(z,z’,t),
-1
tr(Ee — e~H)(t) = tr(Ey — e)(t) + v + e%%;v + 0™

In [6] [7] [5] Cheeger treats the homogeneous extensions of the Laplacian on cones
when the metric g(r) is constant for small r and describes the generalized harmonic
eigen forms and the range of values for a given form dimension for which the Laplacian
on C(N) is not essentially self-adjoint.

In [8] Briining and Seeley compute the asymptotics of tr(e~t#4 — e~t#)(¢t) as t | 0
for H4 the Friedrichs extension of the operator on C(N) with A(r) satisfying certain
ellipticity and smoothness conditions, and compute the leading term in the contribu-
tion to the trace expansion of the singular term for A constant in r.

Our approach differs from the previous ones in that we do not proceed by con-
structing the resolvant, but instead exploit the homogeneity of the heat kernel for the
Friedrichs extension of the constant coefficient operator to get a description of the
boundary asymptotics on the blown-up space X, then construct a map from solutions
to the Friedrich’s problem to solutions for other self-adjoint extensions of the opera-
tor, and thus give a description of the heat kernels for general self-adjoint boundary
conditions.

In section 1 the self-adjoint extensions for the differential operator H, on [0, c0)
are described and a basic existence proof is given for solutions to the heat equation
for the operator on these domains.

For 1 > v > 0 there are at most two domains on which the heat kernel for Hj is

homogeneous of degree —1 under the parabolic scaling
ps(r, 7', t) = (sr,sr',s%), s € (0,00).

which I call the positive and negative extensions. In section 2 the blown-up space X
is described and the heat kernels for homogeneous extensions of the model operator

with k£ > —1/4 a constant are shown to lift to be functions conormal to the boundary

11
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faces of X. Lifted to X, the scaling y, becomes a homogeneous dependence on the
radial variable in the blow up of the corner r = 7 = ¢ = 0. This simplifies the
description of the homogeneous kernels by separating the singularity in the initial
data from the singularity introduced by the perturbed metric.

In section 3 a solution to the forcing problem

F(h)(r,t) ~r=0 h(t)$-(r) + O(+(r))
(at - HK)F(h)(Ta t) =0, F(h)(T‘, O) =0

for h(t) a smooth function on [0, 00) is constructed for H, with k constant using the
positive heat kernel, and from this a map is constructed from solutions to the heat
equation in the domain of the positive extension to solutions in non-homogeneous
domains. This gives a map from the positive heat kernel to the heat kernels for ©

extensions and a description of the asymptotic properties of these extensions lifted to

X.

In section 4 the maps constructed in section 3 are used along with the resolvant
construction of the Friedrichs heat kernel given in [1] to compute the leading two
coefficients in the contribution from the singularity to the trace of the heat kernel for
O boundary conditions, appropriately modified to be a trace class operator. These
two invariants are sufficient to determine the extension © of the operator and the
constant k.

In sections 5 and 6 an operator calculus on X is used to construct the heat kernel
for the self-adjoint extensions of the variable coefficient differential operator Hy from
those of the constant coefficient operator with £ = x(0). The construction show that
_ thé heat kernels for the variable coefficient operator can also be described as functions
conormal to the boundary faces of X.

In the last two sections I describe the possible self-adjoint extensions for the oper-
ator H4 with A an operator constant in r on a compact manifold without boundary
N, with dim N > 0, and show that the heat kernels for these extensions lift to be
functions conormal to X™, the heat space for C(N), with an expansion at the front
face determined by the choice of extension.

In the published version of this thesis I will extend the results in sections 5 and 6 for
the variable coefficient differential operator H, to the higher dimensional case covered

in sections 7 and 8; I will describe an operator calculus for X™ and construct the



“heat kernel asymptotics on X™ for the operator H, with A(r) a family of operators
depending smoothly on r and satisfying conditions such as those given in [8] by

modifying the heat kernel for the operator H4 with A = A(0) a constant in r.

13
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1. SELF-ADJOINT EXTENSIONS FOR THE ONE DIMENSIONAL PROBLEM

Let x(z) be a smooth, real valued function compactly supported on the positive
real line Rt = [0, 00) with x(0) > —1/4. The differential operator

H, = -8+ k(z)z ™2

is symmetric on C’§°(]R+), the space of smooth functions compactly supported on R*
and vanishing to infinite order at the boundary z = 0. Let £L2(R*) be the space of
the square integrable functions on the positive real line with inner product < -,- >

and norm || : ll, so for functions f(z), g(z) on R*,

<fg>= / T @e@)dz, I = / "\ (@)

Self-adjoint extensions of H in £2(R*) are determined by the boundary behavior of

functions included in the domain.

Definition 1.1. The operator norm || - || on IL2(]R+), which I will call the x-norm,

is given by
-l =11 1+ [ He -

The domain D,,;, of the minimal extension of the operator H, is the closure of

C’§°(R+) under the k—norm,
Dpin = {u(z) € LXRT) : I{u,} € CP(R*) such that u, = u}

The domain D,,,; of the maximal extension of H, consists of square integrable func-

tions u(z) on R* such that H.u(z) defined as a distribution is also square integrable.
Dras = {u(z) € L2(RY); < u, Hew > < Cllv||e2 for all v(z) € CPRM)}
Proposition 1.1. H, is symmetric on D,;,.

PROOF: For u(z), v(z) in C®(R*), 82u(zx) and r~2u(z) are in £L2(R*) and integration
by parts is valid, so ' '
<Hau,v> = —<Pu,v>+<k-u,v>

= {u(2)8v(z) - Bu(@)v(@) P+ < w, Heo > = <, an‘ >



since functions in C’§° (R*) are compactly supported and vanish to infinite order at
the boundary z = 0. For u(z), v(z) in Dp,n, there are sequences of functions {u,},

{v,} in C'§° (R*) such that u, converges to u and v, to v in k-norm.
1
< Un, Hevn >= 5{“"‘7& + annuz - ”un“2 - ”annllz}
and the right hand side converges, so
c? c?
< Uy, Hevp >2< u, Hev > and < Houg, v, >=< Hou,v >
therefore < u, H,v >=< Heu,v > 0O

When £(0) < —1/4, the Mellin transform can be used to show that H, is not

semi-bounded. In this thesis only operators with £(0) > —1/4 will be considered.

Definition 1.2. Let ¢.(z) be compactly supported functions smooth on (0, 00) such
that H.¢4(z) = 0 for z € [0, c) for some ¢ > 0. For v = /x(0) + 1/4,

bu(z) = { 25w (z) 0<v<1

ziws(z) or ziln(z)ws(z) v=0
with wy(z) smooth compactly supported functions on [0,00) and w+(0) = 1. The
domains Dg on which H, is self-adjoint are defined by
Do = cl{uy¢.(z) +u_¢_(z) + v(z); v(z) € CPRY), u,/u_ =06}
D, = Dio = cl{usdy(z) +v(z); v(z) € CP(R") uy € R}
D_ = Dy = cl{u_¢_(z) + v(z); v(z) € C®(RY) u_ € R}

where the closure is in the xk-norm. The domains D, and D_ will be referred to as

the domains of the positive and negative extensions of H,, respectively.
Proposition 1.2. If u(z) is in Dy, then for 0<v <1
u(z) = 4(x) + us b+ (z) +u_d_(z)  4(z) € Dpin

PRrOOF: If u(z) is in Dpg, then Hou(z) = f(z) for some f(z) in L2(R*), and there
is a sequence of functions {f,} in C2°(R*) converging to f(z) in £2(R*) norm. Since
H, is elliptic away from z = 0, we may assume that f(z) and f,(z) are supported in

[0,¢) for ¢ > 0 a constant independent of n.
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Let ¢(z) = 2 “w(z) be a function compactly supported on [0,¢) such that for

z € [0,c) with ¢ < ¢/, Hy¢ = 0 and w(zx) # 0. We construct functions hn(x) such that

(07 — w(z)27) hn(2)$(2) = ful2)

for each n and Gy (z) = hn(2)d(z) is in CP(R*) and the sequence converges in the
L?(R*) norm. Set

(02 — 27 (@)) hn(2)$(x) = 85 (hn) (2)6(2) + 20; (hn) (2)0(8) () = fa(2)

The integrating factor
* 3,(t)
6t

g(z) = exp{-2 dt}

gives the solution

Let wy be a bound for w(z) and (w)~'(z) on [0, ¢).
8:6(2)/9()| = (5 — )™ +O(1)

at x = 0, so there is a constant K > 0 such that

!

g(z) < K' exp{2/ wot~tdt} < K2?

and likewise ¢!(z) < Kz~2. Then

1 T 4
(@] < 25008 [y [ (e dedy < 2l fule (1)
0 0
for 4, (z) supported in [0,¢') and
[dnllcz < Cllfnlle2

with C > 0 a constant. Since fn(z) is in C®(R"), iin(x) vanishes to infinite order at

z =0 and {%,} converges in £L*(R*) norm to a function @(z) in Dy, such that
H.(u(z) —a(z)) =0

near z = 0 and their difference is in the space spanned by solutions to H,. O
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Proposition 1.3. For u(z) and v(z) in Dyyez,

v O<v<l
<Huv>—-<u Hv> = C,(upv- —u_vy) C,,:{ g v

1 v=0
PRrooOF: By Prop. 1.2,
u(®) = urés(z) + u_g_(2) +i(z)  v(z) = vids(3) +v_¢_(z) + 7(z)

with @(z) and 9(z) in Dpmn. Assume first that @(z) and 9(x) are in C®(R*), so u(z)

and v(z) are smooth on (0, 00). Then
< Heu,v> - < u, Hv >=
iy [ (@20 @)u(e) - o(e)02(0)(0))d} = limfu'()u(e) - u(e) (0}
= (uv- — u-v) B8, (99-(6) = 8481 (} = (wsv- — u_v)C,

since lim,_,o 7'(€)@+(€) = lim. 0 T(€)¢l.(€) = 0.
If 5(z) € Dmin is not in C®(R*) then there is a sequence {#,} in C®(R*) con-

verging to ¥(z) in xk-norm. By the estimate 1.1, if H,¥,(z) = fa(z), then

|vn(2)8z(¢) ()] < 2320 | fallez,  [92(2)05(va)(2)] £ 2= *2C"||fullez 0<v <1
[0a(2)82(¢-)(z)| < 23 In(@)C" | fullez, 16-(2)8:(va)(2)] € 2*2 (@)C" || fallcr v =0

with £v + 3/2 > 1/2, and the integration by parts remains valid in the limit. O

Theorem 1.4. For 1 > v > 0, H. with domain Dg is self-adjoint for every © in
PR. Forv > 1, H, is essentially self-adjoint on D,.

'PROOF: By Prop. 1.2, if u(z) is in Dyyap then
u(z) = uydy(z) +u_¢_(z) +i(z)  %x) € Dmin

Since Dp;y, is in Dg for every ©, we can assume that u, and u_ are not both zero.
The theorem is proved by showing that u(z) is not in Dg unless uy/u_ = ©. For
w(z) = w194+ (z) + w-¢-(z) + W(z) in De,

< How,u > — <w, Hu >= C,(wiu- — w_uy).

The cross term is zero if and only if w,/w- # uy/u_. For v > 1, © = + is the only

boundary condition in £2,,(R*), s0 Dpin = Dy = Doz O
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Lemina 1.5 ([8]). For k(z) = x(0) > —1/4, H, is non-negative on C®(R"), com-

pactly supported functions on R* vanishing to infinite order at x = 0.

PRrROOF: If £(0) > 0 this is obvious. If 0 > x(0) > —1/4 then Hardy’s inequality for
u(z) in CX(RT),
llu(z)/z|| < 2||u'()]|

shows that
< —u" + k(0)z2u,u > = ||v'])? + &(0)||u/z|*> > ||v']|*(1 + 4k(0)) >0

Hence the operator is bounded below. O

The following two theorems show the existence and basic properties of the heat
kernel for self-adjoint extensions of the operator H,. The reader is referred to {12] for

proofs.

Theorem 1.6. (Spectral Theorem) Let A be a self-adjoint operator on a separable
Hilbert space H with domain D(A). There ezists a measure space < M,u> with p a
finite measure, a unitary operator U : H—L?(M, du) and a real valued function f(:)
on M which is finite a. e. such that

a) ¥ is in D(A) if and only if f(-)Uy(-) is in L2(M,dp).

b) If ¢ is in U[D(A)] then (UAU1¢)(m) = f(m)¢p(m).

If A is a bounded operator, the heat operator is defined by convergence in norm of
the sum o
—ta _ N\ (=)nAT
e ; ——
For an operator A semi-bounded from below, the spectral theorem gives a natural

way to define the heat operator e~*4 and prove many of its basic properties. Given a -
bounded Borel function h(z) on R, define

h(A) = U™ ThpnU, where Thsyé = h(f(m))¢ for ¢ € L2(M,dp).

Theorem 1.7. IfU(t) = e7*4 is defined using the functional calculus with A a self-
adjoint operator semi-bounded from below, then

a) U(t) is a unitary operator and U(t + s) = U(t)U(s) for all s, t in [0, 00).

b)If ¢ is in H, and t—ty, then U(t)p—U(to)9.

c)If ¢ is in D(A), then t™1(U(t)d — ¢)—>A¢ as t—=0.



d)If limy ot~ (U(t)d — @) exzists, then ¢ is in D(A).
e)If D is core for A, then for all t, €4 : D—D

This gives the existence of heat kernels for self-adjoint extensions of H, as well as

some of their basic properties.

Theorem 1.8. For each ¢(z) in Do, the domain of the self-adjoint extension Hg
of Hy, there is a unique function e *fe¢(z) = u(z,t) in L2(R* x RY), smooth away
from the boundary x = 0 and such that u(z,t) is in Dg for fized t in [0,00) and is a

solution to the heat equation
(0 — 0% + K(z)z%)u(z,t) =0,  u(z,0) = %(z)

For fized t, e *#e : Dg—Dg and forms a semi-group of operators with Schwartz
kernel Eg(z,2',t) in §'(X), where X = R* x Rt x R* 3 (z,7/,t), satisfying

(8: — 82 + K(z)z7 %) Eo(z,2',t) =0,  Eo(z,z',0) = é(z — 2)

Eo(z,z',t) smooth in the interior and symmetric in z and z'. Fort >0, Ego(z,7',t)

is in Dg in = and ' up to the edge z =z’ = 0.

PROOF: The existence of the semi-group e*#e and the existence, uniqueness and
symmetry in = and z' of the heat kernels Eg(z, z', t) follows from the spectral theorem.

By the semi-group properties of the heat kernel,
o0
e He(g, 1) = / e"1He (g, z)e 170 (2, 2')dz.
0

Both e~3%e(z, z) and e~3%e(z, 1) are in De in z and z', respectively, so for fixed

t >0, et#e(z, ') isin Dg in z and =’ up to the edge z =2’ = 0. O

Definition 1.3. Let u, be the 1-parameter group of R* parabolic scalings on X
ps : X=X, ps(z,z',t) = (sz,s7,s%) for s € (0,00)

Proposition 1.9. Let k(z) = & > —1/4 be a constant. Then E,(z,z',t) and
E_(z,z',t), the heat kernels for the positive and negative domains D, and D_, are

homogeneous of degree —1 under the action of u,, meaning

piEs(z, 7' t) = Ey(sz, s2', s°t) = s Ey(z, 2/, t).

19
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The heat kernels for the operator on the the domains Dg with © # £ are not homo-

geneous. When k(0) = —1/4, only E . (z,2',t) is homogeneous under the action of

s

Proor: The homogeneity of the heat kernel comes from the homogeneity of the
operator and of the domain on which it is defined. Let ¢(z) be a function in Dg.

Since C®°(R*) is invariant under R* scaling, assume that
$(z) = @4 (z)2*2 +@_(2)z™**2 such that @.,(0)/@_(0) = ©.
Under the parabolic scaling
pyb(a) = @ (s2)(s2) % + B (sz)(s2) ™+

©4(0)s* 2 /@_(0)s™* 2 = O
so Dg is R* invariant if and only if © = +. For x(0) = —1/4, the negative solution
contains a log term, so )

¥(z) = Dyz? + G_zilng
pip(z) = D4 (s7)? + &_(sz)(s7)? Insz = s1{@,(sz)z? Ins + @_(sz)z? Inz}
@+(0)Ins/@_(0) = ©lns and the domain is only R* invariant if &_(0) = 0.
If ¥(z) is in any R* invariant domain D of a self-adjoint extension H of H,
u(z,t) =e P(z),  wuls,t) =" y(sc)

so pu(z,t) is a solution to the heat equation smooth away from z = 0 and contained

in D for fixed ¢, with initial data uiy(z). If E(z,2',t) is the Schwartz kernel for H
then

o0 o0
pou(z,t) = / E(sz, o', s’t)y(z')da’ = s / s (E)(z, o', )y (¥)(2')da’
0 ' 0
Since the domain D is Rt invariant,
o0
piua,t) = [ Blo, o, ui)@)de
0

and pl(E)(z,z',t) = s E(z,2',t). O



2. THE HEAT KERNEL FOR THE MODEL OPERATOR IN ONE DIMENSION WITH
HOMOGENEOUS BOUNDARY CONDITIONS

Let E.(z,2’,t) be the positive heat kernel for the model operator
H,= -0+ Kkz? with k> -1/4

with k¥ a constant and domain D, defined by 1.2. The short time asymptotics of
E,(z,2',t) can be described by defining a manifold with corners X to which the
heat kernel lifts to be a polyhomogeneous function conormal to the boundary faces.
The proof exploits the symmetry of the heat kernel for self-adjoint operators and
the invariance under thé action of u, defined by 1.3 of the positive heat kernel. For
1 > v > 0, the construction of E_(z, z', t), the negative heat kernel for the domain D_,
is completely analogous to the construction of E.(z,z',t) and a detailed description
will be given only for the latter. When v = 0, the negative heat kernel is no longer
invariant under u; and this method has to be modified. '
The heat space X = [0,00)% 5 (z,2',t) will be blown up, first parabolically at the
origin {0} = {(0,0,0) € X}, then parabolically along the diagonal Ay = {(z,z,0) €
X} producing a manifold with corners with five boundary faces. The reader is referred

to [15] for a detailed description of the blow-up construction in the general case. Let

Qp = {¢ = (¢0: ¢'a ¢I) € R3 : ¢01 ¢l’ ¢' Z 01 (bg + ¢;1 + (¢,)4 = 1}
Xq = [X\ {0} U[Q,] = [X; {0}, sp(dt)]

Xq is the parabolic blow-up of the origin in X in the direction of sp{dt} C N*({0}),
the span of dt in the conormal bundle to the origin in X, producing a fourth boundary
face isomorphic to the parabolic octant Q,. X is supplied with a smooth structure
by identifying points of Q, with equivalence classes of parabolic curves x(r) in X;

x:[0,1]=X, x(0)={0} C X and x*(¥)(r) =O(r*) as 7,0

| so  x(r) = (ra(r),ra'(r),r?(r))

for z(r), z' (r) and ¢(r) smooth functions on [0, c0), with the equivalence relation

i o [ i) = Xit(r) = 0
xi(r) ~ xa(r) & { XLF(r) = 2 f(r) = O(r?) ¥ f € C=(X)
x(sr) ~ x(r) s € (0, 00)

21
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These conditions imply that

x1(r) ~ xa(r) if (21(0),23(0),21(0)) = ps(22(0), 25(0), £2(0))

for some s > 0. The equivalence relation defines the t—parabolic co-sphere bundle to

{0}. For the blow-up of the diagonal in Xg, let

Sp={w = (wo,w) ER? 1w 2 0, wf + ()* =1}

X =X\ Ao U[S, x R*] = [Xq; Ao, sp(dt)]
where A, is the closure of the set Ag \ {0} ¢ X lifted to to Xg,

Ay = cl{B71 (A0 \ {0})} C Xo.

This intersects the front (blown-up) face of Xq at the point {¢' = ¢, ¢o = 0} on
@Qp- The fifth boundary face in X produced by the blow-up of Aq is isomorphic to
S, x R*, the positive real line crossed with the parabolic half-circle. As before, a
smooth structure is given to X by identifying points of Sp x R* with equivalence
classes of parabolic curves in X that define the ¢-parabolic co-sphere bundle of
S,,.x R*.

Definition 2.1. X =[X; {0},dt; Ao, dt]

Denote by R (right face) and £ (left face) the boundary faces of X corresponding the
lifts of x = 0 and 2’ = 0, O ~ Q, (origin face) the lift of the origin, ® ~ S, x Rt
(diagonal face) the lift of Ay and ¥ (temporal face) the lift of t = 0 away from Ay,

_Denote by pz a boundary defining function corresponding to the face §.

There is a blow-down map 8 : X—X which gives an isomorphism on the interiors
of X and X and satisfies

B*(z) =pm-po, B (&)=pe-po, B()=ps b b

Lemma 2.1. The scaling function p, on X pulls back to X under B as a scaling in
the defining function py for the front face 9.

PROOF: This follows from the action of 3 on the boundary defining functions for X.
a

(2.3)



Definition 2.2. ®(X) for k in N is the space of distributions R(z,2’,t) on X such
that 5*(R)(X) is a function conormal to the boundary faces of X, has leading term
at the front face O of order £ — 3, vanishes to infinite order at ¥, has an integer
expansion with leading term —1 at ©.

Let ®*(X) be the space of distributions R(z,2’,t) in ®(X) such that 3*(R)(X)
vanishes to infinite order at D. Let ®, (X) C ®*(X) and &%, (X) C $*(X) be
distributions that lift to X to have classical polyhomogeneous conormal expansions

at the boundary faces.

Theorem 2.2. For k > —1/4, the heat kernel E,(x,2',t) for the positive eztension

of H, has a boundary expansion

B(E4)(X) = pplop'p% (pmpe) T x C2(Q,) € 82, (X)
homogeneous of degree —1 in po

PROOF: The interiors of X and X are isomorphic under 3, so §*(E,)(X) is smooth
in the interior of X by Theorem 1.8. By Prop. 1.9, the positive heat kernel is homo-
geneous of degree —1 under the scaling u, for s > 0, so B*(EQ(X' } is homogeneous
in pp of degree —1 and its properties are completely determined by restriction to a
parabolic octant @), away from the origin {0} = {(0,0,0) € X}.

From Theorem 1.8, the expansion of E, (X) at the facesz =0and 2’ =0for ¢t > 0

is given by inclusion in the domain D, so
Eiliso = (82)"*% x C™(X).

The body of the proof consists of describing the asymptotic properties of the lift to
X of E, at t =0.

Definition 2.3. There is a map o : X—X that is an isomorphism on X|,, for

€ > 0, and satisfying
alz)y=yr, ea@)=r, oft)=sr

where (y, s) are local coordinates for 2 > € > 0 on a parabolic octant in X away

from the origin {0} and r is a radial variable.

23



24

With these coordinates,
(0, + H,) = o*(8; — 02 + kx™?) = r~%{9, — 35 + Ky %}
(s — 05 + Ky ™) (B4 ) (y, 5,7) = 0
o (Ey)(y,m0) =8(r(y 1)) =r~'o(y — 1).
Lét P(z) € C*(R") be a cut off function vanishing near z = 0 such that
Y(z)=1 for >e>0
and let Ey(z,2',t) on X be the heat kernel for the Friedrichs extension of
| Hy = 0% + sz~ %y (x)

defined on C®(R*). Let Qp in X be the lift under 3 of a neighborhood of the diagonal
Ay away from the boundary faces of X. Since H, is the Laplacian plus a smooth
perturbation, 8*(Ey)(X) restricted to Qp is a polyhomogeneous conormal function
with an asymptotic expansion at the diagonal face ® with leading power —1, and
vanishing to infinite order at the temporal face ¥ [14].

In the neighborhood €2y in X there is a map
Ba=0a"tof:0p = (o) C X
giving an isomorphism on the interiors of these spaces and satisfying
Bar)=po,  Bi(s) = pep.

Let F(y,s) = Ey(y,1,s) on Rt x R* be the restriction of the positive heat kernel for
H, to the submanifold y' = 1, then

Bi(F)(ps, po) = pp p¥ x C*(o), F(y,0) = 6(y — 1).
Let ¢(y) in C*°(RY) be a cut-off function supi)orted near y = 0, such that
dy)=1 for y>¢€, dy) =0 for 1> >e>y
8,6(y) is supported in the interval (e, €'). Define

J(y,8) = (0s — 82 + sy *)d(y) F(y, s) =
— (959(y) — 8y6(W)) F(y, 8) + 6(¥) (1 — (V)Y *kF (y,5)
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J(y, s) is supported in (¢, €') and is smooth and vanishes to infinite order at s = 0,
since the distribution F'(y, s) vanishes to infinite order at s = 0 away from the singular
submanifold y = 1.

Let E,(y,y’, s) be the positive heat kernel for H, on X with coordinates (y, %/, s).
By Theorem 1.8, E,(y,y, s) exists and is in D, in y for s > 0. Define

Hws)= [ [ Bewis - 5)00 o)ayas
0o Jo

then by Duhamel’s principle

2 -2 _

(0s — 0, + ky ™ )H(y,s) = J(y, 5).
Since J(y, s) is smooth and compactly supported away from y = 0, the ¢’ integral is
well-defined. J(y, s) vanishes to infinite order at s = 0 and convolution is smoothing,
so H(y, s) is smooth up to s = 0 and vanishes to infinite order there. Since F(y,v', s)
isin D, iny, H(y,s) isin D, up to s = 0. Define
E(y’ 5) = ¢(y)F(ya S) - H(y’ S)'
By construction, E(y,s) is in D, in y and
0, — 85+ ky ) E(y,s) =0  E(y,0)=6(y—1)

and vanishes to infinite order at s = 0 away from y = 1. Lifting E(y,s) to the

blown-up manifold X bounded away from the faces £ and O,
~ s+l -
B5(E)(X) = p5'p¥pm * x C=(X).
r~1E(y, s) satisfies the heat equation for o*(H,) and has the same initial data at

t = 0 and is in the same domain in y as the lift under o of the positive heat kernel

E,(z,2',t) restricted to ' > € > 0, so by uniqueness of solutions to the heat equation

a*(E+l$’>e)(y1 S, T) = T_IE(y’ 5) .

and in a neighborhood of the diagonal in X which lifts under 3 to a neighborhood in
X bounded away from R and £,

B*(E+)(po, pz, po) = P35 Pp PT X C=(po, pg)-

In a neighborhood of the face z = 0 in X which lifts under 8 to a neighborhood in
X bounded away from D and £,

1
B*(E+la, ) (oo, Pz, P0) = gt per 202 X C®(pom, pz) -
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proving the theorem by symmetry. O

Theorem 2.3. For 0 < v < 1, the heat kernel E_(z,z',t) for the negative extension

of He has a boundary ezpansion |
B"(B-)(X) = p5' 05" (b, ) +7 x C(@p) € B(X)
- homogeneous of degree —1 in pp.
The proof is completely analogous to the proof for the lift of the positive heat
kernel. When x = —1/4 the non-homogeneity of the boundary data causes the

boundary expansions to be slightly more complicated. This case will be dealt with in

the next section.



3. THE HEAT KERNEL FOR THE MODEL OPERATOR WITH GENERAL
SELF-ADJOINT BOUNDARY CONDITIONS

Theorem 3.1. Denote by Eg(z,1’,t) the heat kernel for the constant coefficient op-
erator H, defined on the domain Dg for © # £. For 0 < v < 1 and © # + the
heat kernel Eg(z,z',t) for self-adjoint extension of the operator H, with domain Dg
defined by 1.2 is in Dg in x and =’ and for any N in N has an ezpansion when

1>v>0

EBo(X)=E_(X)+ ) _ E}{(X)+ Ry (X) € 82,,(X)

=0
with  EL(X) € 47*%(X)  R§(X) € d%N*2(X)

and E{_')(X ) homoageneous in po of degree 2vj —1. Whenv =0

Eo(X) = E.(X) + Ro(X) € ®*(X)
with  Re(X) € ®*(X)

and p;(Re)(X) = s7'Re(X) + O(s7).

For Eg(z,',t) not invariant under the action of y,, the boundary expansion of
B*(Ee)(X) cannot be computed by the same methods as those used for 8*(E.)(X),
the heat kernels for the positive extension. The positive heat kernel for H, will be
used to construct the solution w(z,t) to the heat kernel for H, with domain Dg and
initial data ¢(z) in C®°(R*) from the positive solution u(z,t) with the same initial
data ¢(z). By closure under the £2(R*) norm, this construction gives solutions to

the heat equation for general initial data in the domain Dg.

Lemma 3.2. Let {¢,} be a sequence of functions in CX(R*) such that ¢,(z) con-
verges to ¢(z) in De in the L2(R*) norm. If E(x,z',t) is a distribution on X such
that E(¢,)(z,t) is a smooth function in Dg for fized t and

(@ + Hn)l?(%)(w, t)=0,  E(¢n)(x,0) = ¢n(z)

then E(¢n)(z,t) converges in L2(RY) to a smooth function v(z,t) in De for fized t
such that

(0, + H,)u(z,t) =0 and v(z,0) = ¢(z).

27
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PRrROOF: This follows from the Spectral Theorem 1.6. O

Definition 3.1. For 0 < v < 1, the leading functional coefficients at the face x =0

of the positive and negative heat kernels are
NE.(z,t) = {7 2 E4(2,2,t) Hao

{z*"1E_(z,2',t)}s=0 0<v<l

NE“("E”t) N { {x—%/111(-’17)E—(x’x”t)}|$=0 v=0

Deﬁnition 3.2. Define the operators Ny on D, and N_ on D_ by
Nu80) = [ NE 08N, b4(o) € D
N_(¢-)0) = [ NE-(@\0¢-()is,  6-(a) € D

N1(¢)(t) are the boundary data functions for positive or negative solutions to the
heat equation with initial data ¢(z) in Dy.

Definition 3.3. F(h)(z,t) is a solution to the signaling problem with negative bound-
ary data h(t) in C*°(R*) if

(0 — & +z726)F(h)(z,t) =0, F(h)(z,0)=0

h(t)zv+7 + O(z*t2) O<v<1

F(R)(@,8) ~a=o { h(t)zdin(z) + O(@d) v=0

~ By the uniqueness of solutions to the heat equation for self-adjoint extensions of Hy,
F(h)(z,t) cannot have purely positive or negative boundary data. It will be shown
that the solution to the signaling problem gives a map from N.(D.), the spabe of
positive boundary data functions, to N_(D-), the space of negative boundary data

functions.

Lemma 3.3. The solution F(h)(z,t) to the signaling problem with negative boundary
data h(t) in C*(0,00) is

F(h)(z,t) = 20h(t) % N'Ey(z,1) 0<v <1
F(h)(z,t) = h(t) % N'Ey(2,8) =0



where N'E, (z,t) = {(z/)" 2 E.(z,z', ) }|z=0.
ProoF: Let ¢_(z) be a compactly supported function, smooth up to the boundary
z = 0 and equal to the harmonic function 27+ for H, in some neighborhood of the

boundary,

¥-(z) € CP(RT\0) and ¥ (z) ~z=0 { ™ O<v<l

ziln(z) v=0

Since 1_(x) is harmonic near the boundary, H.(v_)(z) is compactly supported
away from the boundary. Assume that h(t) = N_(¢)(t) is a boundary defining
function for a negative solution to the heat equation with initial data ¢(z) in C®°(R*).
The function h(t) vanishes at ¢ = 0, so h(t)¥_(z) has negative boundary data and
zero initial data. Applying H, to this function gives

(0 = 8% + rz ) ()Y (z) = Oh(t)y—(z) + h(t) He(v-)(2).
Let H. denote the operator —8% + x(z')?. By Duhamel’s principal,
D(h)(z,t) = Oh(t) *: E4(-)(z,t) + h(t) * Ex(H (4-))(z,1)

solves the forcing problem for the error term and has positive boundary data at
z = 0. Although the Schwartz kernel E, (z,z',t) only gives smooth solutions to the
heat equation for initial data in D,, F,(¥_)(z,t) is well-defined since ¥_(z) is in
L3(R"). E,(¢_)(z,t) satisfies the heat equation but is discontinuous at the initial
face t = 0, and the singularity in F (1_)(z, t) is smoothed by convolution with 8;h(t).
Since Hy(v_)(z) is in C®(R*), B4 (H'.(1-))(x,t) is smooth up to the boundary faces,
therefore D(h)(t) is smooth away from the boundary, has positive boundary data, and

vanishes to infinite order at t = 0.
F(h)(z,t) = h(t)y-(z) — D(h)(z,1)

solves the signaling problem with negative boundary data h(t). Integrating the first
term in D(h)(z,t) by parts,

Oih(t) *s EL(¥_)(z,t) = {h(t')/oooE+(x,a:',t — " Y_(z")dz' }E -,

+ /0 t h(t') /0 00{&;E,L(:z:, z',t — t)_(z'Ya(t') Y da'dt

= h(t)Y-(z) + h(t) * 8 E4 (¥-)(, 1)

29
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This leaves a convolution of h(t) with the term

OBy (w_)(x,8) + By (H.L(v-))(z, 1)

which can be further simplified by using the boundary expansions of the heat kernel
E(z,z',t) and the function ¢_(z). |

B, (b_)(z, ) = /0 OB (z, 7', ) (2')ds = — /0 THE, (z 7, ) (2')de’
by the symmetry in the z and z' variables, so
OB+ (%) (2, ) + By (H, (%)) (2, t) = —HL(E) (_) (2, 1) + E(H,(¢-))(=, 1)
=£i_r)%/ {03 E, (2,2, t)y_(2') — Ey(x, 2’ t)62, _(z')}da'

= lim{—E4(2,2',0)09-(¢) + O B (2,2, - (@) 2

This cross term vanishes at infinity since 1_(z) is compactly supported. Near ' =0,

N (z')™"*1 0<v<1
V) = { (z')iln(z) v=0

(~v+ )™
Ox_(z) =< 0
Ha) "% In(z') + ()75

OBy (z,7,t) = (v + 5)($')”‘%N’E+(x, t) + O((')"*%)
This gives the cross term

—“WN'E,(z,t) 0<v<1

atE+(¢—)($,t) + E+(HK,¢—-)($7 t) = { —-N’E+(1L' t) v=>0

O

Denote the Fourier transform on R by F. For g(t) in L2(R*),
*° . dt
— —iz( haddl
F@)QO= [ o)y
Lemma 3.4. For o a complez number with (o) > —1 the function
12 =t* if t>0 t3=0ift<0
18 locallg:/ integrable and defines a distribution with the properties

t-t2 =t3* for R(a) > -1 and Git% = ot for R(a) > 0.



Let T¢ = t$/T'(oo + 1), where T is the standard Gamma function, then T¢ can be
analytically continued to all a in C such that 8,T¢ = T3, T? = H(t) the Heavyside

function and T7* = 5((,k—1), k in No. T has Fourier transform
F(T?) = exp{—imr(a+1)/2}(¢ —i0)™!
with { the transform variable in R.

PROOF: A detailed explanation is given in [11]. O

Lemma 3.5. there ezists an operator K : N, (D, )(t)=>N_(D_)(¢t) with convolution

kernel K(t) conormal to t = 0 and well defined inverse G and.

K@) =ct ™ =, F (¢ -i0)"T(v)e ™/?) 0<v<l ¢ €R\0
K(t) = F1(2/In(¢ — 10)) v=20

PrOOF: If ¢(z) is in C’§°(R+) then the restriction maps Ny on D, give an isomor-
phism between boundary data functions for positive and negative solutions to the

heat equation,
K : Ny (¢)(t)=>N-(9)(2)-

By the £2(R*) closure of C’§° (R*), this isomorphism extends to boundary data func-
tions for positive and negative solutions with initial data in the domains D, and D_,

respectively, and has a well-defined inverse
G : N_(D-)(t)—=N4(D1)(2).

By construction, if v(z, t) is a negative solution with initial data ¢(z) in C®°(R*) and
boundary data function h(t) = N_(¢)(¢),

u(z,t) = v(z,t) — F(h)(z,1)

is a solution to the heat equation with purely positive boundary data and initial data
$(z) in C(R).

The differential operator 0;+ H, is invariant under the R* scaling u,, so p}(F(h))(z, t)

is also a solution to the signaling problém if F(h)(z,t) is. F(h)(z,t) is in D,,,, for
fixed t so

F(h)(z,t) = ()6 () + h()p_(2) + v(z)  v(z) € Drmin.
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Since Dy is invariant under scaling by s > 0 I will suppress the term v(z). For

O<rv<l,
F(h)(z,t) ~amo f(8)2"*7 + h(t)a™"*3
/L:(F(h))(xa t) ~z=0 fs(t)xy-l-% + hs(t)x_u+%, ENS (0, OO)

folt) = 8“3 f(s%),  he(t) = s+ ih(s%t)

The boundary data functions for solutions to the heat equation are supported on the

positive real line so K(t) = 0 for ¢t < 0 and
s 2hy(t) = h(s%) = K(f)(s%) = / o<)K(s"’t —t)f(t)dt
. . 0
= §° / ooK(sz(t — 1) f(s*)dt' = 573 / ooK(sz(t — 1)) fs(t))dt'
0 0
and by definition of h(t)
hs =°°K—'5’d'=_2y+2 °°K2_Isldl
()= [ Ke-On@ =5 [TKE - )

so K(t) = s'"VK(st).
When v = 0 it is easiest to first consider G(t), the map from negative to positive

_boundary data. For g(t) a function on R* and s in (0, 00) set g,(t) = g(s%).

F(h)(z,t) ~z=0 h(t)x% In(z) + h(t)x%

pa(F(h))(z,t) ~amo h(s%t) (52) In(s2) + f(s’z)(zs)*
= h(s%)siz? In(z) + s7{In(s)h(s%t) + f(s*t)}z?

" therefore
G(hs)(t) = In(s)hs(t) + £5(2)

G(hs)(t) = /0 t G(t — t')h(s*t")dt’
= In(s) / t 8(t — t)h(s*t)dt' + / " G(s* — ) h(t')dt’
0 0

t ¢
— In(s) / 5(t — £)ha(t)dt + 82 / Gt = ¢)hy(¢)dt!
0 0
This gives an equation for G(t)

In(s)6(t) = G(t) — s°G,(t), s € (0,00).
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Since G(t) = s*G,(t) for t > 0, G(t) ~ t~* as t—o00 and G(t) is not in L2(R*). Let
F(G)C —ie) = /Ooo e~ H-EG(t)dt  for € >0
This is a well defined function on R and
FG i = [ g = 276 (S5
j ¢ — e

82

In(s) = F(G)(¢ — 1€) — F(G)( )

o F(G) = limesoF(G)(C — i€) = %m(g — 0)

2

KO =7 G

Corollary 3.6. For0<v <1,
E_(z,z',t) — Ey(z,2',t) = 2UN'E, % K x, xNE,(z,2,t)
PROOF: Let ¢(z) in C°(R*) be the initial data function for u(z, t) a positive solution
to the heat equation with boundary data function f(2) = N, (¢)(¢).
v(z,t) = u(z,t) + F(h)(z,t) = u(z,t) + 20K (f)(t) x: N'E,(z,1t)

is a solution to the heat equation with initial data ¢(z) and negative boundary data

K(f)(¢). Since ¢(z) is compactly supported,
K(f)(t) % N'E,(z,t) = NE4()(2) * K(t) % N'Ey(z,1)
= waE+(x',t) *; K(t) x; N'E,(z,t)¢(z')dz’
0

The corollary follows from the £2(R*) closure of C2(Rt). O

Lemma 3.7. For each © # + in PR there is a convolution map with kernel Ko(t)

conormal to t =0 and supported ont > 0
Ko(t) = F7H((F(G) +©)™)(¥)

such that
2UN'E, xy Ko %, NE(z,2',t) 0<v<1

Eo(z,z',t) = E,(z,2',t) +
(.2 1) = By(e,21) {N’E+*tK9*tNE+(a;,x’,t) y=0
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PROOF: For ¢t > 0 the © heat kernel Eg(z,’,t) is in Do and conormal to z = 0 by

the Spectral Theorem 1.6, therefore the restriction
NEo(z',t) = {z" 1 Ee(z,7',1)}a=0

is well-defined. By inclusion in Dg, the Taylor series expansion of Eg(z,z',t) at z =0
has a term of order v + 1/2 with coefficient O NEg(2',t). If w(z,t) is a solution to
the heat equation for He then with initial data ¢(z) in Dg, define the boundary data

function for w(z,t) by ‘
h(t) = Ne(4)(t) = /0 NEo (7, 8)6(z)da'.

If u(z, t) is a positive solution with initial data ¢(z) in C®(R*) and boundary data
f(t) = Np(¢)(t), the solution to the signaling problem will be used to find a A(t) in
C*(0, 00) such that

w(z,t) = u(z,t) + F(h)(z,t)

is a © solution with initial data ¢(z) and boundary data function h(t) = Ne()(t).
- G(h)(t) gives the positive data for F'(h)(z,t), so this amounts to.solving the convo-
lution equation for h(t) V

f() — G(t) *¢ h(t) = h(t)©.
Using the Fourier transform,
F(HQ) = FRO{F(G)() + 6}
50
h(t) = £(8) % F(F(G)(C) +©)™") = Ko(£)(2)
w(z,t) = Oh(t)$s(z) + h(t)p—(z) +v(z),  v(3) € Dpnin
For 0 < v < 1, Kg is the inverse Fourier transform of the distribution
F(Ke)(¢) = {F(G)(Q) + 6} = 6{(a,T(v)) 'e™/*(¢ — i0)" + ©} .
For v =0,
F(Ke)(Q) = {3 1n(¢ ~i0) + 0} =In(Co(¢ ~i0) " Co = exp(26).

‘This illustrates the fact that when v = 0 the negative solution plays no special role

among the solutions with © # +.
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Using the commutativity of the convolution maps when ¢(z) is in C®(R*),
Ko(f)(t) = (Ko t NE,)(¢)(z,t)
S0

Eo(¢)(z) = E+(¢)(z,t) + F(Ke * NEL)(¢))(z,1).
This proves the lemma by the £2(R*) closure of the initial data. O

Corollary 3.8. For0<v <1,
Fo(z,7',t) = E_(z,2',t) — ©Kg s {E_(z,2',t) — E.(z,2',t)}
PRroOOF: When 0 < v < 1, the kernel Kg(t) can be written recursively as
Ko(t) = {4(t) — ©Ke(t)} * K(t)

This is just a manipulation of the Fourier transform of Kg(t):

FUIQ o _OFE)Q)

i T eFE©)

T 14+ 0F(K)(C)

FF(K)(Q)-

Then
WN'E, (z,t) % Ko(t) % NE4(z',2)
= {5(t) — OKo(t)} *; 20(N'Ey (2, t) %, K () % NE,(2',2)
= {6(t) — ©Ko(t)} % (B-(2,7,) - By(,2,1)).

Lemma 3.9. For 0 <v <1 and for any N in N,

OKo(t) NZ—I( @)jrj(’/)tj Ly oMY
olt) = — —¢, 0 — =t + 0"~
P L(jv) ™ |
PROOF: Let K’(t) be the convolution operator K(t) = c,t4"! applied to itself j
times, K7(t) = K *; K *; -+ *, K(t). For v in this range the Fourier transform gives
el . e , iz . TEVTE) G411

# 1 . r 12+ G+ — G+1)v

7 7 = TN Fe 3D — )00 = LI
and a formula for K7(t) is given by

T (v)

Ki(t) = KV s K(t) = o) _yti=w=t et 5 D7) o
"T((G-1w) * “Tv) *
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Applying the recursive formula for Ke¢(t) gives

2

Ko(t) = Y (—OPHKI (1) + (=) KN (¢) x, Ko(?)

1

<.
i

for any positive integer N. O

Proof of theorem 3.1:
Eo(z,7',t) is in the domain Dg in z for fixed ¢ > 0 by the Spectral Theorem 1.6.
The restriction of the positive heat kernel to the faces £ = 0 or 2’ = 0 vanishes to

vi}nﬁnite order at t = 0 away from the corner z = z' = 0, so the term
B*(N'Ey x; Ko *; NE+)(X)

is smooth on the interior and and vanishes to infinite order at ¥ and © and the
expansion of §*(Eg)(X) at the diagonal face ® and the temporal face T is the same

as that of B(E,)(X). For 0 < v < 1,

Eo(z,2',t) = E_(z,7',t) — Ko(t) x {E_(z,2',t) — E (z,2,t)}
N-1
=E_(z,7,t) + Y _(-OYKI(t) x {E_(z,2',t) — By (z,7,t)}

i=1

+ (=©)VFIKN(t) %, Ko(t) % {E-(2,7',t) — B (z,7',1)}

B*(E-)(X) and B8*(E_- — E,)(X) are homogeneous in pp of degree —1, and K7(t) is
homogeneous in ¢ of degree jv — 1, so 3*(Ee)(X) has an expansion at £ in powers
of 2jv — 1 with leading term equal to the leading term of 8*(E_)(X).

When v = 0 the operator H_ is not homogeheous under the scaling us, so the
negative extension cannot be used to construct the heat kernels for © boundary
conditions from the difference between the positive and negative heat kernels. Since

In(Ce(s¢ — 0)) = lime_,0 In(Co(s¢ — i€)) = In(Co (¢ — i0)) + In(s)

the inverse Fourier transform of its reciprocal satisfies

Ko(st) = s ' Kof(t) + O(s7Y)
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The difference between the positive and the © heat kernels is

]\[’E_{.(.'L', t) Xy K@ *¢ NE+($I, t)

t t
= / NE (z,t—t) | Kot —t"\NE,(z',t")dt"dt
0 o]

M;(NIE+ (.’L‘, t) K¢ K@(t) *¢ 1VE+($’, t))
sSTUE(N'EL) (3, 1) % Ko(s%t) %, ut(NEL) (', 1))
= s 'N'E,(z,t) % Ko(t) ; NE.(z/,t) + O(s7})

and 3*(Eo)(X) is conormal to the front face O with a leading term of degree —1 O
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4. A FORMULA FOR THE COEFFICIENTS OF THE TRACE AT THE CONIC POINT

Let e7*#(z, ') be the heat kernel for the Laplacian on R. The operator with kernel
Eo(z,2',t) — e ¥ (z,1")

restricted to z,2’ > 0 is trace class and tr(E, — e *¥)(t) can be written as the sum
of two distributions, the first having an expansions at ¢ = 0 with coefficients coming
from terms supported on the diagonal A, and the second with coefficients arising
from the Taylor series of k().

In [1] Callias shows that for » > 1 and v not in Z, tr(E, — e*#)(t) has a constant
term v = \/Im Following Callias, I outline a construction of the positive heat
kernel using a Bessel function representation of the resolvant and use this to compute
an exact formula for the difference E_(z,2',t) — E,(z,2',t) between the positive and
negative heat kernels for the model operator H, = 82—rz~2 with k > ~1/4, as well as
the constant c, in the convolution kernel K (t) = c,t™" that takes positive boundary
data to negative boundary data for solutions to H,.. These are used compute the
constants in the first two terms of the expansion of tr(Ee — e~*¥)(t), the modified

trace for the self-adjoint extension of H, with © boundary data.

Theorem 4.1.

tr(Ee — e tH)(t) ~o tr(By — e ) () + v + @—I%I/;—l/gt" + O(t*)

Therefore the constant k = v? — 1/4 in the operator H, and the boundary condition

© are recoverable from the expansion of tr(Ee — e *H#)(t) at t = 0.

PRrROOF: The positive heat kernel for H, for ¢ > 0 can be written as a contour
integral of the Green’s function constructed from modified Bessel functions. Because
the domains of the self-adjoint extensions with mixed boundary conditions are not
Rt invariant, an analogous construction will not work in éhose cases. The following

theorem and its proof directly follow Callias’ paper [1].

Theorem 4.2. Fort > 0 and 1 > v > 0, the positive heat kernel is given by

Ey(a,7,8) = (z2')*} f B2 e g (25 g (o))
,/ At

Where T is the canonical contour in the complex plane starting at —oo in the lower

half plane, circling the origin and continuing to —oo in the upper half plane. The



integral converges for all x, =’ with t > 0, is a smooth function of z, £’ > 0 and

g(2z?) is an analytic function of its argument with

2 (aa) Hg(ax)g(a)) = g )z ,(Vz2)L,(V/z)
PROOF: For v ¢ Z and z a positive real number the equation
(82 — k2™ = 2)(x,2) =0
" has two solutions
¥1(z,2) = (Vz2)7L,(vzz) and ¥a(z,2) = (Vz2)?K, (v/2z) where
L) = (/2 3 /2P (T + & + 1))

kO

K,(y) = (I-(y) = L(v))

2sm(1/7r)

are modified Bessel functions with asymptotic behavior

Kw~y™* Ly)~y" a y=0

K,(y)~yie?  L{y)~y e a5 y—oo.
The Green’s function for the operator H, — z defined on D, is given by
G(z,, 2) = (z2')3 {I,(Vz2) K, (Vzz' ) H(z' — z) + I, (V22 ) K, (Vzz)H(z — =')}
where H(z) is the Heavyside function, sd for ¢¥(z) and ¢(z) in D,,
/ / — 2)G(x, 7', 2)b(a)(x)duds’ = / ¥(2)6(z)dz.
From the asymptotics of the modified Bessel functions, '
G(z, ', 2) ~ Vzzz'eV?* % as z—00 and
E.(z,2',t) = / ——et‘G+(x ', t)

is well-defined for ¢ > 0 since the e term dominates when |z| > 0.

This integral can be simplified by writing the product of the two Bessel functions

L (Vzr')K,(Vzz) = 37"(2)"9(2(')*)§(22°) + 2" (22')" g(22”) g ((2")?)
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where g(y) and g(y) are analytic functions of their arguments (depending on v) for

v>0, vgZ. Then G(z,2, 2) is re-written as
G(z,7,2) = 2"(2') " §(22°)g(2(2")*) H(z' - )

+27(2')"5(2(2')*)g(23*) H (z — &') + 2" (22')" g(22%) g (2(2")?)

The first two terms are analytic in z and drop out of the integral for E,(z,z’,t), and

this gives a formula for the integrand. O

Proposition 43 For1>v>0
gyt
I(-v)

sin(vr)(zz')2 .

K(t) =

and

/

z% + (2')? T
E_(z,2',t) — Ei(z,2',t) = xp{——4t(l}K,,[—2—t—

PROOF: As before, let G(t) be the convolution kernel of the map between negative

and positive boundary data functions. By Lemma 3.5,

(C _ io)ueim//2

F(G)Q) = )
so by the Fourier inversion formula 3.4
t——u—l
G(t) = +

aT(W)[(-v)
G(h)(t) is the positive data for the solution to the signaling problem for A(t) in
C*>(R*) given by
F(h)(z,t) = 2vh(t) ¥, Ny E, (z,t).

A second expression for G(t) can be derived by restricting F(h)(z,t) to z = 0 and
computing its positive boundary data function. Since F(h)(z,t) must contain both
positive and negative boundary data, we have to first make sense of what the restric-
tion means in this case. |
N, E,(z,t), the restriction of E(z,z’,t) to the face = 0, is singularat z =t =0
but is smooth in ¢t away from this corner, and has positive boundary data for ¢ > 0.
Let 7(¢) be a smooth function on R* such that (t) = 1 for ¢ > € and ~(¢) vanishes

to infinite order at ¢ = 0. Then

t
Ye+ N'E, *; h(z,t) = / h{t — t")ye(t')N'E,. (z, t')dt!
0



is the convolution of two smooth functions and
g A(t) % Y(E)V' Ex (2,1
has positive boundary data, so for t > 0
G(t) = v lim{(az') ™ 77 () E+ (2, 7', 1) How=o
Using the Bessel function form of the positive heat kernel for ¢ > 0
G(t) = WNN'E, (t) = 2vg%(0) L %z"'e“
Lemma 4.4. For k a positive integer,

dz +h ot ksm(wr) —v—k—1
ZVTRet® 1) ——=T k4 1)t
/ 572 =(-1) (v+k+1)t7

ProoOF: With the change of variables w = tz for t > 0, the integral becomes

dz u+k tz t—u—k—l/ dwwu+kew
271'7. v 271

ei‘w(u-é-k) - e—m’(v-&-lc) 00 _
= ‘ w’tke Vdw
2me 0

= (- 1)"szn7(r7w)1“( +k+1)

sm(m/)

G(t) = 2vg*(0)———=T'(v + 1)t7 ..

By equation 4.1 this gives

-4 Vv
sin(vr)l2(v + 1)

2vg°(0) = {75 (V2z) Homo =

szn(wr)

¢, is found by equating the two expressions for G(t)

R
G = oTWI(—v)  #T@w+1)
AT(v+1) —g

& = vL()T(=v)  T(=v)
These same techniques give an explicit formula for the difference between the positive

and negative heat kernels. Using the representation of the modified Bessel function
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I,(y/zz) as an asymptotic sum and 4.1,

—4-(+3 s ®© 2k
2

O —

9(z27)g(0) = sm 1/7r 1/+1 g

x
47 ET(v+k+1)

Under the change of variables w = 2t this gives .

bt k

T4~ Wta)grts dz , e, 22 z
s Z(

N'E,(z,t) = — ~ )k
+(,?) sin(m)T(w +1) J, 2mi 7) ET(v+k+1)

- —y— 1
v 1 u+2 t v 1‘,EI/+2 $2

(-1 93 _
4”+2I"(1/+1)Z T 4"+%I‘(u+1)exl°{ 1

Recall the following Laplace transforms with the dual variable s:

L e = 2(a/s)"?K,[2(as)?]  LEY) = 5T ()

1, a4+ b ab 1
L(5t7 exp{~——)K, [2t]) K, [at?]K, [bt1]
Using the Gamma function identities
T
Fv+1)=vI'(v) TEI1l-v)= (o)
these give the Laplace transforms of N\ E, (z,t) and K(t);
rist T)
1 i s~v4Y
(N E+)($ 3) 21/1'\( )K,,[LBS?], L:(K)(S) 4 F(—I/)

To compute the difference between the positive and negative heat kernels use the

formula
E_(z,2',t) — Ei(z,2',t) = 2uN'E (z,t) %, K(t) , NE,(2',1).
. Convolution is dual to multiplication under the Laplace transform, and

2vL(N'E)(z, 5)L(K)(s)L(NE4)(7',5)

_ 21/(:17:1;')%1—‘(1/) K,,[:BS%]K,,[:E’S%] _ Q(xx,)%sin(wr)

T2(v + DI (—) K, [os?|K,[o's}]

_ (el oy g o

O
Proof of Theorem 4.1: The difference between the positive and negative kernels

has zero boundary data and the R, invariance for these extensions means that the

tr(E_ — E.,)(t) is given by a convergent integral along the diagonal in X on the front
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face, which is in turn equivalent to the integral along the diagonal on any parabolic

octant @,. Under the change of variables w = 2?/2t,
(B~ E)(0) = [ {B-(0.2.8) - Buo,2,)}ds
_ xszn(wr) z?
= [T oDy S e
o0
= ﬂﬁg—/ﬂ/ exp{—w}K,[wldw = v
0

This gives the trace at the corner of the heat kernel for negative boundary data in

terms of the trace of the positive heat kernel F,(z,2,t). -

tr(E- — e”")(t) = tr(E; — e™™)(t) + tr(E_ — E.)(t) = tr(Ey — e~*H)(t) + 1/
For the @# + the first two terms of the trace are
ir(Eg—e‘tH)(t) = tr(E.—e ) (t)+v—Otr(K (t)*{E_(z,2',t)— E, (z, z', ) })+O(t*)

To compute the second term in the trace it is easiest to first restrict to the diagonal

and then use Laplace transforms to compute the convolution.

1
—4vtigTvy

ra-v)I'(-v) Klas?]

E(K)E(E—- - E+)(.’l),.’17, 3) =

Taking the inverse Laplace transform

4u -u+1t2u-1

K(t) % {E_(z,z,t) — E'+(:cmt)} T u)I‘(—u)ex{ 2t} 0( )

With the change of variables w = z2/2t,

tr(K(t) % {E-(z,2',t) — E4(z,2,8)}) =
_zvti o0
Il -v)I(=v) Jo
__Vzutu 2u~1\/"
r2(1-v) T(3/2- )112(1 B

w™’ exp{—w}Kjp(w)dw =

_ 1/4"’5\/—
v) = r'(3/2- u)"‘

0

There is one value of k for which the kernels E,(z,z/,t) and E_(z,2’,t) can be

conveniently expressed in a closed form; that is when « = 0 and the operator is no
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longer singular. In this case Hy = 82 and the positive and negative solutions are

given by
| E (z,2,t) = ;\/._—%—{exp{*(x——ﬁ} - exp{—(i-%f}}
E_(z,7',t) = \/_{exp{—(—,)—}+eXP{—%}}
When v =1/2, [(~1/2) = =2/ and ¢ = —1/y/7
Ny B, (&) = x;t\“;_’z {__i_)2 , N_E_(x’,t) = f\;—;exp{—%lt)—z-

Under the Laplace transform £ with dual variable s
L(K)(s) = é"%, [,(N_E_)(x’,.s) = 577 exp{—z's?}
L(NLE)(',s) = exp{—x’s%}

Which shows that the value calculated for ¢ 1 is correct.

!

zz' 1, 1 T
Kilo 1= Vrt? (za') 72 exp{-—
and the various methods of computing the difference between the positive and the

negative heat kernels agree.

E_(z,2',t) — Ei(z,2',t) =

1.
t~2 .’Z'+$I 2
2wN'E_(a,) % NEW(,1) = e xp{_%}
_ (az')? 2+ (2')?  .za'
=g Kl

The modified trace for these operator kernels is then

tr(By — e‘tH) 2\/_/ exp{——}dx
Let w = z/t3 valid for ¢ > 0, then

(B~ )0 = 5 x| exp{-wldu = -5

And by theorem 4.1,

trE_(t) = %, trEg(t) = ?} + 9\/7;(‘._%_ + O(‘t)
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5. THE HEAT KERNEL FOR THE VARIABLE COEFFICIENT OPERATOR IN ONE
DIMENSION

Let x(z) be a smooth compactly supported function on the half line such that
k(0) = kg > —1/4. The positive heat kernel E,(z,2’,t) for the constant coefficient

operator

Hno = —-8% + lioil?_z
and the positive heat kernel Ey(z,z',t) for the Laplacian on [0, 00)

(z + :z:’)2

-2V, o)y,

Ey(z,,t) = \/—{exp{— — exp{—

will be used to construct the heat kernel E¥(z,z’,t) for the operator
H, = -8+ «(z)z?
defined on the domain D, defined in 1.2.

Theorem 5.1. For 0 < v < 1, the heat kernel E% (z,2',t) for the positive extension
of H, with domain D, has a boundary ezpansion on X, the blown-up space defined
n 2.2

B (E5)(X) = o5 (pmps) 205" x C2(X) € 82,,(X)
The coefficients in the ezpansion at £ and R depend on the Taylor series expansion

of k(z) at the boundary, and the leading coefficient at the front face O is equal to that
of B*(E4)(X), the positive heat kernel for the constant coefficient operator.

PROOF: 1t is initially convenient to do the construction for the operator
(8, — 82 + K(z)z72)

which, unlike the original operator 39, + Hy, is not singular at the front face © when
blown up under 3 to X. The heat kernel constructed for (0 — 02 + k(z)z2) will be
exact, so dividing by ¢ gives a solution to the original operator.

Let ¢(z,2z) be a compactly supported symmetric function with ¢(z,z’') = 1 for

(z,2') € supp(k) x supp(k) and set

Ey(z,2',t) = ¢(z,2")E4(z, 7', t) + (1 — ¢(x, ")) Eo(z, 2', )
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Proposition 5.2.

0y — H)Ey(z,2,t) = Ry(x,2',t) € ), (X)  E(z,2',0) = 6(z — 2')

with R1(X) compactly supported in x and rapidly decreasing as ©' goes to infinity.

Proor: For large z,
t(@t + Hn)El(X) = t(c’?t - aﬁ)Eo(X) =0

so R,(X) is compactly supported in z. Likewise for large 2', E1(X) = E¢(X) is
rapidly decreasing as z’ goes to infinity for fixed z, therefore so is R;(X). When z

and z’ are both in supp(x) then near x = 0 x(z) = ko + zx1(x) and
10, + Ho)EL(X) = t(0, — 02 + ko™ 2 + k1 ()7 ) B4 (X) =tz k) (2) B4 (X)

B (tz~ k1 (2) B4 )(X) = pof* (k1) (00 o) 5 (B+) (X)

proving the proposition. O

Lemma 5.3. There is a distribution D(X) in &3

ohg(X) compactly supported in x and

x' such that 3*(D)(X) = 0 along ® and

(8 — 8 + K(2)z™?)D(X) — Ry(X) € ¥, (X)

phg

PRrROOF: Under the map « : X—X defined by 2.3, in a coordinate patch bounded

away from the left face '’ =0
o (40 + Hy)) = o (t(0; — 02 + k(z)z7%)) = s(Os — &+ w(ry)y~?).
Let 1(y) in C®(R*) be a cut-off function supported away from y = 0 such that
Y(y)=1 for ye (1—¢1+€), €>0
and define a family of second order differential operators on [0, c0) by
Hy = =05 + w(ry)¥(y)y >

The Friedrich’s heat kernel E7(y, ', s) for H}; is the family of distributions depending

smoothly on the parameter r with

El(y,y,0)=6(y—y) and H) =0~ rov(y)y >



On X with coordinates (y,r, s) let
F(y,r,8) = r'lE,Z(y, 1,s).
Near y = 1, so that ¥(y) =1,
$(0s — 8 + k(yr)y ) F(y,r,s)=0 and  F(y,r,0) =r"6(y - 1).

On X near D there is a map fBp : X—a~!(X) that is an isomorphism on the interiors

and giving coordinates on X satisfying
* -1 « s 3
Bo(r) = po, ﬁg(g—g—) =T, Bo(s?)=pp for s>(y—1)%, €>0

where 7 is not a boundary defining function. Since Hj, is the Laplacain with a smooth
perturbation, F(y,r, s) and o*(E;)(y, T, s) lift under By to have expansions along D,
the lift of the diagonal, with leading term pg" [14]

Bo(F)(T,p0,00) ~ Y o fu(r,00),  Bo(e”(BV))(T, po,po) ~ Y, A ex(T, po)
=0 k=0

with fi(7, po) polyhomogeneous conormal to © with leading term p5' and e (7, po)

homogeneous in po of degree —1. Define D(X) by letting 8*(D)(X) be the Borel

sum of 300 di(7)p% ! cut off near T = 0, where
do(t) =di(1) =0 and di(7) = ex(7, po) — fe(T, po) for k> 1.

a*(E;)(X) and F(X) both vanish to infinite order at s = 0 away from the singular

submanifold y = 1, and since
F(y,r,0) = o*(E1)(y,r,0) = r~'5(y — 1)

the first two coefficients in their expansions are equal at ©, giving the vanishing to first
order of A*(D)(X) on ®. Since Hj = H,, near y = 1, the coefficient of the leading
term 7~! in the expansion of F((X) at r = 0 is the same as that of o*(E,)(X). By
the smooth dependence of E7,(y, 1, s) on the parameter r, the expansion of 8*(F)(X)
at © is smooth, so 4*(D)(X) is smooth up to the front face O and vanishes to zeroth
order there. F(X) is an exact solution to o*(¢(d; + H,)) near the lifted diagonal
y =1, so §*t(8, + H,){E, — D}(X) vanishes to infinite order at © and T. O

47
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Lemma 5.4. There is a distribution B(X) in &3,
rapidly decreasing as T’ goes to infinity such that

(X) compactly supported in = and

t(6; + Ho)B(X) — R(X) € &3, (X)

phy
and B*(t(0; + He)B(X) — R(X)) vanishes to infinite order at R.

PROOF: The powers in the Taylor series expansion for E,(X) and Eg(X) at z =0
are different, therefore the distribution B(X) = B4 (X) + By(X) will be constructed
in two steps.

First let b;(s,7) be functions such that

(e <]

(8 — 8 + w(yr)y {6 () (wr, B (E)(X) = D bi(s, )y}

j=0

vanishes to infinite order at y = 0. The first term B, (X) will be given by the Borel
sum of these coefficients. It is immediate that the b;(s,r) vanish to infinite order at
s = 0 for r large by the vanishing of E,(X). In order to check that B,(X) is in
®*(X) it is sufficient to assume that r is small enough so that 8*(@)(ry,r) = 1. The

lifted functions o*(k;)(ry) and o*(E,)(y,, s) have expansions at y =0

o0 o0

* * v4L4g

o (k1)(ry) ~y=o Y ¥y kes  and o (By) (Y7 8) ~ymo Dy e (s,7)
k=0 j=0 '

where the e;(s,r) vanish to infinite order at s = 0 and are homogeneous in r to
degree —1. The lifted heat operator applied to a*(E.)(y,,s) gives an error term

with expansion at y =0

o -3

rs . 1y e

7" (51) (yr)o* (B ) (y, 7y 8) ~y=0 8 D477 ) er(s, r)ri ™+ iy
j=0 ={)

Recalling the formula v = /K¢ + 1/4,

1 1 .
ko= (v+ 5+ =35 +7)=5"+2j
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5(9, — B2+ w(yr)y™?) Yy b, (s,7)
j=0

o0 0
vl . N p—3/247
=s S Y *2H9,b;(s,m) + E 0(12+2w)y 3247, (s,7)
J= J=

o J

wj—k+1, v—L1+j
+8Y D) Kjksabr(s, r)r Ty

j=0 k=1
bo(s,r) = 0 since the leading term in the expansion of o*(E,)(y,r, s) is removed by

applying ¢(8; — H,). Equating coefficients to satisfy

Cyfa* (k1) (yr)a*(Ey)(y, 7y 8) ~y=0 Z 5(0y — 82 + o (k) (yr)y~2)y"* ¥+7b;(s, 1)

gives bi(s,7) = k1 (1 + 2v) " 'reg(s,7) and for j > 1,

J-1

bi(s,7) = (5% + 2v3) D _ kjar? *{en(s,7) — bi(s,7)} — Bybja(s, )}

k=0

By the above formula the coefficients b;(s, ) have a smooth expansion in r and vanish
to infinite order at s = 0 uniformly up to r = 0. Let B, (X) be the operator such
that o*(B;)(X) is the Borel sum of the b;(s,r) cut off near y = 0. By construction,
Bi(X) is in 83,
Let ¢(z) be a cut-off function such that ¢(z) = 1 near z = 0 and ¢(z)(1 — ¢(z, z'))

is supported away from the diagonal, and set

(X) and has positive boundary data at z = 0.

By(X) = §(x)(1 — ¢(z, 7)) Eo(X)

By(X) is rapidly decreasing as z' goes to infinity and B(X) = B, (X)+ By(X) satisfies

the lemma. O

Definition 5.1. Denote by ®(X) c <i>';hg(X ) the subspaces of distributions that lift

under (3 to vanish to infinite order at the face R, are compactly supported in z and

rapidly vanishing as z' goes to infinity.
Proposition 5.5.

Let E(X)=Ey(X)-D(X)-B(X) then
E(z,2',0) =d6(z — '), (8 — H)E(X) = R(X) € $(X).
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PROOF: The initial data for E(X) is the same as that of E;(X), since D(X) and
B(X) both vanish at ¢ = 0. Since R (X), D(X ) and B(X) are compactly supported
in z and rapidly decreasing at infinity in z', so is R(X). The Taylor series of the
remainder term at T, © and R has been removed without changing the initial data.
a

There is a composition calculus for operator kernels in ®*(X) defined in 5.1 that
allows the error term for the solution E(X) constructed above to be removed by

iteration.
Definition 5.2. Let Q(M) denote the density bundle on the manifold M.

Definition 5.3. Let [(Y;z = 0) for Y = Rt x Rt 3 (z,1) denote the space of
smooth functions on Y compactly supported in z and vanishing to infinite order at

z = 0.

The action of ®*(X) on the space of solutions to the heat equation for H, on the
domain D, is defined by £2(R*) closure on I(Y;z = 0). In order to use the properties
of b-fibrations to show how ®*(X) acts on I(Y;z = 0) the origin (0,0) in Y will be
blown up parabolically in the direction of sp(dt) in the co-sphere bundle to get the
manifold

Yo = [¥75(0,0), sp(dt)]
with map a : Yo—Y and boundary faces R, O, and T. Boundary defining functions
can be chosen satisfying
o*(z) = popm, *(t) = ppps
The density bundle on Y lifts to Yg by
o (QY)) = o (dadt) = ANAYo).
The space Xg defined in 2.1

Xo =[X\{0}]u{Qy}

has boundary faces R, £, T and O and there is a map fg : Xo—X that is an isomor-

phism on the interiors of the two spaces and boundary defining functions satisfying

Bo(z) = pmpo,  Bo(a') = pepo,  Bo(t) = pard.



By the definition of ®(X), the lift under fg of the remainder term Bo(R)(Xq) is a

function polyhomogeneous conormal to the boundary faces of Xq.
Proposition 5.6. For all R(X) in ®(X) the pairing

R(u)(z,t) = /ot /OOOR(:B, z' t —thu(z', t)dz'dt’
defines a map from I(Y;z = 0) to itself.

PROOF: The integral in 2’ is well-defined by the compact support of u(z, t) in z and
the vanishing at z = 0. Let X5 be the direct product of four half lines R* with

variables
X, ={(z,2",t = t,t); z,2/ >0, t >t >0}
and define projection maps

WQ}R(X2) = (.’E,.’L",t - tl), 772,L(X2) = (.’L",t’), 7('2,(3(X2) = (:L‘, t)

The maps 7y g and 9 1 give fibrations but 73 ¢ does not. In order to use the theory
of b-fibrations as outlined in [15] the submanifold {¢t = t' = 0} in X, will be blown
up to make the projection my ¢ into a b-fibration. This will mess up the other two
projections, but they will still be sufficiently well-behaved for the composition of
their lifts to make sense on the blown-up space. Since the distributions in ®*(X) and
I(Y;z = 0) are defined as functions polyhomogeneous conormal to the boundary faces
of Xq and Yy, the origin {0}, in X, will be blown up parabolically in the direction
of sp(dt,dt'). and the lifts of these three origins to X, will also be blown-up. The
subspaces of X, defined by the three lifted origins are

WZ_,R({O}) = (0,0,0,1), 7"2_,},((0’0)) = (z,0,t,0), WiC((O’ 0)) = (0,7, 0,0)

. For the first two blow-ups set

X5 = [X2; {0}, sp(dt, dt'); cl({t = t' = 0} \ {0}2))]

where sp(dt, dt') is the span in the co-sphere bundle of X, at {0} of dt and dt' and
cl({t =t' = 0} \ {0}2) is the closure in [X3; {0}, sp(dt, dt')] of the lift of the subspace
{t = t' = 0} in X, with the origin removed. X} has six boundary faces with boundary

defining functions (pg, z, z', Tr, 71, Tc) Where po is the boundary defining function for
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the blow up of the origin in X5, 7 of blow up of {t = ¢ = 0} and 7, and 7¢ of the
lifts of the temporal faces in Y and X. There is a map v : X}— X, such that
v(z) = zpo, v(z')=2'po, ¥ (t —t)=1rTcpo and v'(t') = Tr7cpo
Define the blown-up space X over X, by blowing up X along the lifts of the three
origins in X and Y,

X, = [X}; Br, sp(dry); Br, sp(dTr); Be, sp(drc)]

where By is the closure of the lift under 4~ of the lift of the origin in Y to X, minus
the origin in Xo,
Br = cl{yv '(r31((0,0))\ {0}3)}  and likewise
Be = c{y 7 (m5,6((0,0)) \ {0}s)},  Br=cl{y " (m;x({0}) \ {0}s)}

where the order of the blow-ups is not important. X, has boundary defining functions
(po, PR, PL, PL, PRs PC, TR, TL, Tc) Where Tr, 7L, Tc are the defining functions for the
lifts of the three temporal boundary faces, po for the blow-up O of the origin in X5,
pr, pr for the lifts R and L of the two boundary faces corresponding to = and z'

and g, Pr, Pc the boundary defining functions for the blow-ups L, R and C of the
submanifolds By, Bg and Bg. There is a map [, : X,—X, such that

Ba(z) = poprbrbc  B2(") = popLPLAR
Bo(t) = TiTopopLbe  Ba(t —t) = TrRTCPpPRAE  Palt) = ToPoPE
and blow down maps
Tor: Xo—=Xg, fac:Xe—mYy,  Tarn:Xe—Yp

defined so that the following diagram commutes: The density bundle Q(X,) lifts
under (3,

B3(UX)) = B3 (dadz/dtdt’) = ppih prrcUXo)
The lifts of the boundary defining functions on Xq and Yg are
73 r(pm) = préC T3 R(Ps) = PLAL 73 r(px) = TRTCP: 73 R(PD) = PoPR
%5 L(pm) = pLbr 73 1(pz) = TLTCPe T3,1(Po) = PoPL

75 c(pm) = prAR T30(PT) = Te T30(P0) = Pobc
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Where the asymmetry in the lifts of pg reflects the asymmetry of the blown-up man-
ifold. Although the bprojection T2,k i 10t a b-fibration, this set of projection maps is
sufficient because the projection 73 p will only be used to pull back functions to X,.
In fact, if the operator kernels in ®*(X) were written as Schwartz kernels in ¢ as well
as in z, ignoring the translation invariance, then there would be an extra temporal
variable in the blown-up space and this would give b-fibrations in all the factors.
Lifting o*(u)(Yy) with u(z,t) in I(Y,z = 0) to X, by the left projection map gives
#5,1(0* (W) (X2) = (poppLpr) ™73 1 (W(Ya))
where 73 (i(Yg)) is smooth. For R(X) in ®*(X),
7?2,3(,55(3))(5(2) = (PpcprTCT R)oo(pOﬁR)%ﬁ;,R(a(XZ))
with ﬁ;,R(a(Xz)) polyhomogeneous conormal to L and L. The lifts of these two
objects pair on X, to give
B3 (QU X)) 75 p(R)73 1 (u) = (poprPRALACTCTR)®(Xa2)
With a(X5;) polyhomogeneous conormal to R and L.
An element w(z,t) of I(Y;z = 0) lifts to X, as
#i3,0(0* (w))(X2) = (pobcprPr) ™ 7,0 (B(Ya))

with 73 ;(1(Yy)) smooth. therefore by the push-forward theorem for polyhomoge-

neous conormal functions under b-fibrations given in [13], the density
B3 (QUX2))75 p(R)T3 1 (1)
pushes forward under #; ¢ to a density
o*(Q(Y))a"(u)(Yo)

with u(z,t) in I(Y;2 =0). O
Proposition 5.7. The composition of two operators with kernels R;(X) in &% (X),
fori=1,2 given by

00 .t

Ri o Ry(z,2',t) = / / Ri(z,2,t — t')Ro(z, o', t')dt'dz
o Jo

is an element of ®¥1+k2(X).
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PROOF: Again R;(X) and R,(X) are compactly supported in z so the integral in z
is over a finite interval and well-defined by the vanishing to infinite order at z = 0.

Let X3 be the direct product of five copies of the half-line R,
X; ={(z,2',z,t = t',t');z,2',2 > 0,t > t' > 0}
with three projection mapé give by
m3.r(X3) = (z,2,t"), mL(X3)=(z,2t-1t), mc(Xs)=(z,7,t)

The construction of the composition space X3 for operators in ®*(X) is almost ideh-
tical to the construction of X,, the main difference being that there is one extra
boundary face which makes it a little more complicated to write down.

X is a five dimensional manifold with five boundary faces. The heat space X3 will
be a five dimensional manifold with nine boundary faces. In order for X3 to give a
b-fibration under the lift of 73 ¢ the origin {0} in X; will be blown up parabolically,
as well as the submanifold ¢ = # = 0 and the lifts of the origin {0} in X under the

three projection maps:
7r3‘,R({0}) = (0,7',0,¢,0), 73, ({0}) = (2,0,0,0,2), m3.¢({0}) = (0,0, 2,0, 0)

The blow up of {0} is done first, and then the blow-up of the sub-manifold {t = ¢' =

0}, so that the final result will be a b-fibration in the center projection. Define

X3 = [X;{0}s, sp(dt, dt'); cl({t = ¢’ = 0} \ {0}s)]

with boundary defining functions (z,’, 2, po, 71, Tr, 7Tc)- The three lifts of {0} C X

to X} are disjoint and can be blown up in any order, and the heat space is
X3 = [X}; Br, sp(7r); Br, sp(71); B, sp(7c)]

where the three submanifolds B, Bgr and B¢ are defined in a manner analogous to

the previous definition. There is a map [ : X3— X3 and boundary defining functions
(PO, ﬁR, ﬁL; ﬁC7 PR, PL,PC, TR, TL, TC) on X3

such that the boundary defining functions on X3 lift by

- B3(2) = popcPrPL,  Bi(x) = poprPrPc,  B3(x") = popLpLbC,

Bi(t) = TuTepdpRpE, Byt —t) = TRTcPbPipE,  B3(t) = TopdPe



Finally there are maps 73. : X3—>XQ defined so that the following diagram is com-
mutative: The density Q(X;) lifts under 35 by

B3 (U X3)) = Bs(dzdx'dzdtdt’) = p&pgpypLTo(Xs)
With coordinates on X given as before, the lift of boundary defining functions are
3.r(pm) = prbc, T3gr(Ps) = pchL, 73 p(Po) = pobr, 73 r(pT) = TRTCPE
3 1L(0®) = pchr, T3(pe) = pLbc, 7s.(po) = pobr, 73.(px) = TLTCPE
73 c(om) = prPR, T30(pe) = pLhrL, T3c(P0) = pobe, T3c(pz) = TC .
If B;(X) is in 3% (X) and Ry(X) is in $*2(X) then
73 r(Bo(R1))(X3) = (PeprTre)® (popr)* 73 p(ar(Xg))
73,085 (B2))(Q3) = (Bopoprrere)(popr) ™73 1 (o (Xg))
where 73 n(cr(Xg)) is polyhomogeneous conormal to L and #};(ar(Xq)) polyho-

mogeneous conormal to L. The composition of these two operators on X3 with the
lifted density G5 (2(X3)) is

5;(Q(Xs))ﬁg,n(ﬂa(Rl))ﬁg,L(ﬂa(R‘z))(Xs) = (ﬁcﬂcﬁRPRTRTLTC)wP(G)H(k’+k2)’Y(X3; Q)

Where v(X3,) is a integrable density valued function polyhomogeneous conormal
to L and L. Rs(X) in ®*2(X) lifts under 3. to a distribution on X3

73 o (B (R3))(X3) = (prprTc) ™ (Pobc) 75 o (ac(Xa))

where 75 (ac(Xq)) is a function polyhomogeneous conormal to L and L. The lift of
the density bundle on X to Xg is

Bg(dzdz'dt) = phQ(Xq)
therefore the push-forward to the composition under #; ¢
7,0, {05 (UX))5 n (B2 (R1))73 1. (85 (R2)) (@9)} = (o) o 0o ()

with a(X3) a function polyhomogeneous conormal to L and the push forward is an
element of ®1+*2(X). This completes the proof that composition in the calculus
&*(X) is well defined. O
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Proposition 5.8. There erists an operator S(X) in ®*(X; Q%) and an operator
T(X) in ®°(X) such that

(8 + H)Eo(Id+8)o(Id+T) =0

PROOF: t(8,+H,)E(X) = R(X) with R(X) in 3(X,Q2). The asymptotic expansion
of R(X) at O can be iterated away, since it is in the calculus ®*(X).

RI(X)=Ro---oR(X), FR/(X)e ®*(X)

Let Id(X) in ®°(X) be the identity operator for the calculus ®*(X). For E(X) acting
on I(Y;2=0), .

18, + H){E ou}(Y) = u(Y) + Rou(Y), ueI(Y;z=0)

(8, + He)(B o {Id+ S (-1 R7}) = (Id + R) o (Id+ > (-1 R))

j=1 _1 =0

N N
=Id+ R+ (-1YR +) (-1YR* =Id+ (-1)"R"*!
j=0 3=0

where RV+1(X) € V+13(X). Since 85 (R)(X) ~p O(p}) the series 32, 85(R)(Xq)
can be summed near £. Let S(X) be the push forward under (g of this sum. Then

£(8y + Hi)(E o (Id — 8))(X) = (Id — T)(X)

with T(X) in ®°(X).

Since T'(X) vanishes to infinite order at O, it can be considered as a function defined
on X. T(X) vanishes to infinite order at ¢ = 0 and z = 0 and is polyhomogeneous
conormal at ' = 0 and compactly supported in z, therefore for any 7 > 0 there exists

a constant CT and integers p and ¢ such that p + ¢ > 0 and
T(z,2',t) < CrzP(z)(1 +2) (1 +2')™" for t <7

Let K, = [[°2P*9(1+ 2)"%dz and T?(X) =T o---oT j times and assume

L (Kt
(G-t

T (z,z',t) < CizP(z')1(1 + x)’l(l.—}— z')” for t<r



t o0
Tj+l(x’ .’12', t) =To Tj(l‘,:l:’, t) — / / T(:II, z,t — t’)Tj(z, xl’ t')d'dz
0 Jo

t poo (KTt)j—l
< / / C,J.+1$p($l)q(1 + le)—l(l + :c’)'lzp“’"'(l + Z)_z—(’j——l-)rdtldz
0 J0 -4

: J
SO (@) (1+2)7 (1 + x')'l———(K]T,t)

for ¢t < 7 therefore the Neumann series Z;’;l(~1)jTj (X) converges to an operator in
®>(X), so for T'(X) in ®°(X) the inverse of the remainder (Id—T')(X) is well-defined

and the parametrix
Ef=(Ey~D-B)o(Id—S)o(Id—T) " (z,2,1t)
solves the forcing problem
t(0, — 02 + k(z)z"2)(E% o u)(z,t) = u(z, 1),

where u(z,t) is a function that is in the positive domain D, for fixed t. Ef(z,z',t)
is unique and is the Schwartz kernel for the initial value problem, so it is the heat

kernel for the positive extension of the variable coefficient operator H,. O

Since B(X) and D(X) are in ®3, (X), the leading coefficient of E(X) at £ is given

phg
by the restriction to the parabolic octant @, of the kernel E,(X) for the constant

coefficient problem,

{poB"(E)(X) = pof*(E+)(X)}Hpo=0 = 0

T(X) vanishes to infinite order at O, so it does not effect the expansion there. Con-
sider the composition of S(X) with E(X). For any N in N with R°(X) = Id(X)
N—l . . -~
S(X) ~pp=o O (-1RI(X) +5¥(X), SM(X)e N (X)

3=0

RI(X) is in $%(X) so
';u;(Rj)(X) ~g=0 0(33(1—1))
~ . m t -~ .
BoRI(X)= / / Bz, 2.t — )Rz, o, )dzdt’
0 0

ps(E o RI)(X) = *uy(E) o g (R)(X) ~vomo O(s¥71).
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Since p, lifts under Bg as a scaling in pp,

B*(E o S)(X) = pple(X)

with (X)) a function polyhomogeneous conormal to the boundary faces of X and
smooth in pp. This gives the expansion of 3*(E%)(X) at O. The expansions at R
and £ are given by inclusion in the domain D, . This completes the proof of theorem
5.1. O
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6. THE HEAT KERNEL FOR THE VARIABLE COEFFICIENT OPERATOR WITH
GENERAL SELF-ADJOINT BOUNDARY CONDITIONS

Theorem 6.1. Denote by E§(z,z',t) the heat kernel for the self-adjoint extension

of the operator
H,= -0+ k(z)z™?

with domain Dg for © # +. E§(z,2',t) is in Dg in = and z' and for any N in N
when 0 <v <1,

B (EX)(X) = p¥p5 (pmpe) “+ipp" x C=(X) € y(X)
N-1
ES(X) = E*(X)+ Y _ E§'(X) + R§V(X) € ®2,(X)

j=1

E57(X) in ®%7%*(X) with pg 7 8*(E§?)(X) smooth in pp and RE™ (X) in $2%N+*(X).

Forv =0,
N-1 .
B§(X) = E5(X) + Y E§*(X) + R§" (X) € $*(X)
Jj=1
E§(X) = F{(In™(Ce(¢ — 0)) *¢ RI(X) with RI(X) in &2 (X) and B*(R7)(X)
smooth in pp and REN (X) in ®*t¥(X) defined in 2.2.

PRrROOF: The construction of the heat kernel E§(z,2’,t) for © # + boundary condi-

tions for the variable coefficient operator H, is by modifying the positive heat kernel
Ef(z,2',t).

Proposition 6.2. Let F(h)(z,t) be the solution to the signaling problem for H, with
h(t) smooth and supported on the positive half line and

F(R)(z,t) ~o=o h(t)d-(z) + O(z"*%)

Then

2vh(t) *, N'E%(z,t) O<v<1

F(h)(!ﬂ, t) = { h(t) % N’E.':(x,t) v=20

where N'E (z,t) = {(:v')"’"%Ei(-'E, z',t) He=o



60

ProoOF: The proof is analogous to the proof in the constant coefficient case with

¥_(x) replaced by the function

- TVt (z O<v<l
@ eoE®\0)  b@=1 %, ¢
z2 In(z)w'(z) v=20
and using the heat kernel E* (z,z’,t) for the variable coefficient problem. The cross
terms in the construction of F'(h)(z,t) give only the leading term of E* (z,z’,t) since

all other terms vanish at the boundary. O

Proposition 6.3. There is a pseudo-diﬁebrential operator with convolution kemél
K§(t) that takes boundary data functions for positive solutions of the variable co-
efficient operator Hy to boundary data fuhctions for © # + solutions and supported
ont>0. For 0 <v <1 let K*(t) be the convolution kernel taking positive boundary

data functions to negative ones, then

K5(t) ~imo S 877 €R

N-1 '
K5(t) = 3 (—0) % K™I(t) + (~O)VK™" x K§()

for any positive integer N with K" (t) = K* ;- - - %, K*(t) convolution of K*(t) with
itself j times. For v =0,

K5(t) ~=0 Ko(t) + > LL(t)

j=1

o(L5)(¢) ~ In 7} (Coe (¢ — 10)) Y P4(¢)
k=0
Ik (s¢) = s""/z'“’“/ZIj”‘(C) for s>0

PROOF: A map can be found from the negative data h(t) of F'(h)(z,t) to the corre-
sponding positive data by making sense of the restriction of F'(h)(z,t) by N, defined
in 3.2. For € > 0 let 7(¢) be a cut-off function with () =1 for ¢ > € and vanishing
to infinite order at ¢t = 0. Let A(t) be a smooth function that vanishes to infinite
order at t = 0. The restriction of the positive heat kernel N'E% (z,t) for the variable

coefficient operator is smooth in £ away from the corner z =¢ =0, so

t
Ve N'ES #, h(z, 1) = / h(t — ) (t)N'E% (z, ) dt
0



is the convolution of two smooth functions and
hm ’)’5 . N+E_T_ *t h,(.'L', t)
e—0

has positive boundary data. For t > 0 the kernel mapping negative boundary data

functions to positive ones is
G"(t) = 2vlim{(22') ™" #7.(t) E5 (2, 7', ) Hawr=o
By Theorem 5.1, pgﬂ*(Ei)(X) is smooth in py and
G*(s*) = s l2v li_{'%{(:):x')—”_%’yf(s%)u: (E%)(z, 2", ) }Haz=o0-

therefore t**!G*(t) is smooth in ¢z and supported on [0,00). The leading term of
ﬂ*(Ej“_)(X') at O is the same as that 8*(E,)(X), so

{t7HG"(t) = G(t)) =0 = 0

and G*(t) is the kernel of an polyhomogeneous elliptic pseudo-differential operator

supported on the positive real line with symbol denoted by o(G*)(()
o(G)(C) ~ > pi(¢)  with  pf(sQ) =s"T"IpF((),  j>0

and principle symbol given by 3.5,

f’(G)(C) _ { (C - Z‘O)VC; for0<v<l

() =p(() = In(¢ —i0)c;t forv=0

For0<v <1,
a(G")(€)/p(¢) =1+ R(¢)
RO~I PO, rs0)=s720(0)  for 550
g
the Neumann series for R(C) converges and
F(K®)(C) ~ (¢ —10)~{1 + Z 1)'RI(¢

is the symbol of the pseudo-differential operator that maps positive boundary data

functions to negative boundary data functions.
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If w(z,t) is a solution to the self-adjoint extension of H, on the domain Dg for
© # + boundary conditions there is a boundary defining function A(t) for w(z,t)
given by

{z"3E5(z, 7', t)}omo for0<v<1

NES(z,t) = |
{z72/In(z)E&(z,2',t)}emo for v =0

o0
) = N30 = | NES(,06()d
' 0
Solving to correct the boundary data leads to the same set of equations as in the
constant coefficient case. The map from positive boundary data to © boundary data
with convolution kernel K§(t) is the inverse of the elliptic pseudo-differential operator
with kernel G*(t) + ©4(t) supported on ¢t > 0. For0<v <1

o(K§)(¢) = (e(G™)(¢) —©)~!
satisfies the same recursive relations as when x(z) = k is a constant. For v =0

(0(G*)(¢) + ©)/In(Co(¢ — i0)) = 1 + R(()/ In(Ce (¢ — 10))

RO~ Q) r(s0) =) s> 0

o(K5)(¢) ~In™}(Co(¢ = i0)) + D In™*"*(Co(¢ — i0)) R*(¢)

k=1

For 0 < v < 1, the difference between the positive and negative heat kernels for

the variable coefficient operator Hy is

E*(z,7',t) — E%(z,2',t) = 2uN'E" (z,t) %, K*(t) , NE% (', ¢)

UE(N'ES (3, 8) #¢ K*(t) # NES (2, 1)) =
sTIN'E"% (z,t) *: K*(t) . NE% (', t) + O(1)
so B*(E*)(X) has an integer expansion at O with leading term of order —1. Since
B*(NE®)(pm, po, px) vanishes to infinite order at T, g*(E* )(X) has an expansion at
D like that of §*(E%)(X) and vanishes to infinite order at . The expansion at £

and R is given by inclusion in the negative domain. For © # =+,

E5(z,a',t) = E*(z,2,t) + OKS(t) % {E"(z,',t) — E% (2,2, )}



1y (K5 (t) % {EZ(z, 2, 1) — Ef(z, 2, 1)})
= K§(t) = {E*(z,2',t) — Ef(z, 2", t)} + O(s)

B*(E_)(X) — B*(E.)(X) vanishes to infinite order at ¥ and D, so E5(z,2’,t) has
leading term at the front face © equal to that of E*(z,2’,t) and the same expansion
as Ef(x,2',t) at the faces T and © and is in Dg in z and z', the domain of the
self-adjoint extension with © boundary conditions. The terms in the decomposition

of E§(X) are given by
(—OY T K™« {E_(z,2',t) — E4(z,7',t)}
When v = 0,

Eo(z,2',t) — E (z,2',t) = N'ES (z,t) x, K§(t) s NE% (2t
+ e +

B*(N'E% ;l<t K& *; NE%)(X) vanishes to infinite order at ¥ and D so 8*(E%)(X)

vanishes to infinite order at ¥, has an expansion like 5*(E,)(X) at ® and boundary
expansion at £ and R given by the lift of the © boundary conditions. The terms in

the decomposition of E§(X) are given by

N'E" %, L, %, NE* (2,2, t)
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7. SELF-ADJOINT EXTENSIONS OF THE LAPLACIAN ON METRIC CONES WITH
CONSTANT CROSS-SECTIONAL METRIC

I denote by C(N) the m = n + 1 dimensional manifold with boundary N x R* 3
(z,r), for N an n dimensional compact manifold without boundary, with metric on
C(N) given by

| dr? +r7%g(r)
for g(r) a smooth family of metrics on N. In this section I will take g(r) = g constant
in 7. The hodge star on the k-forms wi(r) and dr A wi_,(r) for this metricis

xwi(r) =" Hdr Axwe(r),  *(dr Awe_1(r)) = r"F 250, (r).

A tilde will denote the operator restricted to the cross sectional manifold N. In [6]
the Laplacian AF on k-forms on the metric cone C(N) with dim N = n is shown to
be
A(h(r)¢ + f(r)dr A ) = |
(=h"(r) = (n — 2k)rH (r))¢ — r2h(r)Ad — 2r~3h(r)dr A §¢
+(=f"(r) = (n— % + 2)r7 ' (r) + (n — 2k + 2)r~2f(r))dr A9
+ 77 2f(r)dr A Ay — 277V f(r)dyp
Following [8], define the map
i : C3°((0, €), A*(N) x A*H(N)) = A¥(Ce(N))
(Wi, wh—1) — T I wi(r) + rk_%‘l')r*wk_l(r) Adr

with 7 : C(N)—N the projection map. vy is a unitary transformation and the £2

measure of the rescaled k-forms on C(N) is

(oo}
[l Fw||? = / / wi(r) A ¥wi(r)dr
0 N
[e.¢]
I3 sl = [ [ wns(r) A ()
0 N

Since N is compact, the integriblity of the k-forms depends on that of wy(r) and
wk—1(r) in the radial variable r. The Lapalcain on C(N) with constant cross sectional
metric g can be written

A
Hy = —3,2.+—2'
} r



. .Z\+(k—ﬂ;—~— 2 -1 ] -2d
—24 A+(k-2+1)2-3
with A acting on C®(N, A*®A*~!). There is an orthogonal basis of C®°(N, A¥@A*~1)

given by eigen forms {¥} for A with eigen values {x*}.
Proposition 7.1. Hy is symmetric on‘ Ce(C(N), AF).
PROOF: If u(r, z) is in C°(C(N), AF) then
Ha(u)(r,z) = 0%(u)(r, ) — r?A(u)(r, 2)
is in C°(C(N), A*) and integration by parts is valid. For v(r, z) in C$°(C(N), A¥)
/00/ Ha(u)(r,z) A xvu(r,z)dr =
o JN

lim/ {0, (u)(r,z) A *v(r,z) — u(r,z) A *0,v(r,z)}
N

+/000/Nu(r, z) A *Ha(v)(r, z)dr

and the cross term vanishes in the limit since u(r,z) and v(r,z) and vanish at the

boundary to infinite order. O

The various self-adjoint extensions of H4 on differential k-forms on the cone C'(N)
are extensions of the operator defined on C°(C(N), A¥). Self-adjoint extensions are

fixed by the choice of harmonic forms included in the domain.

Proposition 7.2. Let {1;(z)} in L2(N, A*@®A*~1) be a basis of eigen forms for A on
N with values in the form bundle A* @ A*~! and eigenvalues At;(z) = k);(x). Each
bi(z) corresponds to a generalized harmonic form ra+t*(=)4,(z) for Hy in L2(C(N), A*)
with v(k;) > 0 a real valued function of k;. '

If |k—2| < 2 then for A with small eigen values there is a finite set {1/;z Pk of eigen
k-forms for A with 0 < v(k;) < 1 that correspond to pairs of positive and negative

generalized harmonic k-forms for H,.

Proor: Using the matrix form of the operator A, computing the harmonic k-forms
is messy but straightforward. Since the cross-sectional manifold N is compact, the

k-forms on N with the metric g can be divided into spaces of closed, co-closed and
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harmonic forms which form an orthonormal basis for £2(N, AF@ A*~1). A generalized

. harmonic k-forms on C(N) can be written
u=rp+drAy)

where (¢,v) in (A¥(N), A¥=1(N)) are eigen forms for A on N with eigen values y > 0.

For y > 0 the harmonic forms can be classified into four types:

£1) ug =ri*ilg 06 =0 n(w)=u+k-F -1
£2) uy= raxnB)dr Ao dp =0 wn(p)=/u+ (k-2 +1)2
+3) uy = =W (dy + ey (u)dr AY) S =0 wvs(p) pt (k-T2 +1
+4) g =r WY+ (WdrAY) =0 mlp) =ly/p+E-57-1]

;

cxlw) = (k=) £ 4/n+ (k= F)
If v;(u) = O there is a negative solution with leading term equal to r3 ln(r); When
A¢ = Ay = 0 the matrix A is diagonal,
A=(k=T-17- 3= 2 +17 =)
and there are only solutions of types 1) and +2) with

@ =k=-2-1l,  w©=[k-T+1.

The harmonic k forms fall into three ranges:
+1)  du and éu are in L2(C(N), AF)
—1)  wisin £L%(C(N),AF) but du and éu are not if

05,u+(k—%—1)2<1

+2)  du and éu are in L2(C(N), A*)
—2)  wisin L2(C(N), A¥, but du and éu are not if

05u+(k—%+1)2<1

+3)  du and éu are in L2(C(N), AF)

—3)  wis never in L2(C(N), A¥)

+4)  du and éu are in L2(C(N), AF)

—4)  wisin L2(C(N), A¥) but du and éu are not if

0§u+(k—-£§-)2<4'



The following is a list of possible generalized negative harmonic eigen forms for the
operator H4 on C*®(C(N), A¥) by form dimension k with respect to the dimension
m of the cone C'(N).

k=7% re= W (dip 4+ c_(p)dr A) 0< p<1

réIn(r)(dy +c_(p)dr AY) p=1
k=2+1 rz-n g 0<p<?
P (dy 4 c_(p)dr AY) 0< p< 2
k=2—4 rieWdray 0<M<§
rit) (doh + e_(p)dr A) 0< p< 18

k=%+1 rz In(r)¢ w=0
ri-ag O<pu<l1
re= W) (dy + c_(p)dr A) 0< p<1

k=%-1 3 In(r)dr A ¢ n=0
re=2Wdr Ay O<pu<l
ra=vaW) (dip + c_(p)dr Ay) 0<p<1

k=%+% ¢ ©w=0
r%—"l(u)q; 0<l$<%
r3 W) (dy + c_(u)dr Ap) 0<p <]

k=2—3 dray L=0
T%—"z(“)dr/\@b 0<pu< %
r%—w(ﬂ)(di/) +e_(pdrAay) 0<p< %

0
Let {1;"}?*, be the pairs of orthonormal eigen k-form with eigenvalues {x; }2k | for

A acting on £2(N, A* @ Ag_y) with 0 < v(k;) < 1. For y(r) a cut off function with
v(r) = 1 near r = 0 define the set of compactly supported functions for i € (1,--- ,p)

+ _ it T - _ revigi(z)y(r)  for0<uy <1
vi (o) = i(en(r) vi (ra) { r3 In(r )w(a:)'y(r) for v, =0

Definition 7.1.

Dy = {u(r,z) € L2(C(N), A*) : 3{u,} € C(C(N), A*) such that u, < u}

Dh.. ={u(r,z) € L2(C(N),A¥) :<u, Hyv > < C||v]|ce
for all v(z) € CP(C(N), AR}

67



68

Proposition 7.3. If u(r,x) is in D™ then

max
u(r,z) = v'(r,z) + u"(r, z)

with u"(r, z) in D™,

min

and

14
=Y "{uief(ne) +uiy (no)},  ufeR

k=1

PROOF: Let m;(u)(r,z) be projection onto the ith eigenspace for A, then
(82 — r 2 A)mi(u)(r, z) = (O — r~*mi)mi(u)(r, 2)

m;(u)(r,z) is in Dg in r and the proof reduces to the 1 dimensional case treated in
Theorem 1.2. O

Proposition 7.4. If u(r,z) and v(r,z) are in D, then
P . :
- 2u; ify#0
<Hpu,v>—-<uHpw> = Zci(ujvi —u; ) c,-:{lz ifV:=O
PROOF: Since u(r, z) and v(r, z) are in D7, |
u(r,z) = v'(r,z) +u"(r,z), v(r,z) =2'(r,z) +"(r,z)

with u”(r, a:) and v"(r,z) in DT, and

=1

P
'(r,z) = Zu*'wz (r,z) +u; ¢y (r,z)  V(r,z)= ZU;"V);—(T, ) +v; ¥; (1, T)
j=1

< Hpu,v > — < u,Hpv >
= lim/ {8, (u)(r, z) A %v(r, ) — u(r,z) A %0, (v)(r,z)}
= lim / {0:()(r,2) A 50/(r,2) — u(r, 3) A %0, (0')(r, )}

r—0

= lim / Z{ar (ufyit (r, z) +ui ¥y (r,x)) A*(vf ¢ (r, 2) + 0797 (r, 7))
N =1
— (it (r,z) + ug oy (r, 2)) A %0, (v 5 (r, ) + vy ¢y (r,2))}
Y4
=Y efuf v —u vt}

=1



by restriction to the ith eigen space of A and Theorem 1.3. O

Definition 7.2. Let S; be the 2p, dimensional vector space spanned by the set of
vectors {1F}Pk, with ¢ (r, ) in L2(C(N), A*), with bilinear form wy(-, ) on Sy given
by

wk( :_,'l/)_) _wk(wz 7¢+) (wz sw+) k(wz—vw;) :wk’( z:tv'd}]i) =

Let G be the Grassmannian of Lagrangian pi-planes in S, the manifold of all py-
planes on which the form wi(-,-) vanishes. A point I’ in G, is a set of pi linearly

independent vectors in Si
= {Z{aﬂw+ (r,z) + a;;¥; (1, z) Z{a (r,z) +ag v (r,x)}} aiij eR
=1

Proposition 7.5. A point ' in Gy can be represented as a matriz with diagonal
entries by, (r, z) + O] (r,z) and off diagonal entries ©;;4; (r, z) with b;;, 0, € R,

buvy (r,z) + Oy (r,z) - O,p¥ (r, 7)
r O 95 (1, 2) e Oty (1, )
@pl"p;(ra ) T bppq/)p_ (r, 1‘) + @pp'(/);_ (Ta )

such that either by = 1 or by = 0, in which case ©; =1 and ©;; =0 for i # j. The

rows of I' are vectors in Sy pairwise orthogonal with respect to wg(-,-).

PRrROOF: I' can be represented as a matrix with each column a basis vector for I'. The
px-plane I is preserved under column reduction of this matrix, bringing it into the
above form by reduction on the negative elements 1, (r,z). By scaling of the basis
vectors, b; = 1 or 0.

The vanishing of the bilinear form wy(:,-) on I' means that for (z,) € (1,---,p)
p p
w(bu; + Z Ority , by + Z Oy ) = ibiuOij +¢;b;O05, ¢, c; #0
k=1 =1

If b;; = 0 for some 4, assume that b; =0for: € (1,---,m),1 <m < pand b; =1 for
€ (m+1,---p). Then the vanishing of w shows that for j € (m+1,---,p), ©;; =0
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and T has the form

- (@ A) o . |
O B .
@ml'l,bi*- (’I", "L‘) e emm"ﬁ;:("'a .’17)

O a (p — m) x m matrix of zeros, so by column reduction preserving the p-plane,
@i,;=1and@,-j=0fori7éj. a

Oy (r,z) -+ Onyi(r,z)

Definition 7.3. For I' = (T'y,--- ,I[',) € Gy, ['; vectors in S¥, let D be the space of

functions ¢(r, z) in D, with

b(rz) =) _{6FeH(re) + 6797 (r2)} +o(r2),  v(r,7) € Dmin

k=1

near 7 = 0 such that

Y4
weD {70 + o797} T;) =0,  all je(1,--,p)

k=1
Theorem 7.6. The set of self-adjoint boundary conditions for H, is isomorphic to

the Grassmannian Gy of Lagrangian pi-planes in S.

PRrOOF: Each point I' in G determines a unique domain DP. If u(r, z) and v(r,z)

are in D,,,, then by Prop. 7.3
u(z) =u'(z) +u"(z) v(z) =2 (z) +0"(x)
u"(z), v"(z) € Dpin,  v'(z), v'(z) € S
w(u,v) = < Hpu,v>— <u,Hav >

therefore each D" represents the domain of a self-adjoint extension of the operator
H, O

The diagonal matrices
Py={¢f, ¥} and T_={y7, -9, }
fix the domains DT of the positive and negative extensions of H 4, respectively.

Theorem 7.7. Let Er(r,r',z,2',t) be the heat kernel for H4 with domain DZ.

(8, — 8 +r 2A)Ep(r,r',z,2,t) =0 and  Er(r,7',z,7',0) = b4z ("', 7')



Er(r,r',z,2',t) is smooth in the interior of X™ and symmetric in (r,x) and (r',z')

and fort >0, Ep(r,r',z,2',t) is in D in (r,z) and (7', 2') up tor =r' = 0.

PrOOF: The proof follows from the Spectral Theorem 1.6. O

Definition 7.4. Let pu, for s € (0,00) be the 1-parameter family of scalings on X

,U,S(T, Tl) z, 33’7 t) = (37', 37", z, .’L',, SQt)

Lemma 7.8. The positive heat kernel E, (r,r',z,2',t) is invariant under us,
pi(E)(r, 7', 2,2’ t) = s EL(r, 7', 2,2, 1)

PROOF: For A constant in r, Hy is invariant under pu,. If ¢(r,z) is in DT}, the
domain of the positive extension, then ¢(r,z) = ¢'(r,z) + ¢"(r,z) with ¢"(r,z) in
Dm

.. invariant under p, and

p

Z(bz +2w ( )a d)iER

]:

—

with no relations on the ¢;’s. y(sr) = v(r) = 1 near r = 0 so
P

)07 v 30 $is"+ir 1y 2y (sr)

satisfies the g, boundary conditions, and p}(¢)(r,z) is in D7 and the degree of the

scaling is by reduction to the one dimensional case treated in Prop. 1.9. O
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8. HEAT KERNELS ON THE METRIC CONES WITH GENERAL SELF-ADJOINT
BOUNDARY CONDITIONS

In the following discussion the subscripts referring to the form diménsion k will be
suppressed. The heat space for H is a 2m+1 dimensional manifold N x N x [0,00)3 =
X™. The heat kernel for self-adjoint extensions of H,4 will be described on the blown
up space X™ constructed as before by first blowing up parabolically in the ¢ variable

along the diagonal at time zero,
AD = {(r,r,z,2,0) € X™:z € N,r € R}

then blowing up parabolically in the ¢ variable the sub-manifold corresponding to the
boundary of C(N)

N x N ={(0,0,z,2',0) € X™: z,z' € N}.
Define the parabolic quadrant and the parabolic half-sphere defined in 2.1

Qy = {(¢,z,2') e R”*™*! . p € Qp,z € N}
Syt = {w = (wo,w') € R™ : wy € R*,w' € R™}

and denote by X7 the parabolié blow up of the heat space X™ for H4 at the boundary
face N x N. Define
| X3 =[X™\N x NJU[QP].
This blow-up is independent of the cross-sectional variables z and z’. The final blown-
up space X™ is constructed by blowing up X3 along the lift A{," of the diagonal in
X™to XZ
X™=[x3\ AF]u S x R™].
X™ has five boundary faces, the left and right faces £ and R corresponding under
this blow-up to the faces z = 0 and z’ = 0, a front face © and a diagonal face D
corresponding to the blow-ups of the boundary N x N and the diagonal face AF* and
a temporal face ¥ corresponding to t = 0 away from the blown-up faces.
There is a blow-down map 8 : X™—X that is an isomorphism on the interiors of

these spaces. Let pz be a boundary defining function on X™ for the face §. Coordinate

~ functions can be chosen to satisfy

B (@) = zi, B*(ai) =i B°(r) = pmpo, B'(r') = pepo, B(t) = ppord.
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Definition 8.1. For & in N let ®*(X™) be the space of distributions R(X™) on X™
such that 3*(R)(X™) is a function conormal to the boundary faces of X™ with an
integer expansion at ® with leading power —m, vanishing to infinite order at T, and
with leading term of order £ — 3 at ©O.

Let ®* (X™) be the space of distributions R(Base™) in ®*(X™) such that §*(R) (X™)
vanishes to infinite order at ¥ and ©. Let @’;hg(Xm) C d*(X™) and ok (X™) C

®*(X™) be distributions that lift to X™ to have classical polyhomogeneous conormal

expansions at the boundary faces of X™.

phg

Theorem 8.1. E,(X) is in ®2, (X™) and is in DT defined in 7.3 in (r,z) and
(r',2') and B*(E.)(X™) is homogeneous in py of degree —1. '

PrOOF: the method of proof is identical to the one dimensional case for Theorem 2.2
so I will omit the details here. The parabolic scaling us on X™ lifts under 8 to X™

as a scaling in pg, therefore the homogeneity of E,(X™) under u; shows that
BH(E4)(X™) = pg' 8 (E+)(@)-

For ¢t > 0, by the Spectral Theorem 1.6, E,(X™) is in D7 in (r,z) and (', 2) up to
the corner r = r’ = 0, and by scaling in pg this is valid up to the front face O away
from the lift of t = 0. There is a map o : X™—X™|,». with coordinates (y, z,z’, p, 5)
that is an isomorphism for € > 0 and satisfying

t
P

With these coordinates the operator 9, + H 4 lifts to

Ba(5) =y, Balrm) =5 Balr) =p, Bale) =2 Bilzl) =4

B(0s + Ha) = p~%{0, — 33 +y2A}
and the initial condition for E, (X™) lifts to

ﬁ;(E+(T, TI’ z, mla 0)) = p_‘l&y,l‘(yla :L")

a construction analogous to the one used in the one dimensional case shows that the
expansion of 8*(E,)(X™) at the diagonal face D is in the same powers as that of the
lift to X™ of the kernel of an operator with a smooth perturbation, and that £, (X™)
vanishes to infinite order at the temporal face ¢ = 0 away from the diagonal. By

homogeneity, this expansion is valid up to the front face 9. O
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Theorem 8.2. The heat kernel Ep(X™) for the extension of Ha with domain DT
defined in 7.8 is in ®*(X™) and in DT in (r,z) and (r',z'). Let {v;};_, be the set of
values given by 7.2 for which negative solutions are in L2(C(N),A*). If by = 0 for

ie(1,---,q) then
Er(X™) = Eo(X™) + Y E¢(X™) € 9*(X™)

with ﬁ*(EI’;j )(X™) vanishes to infinite order at T and D and satisfying

Vi, Vg ?,é 0 : EF(Xm) S ‘b:;;;uj—'-z(Xm)
v; =0,v; #0 Ef(X™) € dui+2(X™)
vi=v; =0 EZ(X™) € ®*(X™)

PRrROOF: The theorem is proved by modifying the boundary behavior of the heat
kernel E(X™) for the domain D7'. The construction of the heat kernel E_(X™)
for the self-adjoint extension of H4 defined on D™ defined in 7.3 is analogous to the
one dimensional case, via the decomposition of the heat kernels into eigen spaces
for A acting on C®(N, Ak @ A*~1). For each i € (1,---,p) there is a distribution
NE:L(r',2,t) on N x [0,00)? defined by ‘

NEfl-('r’y xla t) = {,’,“V"—% / E"‘(T’ 'r’, x? x,’ t)’(l;,(x)dx}lr=0
N

and similarly for N'E" (r, z,t). Let u(r, z,t) be a solution to the heat equation d;+H4 -

with DT boundary data and initial data
u(r,z,0) = ¢(r,z) € C'S"(C(N),Ak).
Boundary data functions f;(¢) for u(r, z,t) can be defined by setting
fi(t) = /000 /N NE.(r',z', t)¢(r', ") dz"dr'.
Let {h;(t)}2_, be a set of smooth functions on R* vanishing to inﬁnite order at ¢t = 0.

We construct a solution to 8; — H, with boundary data Y_5_; h;(¢)¢; (r,z) Applying

the heat operator gives the error term

(8, — 82 +r72A) i hi(t); (r, x) = Z{athi(t)w,:_(r, z) + hi(t)Ha¥; (r, )} |

i=1 i=1

This is removed by subtracting off the term

4 t poo . '
S / / / By (r,r', 3,2, ¢ — ¢){Ouhs( )0 (r', 2°) + hs(¥) Hato (', ') }da'dr 't
‘—Jo Jo JIN _



For each ¢, integration by parts in the ¢ variable gives

hi(O); (1, ) + ha(t) = {HA(EL)(¥])(r 2, t) + B4 (Hy(v7))(r, 3, 1)}

where as before the prime on the operator H4 means that it acts on the primed

variables. For fixed i € (1,---,p),
/ /{HA(E.Q(T, oz, O (') + Ex(r, 'z, ol ) Hy (7)) (7, 2') Ydr'da’
o JN

= lz’me_,o/ {0 Ey(r,r z, 2 )7 (r',2') + EL(r, 7, 2,2, £)0ptp; (', &) }d'| =
N
= ¢;N'E’ (r,z,t)

with ¢; defined by 7.2. This gives a set of p independent convolution equations that are
equivalent to those from the one dimensional case, and there is a map K;(f;)(t)—h;(t)

for each 1 that is a convolution operator in ¢ given by the kernels

K(t) . Citl;f_l if 0 < v; <1
) FY(In(¢ = 40)"N)(#) v =0

therefore the heat kernel for the extension of H,4 with domain D_ is

14
E_(r,r',z,2',t) = Eo(r,r, 2,2, ) + Y &;N'EL(r,2,t) = Ki(t) x NEL(r', o', t).

i=1
Similar maps are used to construct the heat kernel for general self-adjoint extensions
of H, fixed by the boundary condition I'. Let w(r,z,t) be a solution to the heat
equation for the self-adjoint extension of H4 on the domain DJ* with initial data

¢(r, z) in CX(C(N), AF). Boundary data functions for w(r, z, t) are defined by setting
NEL(r', 2’ t) = {r*~3 / Er(r, 7', z, 2, ) (z")dz'} =0
N
hi(t) = / / NEf«(T', z' t)o(r', z')dr'dz’.
o JN

The solution w(r, z,t) will be constructed by adding the purely negative initial data

of w(r,z,t),
P

Y bihi ()97 (r,7)

i=1
for h;(t) smooth functions on R* vanishing to infinite order at the boundary t = 0,

to the solution u(r,z,t) for the positive extension with the same initial data and



76

adjusting the positive boundary data to equal that of w(r,z,1),

p

| Z hi(t) > O (r, ).

j=

Theorem 8.3. There is a matriz {K¥ (t)} of convolution kernels in t that maps the
boundary data functions fi(t) for u(r,z,t) to the boundary data functions hi(t) of
w(r, z,t). Forb; =0,

3 5 e
K;J(t)={ O(t) :thz:ﬁ;

Forb; = 1,4 v; =0 foralli e (1,---,q) andv; # 0 alli € (¢+1,---,p) for
- 1< qg<pthen

57 ot ) ifig (1,00 ,q)
To,(t) +o(t™) ifie (1, ,q)

K(t) = {

- t:f+uj-1 + o(tu.'+uj—-1) zf 'i,j ¢ (1’ cee, q)
Ki(t) = 5 wyrey, (t) +ot1) ifi g (L---,q), 5 € (L, ,q)
Toy (t) *: To;; (1) + o(t™!) ifi,5 € (1, ,q)

with Te,, (t) = F~1(1/In(Co(¢ — 10))).

PROOF: If b; = 0 for some ¢ then f;(t) = h;(t), by the diagonalization of I. Assume

that b; = 1 for all 4. Solving the signaling problem for each i gives the term
t [e]
/ / / Bolr,r, 2,0, t — £){0hs(E 5 (', ') + ha(t) Hay () (', o') Yo' di’
0o Jo JN
= h;(t)Y; (r, z) + hi(t) *: 2v.iN'Ef,_(r, z,t)

The positive data for the solution to the signaling problem with negative boundary
data {hi(t), -, hy(t)} is

{G1(t) % ha(t), - -+, Gp(t) *: hp() }-
Where by Prop. 3.5

c;T(v;)e™i/2 (¢ +i0)% 0<v<1

Fea) = { Lin(¢ — i0) y=0



Adding this to u(r, z,t) and correcting the positive boundary data to match that of

I" gives a set of convolution equations,
p
Fi(t) = Git) # ha(t) + > Oyha(2).
i=1

Let f;(t) denote the Fourier transform of f;(t). Taking the Fourier transforms of the

above equations leads to the matrix equation

A0 F(G1)(€) +Ou ©12 O1p h1(C)
£(¢) _ O2 F(G2)(C) +O - O2p ha(C)
£(0) O O o F(G)(Q) + O ) \Pp(<)

Denote this matrix by F(¢) and let F;;(¢) be the ijth minor of F({), the matrix
obtained by deleting the ith row and the jth column of F(().

Lemma 8.4. Let B(ly,---,l;) for (s, ,l) € (1,-- ,p) be the matriz obtained by
replacing the ljth column of the identity matriz with the column (©y;,---,©p;) for
1< j7<gq. Then

lB(llr 7lq)ij|=0 fOT‘ 2¢(]1l11 alq)
B(i) = B(2)i; = B(i)j; =©s  for 4,j€(1,---,p)

PROOF: If i is not in the set (4,41, ,l,) then the column of B(ly,--- ,l,);; corre-
sponding to the ith column of the identity matrix is all zeros, so the determinate is

zero. O

Let P, be the set of sets of ¢ elements from (1,---,p). With the simplification
bi; #0foralli € (1,---,p), the determinate |F|(¢) of the matrix F(¢) can be written

FIQO)=TIFGn©O+Y 6u [ FGIQO)+ - +
L k=1 lep k=1k#l

> Bl )l JI FGHE©) + - + {8y} (81)

(h""?lq)epq k=11k¢(l1,"'alq)
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Let Pg be the set of sets of g elements from (1,---,7,--- ,0). Then for all i, j,

P 14
FlQ) = [ F@u@O+> 6u [ FGoEQO+ - +
k=1,k#j lePf  k=1kg(il)
' P
> Bl l)sl I FGOQ) + -+ 1{Oudal (8.2)
(1, lg)€EP} k=1,k@&(il1, lg)

~

For i # j with P} the set of sets of g elements in (1,--+,7,--+ ,%,+-- ,p)

F5lQ)=6s I FGQ+ Y 1BG,Y,l [ FGHQ) +--+

k=1,k¢(3,5) lEP:'j k=1,kg(i,j,l)
P
([1’..,,lq)epqi’j k=1,k€(i,j,ll,'“,lq)

Proposition 8.5. |F|(() is the symbol of an elliptic pseudo-differential operator with.

principal symbol
a(IF))(¢) = Cv)(¢ —i0)Xh=1" 1, £0 1<i<p

C(v) a constant depending on v = {11, - ,vp}. If v; = 0 for some i then assume
that v; = 0 fori € (1,--- ,q) with1 < ¢ < p. Then |

(I F)(C) = CO)IAIQ)(C = i0)iw™s

where A(C) is the ¢ X ¢ matric
l’n(Cen (C - 7’0)) T el,q
A(Q) = s :
eql cee ln(ngq (C - ZO))
with diagonal entries In(Ce,;(¢ — 0)) and off diagonal entries ©;;.
PROOF: If i # 0 for 1 < i < p then by 8.1 |F|(¢) is a polynomial in ¢ of degree

P_ Vi >0, so there are constants C' and C' such that
IFIQI> C'(OZ=%  for (| >C.
Ify,=0for1<i<gqthen
F(Gi)(€) = In(Co,;(¢ —10))
and |A|(¢) is a polynomial in {n(¢ — 70), so there exist constants C and C’ such that

1Al > ¢ for . I¢]>C.
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O

Lemma 8.6. Kf? (t) is the kernel of a pseudo-differential operator with principal
symbol a,(|F;;])/op(|F|)(C). Assume v; = 0 for i € (1,---,q) and v; # 0 for
i€(g+1,-+-,p) withl < q<p, then

UP(lFiil)( )={ (¢ —20)™ g<i<p

op(|F1) {in(Co,(( —10))}™ 1<i<yq
Fori#j ,
04(¢ — i0)~%Y g<j<i<p
Up(’FijD(C) — 0:(C - z'O)""{ln(C € - z'O))}"l 1<j<qg<t<p
o, (IF ) “ Sl

0,i{in(Ce,; (¢ — i0))In(Co,;; (¢ —40))} ' 1<j<i<ygq
PRrROOF: For ¢ € R with |F|({) # 0 the matrix F(¢) has an inverse with ijth entry

|F31(¢)/|F|({). Let |F|(D) be the operator with symbol |F|(¢). Since |F|(D) is
elliptic it has a well-defined inverse |F~!|(D) with principal symbol

op(IFY)12) = ap(|AH)(€)(¢ — 30)~ Zawa s

The form of the principal symbol of the operators Ky’(D) = |F|/|F|(D) follows
from the expansions 8.2 and 8.3 for |F7|(¢). O

This completes the proof of theorem 8.3 O

This construction gives the boundary data functions for the I' boundary condition
P

ha(t) = DK w (£)(0)

Jj=1
The solution to the heat equation for H4 with ¢(r, z,t) initial data and I" boundary
data can be written

w(r, z,t) = u(r, z,t) + w'(r, z,t)

where if b;; = 0 for i € (1,--- ,q) with ¢; = 2y; for v; # 0 and ¢; = 1 for v; = 0,

p p
w(nz,t) =Y cjhi(t)  NEL(r,z,t) = Y ;KL (f)(t) % N'E.(r,z,1)
i=g+1 i,j=q+1

For fixed 14, j, since ¢(r, z,t) is compactly supported,

KE(£))(t) % N'E(r,z,8) = {NEL % K& %, N'EL}($)(r, 2, 1)
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so the heat kernel Ep(r,r/,z,2’,t) for the self-adjoint extension fixed by including T’

in the domain is

Er(r,r',z,2',t) = Ey(r, 7', z,2',t) + Ep(r, 7', z, 2, 1)

p
Ep(r,r',z,2',t) = Z NEi(r,x, t) *; K{f(t) *y N’E_{(r’,x',t)
i,j=q+1

Proposition 8.7. 8*(NE.(r',z',t) N'E’ (r,z,t)) vanishes to infinite order at T

and © and is homogeneous in pp of degree —v; — v; — 1.

- PrROOF: From the scaling of the positive heat kernel
pH(N'E)(r,z,t) = s EN'E,(r, 3, 1)
for fixed 4, j the homogeneity at the front face is show by the scaling under u,,

st .
/ N'E' (sr,z,s* — ¢')NE (sr', o', ')dt'dt’
0

t .
= s? / W (N'EL)(ry 2, ¢ — ) s (NEL) (' o, ) dt'
0

= s YiTIN'E(r,z,t) x, NE(r', 2, t)

The vanish at ¥ and ® is from the vanishing of the positive heat kernel restricted

away from the diagonal at the face t = 0. O

, 5 . s~ +o(s7Y) i=j
*(NE (1, z,t) % K&(t) % N'E’(r', ', 1)) ~y=
s (NEL (r, ,t) % Kp'(t) % N'EL( )) ~s=o { Ly oty o g
This, along with the homogeneity of E, (r, 7', z,z', t), gives the expansion of 5* (E]") (X)
at ©. the terms in 8*(E+)(X) all vanish to infinite order at ¥ and 9, so the expansion
at ¥ and D is the same as that of 3* (E+)(X' ), and the expansions at £ and R are

given by inclusion in the domain of the self-adjoint extension. O
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