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Abstract—In large multiagent games, partial obsewability,
coordination, and credit assignmentpersistently plague attempts
to design good learning algorithms. We provide a simple and
efficient algorithm that in part usesa linear systemto model
the world from a single agent’s limited perspective, and takes
advantage of Kalman filtering to allow an agentto construct a
good training signal and effectively learn a near-optimal policy
in a wide variety of settings.A sequenceof increasingly complex
empirical tests verifies the efficacy of this technique.

Index Terms—Kalman filtering,
learning, reinforcementlearning.

multi-agent systems, Q-

I. INTRODUCTION

Learning in a single-agentstationary-emironment setting
canbe a hardproblem,but relative to the multi-agentlearning
problem,it is easy When multiple learningagentsare intro-
ducedinto the system,one of the key elementsof the usual
reinforcementlearning framework — the Markov property of
the state space-— fails, becausethe changing behaior of
the other agentschangesthe dynamicsof the world. There
are several differentapproacheso overcomingthis problem,
including tools and conceptsfrom gametheory and partially
obsenable Markov decisionprocesseshut nonehave proven
to be effective in general.We needa differentapproachand
in this paper we presenta simple abstractionand reward
filtering techniquethat allows computationallyefficient and
robustlearningin large multi-agentervironmentswhereother
methodsmay fail or becomeintractable.

In mary multi-agentsettings,our learning agentdoesnot
have afull view of theworld. At thevery least,it usuallydoes
not have a a completerepresentatiorof the internal statesof
the other agents.Oftentimesit cannotseethe world stateof
agentsthat are far away or otherwiseobscured.This partial
obsenability creategproblemswhenthe agentbeginsto learn
aboutthe world, sinceit cannotseehow the otheragentsare
manipulatingthe ervironmentandthusit cannotascertairthe
trueworld state.lt maybe appropriatdo modelthe obsenable
world asa non-stationanMarkov DecisionProcesgMDP). A
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separategproblemariseswhen we train multiple agentsusing
a global reward signal. This is often the casein cooperatie
gamesin which all the agentscontribute towards attaining
somecommongoal. Even with full obsenability, the agents
would needto overcomea credit assignmenproblem, since
it may be difficult to ascertainwhich agentswereresponsible
for creatinggood reward signals.If we cannoteven obsenre
what the otheragentsare doing, how canwe begin to reason
abouttheir role in obtainingthe currentreward?Our solution
relieson its simplicity.

Consideran agentin an MDP, learning to maximize a
rewardthatis a function of its obsenable stateand/oractions.
There are mary well-studiedlearning techniquesto do this
[Sutton and Barto, 1999. The effects of non-stationarity
partial obsenability, and global rewardscan be thoughtof as
replacingthis true reward signal with an alternatesignal that
is a non-stationaryfunction of the original reward. Think of
the differencebetweenlearning with a personalcoach and
learning in a large class where feedbackis given only on
collective performanceThis causegproblemsfor anagentthat
is trying to usethe reward signalto learn an optimal policy
for this ervironment.ldeally the agentcanrecover the original
personalreward signal and learn using that signal ratherthan
the global reward signal.

We shaw that in mary naturally arising situationsof this
kind, an effective approactis for anindividual agentto model
the obsened global reward signal as the sum of its own
contribution (which is the personalreward signal on which
it should baseits learning) and a random Markov process
(which is the amountof the obsened reward due to other
agentsor externalfactors).With sucha simplemodel,we can
estimateboth of thesequantitiesefficiently using an online
Kalman filtering process.Many external sourcesof reward
(which could be regardedas noise) can be modeledas or
approximatedy a randomMarkov processso this technique
promisesbroad applicability This approachis more robust
thantrying to learndirectly from the global reward, allowing
agentsto learn and corverge fasterto an optimal or near
optimalpolicy, sometimegvenin domainsvherecornvergence
wasonceelusie.

Il. RELATED WORK

This type of problemhasbeenapproachedn the pastusing
a variety of techniques.For slowly varying environments,
Szita et al. [2002] provide a specializationof Littman and
Szepesari's [1996] techniquedfor generalizedVDPs, shav-
ing that Q-learningwill corverge aslong asthe variationper



time stepis small enough.In our case,we attemptto tackle
problemswherethe variationis muchlarger. Choietal. [1999]

investigatemodelsin which thereare “hidden modes”.When
the ervironment switches betweenmodes, all the rewards
may be altered.This works if we have fairly detaileddomain
knowledgeaboutthe typesof modeswe expectto encounter
For variation producedby the actionsof other agentsin the

world, or for truly unobserable environmentalchangesthis

techniquewould not work as well. Auer et al. [1995] shov

thatin arbitrarily varying ernvironments we cancraft a regret-

minimizing strateyy for playing repeatedcgames.Mannor and

Shimkin [2001] extend these results to certain stochastic
games.Theseresultsare largely theoreticalin natureand can

yield fairly looseperformancésoundsespeciallyin stochastic
games.Ratherthan filtering the rewards as we will do, Ng

et al. [1999] shav that a potential function can be usedto

shapethe rewardswithout affecting the learnedpolicy while

possiblyspeedingup corvergence This assumeshatlearning
would corverge in the first place, though possibly taking a

very long time. Moreover, it requiresdomain knowledge to

craft this shapingfunction.

The innovative aspectof our approachis to considerthe
reward signal as merely a signal that is correlatedwith our
true learning signal. We proposea model that capturesthe
relationshipbetweenthe true reward and the noisy rewards
in a wide rangeof problems.Thus, without assumingmuch
additional domain knowledge, we can use filtering methods
to recover the underlying true reward signal from the noisy
obsened global rewards.

I1l. MATHEMATICAL MODEL

The agentassumeghat the world possessesne or more
unobserable state variables that affect the global reward
signal. Theseunobserablestatesmay includethe presencef
otheragentsor changesn theervironment.Eachagentmodels
the effect of theseunobserable statevariableson the global
reward as an additive noise process; that evolvesaccording
to b1 = by + 2z, Wherez; is a zero-meanGaussiarrandom
variablewith varianceo,,. The global reward that it obsenes
if it is in state: at time ¢ is g; = r(i) + b;, wherer is a
vector containingthe ideal training rewardsr(7) receved by
the agentat statei. The standardnodelthat describesucha
linear systemis:

gt = Czy + vy, vy~ N(0,X2)
ry = Azy 1 +w, we ~ N(0,X)
In our case,we desire estimatesof z; = [rl b]7. We

impart our domain knowledge into the model by specifying
the estimatedvarianceand covarianceof the componentsof
;. In ourcasewe set¥X, = 0 sincewe assumano obsenation
noisewhenwe experiencerewards;%(j,7) = 0,5 # |S| + 1,
since the rewards are fixed and do not evolve over time;
%1(1S] +1,|S] + 1) = o, sincethe noiseterm evolves with
variances,,. The systemmatrixis A = I, andthe obsenation
matrixis C =[0 0...1;...0 0 1] wherethe 1; occursin
the i*" positionwhen our obsered states = i.

Kalmanfilters [Kalman,1960 areBayesoptimal, minimum
mean-squared-errastimatorsfor linear systemswith Gaus-
sian noise. The agentappliesthe following causalKalman
filtering equationsat each time step to obtain maximum
likelihood estimatesfor b andthe individual rewards(i) for
eachstate: givenall previous obsenations.First, the estimate
7 andits covariancematrix P are updatedin time basedon
the linear systemmodel:

ATy

AP, AT + 3,

@)
)

Then thesea priori estimatesare updatedusing the current
time period’s obsenation g;:
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As shawn, the Kalman filter also gives us the estimation
error covarianceP;, from which we know the varianceof the
estimatedor » andb. We canalso computethe likelihood of
observingy; giventhemodelandall the previousobsenations.
This will be handy for evaluating the fit of our model, if
needed.We could also create more complicated models if
our domain knowledge shows that a different model would
be more suitable.For example,if we wantedto capturethe
effect of an upward biasin the evolution of the noiseprocess
(perhapsto model the fact that all the agentsare learning
andachieving higherrewards),we could add anothervariable
u, initialized such that vy > 0, modifying = to be z =
[*T b )T, and changingour noiseterm updateequationto
bi11 = by +us+wy. In othercasesywe might wish to usenon-
linearmodelsthatwould requiremoresophisticatedechniques
suchas extendedKalmanfilters.

For the learning mechanismwe use a simple takular Q-
learningalgorithm[Suttonand Barto, 1999, sincewe wish to
focusour attentionon the reward signal problem.Q-learning
keepsa “Q-value” for each state-actionpair, and proceeds
usingthe following updaterule:

Qi(s,a) = (1 = @)Qs-1(s,a) + a(r + ymin Q4(s', ")), (6)

where() < « < 1 is parameterthat controls the learning
rate, r is the reward signal usedfor learningat time ¢ given
s anda, 0 < v < 1 is the discountfactor and s, a, and
s’ are the current state, action, and next stateof the agent,
respectiely. Under fairly generalconditions,in a stationary
MDP, Q-learningcorvergesto the optimal policy, expressed
as

7(s) = argmax, Q(s, a)

IV. THE FILTERING LEARNING AGENT

Like any goodstudent,the filtering learningagentchooses
to acceptwell-desered praise from its teacherand ignore
over-effusive rewards. The good studentdoesnot updatehis
behaior at every time step,but only uponobservingrelevant
rewards.GettinganA in a classwith aneasyprofessorshould
not corvince methat| have good study habits! The question



2 +10 >

4 24

| Pt

/ 25

e

(Y A

L+

A Pt

Fig. 1. This shavs the dynamicsof our 5x5 grid world domain.The statescorrespondo the grid locations,numberedl,2,3,4,...,24,25Actions move the
agentN,S,E,or W, exceptin states6 and 16, whereary actiontakes the agentto state10 and 18, respectiely, shavn by the curved arrans in the figure at
left. The optimal policy is shavn at center wheremultiple arrovs at one statedenotesndifferencebetweerthe possibilities.A policy learnedby our filtering

agentis shavn at right.

remains: How doesan agentdecide upon the relevance of

the rewards it sees?We have proposeda model in which

undesered rewards over time are capturedby a Markov

random processb. Using obsenations from previous states
and actions, an agentcan approachthis questionfrom two

perspecties.In thefirst, eachtime the agentvisits a particular
states, it shouldgain a better senseof the evolution of the
randomvariableb betweenits last visit andits currentvisit.

Secondly given an estimateof b, during a visit to s attime ¢,

it hasa betterideaof thevalueof b, .1 whenit visits s’ attime
t+ 1. Thesearetheideascaptureddy the causalKalmanfilter,

which only usesthe history of paststatesand obsenationsto

provides estimateof »(:) andb.

The agentfollows this simple algorithm:

1. Frominitial statesg, take someactiona, transitionto state
i, andreceie rewardsignalgo. Initialize ¢ (ig) = go and
20(|S|+ 1) = bo = 0, sinceby = 0.

2. PerformaKalmanupdateusingequationsl-5to compute
the current vector of estimatesz, which includes a
componenthat is the reward estimater(sq), which will
simply equalg this time.

3. From the currentstated at time ¢, take anotheraction
with somemix of explorationandexploitation;transition
to statej, receving reward signal g;. If this is the first
visit to statei, initialize (i) = g¢ — bi1.

4. PerformaKalmanupdateusingequationsl-5to compute
the current vector of estimatesz, which includes a
componenthatis the reward estimater(i).

5. Updatethe @Q-table using #(¢) in placeof r in equation
6; returnto Step3.

The advantageof the Kalman filter is that it requiresa
constantamount of memory — at no time doesit needa
full history of statesand obsenations. Instead,it computes
a sufiicient statistic during each update,z and P, which
consistsof the maximumlik elihood estimateof » and b, and
the covariancematrix of this estimate.Thus, we canrun this
algorithmonlineaswe learn,andits speeddoesnot deteriorate
over time.

V. EMPIRICAL RESULTS

If the world dynamicsmatchthe linear model we provide
the Kalman filter, then certainly this methodwill work well.
The interesting question concernssituations in which the
actual dynamics are clearly different from the model, and
whetherthis filtering agentwill still learnthe good, or even
optimal, policies in such cases.This section examinesthe
efficagy of the filtering learning agentin several different
domains:(1) a singleagentdomainin which thelinear system
describegheworld perfectly (2) a singleagentdomainwhere
the noiseis manually adjustedwithout following the model,
(3) a multi-agentsettingin which the noiseterm is meantto
encapsulatgresenceof otheragentsin the ervironment,and
(4) a more complicatedmulti-agentsetting that provides an
abstractionof a mobile ad-hocnetworking domainin which
mobile agent nodes are trying to maximize total network
performance.

For easeof exposition,all the domainswe usearevariantsof
the basicgrid-world domainshowvn in Figure 1 anddescribed
in various reinforcementlearning texts such as [Sutton and
Barto, 1999. The agentis able to move North, South, East,
or Westfrom its preseniposition,and mosttransitionsgive the
agentzero reward, except all actionsfrom state6 move the
agentdirectly to state10 with a reward of 20, and all actions
from state16 move the agentdirectly to statel8 with areward
of 10. Bumpsinto the wall costthe agent-1 in reward and
move the agentnowhere.We usea discountfactor of 0.9.

To demonstratéhe basicfeasibility of our filtering method,
we first createa domainthat follows the linear model of the
world givenin Sectionlll perfectly Thatis, in eachtime step,
a single agentrecevesits true reward plus somenoiseterm
that evolves as a Markov random process.To achieve this,
we simply add a noiseterm to the grid world domaingiven
in Figure 1. As showvn in Figure 2, an agentacting in this
domain will receve a large range of reward valuesdue to
the evolving noiseterm. In the examplegiven, sometimeshis
valuerangesashigh as250 eventhoughthe maximumreward
in the grid world is 20 — the noiseterm contributes230to the
reward signall A standard@-learning agentdoes not stand
a chanceat learningarnything useful using this reward signal.
However, thefiltering agentcanrecover the true reward signal
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(Left) As the agentis attemptingto learn,the reward signal value (y-axis) changesdramaticallyover time (x-axis) dueto the noiseterm. While the

true rangeof rewardsin this grid world domainonly falls between0 and 20, the noisy reward signalrangesfrom -10 to 250, asshawn in the graphat left.
(Center)Given this noisy signal, the filtering agentis still ableto learnthe true underlyingrewards, converging to the correctrelatve valuesover time, as
shavn in the middle graph.(Right) The filtering learningagent(bold line) accrueshigher rewardsover time thanthe ordinary Q-learner(thin line), sinceit
is ableto corverge to an optimal policy whereasthe non-filtering Q-learnerremainsconfused.

from this noisy signal and usethat to learn. Figure 2 shavs
thatthefiltering agentcanlearnthe underlyingreward signals,
corverging to thesevaluesrelatively quickly. The graphto the
right compareghe performanceof the filtering learnerto the
normal Q-learner shaving a clear performanceadvantage.

The obsenant readermay note that the learnedrewards
do not match the true rewards specifiedby the grid world.
Specifically they are offset by about-4. Insteadof mostly O
rewardsat eachstate the agenthasconcludedhat moststates
producereward of -4. Correspondinglystate6 now produces
areward of about16 insteadof 20. SinceQ-learningwill still
learnthe correctoptimalpolicy subjectto scalingor translation
of the rewards,this is not a problem.This oddity is dueto the
factthatour modelhasa degreeof freedomin the noisetermb.
Dependingof theinitial guessesf ouralgorithm,the estimates
for the rewardsmay be biased.If mostof initial guessegor
the rewardsunderestimatedhe true reward, then the learned
valuewill becorrespondinglyfower thanthe actualtrue value.
In fact, all the learnedvalueswill be correspondindower by
the sameamount.

To further test our filtering technique,we next evaluate
its performancein a domain that does not conform to our
noisemodelperfectly but which is still a singleagentsystem.
Instead of a external reward term that evolves according
to a Gaussiannoise process,we adjustthe noise manually
introducing positive and negative swingsin the reward signal
valuesat arbitrarytimes.Theresultsaresimilar to thosein the
perfectly modeleddomain, shaving that the filtering method
is fairly robust.

The mostinterestingcaseoccurswhenthe domainnoiseis
actually causedby other agentslearningin the ervironment.
This noisewill not evolve accordingto a Gaussiamprocesshut
sincethefiltering methodis fairly robust,we might still expect
it to work. If thereare enoughotheragentsin the world, then
the noisethey collectively generatenay actuallytendtowards
Gaussiamoise.Here we focus on smallercaseswherethere
are6 or 10 agentoperatingn the environment.We modify the
grid world domainto include multiple simultaneously-acting
agents,whose actionsdo not interfere with each other but
whoserewardsignalnow consistsof the sumof all theagents’

personafrewards,asgivenin the basicsingleagentgrid world
of Figure 1.

We againcomparethe performanceof the filtering learner
to the ordinary Q-learningalgorithm. As shavn in Figure 3,
most of the filtering learnersquickly corverge to the optimal
policy. Threeof the 10 agentsconvergeto a suboptimalpolicy
that producesslightly lower averagerewards. However, this
artifactis largely dueto our choiceof explorationrate,rather
thanalarge errorin the estimatedeward values.The standard
Q-learning algorithm also producesdecentresults at first.
Approximatelyhalf of the agentdind the optimal policy, while
the other half are still exploring and learning.An interesting
phenomenoroccurswhen theseother agentsfinally find the
optimal policy and begin receving higher rewards. Suddenly
the performancedrops drastically for the agentswho had
found the optimal policy first. Thoughseeminglystrangethis
providesa perfectexampleof the behaior that motivatesthis
paper When the other agentslearn an optimal policy, they
begin affecting the global reward, contributing somepositive
amountratherthan a consistentzero. This changeghe world
dynamicsfor the agentswho had alreadylearnedthe optimal
policy and causeshemto “unlearn” their good behaior.

The unstabledynamicsof the Q-learnerscould be solved
if the agentshad full obserability, and we could learn using
thejoint actionsof all the agentsasin the work of Clausand
Boutilier [1998]. However, since our premiseis that agents
have only a limited view of the world, the Q-learningagents
will only exhibit corvergenceto the optimal policy if they
corvergeto the optimal policy simultaneouslyThis may take
a prohibitively long time, especiallyas the numberof agents
grows.

VI. APPLICATION TO MOBILIZED AD-HOC NETWORKING

Finally, we apply our filtering methodto a more realistic
domain.Mobilized ad-hocnetworking providesan interesting
real-world ervironmentthat illustratesthe importanceof re-
ward filtering due to its high degree of partial obsenability
and a reward signal that dependson the global state.In this
domain, there are a number of mobile nodes whose task
is to move in such a way as to optimize the connectvity



Fig. 3. (Left) Filtering agentsareableto distinguishtheir personarewardsfrom the globalreward noise,andthusableto learnoptimal policiesandmaximize
their averagereward over time in a ten-agengrid-world domain.(Right) In contrast,ordinary Q-learningagentsdo not processhe global reward signaland
canbecomeconfusedasthe environmentchangesaroundthem. Graphsshav averagerewards (y-axis) within 1000-periodwindows for eachof the 10 agents

in a typical run of 10000time periods(x-axis).

(performance)pf the network. Changet al. [2003] castthis as
areinforcementearningproblem.As the nodesmove around,
connectionscan be formed betweennodesthat are within
rangeof one another Theseconnectionsallow pacletsto be
transmittedbetweenvarious sourcesand recevers scattered
amongthe nodes.

The mostinterestingaspectbf this domainis thatthe nodes
arelimited to having only local knowledgeof theirimmediate
neighboringgrid locations (rather than the numberedstate
locationsasin the original grid world), andthus do not know
their absolutelocation on the grid. Moreover, they have no
ideawherethe othernodesare locatedunlessthey happento
be within the local viewable area.This partial obsenability,
combinedwith the global nature of the reward signal (the
network connectvity), forcestheagentgo distinguishbetween
personatontributionsto the obseredglobalrewardsignaland
contributions madeby otherunseenagentsin the world.

In our simplified experimentatkrials, we placethe mobilized
ad-hocnetworking domainontoa grid world. therewardsignal
is a global reward signal that measuresthe total network
performanceby determiningthe connectvity of the network
between sourcesand recevers. The sourcesand recevers
occupy locationson the grid world. The agents’actionsare
limited functions that map their local stateto N, S, E, W
movementsWe alsolimit the agents’'transmissiorrangeto a
distanceof one grid block.

For further simplicity, the single recever is stationaryand
always occupiesthe grid location (1,1). Sourcenodesmove
around randomly and in our example here, there are two
sourcesandeightmobile agentnodesin a4x4 grid. This setup
is shavn in Figure 4, and the graph shovs a comparisonof
an ordinary @-learnerand the filtering learner plotting the
increasein global rewards over time as the agentslearn to
perform their task as intermediatenetwork nodes.The graph
plots averageperformanceover 10 runs, shaving the benefit
of the filtering processNote that the performanceover time
fluctuateswidely sincethe performancedependsstrongly on
the relative locationsof the sourceso the recever. However,
the filtering agentsalmostalways outperformthe normal Q-
learnerssince they are able to learn behaior policies that

choosegood actionsin most configurationsof our mobilized
ad-hocnetworking grid world.

VII. LIMITATIONS AND EXTENSIONS

The Kalman filtering framework handlesmary domains
beautifully, as we have seen.However, there are somecases
wherewe may needto apply more sophisticatedechniques.
In all of the work above, we have assumedhat the reward
signal is deterministic — each state, action pair can only
producea single reward value, and will always producethat
samevalue. There are somedomainsin which we'd like to
modelthe reward asbeingstochasticFor example,the multi-
armed bandit problem is a casein which the rewards are
stochasticallyrelatedto the action taken. When the stochas-
ticity of the rewards approximatesGaussiannoise, we can
usethe Kalmanframeawork directly. In equationl, v was set
to exhibit zero meanand zero variance.However, allowing
some variancewould give the model an obsenation noise
term that could reflect the stochasticityof the reward signal.
There are some caseswhich cannotbe finessedso easily
though. There are two potential remediesin this situation,
which are discussedn detail in the extendedversionof this
paper One solution modifiesthe systemequationsso that the
vector to be estimatedrepresentghe averagereward over a
time window, ratherthana singledeterministicvalue.Another
alternatve makestwo passesover a history window . In the
first pass,we do exactly the sameas before, except that we
alsonotethelog-likelihoodof eachof our obsenations,based
on the Kalman filter statistics.During the secondpass,for
eachstatethat consistentlyexhibits unlikely obsenations,we
split the state into one or more states,each corresponding
to a different reward level. We then examine the average
log-likelihood under this nev model, and if it representsa
significantimprovementover the old model,we keepthe split
states.

Finally, in mostcaseghe Kalmanfiltering methodprovides
a very good estimateof r over time. Usually the estimates
will asymptoticallyapproachthe actualvalues.However, one
can imagine casesin which the optimal policy relies on the
choiceof oneaction over another wherethe Q-valuefor the
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(Left) A snapshobf the 4x4 adhoc-netwrking domain.S denotesthe sourcesR is the recever, and the dots are the learningagents,which act

asrelay nodes.Lines denotecurrentconnectionsNote that nodesmay overlap. (Right) Graphshavs averagerewards (y-axis) in 1000-periodwindows as
filtering (bold line) and ordinary (thin line) agentstry to learngood policiesfor acting as network nodes.The filtering agentis ableto learn a betterpolicy,
resultingin highernetwork performanceglobal reward). Graphshaws the averagefor eachtype of agentover 10 trial runs of 100000time periods(x-axis)

each.

state-actionpair are quite close together Since we cannot
guarante@nexactestimateof therewardvalues.andhencethe
statevaluesand/or Q-values,the agentmay make the wrong
decision.However, evenif the policy is sub-optimal the error
in our derived value function is at leastboundedby 13/, as
long asthe |r(i) — #(i)| < e Vi, and~ is againthe discount
rate. In the majority of casesthe estimatesare good enough
to leadthe agentto learninga good policy, if not the optimal

one.

VIIl. CONCLUSION AND FUTURE WORK

This paper provides the general framewvork for a new
approachto solving certainlarge multi-agentproblemsusing
a simple model that allows for efficient and robust learning
usingwell-studiedtools suchas Kalmanfiltering. We provide
a setof experimentalresultsthat gives empirical evidencefor
the usefulnesf this modelandtechnique.

As a practicalapplication,this work canbe directly applied
to a more realistic mobile ad-hoc networking domain. We
would like to move out of the grid world setupinto a domain
setupmore similar to that describedin Changet. al. 2003.
Also, more work could do doneinvestigatingthe benefitsof
different variationsof this modelin various settings.Condi-
tions for corvergenceof the techniquedescribedn this paper
are alsoforthcoming.

REFERENCES

[Auer et al., 1995 Peter Auer, Nicoldo Cesa-Bianchi,Yoav Freund, and
RobertE. Schapire. Gamblingin a rigged casino:the adwersarialmulti-
armedbanditproblem. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, 1995.

[Changet al., 2003 V. Chang,T. Ho, andL. P. Kaelbling. Reinforcement
learningin mobilized ad-hocnetworks. Technical Report, Al Lab, MIT,
2003.

[Choiet al., 1999 S. Choi, D. Yeung,andN. Zhang. Hidden-modeMarkov
decisionprocesses.In 1JCAl Workshop on Neural, Symbolic, and Rein-
forcement Methods for Sequence Learning, 1999.

[Clausand Boutilier, 1999 Caroline Claus and Craig Boutilier. The dy-
namics of reinforcementlearning in cooperatie multiaent systems. In
Proceedings of the 15th AAAI, 1998.

[Kalman,196d R. E. Kalman. A new approachto linear filtering and
predictionproblems. Transactions of the American Society of Mechanical
Engineers, Journal of Basic Engineering, 1960.

[Littman and Szepes#ri, 1999 MichaelL. LittmanandCsabaSzepeséri. A
generalizedreinforcement-learningnodel: Cornvergenceand applications.
In Proc. of the 13th ICML, 1996.

[Mannorand Shimkin, 2001 Shie Mannor and Nahum Shimkin. Adaptive
stratgies and regret minimizationin arbitrarily varying Markov environ-
ments.In Proc. of 14th COLT, 2001.

[Ng et al., 1999 Andrew Y. Ng, Daishi Harada,and StuartRussell. Policy
invarianceunderreward transformationstheory and applicationto reward
shaping.In Proc. 16th ICML, 1999.

[Suttonand Barto, 1999 RichardS. SuttonandAndrev G. Barto. Reinforce-
ment Learning: An Introduction. MIT Press,1999.

[Szitaet al., 2003 IstvanSzita,Balimt TakacsandAndrasLorincz. e-mdps:
Learningin varying environments.Journal of Machine Learning Research,
2002.



