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Abstract—We address the issue of shuffling loads in 

Automated Storage/Retrieval Systems (AS/RS) in this paper. 
The objective is to pre-sort the loads into any specified 
locations in order to minimize the response time of retrievals. 
1D, 2D and 3D AS/RS racks have been designed in order to 
achieve the shuffling efficiently. The shuffling algorithms are 
described in detail. The response time of retrieval, the lower 
and upper bounds of energy consumption are also derived. 
Results of the analysis and numerical experiments show that 
the shuffling algorithms are quite efficient. 

 
Index Terms—Algorithm, AS/RS, Sorting 
 

I. INTRODUCTION 

Automated Storage/Retrieval Systems (AS/RS) are 
computer-controlled storage systems that can automatically 
store and retrieve loads with high throughput. Conventional 
AS/RS typically use stacker cranes for reaching and 
accessing the storage cells. However, stacker cranes are 
only suitable for a certain range of task loads. To handle 
certain types of cargo (e.g. extra heavy loads [1]) at high 
speed, it is necessary to employ new Storage/Retrieval 
(S/R) mechanism in which vertical movement and 
horizontal movement of loads are carried out by separate 
devices, namely, the vertical platforms (VPs) and the 
horizontal platforms (HPs). For convenience, we shall refer 
to the new types of AS/RS as the split-platform AS/RS, or 
SP-AS/RS for short. Two AS/RS manufacturers have 
confirmed that this new design is both mechanically and 
economically feasible. One design of this kind of AS/RS is 
illustrated in Fig. 1. Detailed information about it can be 
found in [1]. 

One of the advantages of AS/RS is that it can offer high 
throughput. With the separate, independent vertical and 
horizontal platforms in the new design, more operations can 
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be done concurrently. So this design provides us with the 
possibility to further improve the throughput. Our research 
shows that compared with stacker crane based AS/RS, the 
split-platform AS/RS can improve the performance quite a 
lot [2]. So the split-platform AS/RS not only can cope with 
very heavy loads that can’t be handled by conventional 
stacker crane, but also it can offer better performance. 

 
Fig. 1 Split-platform AS/RS  
For AS/RS, it should store and retrieve loads in the 

shortest possible time period. Compared with storage, the 
quick response of retrievals is often more critical.  This is 
because when a load is to be stored into an AS/RS rack, it 
can be put into any empty storage cell. While for retrieval, 
only the designated one is valid.  How to retrieve loads as 
quickly as possible? A very natural solution is that since we 
generally know the retrieval sequence in advance, we can 
shuffle (pre-sort) the loads to specified locations to 
minimize the response time of retrieval. However, very 
little information about load shuffling can be found in the 
literature.  

Our formulation of the shuffling problem is analogous to 
the sorting of data items where the loads in an AS/RS rack 
are analogous to the data items in an array. However, there 
is a fundamental difference between the two problems. In 
the conventional data sorting problem, two pieces of data 
items, disregarding their separation in the array, can be 
swapped in a constant amount of time. For the load 
shuffling, because the AS/RS platforms carry out the 
sorting operations, the time for swapping two loads depend 
on the actual distance between them. Therefore, while we 



use “sorting” as a synonym of “shuffling” to draw 
inspirations from the existing knowledge, bear in mind that 
the merits of AS/RS control algorithms are measured 
mainly by the time and the energy required for the 
platforms to carry out the moves. 

We first consider the simpler case of sorting loads in 1D 
racks. The result is then applied as a basis for shuffling on 
2D racks and 3D racks. Our results are analyzed in terms of 
the number of steps involving the platforms, as well as the 
energy required. For this purpose, we present a simple 
model for the calculation of energy consumption. A lower 
bound is also derived for comparisons. 

The contributions of this paper are three-fold: (1) The 
abstraction of the new problem; formulation and the 
approach to the problem. (2) The new rack configurations 
for load shuffling. (3) The provably efficient load shuffling 
algorithms. 

The rest of the paper is organized as follows. Section II 
considers the design of 1D, 2D and 3D AS/RS racks for 
efficient shuffling. Section III is dedicated to the shuffling 
algorithms for 1D, 2D and 3D racks, respectively. The 
shuffling algorithms are evaluated in Section IV. In Section 
V, we analyze the response time of retrieval for a 2D rack. 
In Section VI, the lower and upper bounds of energy 
required for loads retrieval in a 2D AS/RS rack are 
calculated. Section VII gives a brief summary and 
directions for future research. 
 

II. STRUCTURE AND OPERATIONS OF AS/RS FOR 
SHUFFLING 

First we will describe the structure and operations for a 
1D rack, and this can act as the basis for later derivations. 

A. 1D Rack 
 

Fig. 2 Configuration of a 1D Rack (The dark block 
represents the platform) 

Consider the configuration of a 1D rack shown in Fig. 2.  
(1) There are in total N+1 cells numbered from 1 to N+1. 
The first N cells are for storing loads. The (N+1)-th, i.e. the 
rightmost cell is initially empty, and it is the initial location 
of the HOLE. The HOLE is used to temporarily store loads 
during the shuffling operation. 
(2) There is one platform, which can move a load among 
the cells. We assume that the initial position of the platform 
is at the HOLE. 
Definition 1(step) A step is defined to be the process of 
moving a load from its original cell to its destination cell. 

Let Cell(x) denote the x-th cell, and Load(x) denote the 
load whose destination cell is Cell(x). Barring the trivial 
case where the origin cell coincides with the destination 
cell (i.e. the load is already in its target cell and no actual 
move is needed), one step can be further elaborated in 
terms of the following detailed moves: 

1) If the destination cell of Load(d) is not presently empty, 
the platform first moves from its present dwell point to 
Cell(d); fetches the load in it and puts it into the HOLE.  
2) The platform moves from the HOLE to Cell(x) that 
contains Load(d), and fetches it from Cell(x) then moves it 
into Cell(d). 

B. 2D Rack 

Normally the research of mesh sorting is mainly to sort 
data among different processors, and the processors in the 
mesh have three different connection models. One is the 
two-dimensional mesh-connected processor array. In this 
model, n×n processors are placed at the intersections of 
horizontal and vertical grids, and each processor is 
connected to its four neighbors. Another mesh-type model 
is the mesh of bus. In this model, no local links exist 
between the neighboring processors. Instead, n row and n 
column buses are provided to the n×n mesh. Each processor 
is connected to a couple of (row and column) buses [3]. The 
last model is the combination of the first and second one, 
i.e. extra n row and n column buses are added to the two-
dimensional mesh-connected processor array [5]. 

Currently, it is more feasible to adopt the second option 
for AS/RS rack design. Therefore, our design will be based 
on this model. Fig. 3 gives the structure of the AS/RS for 
load shuffling.  

 
Fig.3  Structure of 2D AS/RS rack for shuffling  

The difference between this new design and the one 
shown in Fig. 1 is that now each column has its own 
vertical platform instead of the shared VP in one rack. 
While the HPs act as the horizontal buses, the VPs serve as 
the column buses. At the same time, more I/O stations are 
provided to enable concurrent storage and retrieval of loads 
into the rack. The cells in the lowest row and the rightmost 
column are reserved as HOLEs. The side view of the 2D 
AS/RS rack is shown in Fig. 4. 
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Fig. 4 The side view of a 2D rack 

In Fig. 4, the letter ‘C’ denotes a cell, and ‘H’ denotes a 
HOLE. The little dark blocks represent the VPs, while the 
shaded blocks represent the HPs. 

In our shuffling algorithm, the movement of the HPs and 
the VPs will not occur at the same time, so no platform 
conflict will happen.  

Using the 2D AS/RS rack, the storage operation may be 
finished in the following steps.  
1) After being put on the I/O station of the correct column, 
the load is transferred from the I/O station into the HOLE. 
At the same time, the VP of this column goes from its dwell 
point to the HOLE. 
2) The load is transferred from the HOLE to the VP. 
3) VP moves the load into the cell assigned to the load. 

This description is for one column. Actually with so 
many I/O stations, the VPs can work concurrently to obtain 
high efficiency. 

For the retrieval operation, the procedure is just the 
reversal. VP moves the load into the HOLE of the column, 
and then the load will be transferred to the I/O station to be 
carried away. 

C. 3D Rack 

 
Fig. 5 Illustration of a 3D rack 
There are quite a lot of ways to design a 3D racks, and 

one possibility is to have a similar structure to that of the 
2D rack. In the 3D rack, each cell has three platforms to 
serve it. One is the so-called X-line platform, which is used 
to transfer a load along the X-line. The other two are the Y-
line platform and the Z-line platform respectively. As in our 

shuffling algorithm, only the platforms of one direction run 
at a time, so no platform confliction will happen. Fig. 5 
illustrates the basic idea of the structure of a 3D rack. 
 

III. SHUFFLING ALGORITHMS 
For a comparative study, we first apply modified 

“Selection Sort” algorithms [4] to sort any permutations. 
The “Selection Sort” algorithm is chosen because it doesn’t 
swap the loads. This is really useful in AS/RS designed for 
heavy loads, because swapping such loads can be time- and 
energy-consuming. The shuffling algorithms for 1D, 2D 
and 3D racks are described in each sub-section.  

In order to simplify our discussion and analysis of the 
problem, we assume that all the loads in our AS/RS racks 
have unique destinations. 

A. 1D Rack 
The 1D shuffling algorithm is described as follows: 

Algorithm 1: 1D shuffling algorithm 
For  i=1 to N    /* Step  i, where N is the number of loads */ 
IF  (the ID of the destination of the load in Cell(i) is not 

equal to i) 
Then 

 Move the load in Cell(i) to the current HOLE; 
 Move Load(i) to Cell(i); 
 Set the empty cell as the current HOLE; 

End 
Proposition 1 Using the 1D shuffling algorithm described 
in Algorithm 1, any initial permutation of N loads can be 
sorted in at most N steps. 
Proof:  Since in each step one load is moved to its final 
destination and is left there afterwards, and also some loads 
may already be in their correct locations before the 
shuffling, so it is clear that it takes at most N steps to sort 
all the N loads into the desired order.                                  

B.  2D Rack 

Refer to Fig. 4. The AS/RS rack has (M+1) rows and 
(N+1) columns. The total number of loads in the rack is M 
× N, where N and M represent the number of loads in a row 
and in a column, respectively. Each load is labeled as 
Load(x, y) to represent the load’s destination cell ID, where 
x is the load’s destination row ID and y is its destination 
column ID. Let Cell(x, y) denote the storage cell located at 
Row x and Column y in the AS/RS rack. Supposing that we 
know the destination of each load before sorting, we can 
afford to pre-compute a solution off-line. We will present 
an off-line algorithm that allows all M × N loads to reach 
their destinations within 2N+M steps.  

Algorithm 2: 2D shuffling algorithm 
The 2D algorithm consists of the following three phases: 

Phase 1. Permute loads in each row such that the loads at 
any given column have M different destination row IDs. 
Phase 2. Permute the loads within each column to their 
destination rows. 
Phase 3. Permute the loads within each row into order.  
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The correctness of Algorithm 2 is depend on whether the 
permutation described in Phase 1 can be found. Proposition 
2 provides the guarantee. 

Proposition 2: Given M× N loads with distinct destinations, 
there exists a permutation that the loads at any given 
column have different destination row IDs. 

We will first prove the following lemma. 
Lemma 1: Given the M×N loads described in Proposition 2. 
If the first (i-1) loads in Row 1 to Row (i-1) of Column 1 
have different destination row IDs, then there exists a 
permutation for loads in Row 1 to Row i which ensures that 
the loads in the first i rows in Column 1 have distinct 
destination row IDs. 
Proof: Let R(x ,y) denote the destination row ID of the load 
stored in Cell(x, y) and { }11)1,( −≤≤= ixxRS . We 
consider two cases. 
Case 1. SiR ∉)1,( . In this case, a new row ID is found and 
the claim is true. 
Case 2. SiR ∈)1,( .In this case, we must show that a new 
row ID does exist.  

According to our assumption, each load in the rack has 
distinct destination cell ID. So for any rows ID r, there exist 
exactly N loads whose destination row IDs are r. In these i 
rows, altogether there are i×N loads. If no new row ID can 
be found in these i rows, even if all the loads with the 
destination row ID belonging to S are in these i rows, there 
are (i-1)×N loads in the rows, because S contains only (i-1) 
row IDs. This contradicts to the fact that the number of 
loads in these i rows is i×N. As a result, a new row ID does 
exist in these i rows.                                                            

By using the following search algorithm, the new row ID 
can be found. 
Search algorithm: 

{ }11)1,( −≤≤= ixxRS  

If SiR ∉)1,( , then the new row ID is found.  
Else  
    { }NttiRZJ ≤≤= 2),(  
    For each t, where Nt ≤≤2  
        If StiR ∉),( ,  

Exchange the location of the load in Cell(i,1) and 
the one in Cell(i,t). A new row ID appears in these i 
rows.  

        If every element ZJa ∈  also belongs to S 
             For each ZJa ∈  
               If )2(),( NtStaR ≤≤∉  

Exchange the load in Cell(a,1) and that in 
Cell(a,t), and a new row ID appears in Row a. In 
order to retain the original row ID that Row a 
provides, the load in Cell(i,1) should exchange 
its position with the load stored in Cell(i,w) 
where awiR =),( .  

               Else go on with the search. 

Continue this procedure and the new row ID will appear in 
these i rows. 

Armed with Lemma 1, we now prove Proposition 2. 
Proof: First consider Column 1. Initially we 
assume )}1,1({ RS = . From Lemma 1, we can find a new 
row ID for Row 2 in Column 1. Repeat this operation, all 
loads in Column 1 will have different row IDs. 

Since Column 1 has been in the desired status, we 
consider Column 2. Now we are dealing with M×(N-1) 
loads, by assumption, they all have distinct destination cell 
Ids. It is clear that Column 2 can be made to contain loads 
with distinct row IDs. This procedure may be repeated, 
until finally the loads in each column have different row 
IDs.                                                                                      

Claim: Given any initial configuration of NM ×  loads as 
stated above, each load can be routed to its destination in 
three phases as given in Algorithm 2. The total number of 
steps is bounded 2N+M. 
Proof:  In Phase 1, the loads in the rows can be permuted 
such that they have different destination row IDs in each 
column. This can be achieved by using the M HPs 
simultaneously. Then, in Phase 2, based on their destination 
row IDs, the loads in each column are permuted to their 
destination rows. This can be achieved by using the N VPs 
concurrently. Then in Phase 3, we can sort the loads in each 
row simultaneously. Now every load is in its final 
destination already. By using Algorithm 1, it is clear that 
each of Phase 1 and Phase 3 can be accomplished in N steps. 
Phase 2 can be accomplished in M steps. Hence, the total 
number of steps is bounded by 2N+M.                       

C. 3D Rack 
In this section, we consider the shuffling algorithm for a 

3D AS/RS rack as described in Section II.C. It can store N 
loads, M loads and K loads in each X-line, Y-line and Z-
line respectively. So the total number of loads in the 3D 
rack is KMN ×× . Each load is labeled as Load(x, y, z) to 
represent the load’s destination cell ID, where x, y ,z are the 
load’s destination IDs in X-direction, Y-direction and Z-
direction respectively. Let Cell(x, y, z) denote the storage 
cell located at the intersection of X-line, Y-line and Z-line 
in the AS/RS rack. Like for the 2D shuffling algorithm, we 
suppose that the destination of each load is distinct and is 
known before sorting. We will present an off-line algorithm 
that allows all KMN ×× loads to reach their destinations 
within 4N+M+2K steps. 
 
Algorithm3: 3D shuffling algorithm 

The 3D algorithm consists of the following phases: 
Phase 1: Permute the loads in each XZ-plane such that the 
loads in any given Y-line have M distinct XZ-plane IDs. 
Phase 2. Permute the loads within each Y-line to their 
destination XZ-planes. 
Phase 3. Permute the loads within each XZ-plane to their 
destination cells. 



Again, we must prove that the permutation described in 
Phase 1 can be found and this is guaranteed by Proposition 
3. 

Proposition 3: Given KMN ××  loads with distinct 
destinations, there exits a permutation that the loads within 
any Y- line have M distinct destination XZ- plane IDs. 
Before proving this Proposition, we need two lemmas.  

Lemma 2: Consider the KMN ××  loads described in 
Proposition 3. If the first (m-1) loads in the first Y-line 
inside the first XY-plane have different XZ-plane IDs, then 
there exists a permutation that the first m loads in this line 
also have distinct XZ-plane IDs. 
Proof: Let R(x,y,z) denote the destination XZ-plane ID of 
load stored in Cell(x,y,z) and 

}.11|)1,,1({ −≤≤= myyRS We consider two cases. 
Case 1: SmR ∉)1,,1( . In this case, these m loads already 
have distinct XZ-plane IDs. 
Case 2: SmR ∈)1,,1( . In this case, we need show that a new 
XZ-plane ID can be found. 

According to our assumption, each load in the rack has 
distinct destination cell ID. So for the first m XZ-planes, 
there should exist KmN ×× loads. If no new XZ-plane ID 
can be found, it means that all the loads in these m planes 
have the destination XZ-plane ID belonging to S, hence 
there are altogether KmN ×−× )1( loads. This leads to a 
contradiction.                                                                       

Lemma 3: Consider the KMN ××  loads described in 
Proposition 3. If the loads in the first (n-1) Y-lines residing 
in the first XY-plane have different destination XZ-plane 
IDs, then there exist a permutation which ensures that loads 
in the first n Y-lines in the first XY-plane have distinct XZ-
plane IDs. 
Proof: Assume that one particular XZ-plane ID y′cannot 
appear in the y-th Y-line ( ky ≤≤1 ) of this plane for all the 
permutations. It means that the total number of loads 
destined for XZ-plane y′ is at most Kn ×− )1( . This 
contradicts the fact that the total number of such loads 
should be KN × . As a result, all the distinct IDs for XZ-
plane will appear in the y-th Y-line of the first XY-plane. 
Then all the loads in these first (n-1) Y-lines have distinct 
destination XZ-plane IDs.                                                   

With Lemmas 2 and 3, we now prove Proposition 3. 
Proof: First consider the first Y-line in the first XY-plane. 
Initially, let )}.1,1,1({RS =  From Lemma 2, we can ensure 
that loads in Cell(1,1,1) and Cell(1,2,1) have distinct XZ-
plane IDs. Repeating this operation, then all the loads in 
this first Y-line can have different XZ-plane IDs. 

Then from Lemma 3, since the loads in the first Y-line in 
the first XY-plane have distinct XZ-plane IDs, it is clear 
that the loads inside the second Y-line in this plane also can 
obtain different XZ-plane IDs. Repeating this operation, 

loads in all the Y-lines inside the first XY-plane can have 
distinct XZ-plane IDs. 

For the second XY-plane, now we need to solve the 
problem with )1( −×× KMN loads with distinct 
destination cell IDs. It should be clear that all the loads 
within the second XY-plane can have distinct XZ-plane IDs. 
By repeating this operation, all the XY-planes can obtain 
loads with different XZ-plane IDs.                          
 

Search algorithm similar to that of the 2D algorithm can 
be used to find the permutation. 
 
Claim: Given the initial configuration of KMN ××  loads 
as stated above, each load can be routed to its destination in 
three phases given in the 3D shuffling algorithm. The total 
number of steps is 4N+M+2K. 
Proof: In Phase 1, the loads are permuted in each XZ-plane 
such that the loads in any given Y-line have distinct XZ-
plane IDs. This can be achieved by using the 2D algorithm 
and the loads within each XZ-plane can be shuffled 
simultaneously. Here, 2N+K steps are needed. In Phase 2, 
all the loads are shuffled to their destination XZ-plane. All 
the Y-direction platforms can operate concurrently using 
the 1D shuffling algorithm. To accomplish this phase, M 
steps are required.  Then in Phase 3, we can sort the loads 
in each XZ-plane simultaneously. Every load will be in its 
final destination within 2N+K steps using the 2D algorithm 
again. Hence, the total number of steps is bounded by 
4N+M+2K.                                                                          
                                                                       

IV. EVALUATION OF THE SHUFFLING ALGORITHMS 

In this section, we calculate upper bound and lower 
bound of the distances traversed by a platform to finish 
shuffling N loads in a 1D rack. It is the basis for the 
corresponding calculations for 2D and 3D racks. 

A. Upper Bound of the Distance Traversed by Platforms 

Proposition 4 The total distance s traversed by the platform 
using Algorithm 1 satisfies the following inequality: 

( )
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Proof: Because of space limitation, the reader is referred to 
[6] for the detailed proof.                                                       

B. Lower Bound of the Distance Traversed by Platforms 
Proposition 5 To finish shuffling of N loads, the overall 
distance s traversed by the platform in the worst case is 
lower-bounded by: 
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Fig. 6 Load distribution in the worst case 

Proof: One load distribution in the worst case is that the 
loads located in the symmetric cells in a 1D rack need to 
exchange their positions, i.e., one load’s current cell 
location is just the destination of the other load. Fig. 6 gives 
an example. 

Whatever shuffling algorithm is used, for Load(6) and 
Load(1), they must traverse the longest distance to arrive at 
the destinations. For Load(5) and Load(2), the distances 
they have to cover are the second longest and so on. 
Analogously, the total distance covered by the platform is 
the maximum under this kind of load distribution. 

For Load(1) and Load(N), the distance they have to go is 
(N-1)L. For Load(2) and Load(N-1), the distance is (N-3)L 
and so on. So the total distance is: 

When N is even, 
))]1(())3(()3()1[(2 −−+−−++−+− NNNNNNL KK

2

2 LN
=  

When N is odd, the load in the middle cell doesn’t need 
to move, so the formula is: 

))]2(())3(()3()1[(2 −−+−−++−+− NNNNNNL KK

2
)1( 2 LN −

=                                                                         

 
V. RETRIEVAL TIME COMPARISON 

Since presently most AS/RS racks are essentially 2D 
racks, in this section, we calculate the operation time to 
retrieve a batch of NM × loads when they have been pre-
sorted.  

A. Response Time for Retrieval Using the 2D AS/RS  
The notations used in this section are: 
N:  the number of VPs 
M: the number of HPs 

loadT : the time for transferring a load from a cell onto a 
platform or vice versa, i.e. transferring a load from 
a platform into a cell 

L: the length of an AS/RS cell 
H: the height of an AS/RS cell 

Assume that the HPs travel at an average speed of 
hV while the VP travels at an average speed of vV . The 

initial locations of the platforms are their corresponding 
HOLEs. 

Since all loads have been sorted, we can retrieve the 
loads in a more efficient fashion. The N VPs can operate 
concurrently, so the time taken to retrieve all the NM ×  

loads is equal to that for retrieving the M loads located in 
the same column. The time can be obtained through the 
following steps. 

1) VP travels from the HOLE to Row 1.  
vV

HT =1  

2) Fetches the load and returns back to HOLE, puts it into 

HOLE. 
v

load V
HTT += 22  

3) The load is moved to the I/O station. 
Simultaneously, VP goes to Row 2, fetches a load, comes 
back at HOLE, and moves the load into HOLE. 

v
load V

HTT 2223 +=  

4) Continuing the process with each row, until all the loads 
in the column have been retrieved. 

So the total time of retrieval is, 

v
load

M

i v
loadshuffling V

MHMMT
V
HiTT )1(2)22(

1

+
+=×+= ∑
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       (1) 

 
B. Response Time for Retrieval without Shuffling 

In this section, we will give the retrieval time to fetch all 
the loads in a rack without shuffling. Two kinds of AS/RS 
rack configuration are considered. One rack configuration 
is the one illustrated in Fig. 1, and henceforth we call it 
Configuration 1. The other is the AS/RS for shuffling and 
it is called Configuration 2. 

(1) Configuration 1 

Because in this configuration only one VP is provided, 
loads in the rack have to be retrieved one by one. The total 
retrieval time is upper-bounded by: 

load
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For each load, it will be fetched from the cell, and then 
transferred from HP to VP, after that it will be moved from 
VP to the I/O station. So altogether, the time spent on this 
kind of transfer is 3Tload. The other two parts of time in the 
above equation are for the movements of the VP and HPs. 

(2) Configuration 2 

By using the 2D AS/RS shuffling rack, all the VPs are 
capable of operating concurrently. The retrieval time is 
entirely dependent on the loads’ initial location distribution 
in the rack and their retrieval sequence. The case that 
shuffling can gain the most benefits is that all the loads are 
stored sequentially in the columns according to their 
retrieval sequence. Fig. 7 gives such an example. The 
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load’s number in each storage cell is its serial number in the 
retrieval sequence. 

Fig. 7 An example of the sequential locations of the loads 
in a 2D AS/RS rack  

It is clear that in this case, the VPs cannot work 
concurrently in order to guarantee the correct retrieval 
sequence. So shuffling the loads before the actual retrieval 
process can help to minimize the retrieval time. 

The total time to fetch all such loads consists of two 
parts. 

1) The time to retrieve all the loads in Column 1. It is the 
same as that provided by Equation (1). 

v
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2) Time needed to retrieve the loads from any of the other 
columns. 
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Because the VP in other columns can pre-fetch the load 
in Row 1 and then go to Row 2 to wait for the time to fetch 
the load there during the period that the loads in Column 1 
are being retrieved, so the time needed to retrieve loads in 
columns except Column 1 doesn’t need to contain these 
parts. The total retrieval time is: 

)1(212 −+= NTTTretrieval  

v
load V

NHMHMNTNMN )1(4)1()1(2 −−+
++−=  

The possible time reduction by load shuffling should be 
between 0 and )1(2 −NT . 

C. Numerical Calculation 

In this section, we compare the time to retrieve a batch of 
loads with shuffling or without shuffling under different 
rack configurations. In the experiments, the number of 
loads to be retrieved is the same as the number of storage 
cells in the rack and we calculated three cases. In the first 
case, loads are stored in the 2D rack of AS/RS for shuffling 
and have been sorted before retrieval. The second case 
deals with the loads under Configuration 1. Here, we didn’t 
use Equation (2) to calculate 1retrievalT , because the concurrent 
movements of HP and VP for one job are not taken into 
account in this case. We directly calculate the time needed 
to retrieval a load from a cell and the concurrency between 

the HP and VP are considered. The last case is to retrieve 
the un-shuffled loads in the rack under Configuration 2.  

All the specifications of the AS/RS used in the 
calculation are: 
a) The height of each cell is 4.5m, and the width is 4.5m. 
b) The vertical platform travels at 1m /sec and the 

horizontal platforms travel at 2 m/sec.  
c) The time to transfer a load between VP and HP or 

between HP and a cell is 15 seconds. 
The number of rows and columns listed in Table 1 

exclude the row and column for the HOLEs. 

TABLE 1 
Comparison of the Retrieval Time 

From Table 1, it is clear that compared with 
Configuration 1, on average the shuffling scheme can have 
2122.1% improvement. Compared with Configuration 2, 
the average improvement is about 1426.0%. The 
improvement scales up with the increased number of 
columns. This is because the shuffling scheme can provide 
more parallel operations for the VPs. It should be quite 
clear that by pre-sorting the loads, the retrieval time for a 
batch of loads could be drastically cut down.   
 

VI. ANALYSIS OF THE ENERGY CONSUMPTION FOR 
SHUFFLING 

Nowadays, energy has become more and more important 
issues in many applications. As we intend to handle extra 
heavy loads using the new type of AS/RS, we will calculate 
the upper bound of energy consumption for shuffling N 
loads in a 1D rack. Then based on the results, we give an 
upper bound and a lower bound energy consumption for 
operations in a 2D rack. 

The notations used in this section are: 
W load : energy required for picking up or depositing a load  

m hp : the mass of  a HP 

m vp : the mass of  a VP 

m load : the mass of  a load 
We assume that the energy needed for picking up and 

that for depositing a load are the same, and all the loads 

4 8 12 16 20 
3 7 11 15 19 
2 6 10 14 18 
1 5 9 13 17 

Rack 
Configura-

tion 
Configuration 1 Configuration 2 

Row × 
Column 

Retrieval 
time with 
shuffling

(sec.) 
Retrieval 

time 
(sec.) 

Improve-
ment (%) 

Retrieval 
time 
(sec.) 

Improve-
ment (%)

10 10 795 9135 1049.1 7518 845.7 
10 20 795 22635 2747.2 14988 1785.3 
10 30 795 40635 5011.3 22458 2724.9 
20 10 2490 25245 913.9 24468 882.7 
30 10 5085 50295 889.1 50418 891.5 



have the same mass mload. Without loss of generality, we 
assume that M and N are even. 

A. Upper Bound of Energy Consumption for Load 
Shuffling in a 1D rack 

An upper bound of energy consumption to shuffle N 
loads of a 1D AS/RS rack into order is: 

⎩
⎨
⎧
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=
movementverticalLNNgm
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total

total

)3(
)3(

2

2

    (3) 

where totalf  denotes the friction force exerted to the 
platform, and totalm  is the total weight of the platform and 
the load on it. The detailed deduction can be found in [6]. 

B. Upper Bound of Energy Consumption for Load 
Shuffling in a 2D rack 

Here we derive an upper bound of the energy required by 
all platforms using the shuffling scheme. The energy 
required in the sorting process is: 

lvphpshuffling WWWW ++=   

Whp is the energy consumed by the movements of all HPs, 
Wvp is the energy for VPs’ movement and Wl represents the 
energy used to transfer the loads between the platforms and 
cells. According to the 2D algorithm, each load has to be 
picked up or deposited 12 times in the worst case. Referring 
to Equation (3), the energy required by all platforms using 
the 2D algorithm is upper-bounded by: 

( )MLNNfW totalshuffling 32 2 +=  

( ) loadloadvp MNWNHMMgmm 12)3( 2 ++++  

Referring to the retrieving policy in Section V.A, it is 
easy to give the energy required to complete all the 
retrievals after sorting. The retrieval process is divided into 
two parts. 

1) VPs travel from the HOLE to Row i without loads, and 
then go back to the HOLE with loads. 

∑
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2) Total amount of energy used to transfer loads from the 
cells to the I/O stations. 

loadMNWW 31 =  
Then the energy used to do the retrieval is formulated as: 

1WWWW downupretrieval ++=  

gmNHMMgNHmMMMNW loadvpload 2
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Therefore, an upper bound of energy required for retrieval 
using the algorithm is: 

retrievalshufflingupper WWW +=  

loadtotal MNWMLNNf 15)3(2 2 ++=  
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C. Lower Bound of Energy Consumption for Load 
Shuffling in a 2D rack 

Any algorithm for retrieving NM ×  loads in a rack must 
pick up each load and move it to an I/O station.  Therefore 
a trivial lower bound is given by: 
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Comparing the lower bound and upper bound, we can see 
that reducing the mass of HPs and VPs is a simple yet 
effective way to improve the energy efficiency. 
 

VII. DISCUSSIONS AND CONCLUSIONS 
We have presented the design of 1D, 2D and 3D AS/RS 

racks for shuffling and also have described the algorithms 
for shuffling unit loads stored in these AS/RS racks. The 
algorithms have been analyzed in terms of number of steps 
and energy requirements. For 2D rack, we have also 
conducted numeric experiments to compare the 
performance of AS/RS with or without shuffling scheme. 
The results suggest that our algorithms are rather efficient 
for shuffling loads with our proposed rack design. 

The AS/RS racks presented here have been specially 
optimized for the shuffling operations. It can be seen that 
the large number of moveable platforms also entails a high 
cost. Moreover, the model we presented for energy 
calculation is still rather crude, although it serves our 
present purpose well. Therefore, the following issues 
deserve future research: 
(1) Fault tolerance is very important in AS/RS operations. 
More flexible shuffling algorithms are needed to handle the 
cases when some of the platforms are out of order.  
(2) It will also be useful to derive more realistic models for 
energy consumption.  
(3) To optimize the search algorithm, and to determine the 
optimal move sequence since we know the original and 
destined loads distribution in the AS/RS rack. 
 

ACKNOWLEDGEMENT 
We gratefully acknowledge the support by the Agency 

for Science, Technology and Research, Singapore, the 
Maritime and Port Authority of Singapore, Nanyang 
Technological University, and the Singapore-MIT Alliance, 
Singapore. 
 

REFERENCES 
[1] C.Y. Chen, W.J. Hsu, V.Y. Vee, P. Lu, S.Y. Huang and M.K. Lai. 

“Automated storage/retrieval system for container operation,” 



Technical report (TR-HCTS-002). Nanyang Technological 
University, Singapore. 2001. 

[2] Y. H. Hu, S. Y. Huang, C. Y. Chen, W. J. Hsu, A. C. Toh, C. K. Loh, 
T. C. Song. “Travel time analysis of a new Automated storage and 
retrieval system,” to appear in “Computers & Operations Research”. 

[3] K. Iwama and E. Miyano. “Recent Developments in Mesh Routing 
Algorithms,” IEICE Trans. INF. & SYST., Vol. E83-D, No. 3, 530-
540, March 2000. 

[4] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and 
Searching, Addison Wesley, Reading, USA. 1973. 

[5] J. Y-T. Leung. “Packet Routing on Square Meshes with Row and 
Column Buses,” Proc. 3rd IEEE Symposium on Parallel and 
Distributed Proceeding, Dallas Texas. 834-837, 1991. 

[6] Y. H. Hu, X. Xu, and W. J. Hsu. “Efficient Algorithms for Load 
Shuffling in Automated Storage/Retrieval Systems,” Technical 
report. Nanyang Technological University, Singapore. 2003. 

 
 
 
 
 
Ya-Hong Hu is a Research Fellow in Singapore-MIT Alliance, National 
University of Singapore, Singapore. She received her Ph.D, M.S and B.S 
from Xi’an Jiaotong University, China. Her research interests include 
modeling and simulation, automation, distributed resources sharing and 
remote collaborative design environment. 
Wen-Jing Hsu is an Associate Professor in the School of Computer 
Engineering, Nanyang Technological University, Singapore. He received 
his BS, MS and Ph.D from National Chiao Tung University, Taiwan. His 
research interests include algorithms, computer architectures, parallel and 
distributed systems and networks. 
Xiang Xu is a Ph. D candidate in the School of Computer, Nanyang 
Technological University. His research interests include automation 
algorithms and P2P systems. 


