
Efficient Algorithms for Load Shuffling in
Split-Platform AS/RS

Yahong Hu1, Wen-Jing Hsu1,2 and Xiang Xu2

1Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576
2School of Computer Engineering, Nanyang Technological University, Singapore 639798

Abstract—We address the issue of shuffling loads in

Automated Storage/Retrieval Systems (AS/RS) in this paper.
The objective is to pre-sort the loads into any specified
locations in order to minimize the response time of retrievals.
1D, 2D and 3D AS/RS racks have been designed in order to
achieve the shuffling efficiently. The shuffling algorithms are
described in detail. The response time of retrieval, the lower
and upper bounds of energy consumption are also derived.
Results of the analysis and numerical experiments show that
the shuffling algorithms are quite efficient.

Index Terms—Algorithm, AS/RS, Sorting

I. INTRODUCTION

Automated Storage/Retrieval Systems (AS/RS) are
computer-controlled storage systems that can automatically
store and retrieve loads with high throughput. Conventional
AS/RS typically use stacker cranes for reaching and
accessing the storage cells. However, stacker cranes are
only suitable for a certain range of task loads. To handle
certain types of cargo (e.g. extra heavy loads [1]) at high
speed, it is necessary to employ new Storage/Retrieval
(S/R) mechanism in which vertical movement and
horizontal movement of loads are carried out by separate
devices, namely, the vertical platforms (VPs) and the
horizontal platforms (HPs). For convenience, we shall refer
to the new types of AS/RS as the split-platform AS/RS, or
SP-AS/RS for short. Two AS/RS manufacturers have
confirmed that this new design is both mechanically and
economically feasible. One design of this kind of AS/RS is
illustrated in Fig. 1. Detailed information about it can be
found in [1].

One of the advantages of AS/RS is that it can offer high
throughput. With the separate, independent vertical and
horizontal platforms in the new design, more operations can

Y. H. Hu is with Singapore-MIT Alliance, National University of

Singapore, 3 Science Drive 2, Singapore 117543 (phone:65-68744248; fax:
65-67794580; email: smahyh@nus.edu.sg)

W. J. Hsu is with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798 (email: smav52@nus.edu.sg)

X. Xu is with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798 (email:
#xuxiang#@ntu.edu.sg)

be done concurrently. So this design provides us with the
possibility to further improve the throughput. Our research
shows that compared with stacker crane based AS/RS, the
split-platform AS/RS can improve the performance quite a
lot [2]. So the split-platform AS/RS not only can cope with
very heavy loads that can’t be handled by conventional
stacker crane, but also it can offer better performance.

Fig. 1 Split-platform AS/RS
For AS/RS, it should store and retrieve loads in the

shortest possible time period. Compared with storage, the
quick response of retrievals is often more critical. This is
because when a load is to be stored into an AS/RS rack, it
can be put into any empty storage cell. While for retrieval,
only the designated one is valid. How to retrieve loads as
quickly as possible? A very natural solution is that since we
generally know the retrieval sequence in advance, we can
shuffle (pre-sort) the loads to specified locations to
minimize the response time of retrieval. However, very
little information about load shuffling can be found in the
literature.

Our formulation of the shuffling problem is analogous to
the sorting of data items where the loads in an AS/RS rack
are analogous to the data items in an array. However, there
is a fundamental difference between the two problems. In
the conventional data sorting problem, two pieces of data
items, disregarding their separation in the array, can be
swapped in a constant amount of time. For the load
shuffling, because the AS/RS platforms carry out the
sorting operations, the time for swapping two loads depend
on the actual distance between them. Therefore, while we

use “sorting” as a synonym of “shuffling” to draw
inspirations from the existing knowledge, bear in mind that
the merits of AS/RS control algorithms are measured
mainly by the time and the energy required for the
platforms to carry out the moves.

We first consider the simpler case of sorting loads in 1D
racks. The result is then applied as a basis for shuffling on
2D racks and 3D racks. Our results are analyzed in terms of
the number of steps involving the platforms, as well as the
energy required. For this purpose, we present a simple
model for the calculation of energy consumption. A lower
bound is also derived for comparisons.

The contributions of this paper are three-fold: (1) The
abstraction of the new problem; formulation and the
approach to the problem. (2) The new rack configurations
for load shuffling. (3) The provably efficient load shuffling
algorithms.

The rest of the paper is organized as follows. Section II
considers the design of 1D, 2D and 3D AS/RS racks for
efficient shuffling. Section III is dedicated to the shuffling
algorithms for 1D, 2D and 3D racks, respectively. The
shuffling algorithms are evaluated in Section IV. In Section
V, we analyze the response time of retrieval for a 2D rack.
In Section VI, the lower and upper bounds of energy
required for loads retrieval in a 2D AS/RS rack are
calculated. Section VII gives a brief summary and
directions for future research.

II. STRUCTURE AND OPERATIONS OF AS/RS FOR
SHUFFLING

First we will describe the structure and operations for a
1D rack, and this can act as the basis for later derivations.

A. 1D Rack

Fig. 2 Configuration of a 1D Rack (The dark block
represents the platform)

Consider the configuration of a 1D rack shown in Fig. 2.
(1) There are in total N+1 cells numbered from 1 to N+1.
The first N cells are for storing loads. The (N+1)-th, i.e. the
rightmost cell is initially empty, and it is the initial location
of the HOLE. The HOLE is used to temporarily store loads
during the shuffling operation.
(2) There is one platform, which can move a load among
the cells. We assume that the initial position of the platform
is at the HOLE.
Definition 1(step) A step is defined to be the process of
moving a load from its original cell to its destination cell.

Let Cell(x) denote the x-th cell, and Load(x) denote the
load whose destination cell is Cell(x). Barring the trivial
case where the origin cell coincides with the destination
cell (i.e. the load is already in its target cell and no actual
move is needed), one step can be further elaborated in
terms of the following detailed moves:

1) If the destination cell of Load(d) is not presently empty,
the platform first moves from its present dwell point to
Cell(d); fetches the load in it and puts it into the HOLE.
2) The platform moves from the HOLE to Cell(x) that
contains Load(d), and fetches it from Cell(x) then moves it
into Cell(d).

B. 2D Rack

Normally the research of mesh sorting is mainly to sort
data among different processors, and the processors in the
mesh have three different connection models. One is the
two-dimensional mesh-connected processor array. In this
model, n×n processors are placed at the intersections of
horizontal and vertical grids, and each processor is
connected to its four neighbors. Another mesh-type model
is the mesh of bus. In this model, no local links exist
between the neighboring processors. Instead, n row and n
column buses are provided to the n×n mesh. Each processor
is connected to a couple of (row and column) buses [3]. The
last model is the combination of the first and second one,
i.e. extra n row and n column buses are added to the two-
dimensional mesh-connected processor array [5].

Currently, it is more feasible to adopt the second option
for AS/RS rack design. Therefore, our design will be based
on this model. Fig. 3 gives the structure of the AS/RS for
load shuffling.

Fig.3 Structure of 2D AS/RS rack for shuffling

The difference between this new design and the one
shown in Fig. 1 is that now each column has its own
vertical platform instead of the shared VP in one rack.
While the HPs act as the horizontal buses, the VPs serve as
the column buses. At the same time, more I/O stations are
provided to enable concurrent storage and retrieval of loads
into the rack. The cells in the lowest row and the rightmost
column are reserved as HOLEs. The side view of the 2D
AS/RS rack is shown in Fig. 4.

 HOLE

Cell ID: 1 2 3 N N+1

Fig. 4 The side view of a 2D rack

In Fig. 4, the letter ‘C’ denotes a cell, and ‘H’ denotes a
HOLE. The little dark blocks represent the VPs, while the
shaded blocks represent the HPs.

In our shuffling algorithm, the movement of the HPs and
the VPs will not occur at the same time, so no platform
conflict will happen.

Using the 2D AS/RS rack, the storage operation may be
finished in the following steps.
1) After being put on the I/O station of the correct column,
the load is transferred from the I/O station into the HOLE.
At the same time, the VP of this column goes from its dwell
point to the HOLE.
2) The load is transferred from the HOLE to the VP.
3) VP moves the load into the cell assigned to the load.

This description is for one column. Actually with so
many I/O stations, the VPs can work concurrently to obtain
high efficiency.

For the retrieval operation, the procedure is just the
reversal. VP moves the load into the HOLE of the column,
and then the load will be transferred to the I/O station to be
carried away.

C. 3D Rack

Fig. 5 Illustration of a 3D rack
There are quite a lot of ways to design a 3D racks, and

one possibility is to have a similar structure to that of the
2D rack. In the 3D rack, each cell has three platforms to
serve it. One is the so-called X-line platform, which is used
to transfer a load along the X-line. The other two are the Y-
line platform and the Z-line platform respectively. As in our

shuffling algorithm, only the platforms of one direction run
at a time, so no platform confliction will happen. Fig. 5
illustrates the basic idea of the structure of a 3D rack.

III. SHUFFLING ALGORITHMS
For a comparative study, we first apply modified

“Selection Sort” algorithms [4] to sort any permutations.
The “Selection Sort” algorithm is chosen because it doesn’t
swap the loads. This is really useful in AS/RS designed for
heavy loads, because swapping such loads can be time- and
energy-consuming. The shuffling algorithms for 1D, 2D
and 3D racks are described in each sub-section.

In order to simplify our discussion and analysis of the
problem, we assume that all the loads in our AS/RS racks
have unique destinations.

A. 1D Rack
The 1D shuffling algorithm is described as follows:

Algorithm 1: 1D shuffling algorithm
For i=1 to N /* Step i, where N is the number of loads */
IF (the ID of the destination of the load in Cell(i) is not

equal to i)
Then

 Move the load in Cell(i) to the current HOLE;
 Move Load(i) to Cell(i);
 Set the empty cell as the current HOLE;

End
Proposition 1 Using the 1D shuffling algorithm described
in Algorithm 1, any initial permutation of N loads can be
sorted in at most N steps.
Proof: Since in each step one load is moved to its final
destination and is left there afterwards, and also some loads
may already be in their correct locations before the
shuffling, so it is clear that it takes at most N steps to sort
all the N loads into the desired order.

B. 2D Rack

Refer to Fig. 4. The AS/RS rack has (M+1) rows and
(N+1) columns. The total number of loads in the rack is M
× N, where N and M represent the number of loads in a row
and in a column, respectively. Each load is labeled as
Load(x, y) to represent the load’s destination cell ID, where
x is the load’s destination row ID and y is its destination
column ID. Let Cell(x, y) denote the storage cell located at
Row x and Column y in the AS/RS rack. Supposing that we
know the destination of each load before sorting, we can
afford to pre-compute a solution off-line. We will present
an off-line algorithm that allows all M × N loads to reach
their destinations within 2N+M steps.

Algorithm 2: 2D shuffling algorithm
The 2D algorithm consists of the following three phases:

Phase 1. Permute loads in each row such that the loads at
any given column have M different destination row IDs.
Phase 2. Permute the loads within each column to their
destination rows.
Phase 3. Permute the loads within each row into order.

C C C C C C C H

C C C C C C C H

C C C C C C C H

C C C C C C C H

C C C C C C C H

H H H H H H H

Column
1

Column
N

Column
N+1

Row 0

Row 1

Row M

I/O I/O I/O I/O I/O I/O I/O

Z

X
Y

The correctness of Algorithm 2 is depend on whether the
permutation described in Phase 1 can be found. Proposition
2 provides the guarantee.

Proposition 2: Given M× N loads with distinct destinations,
there exists a permutation that the loads at any given
column have different destination row IDs.

We will first prove the following lemma.
Lemma 1: Given the M×N loads described in Proposition 2.
If the first (i-1) loads in Row 1 to Row (i-1) of Column 1
have different destination row IDs, then there exists a
permutation for loads in Row 1 to Row i which ensures that
the loads in the first i rows in Column 1 have distinct
destination row IDs.
Proof: Let R(x ,y) denote the destination row ID of the load
stored in Cell(x, y) and { }11)1,(−≤≤= ixxRS . We
consider two cases.
Case 1. SiR ∉)1,(. In this case, a new row ID is found and
the claim is true.
Case 2. SiR ∈)1,(.In this case, we must show that a new
row ID does exist.

According to our assumption, each load in the rack has
distinct destination cell ID. So for any rows ID r, there exist
exactly N loads whose destination row IDs are r. In these i
rows, altogether there are i×N loads. If no new row ID can
be found in these i rows, even if all the loads with the
destination row ID belonging to S are in these i rows, there
are (i-1)×N loads in the rows, because S contains only (i-1)
row IDs. This contradicts to the fact that the number of
loads in these i rows is i×N. As a result, a new row ID does
exist in these i rows.

By using the following search algorithm, the new row ID
can be found.
Search algorithm:

{ }11)1,(−≤≤= ixxRS

If SiR ∉)1,(, then the new row ID is found.
Else
 { }NttiRZJ ≤≤= 2),(
 For each t, where Nt ≤≤2
 If StiR ∉),(,

Exchange the location of the load in Cell(i,1) and
the one in Cell(i,t). A new row ID appears in these i
rows.

 If every element ZJa ∈ also belongs to S
 For each ZJa ∈
 If)2(),(NtStaR ≤≤∉

Exchange the load in Cell(a,1) and that in
Cell(a,t), and a new row ID appears in Row a. In
order to retain the original row ID that Row a
provides, the load in Cell(i,1) should exchange
its position with the load stored in Cell(i,w)
where awiR =),(.

 Else go on with the search.

Continue this procedure and the new row ID will appear in
these i rows.

Armed with Lemma 1, we now prove Proposition 2.
Proof: First consider Column 1. Initially we
assume)}1,1({ RS = . From Lemma 1, we can find a new
row ID for Row 2 in Column 1. Repeat this operation, all
loads in Column 1 will have different row IDs.

Since Column 1 has been in the desired status, we
consider Column 2. Now we are dealing with M×(N-1)
loads, by assumption, they all have distinct destination cell
Ids. It is clear that Column 2 can be made to contain loads
with distinct row IDs. This procedure may be repeated,
until finally the loads in each column have different row
IDs.

Claim: Given any initial configuration of NM × loads as
stated above, each load can be routed to its destination in
three phases as given in Algorithm 2. The total number of
steps is bounded 2N+M.
Proof: In Phase 1, the loads in the rows can be permuted
such that they have different destination row IDs in each
column. This can be achieved by using the M HPs
simultaneously. Then, in Phase 2, based on their destination
row IDs, the loads in each column are permuted to their
destination rows. This can be achieved by using the N VPs
concurrently. Then in Phase 3, we can sort the loads in each
row simultaneously. Now every load is in its final
destination already. By using Algorithm 1, it is clear that
each of Phase 1 and Phase 3 can be accomplished in N steps.
Phase 2 can be accomplished in M steps. Hence, the total
number of steps is bounded by 2N+M.

C. 3D Rack
In this section, we consider the shuffling algorithm for a

3D AS/RS rack as described in Section II.C. It can store N
loads, M loads and K loads in each X-line, Y-line and Z-
line respectively. So the total number of loads in the 3D
rack is KMN ×× . Each load is labeled as Load(x, y, z) to
represent the load’s destination cell ID, where x, y ,z are the
load’s destination IDs in X-direction, Y-direction and Z-
direction respectively. Let Cell(x, y, z) denote the storage
cell located at the intersection of X-line, Y-line and Z-line
in the AS/RS rack. Like for the 2D shuffling algorithm, we
suppose that the destination of each load is distinct and is
known before sorting. We will present an off-line algorithm
that allows all KMN ×× loads to reach their destinations
within 4N+M+2K steps.

Algorithm3: 3D shuffling algorithm

The 3D algorithm consists of the following phases:
Phase 1: Permute the loads in each XZ-plane such that the
loads in any given Y-line have M distinct XZ-plane IDs.
Phase 2. Permute the loads within each Y-line to their
destination XZ-planes.
Phase 3. Permute the loads within each XZ-plane to their
destination cells.

Again, we must prove that the permutation described in
Phase 1 can be found and this is guaranteed by Proposition
3.

Proposition 3: Given KMN ×× loads with distinct
destinations, there exits a permutation that the loads within
any Y- line have M distinct destination XZ- plane IDs.
Before proving this Proposition, we need two lemmas.

Lemma 2: Consider the KMN ×× loads described in
Proposition 3. If the first (m-1) loads in the first Y-line
inside the first XY-plane have different XZ-plane IDs, then
there exists a permutation that the first m loads in this line
also have distinct XZ-plane IDs.
Proof: Let R(x,y,z) denote the destination XZ-plane ID of
load stored in Cell(x,y,z) and

}.11|)1,,1({ −≤≤= myyRS We consider two cases.
Case 1: SmR ∉)1,,1(. In this case, these m loads already
have distinct XZ-plane IDs.
Case 2: SmR ∈)1,,1(. In this case, we need show that a new
XZ-plane ID can be found.

According to our assumption, each load in the rack has
distinct destination cell ID. So for the first m XZ-planes,
there should exist KmN ×× loads. If no new XZ-plane ID
can be found, it means that all the loads in these m planes
have the destination XZ-plane ID belonging to S, hence
there are altogether KmN ×−×)1(loads. This leads to a
contradiction.

Lemma 3: Consider the KMN ×× loads described in
Proposition 3. If the loads in the first (n-1) Y-lines residing
in the first XY-plane have different destination XZ-plane
IDs, then there exist a permutation which ensures that loads
in the first n Y-lines in the first XY-plane have distinct XZ-
plane IDs.
Proof: Assume that one particular XZ-plane ID y′cannot
appear in the y-th Y-line (ky ≤≤1) of this plane for all the
permutations. It means that the total number of loads
destined for XZ-plane y′ is at most Kn ×−)1(. This
contradicts the fact that the total number of such loads
should be KN × . As a result, all the distinct IDs for XZ-
plane will appear in the y-th Y-line of the first XY-plane.
Then all the loads in these first (n-1) Y-lines have distinct
destination XZ-plane IDs.

With Lemmas 2 and 3, we now prove Proposition 3.
Proof: First consider the first Y-line in the first XY-plane.
Initially, let)}.1,1,1({RS = From Lemma 2, we can ensure
that loads in Cell(1,1,1) and Cell(1,2,1) have distinct XZ-
plane IDs. Repeating this operation, then all the loads in
this first Y-line can have different XZ-plane IDs.

Then from Lemma 3, since the loads in the first Y-line in
the first XY-plane have distinct XZ-plane IDs, it is clear
that the loads inside the second Y-line in this plane also can
obtain different XZ-plane IDs. Repeating this operation,

loads in all the Y-lines inside the first XY-plane can have
distinct XZ-plane IDs.

For the second XY-plane, now we need to solve the
problem with)1(−×× KMN loads with distinct
destination cell IDs. It should be clear that all the loads
within the second XY-plane can have distinct XZ-plane IDs.
By repeating this operation, all the XY-planes can obtain
loads with different XZ-plane IDs.

Search algorithm similar to that of the 2D algorithm can
be used to find the permutation.

Claim: Given the initial configuration of KMN ×× loads
as stated above, each load can be routed to its destination in
three phases given in the 3D shuffling algorithm. The total
number of steps is 4N+M+2K.
Proof: In Phase 1, the loads are permuted in each XZ-plane
such that the loads in any given Y-line have distinct XZ-
plane IDs. This can be achieved by using the 2D algorithm
and the loads within each XZ-plane can be shuffled
simultaneously. Here, 2N+K steps are needed. In Phase 2,
all the loads are shuffled to their destination XZ-plane. All
the Y-direction platforms can operate concurrently using
the 1D shuffling algorithm. To accomplish this phase, M
steps are required. Then in Phase 3, we can sort the loads
in each XZ-plane simultaneously. Every load will be in its
final destination within 2N+K steps using the 2D algorithm
again. Hence, the total number of steps is bounded by
4N+M+2K.

IV. EVALUATION OF THE SHUFFLING ALGORITHMS

In this section, we calculate upper bound and lower
bound of the distances traversed by a platform to finish
shuffling N loads in a 1D rack. It is the basis for the
corresponding calculations for 2D and 3D racks.

A. Upper Bound of the Distance Traversed by Platforms

Proposition 4 The total distance s traversed by the platform
using Algorithm 1 satisfies the following inequality:

()
()⎩

⎨
⎧

−+
+

≤
oddisNifLNN
evenisNifLNN

s
23

3
2

2

Proof: Because of space limitation, the reader is referred to
[6] for the detailed proof.

B. Lower Bound of the Distance Traversed by Platforms
Proposition 5 To finish shuffling of N loads, the overall
distance s traversed by the platform in the worst case is
lower-bounded by:

⎪
⎪
⎩

⎪⎪
⎨

⎧

− oddisNifLN

evenisNifLN

2
)1(

2
2

2

Fig. 6 Load distribution in the worst case

Proof: One load distribution in the worst case is that the
loads located in the symmetric cells in a 1D rack need to
exchange their positions, i.e., one load’s current cell
location is just the destination of the other load. Fig. 6 gives
an example.

Whatever shuffling algorithm is used, for Load(6) and
Load(1), they must traverse the longest distance to arrive at
the destinations. For Load(5) and Load(2), the distances
they have to cover are the second longest and so on.
Analogously, the total distance covered by the platform is
the maximum under this kind of load distribution.

For Load(1) and Load(N), the distance they have to go is
(N-1)L. For Load(2) and Load(N-1), the distance is (N-3)L
and so on. So the total distance is:

When N is even,
))]1(())3(()3()1[(2 −−+−−++−+− NNNNNNL KK

2

2 LN
=

When N is odd, the load in the middle cell doesn’t need
to move, so the formula is:

))]2(())3(()3()1[(2 −−+−−++−+− NNNNNNL KK

2
)1(2 LN −

=

V. RETRIEVAL TIME COMPARISON

Since presently most AS/RS racks are essentially 2D
racks, in this section, we calculate the operation time to
retrieve a batch of NM × loads when they have been pre-
sorted.

A. Response Time for Retrieval Using the 2D AS/RS
The notations used in this section are:
N: the number of VPs
M: the number of HPs

loadT : the time for transferring a load from a cell onto a
platform or vice versa, i.e. transferring a load from
a platform into a cell

L: the length of an AS/RS cell
H: the height of an AS/RS cell

Assume that the HPs travel at an average speed of
hV while the VP travels at an average speed of vV . The

initial locations of the platforms are their corresponding
HOLEs.

Since all loads have been sorted, we can retrieve the
loads in a more efficient fashion. The N VPs can operate
concurrently, so the time taken to retrieve all the NM ×

loads is equal to that for retrieving the M loads located in
the same column. The time can be obtained through the
following steps.

1) VP travels from the HOLE to Row 1.
vV

HT =1

2) Fetches the load and returns back to HOLE, puts it into

HOLE.
v

load V
HTT += 22

3) The load is moved to the I/O station.
Simultaneously, VP goes to Row 2, fetches a load, comes
back at HOLE, and moves the load into HOLE.

v
load V

HTT 2223 +=

4) Continuing the process with each row, until all the loads
in the column have been retrieved.

So the total time of retrieval is,

v
load

M

i v
loadshuffling V

MHMMT
V
HiTT)1(2)22(

1

+
+=×+= ∑

=

 (1)

B. Response Time for Retrieval without Shuffling

In this section, we will give the retrieval time to fetch all
the loads in a rack without shuffling. Two kinds of AS/RS
rack configuration are considered. One rack configuration
is the one illustrated in Fig. 1, and henceforth we call it
Configuration 1. The other is the AS/RS for shuffling and
it is called Configuration 2.

(1) Configuration 1

Because in this configuration only one VP is provided,
loads in the rack have to be retrieved one by one. The total
retrieval time is upper-bounded by:

load

M

j

N

i hv
retrieval MNT

V
iL

V
HjT 3)1(2

1 1
1 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
= ∑∑

= =

 = ()
load

hv

MNT
V

MLNN
V

NHMM 31)1(
+

+
+

−

For each load, it will be fetched from the cell, and then
transferred from HP to VP, after that it will be moved from
VP to the I/O station. So altogether, the time spent on this
kind of transfer is 3Tload. The other two parts of time in the
above equation are for the movements of the VP and HPs.

(2) Configuration 2

By using the 2D AS/RS shuffling rack, all the VPs are
capable of operating concurrently. The retrieval time is
entirely dependent on the loads’ initial location distribution
in the rack and their retrieval sequence. The case that
shuffling can gain the most benefits is that all the loads are
stored sequentially in the columns according to their
retrieval sequence. Fig. 7 gives such an example. The

Load
(6)

Load
(5)

Load
(4)

Load
(3)

Load
(2)

Load
(1)

HOLE

Cell ID: 1 2 3 4 5 6 7

load’s number in each storage cell is its serial number in the
retrieval sequence.

Fig. 7 An example of the sequential locations of the loads
in a 2D AS/RS rack

It is clear that in this case, the VPs cannot work
concurrently in order to guarantee the correct retrieval
sequence. So shuffling the loads before the actual retrieval
process can help to minimize the retrieval time.

The total time to fetch all such loads consists of two
parts.

1) The time to retrieve all the loads in Column 1. It is the
same as that provided by Equation (1).

v
load V

MHMMTT)1(21

+
+=

2) Time needed to retrieve the loads from any of the other
columns.

⎥
⎦

⎤
⎢
⎣

⎡
++−

+
+=

v
load

vv
load V

HT
V
H

V
MHMMTT 222)1(22

Because the VP in other columns can pre-fetch the load
in Row 1 and then go to Row 2 to wait for the time to fetch
the load there during the period that the loads in Column 1
are being retrieved, so the time needed to retrieve loads in
columns except Column 1 doesn’t need to contain these
parts. The total retrieval time is:

)1(212 −+= NTTTretrieval

v
load V

NHMHMNTNMN)1(4)1()1(2 −−+
++−=

The possible time reduction by load shuffling should be
between 0 and)1(2 −NT .

C. Numerical Calculation

In this section, we compare the time to retrieve a batch of
loads with shuffling or without shuffling under different
rack configurations. In the experiments, the number of
loads to be retrieved is the same as the number of storage
cells in the rack and we calculated three cases. In the first
case, loads are stored in the 2D rack of AS/RS for shuffling
and have been sorted before retrieval. The second case
deals with the loads under Configuration 1. Here, we didn’t
use Equation (2) to calculate 1retrievalT , because the concurrent
movements of HP and VP for one job are not taken into
account in this case. We directly calculate the time needed
to retrieval a load from a cell and the concurrency between

the HP and VP are considered. The last case is to retrieve
the un-shuffled loads in the rack under Configuration 2.

All the specifications of the AS/RS used in the
calculation are:
a) The height of each cell is 4.5m, and the width is 4.5m.
b) The vertical platform travels at 1m /sec and the

horizontal platforms travel at 2 m/sec.
c) The time to transfer a load between VP and HP or

between HP and a cell is 15 seconds.
The number of rows and columns listed in Table 1

exclude the row and column for the HOLEs.

TABLE 1
Comparison of the Retrieval Time

From Table 1, it is clear that compared with
Configuration 1, on average the shuffling scheme can have
2122.1% improvement. Compared with Configuration 2,
the average improvement is about 1426.0%. The
improvement scales up with the increased number of
columns. This is because the shuffling scheme can provide
more parallel operations for the VPs. It should be quite
clear that by pre-sorting the loads, the retrieval time for a
batch of loads could be drastically cut down.

VI. ANALYSIS OF THE ENERGY CONSUMPTION FOR
SHUFFLING

Nowadays, energy has become more and more important
issues in many applications. As we intend to handle extra
heavy loads using the new type of AS/RS, we will calculate
the upper bound of energy consumption for shuffling N
loads in a 1D rack. Then based on the results, we give an
upper bound and a lower bound energy consumption for
operations in a 2D rack.

The notations used in this section are:
W load : energy required for picking up or depositing a load

m hp : the mass of a HP

m vp : the mass of a VP

m load : the mass of a load
We assume that the energy needed for picking up and

that for depositing a load are the same, and all the loads

4 8 12 16 20
3 7 11 15 19
2 6 10 14 18
1 5 9 13 17

Rack
Configura-

tion
Configuration 1 Configuration 2

Row ×
Column

Retrieval
time with
shuffling

(sec.)
Retrieval

time
(sec.)

Improve-
ment (%)

Retrieval
time
(sec.)

Improve-
ment (%)

10 10 795 9135 1049.1 7518 845.7
10 20 795 22635 2747.2 14988 1785.3
10 30 795 40635 5011.3 22458 2724.9
20 10 2490 25245 913.9 24468 882.7
30 10 5085 50295 889.1 50418 891.5

have the same mass mload. Without loss of generality, we
assume that M and N are even.

A. Upper Bound of Energy Consumption for Load
Shuffling in a 1D rack

An upper bound of energy consumption to shuffle N
loads of a 1D AS/RS rack into order is:

⎩
⎨
⎧

+
+

=
movementverticalLNNgm

movementhorizontalLNNf
W

total

total

)3(
)3(

2

2

 (3)

where totalf denotes the friction force exerted to the
platform, and totalm is the total weight of the platform and
the load on it. The detailed deduction can be found in [6].

B. Upper Bound of Energy Consumption for Load
Shuffling in a 2D rack

Here we derive an upper bound of the energy required by
all platforms using the shuffling scheme. The energy
required in the sorting process is:

lvphpshuffling WWWW ++=

Whp is the energy consumed by the movements of all HPs,
Wvp is the energy for VPs’ movement and Wl represents the
energy used to transfer the loads between the platforms and
cells. According to the 2D algorithm, each load has to be
picked up or deposited 12 times in the worst case. Referring
to Equation (3), the energy required by all platforms using
the 2D algorithm is upper-bounded by:

()MLNNfW totalshuffling 32 2 +=

() loadloadvp MNWNHMMgmm 12)3(2 ++++

Referring to the retrieving policy in Section V.A, it is
easy to give the energy required to complete all the
retrievals after sorting. The retrieval process is divided into
two parts.

1) VPs travel from the HOLE to Row i without loads, and
then go back to the HOLE with loads.

∑
=

=
M

i
vpup gHNimW

1

∑
=

+=
M

i
loadvpdown gHNmmiW

1

)(

2) Total amount of energy used to transfer loads from the
cells to the I/O stations.

loadMNWW 31 =
Then the energy used to do the retrieval is formulated as:

1WWWW downupretrieval ++=

gmNHMMgNHmMMMNW loadvpload 2
)1()1(3 +

+++=

Therefore, an upper bound of energy required for retrieval
using the algorithm is:

retrievalshufflingupper WWW +=

loadtotal MNWMLNNf 15)3(2 2 ++=

gNHmMMgNHmMM loadvp 2
73)42(

2
2 +

+++

C. Lower Bound of Energy Consumption for Load
Shuffling in a 2D rack

Any algorithm for retrieving NM × loads in a rack must
pick up each load and move it to an I/O station. Therefore
a trivial lower bound is given by:

load

M

j
vploadlower MNWgjNHmmW 2)(

1

1

++= ∑
−

=

 =
()

load
vpload MNW

gHmmMNM
2

2
)(1

+
+−

Comparing the lower bound and upper bound, we can see
that reducing the mass of HPs and VPs is a simple yet
effective way to improve the energy efficiency.

VII. DISCUSSIONS AND CONCLUSIONS
We have presented the design of 1D, 2D and 3D AS/RS

racks for shuffling and also have described the algorithms
for shuffling unit loads stored in these AS/RS racks. The
algorithms have been analyzed in terms of number of steps
and energy requirements. For 2D rack, we have also
conducted numeric experiments to compare the
performance of AS/RS with or without shuffling scheme.
The results suggest that our algorithms are rather efficient
for shuffling loads with our proposed rack design.

The AS/RS racks presented here have been specially
optimized for the shuffling operations. It can be seen that
the large number of moveable platforms also entails a high
cost. Moreover, the model we presented for energy
calculation is still rather crude, although it serves our
present purpose well. Therefore, the following issues
deserve future research:
(1) Fault tolerance is very important in AS/RS operations.
More flexible shuffling algorithms are needed to handle the
cases when some of the platforms are out of order.
(2) It will also be useful to derive more realistic models for
energy consumption.
(3) To optimize the search algorithm, and to determine the
optimal move sequence since we know the original and
destined loads distribution in the AS/RS rack.

ACKNOWLEDGEMENT
We gratefully acknowledge the support by the Agency

for Science, Technology and Research, Singapore, the
Maritime and Port Authority of Singapore, Nanyang
Technological University, and the Singapore-MIT Alliance,
Singapore.

REFERENCES
[1] C.Y. Chen, W.J. Hsu, V.Y. Vee, P. Lu, S.Y. Huang and M.K. Lai.

“Automated storage/retrieval system for container operation,”

Technical report (TR-HCTS-002). Nanyang Technological
University, Singapore. 2001.

[2] Y. H. Hu, S. Y. Huang, C. Y. Chen, W. J. Hsu, A. C. Toh, C. K. Loh,
T. C. Song. “Travel time analysis of a new Automated storage and
retrieval system,” to appear in “Computers & Operations Research”.

[3] K. Iwama and E. Miyano. “Recent Developments in Mesh Routing
Algorithms,” IEICE Trans. INF. & SYST., Vol. E83-D, No. 3, 530-
540, March 2000.

[4] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching, Addison Wesley, Reading, USA. 1973.

[5] J. Y-T. Leung. “Packet Routing on Square Meshes with Row and
Column Buses,” Proc. 3rd IEEE Symposium on Parallel and
Distributed Proceeding, Dallas Texas. 834-837, 1991.

[6] Y. H. Hu, X. Xu, and W. J. Hsu. “Efficient Algorithms for Load
Shuffling in Automated Storage/Retrieval Systems,” Technical
report. Nanyang Technological University, Singapore. 2003.

Ya-Hong Hu is a Research Fellow in Singapore-MIT Alliance, National
University of Singapore, Singapore. She received her Ph.D, M.S and B.S
from Xi’an Jiaotong University, China. Her research interests include
modeling and simulation, automation, distributed resources sharing and
remote collaborative design environment.
Wen-Jing Hsu is an Associate Professor in the School of Computer
Engineering, Nanyang Technological University, Singapore. He received
his BS, MS and Ph.D from National Chiao Tung University, Taiwan. His
research interests include algorithms, computer architectures, parallel and
distributed systems and networks.
Xiang Xu is a Ph. D candidate in the School of Computer, Nanyang
Technological University. His research interests include automation
algorithms and P2P systems.

