
Efficient on the fly maintenance of series-parallel 
relationships 

 
Jeremy T. Fineman 

MIT Laboratory for Computer Science 
200 Technology Square 
Cambridge, MA 02139 

 
Singapore-MIT Alliance 
NSF Grant ACI-032497 

 
November 3, 2003 

 
 

Abstract—A series-parallel directed acyclic graph, or SP-dag, 
contains nodes that are either in series or logically in 
parallel. We present a data structure and algorithm to 
efficiently determine, in a single serial walk of the dag, 
whether two nodes are logically in parallel. We also present 
a modified version of this algorithm to detect parallel 
threads in any (parallel or serial) execution of a Cilk dag. 
 
The techniques we present in this paper depend on an order-
maintenance data structure inspired by Dietz and Sleator. 
This data structure supports inserts and queries in O(1) 
amortized time. We maintain two complementary total-
orders of the dag. If two nodes have the same relationship in 
both orders, then they operate in series. If they have 
different relationships in both orders, then they operate 
logically in parallel. The algorithm we use allows us to 
maintain both orders on a single, serial walk of the dag. Our 
algorithm takes O(T) time, where T is the time to execute a 
serial walk of the dag. 
 
The Dietz and Sleator order-maintenance structure does not 
support concurrent operations. Given the work-first 
property of the Cilk scheduler with a bounded number of 
steals (with high probability), we can maintain separate 
order structures for each processor in addition to a global 
order structure. Concurrent operations are only required in 
the global order structure on a steal. We prove that a Cilk 
program modified with our algorithm has a running time 
bounded to within a constant factor of the original program. 
 
Determinacy race detection depends on knowledge of the SP 
relationships of a parallel-program. We will apply the serial 
algorithm mentioned above to a determinacy race detector 
in Cilk. We will run benchmarks to compare the running 
time of this implementation to that of the current 
Nondeterminator, which relies on least common ancestor 
lookups. 
 

 
[Full Text Not Available] 


