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Efforts towards the Synthesis of Fully N-Differentiated Heparin-like
Glycosaminoglycans

By

Gregory J. S. Lohman

Submitted to the Department of Chemistry in December, 2006 in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy in Organic Chemistry

ABSTRACT

Heparin-like glycosaminoglycans (HLGAGs) are complex information-carrying
biopolymers and are an important component of the coagulation cascade. They have also been
implicated in interactions with growth factors, cytokines, virus entry, and other functions.
Currently, no general synthesis of arbitrary HLGAG sequences has been demonstrated. The
modular synthesis of glycosaminoglycans requires straightforward methods for the production of
large quantities of protected uronic acid building blocks. An efficient route to methyl 3-0-
benzyl-1,2-O-isopropylidene-a-L-idopyranosiduronate from diacetone glucose in nine steps and
36% overall yield is described. Additionally, a general method for the conversion of glycals to
the corresponding 1,2-cis-isopropylidene-a-glycosides is reported. Epoxidation of glycals with
dimethyldioxirane followed by ZnC12-catalyzed addition of acetone converted a variety of
protected glycals into 1,2-cis-isopropylidene-a-glycosides in good yield. The reaction is
compatible with a range of protecting groups, as well as free hydroxyl groups. This method has
been applied to develop a synthesis of 3-O-benzyl-1,2-O-isopropylidene-P-D-
glucopyranosiduronate in seven steps and 32% overall yield. These compounds are useful as
glycosyl acceptors and as intermediates that may be further elaborated into uronic acid
trichloroacetimidate glycosyl donors for the assembly of glycosaminoglycan structures.

The glucosamine residues in HLGAGs have been found to exist as amines, acetamides,
and N-sulfonates. In order to develop a completely general, modular synthesis of heparin, three
degrees of orthogonal nitrogen protection are required. Reported is a strategy for the synthesis of
fully N-differentiated heparin oligosaccharides in the context of target octasaccharide 3-1, which
contains an N-acetate, N-sulfonates, and a free amine. The protecting group scheme used in the
synthesis blocked the N-acetate as a N-diacetate, the N-sulfonates as azido groups, and the amine
as a N-CBz; free hydroxyls were masked as benzyl ethers and O-sulfonates as acetate esters.
Disaccharide and tetrasaccharide modules were synthesized using this strategy; however, the
union of tetrasaccharide trichloroacetimidate 3-4 with disaccharide acceptor 3-5 unexpectedly
formed the undesired P-linked glycoside in addition to the a-linkage anticipated for iduronic acid
nucleophiles, resulting in an inseparable 6:1 a: p mixture of products. Detailed studies into the
basis for this unexpected result were conducted and are also reported.

Thesis Supervisor: Peter H. Seeberger
Title: Professor for Organic Chemistry, ETH, Zurich



Investigations into the Mechanism of Inactivation of RTPR by Gemcitabine
Triphosphate

By

Gregory J. S. Lohman
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Requirements for the Degree of Doctor of Philosophy in Organic Chemistry

ABSTRACT

Ribonucleoside triphosphate reductase (RTPR) is an adenosylcobalamin (AdoCbl)
dependant enzyme that catalyzes the conversion of nucleoside triphosphates to deoxynucleoside
triphosphates via controlled radical chemistry. The antitumor agent 2',2'-difluoro-2'-
deoxycytidine (gemcitabine, F2C) has been shown to owe some of its in vivo activity to
inhibition of human RNR by the 5'-diphosphate (F2CDP). Previous studies have shown that
RTPR is rapidly inactivated by one equivalent of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate
(F2CTP). This inactivation is associated with the release of two equivalents of fluoride and
modification of RTPR by a Co-S bond between C419 and the cobalamin cofactor. In order to
further characterize this inactivation, isotopically labeled derivatives of F2CTP were synthesized:
radiolabeled 1'-[ 3H]-F 2C and mass labeled 1'-[ 2H]-F 2C and 3'-[ 2H]-F 2C. These compounds were
converted to F2CTP through a set of enzymatic phosphorylation steps which overcome
difficulties found using traditional, chemical methods.

Biochemical investigations were performed using these labeled derivatives to track the
fate of the base and sugar during RTPR inactivation by F2CTP. The release of cytosine base,
previously overlooked in this system, was detected utilizing 5-[3H]-F 2CTP: 0.7 equiv. of
cytosine were released, with 0.15-0.2 equiv. of unreacted F2CTP remaining. Size exclusion
chromatography (SEC) was used to quantify covalent labeling of RTPR by F2CTP: 0.15 equiv.
were detected using 5-[3H]-F 2CTP, 0.45 equiv. were detected using 1'-[ 3H]-F 2CTP. A small
molecule nucleotide product was identified in inactivation mixtures quenched with NaBH4 and
identified as an isomer of cytidine, indicating the loss of both fluorides and the addition of an
oxygen at the 2' carbon. RTPR inactivated with 1'-[ 3H]-F 2CTP was digested with trypsin and
peptides containing radioactivity purified. Identical peptides were prepared using partially
deuterated F2CTP, allowing identification by MALDI-MS. Post source decay (PSD) MS/MS
methods were used to further characterize these peptides, identifying the site of label as the C-
terminal tryptic peptide of RTPR at C731 and C736. The cysteines were labeled through
conjugate addition with a furanone-like precursor that had lost cytosine, triphosphate, and both
fluorines. The results of these studies have allowed for the first time the proposal of a
mechanistic hypothesis for RTPR inactivation by F2CTP.

Thesis Supervisor: JoAnne Stubbe
Title: Novartis Professor of Chemistry and Biology
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PART I:

Efforts Towards the Synthesis of Fully N-Differentiated Heparin-like

Glycosaminoglycans





Chapter 1
The Synthesis of Heparin-Like Glycosaminoglycans



1.1 Introduction

Carbohydrates in natural products

Carbohydrates, along with nucleic acids and proteins, are key information-carrying and

structural polymers in biological systems. The biological and organic chemistry of

carbohydrates is a field more than a century old, and comes with its own particular nomenclature

(Figure 1-1).(1) Apart from nucleic acids, most monosaccharides involved in natural products

are six-carbon hexoses. Hexoses exist almost entirely in their cyclic, pyranose (six-membered

ring) forms, though they can also cyclize to a furanose (five-membered ring). Cyclization

creates a new stereogenic center at this position, and each carbohydrate has a and P "anomers" as

a result. The assignment of the a or P designation is based on the highest numbered asymmetric

center; for glucose and its derivatives, the a anomer projects the substituent axially. In general, a

has the Cl and C5 substituents on opposite faces of the sugar ring, P on the same face. These

anomers can interconvert if the Cl hydroxyl is unmodified though a ring-opening and closing

equilabrative process known as mutarotation.

Oligosaccharide chains often show a greater level of complexity than other biopolymers,

as they can be branched and each sugar may be added to a different hydroxyl. When describing

carbohydrate chains, the "reducing end" refers to the end of the chain possessing an

unglycosylated Cl hydroxyl, the "non-reducing end," the opposite. Linkages between sugars are

noted with the anomeric stereochemistry and the connectivity: Glc a(l -- 4)Glc means a glucose

disaccharide connected with an a-linkage from the Cl of one glucose to the C4 of the other.



OH OH OH O 6 OH
-4,

A HO H HO OH

OHOH OH OH OH 3 OH

cc-glucose p-glucose

NRE
OH

B HO OH LR OHE
HD RE

OH

Figure 1-1. Features of carbohydrates. A) glucose-anomeric stereochemistry, mutarotation, and carbon
numbering. B) Glc a(1 -4)Glc, with the reducing end (RE) and non-reducing ends (NRE) indicated.

Heparin and the glycosaminoglycans

Heparin and heparan sulfate (HS) are complex linear carbohydrates in the

glycosaminoglycan family, found ubiquitously in the extracellular matrix and free in the plasma.

In addition to heparin and HS, the glycosaminoglycans (GAGs) include keratin sulfate (KS),

dermatin sulfate (DS), chondroitin sulfate (CS), and hyaluronic acid (HA).(2-4) All these

polymers consist of a repeating disaccharide structure, consisting of a hexosamine

(galactosamine in the case of DS and CS, glucosamine for KS, HA, and HS) alternating with a

hexauronic acid (glucuronic acid or iduronic acid). Excepting HA, all classes are additionally

sulfated to varying degrees, and are among the most highly charged biopolymers. The repulsion

due to this densely-packed negative charge lends these polymers rigidity, and several GAGs play

important structural roles in the extracellular matrix. All are found conjugated to proteins bound

to the extracellular matrix, generally to serine residues of proteoglycan core proteins.

Unconjugated heparin and HA are found free in the plasma, and GAGs may also be found in

intracellular granules and at the cell surface.
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Figure 1-2. Major disaccharide repeat units of the glycosaminoglycans; all but heparin contain primarily unsulfated
backbones as shown. In their variable sequences, heparin, HS, and DS may contain either iduronic or glucuronic
acid. Heparin/HS may be sulfated, acetylated, or unmodified at the amine; Heparin/HS may be sulfated at the uronic
acid 20H or the glucosamine 30H or 60H; DS maybe sulfated at the galactosamine 40H and CS at the
galactosamine 40H or 60H and both at either uronic acid OH; KS at the 30H or 60H of the glucosamine.

GAGs are implicated in a variety of cellular functions aside from simple structural roles,

including adhesion, motility, cell-cell recognition, proliferation, and tissue differentiation.

Further, many sequences have been shown to act as specific ligands for protein receptors. While

each class of GAG has a predominant disaccharide repeat "monomer" (Figure 1-2) that defines

I



the structure, most proteoglycan chains show variability in sulfation and acetylation patterns. CS

and DS consist primarily of N-acetylgalactosamine (GalNAc)4uronic acid (UA) repeats, but

variable sulfation and the presence of both iduronic acid (IdoA) and glucuronic acid (GlcA)

result in nine possible disaccharide units. Heparin and heparan sulfate chains are even more

variable, with the core N-acetyl glucosamine (GlcNAc) - UA structure differentiated through

sulfation, acetylation and the selection of iduronic or glucuronic acid to give rise to as many as

48 different disaccharides. This sequence variability can grant proteoglycans a very high

information density, enabling many different protein-GAG interactions that result in the diverse

biological functions of GAGs.

Heparin and heparan sulfate are extremely closely related polymers in structure, function,

and biogenesis, and are often considered variations on the same biopolymer class.(2, 5-13)

Collectively, these carbohydrates are known as heparin-like glycosaminoglycans (HLGAGs) and

will often be considered together in this document. Heparin, named after the hepatic tissue from

which it is isolated, was originally discovered in 1916 and has been used therapeutically for its

anti-coagulant effects since the 1930s.(14, 15) Heparan sulfate was first identified as an impurity

in heparin preparations, and its close structural similarity to heparin was not determined for

several decades. In addition to differences in the primary disaccharide repeat, heparin and HS

vary on a few other points. Heparin is found bound to a proteoglycan core protein (serglycin)

only in mastocytes and is cleaved from this protein and secreted into the serum as a

glycosaminoglycan chain. Its uronic acid is predominantly (90%) iduronic acid, and it possesses

a very high degree of sulfation (2.7 sulfates per disaccharide on average).(9) By contrast,

heparan sulfate is found ubiquitously in the extracellular matrix throughout the body, possesses



approximately equal fractions of glucuronic to iduronic acid, and is significantly less sulfated

than heparin.

Together, the HLGAGs are the best studied class of glycosaminoglycans. In addition to

their clinical relevance as inhibitors of the coagulation cascade, HLGAGs have been implicated

in interactions with growth factors, cytokines, virus entry, and other functions.(2, 7-9, 16)

Biological study of these polymers has long been hampered by a lack of defined sequences for

study; heparin isolated from animal systems is very heterogeneous and difficult or impossible to

purify into defined sequences. Sequencing and structure identification is also difficult, further

complicating attempts to define sequence-function relationships in heparin. Consequently, there

has been much effort to devise synthetic strategies for defined heparin sequences-initially for

individual structures, but increasingly with an eye towards a general, modular synthesis of the

polymer. The remainder of this chapter will present an overview of HLGAGs structure and

biological interactions, followed by an extensive review of the synthesis of HLGAGs and related

compounds in the literature.

1.2 Structure and Conformation of Heparin and Heparan Sulfate

Heparin and heparan sulfate consist of the repeating 1 -4 linked disaccharide structure

shown in Figure 1-3. All glucosamines in the structures are a(1 -4) linked to a uronic acid; the

acids are similarly 1-4 linked to the next glucosamine in the sequence. The anomeric

stereochemistry of the uronic acids is 1,2-trans, which is defined as f3 for glucuronic acid and a

for iduronic acid. As shown in Figure 1-3, in addition to the variability in stereochemistry at C5

of the uronic acids, HLGAG disaccharides may be sulfated at the 2 position of the uronic acids

and at the 3 or 6 positions of the glucosamines. The amine may also be sulfated, acetylated, or,



rarely, unmodified,(l 7) giving a total of 48 possible disaccharide units, though only about half of

these have been observed in natural structures.(18)

ox

-OOC, 'HNYO•

-0 OX

Figure 1-3. The structure and sequence variability of HLGAGs. X = H or S0 3-, Y = Ac, H, or SO3-. The
stereochemistry of the uronic acid may be gluco or ido.

HLGAG chains may be dozens to hundreds of these disaccharide units in length, ranging

in molecular weight from 5 to 50 kDa with an average of-12 kDa for free heparin and -30 kDa

for protein-conjugated HS chains.(6) In general, they are structured in a block-polymer fashion,

with long stretches of the major repeat disaccharide interspersed with "variable regions" that

display a greater heterogeneity in sulfation. Heparin chains primarily consist of the triply-

sulfated disaccharide shown in Figure 1-3. With an average charge of-75, heparin chains are the

most densely charged natural polyelectrolyte known. HS chains are generally found conjugated

to proteoglycan core proteins through a defined linker region tetrasaccharide (Figure 1-4).(19)

The HS chain is attached to the 4-OH of the glucuronic acid.

-OOC OH OH OH OH

HS Chain- O OOO O O O er0
OH OH OH OH

Figure 1-4. Linker region HS-GlcA-Gal-Gal-Xyl-PG.

In heparin, the glucosamine and glucuronic acid residues are expected to take the 4C1

conformation in solution, placing the majority of substituents equatorial (Figure 1-5).(20-25)

Conformational dynamics studies indicate that iduronic acid possesses two conformations of

approximately equal energy, the 1C4 chair and 2So skew-boat conformations.(26, 27) The



preferred conformation of the iduronic residues is believed to be strongly influenced by the

sulfation pattern of surrounding glucosamine residues. The specific conformation of iduronic

residues has been implicated in protein binding, and protein-bound heparin sequences may favor

one conformation over the other.(21, 28-31)
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Figure 1-5. Conformations of HLGAG-chain monosaccharides.

Heparin does not fold into stable, complex secondary structures as do proteins and RNA:

the general secondary structure of highly charged heparin chains is an a-helical structure with a

turn every 5 residues.(23, 24, 32) The iduronic acids in these structures may be in either the 1C4

or 2So conformations without affecting the overall chain structure, and inter-conversion between

these forms is allowed within a helix. The secondary structure of HS is less well defined-while

the individual glucosamine and glucuronic acid residues are expected to maintain the 4C1

conformation, the lack of dense charge in extended regions means that the rotation about the

glycosidic bonds is relatively unhindered. The secondary structures of HLGAGs are flexible,

and the polymers have been shown to adopt more rigid conformers upon interaction with protein

ligands.(28, 33)



1.3 Biosynthesis

Extensive reviews of HLGAG biosynthesis and the enzymes involved have been

published;(7, 11, 18, 34) a brief overview is presented here. Assembly of HS chains takes place

within the Golgi apparatus as a non-template-driven process. Initiation of biosynthesis takes

place by assembly of the linker region (Figure 1-4) on serine residues on the core proteins. The

initial reaction is the glycosylation of a protein serine residue with UDP-xylose. Two galactose

units are added sequentially, each by a different galactosyl transferase. Finally, UDP-glucuronic

acid is added by glucuronyl transferase I. The linkage-region tetrasaccharide is assembled

identically for both HS and CS chains. It is believed that the next glycosylation determines the

identity of the growing chain. In the case of HS, N-acetylglucosaminyl transferase I attaches an

N-acetylglucosamine a(1 -- 4) to the terminal glucuronic acid of the linkage tetrasaccharide.

Chain elongation is controlled by two enzymes: glucuronyl transferase II and N-

acetylglucosaminyl transferase II. The HS chain is elongated through alternating 03(1-4)

glucuronic acid and a(1 -4) N-acetylglucosamine monosaccharides. A number of other

enzymes act on the elongating polysaccharide chain to elaborate it into the final complex,

heterogeneous structure. This process is not random and it appears that the actions of each

enzyme generate sequence-specific binding sites for later enzymes. The initial modification is

by N-acetylglucosamine deacetylase/N-sulfotransferase, which cleaves some of the N-acetyl

groups and replaces them with N-sulfonates. Unmodified glucosamines are likely the result of

"missed" sulfations by this enzyme. Following the N-deacetylase/sulfotransferase, a C5-

glucuronyl epimerase acts to introduce iduronic acids to the chain. Iduronic acid is only

incorporated via this method, as no iduronyl-UDP or iduronyl transferases are known to exist in

nature. Finally, a group of O-sulfotransferases act to add sulfates at the 2-OH of glucuronic acid



or iduronic acid, or at the 3- and 6-OH positions of the glucosamines; different enzymes catalyze

the sulfation of each sugar.

The variation in structure and sulfation patterns itself comes from the presence of

multiple isoforms of each of the basic sulfation enzymes, each with different substrate

specificity. In addition, the epimerase specificity seems to be strongly affected by the presence

of O-sulfates both on the glucuronic acid and on neighboring glucosamines. Likewise, the

specificity of some sulfotransferase enzymes is influenced by both the uronic acid

stereochemistry and the existing sulfation patterns. This complex and, as yet, incompletely

understood biosynthetic pathway gives rise to the incredible diversity of HLGAG structures, and

allows the assembly of specific binding sites for protein interactions.

1.4 Heparin-Protein Interactions

Heparin and HS sequences have been shown to interact with a range of protein targets

fulfilling diverse biological functions.(5-9, 13, 35, 36) Heparin binding sites on proteins are

characterized by collections of basic residues in shallow channels on the surface of the proteins.

Early work suggested heparin consensus binding sequences of XBBXBX and XBBBXXBX

(where B is a basic amino acid and X is a hydrophobic residue).(16) Subsequent work showed

many heparin-binding proteins do not possess these motifs-instead, binding sites are assembled

from spatially-arranged basic residues that are distant in primary sequence.(16)

Proteins can bind heparin in non-specific modes defined primarily by ionic interactions,

with regions of positively-charged basic amino acids interacting with heparin as a polyanion.

Several studies, particularly of the thrombin-heparin binding domain,(37) have shown that some

proteins will strongly bind other polymers carrying high negative charge such as sulfated(38, 39)



or phosphorylated(40, 41) derivatives of polyglucose, sulfated sucrose derivatives,(42) and even

non-carbohydrate polyanions such as polyacrylic acids.(43) Other interactions between

HLGAGs and protein binding sites are highly specific, with proteins recognizing only particular

sulfation patterns and uronic acid stereochemistry and conformation.

Thrombin/Antithrombin and the coagulation cascade

The clinical effectiveness of heparin as an anticoagulant derives from its role in the

activation of antithrombin III (ATIII), a key player in the coagulation cascade.(14, 15) The

coagulation cascade requires sequential activation of a number of proteins.(2, 7, 9) Factor Xa is

a serine protease that converts pro-thrombin into active thrombin, which is itself a protease that

converts fibrinogen into fibrin monomers that crosslink into insoluble fibers within the clot. The

protein antithrombin III (ATIII) inhibits both proteases in a heparin-dependant manner. Binding

to short heparin structures triggers a conformational change that allows ATIII to inhibit the

action of factor Xa. Binding to longer sequences allows the formation of a ternary ATIII-

heparin-thrombin complex where ATIII inhibits the action of thrombin. Once brought into close

proximity by the templating of the heparin strand, ATII binds to and inhibits thrombin with

2000-fold greater efficiency than in the absence of heparin. The heparin strand can be released

back into circulation, leaving the inhibitor-protease complex intact.(44, 45)

ATIII binds with high affinity to a specific pentasaccharide sequence (Figure 1-6),

initially identified through the chemical synthesis of several HLGAG structures.(46) A crystal

structure of ATIII bound to this synthetic pentasaccharide confirmed the specific interaction of

the protein to this ligand.(45) Binding to this pentasaccharide causes a conformational change

that increases ATIII's affinity for factor Xa, but not towards thrombin. Much longer sequences



(at least 15-16 saccharides) are required to initiate thrombin inhibition.(39, 47) A recent crystal

structure of a thrombin-ATIII-heparin mimetic complex(48) confirmed that this requirement

relates to the template-driven association of these two proteins by one heparin strand. ATIII

binds specifically to the pentasaccharide, while thrombin binds non-specifically to a length of

heparin carrying high charge.(37) In the case of many synthetic therapeutics, a highly sulfated or

phosphorylated polyglucose structure is substituted for heparin.(47) A flexible spacer region 56

atoms in length between the pentasaccharide and the charged region gave optimal binding.

)3

)R
Figure 1-6. The high affinity ATIII binding sequence. R = the continuation of the HLGAG chain.

The pentasaccharide-ATIII crystal structure shows some interesting features of the

specific interaction.(45) The helix is "overwound," resulting in a bend which maximizes van der

Waals contact. Further, the iduronic acid moiety is bound in the 2So conformation.(25, 29)

Binding studies with synthetic compounds locking the iduronic acid ring in either the 1C4 or 2So

conformation confirm that this conformation is required for maximal binding.(30, 31) Finally,

many interactions are evident between the 3-O-sulfate and the protein, indicating a key role in

binding for this moiety. Structure-function studies have confirmed that this modification is

necessary for binding,(44, 49) and its addition to heparin strands is the key biosynthetic event

that creates the ATIII binding site.(50, 51)



Fibroblast growth factor

Another extremely well-studied HLGAG interaction is with the acidic (FGF-1) and basic

(FGF-2) fibroblast growth factors.(2, 7, 9, 13) The fibroblast growth factors are a set of more

than twenty related proteins involved in intercellular signaling, regulating cell differentiation and

proliferation and expressed primarily during embryonic development.(52) The binding of FGFs

to receptors (FGFR) on the cell surface triggers changes in gene expression mediated through a

cytosolic tyrosine kinase domain on the FGFR proteins. The binding of HLGAGs to FGF

proteins potentiates their activities, and increases binding affinity for their receptors by a hundred

fold or more.

Several crystal structures of FGF co-crystallized with HLGAG structures have been

reported.(53-56) Evidence from these structures indicates that a single HLGAG chain can bridge

two FGF-1-FGFR interactions in a 2:2:1 FGF-1:FGFR:HS complex, while FGF-2 forms a 2:2:2

FGF-2:FGFR:HS complex.(57) The HS sequences associated with FGF proteins in the crystal

structures were made up of the standard heparin disaccharide repeat [IdoA2S-GlcNS6S], (Figure

1-2) where n=2-7. Tetra and hexasaccharides will bind FGF-1 and FGF-2 with high affinity, but

at least an octasaccharide is required to form the FGF-FGFR complexes. The crystal structures

generally show the iduronic acid residues in the 2So conformation, though NMR evidence

suggests that the iduronic acid in heparin structures bound to FGF may exist in either the 1C4 or

2So conformations and interconvert between the two.(58)

The FGF-2-HS-FGFR complex is thought to form near the non-reducing end of HS

chains.(59) One FGF-2 and one FGFR bind, mediated by a single HS chain in a 1:1:1 complex.

Two of these units then associate, forming a 2:2:2 complex. In proposed models of FGF-1-

FGFR complex formation, the apparent 2:2:1 ratio is invoked to explain why FGF binding of



short HLGAG sequences does not allow complex formation-two FGFs must bind to a dimer of

FGFR proteins, requiring HLGAG chains long enough to simultaneously bind two FGF

molecules. (57)

While most crystal structures show FGF binding to an extended disaccharide repeat,

evidence exists that FGF and FGFR have varying specificities for different HS structures. For

example, while a decasaccharide of this repeat is also the minimum length necessary for

biological activity, shorter sequences prepared synthetically have been shown to activate the

complex in vitro as well.(60) Studies involving tissue-derived HS fractions have shown

markedly larger increases in complex formation than treatment with heparin preparations,

indicating tissue and protein related differences in the specificity of FGF family members for

various HLGAG structures. Binding specificity has been hypothesized to relate closely to van

der Waals contact between the protein and HLGAG chains, not simply ionic interactions, and

specific binding is associated with a formation of a "kink" in the helical heparin secondary

structure.(28)

Virus entry into cells

Heparan sulfate chains in the extracellular matrix have been implicated in the initial

attachment of a number of viruses to potential host cells.(8, 9, 35, 61) The initial

recognition/binding step often results from the interaction of a viral coat protein and a ligand on

the surface of the target cell. Heparan sulfate is found on the surface of most mammalian cells

and the specific sulfation patterns are expressed in a tissue specific manner.(3, 10)

Unsurprisingly, it is a common ligand for recognition and binding of targets by virus particles.

Heparan sulfate has been implicated in the binding and cell entry in a wide range of pathogens,



including herpes simplex virus (HSV), dengue virus, human immunodeficiency virus, Epstein-

Barr virus, cytomegalovirus, vaccinia virus, hepatitis C, human papillomavirus and others,(61) as

well as non-viral pathogens such as the malaria parasite Plasmodium falciparum.(9, 62)

The infection of cells by the herpes simplex virus types 1 and 2 (HSV- 1 and HSV-2) is a

particularly well characterized interaction involving the HS-binding event.(63, 64) Initial

contact and cell binding is facilitated by two viral coat proteins, gB and gC. These proteins bind

to cell-surface HS and greatly enhance infectivity, but are not required for infection. Deletion of

gC results in a 10-fold lower infectivity. Deletion of gB eliminates infectivity, but only because

it plays a role in later entry events-elimination of the HS binding domain also reduces but does

not eliminate infectivity. The identity and specificity of the HS sequences bound by gB and gC

are not yet known, but appear to differ for each protein and between HSV-1 and HSV-2. The

key HS-binding event for cell entry is the interaction with another coat protein, gD, and a

specific HS octasaccharide sequence.(65-67) As in a number of other heparin-protein

interactions, the action of the 3-O-sulfotransferase that adds the reducing-end 3-O-sulfate is key

to the generation of a tight-binding sequence.(67)

*H3N

Figure 1-7. HSV-binding heparin octasaccharide sequence involved in viral cell entry, UA-GlcNS-IdoUA2S-
GlcNAc-UA2S-GlcNS-IdoUA2S-GlcNH 23S6S. Counter ions are typically sodium. The stereochemistry of two of
the uronic acids is unknown due to artifacts of the sequencing procedure.(66)

HS-binding also plays several roles in human immunodeficiency virus infection.(9, 61,

68) Heparin binds the HIV coat protein gpl20, assisting in association and cell-entry of the

I



virus. T cells treated with heparinase showed substantially lower association with viral particles.

HS also binds the Tat protein, a factor released by HIV and believed to prime cells for infection.

It is speculated that HS binding is responsible for Tat protein entry into cells. The Dengue virus

has also been shown to interact with HS in a sequence specific manner,(69) as has the virus

responsible for foot and mouth disease.(70) It is clear that HS is a key player in a wide range of

infection processes. Consequently, heparin-like therapeutics may be valid anti-viral lead

compounds.

Chemokines, Annexins, and other interactions

HLGAGs have been shown to play key roles in the regulation of several other protein

systems. Chemokines are signaling proteins involved in many processes, particularly those

associated with inflammation and wound repair.(7, 9, 36) Many chemokines bind HLGAGs, and

these interactions seem to play a particular role in cell migration by maintaining chemokine

gradients and giving specific directionality to cell migration. Mutant chemokines with reduced

HLGAG binding ability were shown to be unable to initiate cell migration in vivo.(71) A

number of HS sequences that bind chemokines have been identified, and tend to consist of a

stretch of highly sulfated residues (6-12 sugars long, depending on the chemokine) separated by

a variable, N-acetylated linker region. Chemokine interactions can have important clinical

consequences as well: interaction of heparin with the chemokine platelet factor PF-4 can trigger

a loss of platelets. This interaction is the cause of heparin-induced thrombocytopenia, a

dangerous condition that can result from the administration of heparin as an anticoagulant.

Annexins are another family of HLGAG-binding proteins found bound to cell

membranes in a Ca+2-dependant manner and implicated in a range of cellular signaling



functions.(6, 9, 72) Heparin binds to annexin V by wrapping around the protein, making contact

with three separate heparin-binding domains.(72) This complex in turn plays a role in an

antithrombic (anticoagulant) array on the cell surface. Other characterized heparin-protein

interactions include binding to apolipoprotein E, a range of extracellular matrix proteins, and

numerous lipases and proteases in addition to antithrombin. The details of many HLGAG-

protein interactions are poorly understood, and the area remains one of active research.

1.5 The Chemical Synthesis of HLGAGs

The organic chemistry of carbohydrates

The synthesis of oligosaccharides and carbohydrate-containing natural products involves

many challenges particular to the molecules.(], 73-76) Synthesis of carbohydrates with well

defined connectivity and stereochemistry requires selective protection of 3-5 hydroxyls on each

sugar.(77) Through taking advantage of reactivity differences between the hydroxyls, such as

the primary hydroxyl versus the secondary hydroxyls, or the altered acidity of the anomeric

hydroxyl, one may generate a carbohydrate differentially protected at each position. Protecting

groups are often described as "permanent," groups to be removed only in the final stages of the

synthesis, and "temporary," those installed and removed during the selective protection of the

monosaccharides or used to block positions to be glycosylated when forming polysaccharides.

Further, one must plan how to assemble the molecule. Much of modern chemical

synthesis favors a convergent model, where the molecule is divided into fragments of

approximately equal size and synthetic complexity, and assembled in the end via a few block

couplings of these fragments. In carbohydrate chemistry, it is often more convenient and

practical to assemble the molecule in a linear fashion, adding mono- or disaccharide units onto a



growing chain similar to the method commonly employed in DNA and protein synthesis. This

construction may proceed in either direction. Glycosyl "donors," sugars with a reactive leaving

group at C1, may be added to the non-reducing end. Removing a temporary protecting group

from the product will generate a new glycosyl "acceptor," a carbohydrate with a free hydroxyl

that can react with another donor. Alternatively, monosaccharide acceptors may be reacted with

a long-chain donor, and a temporary protecting group removed from Cl at each stage to generate

a new donor.

Challenges ofHLGAG synthesis

selective installation
of a glycosidic linkage
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three orthogonal N-protecting protecting group

groups required for free OH

Figure 1-8. Challenges in the synthesis of HLGAGs.

The synthesis of HLGAGs in particular, though an active area of research for over twenty

years, remains a daunting task with many synthetic challenges to overcome.(5, 19, 46, 47, 78,

79) Figure 1-8 illustrates the features of a HLGAG of particular interest to the synthetic chemist.

While HLGAGs are linear polymers, they possess an additional level of complexity in the wide

variety of sulfation patterns possible. Any synthesis of HLGAGs must include two types of

orthogonally-cleavable permanent protecting groups--one to mask free hydroxyls, and one that

blocks positions to be sulfated. Further, syntheses must incorporate three orthogonal degrees of



nitrogen protection, to allow for the installation of N-sulfonates, N-acetates, and unmodified

amines in the final structures. This problem had not yet been addressed in any published

synthesis of HLGAGs at the time of the work described in Chapters 2 and 3.

Additional constraints on the choice of protecting groups in HLGAG synthesis are added

by the need to control the stereochemistry of each glycosyl coupling. All the uronic acid

residues possess 1,2-trans stereochemistry, meaning use of a "participating" ester or carbonate

protecting group on the 2-OH should allow selective installation of this geometry via anchimeric

assistance. However, iduronic acids in particular are prone to the formation of stable orthoesters

rather than the desired glycosyl linkage (Figure 1-9).(80-83) More difficult still is the selective

installation of the glucosamine a-linkage. Allowing a 1,2-cis linkage requires the use of a non-

participating protecting group at C2, drastically restricting the chemistries available. All

HLGAG syntheses to date have used an azide at this position. Next, careful choice of donor

chemistry, acceptor conformation, or other reaction conditions must be applied to favor the a-

isomer-while the anomeric effect generally favors the axial isomer, the production of any

quantity of the f3 isomer is likely to mean a difficult separation and loss of material at each

coupling step.

0 OR 0 OR
- OX R' OH , -OX O

RO 0
OR O0 O OR O+ OR'
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Figure 1-9. Orthoester linkages.

Finally, the order of assembly must be carefully chosen. HLGAG chains could be

assembled by alternate couplings of uronic acid and glucosamine glycosyl donors, or through

disaccharide "monomers" with either the uronic acid or glucosamine at the reducing end. Block

couplings between larger precursors are also possible, and as in any carbohydrate synthesis, one



may define the growing carbohydrate chain as a glycosyl donor or acceptor. Each of these

choices adds constraints to the type of temporary protecting groups used, and the type of donor

chemistry employed.

Synthesis ofglucosamine donors and acceptors

A large body of work on the synthesis of differentially protected derivatives of

glucosamine exists,(84) and the basic scheme of glucosamine monosaccharide donors and

acceptors used in heparin synthesis has been largely established. For any synthesis of

glucosamine derivatives for the general synthesis of glycosaminoglycans, it is desirable to be

able to produce the glycosyl donors and acceptors in large quantity from readily available

starting materials. Glucose 2-azides have long been the derivative of choice for heparin

synthesis, providing a non-participating amine equivalent that is stable to a wide range of

chemistries, but may itself be selectively reacted to the amine though a range of specialized

chemistries.(85) Azide-masked glucosamine trichloroacetimidate donors also have the

advantage of providing good a-selectivity, especially in coupling to iduronic acid

monosaccharide(86) and disaccharide acceptors, and to conformationally "locked" glucuronic

acid derivatives.(83) Other 2-azidoglucose donor strategies have been employed, including

fluoro(87) and other halo(46) donors, and recently the free hydroxyl,(88) with variable degrees

of success at a-selectivity.

Glucosamine azide can be readily prepared in large quantity through published

procedures,(89) and a recent report outlined the synthesis of differentially protected glucose-

azide derivatives for HLGAG synthesis from common intermediates.(83) Here, as in most

heparin syntheses,(5, 19, 47, 79) acetates were used as the permanent protecting group to block



sites of sulfation, and benzyl ethers were used as the permanent protecting group for free

hydroxyls. Glucosamine (1-1) is converted to the azide and the product peracetylated. The

anomeric acetate is selectively cleaved and the anomeric positon protected with TBDMS ether to

give 1-2. Cleavage of the acetates followed by installation of a 4,6-benzylidine acetal gave 1-3,

the key common intermediate. The compound could be acetylated or reacted to the benzyl ether

to give 1-4 and 1-5, respectively. The benzylidene acetal could be cleaved and the 6-OH

selectively esterified to yield the 6-acetyl compounds 1-6 and 1-7, or the benzylidene could be

reductively ring-opened to give 1-8 and 1-9. These compounds were suitable as 4-OH glycosyl

acceptors, or could be blocked with a temporary protecting group at C4 and the anomeric

TBDMS ether cleaved and reacted to a trichloroacetimidate donor. Variations on this synthetic

plan could produce glucosamine azide donors/acceptors with almost any protecting groups or

donor chemistry desired.

OH 1) TfN3, CuSO 4  OAc 1) NaOMe
HO 0o 2) Ac20, DMAP 0 2) PhCh(OMe) 2  Ph O~ •O

HO. AcO O O__0
OH 3) NH3/MeOH AcOOTBDMS HO SOTBDM

NH 3CI 4) TBDMSCI, Im. N3 N3

1-1 1-2 1-3

Ac20O, DMAP Ph-O TFA, then OR'
1-3 or BnBr, Ag20 O OTBDMS AcCI, lutidine HO

1-3 OTBDMS HO__
N3  or TES, TFA RO OTBDMS

N3
1-4,R=Ac 1-6, R = Ac, R' = Ac
1-5, R = Bn 1-7, R = Bn, R'= Ac

1-8, R = Ac, R' = Bn
1-9, R = Bn, R' = Bn

Scheme 1-1. Preparation of fully differentiated glucosamine derivatives.



Synthesis of glucuronic and iduronic acid donors and acceptors

One of the most difficult problems in heparin synthesis has long been the synthesis of

fully-differentiated uronic acid donors and acceptors. Uronic acids have the additional

complication of the 6-carboxylic acid moiety, which changes the reactivity and conformation of

these monosaccharides relative to more commonly used hexoses. A wide range of chemistries

have been reported in the synthesis of uronic acid derivatives. Glucuronic acid synthons are

readily prepared from oxidation of glucose derivatives.(90, 91) Iduronic acid is more of a

challenge, as idose and iduronic acid are not readily available as starting materials.

Nevertheless, many syntheses of iduronic acid and idose derivatives have been reported, starting

from derivatives of glucose,(92-97), trehalose,(98) glucuronic acid 3,6 lactone,(99-102)

glucuronic acid through epimerization,(81, 103), glucuronic acid through radical

bromination,(104, 105) A4-uronic acids,(106) exo-glucals,(107) xylose,(108)

glycuronolactams,(109) and uronic acid glycals.(110)

Some specific approaches to the preparation of iduronic acid are shown in Scheme 1-2.

One of the earliest reported methods utilizes substituted glucofuranose 1-10.(92, 93) Treatment

with potassium acetate in acetic anhydride effected the displacement of both tosyl groups, with

inversion at C5. Cleavage of the acetates, selective primary protection as a p-methoxybenzyl

ether and hydrolysis of the isopropylidene gave substituted idose 1-11. Further manipulation,

finishing with selective oxidation of the primary OH with 02 and Pt catalyst and treatment with

diazomethane gave 1-12. A similar inversion method started with the 6,3-glucuronolactone

derivative 1-13.(99) The 5-OH was converted to the tosylate, the lactone reduced with LiAlH4,

the resultant diol protected with benzyl ethers and the 5-OH inverted by treatment with KOAc.

The idose derivative 1-14 that results can be converted into idofuranose derivatives in a similar



manner to the previous case. A later refinement(100) greatly simplified the preparation of idose

derivatives by reacting the 5-triflate derivative of 1-13 with sodium trifluoroacetate. The

trifluoroacetyl group is lost upon workup, to yield 1-15 directly in good yield, with little

cleavage of the lactone. This chemistry was later applied to the glucuronic furanose derivative 1-

16, yielding the iduronic furanose 1-17. Another C5 inversion method was described starting

from 1-18.(111) Treatment with KOAc in the presence of a crown ether selectively reacted the

primary mesylate; treatment with potassium t-butoxide cleaved the ester and caused elimination

of the second mesylate to form the epoxide 1-19. Acidic hydrolysis opens the epoxide with

retention of C5 and cleaves the isopropylidene to give 3-O-benzyl idose 1-20. These last two

chemistries have in general been the preferred methods for the production of iduronic derivatives

in the literature.(81, 102, 112-115)
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Scheme 1-2. Approaches to the preparation of ido-configured sugars.

Iduronic acid glycosyl donors were prepared from 1-17 (Scheme 1-3). Hydrolysis of the

isopropylidene followed by peracetylation yielded a mixture of both anomers of both the

furanose and pyranose sugars. The desired a-pyranose was isolated, and converted into the

orthoester 1-21.(81) Both this compound and the related anomeric bromide 1-22(116) were used

as iduronic glycosyl donors. Refinements and generalization of this chemistry allowed

Ts
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1-10

0

OH0
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H+ H



preparation of a range of fully-differentiated iduronic glycosyl donors, including

trichloroacetimidates,(112) thiosugars, fluorosugars, and n-pentenyl glycosides from 1-19.(113)

Br HN
MeO C4Bn OBn ý'CC13 OBn

MCAO OAc MeO2C HO MeO2c- OSR
OR OAc OR OAc

Steps Steps1-22
1-17 1-19 _

S OBn

MeO2C 0.O OBn OBn

MCAO O OCH3 MeO2C; '  MeO2,C~ O

1-21 OR OAc OR OAc

R = MCA or Lev, R' = Et or Ph

Scheme 1-3. Synthesis of iduronic acid glycosyl donors.

By late 1990's, successful synthesis of ATIII binding pentasaccharides(46) had rekindled

interest in developing an efficient and inexpensive procedure for the production of iduronic

synthons, and a host of new methods appeared in the literature. Preparation of uronic acid

donors from the A4-uronic acid( 06, 117) 1-23 (Scheme 1-4) preceded by protection of the two

free hydroxyls (several differentially protected derivatives were used) followed by NBS

hydrobromination and isolation of the major product 1-24. This compound was closed to the

epoxide 1-25 which could be reductively opened with BH3*Et20 to glucuronic derivatives (1-26),

or rearranged to the 4-ulose 1-27 (as well as contaminating 5-ulose) that could be reduced with

NaBH 4 to give the ido derivatives 1-28. This methodology allows for a greater variability in the

protection scheme, but suffers from multiple steps that give mixtures of isomeric products.

Another route converts exo-glycals of the form 1-29 to ido-configured sugars (1-30) using

BH 3-Me2S or BH 3.THF. The products were predominantly ido (4:1 as long as R was not a bulky

group such as TBDMS), and could be separated from the contaminating gluco products. Still

other routes produce idose from xylose,(108) 5-uloses of open chain glucose,(94)

glyconolactones,(109) and glucuronic acid glycals,(110) and unprotected iduronic acid from



trehalose.(98) A recent report outlines a short synthesis of fully-differentiated glucuronic and

iduronic thiosugars via an aldol condensation of protected aldehydes and silyl enol ethers.( 18)

All of these routes to idose and iduronic derivatives also suffer from the need to separate

diastereomeric products at one or more steps.

MeO 2C OBn BrCO Me CO Me MeO2C
NIBS RO OBn Ag,O O OBn BH3 Et20 O

OHOR OR OR
OR

1-23 1-24 1-25 1-26

Sc(OTf)N
Ac OBn

MeO R.0 NaBH4  0 MeO2

BH3 Me2S OR HO OR
orRO O BHTHF HO OBn 1-27 1-28

BnO OMe
R'O OMe RO OR'

1-29 1-30
4:1 ido:gluco

Scheme 1-4. Other methods for the preparation of iduronic synthons.

Two recent reports outline short, highly selective syntheses of iduronic acid derivatives

staring from diacetone glucose (Scheme 1-5).(95, 96) In the first, (95) commercially available

diacetone glucose (1-31) was converted to the 6-Br derivative 1-32 by reaction with PPh 3 and

NBS. Treatment with the hindered base DBU created a compound with an exocyclic double

bond (1-33); hydroboration with BH 3-THF produced exclusively the ido-configured derivative 1-

34 in high (90%) yield. Acidic hydrolysis of the isopropylidenes gives L-idose. In the second

report, 1-31 was converted to its benzyl ether, and the 5,6-isopropylidene cleaved. The diol was

converted to the aldehyde 1-35 by treatment with NaIO 4, and this aldehyde was reacted with a

number of C-nucleophiles. The methyl ester equivalent LiC(SPh)3 gave a high yield (>90%) of

n



the ido product 1-36 with none of the gluco isomer detected, and could be converted to the

methyl ester 1-37 in near quantitative yield.

BH3 THF;
NBS, PPh3  O DBU 0 0 H202.0 "0 -

0 0

0 -b4
1-31 1-32 1-33 1-34

SPh MeO
H PhS SPh MOUO

OC OBn CuO, CuCI2O LiC(SPH)3  HO OBn MeOH/H 20/CH2C 2  HO OBn0 100

1-35 1-36 1-37

Scheme 1-5. Synthesis of idose and iduronic acid derivatives from diacetone glucose.

Recent attempts to control the stereoselectivity of the formation of the glucosamine a-

linkage have focused on the use of acceptor stereochemistry to control the outcome of the

coupling.(115, 119) It has long been known that couplings of 2-azido trichloroacetimidates to

the 4-OH of iduronic acid acceptors produced exclusively the a-linkage. Reasoning this

selectivity was being influenced by acceptor conformation, Seeberger and coworkers prepared

the glucuronic acid derivative 1-38 by reaction of 3-O-benzyl glucuronic acid methyl ester with

the isopropylidene equivalent 2-methoxypropene. Compound 1-38 (Figure 1-10) is expected to

take an iduronic-like 1C4 conformation in solution, and could be coupled to a range of 2-

azidoglucose trichloroacetimidates and fluorides to give exclusively the a-linkage. The major

drawback to this synthon (and the related ido-compound 1-39) arose in the installation of the 1,2-

isopropylidene. The reaction with the lactol inevitably produces mixtures of the pyranose and

furanose forms, and of mixed, acyclic acetals that decompose upon workup. This feature led to

dr



variable and often low yields, especially for 1-38. Recent efforts to produce similarly locked

glucuronic and iduronic acceptors have been reported, using a 1,2-ethylidene installed by

reduction of a 2-O-acetyl anomeric bromide.(120) In this case, the problem of equilibrating

between pyranose and furanose forms is avoided. The results of other efforts to improve the

selectivity and yields of the 1,2-isopropylidene and the reaction of 1-38 and 1-39 to fully

differentiated uronic acid donors are described in detail in the next chapter.(121, 122)

MeO2COBn OBn

O MeO 2C o

OH OH 0

1-38 1-39

Figure 1-10. Conformationally locked uronic acid acceptors.

Synthesis of defined HLGAG sequences: the A TIII binding site and related oligosaccharides

The earliest work in the synthesis of defined HLGAG sequences centered on the

production of the high-affinity ATIII binding pentasaccharide. These efforts were undertaken

both as a validation of the structure assigned the binding sequence, and the start of a program to

develop synthetic anticoagulant drugs based on heparin.(46, 47) Application of previous work to

produce iduronic acid derivatives, development of new coupling procedures, and the first

schemes for deprotection and elaboration of HLGAG compounds were laid out in these

syntheses, and many of the procedures developed still see use today.

Early work to produce heparin-like disaccharides(92, 123) had produced both glucuronic

acid 3(1 -4) glucosamine and glucosamine a(1--4) glucuronic acid derivatives from similar

starting materials. These early routes used 1,2-gluco or glucurono epoxides as the glycosyl

donor, and installed the amine functionality by first forming a 2,3-epoxide and installing the



amine by aminolysis. The first sulfated heparin trisaccharide was prepared some years later by

the methods shown in Scheme 1-6.(81) The iduronic acid orthoester 1-21 was coupled with the

4-OH glucosamine acceptor 1-40 using 2,6-dimethylpyridinium perchlorate and the MCA

cleaved to give 1-41. Poor yields (40%) were obtained even with a four-fold excess of the

acceptor. This disaccharide could be coupled to the azido glucose bromo-sugar 1-42 in high

yield. The trisaccharide product 1-43 was elaborated by cleavage of acetates with sodium

hydroxide, reprotection of the carboxyl group with diazomethane, and sulfation of all free

hydroxyls with sulfur trioxide-trimethylamine complex in DMF. Removal of benzyl ethers and

reduction of the azide by Pd/C with H2 gas, followed by selective N-sulfation using sulfur

trioxide-trimethylamine in water at pH 9 also cleaved the methyl ester to give 1-44.
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Scheme 1-6. Early syntheses of a HLGAG trisaccharide.
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The first reported syntheses of the ATIII binding pentasaccharide by Sinay and

coworkers used the methods developed in the earlier reports (Scheme 1-7).(80, 124, 125) In the

first syntheses, the poly-N-sulfonate was prepared rather than the structure with one N-acetate at

the non-reducing end (Figure 1-6) to simplify the protocol. This variant was shown to bind

ATIII with high affinity as well. In order to install the glucosamine a-linkages selectively,

anomerically pure azido-glucosamine 1-bromides were prepared, and reacted with glucuronic

and iduronic acceptors under conditions to favor formation of the a-anomer. The reducing end

disaccharide 1-41 was prepared as previously described.(81) The glucuronic acid derivative 1-

45 was prepared from glucose, and reacted with the 1,6-anhydro-2-azido-glucose derivative 1-

46. The disaccharide product 1-47 was subjected to acidolysis in Ac20 followed by treatment

with titanium tetrabromide to give 1-48 in -40% yield. This disaccharide glycosyl donor was

condensed with 1-41 using silver triflate to give the tetrasaccharide 1-49 after removal of the

MCA protecting group. This tetrasaccharide was coupled with the azido-glucose anomeric

bromide 1-50 to give the protected pentasaccharide 1-51. Deprotection using the previously

described conditions gave the ATIII binding pentasaccharide 1-52.
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Scheme 1-7. Synthesis of an ATIII binding pentasaccharide.

An alternate method for assembly of the pentasaccharide is outlined in Scheme 1-8.(111)

In this synthesis, yields were improved by installation of the azides and oxidation to uronic acids

at the disaccharide stage. Initial disaccharide 1-53 was converted to the disaccharide 1-54 over

several steps; after protecting group manipulation of the NRE glucose, the epoxide was

selectively opened with azide as previously described.(92, 123) The NRE glucose was

selectively oxidized and the glucose azide converted to the bromosugar, giving disaccharide 1-

55, very similar to 1-48 in the prior synthesis with the only difference being the use of the

levonyl (lev) ester instead of MCA as a temporary protecting group. Similarly, idose-containing

disaccharide 1-56 was prepared and converted to 1-57 through selective oxidation and reaction to



the anomeric benzyl ether. These disaccharides were assembled as in the previous synthesis to

the corresponding tetrasaccharide and finally coupled with the same non-reducing end azido

glucose bromosugar to give a protected pentasaccharide.
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Scheme 1-8. Second of the ATIII binding pentasaccharide.

Later refinements to the initial synthesis improved yields and changed to the anomeric

methyl glycoside (rather than the free lactol revealed by the anomeric benzyl ether of the original

synthesis), but did not change the key methodological features.(125) Similar methods were

employed to produce variants of the ATIII structure with different sulfation patterns,(126-132)

and for variations on the synthesis with different starting materials.(133, 134)

The ATIII binding site containing the NRE N-acetyl moiety was synthesized using the

strategy shown in Scheme 1-9.(135) In this case, trisaccharide 1-58 was assembled analogously

to previous syntheses. The azide was reduced and converted to the N-acetate, and the

trisaccharide further modified to the trichloroacetimidate donor 1-59. Coupling to a RE

disaccharide and subsequent deprotection and elaboration produced the first synthetic ATIII

pentasaccharide with all the features of the natural product installed. The coupling of the

trisaccharide and RE disaccharide proceeded in poor yield, however, likely due to the presence



of the N-acetyl group.(136, 137) The trichloroacetimidate chemistry was later used to assemble

ATIII variants with 3-deoxy iduronic acid(138) and a 2,5-bridged iduronic acid simulating the

skew-boat 2So conformation.(30) These structures were used as probes in the binding

contribution from different iduronic acid conformations. Trichloroacetimidate donors were also

used in the synthesis of ATIII binding site fragments used for investigations into platelet

binding.(132, 139)
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Scheme 1-9. Synthesis of an ATIII binding pentasaccharide containing an N-acetyl group.

The synthetic pentasaccharides produced allowed detailed structure-function studies and

determination of the contribution to binding of each moiety within the molecule. The syntheses

allowed for the production of several constructs possessing the full ATIII activating/thrombin

inhibiting anticoagulant properties of heparin, some of which are now clinically used drugs.(39,

47, 140-148) These conjugates typically combined a synthetic ATIII binding pentasaccharide

domain to a charged, sulfated polyglucose region (the thrombin-binding domain) connected by a

flexible linker.

The total synthesis of ATIII paved the way for future synthetic work, providing schemes

for the preparation of monosaccharides and documenting the difficulties in HLGAG synthesis.

A critical observation in this early work(46) and subsequent syntheses(149) was that the

couplings of glucose-azide halo and trichloroacetimidate donors to iduronic acid derivatives

were highly a-selective, but couplings to the 4-OH of glucuronic derivatives produced a/p

mixtures.(125, 135, 150) Recent results have shown that the coupling to the 4-OH of iduronic



acid acceptors with glucose azide donors are not always a-selective.(82, 136) Block couplings

between glycosylated glucose azide trichloroacetimidates and iduronic acid terminated acceptors

show significant erosion of this selectivity.

Modular approaches to syntheses ofHLGAGs

Subsequent syntheses of HLGAGs began to move away from the iduronic

orthoester/glucose azide bromosugar strategy and convergent synthetic plan employed in the

original ATIII synthesis. In the production of heparin oligosaccharides related to the linkage

region of HS, Nillson, Westman and Svahn report use of uronate bromo-sugars and azido-

glucose thioglycosides as donors.(151, 152) The glucosamine a-linkage was installed

successfully with the thiosugar chemistry in good yields onto glucuronic acid acceptors, though

no comment was given as to anomeric selectivity. Reactivity problems were encountered with

glucuronic bromosugars: coupling to acceptors larger than a monosaccharide gave variable,

generally poor yields. Later work with glucuronyl trichloroacetimidates(153) allowed the

assembly of short, glucuronic acid containing HLGAG sequences with the glucuronic acid

3(1 -4) glucosamine linkage installed rapidly, though only in moderate (-50%) yield.

The first efforts in what could be called a "modular" synthetic strategy for HLGAGs were

in production of the FGF binding structure. The basic FGF binding structure is made of a

disaccharide repeat, and syntheses of FGF-binding structure have attempted to assemble the

structure by sequential glycosylations of protected disaccharides.(86, 154-159) The first strategy

devised used protected iduronic acid a(1 -4) azidoglucose trichloroacetimidate disaccharides

(Figure 1-11),(154-156) and formed the a-glucosamine linkages by taking advantage of the

known stereoselectivity of the coupling of azidoglucose donors and 4-OH iduronic acceptors. In



this and subsequent FGF syntheses, the permanent protecting group and deprotection scheme

used were the same as in the original ATIII synthesis: acetates mask sites to be sulfated, benzyl

ethers mask sites to be unmodified hydroxyls, and azides are transformed into sulfated amines.

In preparation of FGF binding structures, the "repeat" disaccharide is first coupled to a terminal

reducing end unit, either an iduronic acid monosaccharide or simple alcohol. The temporary

protecting group (levulinyl in this case) is removed, and the next disaccharide attached. The

final coupling is to the "cap" disaccharide. Though the couplings proceeded in moderate to good

yields with high selectivity, incorporation of glucuronate-containing disaccharides was

problematic as the contaminating P-coupled products produced would have to be separated after

each glycosylation. Consequently, only structures with a terminal non-reducing end glucuronic

acid were produced.

MeO 2C OAc
SOBn, NH

PMBO O 0 CCI
AcO N3

Cap disaccharide Repeat disaccharide

Figure 1-11. First synthetic strategy for FGF binding HLGAGS.

The next-generation strategy employed for the synthesis of FGF-binding structures

reversed the order of the disaccharide unit.(86, 157-159) In this case, disaccharides of the form

azidoglucose a(l -)4) iduronic acid were prepared (Figure 1-12). The disaccharides could be

prepared with the a-linkage with complete selectivity. Glucuronate-containing disaccharides

could presumably be synthesized as a mixture and separated from the 3-anomer on the protected

disaccharide stage, though no glucuronic building blocks have been reported as part of this

strategy. The protecting group on the 2 position was typically benzoate or pivaloate; these esters

have reduced electrophilicity at the carbonyl, and thus discourage orthoester formation. They



can, however, create problems with incomplete deprotection in the final stages of the synthesis.

Using this strategy, FGF binding tetra, hexa, and octasaccharides been prepared. Variants of this

strategy using 2-levulinyl esters as temporary protecting groups to mask sites that are to be free

hydroxyls in the final structure, and using 4,6-benzylidene as the temporary protecting group on

the azido glucose residues have been reported.
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Figure 1-12. Synthesis of FGF binding HLGAGS.

Seeberger and coworkers reported a detailed modular strategy for the synthesis of

HLGAGs, outlined in Figure 1-13. The key feature of this strategy is the production of

disaccharide units of an azidoglucose a(1--4) uronic acid structure from common intermediates.

The permanent protecting group strategy employed is very similar to previous routes, with O-

acetylated blocking sites to be sulfated, azides masking N-sulfonates, and benzyl ethers blocking

sites that will be unmodified hydroxyls. MCA esters are used as temporary protecting groups on

the C2 hydroxyl of uronic acids that are to be free hydroxyls in the final structure-these are

used to direct the 1,2-trans geometry of coupling reactions, then cleaved and replaced with

benzyl ethers on the growing HLGAG chain. TBDMS ethers were used as the temporary

protecting group on the 4-OH of the azidoglucose residues, and trichloroacetimidates were used

as the donors of choice. The question of nitrogen differentiation was not directly addressed in



this publication, but the ability to selectively reduce azides(85) should allow for conversion of

the azide to other masked amino groups on the disaccharide stage.

Selectively protected glucosamine derivatives (Scheme 1-1) were used as precursors for

4-O-TBMDS ether, 2-azido glucose trichloroacetimidates. These were coupled with the

glucuronic and iduronic acceptors 1-38 and 1-39. These couplings were shown to occur with

complete a-selectivity in high (70-90%) yields. Cleavage of the isopropylidene and

esterification with either acetate or MCA groups, selective removal of the anomeric ester, and

reaction to the trichloroacetimidate gave all disaccharide units proposed.
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Figure 1-13. Modular strategy for HLGAG synthesis utilizing azidoglucose a(1--4) uronic acid disaccharides.

The protected hexasaccharide 1-60, based on the ATIII binding structure, was selected as

a target for validation of this strategy. While several different tetrasaccharides were synthesized

in excellent (86-91%) yield, attempts to couple to the next disaccharide donor uniformly failed,

regardless of the protecting groups on the acceptor or the C2 protecting group on the iduronic

acid portion of the donor. It appeared that the formation of orthoesters or orthocarbonates was

more favorable than the coupling of the deactivated donor disaccharide with the hindered

tetrasaccharide acceptor--in the case of the C2 MCA protected disaccharide, a 30% yield of the

orthoester product 1-61 was isolated. The target hexasaccharide was synthesized through the



coupling of a trisaccharide donor terminated in an azidoglucose trichloroacetimidate and a 4-OH

iduronic acid terminated acceptor trisaccharide, themselves produced through the chemistry

outlined in the paper. The tetrasaccharides produced in the original synthetic plan were also

deprotected and sulfated using the strategy outlined in the original ATIII synthesis.(46) While

selectivities were excellent at every stage and yields were high for both the synthesis of the

disaccharide units and for the initial disaccharide plus disaccharide coupling, the failure of the

disaccharide donor to couple with a tetrasaccharide acceptor indicates a serious problem with

this strategy, and it is unclear whether the problem lay in the nature of the donor, the acceptor, or

both.

Several other modular synthesis proposals exist, and have generally focused on the

development of disaccharide moieties, with only a few syntheses of non-FGF structures reported.

Boons and coworkers have proposed a strategy based on a late-stage oxidation of the uronic acid

residues, incorporating 6-OH benzyl ether blocked glucose and idose, and 6-OH silyl ether

protected azido-glucosamines in the preparation of disaccharide units(87, 160, 161) (a similar

plan has also been presented by an unrelated group).(162) This synthetic plan depends on adding

a global, primary hydroxyl-selective oxidation step to the deprotection/elaboration scheme,

followed by removal of the silyl ethers or other protecting group from the 6-OH of the

glucosamine residues. The initial report on this strategy outlined the successful synthesis and

selective oxidation of unsulfated trisaccharide 1-62 and the monosulfated disaccharide 1-63.

Some difficulty was found with cleavage of the sulfate during oxidation-the pH had to be

carefully maintained below 10. Further, the yields of the oxidation and silyl ether cleavage were

low, only -65% per step in the case of 1-63. In the case of a HLGAG oligosaccharide, these low

yields could translate to incomplete oxidation or silyl ether cleavage. Later reports(160, 161)



show improved yields and alternate protecting strategies, but no syntheses larger than a

trisaccharide have yet been reported. Additionally, the question of a-selectivity in couplings to

glucosamine derivatives is not addressed. The azido glucose terminated donors described would

be expected to give anomeric mixtures upon coupling to the 4-OH of glucose and idose.
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OH HN HN
OSO- -0Ac'O 0 000

HO 00 HO

1-62 1-63

Figure 1-14. Modular synthesis of HLGAGs with a late-stage oxidation.

A very recent proposal for a modular strategy utilizes sequential glycosylations of

monosaccharide acceptors with a growing oligosaccharide chain terminated by a deactivated

donor group (Figure 1-15).(88) Uronic acid thio donors were chosen, which have the advantage

of being stable under most conditions, but become glycosyl donors when treated with strong

activators-thus eliminating the need for deprotection and conversion to a new donor after each

glycosylation. Glucose azide acceptors were used, protected as 1,6-anhydrosugars. These were

deprotected to the 6-acetate, 1-lactol at each step, and the lactols themselves used as the glycosyl

donors. The use of these low reactivity donors in couplings to the hindered 4-OH of uronic acids

allowed stereochemistry to be controlled thermodynamically, granting the a-linkage exclusively

for many donor-acceptor pairs. Significantly, this included most pairings with glucuronic

acceptors. This selectivity comes at the cost of yield in each step, with couplings typically only

producing 50-60% yields per step.
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Figure 1-15. Modular synthesis of HLGAGs using a monosaccharide acceptor, growing donor chain strategy.

The pentasaccharide 1-64 was assembled using this strategy, with excellent

stereoselectivity in each coupling, but with stepwise yields of <60% for all couplings but one.

Such low yields may be a barrier to application of this strategy for the production of larger

sequences, but the demonstration of thermodynamic control of formation of the a-glucosamine

linkages may well represent a general solution to this selectivity problem. The method also

benefits from a low number of monomers and minimization of deprotection/activation steps.

Nitrogen differentiation is not addressed--in this strategy, azides would have to be reduced and

deprotected after each glycosylation to provide access to structures other than poly-N-sulfonates.

Enzymatic semisynthesis ofHLGAGs

As an alternative to the total synthesis of HLGAGs, some efforts have been undertaken to

apply the natural biosynthetic enzymes to the synthesis of defined heparin sequences (Scheme

1-10).(51, 163, 164) Compound 1-65, a polyglucuronic acid/N-acetyl glucosamine resembling

the heparin backbone, was used as the starting material. Treatment of this polymer with NaOH



followed by sulfur trioxide-trimethylamine complex in water produced the poly N-sulfonated

compound 1-66.(163) In addition, the enzyme N-deacetylase-N-sulfotransferase II was used to

produce the predominantly N-sulfonated structure with 30% of the initial N-acetates

remaining.(51) For this step and subsequent sulfations, the natural sulfate donor 3'-

phosphoadenine-5'-phosphosulfate (PAPS) was used. The polymers were subjected to partial

cleavage with heparinitase I, and the hexasaccharide 1-67 purified to homogeneity from the

mixtures of products. Sequential treatment of 1-67 by C5-epimerase and 2-O-sulfotransferase I,

6-O-sulfotransferases I and IIa, A-4,5-gycuronidase, and 3-O-sulfotransferase I elaborated the

hexasaccharide into the ATIII binding pentasaccharide 1-68. Purity and identity of this final

product was established by standard sequencing methods, use of radioactive sulfur in sulfation

steps, and binding assays with ATIII. While an elegant use of enzymatic methods to produce a

fully elaborated ATIII binding-pentasaccharide, the method suffers from the need to know the

detailed substrate specificity of each enzyme to be used. As much of the efforts in producing

defined heparin sequences are geared towards producing substrates to learn more about

biosynthesis enzyme specificity and to produce defined sequences to confirm protein binding

specificity, these methods are unlikely to displace purely chemical synthesis of defined

HLGAGs.
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Scheme 1-10. Chemoenzymatic preparation of heparin chains containing the high-affinity ATIII binding
pentasaccharide sequence.



1.6 Conclusions

HLGAGs are a complex class of biopolymers with a broad range of biological

interactions, key players in many signaling and recognition pathways, and important as anti-

coagulant therapeutics. While the total syntheses of several defined sequences have been

achieved, a truly general, modular synthesis of any arbitrary heparin sequence remains elusive.

Many strategies have been attempted, but no general synthetic strategy exists that allows

production of HLGAG chains longer than tetrasaccharides. The synthesis of these

oligosaccharides remains an important goal, as the potential benefits of access to any heparin

structure for the biochemical and pharmacological study of heparin derivatives would be

immense. A general, modular strategy could also be extended to solid-phase and automated

synthesis methods,(]65, 166) allowing access to defined heparin oligosaccharides with the same

ease we now produce synthetic peptides and nucleic acids.
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Chapter 2

The Synthesis of Fully Differentiated Uronic Acid Monosaccharide Building

Blocks for the Synthesis of Heparin-like Glycosaminoglycans



2.1 Introduction

Glycosaminoglycan synthesis(1-5) requires large quantities of differentially protected

uronic acid and glucosamine derivatives, necessitating concise and efficient methods for the

production of these synthons. In particular, much effort has been expended in the development

of uronic acid synthons and methodology for the formation of the glucosamine a(l -4) uronic

acid bond with high anomeric selectivity. Since iduronic acid itself is not commercially

available, syntheses of iduronic acid derivatives from a variety of starting materials, including

glucose,(6-11) glycals,(12) and glucuronic acid,(13-19) and other starting materials(20-24) have

been developed. While L-idose is very costly, rendering it an undesirable starting material,

syntheses using other starting materials require the inversion of the C-5 stereocenter on a D-gluco

sugar. Few methods reported for this inversion have realized full selectivity for the desired

configuration.(9, 10) Syntheses from idose to procure iduronic acid building blocks used in the

synthesis of large heparin structures have been reported, but remain lengthy and involve several

steps that produce multiple products.(25) Methods for the completely selective conversion of 5-

aldopentoses to iduronic acid derivatives(1 0) and for the selective silylation of the anomeric

hydroxyl of iduronic acids(26) have been described, but have not been incorporated into the

synthesis of iduronic acid monosaccharide building blocks.

OBn
Me0 2C 0

OH 0O

2-1 2-2

Figure 2-1. Uronic acid acceptors for the synthesis of HLGAGs.

Differentially protected uronic acids 2-1 and 2-2 (Figure 2-1) are key building blocks in

the modular synthesis ofheparin.(27, 28) The 1,2-isopropylidene group has been shown to lock

0



2-2 in the IC4 conformation naturally taken by iduronic derivatives in solution, forcing the C4

hydroxyl into an axial position. Glycosylation of this axial hydroxyl group with C2 azido-

protected glucosamine trichloroacetimidates resulted in the formation of the glycosidic bond

with complete a-selectivity for both 2-1 and 2-2.(28) The syntheses of 2-1 and 2-2 previously

described relied on the interconversion of the furanose and pyranose forms of the sugars,

resulting in a mixture of products and variable yields of the desired compound, particularly for 2-

2.(28)

Glycals are versatile intermediates in the synthesis of oligosaccharides and other natural

products.(29) The challenge of differential protection of carbohydrates is significantly simplified

in glycals as only three, rather than five, hydroxyl groups need to be distinguished. Glycals have

previously served as starting materials for the synthesis of differentiated glucuronic acid building

blocks, important synthons for the modular assembly of glycosaminoglycans,(12) though

syntheses of large GAG structures have not yet involved glycals in the production of glucuronic

acid monomers. Direct conversion of a protected glycal to the 1,2- isopropylidene-a-glycoside

would avoid the problem of furanose-pyranose conversion and potentially provide more

convenient access to 2-2. The reaction of glycals, enol ethers, or enol ether epoxides to

isopropylidene-protected diols has not been previously described.

This chapter outlines a short synthetic route to iduronic acid building blocks through the

conversion of diacetone glucose to the key intermediate methyl 3-O-benzyl-1,2-O-

isopropylidene-a-L-idopyranosiduronate 2-1. This iduronic acid derivative can serve as a

glycosyl acceptor or can be readily converted to fully differentiated iduronic acid

trichloroacetimidate glycosyl donors. The synthesis described incorporates a number of past

chemistries through improved and simplified procedures, and requires only a few purification



steps. Further, the development of a new reaction for the conversion of glycals to 1,2-

isopropylidenes is described, and applied to the synthesis of 2-2.

2.2 Experimental

Materials and Methods. All commercial materials were used without purification, unless

otherwise noted. CH 2C12, THF, and diethyl ether were passed through neutral alumina columns

prior to use. Toluene was passed through neutral alumina and copper (II) oxide columns before

use. Methanol and DMF were purchased anhydrous and used without further purification.

Analytical thin-layer chromatography was performed on E. Merck silica gel 60 F254 plate

(<0.25 mm). Compounds were visualized by cerium sulfate-ammonium molybdate stain and

heating. Liquid chromatography was performed using forced flow of the indicated solvent on

silica (230-400 Mesh).

3-O-benzyl-1,2-isopropylidine-a-D-glucofuranoside (2-4). Commercially-available diacetone

glucose 2-3 (16.6 g, 63.8 mmol) was dissolved in THF (160 mL) and NaH (60% in mineral oil)

(3.1 g, 77 mmol) was added in portions. After evolution of hydrogen ceased,

tetrabutylammonium iodide (160 mg, 0.43 mmol) and benzyl bromide (8 mL, 67.2 mmol) were

added and the mixture stirred for 14 h at room temperature. Water was added slowly to the

reaction mixture and the organic layer evaporated under reduced pressure. The aqueous phase

was extracted with ethyl acetate (3 x 250 mL) and the organic phases combined and dried over

MgSO 4, filtered through a plug of silica, and the solvent removed under reduced pressure.

Aqueous acetic acid (66%, 100 mL) was added to the resulting oil and stirred 16 h at

room temperature. The reaction mixture was evaporated under reduced pressure and the residue

dissolved in CH 2C12 and washed with saturated aq. NaHCO 3. The aqueous phase was extracted



with CH 2C12 (2 x 250 mL) and the combined organic phases dried over MgSO 4 and the solvent

removed under reduced pressure. Flash silica gel column chromatography gel (hexanes-ethyl

acetate 9:1-1:1) yielded 2-4 (17.8 g, 57.4 mmol, 90%). Spectra were consistent with previously

reported data.(30, 31)

Methyl 3-O-benzyl-1,2-isopropylidene-p-L-idofuranosiduronate (2-5). To a suspension of

silica gel (150 g) in CH 2C12 (1.2 L) was added a solution of NaIO 4 (16.12 g, 74.5 mmol) in water

(100 mL). The suspension was stirred vigorously for 30 minutes, followed by addition of a

solution of 2-4 (17.8 g, 57.3 mmol) in CH 2C12 (200 mL). The reaction was stirred for 1.5 h,

followed by filtration through Celite and concentration under reduced pressure. The residue was

dried under vacuum over P20 5 and used without further purification.

To a flame-dried three-necked flask was added tris(phenylthio)orthoformate (23.4 g, 68.6

mmol), followed by THF (110 mL). The reaction vessel was cooled to -78 °C and n-butyl

lithium (1.6 M in hexanes, 39.4 mL, 63 mmol) was added dropwise. The bright yellow solution

was allowed to warm slowly to -50 OC over 1 h, then cooled to -78 °C and stirred for 30 minutes.

Crude aldehyde 2-6 from the previous step (-57.3 mmol) was dissolved in THF (160 mL) and

added dropwise via cannula to the reaction flask over 15 min. The reaction was stirred at -78 'C

for 1 h, allowed to warm to room temperature over 30 min, then quenched with saturated

aqueous NH4 Cl (500 mL). The aqueous phase was extracted with EtOAc (3 x 500 mL), and the

combined organic phases were dried over MgSO 4, filtered, concentrated under reduced pressure,

and dried under vacuum. The crude product was used without further purification.

To CuC12 (46.9 g, 275 mmol) and CuO (79.95 g, 114.6 mmol) suspended in

methanol:water (12:1, 650 mL) was added crude material from the previous step in CH 2C12 (200

mL). The reaction was stirred at ambient temperature for 5 min and then the solvent was



evaporated under reduced pressure with gentle heat. The resulting green-white solid was

dissolved in EtOAc (1 L) and washed with 1 N HCI (2 x 500 mL), brine (2 x 500 mL), and

saturated aqueous NaHCO 3 (500 mL). The combined organic layers were dried over MgSO 4,

filtered, concentrated under reduced pressure, and dried under vacuum for 1 h. The resulting oil

was dissolved in CH 2C12 (525 mL) and methanol (75 mL) and K2 CO 3 (2 g, 14.3 mmol) was

added. The reaction was stirred at ambient temperature for 1.5 h, then the solution filtered

through Celite and concentrated under reduced pressure. Purification via flash silica gel column

chromatography (5%->30% EtOAc/hexanes) afforded 2-5 (15.4 g, 79%) as a light yellow oil.

Spectra were consistent with reported data.(10)

Methyl 3-O-benzyl-1,2-isopropylidene-p-L-idopyranosiduronate (2-1). Compound 2-5 (15.4

mg, 45.4 mmol) was dissolved in 90% aqueous trifluoroacetic acid (40 mL) and stirred at

ambient temperature for 35 min. The reaction solvent was removed and the crude product was

crystalized from 4:1 Et)Ac:hexanes to give 10.4 g of a white solid. This material was

coevaporated with toluene (5 x 25 mL), and dried under vacuum for 18 h. The resulting white

solid 2-7 was dissolved in 2-methoxypropene (70 mL) and cooled to 00 C. To the cooled reaction

mixture was added (+)-camphorsulfonic acid (838 mg, 3.62 mmol) dissolved in DMF (8.5 mL).

The reaction was stirred at 0 oC for 3 h, then quenched with NEt3 (2 mL) and allowed to warm to

room temperature. The reaction solvent was removed under reduced pressure and the reaction

mixture was dried under vacuum 18 h. The crude product was dissolved in methanol (250 mL),

washed Dowex acidic resin (5 g) was added, and the reaction stirred at ambient temperature 20

min. The resin was filtered off, the reaction concentrated under reduced pressure and purified

via flash silica gel column chromatography to afford product 2-1 (7.68 g, 50%) and recovered

triol 2-7 (1.95 g, 12.5%). Spectra were in agreement with reported data.(27)



Methyl 4-O-allyl-3-O-benzyl-1,2-isopropylidine-P-L-idopyranosiduronate (2-8). Compound

2-1 (350 mg, 1.03 mmol) was coevaporated three times with toluene. The compound was

dissolved in CH 2C12 (4 mL) and allyl bromide (1 mL, 12.36 mmol), passed through a plug of

basic alumina before use, and freshly activated 4A molecular sieves (700 mg) were added. After

stirring for 30 min, Ag 20 (720 mg, 3.1 mmol) was added and the reaction stirred for 3 days

under N2 and exclusion of light. The reaction mixture was filtered through Celite and the solvent

removed under reduced pressure. Flash silica gel column chromatography (toluene:EtOAc 30:1)

afforded 2-8 (270 mg, 0.72 mmol, 70%) as a clear oil. Rf. 0.32 (hexanes:ethyl acetate 2:1).

[a] 24D: -40.9, (c = 1.27). IR (thin film, NaCl plate) 2986, 1766, 1736, 852, 752 cm-' . 'HNMR

(500 MHz, CDCl 3) 8 7.32-7.4 (m, 5H), 5.75-5.83 (m, 1H), 5.35 (d, J= 2.6 Hz, 1H), 5.21 (d2, J=

1.6 Hz, 17 Hz), 5.13 (d2, J= 1.7 Hz, 10.4 Hz, 1H), 4.68 (d, J= 11.9 Hz, 1H), 4.65 (d, J= 11.9

Hz, 1H), 4.43 (d, J=1.7 Hz, 1H), 3.98-4.06 (m, 3H), 3.88-3.92 (m, 1H), 3.82 (m, 1H), 3.8 (s,

3H), 1.6 (s, 3H), 1.4 (s, 3H). 13CNMR (125 MHz, CDC13) 6 169.7, 137.4, 134.6, 128.8, 128.4,

128.1, 117.3, 112.4, 97.0, 75.5, 73.0, 72.7, 71.9, 71.1, 52.5, 28.0, 26.7. ESI MS (C20H260 7) m/z

(M + Na+) calcd 401.1571, obsd 401.1571.

Methyl 3,4-di-O-benzyl-1,2-isopropylidine-p-L-idopyranosiduronate (2-9). Compound 2-1

(183 mg, 0.54 mmol) was coevaporated three times with toluene and dissolved in CH2C12 (2

mL). Benzyl bromide (640 gL, 5.4 mmol), passed through a plug of basic alumina before use,

and freshly activated 4A molecular sieves (360 mg) were added. After 30 min, Ag 20 (500 mg,

2.16 mmol) was added and the reaction stirred for 3 days under N2 and exclusion of light. The

reaction mixture was filtered through Celite and the solvent removed under reduced pressure.

Flash silica gel column chromatography on (toluene:ethyl acetate 30:1) afforded 2-9 (179 mg,

0.42 mmol, 77%) as a clear oil. Rf. 0.32 (hexanes:ethyl acetate 2:1). [a] 2 4 D: -26.8, (c = 1.00).



IR (thin film, NaCi plate) 2916, 1768, 1735, 738, 698 cm l'. 'HNMR (500 MHz, CDCl3) 7.26-

7.39 (m, 10H), 5.36 (d, J= 2.6 Hz, 1H), 4.58-4.62 (m, 3H), 4.43 (m, 2H), 4.09 (t, J= 2.32 Hz,

1H), 3.99 (d, J= 3.2 Hz, 1H), 3.85 (m, 1H), 3.73 (s, 3H), 1.61 (s, 3H), 1.41 (s, 3H). 13CNMR

(125 MHz, CDC13) 6 169.7, 138.0, 137.3, 128.8, 128.41, 128.39, 128.0, 127.8, 112.5, 97.0, 75.5,

73.2, 72.7, 72.0, 71.9, 71.8, 52.5, 28.1, 28.7. ESI MS (C24H280 7) m/z (M + Na+) calcd 451.1727,

obsd 451.1736.

Methyl 3-O-benzyl-1,2-isopropylidene-4-O-levulinyl-a-L-idopyranosiduronate (2-10).

Compound 2-1 (2.69 g, 7.95 mmol) was dissolved in CH 2Cl2 (50 mL) and cooled to 0 oC. To

this solution were added levulinic acid (1.34 mL, 12.7 mmol), DIPC (1.87 mL, 11.9 mmol), and

DMAP (1.56 g, 12.8 mmol), and light was excluded. The reaction was allowed to warm to room

temperature and was stirred for 11 h. The reaction mixture was diluted with EtOAc:hexanes

(1:1), run through a silica plug, and concentrated under reduced pressure. Purification via flash

silica gel column silica gel column chromatography (30%-450% EtOAc/hexanes) afforded 2-10

(3.44 g, 98%) as a yellow oil. [a]24D: -32.0, (c=1.00). IR (thin film, NaCl plate) 2934, 1766,

1742, 1721 cm-'. 'HNMR (500 mHz, CDC 3) 68 7.39-7.33 (m, 5H), 5.37 (d, J= 2.61 Hz, 1H),

5.20 (m, 1H), 4.82 (d, J= 1.6 Hz, 1H), 4.68 (d, J= 1.6 Hz, 1H), 4.53 (d, J = 1.5 Hz, 1H), 4.08

(yt, J= 2.1 Hz, 1H), 3.93 (m, 1H), 3.8 (s, 3H), 2.75 (m, 2H), 2.56 (t, J= 6.4 Hz, 2H), 2.18 (s,

3H), 1.62 (s, 3H), 1.38 (s, 3H) .13CNMR (125 mHz, CDCl3) 8 206.9, 172.5, 168.9, 137.7, 129.3,

128.9, 128.6, 112.7, 97.2, 75.8, 73.5, 72.8, 70.7, 67.8, 38.5, 30.4, 28.7, 28.6, 26.9. ESI MS

(C22H280 9) m/z (M + Na+) calcd 459.1626, obsd 459.1617.

Methyl 1,2-di-O-acetyl-4-O-allyl-3-O-benzyl-L-idopyranosiduronate (2-11 a/b).

Monosaccharide 2-8 (575 mg, 1.52 mmol) was dissolved in TFA (90% aq., 3 mL) and stirred for



30 min. The solvent was removed under reduced pressure and the residue coevaporated with

toluene until the odor of TFA could no longer be detected.

The resultant oil was dissolved in CH2C12 (13 mL) and pyridine (1.8 mL). Acetic

anhydride (575 ptL, 6.08 mmol) and DMAP (36 mg, 0.3 mmol) were added and the reaction was

stirred under N2 overnight. Water (1 mL) was added, the mixture stirred 30 min and poured into

200 mL ethyl acetate. The combined organic phases were washed with IN HC1, brine, and

saturated aq. NaHCO 3 . The organic phase was dried over MgSO 4, filtered, and the solvent

removed under reduced pressure. Flash silica gel column chromatography (hexanes:ethyl acetate

3:1) yielded 2-11a/b as a clear oil (628 mg, 1.44 mmol, 98%, 1:2 a:P3) 2-11a (a) Rf. 0.17

(hexanes:ethyl acetate 2:1). [Ct] 24 D: -64.0, (c = 0.60). IR (thin film, NaCl plate) 2361, 1750,

1745, 1735 cm-1 . 'HNMR (500 MHz, CDCl3) 8 7.31-7.39 (m, 5H, aromatics), 6.27 (s, 1H, HI),

5.75 (m, 1H, -OCH 2CH=CH2), 5.16 (m, 1H, -OCH 2CH=CHH), 5.13 (m, 1H, -OCH 2CH=CHH),

4.93 (s, 1H, H2), 4.86 (d, 3JHS.H4 = 2.5 Hz, 1H, H5), 4.76 (d, 2J= 11.9, 1H, benzyl CH2), 4.68 (d,

2J= 11.9, 1H, benzyl CH 2), 3.98 (d2, 2J= 12.8 Hz, 3J= 5.7 Hz, 1H, -OCHHCH=CH 2), 3.91 (d2,

2J= 12.8 Hz, 3J= 5.9 Hz, 1H, -OCHHCH=CH 2), 3.89 (t, J= 3.3 Hz, 1H, H3), 3.85 (d, J= 2.5

Hz, 1H, H4), 3.81 (s, 3H, -OCH 3), 2.08 (s, 3H, 02-acetate), 2.05 (s, 3H, 01-acetate). 13CNMR

(125 MHz, CDC13) 8 170.2 (02 acetate carbonyl), 169.4 (C6), 168.9 (01 acetate carbonyl),

137.7 (aromatic quat.), 134.1 (-OCH 2CH=CH 2), 128.7 (aromatic C), 128.2 (aromatic C), 127.9

(aromatic C), 118.0 (-OCH 2CH=CH2), 92.0 (C1), 74.2 (C4), 72.6 (benzyl CH2), 71.8 (-

OCH2CH=CH2), 71.3 (C3), 70.2 (C5), 66.7 (C2), 52.6 (-OCH 3), 21.7 (02 acetate), 21.1 (01

acetate). ESI MS (C21H26 0 9) m/z (M + Na÷) calcd 445.1469, obsd 445.1472. 2-11b (1) Rf. 0.11

(hexanes:ethyl acetate 2:1). [a]24D: -7.86, (c = 1.43). Mp 96-980 C. IR (thin film, NaCl plate)

2361, 1761, 1742, 1739, 1064 cm 1'. 'HNMR (500 MHz, CDC13) 6 7.32-7.4 (m, 5H, aromatics),



6.08 (d, 3JH1-H2 = 1.7 Hz, 1H, Hi), 5.71 (m, 1H, O-CH2CH=CH2, 5.14 (m, 1H, O-

CH 2CH=CHH), 5.09 (m, 1H, O-CH 2CH=CHH),4.99 (m, 1H, H2), 4.76 (d, 2J= 11.9 Hz, 1H,

benzyl CH 2), 4.67 (d, 3JH4_H5 = 2.2 Hz, 1H, H5), 4.64 (d, 2J= 11.9 Hz, 1H, benzyl CH 2), 3.99 (Nyt,

J= 3 Hz, 1H, H3), 3.89 (m, 1H, O-CHHCH=CH 2), 3.84 (m, 1H, O-CHHCH=CH 2), 3.79 (s, 3H, -

OCH 3), 3.72 (yt, J= 2.2 Hz, 1H, H4), 2.12 (s, 3H, 01 acetate), 2.11 (s, 3H, 02 acetate).

13CNMR (125 MHz, CDCl 3) 8 171.0 (02-acetate carbonyl), 169.0 (01-acetate carbonyl), 168.6

(C6), 137.1 (benzyl quat.), 134.1 (O-CH 2CH=CH2), 128.8 (aromatic C), 128.5 (aromatic C),

128.2 (aromatic C), 117.6 (O-CH 2CH=CH2), 90.2 (C1), 75.1 (C5), 73.7 (C4), 72.9 (benzyl CH 2),

71.7 (O-CH2CH=CH 2), 71.8 (C3), 66.7 (C2), 52.5 (-OCH 3), 21.2 (01-acetate), 21.1 (02-acetate).

ESI MS (C21H260 9) m/z (M + Na+) calcd 445.1469, obsd 445.1451.

Methyl 2-O-acetyl-4-O-allyl-3-O-benzyl-L-idopyranosiduronate trichloroacetimidate (2-12).

Procedure A. Compound 2-11a (117 mg, 0.277 mmol) was coevaporated three times with

toluene and dissolved in THF (2.8 mL). Benzyl amine (182 gL, 1.66 mmol) was added and the

reaction was stirred 4 h and monitored by TLC. The reaction was poured into iN HCI and the

aqueous phase was extracted with ethyl acetate (2 x 100 mL). The combined organic phases

were dried over MgSO 4, filtered, and the solvent removed under reduced pressure. Flash silica

gel column chromatography (hexanes:ethyl acetate 6:4) afforded the lactol (78 mg, 0.205 mmol,

74%) as a clear oil.

Procedure B. Compound 2-11b (262 mg, 0.62 mmol) was coevaporated three times with

toluene and dissolved in THF (6 mL). Benzyl amine (237 gpL, 2.17 mmol) was added and the

reaction was stirred 5.5 h and monitored by TLC. The reaction was poured into IN HCI and the

aqueous phase was extracted with ethyl acetate (2 x 150 mL). The combined organic phases

were dried over MgSO 4, filtered, and the solvent removed under reduced pressure. Flash silica



gel column chromatography (hexanes:ethyl acetate 6:4) afforded lactol (200 mg, 0.53 mmol,

85%) as a clear oil.

Lactol (785 mg, 2.06 mmol) was coevaporated three times with toluene and dissolved in

CH 2C12 (16 mL) under N 2. The solution was cooled to 00 C and trichloroacetonitrile (3.1 mL, 31

mmol) and DBU (58 gL) were added. The reaction was stirred for 30 min, then allowed to warm

to room temperature. The solvent was removed under reduced pressure and the residue was

purified by flash silica gel column chromatography (hexanes:ethyl acetate 7:3) to afford 2-12

(1.0 g, 1.91 mmol, 92%, 3:2 mixture of anomers) as a yellow oil. Rf. 0.29, 0.37 (hexanes:ethyl

acetate 2:1). IR (thin film, NaCl plate) 2920, 1772, 1736, 1675, 1064 cm-'. 'HNMR (500 MHz,

CDC13) 6 8.66 (s, 1H), 7.29-7.39 (m, 5H), 6.43 (s, 0.6H), 6.23 (d, J= 2 Hz, 0.4H), 5.71-5.78 (m,

1H), 5.75 (m, 0.4H), 5.09-5.74 (m, 2H), 4.98 (d, J= 2.2 Hz, 0.6H), 4.65-4.81 (m, 3H), 3.80-4.06

(m, 7H), 2.10 (s, 2H), 2.09 (s, 1.5H). 13CNMR (125 MHz, CDCl3) 8 170.9, 170.2, 169.3, 168.4,

160.7, 160.3, 137.5, 137.1, 134.1, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 118.2, 118.0, 95.6,

94.6, 91.0, 90.7, 75.1, 73.8, 73.7, 72.9, 72.7, 72.1, 71.8, 71.7, 70.5, 69.9, 66.1, 65.5, 52.7, 52.6,

21.2, 21.5. ESI MS (C21H24C13NOs) m/z (M + Na+) calcd 546.0460, obsd 546.0433.

Methyl (t-butyldimethylsilyl 3,4-di-O-benzyl-i-L-idopyranosid)uronate (2-13).

Monosaccharide 2-9 (179 mg, 0.42 mmol) was dissolved in TFA (90% aq., 1 mL) and stirred for

30 min. The solvent was removed under reduced pressure and the residue coevaporated three

times with toluene. The crude material was dissolved in CH 2C12 (420 gL) and cooled to -250 C

under N2. TBDMS-Cl (95 mg, 0.63 mmol) and imidazole (114 mg, 1.67 mmol) were added and

the reaction was stirred for 14 h at -250 C. Methanol (2 mL) was added and the mixture stirred 30

min, the poured into ethyl acetate. The organic phase was washed with IN HC1, brine, and

saturated aq. NaHCO3. The organic phase was dried over MgSO 4 and solvent removed under



reduced pressure. Flash silica gel column chromatography (hexanes:ethyl acetate 9:1) afforded

2-13 (166 mg, 0.33 mmol, 79%) as a clear oil (9:1 P:a). Rf. 0.53 (hexanes:ethyl acetate 2:1). IR

(thin film, NaCl plate) 3527, 2928, 2857, 1772, 1734, 838, 780 cm-'. 'HNMR (500 MHz,

CDC13) 7.15-7.4 (m, 10H (a/p1)), 5.34(s, 1H (a)), 5.03 (d, J= 1 Hz, 1H (3)), 4.92 (d, J= 1.9 Hz,

1H (a)), 4.42-4.7 (m, 5H (a/3)), 3.98 (m, 1H (a)), 3.92 (m, 1H (0)), 3.86 (m, IH, (a)), 3.80 (m,

1H (3)), 3.71 (s, 3H (a)), 3.70 (s, 3H, (P)), 3.65 (m, 1H (a/p)), 3.4 (m, 1H (a)), 3.08 (bs, 1H,

(0)), 0.94 (s, 9H (0)), 0.87 (s, 9H (a)), 0.20 (s, 3H, (0)), 0.16 (s, 3H, (0)), 0.14 (s, 3H (a)), 0.12

(s, 3H (a)). 13CNMR (125 MHz, CDC13) P: 8 1.69.3, 137.5, 137.0, 128.8, 128.7, 128.6, 128.4,

128.3, 94.7, 74.4, 74.0, 73.7, 72.8, 72.5, 69.0, 52.2, 26.0, 28.4, -3.9, -4.9. a: 6 170.5, 138.0,

136.9, 129.2, 128.9, 128.5, 128.4, 128.2, 127.6, 96.0, 75.4, 73.1, 71.8, 67.6, 67.4, 52.4, 25.7,

18.0, -4.4, -5.4. ESI MS (C2 7H3807Si) m/z (M + Na÷) calcd 525.2284, obsd 525.2269.

Methyl (t-butyldimethylsilyl 3,4-di-O-benzyl-2-O-levulinoyl-p-L-idopyranosid)uronate (2-

14). Compound 2-13 (58 mg, 0.115 mmol) was coevaporated three times with toluene and

dissolved in CH2C12 (1 mL). DMAP (56 mg, 0.46 mmol) and levulinic anhydride (74 mg, 0.345

mmol) were added and the reaction was stirred overnight under N2 with exclusion of light. The

reaction mixture was poured into ethyl acetate (50 mL) and washed with IN HC1, brine, and

saturated aq. NaHCO 3. The organic phase was dried over MgSO 4, filtered, and the solvent

removed under reduced pressure. Flash silica gel column chromatography on a Biotage

automated chromatograph (hexanes:ethyl acetate 3:1) afforded 2-14 (55 mg, 0.092 mmol, 80%)

as a clear oil. Rf. 0.4 (hexanes:ethyl acetate 2:1). [a]2 4 D: +10.6, (c = 0.89). IR (thin film, NaCl

plate) 2928, 2857, 1770, 1736, 1721, 839 cm-'. HNMR (500 MHz, CDC13) 8 7.21-7.46 (m,

10H, aromatics), 5.07 (d, 3JH1H2 = 1.7 Hz, 1H, H1), 4.92 (m, 1H, H2), 4.64 (d, 2J= 11.9 Hz, 1H,

03-benzyl CH 2), 4.54 (d, 2J= 11.9 Hz, 1H, 03-benzyl CH2), 4.51 (d, 2J= 12 Hz, 1H, O4-benzyl



CH2 ), 4.48 (d, J = 2.2, 1H, H5), 4.39 (d, 2J = 12 Hz, 1H, 04-benzyl CH 2), 3.88 (Wt, J= 2.9 Hz,

IH, H3), 3.73 (m, 1H, H4), 3.72 (s, 3H, -OCH 3), 2.56-2.76 (m, 4H, Lev CH 2), 2.13 (s, 3H, Lev -

COCH3), 0.89 (s, 9H TBDMS butyl CH 3), 0.18 (s, 3H, TBDMS methyl), 0.15 (s, 3H TBDMS

methyl). 13CNMR (125 MHz, CDC13) 8 206.7, 172.8, 169.2 (C6), 137.8 (04-benzyl quat.),

137.5 (03-benzyl quat.), 128.8 (aromatic C), 128.5 (aromatic C), 128.4 (aromatic C), 128.3

(aromatic C), 128.1 (aromatic C), 93.1 (C1), 74.3 (C5), 73.3(C4), 73.0 (C3), 72.9 (03-benzyl

CH2), 72.6 (04-benzyl CH2), 68.2 (C2), 52.2 (-OCH 3), 38.0 (Lev CH2), 30.1 (Lev COCH 3), 28.4

(Lev CH2) 25.1 (TBDMS butyl CH 3), 18.2 (TBDMS quat.), -3.8 (TBDMS methyl), -5.3

(TBDMS methyl). ESI MS (C32H44 0 9Si) m/z (M + Na÷) calcd 623.2647, obsd 623.2618.

Methyl 3,4-di-O-benzyl-2-O-levulinoyl-L-idopyranosiduronate trichloroacetimidate (2-15).

Monosaccharide 2-14 (65 mg, 0.108 mmol) was coevaporated three times with toluene and

dissolved in THF (1 mL). The solution was cooled to 0oC and acetic acid (7 p.L) was added

followed by TBAF (1.0 M in THF, 119 jiL, 0.119 mmol). After 1 h, the reaction was poured

into ethyl acetate (100 mL) and washed twice with brine. The organic phase was dried over

MgSO 4, filtered, and the solvent removed under reduced pressure.

The residue was coevaporated three times with toluene and dissolved in CH 2C12 (1 mL)

under N2. The solution was cooled to 00 C and trichloroacetonitrile (162 [tL) and DBU (3 jtL)

were added. The reaction was stirred for 30 min then allowed to warm to room temperature.

Solvent was evaporated and the residue purified by flash silica gel column chromatography

(silica quenched with 1% NEt3 in toluene, eluted with toluene:ethyl acetate 19:1) afforded 2-15

(65 mg, 0.102 mmol, 95%, 1:1 ap3 ) as a yellow oil. a: Rf. 0.09, (hexanes:ethyl acetate 2:1).

[a]2 4 D: -37.3, (c = 1.42). IR (thin film, NaCl plate) 3339, 1774, 1741, 1723, 1673 cm-'. 'HNMR

(500 MHz, CDCl3) 8 8.66 (s, 1H), 7.14-7.38 (m, 10H), 6.43 (s, 1H), 5.15 (m, 1H), 4.96 (d, J=



1.9 Hz, 1H), 4.78 (d, J= 11.7 Hz, 1H), 4.62 (d, J= 11.9 Hz, 1H), 4.57 (d, J= 11.6 Hz, 1H), 4.45

(d, J=11.7 Hz, 1H), 3.91-3.93 (m, 2H), 3.73 (s, 3H), 2.74-2.80 (m, 1H), 2.54-2.66 (m, 3H), 2.16

(s, 3H). 13CNMR (125 MHz, CDC13) 8 206.5, 172.1, 165.3, 160.3, 137.52, 137.5, 128.7, 128.6,

128.3, 128.2, 128.15, 128.1, 95.6, 91.1, 73.6, 72.5, 72.4, 70.5, 69.9, 65.6, 52.6, 37.9, 30.0, 28.5.

ESI MS (C2 8H30C13NO9) m/z (M + Na+) calcd 652.0878, obsd 652.0889. 13: Rf. 0.21

(hexanes:ethyl acetate 2:1). [a] 2 4 D: -3.66, (c = 1.12). IR (thin film, NaCi plate) 3031, 1772,

1739, 1717, 1674 cm-'. 1HNMR (500 MHz, CDCl3) 8 8.66 (s, 1H), 7.21-7.40 (m, 10H), 6.22 (d,

J= 1.9 Hz, 1H), 5.25 (m, 1H), 4.72 (d, J= 11.7, 1H), 4.69 (d, J= 2.4, 1H), 4.59 (d, J= 11.7 Hz,

1H), 4.55 (d, J= 11.8, 1H), 4.41 (d, J= 11.7, 1H), 4.03 (t, J= 2.4, 1H), 3.81 (m, 1H), 3.73 (s,

3H), 2.58-2.71 (m, 4H), 2.14 (s, 3H). 13CNMR (125 MHz, CDC13) 8 206.5, 172.6, 168.3, 160.6,

137.4, 137.1, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 94.6, 90.7, 75.2, 73.6, 73.0, 72.8, 72.3,

66.1, 52.5, 37.9, 30.0, 28.3. ESI MS (C28H30C13N0 9) m/z (M + Na+) calcd 652.0878, obsd

652.0874.

Methyl (dimethylthexylsilyl-3-O-benzyl-4-O-levulinoyl-L-idopyranosid)uronate (2-16).

Compound 2-10 (503 mg, 1.15 mmol) was dissolved in 90% aqueous trifluoroacetic acid (10

mL) and stirred at ambient temperature for 15 min. The reaction solvent was removed in vacuo

and the resulting oil coevaporated with toluene (5 x 10 mL), and dried under vacuum 18 h. The

resulting brown oil was dissolved in CH 2C12 (1.2 mL) and imidazole (304 mg, 4.4 mmol) was

added. The solution was cooled to -20 OC and dimethylthexylsilyl chloride (0.290 mL, 1.5

mmol) was added. The reaction was stirred at -20 oC for 41 h, when it was quenched with

saturated aq. NaHCO3 (1 mL) and allowed to warm to room temperature. The reaction was

diluted with CH 2C12 and washed with brine. The aqueous layer was extracted with CH 2C12 and

the combined organic phases were dried over MgSO 4, filtered, concentrated under reduced



pressure, and purified via flash silica column chromatography (33%-+50% EtOAc/hexanes) to

afford 2-16 (500 mg, 80%, 3:p 1:2.5) as a clear oil. a: [a] 24 D = -54.90 (c 2.35, CH2C12 ). IR (thin

film, NaCI plate) 1744, 1719, 1364, 1153, 1054 cm-'. 'H NMR (500 MHz) 8 7.39-7.28 (m, 5H,

aromatics), 5.31 (s, 1H, hi), 5.27 (at, J= 2.8 Hz, 1H, H4), 4.97 (d, J= 2.4 Hz, 1H, H5), 4.67 (dd,

J= 11.6, 14.0 Hz, 2H, 03-benzyl CH2), 3.78 (s, 3H, OMe), 3.76 (at, J= 2.4 Hz, 1H, H3), 3.60

(bd, J= 10.1 Hz, 1H, H2), 2.73 (t, J= 10.0 Hz, 2H, Lev CH 2), 2.58-2.48 (m, 3H, Lev CH 2, OH),

2.17 (s, 3H, Lev CH 3), 1.60-1.56 (m, 1H, SiC(CH 3)2C(CH 3)2-H), 0.83-0.81 (m, 12H,

SiC(CH3)2C(CH3)2-H), 0.17 (s, 3H, Si-CH3), 0.14 (s, 3H, Si-CH 3). 13C NMR (125 MHz) 6 206.4,

171.4, 169.4, 137.9, 128.4, 127.9, 127.7, 96.0, 75.0, 72.6, 69.3, 69.0, 66.5, 52.6, 38.0, 34.1, 29.8,

28.1, 25.0, 20.2, 20.1,18.6, 18.6, -2.3, -3.5. ESI MS m/z (M + Na÷) calculated 561.2490, found

561.2488. 0: [a]24D = +8.650 (c 1.90, CH 2Cl2). IR (thin film, NaCI plate) 1768, 1742, 1721,

1154, 1048 cm-'. 'H NMR (500 MHz) 8 7.38-7.32 (m, 5H, aromatics), 5.17 (s, 1H, H4), 5.04 (as,

1H, Hi), 4.77 (d, J= 11.9 Hz, 1H, 03-benzyl CH 2), 4.63 (d, J= 11.9 Hz, 1H, 03-benzyl CH2),

4.60 (as, 1H, H5), 3.92-3.91 (m,1H, H3), 3.80 (s, 3H, OMe), 3.58 (s, 1H, H2), 2.74-2.71 (m, 2H,

Lev CH 2), 2.60-2.52 (m, 2H, Lev CH 2), 2.43 (d, J= 4.9 Hz, 1H, OH), 2.18 (s, 3H, Lev Me),

1.67-1.64 (m, 1H, SiCMe 2CMe2-H), 0.91-0.88 (m, 12H, SiCMe2CMe2-H), 0.26 (s, 3H, Si-Me),

0.19 (s, 3H, Si-Me). 13C NMR (125 MHz) 8 206.4, 171.9, 168.1, 137.5, 128.7, 128.3, 128.0,

94.3, 75.2, 72.9, 72.7, 68.8, 67.5, 52.6, 38.0, 34.2, 29.9, 28.3, 25.1, 20.4, 20.2, 18.8, 18.6, -1.7, -

3.3. ESI MS m/z (M + Na÷) calculated 561.2490, found 561.2473.

Methyl (dimethylthexylsilyl 3-O-benzyl-4-O-levulinoyl-2-O-pivaloyl-L-

idopyranosid)uronate (2-17). Compound 2-16 (541 mg, 1.00 mmol) was dissolved in CH2C12

(10 mL) and pivaloyl chloride (0.250 mL, 2.01 mmol) and DMAP (227 mg, 1.86 mmol) were

added. The reaction was stirred at ambient temperature for 48 h, then diluted with 1:1



EtOAc:hexanes and run through a silica plug. The solution was then concentrated under reduced

pressure and purified via flash silica column chromatography (50% EtOAc/hexanes) to afford 2-

17 (588 mg, 94%) as a clear oil. (xa:p 1:0.3) IR (thin film, NaCl plate) 1741, 1368, 1152, 1053,

837 cm-'. 'H NMR (500 MHz) 8 7.39-7.32 (m, 6.5H), 5.26 (as, 0.3H), 5.24 (as, 0.3H), 5.07 (m,

1H), 4.99 (d, J= 2.0 Hz, 0.3H), 4.98-4.97 (m, 1H), 4.78-4.70 (m, 3.6H), 4.57 (as, 1H), 3.80-3.78

(m, 3.9H), 3.71 (as, 0.3H), 2.78-2.68 (m, 2.6H), 2.56-2.53 (m, 2.6H), 2.19 (as, 3.9H), 1.63-1.59

(m, 1.3H), 1.26-1.21 (m, 11.7H), 0.87-0.82 (m, 15.6H), 0.22-0.15 (m, 7.8H). 13C NMR (125

MHz) 8 206.2, 206.2, 177.8, 177.7, 172.2, 172.0, 169.3, 168.0, 137.7, 137.4, 128.7, 128.5, 128.3,

127.9, 127.7, 93.6, 93.4, 75.3, 73.7, 73.1, 72.8, 72.6, 68.5, 68.2, 67.3, 66.1, 52.7, 52.5, 39.1, 37.9,

37.9, 34.2, 34.1, 30.0, 29.9, 28.1, 28.1, 27.4, 27.3, 26.7, 25.1, 25.0, 20.2, 20.1, 18.7, 18.7, 18.7,

18.6, -1.7, -2.4, -3.4, -3.5. ESI MS m/z (M + Na+) calculated 645.3065, found 645.3080.

Methyl (dimethylthexylsilyl 2-O-acetyl-3-O-benzyl-4-O-levulinoyl-L-idopyranosid)uronate

(2-18). Compound 2-16 (345 mg, 0.641 mmol) was dissolved in CH2C12 (6 mL) and acetic

anhydride (0.120 mL, 1.28 mmol) and DMAP (130 mg, 1.07 mmol) were added. The reaction

was stirred at ambient temperature for 2 h, followed by concentration under reduced pressure and

purification via flash silica column chromatography (33% EtOAc/hexanes) to afford 2-18 (363

mg, 97%) as a clear oil. (c:3 1:2) IR (thin film, NaCl plate) 1744, 1720, 1231, 1156, 1055 cm'1 .

'H NMR (500 MHz) 8 7.40-7.28 (m, 7.5H), 5.30 (s, 0.5H), 5.19 (as, 0.5H), 5.14 (as, 1H), 5.00-

4.98 (m, 1.5H), 4.79-4.70 (m, 3.5H), 4.62 (d, J= 1.8 Hz, 1H), 3.87 (t, J= 2.8 Hz, 1H), 3.80-3.78

(m, 5H), 2.83-2.77 (m, 1.5H), 2.68-2.49 (m, 4.5H), 2.21-2.19 (m, 4.5H), 2.11-2.09 (m, 4.5H),

1.64-1.58 (m, 1.5H), 0.88-0.82 (m, 18H), 0.24-0.15 (m, 9H). 1 3 C NMR (125 MHz) 6 206.3,

172.1, 172.0, 170.5, 170.2, 169.4, 168.1, 137.7, 137.3, 128.8, 128.5, 128.3, 128.0, 127.9, 127.7,

93.3, 93.2, 77.5, 74.2, 73.1, 72.9, 72.7, 72.6, 68.6, 68.3, 67.7, 67.4, 66.1, 52.7, 52.6, 37.8, 37.8,



34.2, 34.2, 30.0, 30.0, 28.1, 28.1, 25.1, 25.0, 21.2, 21.2, 20.4, 20.2, 20.1, 20.0, 18.8, 18.7, 18.7,

18.6, -1.7, -2.4, -3.4, -3.5. ESI MS m/z (M + Na+) calculated 603.2596, found 603.2600.

Methyl 3-O-benzyl-4-O-levulinoyl-2-O-pivaloyl-L-idopyranosiduronate

trichloroacetimidate (2-19). Compound 2-17 (588 mg, 0.94 mmol) was dissolved THF (8 mL),

and HF.pyridine (70% solution, 0.7 mL) was added. The reaction was stirred at room

temperature for 28 h, then diluted with water, extracted with CH 2C12 (3 x 40 mL), dried over

MgSO 4, filtered, and concentrated under reduced pressure. Purification via flash silica column

chromatography (50% EtOAC/hexanes) provided the deprotected lactol. The lactol was

dissolved in CH 2C 2 and trichloroacetonitrile (1:1, 7 mL) and cooled to OoC. DBU (4 gL) was

added to the cooled reaction mixture, and the reaction allowed to warm to room temperature over

30 min. The reaction was concentrated under reduced pressure and purified via flash silica gel

column chromatography (35% EtOAc/hexanes) to afford 2-19 (398 mg, 68%) as a white foam.

(a:p 1:1) IR (thin film, NaCl plate) 1769, 1741, 1722, 1677, 1144, 1064 cm'. '1H NMR (500

MHz) 8 8.72 (s, 1H), 8.70 (s, 1H), 7.38-7.29 (m, 10H), 6.38 (s, 1H), 6.23 (as, 1H), 5.32 (s, 1H),

5.28-5.26 (m, 2H), 5.13 (s, 1H), 5.04 (s, 1H), 4.84-4.72 (m, 5H), 3.94 (t, J= 3.0 Hz, 1H), 3.83-

3.80 (m, 7H), 2.79-2.68 (m, 4H), 2.57-2.53 (m, 4H), 2.19 (as, 6H), 1.25-1.23 (m, 18H). "3C

NMR (125 MHz) 8 206.0, 177.5, 177.2, 171.9, 171.8, 168.1, 167.2, 160.6, 160.0, 137.2, 137.0,

128.7, 128.4, 128.3, 127.9, 127.9, 127.7, 95.1, 94.3, 74.6, 73.3, 73.2, 72.6, 72.3, 67.8, 67.5, 67.5,

65.8, 65.0, 52.8, 52.7, 39.1, 38.9, 37.8, 29.8, 28.0, 27.3, 27.1. ESI MS m/z (M + Na+) calculated

646.0984, found 646.0996.

Methyl 2 -O-acetyl-3-O-benzyl-4-O-levulinoyl-L-idopyranosiduronate trichloroacetimidate

(2-20). Compound 2-18 (890 mg, 1.53 mmol) was dissolved in THF (15 mL), and HF*pyridine

(70% solution, 1.0 mL) was added. The reaction was stirred at room temperature for 28 h, then



diluted with water, extracted with CH 2C12 (2 x 50 mL), dried over MgSO 4, filtered, and

concentrated under reduced pressure. Purification via flash silica column chromatography

(35%-460% EtOAC/hexanes) provided the deprotected lactol. The lactol was dissolved in

CH 2C12 and trichloroacetonitrile (1:1, 10 mL) and cooled to 0 C. DBU (5 ýpL) was added to the

cooled reaction mixture, and the reaction allowed to warm over 30 min. The reaction was

concentrated under reduced pressure and purified via flash silica gel column chromatography

(50% EtOAc/hexanes) to afford 2-20 (662 mg, 74%) as a white foam. Spectra corresponded to

published data.(25)

Conversion of glycals to 1,2-cis-isopropylidenes (General Procedure). Glycal (0.1 mmol)

was dried by coevaporation with toluene and dissolved in CH 2C12 (250 .IL) under N2 . The

solution was cooled to O0C and dimethyldioxirane (DMDO) (1.5 mL, -0.08 M in acetone) was

added. The reaction mixture was stirred for 10 min, ethyl vinyl ether (10 jiL, 0.1 mol) was added

and the reaction mixture stirred for an additional 10 min. Zinc (II) chloride (20 pL, 0.5 M in

Et20) was added, the reaction mixture was allowed to warm to room temperature and stirred for

18 h. The reaction mixture was poured into water (50 mL) and the aqueous phase extracted with

CH 2C12 (3 x 50 mL). The combined organic layers were dried over MgSO 4, filtered, and the

solvent removed under reduced pressure. Products were purified via flash silica gel column

chromatography (between 10:1 and 20:1 hexanes:ethyl acetate).

1,2-O-isopropylidene-3,4,6-tri-O-benzyl-a-D-glucopyranoside (2-21b). Followed general

procedure to yield: 33 mg, 67%. Spectra were consistent with reported data.(32)

1,2-O-isopropylidene-3,4,6-tri-O-acetyl-a-D-glucopyranoside (2-22b). Followed general

procedure to yield: 7 mg, 20%. Spectra were consistent with reported data.(33)



6-O-t-Butyldiphenylsilyl-3,4-di-O-pivoalyl-D-glucal (2-23a) 6-O-t-Butyldiphenylsilyl-D-

glucal(34) (278 mg, 0.72 mmol) was dissolved in CH2C12 (6 mL) and pyridine (0.93 mL).

DMAP (17.5 mg, 0.14 mmol) and trimethylacetyl chloride (360 ýIL, 2.9 mmol) were added and

the reaction mixture was stirred for 18 h at room temperature. Water (2 mL) was added and the

reaction mixture stirred for 3 h to quench the acid chloride. The reaction mixture was poured

into ethyl acetate (100 mL) and the organic layer was extracted with saturated NaHCO3 (50 mL)

and brine (50 mL). The organic layer was dried over MgSO 4, filtered, and the solvent removed

under reduced pressure. Flash silica gel column chromatography (hexanes-ethyl acetate 30:1)

yielded 2-23a (210 mg, 0.38 mmol, 52.5%) as a clear oil. Rf. 0.44 (hexanes:ethyl acetate 9:1).

[a] 24D: -10.0, (c = 0.87). IR (thin film, NaCl plate) 2962, 1732, 1651 cm-'. 'HNMR (500 MHz,

CDCl3) 6 7.60-7.70 (m, 4H), 7.36-7.45 (m, 6H), 6.44 (d2, J= 6.1, 1.2 Hz, 1H), 5.29-5.31 (m,

1H), 5.23-5.25 (m, 1H), 4.75 (d2, J= 6.1, 3.2 Hz, 1H), 4.15-4.18 (m, 1H), 3.85 (d2, J= 11.5, 6.1

Hz, 1H), 3.77 (d2, J= 11.5, 2.8 Hz, 1H), 1.13 (s, 9H), 1.10( s, 9H), 1.07 (s, 9H). 13CNMR (125

MHz, CDC13) 6 178.0, 176.7, 146.0, 135.9, 133.4, 133.3, 129.9, 129.85, 127.9, 98.6, 77.2, 67.7,

67.0, 62.2, 38.9, 38.8, 27.2, 27.19, 26.9, 19.4. ESI MS (C32H4406Si) m/z (M + Na+) calcd

575.2799, obsd 575.2812.

6-O-t-Butydiph ienylsilyl-1,2-O-isopropyll-0-D-glucopyranoside (2-

23b). Followed general procedure to yield: 37 mg, 60%. Rf. 0.54 (hexanes:ethyl acetate 4 :1).

[a]24 D: +9.72, (c = 1.23). IR (thin film, NaCl plate) 2963, 1739 cm-'. 'HNMR (500 MHz,

CDCl3) 6 7.72 (yt, 2H), 7.70 (Vt, 2H), 7.35-7.67 (m, 6H), 5.64 (d, J= 4.8 Hz, 1H), 5.12-5.15 (m,

2H), 4.16-4.18 (m, 1H), 3.96-3.99 (m, 1H), 3.80 (d2, J= 11.5, 2.3 Hz, 1H), 3.70 (d2, J= 11.5, 4.5

Hz, 1H), 1.59 (s, 3H), 1.37 (s, 3H), 1.23 (s, 9H), 1.13 (s, 9H), 1.06 (s, 9H). 13CNMR (125 MHz,

CDC13) 6 177.1, 177.0, 135.9, 135.8, 133.45, 133.4, 129.85, 129.8, 127.9, 109.8, 97.1, 73.4, 70.5,



69.8, 67.5, 63.3, 38.9, 38.8, 27.2, 27.1, 27.0, 26.5, 25.9, 19.5. ESI MS (C35H5008Si) m/z (M +

Na÷) calcd 649.3167, obsd 649.3144.

3,4-Di-O-acetyl-6-O-triisopropylsilyl-D-glucal (2-24a) 6-O-Triisoproylsilyl-D-glucal(35) (91

mg, 0.3 mmol) was dissolved in CH2Cl 2 (2.5 mL) and pyridine (0.5 mL). DMAP (4 mg, 0.03

mmol) and acetyl chloride (113 jiL, 1.2 mmol) were added and the reaction mixture was stirred

for 3 h at room temperature. Water (1 mL) was added and the reaction mixture stirred for 1 h to

quench the acid chloride. The reaction mixture was poured into ethyl acetate (100 mL) and the

organic layer was extracted with saturated NaHCO3 (50 mL) and brine (50 mL). The organic

layer was dried over MgSO 4, filtered, and the solvent removed under reduced pressure. Flash

silica gel column chromatography (hexanes-ethyl acetate 10:1) yielded 2-24a (92 mg, 0.24

mmol, 80%) as a clear oil. Rf. 0.46 (hexanes:ethyl acetate 4:1). [a]2 4 D: -2.33, (c = 1.27). IR

(thin film, NaCl plate) 2944, 2867, 1743, 1651 cm'. 'HNMR (500 MHz, CDCl3) 8 6.47 (d, J=

5.8 Hz, 1H), 5.31 (m, 2H), 4.75 (m, 1H), 4.13 (m, 1H), 3.90 (d, J= 4.8 Hz, 2H), 2.07 (s, 3H),

2.04 (s, 3H), 1.02-1.13 (m, 21H). 13CNMR (125 MHz, CDCl3) 8 170.3, 169.6, 146.2, 98.3, 67.7,

67.5, 61.6, 21.3, 21.1, 18.1, 18.05, 12.1. ESI MS (C19H3406Si) m/z (M + Na+) calcd 409.2017,

obsd 409.2014.

3,4-Di-O-acetyl-1,2-O-isopropylidene-6-O-triisopropylsilyl-(a-D-glucopyranoside (2-24b).

Followed general procedure to yield: 31 mg, 75%. Rf. 0.29 (hexanes:ethyl acetate 4:1). [a]24 D:

+14.6, (c = 1.25). IR (thin film, NaCl plate) 2943, 2867, 1751 cmn'. 'HNMR (500 MHz, CDC13)

6 5.61 (d, J= 4.8 Hz, 1H), 5.20 (yt, 1H), 5.04 (m, 1H), 4.18 (m, 1H), 3.94 (m, 1H), 3.86 (d2, j =

11.2, 2.7 Hz, 1H), 2.10 (s, 3H), 2.07 (s, 3H), 1.60 (s, 3H), 1.35 (s, H), 0.97-1.14 (m, 21H).

13CNMR (125 MHz, CDCl3) 6 169.9, 169.7, 109.8, 97.0, 73.5, 71.1, 70.0, 68.5, 63.5, 26.5, 25.8,



21.15, 21.1, 18.1,1, 18.10, 12.1. ESI MS (C2 2H400 8Si) m/z (M + Na+) calcd 483.2385, obsd

483.2376.

3-O-Benzyl-4-O-t-butyldimethylsilyl-6-O-triisopropylsilyl-D-glucal (2-25a) 3-O-Benzyl-6-O-

triisoproplysilyl-D-glucal.(12) (516 mg, 1.31 mmol) was coevaporated three times with toluene

and dissolved in DMF (3mL). Imidazole (178 mg, 2.6 mmol) and TBDMS-Cl (217 mg, 1.44

mmol) were added and the reaction mixture stirred 16 h at room temperature. The reaction

mixture was poured into ethyl acetate (200 mL) and washed with water, brine, and saturated

NaHCO 3 (50 mL each). The organic layer was dried over MgSO 4, filtered, and the solvent

removed under reduced pressure. Flash silica gel column chromatography (hexanes-ethyl acetate

50:1) yielded 2-25a (564 mg, 1.11 mmol, 85%) as a clear oil. Rf. 0.63 (hexanes:ethyl acetate

10:1). [a]2 4D: -21.1, (c = 0.88). IR (thin film, NaCI plate) 2944, 2866, 1652 cm-'. 1HNMR (500

MHz, CDC13) 6 7.26-7.37 (m, 5H), 6.40 (d2 , J= 6.1, 1.1 Hz, 1H), 4.82 (d2, J= 6.1, 2.8 Hz, 1H),

4.61 (d, J= 11.6 Hz, 1H), 4.51 (d, J= 11.6 Hz, 1H), 4.00-4.05 (m, 2H), 3.87-3.95 (m, 3H), 1.05-

1.15 (m, 21H), 0.88 (s, 9H), 0.10 (s, 3H), 0.08 (s, 3H). 13CNMR (125 MHz, CDC13) 6 144.9,

138.7, 128.5, 127.9, 127.6, 98.9, 80.0, 76.6, 70.2, 68.1, 62.5, 26.1, 18.4, 18.2, 18.15, 12.2, -4.0, -

4.7. ESI MS (C28H500 4Si 2) m/z (M + Na+) calcd 529.3140, obsd 529.3150.

3-0-Benzyl-4-O-t-butyldimethylsilyl-1,2-O-isopropylidene-6-O-triisopropylsilyl-0-D-

glucopyranoside (2-25b). Followed general procedure to yield: 43 mg, 75%. Rf. 0.48

(hexanes:ethyl acetate 9:1). [a]24D: +7.42, (c = 1.20). IR (thin film, NaCl plate) 2940, 2866 cm

1. IHNMR (500 MHz, CDCl 3) 8 7.28-7.38 (m, 5H), 5.61 (d, J= 4.9 Hz, 1H), 4.75 (d, J = 11.7

Hz, 1H), 4.61 (d, J= 11.7 Hz, 1H), 4.22 (Vt, 1H), 3.96 (d2, J= 11.2, 2.0 Hz, 1H), 3.90 (d2, J=

9.0, 4.8 Hz, 1H), 3.86 (d2, J= 11.2, 4.3 Hz, 1H), 3.70-3.73 (m, 2H), 1.55 (s, 3H), 1.35 (s, 3H),

1.04-1.14 (s, 21H), 0.87 (s, 9H), 0.08 (s, 3H), 0.04 (s, 3H). 13CNMR (125 MHz, CDCl 3) 8 138.3,



128.5, 127.8, 127.75, 109.0, 97.5, 82.0, 76.2, 73.9, 72.0, 68.4, 63.4, 27.1, 26.2, 26.0, 18.2, 18.18,

12.3, -3.9, -4.8. ESI MS (C31H560 6Si 2) m/z (M + Nat) calcd 603.3508, obsd 603.3491.

3-O-Benzyl-4,6-p-methoxybenzylidene-D-glucal (2-26a) This material was prepared as

previously reported.(12)

3-O-Benzyl-1,2-O-isopropylidene-4,6-p-methoxybenzylidene-a-D-glucopyranoside (2-26b).

Followed general procedure to yield: 9.5 mg, 6:1 of an inseparable mixture of diastereomers,

22%. ESI MS (C24H280 7) m/z (M + Na+) calcd 451.1727, obsd 451.1723.

4,6-Di-t-butylsilylidene-D-glucal (2-27a) This material was prepared as previously

reported.(36)

4,6-Di-t-butylsilylidene-1,2-O-isopropylidene-a-D-glucopyranoside (2-27b). Followed

general procedure to yield: 6.5 mg, 18%. Rf. 0.28 (hexanes:ethyl acetate 4:1). [a] 24D: +22.5, (c

= 0.39). IR (thin film, NaCl plate) 3431, 2935 cm-'. 1HNMR (500 MHz, CDC13) 8 5.54 (d, J=

4.9 Hz, 1H), 4.19 (m, 1H), 4.09 (d2, J= 6.1, 5.1 Hz, 1H), 3.85-3.89 (m, 2H), 3.77-3.84 (m, 1H),

3.65-3.69 (m, 1H), 2.67 (d, J= 1.9 Hz, 1H), 1.58 (s, 3H), 1.41 (s, 3H), 1.06 (s, 9H), 1.00 (s, 9H).

13CNMR (125 MHz, CDC13) 6 108.4, 98.0, 77.2, 77.1, 76.2, 67.4, 66.3, 28.2, 27.6, 27.5, 27.1,

22.9, 20.1. ESI MS (C17H320 6Si) m/z (M + Na+) calcd 383.1860, obsd 383.1875.

3,6-Di-O-triisoproplysilyl-D-glucal (2-28a) This material was isolated as a byproduct from the

synthesis of 6-O-Triisoproylsilyl-D-glucal.(35) Rf. 0.41 (hexanes:ethyl acetate 9:1). [a] 2 4 D: -

10.3, (c = 0.79). IR (thin film, NaCl plate) 3496, 2944, 2867, 1645 cm-'. 'HNMR (500 MHz,

CDCl3) 8 6.3 (d2, J= 6.1, 1.4 Hz, 1H), 4.72 (d2, J= 6.2, 2.8 Hz, 1H), 4.31 (m, 1H), 4.09 (d2, J=

10.9, 5.3 Hz, 1H), 3.90-3.97 (m, 2H), 3.83 (m, 1H), 2.55 (d, J= 4.2 Hz, 1H), 1.03-1.58 (m, 42H).

13CNMR (125 MHz, CDC13) 6 143.4, 103.5, 78.4, 71.7, 69.5, 63.7, 18.28, 18.27, 18.13, 12.6,

12.1. ESI MS (C2 4H500 4Si 2) m/z (M + Na+) calcd 481.3140, obsd 481.3128.



1,2-O-isopropylidene-3,6-di-O-triisoproplysilyl-a-D-glucopyranoside (2-28b). Followed

general procedure to yield: 37 mg, 70%. Rf. 0.36 (hexanes:ethyl acetate 9:1). [a]24D: -30.4, (c =

1.13). IR (thin film, NaCl plate) 3508, 2949, 2867 cm -1. 1HNMR (500 MHz, CDCl3) 8 5.56 (d,

J= 4.3 Hz, 1H), 4.16-4.20 (m, 1H), 3.74-4.00 (m, 3H), 2.71 (d, J= 4.5 Hz, 1H), 1.59 (s, 3H),

1.36 (s, 3H), 1.03-1.18 (m, 42H). 13CNMR (125 MHz, CDC13) 6 109.6, 96.8, 76.8, 73.7, 72.1,

66.1, 26.8, 25.5, 18.2, 18.16, 18.13, 12.4, 12.0. ESI MS (C27H5606Si2) m/z (M + Na+) calcd

555.3508, obsd 555.3498.

3-O-Benzyl-6-O-triisoproplysilyl-D-glucal (2-29a) This material was prepared as previously

reported.(12)

3-O-Benzyl-1,2-O-isopropylidene-6-O-triisoproplysilyl-a-D-glucopyranoside (2-29b).

Followed general procedure to yield: 34 mg, 73%. Rf. 0.41 (hexanes:ethyl acetate 4:1). [a] 24D: -

4.22, (c = 1.02). IR (thin film, NaCl plate) 3495, 2942, 2897 cm -'. 'HNMR (500 MHz, CDCl3)

6 7.24-7.40 (m, 5H), 5.60 (d, J = 4.6 Hz, 1H), 4.75 (xd, 2H), 4.29 (yt, 1H), 4.05 (d2, J= 9.9, 4.1

Hz, 1H), 3.91-3.95 (m, 1H), 3.97-3.8 (m, 3H), 3.03 (d, J= 2.9 Hz, 1H), 1.57 (s, 3H), 1.37 (s,

3H), 1.04-1.18 (m, 21H). 13CNMR (125 MHz, CDCl 3) 8 138.0, 128.6, 128.1, 109.5, 97.3, 80.0,

76.5, 72.3, 71.6, 70.7, 65.7, 27.2, 26.1, 18.1, 12.0. ESI MS (C25H420 6Si) m/z (M + Na+) calcd

489.2643, obsd 489.2640.

1,2 -O-isopropylidene-3-tri-O-benzyl-a-D-galactopyranoside (2-30b). Followed general

procedure to yield: 38 mg, 78%. Rf. 0.39 (hexanes:ethyl acetate 4:1). [a] 24D: +37.7, (c = 1.23).

IR (thin film, NaCl plate) 3031, 2933 cm -'. 1HNMR (500 MHz, CDC13) 5 7.27-7.42 (m, 15H),

5.59 (d, J= 4.2 Hz, 1H), 4.93 (d, J= 11.6 Hz, 1H), 4.81 (d, J= 12.2 Hz, 1H), 4.70 (d, J= 12.2

Hz, 1H), 4.62 (d, J= 11.6 Hz, 1H), 4.52 (d, J= 11.9 Hz, 1H), 4.46 (d, J= 11.9 Hz, 1H), 4.33 (d2

J= 6.2, 4.2 Hz, 1H), 4.09-4.12 (m, 1H), 4.03 (xt, 1H), 3.61-3.71 (m, 3H), 1.48 (s, 3H), 1.40 (s,



3H). 13CNMR (125 MHz, CDC13) 6 138.7, 138.4, 138.1, 128.6, 128.5, 128.45, 128.1, 128.05,

127.9, 127.8, 127.75, 127.7, 109.4, 97.7, 80.8, 78.5, 77.48, 77.2, 77.0, 74.6, 73.7, 73.2, 73.15,

71.6, 68.3, 28.5, 27.3. ESI MS (C30H340 6) m/z (M + Nat) calcd 513.2248, obsd 513.2258.

3,4-Carbonate-6-O-triisoproplysilyl-D-galactal (2-31a) This material was prepared as

previously reported.(37)

Methyl 3-O-benzyl-1,2-O-isopropylidene-a-D-glucopyranosiduronate (2-2). Glycal 2-29a

(193 mg, 0.51 mmol) was coevaporated three times with toluene and dissolved in CH 2C12 (1

mL). The reaction mixture was cooled to OoC and DMDO (8 mL, -0.08 M in acetone) was

added. The reaction mixture was stirred for 10 min and ethyl vinyl ether (50 ýtL, 0.5 mol) was

added and the reaction mixture stirred an additional 10 min. Zinc (II) chloride (102 ýtL, 0.5 M in

Et20) was added, the reaction mixture brought to room temperature and stirred for 18 h. The

reaction mixture was poured into water (100 mL) and the aqueous phase extracted with CH 2C12

(2 x 100 mL) and ethyl acetate (2 x 50 mL). The combined organic layers were dried over

MgSO 4, filtered, and the solvent removed under reduced pressure.

The crude material was dissolved in THF (5 mL) and tetrabutylammonium fluoride (560

tL, 1.0 M in THF) was added. The reaction mixture was stirred for 30 min and poured into

saturated NH4C1. The aqueous phase was extracted with CH2C12 (2 x 100 mL) and ethyl acetate

(2 x 50 mL). The combined organic layers were dried over MgSO 4, filtered, and the solvent

removed under reduced pressure.

The residue was dissolved in CH 2C12 (1 mL) and water (0.5 mL), saturated NaHCO 3 (2

mL), KBr (6 mg, 0.05 mmol), and tetrabutylammonium bromide (8 mg, 0.025 mmol) were

added. The reaction mixture was cooled to OoC and 2,2,6,6-tetramethylpiperidine- 1-oxyl

(TEMPO) (-2 mg) was added. Bleach (2.5 mL) was added in five portions ten minutes apart;
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the reaction turned deep yellow. After complete addition of the bleach, the reaction mixture was

stirred for 1.5 h at 00C. Methanol was added until the reaction was decolorized and stirred for 15

min. The reaction mixture was diluted with water (50 mL) and extracted with CH 2C12 (75 mL).

The aqueous layer was acidified by dropwise addition of conc. HCI until the pH was less than 2

and extracted with CH 2C12 (3 x 75 mL) and ethyl acetate (50 mL). The combined organic layers

were dried over MgSO 4, filtered, and the solvent removed under reduced pressure.

The crude acid was coevaporated twice with toluene and dissolved in DMF (1 mL) under

argon. To the reaction mixture was added KHCO 3 (100 mg, 1 mmol) and methyl iodide (63 pL,

1 mmol). The reaction was stirred for 16 h at room temperature. The reaction mixture was

diluted with ethyl acetate (100 mL) and washed with water, saturated NaS20 3, and brine. The

organic layer was dried over MgSO 4, filtered, and the solvent removed under reduced pressure.

Flash silica gel column chromatography (hexanes-ethyl acetate 85:15) yielded 2-2 (83 mg, 0.245

mmol, 48%) as a clear oil. Spectra were consistent with reported data.(28)

2.3 Results and Discussion

Synthesis of iduronic donors and acceptors

Commercially available diacetone glucose 2-3 was transformed to diol 2-4 through

benzylation and selective acetal cleavage (Scheme 2-1).(27) Treatment of 2-4 with aqueous

sodium periodate adsorbed onto silica yielded aldehyde 2-6(38, 39) that was used without

purification. Reaction of 2-6 with freshly prepared trithiophenylmethyl lithium afforded L-idose-

configured thioorthoester in high yield with no D-glucose product detectable.(10) The reaction

products were treated directly with CuC12/CuO to effect the cleavage of the thioorthoester to the

furanose methyl ester 2-5, along with small amounts of the corresponding phenylthioester.
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Stirring the crude product mixture with K2C0 3 in methanol converted this byproduct to the

desired methyl ester 2-5. Purification by flash chromatography gave 2-5 in a total yield of 79%

from 2-4. Removal of the isopropylidene group from furanose 2-5 by reaction with 90% TFA

(aq.) yielded the crystalline 3-O-benzyl iduronic methyl ester 2-7 in its pyranose form.(28)

1) PhS3CLi, -780C,
THF

1 B N•- HPl-kAI"P r . A-
IUII) I I I, II II , I

TBAI H-- OBn NalO 4, silica gel,
2) 66% aq. AcOH O H20/CH2CI2

90% O0

2)CuCI2, CuO,
MeOH/H 20/CH2CI2

3) K2CO 3, MeOH
79% (from 2)

9-4

OMe
MeO O , CSA OBn
HO OBn 90% TFA (aq.) MeO Bn OH 2) MeOH, Dowex 50W MeO2C \o + 2-7, 12.5%

0O 2C1 iH OH 0

O- OH OH

2-5 2-7 2-1, 50%

Scheme 2-1. Synthesis of 2-1.

Installation of a 1,2-isopropylidene onto 2-7 locked the sugar in the lC4 pyranose form

and afforded key intermediate 2-1.(28) Use of highly-reactive 2-methoxypropene with catalytic

camphorsulfonic acid (CSA)(40, 41) to form the desired isopropylidene acetal prevented opening

of the sugar ring and thus the trapping of thermodynamically more stable furanose isomers.

Partial hydrolysis of the crude product mixture with acidic resin in methanol produced the

desired product 2-1 in 50% yield from 2-5, along with recovered 2-7 (12.5%). The synthesis of

2-1 from diacetone glucose was achieved in nine steps and 36% overall yield (42% assuming

complete resubmission of 2-7). Only three chromatographic steps were required in this synthetic

sequence; additionally, the procedures for the transformation of 2-6 to 2-5 and 2-7 to 2-1 have

been simplified from those previously reported and the yields improved.(10, 28)
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L-iduronic acid derivative 2-1 may serve as a glycosyl acceptor in the synthesis of

disaccharide modules,(27, 28) or may be converted into a variety of iduronic acid

trichloroacetimidate glycosyl donors. The introduction of different protecting groups, including

silyl ethers, esters, and alkyl ethers, on the C-4 hydroxyl can be readily achieved.(27) Silylation

can be effected through the use of silyl triflates, esterification through acid anhydrides and

DMAP. Alkylation poses more of a challenge, as the C-5 stereocenter of 2-1 may epimerize in

the presence of strong base, but was accomplished using silver oxide and the corresponding alkyl

bromide (Scheme 2-2).

Ag20, BnBr or
Ag20, AIIBr or OBn

2-1 LevOH, DIPC MeO 2C

OR O

2-8 R = All, 70%
2-9 R = Bn, 77%
2-10 R = Lev, 98%

Scheme 2-2. Protection of the 4-OH of 2-1.

Differential protection of the C-1 and C-2 hydroxyls was achieved through two routes.

One option capitalized on the faster rate of cleavage of anomeric acetates over other ester

protecting groups.(42) Treatment of 2-8 with aqueous TFA to effect isopropylidene cleavage,

followed by acetylation of the crude material, afforded 2-11a and 2-11b (Scheme 2-3). These

anomers were separated and exposed to benzylamine to cleave the anomeric acetate selectively.

Since 2-11a and 2-11b react at different rates under these conditions, better yields were obtained

by treating these isomers separately. The resultant lactol was transformed to glycosyl

trichloroacetimidate 2-12 by reaction with trichloroacetonitrile and DBU.
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OAc
OBn 1) 6 eq BnNH 2

1) 90% aq. TFA MeO2C 0 2) DBU, Cl3CCN NH
2) Ac 20, DMAP, rI | OBn
pyridine OAll OAc 63% MeO2CO CC 3

2-8 2-11a M
98% OBn 1) 3.5 eq BnNH 2  OAII OAc

MeO2C - O.OAc 2) DBU, CI3CCN65% 2-12

OAII OAc
2-11b

Scheme 2-3. Synthesis of iduronic trichloroacetimidates by selective ester cleavage.

The second route to differentially protected iduronic acid derivatives from 2-1 was the

selective formation of anomeric silyl ethers.(26) After protection of the C-4 hydroxyl, the

isopropylidenes of 2-9 and 2-10 were cleaved using aqueous TFA (Scheme 2-4). The products

were exposed to a silyl chloride at low temperature to selectively protect the C-1 hydroxyl and

produce 2-13 and 2-16 respectively. The steric bulk of the C-4 protecting group required the

adjustment of reaction conditions to achieve good yield and selectivity. The larger benzyl group

allowed use of t-butyldimethylsilyl chloride (TBDMS-C1) as the silylating agent. The smaller

levulinate ester required lower temperatures and the bulkier thexyldimethylsilyl chloride (TDS-

Cl) to achieve good selectivity.
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1) 90% TFA OBn
2) TBS-CI, Imidazole MeO 2C • (OR 2

79%
OBn OR1

Lev 20, DMAP .2-13, R1 = H, R2 = TBS
1) TBAF AcOH 2-14, R1 = Lev, R2= TBS, 80%

2) DBU, CI 3CCN 2-15, R1 = Lev, R2 = C(NH)CCI 3 , 95%

1) 90% aq. TFA OBn OTDS OBn
2-10 2) TDS-CI, Imidazole MeO2• Ac20 or PivCI, MeO2C 0 OR2

80% [1
LevO OH LevO OR1

2-16 2-17 R1 = Piv, R2 = TDS, 94%
1) HF-Pyridine 2-18 R1 = Ac, R2 = TDS, quant.
2) DBU, CI3CCN

2-19 R1 = Piv, R2 = C(NH)CCI 3, 68%
2-20 R1 = Ac, R2 = C(NH)CCI 3, 74%

Scheme 2-4. Synthesis of iduronic trichloroacetimidates via selective silylation.

Further elaboration of 2-13 by introduction of a levulinate ester on the C-2 hydroxyl

afforded 2-14. Cleavage of the anomeric silyl ether yielded lactol which was converted to the

trichloroacetimidate 2-15. Similarly, product 2-16 was converted to its pivaloyl ester 2-17 and

acetate ester 2-18. The anomeric TDS ethers were cleaved using HF*pyridine, and the lactols

converted to the corresponding trichloroacetimidates 2-19 and 2-20.

Conversion of glycals to 1,2-isopropylidenes

The nine-step synthesis of 2-2 previously described relied on the interconversion of the

furanose and pyranose forms of the sugar, resulting in a mixture of products and variable yields

of the desired compound.(28) Direct conversion of a protected glycal to the 1,2-isopropylidene-

a-glycoside would avoid the problem of furanose-pyranose conversion and provide more

convenient access to 2-2. Several procedures for the direct conversion of aliphatic epoxides to

isopropylidenes have been published.(43-50) These procedures called for the treatment of the
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epoxide with a Lewis acid (typically AiC13 or BF 3*Et20) in acetone to effect the ring expansion

and were not reported to be diastereoselective.

Glucals are well known to react readily and selectively to 1,2-anhydroglucoses upon

treatment with dimethyldioxirane (DMDO) solution in acetone.(51) We anticipated that addition

of an acid catalyst to the reaction mixture after complete epoxidation would bring about the ring-

expansion of the anhydrosugar to the 1,2-isopropylidene through the addition of acetone

(Scheme 1). The desired a-isomer should be favored both by the anomeric effect and the

relatively high strain of the 1,2-trans-3-acetal.

(RO)3 r O(RO) 3  o 00

OBn
OBn BnO ~~

BBnOBnO LO0 D4

2-21a 2-21b

Scheme 2-5. Conversion of glucals to 1,2-isopropylidenes.

The proposed reaction was initially developed using tribenzyl glucal 2-21a as the test

substrate. Epoxidation of 2-21a with DMDO is rapid, and the anhydrosugar gives good yields in

acid catalyzed ring opening with alcohols.(51) In this case, after complete epoxidation of the

substrate, an acid catalyst was added directly to the reaction mixture to effect the addition of

acetone to the anhydrosugar. CSA, a protic acid, gave only trace amounts of product while the

remainder of the material decomposed. The Lewis acid ZnCl 2 afforded the product 2-21b in

significantly higher yields and the reaction was optimized for time and equivalents of ZnCl 2

(Table 2-1). The yield of this reaction was further improved by quenching the excess oxidant
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before addition of the acid, either by evaporation of the solvent followed by dissolving the

residue in anhydrous acetone, or by addition of ethyl vinyl ether (EVE) to react the remaining

DMDO. Both procedures worked equally well in initial trials; addition of EVE was selected due

to the ease of the procedure. Conversion of 2-21a to 2-21b by epoxidation with DMDO,

followed by addition of EVE to quench the remaining oxidant and subsequent reaction with 0.1

equivalents of ZnC12 for 18 h yielded 67% of the desired product. Other Lewis acids (A1C13,

SnCl4, and BF 3*Et20) gave results similar to ZnCl 2.

Table 2-1. Optimization of reaction conditions.

Activator DMDO Quench Time (h) Yield (%)

0.1 eq. CSA No 18 <5

0.1 eq. ZnCl2  No 4 47

1.0 eq. ZnC12  No 20 45

0.1 eq. ZnC12  No 20 55

0.025 eq. ZnCl2 No 18 43

0.1 eq. ZnC12 EVE 18 67
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Table 2-2. Substrate scope. PMP = p-methoxyphenyl, Piv = pivaloyl (trimethylacetyl). The product 2-26b was a
6:1 mixture of compounds, likely diastereomers from epimerization of the benzylidene acetal.

Entry Substrate (a) Product (b) Yield (%)
OAc

OAc AcO 4 0
2-22 AcO ArO 20

OTBDPS
OTBDPS PivO

2-23 PivO O PIvO 60
Pivo•ý o

OTIPS
OTIPS AcO • O

:2-24 AccO AcO 75AcOý A
OTIPS

OTIPS TBDMSO' . O
2-25 TBDMSOtO BnO 75

PMPBnO BnO-

2-26 BnOPM 10 -

(t-Bu) 2Si'O OO:2-27 O 1

OTIPS . . .
OTIPS HO TIPS

2-28 HO-)O TIPSO -0• 70
TIPSO O

2-29 HO q BnO- 0 73
Bn'O" O .O

BnOBn BnBn

BnO2-30 •nO . /O O

S OTIPS

_ °__N _D

2-31,0
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Next, the substrate scope and protecting group compatibility of the reaction was explored

(Table 2-2). Differentially protected glucals (entries 2-23, 2-24, 2-25, 2-28, and 2-29) and

tribenzyl galactal (entry 2-30) reacted smoothly; ester, silyl ether and benzyl groups were

tolerated. Glycals with unprotected secondary hydroxyl groups (entries 2-28, and 2-29) were

also readily converted into the desired products in good yield. Deactivated tri-O-acetyl-D-glucal

2-22a gave a low yield of isopropylidene 2-22b due to its poor reactivity with DMDO.(29, 51)

The conversion of glycals containing cyclic protecting groups (entries 2-26, 2-27, and 2-31) also

proceeded in poor yield. While epoxidation appeared complete, treatment with ZnCl 2 did not

afford the isopropylidene in significant quantities.

Using this new transformation, a short synthesis of the glucuronic acid building block

methyl 3-O-benzyl-1,2-O-isopropylidene-a-D-glucopyranosiduronate 2-2 was developed

(Scheme 3). Glycal 2-29a can be produced in three steps from commercially available 2-22a via

a previously reported route in 67% overall yield.(12) Epoxidation of 2-29a with DMDO

followed by reaction with ZnCl2 produced 2-29b; the crude product mixture was carried on

without purification. Treatment of this mixture with tetrabutylammonium fluoride cleaved the

silyl ether to reveal the primary hydroxyl group. The crude product was reacted with bleach and

catalytic 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) to selectively oxidize the C6-hydroxyl

to the carboxylic acid. The crude acid was methylated using methyl iodide and KHCO 3 in DMF.

Purification via flash silica gel column chromatography gave 2-2 in 48% yield.

1) DMDO; ZnCI2
1) NaOMe/MeOH 2) TBAF

OAc 2) TIPS-Cl, Imidazole 3) TEMPO, bleach
3) Bu2SnO; BnBr, TBAI TIPS 4) Mel, KHCO 3

AcO O 67% HO- O 2-2
AcO- BnO 48%

2-22a 2-29a

Scheme 2-6. Synthesis of 2-2.
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Conclusions

The synthesis of compound 2-1 in 36% overall yield in nine steps from diacetone glucose

is significantly shorter than the previous route,(27) allowing for the rapid production of

multigram quantities of this iduronic acid building block. Key intermediate 2-1 may be

elaborated through selective anomeric hydroxyl silylation or selective acetate cleavage to

produce a variety of iduronic acid derivatives, including the glycosyl donors 2-12, 2-15, 2-19,

and 2-20, using chemistry readily adaptable to other protecting group schemes. Further, a

general methodology for the conversion of differentiated glycals to the corresponding 1,2-cis-

isopropylidienes via a one-pot procedure was developed. The reaction described is easily

executed and tolerates a variety of useful protecting groups, including silyl ethers, benzyl ethers,

esters, and free hydroxyls. Glycals containing cyclic protecting groups, such as acetals and

internal carbonates, are not useful substrates, as their epoxides do not add acetone readily. This

new methodology was applied to the synthesis of glucuronic acid derivative 2-2, a useful

building block in the assembly of glycosaminoglycans, such as heparin. The synthesis of 2-2

was achieved in seven steps and 32% overall yield. The chemistry presented offers for the first

time a general, high yielding, and easily scaleable route to uronic acid synthons for

glycosaminoglycan assembly, addressing a long-standing obstacle in the convenient production

of these compounds.
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Chapter 3

A Stereochemical Surprise at the Late Stage of the Synthesis of Fully N-

Differentiated Heparin Oligosaccharides Containing Amino, Acetamido, and

N-Sulfonate Groups
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3.1 Introduction

Heparin-like glycosaminoglycans (HLGAGs) are a class of polysaccharides found

protein-conjugated in the extracellular matrix and free in the circulatory system. HLGAGs are

involved in an array of signaling functions, including regulation of the coagulation cascade,

growth factor interactions, and viral entry into cells.(1-12) Heparin fractions isolated from

animal sources are used clinically as anti-coagulants,(13, 14) and several synthetic analogues of

heparin have been prepared as anticoagulant drug candidates.(15-24)

HLGAGs consist of alternating 1,2-anti-(1--4) linked uronic acid residues and Ca-(1 -4)

linked glucosamine residues. The polysaccharides exist in a wide variety of O-and N-sulfonated

as well as N-acetylated states with a high sequence variability. Due to both the high structural

complexity and the difficulty of isolating homogeneous structures from natural sources, heparin

is an ideal target for a modular synthetic method. Defined sequences of heparin are needed for

biological study, and the ability to generate diverse libraries of heparin would greatly facilitate

studies into the structure-activity relationship of HLGAGs. The direct study of heparin

biochemistry and the development of HLGAG analytical techniques would benefit from the

availability of defined sequences. No completely general method for the production of heparin

oligosaccharides exists and substantial synthetic challenges remain to be overcome.(1, 16, 25-27)

Recent reports describe fully differentiated monosaccharide building blocks for HLGAG

synthesis.(28-36) Several sequences have been produced, including oligomers of the fibroblast

growth factor (FGF) disaccharide repeat(37-43) and several variants and analogues of the

antithrombin III (ATIII) binding structure. (15, 16, 44-57) The amine group has been masked as

an azide in most heparin syntheses to date, allowing access to only poly-N-sulfonated structures.

One synthesis of the ATIII binding sequence included a non-reducing end GlcNAc residue, (57)
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but the method used was not general and the use of the N-acetate as the protecting group resulted

in poor coupling yields.(58, 59)

2-Azido glucosyl trichloroacetimidates or halides frequently serve as glycosylating

agents to install a-glucosamine linkages. These reagents have shown high a-selectivity when

coupled to the C4 hydroxyl group of iduronic acid, but afford mixtures of products when coupled

to glucuronic acid.(33, 48, 57, 60) In the recent synthesis of a ATIII-binding

hexasaccharide,(32) all a-glucosamine linkages were formed with complete selectivity during

the assembly of disaccharide modules via glycosylation of conformationally constrained 1,2-0-

isopropylidene iduronic or glucuronic acids with 2-azido glucosyl trichloroacetimidates.(33)

The HLGAG octasaccharide 3-1 is known to bind viral coat proteins on herpes simplex

virus 1 (HSV-1) and is thought to be involved in viral cell entry.(61, 62) Based on sequencing

efforts that combine enzymatic degradation and mass spectrometry, two possible structures

(Figure 3-1) have been proposed for the herpes-binding sequence.(63-65) The isolated structures

contained 4,5-dehydrouronic acids at the non-reducing end and at the indicated site as a result of

the degradation techniques used. The structure contains N-sulfonates, an N-acetate, and a free

amine.

Figure 3-1. Target structure as reported from sequencing studies.(64) The stereochemistry at the indicated site is
unknown. Counter ions after oligosaccharide purification are primarily sodium.
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This chapter describes a strategy for the synthesis of N-differentiated heparin

oligosaccharides en route to fully protected target 3-2 (Figure 3-2). Iduronic acid was selected

arbitrarily in the two uronic acid positions of unknown stereochemistry to reduce the complexity

of the synthetic target. As in previous heparin syntheses, O-sulfonates were masked as O-

acetates, free hydroxyls as O-benzyl ethers, carboxylic acids as methyl esters, and N-sulfonates

as azide groups.(1, 15, 16, 25-27, 32, 37-39, 41-46, 48, 54, 57, 58, 66, 67) An N-diacetate

masked the N-acetate,(59, 68) while the free amine was masked as the benzyl carbamate (CBz,

Z). These protecting groups would allow for the deprotection and elaboration of 3-2 through a

modification of previously established heparin deprotection protocols.(1, 15, 16, 25-27, 32, 37-

39, 41-46, 48, 54, 57, 58, 66, 67) All O-acetates and methyl esters, as well as one of the N-

diacetate amides, could be removed using LiOOH/NaOH. Selective reduction of the azides

could be achieved by Staudinger, thiol, SmI2, or a variety of other selective reduction

chemistries.(69) Sulfonation of all hydroxyls and amines with SO3*NEt3, followed by Pd/C

reductive removal of benzyl ethers and the CBz carbamate, would reveal the fully deprotected

and elaborated structure.

Fully protected octasaccharide 3-2 was the proposed target en route to the HSV-1 binding

octasaccharide 3-1. Retrosynthetic analysis of 3-2 revealed that the non reducing end

disaccharide 3-3, the tetrasaccharide 3-4, and the reducing end disaccharide 3-5 would provide

the key modules based on the assumption that 2-azido glucosamines can be coupled to iduronic

acid residues with complete cx-stereoselectivity. These intermediates can be readily assembled

from five previously reported monosaccharide modules: iduronic acid derivatives 3-6, 3-8, and

3-9 (Chapter 2)(30) and glucosamine derivatives 3-7(32) and 3-10.
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3.2 Experimental

Materials and Methods. All commercial materials were used without purification, unless

otherwise noted. CH2C12, THF, and diethyl ether were passed through neutral alumina columns

prior to use. Toluene was passed through neutral alumina and copper (II) oxide columns before

use. Methanol and DMF were purchased anhydrous and used without further purification.

Analytical thin-layer chromatography was performed on E. Merck silica gel 60 F254 plate

(<0.25 mm). Compounds were visualized by cerium sulfate-ammonium molybdate stain and
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heating. Liquid chromatography was performed using forced flow of the indicated solvent on

silica (230-400 Mesh).

t-Butyldimethylsilyl (methyl 3,4-di-O-benzyl-2-O-levonuyl-a-L-idopyranosiduronate) (1-4)

2-azido-3,6-di-O-benzyl-2-deoxy-3-D-glucopyranoside (3-11). Trichloroacetimidate 3-6(30)

(220 mg, 0.349 mmol) and monosaccharide 3-7(32) (145 mg, 0.29 mmol) were coevaporated

three times with anhydrous toluene. The compounds were dissolved in anhydrous CH2C12 (3

mL) under N2 and cooled to -15 0 C. Trimethylsilyl trifluoromethanesulfonate (TMSOTf) (7.5

ýtL, 0.042 mmol) was added and the reaction was stirred for 45 min. The reaction was quenched

by addition of NEt 3 (0.2 mL) and the solvent was removed under reduced pressure. Flash

chromatography on silica (hexanes:ethyl acetate 17:3) afforded recovered 7 (13 mg, 0.026 mmol,

9%). Further elution (hexanes:ethyl acetate 3:1) yielded 3-11 (208 mg, 0.215 mmol, 74%) as a

clear oil. Rf. 0.13 (hexanes:ethyl acetate 3:1). [cX] 24D: -28.3, c = 0.9. IR (thin film, NaCl plates)

2928, 2110, 1745, 1739, 1721 cm -1. 'H NMR (500 MHz, CDC13) 6 7.22-7.39 (m, 20H), 5.31 (d,

J= 3.6 Hz, 1H), 4.91 (t, J = 3.6 Hz, 1H), 4.81 (d, J= 3.6 Hz, 1H), 4.69-4.75 (m, 3H), 4.43-4.60

(m, 6H), 4.02 (t, J= 9.3 Hz, 1H), 3.87 (t, J= 4.1, 1H), 3.81 (t, J= 3.9 Hz, 1H), 3.70-3.71 (m,

2H), 3.44 (s, 3H), 3.38 (m, 1H), 3.35 (d2, J = 7.5 Hz, 10 Hz, 1H), 3.26 (t, J= 4.5 Hz, 1H), 2.63

(m, 2H), 2.46 (m, 2H), 2.12 (s, 3H), 0.94 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H). 13C NMR (125

MHz, CDC13) 6 206.4, 172.1, 169.8, 138.5, 138.4, 137.9, 137.8, 128.6, 128.5, 128.4, 128.3,

128.1, 128.07, 128.04, 128.0, 127.7, 127.6, 127.4, 97.8, 97.4, 81.0, 75.4, 75.0, 74.9, 74.7, 73.6,

73.4, 73.6, 73.4, 72.9, 72.7, 69.6, 69.3, 68.8, 68.4, 51.9, 37.9, 30.0, 28.1, 25.8, 10.2, -4.0, -5.0.

ESI MS (C52H65N3013Si) m/z (M + Na ) calcd 990.4179, obsd 990.4145.

t-Butyldimethylsilyl (methyl 3,4-di-O-benzyl-a-L-idopyranosiduronate) (1-4) 2-azido-3,6-

di-O-benzyl-2-deoxy-1-D-glucopyranoside (3-12). Disaccharide 3-11 (176 mg, 0.182 mmol)
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was dissolved in pyridine (550 ýiL) and acetic acid (360 ItL). Hydrazine hydrate (44 tiL, 0.91

mmol) was added and the reaction was stirred for 1 h. The reaction was quenched by addition of

acetone (5 mL) and stirred for 30 min. The solution was poured into ethyl acetate (50 mL),

washed with IN HC1, brine, and saturated NaHCO3. The organic phase was dried over MgSO 4

and solvent was removed under reduced pressure. Flash chromatography on silica

(hexanes:ethyl acetate 17:3) afforded 3-12 (145 mg, 0.167 mmol, 92%) as a clear oil. Rf. 0.21

(hexanes:ethyl acetate 3:1). [a] 24D: -47.6, c = 0.8. IR (thin film, NaCl plates) 3495, 2929, 2857,

2109, 1776, 1742, 839 cm-'. 'H NMR (500 MHz, CDCl3) 8 7.21-7.4 (m, 20H), 5.23 (d, J= 1.5

Hz, 1H), 4.90 (d, J= 2.3 Hz, 1H), 4.45-4.71 (m, 9H), 3.98 (Wt, J= 9.4 1H), 3.83-3.87 (m, 2H),

3.67-3.72 (m, 3H), 3.43 (d, J= 10.9 Hz, 1H), 3.35-3.4 (m, 2H), 3.36 (s, 3H), 3.22 (Wt, J=9.5Hz,

1H), 0.94 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H). 13C NMR (125 MHz, CDCl3) 8 169.9, 138.5, 138.1,

137.9, 136.9, 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 127.9, 127.4, 101.1, 97.6, 81.2, 75.5, 75.0,

74.3, 73.3, 73.2, 72.3, 68.9, 68.2, 67.2, 52.0, 25.7, 18.2, -4.0, -5.0. ESI MS (C47H59N3 0 11 Si) m/z

(M + Na+) calcd 892.3811, obsd 892.3829.

t-Butyldimethylsilyl (methyl 2,3,4-tri-O-benzyl-a-L-idopyranosiduronate) (1 -4) 2-azido-

3,6-di-O-benzyl-2-deoxy-3-D-glucopyranoside (3-13). Disaccharide 3-12 (125 mg, 0.144

mmol), was coevaporated three times with anhydrous toluene and dissolved in anhydrous

hexanes (1.4 mL) and a minimum amount of anhydrous CH2C12 to dissolve the compound.

Benzyl trichloroacetimidate (54 jiL, 0.288 mmol) was added, followed by one drop (-1 tL) of

trifluoromethanesulfonic acid. After 90 min, the solution was filtered to remove the precipitated

trichloroacetamide and the solvent was removed under reduced pressure. Flash chromatography

on silica (hexanes:ethyl acetate 9:1) yielded 3-13 (105 mg, 0.109 mmol, 76%) as a clear oil. Rf.

0.53 (hexanes:ethyl acetate 3:1). [C] 24 D: -20.1, c = 0.7. IR (thin film, NaCl plates) 2928, 2110,
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1741 cm -1. 'H NMR (500 MHz, CDC13) 6 7.24-7.37 (m, 25H, aryl H), 5.40 (d, 3JH1-H2 = 6.4, 1H,

IdoA H1), 4.85 (d, 2j= 10.7 Hz, 1H, benzyl CH 2), 4.73 (d, 2j= 11.2 Hz, 1H, benzyl CH 2), 4.72

(m, 1H, benzyl CH 2), 4.71 (m, 1H, benzyl CH 2), 4.70 (m, 1H, benzyl CH 2), 4.68 (d, 2J= 11.5Hz,

1H, benzyl CH 2), 4.64 (d, 2J= 11.6 Hz, 1H, benzyl CH 2), 4.60 (d, 2J= 11.6 Hz, 1H, benzyl

CH 2), 4.58 (d, JH4_H5 = 5.8, 1H, IdoA H4), 4.54 (d, 2 J= 12.4 Hz, 1H, benzyl CH 2), 4.47 (d, 3JHm-

H2 = 7.4 Hz, 1H, GlcN 3 H1), 4.45 (d, 2J= 12.4 Hz, 1H, benzyl CH 2), 3.98 (m, 1H, GlcN 3 H4),

3.96 (m, 1H, IdoA H3), 3.81 (d2, 3JH3-H4 = 7.4, 3JH4_H5 = 5.8, 1H, IdoA H4), 3.71 (d2, 2J= 10.7

Hz, 3JH5-H6 = 4.3 Hz, 1H, GlcN 3 H6), 3.66 (d2, 2 J= 10.7 Hz, JH5-H6, = 1.7 Hz, 1H, GlcN 3 H6'),

3.53 (s, 3H, OCH 3), 3.37 (d2, 3JH-H2 = 6.4, 3JH2H3 = 7.5, 1H, IdoA H2), 3.34 (m, 1H, GlcN 3 H5),

3.31 (m, 1H G1cN 3 H2), 3.29 (m, 1H, GlcN3 H3), 0.95 (s, 9H, TBDMS t-butyl), 0.16 (s, 3H,

TBDMS methyl), 0.14 (s, 3H, TBDMS methyl). 13C NMR (125 MHz, CDC13) 6 170.0 (IdoA

C6), 138.6 (benzyl quat.), 138.5 (benzyl quat), 138.4 (benzyl quat), 137.9 (benzyl quat), 128.6

(aromatic C), 128.55 (aromatic C), 128.5 (aromatic C), 128.4 (aromatic C), 128.3 (aromatic C),

128.25 (aromatic C), 128.15 (aromatic C), 128.1 (aromatic C), 128.05 (aromatic C), 128.0

(aromatic C), 127.9 (aromatic C), 127.8 (aromatic C), 127.7 (aromatic C), 127.65 (aromatic C),

127.5 (aromatic C), 100.0 (IdoA Cl), 97.3 (GlcN 3 C1), 81.1 (GlcN 3 C2), 80.6 (IdoA C2), 79.0

(IdoA C3), 77.2 (IdoA C4), 75.9 (GlcN 3 C4), 75.5 (GlcN 3 C3), 75.0 (benzyl CH 2), 74.9 (benzyl

CH 2), 74.6 (benzyl CH 2), 73.4 (benzyl CH 2), 73.35 (benzyl CH 2), 72.0 (IdoA C5), 68.6 (GlcN 3

C51), 68.3 (GlcN 3 C6), 52.0 (OCH 3), 25.8 (TBDMS t-butyl CH 3), 18.2 (TBDMS t-butyl quat), -

4.0 (TBDMS methyl CH 3), -5.0 (TBDMS methyl CH 3). ESI MS (C54H65N301nSi) m/z (M + Na+)

calcd 982.4281, obsd 982.4250.

Methyl 2,3,4-tri-O-benzyl-a-L-idopyranosiduronate (1-4) 2-azido-3,6-di-O-benzyl-2-

deoxy-D-glucopyranoside trichloroacetimidate (3-3). Disaccharide 3-13 (30 mg, 31 [pmol) was
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coevaporated three times with anhydrous toluene and dissolved in anhydrous THF (500 ýiL).

The solution was cooled to 00 C and acetic acid (2 jtL, 35 [tmol) was added followed by TBAF

(34 jiL, 1.0 M in THF). After 1 h, the reaction was poured into ethyl acetate (100 mL) and

washed twice with brine. The organic phase was dried over MgSO 4 and the solvent was

removed under reduced pressure.

The residue was coevaporated three times with anhydrous toluene and dissolved in

anhydrous CH 2C12 (500 tL) under N2. The solution was cooled to 00 C and trichloroacetonitrile

(47 [tL, 0.47 mmol) and DBU (0.5 ýtL, 3 ýtmol) added. The reaction was stirred 30 min then

allowed to warm to room temperature. The solvent was evaporated and the residue purified by

flash chromatography on silica (toluene:ethyl acetate 9:1) to afford 3-3 (24 mg, 24 jimol, 78%,

1.5:1 t:p ) as a yellow oil. Rf. 0.57, 0.63 (hexanes:ethyl acetate 2:1). IR (thin film, NaCl

plates) 3030, 2918, 2112, 1761, 1739, 1674 cm l'. H NMR (500 MHz, CDC13) 6 8.70 (s, 0.4H),

8.69 (s, 0.6H), 7.12-7.39 (m, 25H), 6.38 (d, J= 3.5 Hz, 0.6H), 5.6 (d, J= 8.4 Hz, 0.4H), 5.44-

5.50 (m, 1H), 5.03 (d, J= 10.3 Hz, 0.6H), 4.92 (d, J= 10.7 Hz, 0.4 H), 4.70-4.78 (m, 5H), 4.63-

4.67 (m, 2H), 4.51-4.6 (m, 2H), 4.47 (d, J= 12.2 Hz, 0.4H), 4.42 (d, J= 12.0 Hz, 0.6H), 4.24 (t,

J := 9.6 Hz, 0.6H), 4.13 (t, J= 9.3 Hz, 0.4 H), 3.91-4.04 (m, 3H), 3.76-3.84 (m, 2H), 3.65-3.71

(m, 1H), 3.35-3.56 (m 6H). 13C NMR (125 MHz, CDC13) 6 170.6, 170.5, 161.8, 161.3, 139.0,

138.9, 138.85, 138.8, 138.75, 138.7, 138.6, 138.35, 138.30, 129.6, 129.4, 129.15, 129.11, 129.1,

129.07, 129.05, 129.03, 128.9, 128.89, 128.87, 128.85, 128.65, 128.63, 128.60, 128.58, 128.57,

128.55, 128.4, 128.35, 128.1, 100.6, 100.5, 97.4, 15.5, 91.7, 81.75, 81.7, 81.0, 79.9, 79.6, 78.8,

78.1, 77.0, 76.4, 75.9, 75.85, 75.8, 75.7, 75.4, 75.35, 75.1, 74.4, 74.0, 73.9, 73.8, 72.7, 68.0, 67.8,

65.9, 63.1, 52.5, 52.4. MS (C5oH51C13N4011 ) m/z (M + Na+) calcd 1011.2518, obsd 1011.2507.
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t-Butyldimethylsilyl (methyl 2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-idopyranosiduronate)

(1-)4) 2-azido-3,6-di-O-benzyl-2-deoxy-o-D-glucopyranoside (3-14). Trichloroacetimidate 3-

9(30) (62 mg, 0.118 mmol) and monosaccharide 7(32) (40 mg, 0.079 mmol) were combined and

coevaporated three times with anhydrous toluene. The mixture was dissolved in anhydrous

CH 2C12 (1 mL) under N2 and cooled to -150 C. TMSOTf (130 ýiL of a 0.1 M solution in CH2C12)

was added and the reaction stirred 30 min at reduced temperature, then allowed to warm to room

temperature over 30 min. The reaction was quenched with NEt3 (0.2 mL) and the solvent was

removed under reduced pressure. Flash chromatography on silica (hexanes:ethyl acetate 17:3)

afforded 3-14 (60 mg, 0.070 mmol, 88%) as a clear oil. Rf 0.28 (hexanes:ethyl acetate 3:1).

[a]24D: -35.3, c = 0.62. IR (thin film, NaCl plates) 2926, 2110, 1764, 1741 cm -1. 'H NMR (500

MHz, CDC13) 8 7.24-7.39 (m, 15H, aromatics), 5.76 (m, 1H, allyl OCH2CH=CH2), 5.30 (d,

3JH1H2 = 3.5 Hz, 1H, IdoA H1), 5.17 (d3, J= 17.4 Hz, 3Hz, 4J= 1.6 Hz, 1H, allyl

OCH 2HCH=CH), 5.13 (d3, J= 10.4 Hz, 3 Hz, 4 J= 1.1 Hz), 4.89 (Wt, J= 3.8 Hz, 1H, IdoA H2),

4.79 (d, 3JH5H4 = 3.8 Hz, 1H, IdoA H5), 4.76 (d, 2J= 11.1 Hz, 1H, GlcN303 benzyl CH2), 4.73

(d, 2J= 11.7 Hz, 1H, IdoA 03 benzyl CH2), 4.71 (d, 2 J- 11.1 Hz, 1H, GlcN 303 benzyl CH2),

4.68 (d, 2 J= 11.7 Hz, 1H, IdoA 03 benzyl CH2), 4.60 (d, 2 J= 12.3 Hz, 1H, GlcN 306 benzyl

CH 2), 4.55 (d, 2J= 12.3 Hz, 1H, GlcN 306 benzyl CH2), 4.49 (d, 3 JHIH2 = 7.5 Hz, 1H GlcN 3 HI),

3.99 (m, 1H, allyl OCHHCH=CH 2), 3.98 (m, 1H, GlcN 3 H4), 3.93 (d2yrt, J= 1.4 Hz, 5.8 Hz,

12.8 Hz, 1H, allyl OCHHCH=CH 2), 3.84 (Wt, J= 4.6 Hz, 1H, IdoA H3), 3.74 (yt, J= 4.2, 1H,

IdoA H4), 3.68 (m, 2H, GlcN 3 H6), 3.51 (s, 3H, -OCH 3), 3.37 (m, 1H, GlecN 3 H5), 3.35 (m, 1H

GlcN 3 H2), 3.27 (d2, 3 J= 9 Hz, 9.8 Hz, GlcN 3 H3), 1.99 (s, 3H, acetate CH3), 0.96 (s, 9H,

TBDMS t-butyl), 0.16 (s, 3H, TBDMS methyl), 0.14 (s, 3H, TBDMS methyl). 13C NMR (125

MHz, CDC13) 8 170.3 (acetate carbonyl), 169.8 (IdoA C6), 138.5 (GlcN3 03 benzyl CH2), 138.3
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(GlcN 306 benzyl quat.), 137.9 (IdoA 03 benzyl quat), 134.4 (allyl OCH2CH=CH2), 128.6

(aromatic C), 128.5 (aromatic C), 128.3 (aromatic C), 128.1 (aromatic C), 128.05 (aromatic C),

127.8 (aromatic C), 127.7 (aromatic C), 127.6 (aromatic C), 127.5 (aromatic C), 117.6 (allyl

OCH 2CH=CH2), 98.0 (IdoA Cl), 97.4 (GlcN 3 Cl), 81.1 (GlcN 3 C3), 75.4 (GlcN 3 C5), 75.1

(GlcN 3 C4), 75.1 (IdoA C4), 74.8 (GlcN 3 03 benzyl CH2), 73.9 (IdoA C3), 73.5 (GlcN 306

benzyl CH2), 73.1 (IdoA 03 benzyl CH 2), 71.8 (allyl OCH 2CH=CH2), 69.7 (IdoA C5), 69.4

(IdoA C2), 68.8 (GlcN 3 C2), 68.5 (GlcN 3 C6), 52.0 (OCH 3), 25.8 (TBDMS t-butyl CH 3), 21.2

(acetate CH 3), 18.2 (TBDMS t-butyl quat.), -4.0 (TBDMS methyl), -5.0 (TBDMS methyl). ESI

MS (C45H59N30 12 Si) m/z (M + Na+) calcd 884.3760, obsd 884.3756.

Methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-ac-L-idopyranosid)uronate (1 -)4) 2-azido-3,6-di-O-

benzyl-2-deoxy-D-glucopyranoside trichloroacetimidate (3-15). Disaccharide 3-14 (960 mg,

1.11 mmol) was coevaporated three times with anhydrous toluene and dissolved in anhydrous

THF (10 mL). The solution was cooled to 00 C and acetic acid (71 tIL, 1.23 mmol) was added

followed by TBAF (1.0 M in THF, 1.23 mL). After 45 min, the reaction was poured into

saturated NH4 CI and the aqueous phase was extracted with ethyl acetate (3 x 150 mL). The

organic phases were combined and dried over MgSO 4 and the solvent was removed under

reduced pressure.

The residue was coevaporated three times with anhydrous toluene and dissolved in

anhydrous CH 2C12 (10 mL) under N2. The solution was cooled to 0oC and trichloroacetonitrile

(1.7 mL, 16.7 mmol) and DBU (32 ýiL, 0.22 mmol) was added. The reaction was stirred for 30

minutes then allowed to warm to room temperature. The solvent was evaporated and the residue

was purified by flash chromatography on silica (hexanes:ethyl acetate 3:1) to afford 3-15 (950

mg, 1.07 mmol, 96%, 2:1 P:ac) as a yellow oil. Rf. 0.14 (hexanes:ethyl acetate 3:1). IR (thin

125



film, NaCi plates) 3338, 3031, 2876, 2113, 1745, 1739, 1675 cm -'. 1H NMR (500 MHz, CDC13)

6 8.70 (s, 0.67H), 8.69 (s, 0.33H), 7.24-7.38 (m, 15H), 6.40 (d, J= 3.5 Hz, 0.33H), 5.74-5.79 (m,

1H), 5.60 (d, J = 8.3 Hz, 0.67H), 5.35-5.37 (m, 1H), 5.17-5.21 (m, 2H), 4.51-4.94 (m, 8H), 4.2 (t,

J= 4.4, 0.33 H), 4.12 (t, 0.66H), 3.83-4.02 (m, 4H), 3.63-3.78 (m, 4H), 3.41-3.59 (m, 2H), 3.52

(s, 2H), 3.51 (s, 1H), 1.97 (s, 2H), 1.96 (s, 1H). 13C NMR (125 MHz, CDC13) 8 170.2, 170.19,

169.8, 161.2, 160.9, 138.2, 138.1, 138.0, 137.98, 137.95, 137.92, 134.4, 134.3, 128.66, 128.65,

128.57, 128.48, 128.39, 128.33, 128.18, 128.15, 128.1, 127.98, 127.9, 127.87, 127.77, 127.71,

127.63, 127.6, 117.73, 117.67, 97.9, 96.9, 95.0, 90.7, 78.5, 76.3, 75.3, 75.17, 75.15, 75.0, 75.9,

74.5, 74.2, 74.0, 73.6, 73.5, 73.3, 73.2, 71.95, 71.9, 70.2, 69.9, 69.7, 69.5, 67.8, 67.7, 65.7, 63.1,

52.1, 52.0, 21.22, 21.20. ESI MS (C41H45 C13N4 012) m/z (M + Na+) calcd 913.1992, obsd

913.1996.

Methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-idopyranosid)uron ate (1 4) 2-azido-

3,6-di-O-benzyl-2-deoxy-a-D-glucopyranoside (1 -4) 3-O-benzyl-1,2-isopropylidine-13-L-

idopyranosid]uronate (3-16). Trichloroacetimidate 3-15 (950 mg, 1.07 mmol) and

monosaccharide 3-8(30, 33) (433 mg, 1.28 mmol) were combined and coevaporated three times

with anhydrous toluene. The mixture was dissolved in anhydrous CH2C1 2 (10 mL) under N2 and

cooled to -25 0 C and freshly activated 4A molecular sieves (1 g) were added and the reaction was

stirred for 30 min. TMSOTf (25 ýtL, 0.107 mmol) was added and the reaction was stirred for 90

minutes at reduced temperature. The reaction was quenched with NEt 3 (1 mL) and the solvent

was removed under reduced pressure. Flash chromatography on silica (toluene:ethyl acetate

10:1 - 20:3) afforded 3-16 (940 mg, 0.88 mmol, 83%) as a clear oil. Rf. 0.23 (hexanes:ethyl

acetate 2:1). [c]24D: -12.5, c = 1.2. IR (thin film, NaCl plates) 2932, 2108, 1765, 1741 cm - . IH

NMR (500 MHz, CDC13) 6 7.24-7.29 (m, 20H), 5.75-5.81 (m, 1H), 5.35 (d, J= 4.9 Hz, 1H), 5.32

126



(d, J= 2.5 Hz, 1H), 5.19 (d3, J= 1.6, 3.2, 17.2 Hz, 1H), 5.13 (d3 , J= 1.2, 2.8, 10.4 Hz, 1H), 4.86-

4.89 (m, 3H), 4.65-4.74 (m, 6H), 4.61 (d, J= 12.2 Hz, 1H), 4.51 (d, J= 12 Hz, 1H), 4.40 d, J=

1.4 Hz, 1H), 4.19 (t, J= 2.3 Hz, 1H), 3.95-4.08 (m, 5H), 3.86 (t, J= 6 Hz, 1H), 3.70-3.77 (m,

4H), 3.64 (s, 3H), 3.61 (d2,J= 1.9, 11.1 Hz, 1H), 3.51 (s, 3H), 3.43 (d2, J= 3.3, 10.3 Hz, 1H),

1.96 (s, 3H), 1.58 (s, 3H), 1.37 (s, 3H). 13C NMR (125 MHz, CDC13) 8 169.9, 161.2, 138.3,

138.15, 138.1, 137.2, 134.4, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 128.05, 128.0,

127.9, 127.8, 127.5, 117.7, 112.3, 98.3, 97.9, 97.1, 78.3, 75.9, 75.45, 75.4, 75.2, 74.9, 73.6, 73.4,

73.0, 72.8, 72.1, 71.8, 71.4, 70.8, 70.6, 67.5, 63.7, 52.5, 52.0, 28.2, 26.3, 21.2. ESI MS

(C56H65N301 8) m/z (M + Na+) calcd 1090.4155, obsd 1090.4123.

Methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-idopyranosid)uronate (1 -4) 2-

acetamido-3,6-di-O-benzyl-2-deoxy-a-D-glucopyranoside (1-4) 3-O-benzyl-1,2-

isopropylidine-13-L-idopyranosid]uronate (3-17). Trisaccharide 3-16 (940 mg, 0.88 mmol)

was coevaporated three times with anhydrous toluene. The compound was dissolved in

anhydrous pyridine (9 mL) under N2 and cooled to 00 C. Thiolacetic acid (9 mL) was added and

the cooling bath removed. The reaction was stirred 12 h and the solvent was removed under

reduced pressure. Flash chromatography on silica (hexanes:ethyl acetate 7:3) eluted the side

products. Further elution (hexanes:ethyl acetate 1:1) afforded 3-17 (800 mg, 0.74 mmol, 84%)

Rf. 0.31 (hexanes:ethyl acetate 1:2). [a] 2 4 D: -1.3, c = 1.03. IR (thin film, NaCl plates) 3030,

2931, 1767, 1739, 1682 cm-'. 'H NMR (500 MHz, CDC13) 68 7.16-7.41 (m, 20H), 6.53 (d, J=

9.7 Hz, 1H), 5.74 (m, 1H), 5.36 (d, J= 2.3 Hz, 1H), 5.30 (d, J= 3.6 Hz, 1H), 5.16 (d3, J= 1.6,

3.3, 17.2 Hz, 1H), 5.10 (d3 , J= 1.3, 3.3, 10.4 Hz, 1H), 4.89 (t, J= 4 Hz, 1H), 4.66-4.74 (m, 6H),

4.57-4.6 (m, 3H), 4.48 (d, J= 1.4 Hz, 1H), 4.38 (d, J= 11.5 Hz, 1H), 4.36 (dt, J= 3.7, 10.5 Hz,

1H), 4.08 (t, J= 9.5 Hz, 2H), 3.93-3.99 (m, 4H), 3.88 (t, J= 2.2 Hz, 1H), 3.83 (t, J= 4.8 Hz,
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1H), 3.76 (m, 1H), 3.68 (m, 1H), 3.67 (s, 3H), 3.60 (d2, J= 2.3, 11 Hz, 1H), 3.52-3.56 (m, 1H),

3.47 (s, 3H), 3.43 (d2, J= 9.3, 10.5 Hz), 1.93 (s, 3H), 1.8 (s, 3H), 1.55 (s, 3H), 1.36 (s, 3H). 13C

NMR (125 MHz, CDC13) 6 170.2, 170.15, 169.8, 169.1, 138.9, 138.2, 138.0, 136.6, 134.5, 129.0,

128.7, 128.65, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.6, 127.0, 117.5, 112.3, 98.0,

97.7, 96.6, 79.4, 75.3, 75.25, 75.2, 74.7, 74.0, 73.6, 73.25, 73.2, 72.2, 71.9, 71.5, 71.4, 71.35,

69.6, 69.4, 68.1, 52.7, 52.3, 52.0, 28.6, 26.4, 23.1, 21.2. ESI MS (C5 8H69N0 19) m/z (M + Na+)

calcd 1106.4356, obsd 1106.4328.

t-Butyldimethysilyl methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-

idopyranosid)uronate (1 -4) 2-acetamido-3,6-di-O-benzyl-2-deoxy-a-D-glucopyranoside

(1-4) 3-O-benzyl-1-L-idopyranosid]uronate (3-18). Trisaccharide 3-17 (1.66 g, 1.53 mmol)

was dissolved in TFA (90% aq., 30 mL) and stirred 20 min. The solvent was removed under

reduced pressure and the residue coevaporated five times with anhydrous toluene. The crude

material was dissolved in anhydrous CH 2C12 (4 mL) and cooled to -250 C under N2. TBDMSC1

(347 mg, 2.3 mmol) and imidazole (417 mg, 6.12 mmol) were added and the reaction was stirred

for 16 h at -50 C. Methanol (1 mL) was added and the mixture stirred 15 min and poured into

ethyl acetate (300 mL). The organic phase was washed with IN HC1, brine, and saturated

NaHCO 3. The organic phase was dried over MgSO 4 and solvent was removed under reduced

pressure. Flash chromatography on silica (hexanes:ethyl acetate 1:1) afforded 3-18 (1.65 g, 1.43

mmol, 93%) as a clear oil (15:1 3:tc). Characterization data is reported for the 13 isomer only.

Rf. 0.28 (hexanes:ethyl acetate 1:2). IR (thin film, NaCl plates) 3336, 3031, 2858, 1767, 1739,

1674 cm -1 . 1H NMR (500 MHz, CDC13) 6 7.19-7.41 (m, 20H), 6.71 (d, J= 9.6 Hz, 1H); 5.7-5.78

(m, 1H), 5.26 (d, J= 3.5 Hz, 1H), 5.14 (d3, J= 17.1, 3.2, 1.6 Hz, 1H), 5.09 (d3, J= 10.3, 2.9, 1.2

Hz, 1H), 5.02 (d, J= 1.3 Hz, 1H), 4.85 (t, J= 4 Hz, 1H), 4.76 (d, J= 3.8 Hz, 1H), 4.67-4.73 (m,
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4H), 4.62 (d, J= 11.6 Hz, 1H), 4.51-4.57 (m, 4H), 4.45 (d, J= 11.6 Hz, 1H), 4.27-4.32 (m, 1H),

4.05 (t, J= 9.5 Hz, 1H), 3.88-3.93 (m, 3H), 3.80 (t, J=4.8 Hz, 1H), 3.74-3.77 (m, 2H), 3.70 (t, J

= 4.3 Hz, 1H), 3.67 (s, 3H), 3.53-3.67 (m, 4H), 3.48 (s, 3H), 2.68 (s, 1H), 1.94 (s, 3H), 1.73 (s,

3H), 0.96 (s, 9H), 0.24 (s, 3H), 0.19 (s, 3H). 13C NMR (125 MHz, CDC13) 6 170.5, 170.1, 169.8,

168.9, 138.9, 138.2, 138.0, 136.9, 134.4, 128.9, 128.65, 128.6, 128.4, 128.16, 128.15, 128.0,

127.9, 127.85, 127.75, 127.6, 127.1, 117.5, 98.0, 97.7, 93.8, 78.3, 75.3, 75.1, 74.4, 74.0, 73.7,

73.5, 73.4, 73.1, 73.0, 72.1, 71.8, 71.7, 69.5, 69.4, 68.7, 68.2, 52.5, 52.2, 51.9, 25.9, 23.1, 21.1,

18.4, -3.9, -5.2. ESI MS (C61H79NO14Si) m/z (M + Na÷) calcd 1180.4908, obsd 1180.4883.

t-Butyldimethysilyl methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-

idopyranosid)uronate (1 -)4) 2-N-acetylacetamido-3,6-di-O-benzyl-2-deoxy-a-D-

glucopyranoside (1"-4) 2-O-acetyl-3-O-benzyl- P-L-idopyranosid]uronate (3-19).

Trisaccharide 3-18 (1.66 g, 1.42 mmol) was coevaporated three times with anhydrous toluene

and dissolved in isopropenyl acetate (15 mL) under N2. p-Toluenesulfonic acid (700 gtL, 0.1 M

in DMF) was added and the mixture irradiated in a CEM Discover Series Microwave for 5 h at

30 W, 900 C max. The reaction was poured into ethyl acetate (100 mL) and washed with

saturated NaHCO 3. The organic phase was dried over MgSO 4 and the solvent was removed

under reduced pressure. Flash chromatography on silica (hexanes:ethyl acetate 7:3) afforded 3-

19 (1.52 g, 1.22 mmol, 86%) as a clear oil. Rf. 0.38 (hexanes:ethyl acetate 1:1). [ct]2 4 D: +52.9, c

= 0.91. IR (thin film, NaCl plates) 2952, 1741, 1675 cm-1 . 'H NMR (500 MHz, CDC 3) 8 7.12-

7.39 (m, 20H), 5.74 (m, 1H), 5.34 (d, J= 3.4 Hz, 1H), 5.16 (m, 1H), 5.10 (m, 1H), 5.02 (d, J=

1.9 Hz, 1H), 5.01 (d, J= 3.8 Hz, 1H), 4.99 (m, 1H), 4.92 (ft, 1H), 4.78 (d, J= 11.5 Hz, 1H),

4.67-4.75 (m, 4H), 4.52-4.62 (m, 5H), 4.45 (d, J= 1.8, 1H), 4.33 (d2, J= 4.0, 11 Hz, 1H), 3.91-

4.03 (m, 6H), 3.85 (Wt, 1H), 3.75 (s, 3H), 3.67-3.74 (m, 3H), 3.49 (s, 3H), 2.20 (s, 6H), 2.03 (s,
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3H), 1.98 (s, 3H), 0.87 (s, 9H), 0.14 (s, 3H), 0.09 (s, 3H). 13C NMR (125 MHz, CDC13) 6 175.9,

170.3, 170.0, 169.9, 168.8, 139.2, 138.03, 137.97, 137.2, 134.4, 128.8, 128.7, 128.5, 128.4,

128.24, 128.19, 128.06, 127.95, 127.87, 127.2, 127.1, 117.7, 98.0, 95.7, 93.6, 77.5, 76.3, 75.5,

74.7, 73.7, 73.4, 73.1, 72.9, 72.4, 72.3, 71.9, 70.4, 70.2, 70.0, 67.9, 67.7, 59.8, 52.4, 52.0, 26.8,

25.7, 21.2, 21.0, 18.0, -3.9, -5.4. ESI MS (C65H83NO21Si) m/z (M + Na+) calcd 1264.5119, obsd

1264.5082.

Methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-idopyranosid)uronate (1 -4) 2-N-

acetylacetamido-3,6-di-O-benzyl-2-deoxy-a-D-glucopyranoside (1 4) 2-O-acetyl-3-O-

benzyl-L-idopyranosid]uronate trichloroacetimidate (3-20). Trisaccharide 3-19 (325 mg,

0.262 mmol) was coevaporated three times with anhydrous toluene and dissolved in anhydrous

THF (2.5 mL). The solution was cooled to 00 C and acetic acid (22.5 ý.L, 0.39 mmol) was added

followed by TBAF (1.0 M in THF, 290 ýtL). After 80 min, the reaction was poured into

saturated NH 4Cl and extracted with ethyl acetate (3x200 mL). The organic phase was dried over

MgSO 4 and the solvent was removed under reduced pressure.

The residue was coevaporated three times with anhydrous toluene and dissolved in

anhydrous CH 2Cl 2 (2.5 mL) under N2. The solution was cooled to OoC and trichloroacetonitrile

(394 ýtL, 3.93 mmol) and DBU (7.4 [iL, 0.052 mmol) added. The reaction was stirred for 60 min

then allowed to warm to room temperature. The solvent was evaporated and the residue was

purified by flash chromatography on silica (elutant toluene:ethyl acetate 3:1) to afford 3-20 (281

mg, 0.22 mmol, 84%, 4:1 mixture of isomers) as a yellow oil. Rf. 0.27, 0.33 (hexanes:ethyl

acetate 1:1). IR (thin film, NaCl plates) 3447, 1739, 1674, 1650 cm -1 . ESI MS

(C61H69C13N20 21) m/z (M + Na +) calcd 1293.3351, obsd 1293.3347.
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t..Butyldimethylsilyl (methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-

idopyranosid)uronate (1 -4) 2-N-acetylacetamido-3,6-di-O-benzyl-2-deoxy-a-D-

glucopyranoside (1-4) 2-O-acetyl-3-O-benzyl-a-L-idopyranosid]uronate (1-)4)) 2-azido-

3,6-di-O-benzyl-2-deoxy-o-D-glucopyranoside (3-21). Trichloroacetimidate 3-20 (288 mg,

0.226 mmol) and 7 (565 mg, 1.13 mmol) were combined and coevaporated three times with

anhydrous toluene. The mixture was dissolved in CH 2C12 (2.25 mL) under N2 and cooled to -

250C. TMSOTf (4 ýiL, 0.023 mmol) was added and the reaction stirred 1.5 h at reduced

temperature. The reaction was quenched with NEt 3 (0.1 mL) and the solvent was removed under

reduced pressure. Flash chromatography on silica (hexanes:ethyl acetate 9:1) eluted unreacted 7

(480 mg, 0.96 mmol). Further elution (hexanes:ethyl acetate 7:3) afforded 3-21 (259 mg, 0.16

rmmol, 71%) as a clear oil. Rf. 0.37 (hexanes:ethyl acetate 1:1). [a]24D: +6.22, c = 1.05. IR (thin

film, NaCl plates) 2952, 2111, 1756, 1741, 1675 cm -'. 1H NMR (500 MHz, CDCl 3) 8 7.13-7.4

(mn, 30H), 5.72-5.79 (m, 1H), 5.36 (d, J= 4.8 Hz, 1H), 5.16-5.2 (m, 2H), 5.12 (d2, J= 1.5, 10.5

Hz, 1H), 5.05 (d, J= 3.8 Hz, 1H), 4.88-4.93 (m, 2H), 4.47-4.78 (m, 10H), 4.37 (d2, J= 3.7, 11.1

Hz, 1H), 3.93-4.06 (m, 5H), 3.86-3.90 (m, 2H), 3.77-3.80 (m, 1H), 3.63-3.74 (m, 5H), 3.50 (s,

3H), 3.47 (s, 3H), 3.32-3.37 (m, 2H), 3.24 (yt, 1H), 2.14 (s, 6H), 1.97 (s, 3H), 1.94 (s, 3H), 0.94

(s, 9H), 0.17 (s, 3H), 0.15 (s, 3H). 13 C NMR (125 MHz, CDC13) 6 175.6, 170.0, 169.91, 169.9,

169.2, 138.9, 138.4, 138.3, 138.08, 138.03, 137.6, 134.3, 128.7, 128.6, 128.55, 128.5, 128.3,

128.2, 128.15, 128.08, 128.05, 127.9, 127.85, 127.8, 127.7, 127.67, 127.66, 127.5, 127.2, 127.15,

117.75, 98.13, 98.1, 97.4, 96.7, 81.1, 76.7, 76.3, 75.7, 75.4, 75.0, 74.8, 74.7, 73.7, 73.5, 73.4,

73.2, 72.8, 72.0, 71.8, 71.7, 71.2, 70.7, 70.6, 69.0, 68.9, 68.8, 68.4, 67.7, 58.9, 52.1, 52.0, 26.7,

25.8, 21.1, 21.0, 18.1, -4.0, -5.0. ESI MS (C85H104N40 25Si) m/z (M + Na+) calcd 1631.6651, obsd

16311.6701.
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Methyl [methyl (2 -O-acetyl-4-O-allyl-3-O-benzyl-a-L-idopyranosid)uronate (1 -4) 2-N-

acetylacetamido-3,6-di-O-benzyl-2-deoxy-a-D-glucopyranoside (1 4) 2-O-acetyl-3-O-

benzyl-a-L-idopyranosid]uronate (1 -4)) 2-azido-3,6-di-O-benzyl-2-deoxy-D-

glucopyranoside trichloroacetimidate (3-4). Tetrasaccharide 3-21 (251 mg, 0.156 mmol) was

coevaporated three times with anhydrous toluene and dissolved in anhydrous THF (1.5 mL).

The solution was cooled to 00 C and acetic acid (10.2 pL, 0.18 mmol) was added followed by

TBAF (1.0 M in THF, 172 tL). After 30 min, the reaction was poured into saturated NH4 Cl and

extracted three times with ethyl acetate. The organic phase was dried over MgSO 4 and the

solvent was removed under reduced pressure.

The residue was coevaporated three times with anhydrous toluene and dissolved in

anhydrous CH 2C12 (1.5 mL) under N2. The solution was cooled to 00 C and trichloroacetonitrile

(226 tiL, 2.25 mmol) and DBU (4.3 ptL, 0.03 mmol) were added. The reaction was stirred for 45

min, then allowed to warm to room temperature. The solvent was evaporated and the residue

was purified by flash chromatography on silica (elutant toluene:ethyl acetate 7:3) to afford 3-4

(228 mg, 0.139 mmol, 89%, 6:1 mixture of isomers) as a yellow oil. Rf. 0.3, 0.375

(hexanes:ethyl acetate 3:2). IR (thin film, NaCl plates) 2926, 2112, 1739, 1675 cm-1. ESI MS

(C81H90C13N50 25) m/z (M + Na+) calcd 1660.4883, obsd 1660.4913.

Methyl 2-benzyloxycarbonylamino-2-deoxy-3,6-di-O-acetyl-a-D-glucopyranoside (3-10).

Compound 3-22(70) was coevaporated twice with anhydrous toluene and dissolved in 2,4,6-

collidine (7 mL, distilled from CaH). The mixture was cooled to -400 C and acetyl chloride (270

tiL, 3.78 mmol) was added. The reaction was stirred overnight under N2 at -400 C. Water (1 mL)

was added and the reaction warmed to room temperature and poured into ethyl acetate (600 mL).

The organic phase was washed with IN HC1, brine, saturated NaHCO 3 and dried over MgSO 4
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and the solvent was removed under reduced pressure. Flash chromatography on silica

(hexanes:ethyl acetate7:3) afforded 3-10 (1.17 g, 82%) as a glassy solid. Rf. 0.19 (hexanes:ethyl

acetate 1:1). [a] 2 4 D: +55.2, c = 1.26. Mp = 98.0-99.50 C. IR (thin film, NaCI plates) 3434, 2956,

1739, 1710, 1520 cm'1 . 'H NMR (500 MHz, CDC13) 8 7.30-7.36 (m, 5H, CBz aromatic), 5.17

(d, 3JH2_NH =10 Hz, 1H, carbamate NH), 5.13 (d, 2 J= 12.3 Hz, 1H Cbz CH2), 5.06 (d2, 3JH3_H4 =

9.4 Hz, 3JH2-H3 = 10.5 Hz, 1H, H3), 5.02 (d, 2J= 12.3 Hz, 1H, Cbz CH 2), 4.71 (d, 3 H_-H2 = 3.6

Hz, 1H, H1), 4.44 (d2 , 3JH5SH6 = 4.4 Hz, 2JH6=H6' = 12.2 Hz, 1H, H6), 4.29 (d2, 3JHS-H6, = 2.2 Hz,

2JH6=H6' = 12.2 Hz, 1H, H6'), 3.95 (dt, 3JHIH2 = 3.6 Hz, J= 10.3 Hz, 1H, H2), 3.77 (d3 , JHS-H6'

= 2.2 Hz, 3 JHS-H6 = 4.4 Hz, 3 JH4_Hs = 10 Hz, 1H, H5), 3.57 (yt, J= 9.4 Hz, 1H, H4), 3.38 (s, 3H,

OCH 3), 3.17 (s (b), 1H, OH), 2.11 (s, 3H, 3-O-acetate CH3), 1.94 (s, 6H, 3-O-acetate CH3 ). '3C-

NMR(125 MHz, CDCl3) 8 172.2 (6-O-acetate carbonyl), 171.6 (3-O-acetate carbonyl), 156.1

(CBz carbonyl), 136.4 (CBz phenyl quaternary), 128.7 (aromatic C), 128.3 (aromatic C), 128.2

(aromatic C), 98.8 (C1), 74.1 (C3), 70.0 (C5), 68.8 (C4), 67.0 (CBz CH 2), 63.1 (C6), 55.4

(OCH 3), 53.7 (C2), 21.0 (3-O-acetate CH3), 20.9 (6-O-acetate CH 3). ESI MS (C19H2 5NO9) m/z

(M + Na+) calcd 434.1422, obsd 434.1420.

Methyl methyl 2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-idopyranosiduronate (1 -)4) 3,6-di-O-

acetyl-2-benzyloxycarbonylamino-2-deoxy-a-D-glucopyranoside (3-23). Glycosyl

trichloroacetimidate 3-9 (243 mg, 0.46 mmol) and monosaccharide 3-10 (136 mg, 0.33 mmol)

were combined and coevaporated three times with anhydrous toluene. The mixture was

dissolved in anhydrous CH 2C12 (5 mL) under N2 and cooled to -150 C. TMSOTf (8 jiL, 46 p~mol)

was added and the mixture was stirred for 3 h at low temperature. The cooling bath was

removed and the reaction was stirred for an additional three hours at room temperature, followed

by quenching with NEt 3 (0.5 mL). The solvent was removed under reduced pressure. Flash
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chromatography on silica (hexanes:ethyl acetate 7:3) afforded 3-23 (143 mg, 0.195 mmol, 59%).

Rf. 0.26 (hexanes:ethyl acetate 1:1). [a] 24 D: +5.75, c = 1.4. IR (thin film, NaCl plates) 1739,

1516 cm -'. 'H NMR (500 MHz, CDC13) 6 72.7-7.37 (m, 10H), 5.69-5.76 (m, 1H), 5.19 (d2, J = 9

Hz, 10.6 Hz, 1H), 5.10-5.15 (m, 3H), 4.99-5.04 (m, 3H), 4.75-4.77 (m, 2H), 4.72 (d, J= 12.2 Hz,

1H), 4.70 (d, J= 3.6 Hz, 1H), 4.62 (d J= 12.2 Hz, 1H), 4.28 (d, J= 2.8 Hz, 2H), 3.79-3.99 (m,

5H), 3.78 (s, 3H), 3.74 (m, 2H), 3.36 (s, 3H), 2.13 (s, 3H), 2.06 (s, 3H), 1.92 (s, 3H). 13C NMR

(125 MHz, CDC13) 171.5, 171.1, 170.3, 169.8, 156.1, 137.8, 136.5,134.2, 128.7, 128.6, 128.4,

128.3, 128.0, 127.8, 118.0, 99.6, 98.7, 76.2, 74.5, 72.7, 72.5, 72.1, 71.8, 69.8, 68.8, 68.7, 67.1,

62.4, 55.5, 54.2, 52.3, 21.3, 21.1, 21.0. ESI MS (C38H47N01 6) m/z (M + Na+) calcd 796.2793,

obsd 796.2750.

Methyl (methyl 2-O-acetyl-3-O-benzyl-a-L-idopyranosiduronate) (1-4) 3,6-di-O-acetyl-2-

benzyloxycarbonylamino-2-deoxy-a-D-glucopyranoside (3-5). Disaccharide 3-23 (140 mg,

0.19 mmol) and sodium acetate (600 mg) were combined and dissolved in acetic acid (2.6 mL)

and water (150 tiL). PdCl2 (202 mg, 1.14 mmol) was added and the reaction was stirred for 9 h.

Palladium black precipitated from solution over the course of the reaction. The reaction mixture

was poured into saturated NaHCO 3 (200 mL) and the aqueous layer was extracted with ethyl

acetate (3 x 200 mL). The combined organic phases were dried over MgSO 4 and the solvent was

removed under reduced pressure. Flash chromatography on silica (1:1 hexanes:ethyl acetate)

afforded 5 (113 mg, 0.16 mmol, 86%) as a clear oil. Rf. 0.38 (hexanes:ethyl acetate 1:3). [U]24D:

+17.5, c = 0.99. IR (thin film, NaCl plates) 3447, 2955, 1743, 1521 cm -1 1H NMR (500 MHz,

CDC13) 6 7.29-7.38 (m, 10H, aromatic H), 5.21 (d2, 3 J= 9.0, 10.6 Hz, 1H, GlcN H3), 5.13 (d, 2 J

= 12.2 Hz, 1H, CBz CH 2), 5.03 (d, 2J= 12.2 Hz, 1H, CBz CH 2), 4.98 (d, 3JH2-NH = 10 Hz, 1H,

CBz NH), 4.94 (s, 1H, IdoA Hi), 4.83 (d, 3 JH5-H4 = 1.9 Hz, 1H, IdoA H5), 4.81, (s, 1H, IdoA
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H2), 4.71 (d, 2J= 12.6, 1H 3-O-benzyl CH 2), 4.70 (d, 3JH1.H2 = 3.9 Hz, 1H, GlcN H1), 4.62 (d, 2j

= 12.2, 1H 3-O-benzyl CH 2), 4.31 (d2, 2 JH6-H6' = 12.3 Hz, 3JH6-H5 = 3.3 Hz, 1H, GlcN H6), 4.25

(d2, 2JH6-H6' = 12.3 Hz, 3JH6'-H5 = 1.8 Hz, 1H, GlcN H6'), 3.96 (m, 1H, IdoA H4), 3.92 (m, 1H,

GlcN H2), 3.80 (s, 3H, methyl ester CH3), 3.82 (m, 1H, GlcN H4), 3.75 (m, 1H, GlcN H5), 3.68

(yNt, 1H), 3.36 (s, 3H, methyl glycoside CH3), 2.65 (d, 3 JH4-OH = 11.7 Hz), 2.13 (s, 3H, 3-0-

acetate CH 3), 2.10 (s, 3H, 2-O-acetate CH 3), 1.93 (s, 3H, 3-O-acetate CH 3),. 13C NMR (125

MHz, CDCl3) 8 171.5 (3-O-acetate carbonyl), 171.1 (6-O-acetate carbonyl), 169.6 (IdoA C6),

169.3 (2-O-acetate carbonyl), 156.0 (CBz carbonyl), 137.5 (benzyl quat), 136.5 (CBz quat),

128.7 (aromatic C), 128.6 (aromatic C), 128.4 (aromatic C), 128.3 (aromatic C), 128.1 (aromatic

C), 127.6 (aromatic C), 99.8 (IdoA Cl), 98.7 (GlcN C1), 77.0 (GlcN C4), 74.0 (IdoA C3), 72.3

(GlcN C3), 71.9 (benzyl CH 2), 68.8 (IdoA C5), 68.7 (GlcN C5), 68.0 (IdoA C4), 67.3 (IdoA C2),

67.1 (CBz CH 2), 62.3 (GlcN C6), 55.6 (methyl glycoside CH 3), 54.2 (GlcN C2), 52.5 (methyl

ester CH 3), 21.2 (2-O-acetate CH 3), 21.05 (6-O-acetate CH 3), 20.9 (3-O-acetate CH 3). ESI MS

(C3 5H43NO1 6 ) m/z (M + Na+) calcd 756.2474, obsd 756.2443.

Methyl (t-butyldimethylsilyl 4-O-allyl-3-O-benzyl-L-idopyranosid)uronate (3-26).

Monosaccharide 3-25(30) (200 mg, 0.529 mmol) was dissolved in TFA (90% aq., 5 mL) and

stirred for 30 min. The solvent was removed under reduced pressure and the residue

coevaporated five times with toluene. The crude material was dissolved in CH2Cl 2 (500 ýpL) and

cooled to -250 C under N2. TBDMS-Cl (120 mg, 0.794 mmol) and imidazole (144 mg, 2.12

mmol) were added and the reaction was stirred for 16 h at -250 C. Methanol (1 mL) was added

and the mixture was stirred 30 min, then diluted into ethyl acetate. The organic phase was

washed with 1N HC1, brine, and saturated aq. NaHCO 3. The organic phase was dried over

MgSO 4 and the solvent was removed under reduced pressure. Flash silica gel column
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chromatography (hexanes:ethyl acetate 85:15) afforded 3-26 (170 mg, 0.376 mmol, 71%) as a

clear oil (6:1 mixture of isomers). Rf. 0.37 (hexanes:ethyl acetate 3:1). IR (thin film, NaCl

plate) 3519, 2929, 2858, 1770, 1739 cm 1 . 1H NMR (500 MHz, CDC13) Major isomer: 8 7.31-

7.40 (m, 5H), 5.72-5.80 (m, 1H), 5.14-5.18 (m, 2H), 5.03 (d, J= 0.8 Hz, 1H), 4.64 (d, J= 12 Hz,

1H), 4.60 (d, J= 12 Hz, 1H), 4.52 (d, J= 1.7 Hz, 1H), 4.04 (d2, J= 5.9, 12.6 Hz, 1H), 3.89-3.93

(m, 2H), 3.78 (s, 3H), 3.76 (s, 1H), 3.63-3.65 (m, 1H), 3.04 (d, J= 10.1 Hz, 1H), 0.93 (s, 9H),

0.19 (s, 3H), 0.16 (s, 3H). Minor isomer: 5 5.32 (s, 1H), 4.92 (d, J= 1.8 Hz, 1H), 3.81 (s, 3H),

3.40 (d, J= 10 Hz, 1H), 0.87 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H). 13C NMR (125 MHz, CDC13)

Major isomer: 8 169.4, 137.5, 133.9, 128.8, 128.3, 127.9, 116.6, 94.7, 74.3, 74.0, 73.7, 72.5,

72.0, 68.8, 52.3, 26.0, 18.4, -3.9, -4.8. Minor isomer: 8 170.5, 138.0, 133.6, 128.7, 128.3, 127.6,

118.5, 96.4, 74.4, 72.8, 72.1, 71.7, 67.4, 67.3, 52.4, 25.7, 18.0. ESI MS (C23H36 07Si) m/z (M +

Na ) calcd 475.2123, obsd 475.2143.

Methyl (t-butyldimethylsilyl 4-O-allyl-2-O-benzoyl-3-O-benzyl-L-idopyranosid)uronate (3-

27). Compound 3-26 (488 mg, 1.08 mmol) was coevaporated three times with toluene and

dissolved in CH 2C12 (10 mL). DMAP (13.5 mg, 0.11 mmol) and benzoyl chloride (250 ýpL, 2.16

mmol) were added and the reaction was stirred overnight under N2 with exclusion of light. The

reaction mixture was poured into ethyl acetate (200 mL) and washed with 1N HC1, brine, and

saturated aq. NaHCO3. The organic phase was dried over MgSO 4, filtered, and the solvent was

removed under reduced pressure. Flash silica gel column chromatography (hexanes:ethyl acetate

9:1) afforded 3-27 (464 mg, 0.833 mmol, 77%, 3:1 mixture of isomers) as a clear oil. Rf. 0.33

(hexanes:ethyl acetate 85:15). IR (thin film, NaCl plate) 2929, 2857, 1772, 1723 cm-'. 1H NMR

(500 MHz, CDC13)8 8.11 (d, J= 7.9 Hz, 1.5H), 8.06 (s, J=8.1 Hz, 0.5H), 7.53-7.58 (m, 1H),

7.30-7.43 (m, 7H), 5.64-5.80 (m, 1H), 5.48 (s, 0.25H), 5.01-5.23 (m, 4H), 4.93 (d, J= 2.9 Hz,
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0.25H), 4.80-4.82 (m, 1H), 4.67-4.71 (m, 1H), 4.58 (s, 0.75H), 4.04 (m, 1H), 3.89-3.95 (m, 2H),

3.75-3.80 (m, 4.5 H), 0.87 (s, 2.25H), 0.82 (s, 6.75H), 0.13 (s, 3H), 0.10 (s, 3H). 13C NMR (125

MHz, CDC13) Major isomer: 8 169.4, 166.5, 137.5, 134.5, 133.1, 130.3, 128.7, 128.45, 128.4,

128.3, 128.1, 117.6, 93.4, 74.3, 73.6, 73.0, 72.9, 71.6, 68.2, 52.3, 25.8, 18.1, -3.7, -5.0. Minor

isomer: 6 170.6, 165.9, 138.0, 134.4, 133.4, 130.4, 130.2, 129.9, 128.5, 128.35, 127.9, 117.4,

93.5, 75.1, 73.2, 72.6, 71.7, 70.0, 69.1, 52.35, 25.7, 18.04, -4.4, -5.4 ESI MS (C30H4008Si) m/z

(M + Na+) calcd 579.2385, obsd 579.2369.

Methyl 4-O-allyl-2-O-benzoyl-3-O-benzyl-L-idopyranosiduronate trichloroacetimidate (3-

28). Monosaccharide 27 (303 mg, 0.544 mmol) was coevaporated three times with toluene and

dissolved in THF (5 mL). The solution was cooled to 00 C and acetic acid (37.5 ýpL, 0.653 mmol)

was added followed by TBAF (1.0 M in THF, 600 giL). After 30 min, the reaction was poured

into ethyl acetate (100 mL) and washed twice with brine. The organic phase was dried over

MgSO 4, filtered, and the solvent was removed under reduced pressure.

The residue was coevaporated three times with toluene and dissolved in CH 2C12 (4 mL)

under N2. The solution was cooled to OoC and trichloroacetonitrile (820 gpL, 8.16 mmol) and

DBU (15 jtL, 0.1 mmol) were added. The reaction was stirred for 30 min then allowed to warm

to room temperature, and stirred an additional 1.5 h. The solvent was evaporated and the residue

was purified by flash silica gel column chromatography (silica quenched with 1% NEt 3 in

toluene, eluted with toluene:ethyl acetate 19:1) afforded 3-28 (210 mg, 0.36 mmol, 66%, 3:1

mixture of isomers) as a yellow oil. Rf. 0.3 (hexanes:ethyl acetate 85:15). IR (thin film, NaCl

plate) 1723, 1621 cm -'. ESI MS (C26H26C 3NOs) m/z (M + Na÷) calcd 608.0616, obsd 608.0717.
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Methyl methyl 2-O-benzoyl-3-O-benzyl-a-L-idopyranosiduronate (1-4) 3,6-di-O-acetyl-2-

benzyloxycarbonylamino-2-deoxy-ao-D-glucopyranoside (3-30). Trichloroacetimidate 3-28

(210 mg, 0.358 mmol) and monosaccharide 3-10 (98 mg, 0.238 mmol) were combined and

coevaporated three times with anhydrous toluene. The sugars were dissolved in anhydrous

CH2C12 (2.5 mL) under N2 and cooled to -150 C. TMSOTf(6.5 pL, 36 ýpmol) was added and the

mixture stirred for 1 h, then allowed to warm to room temperature and stirred and additional 30

min. The reaction was quenched by addition of NEt 3 (0.5 mL) and the solvent was removed

under reduced pressure. Flash chromatography on silica (hexanes:ethyl acetate 65:35) afforded

3-29 (185 mg, 0.22 mmol, 93%).

Disaccharide 3-29 (34 mg, 40.7 ýtmol) and sodium acetate (40 mg) were combined and

dissolved in acetic acid (455 pL) and water (25 pL). PdCl2 (42 mg, 0.24 mmol) was added and

the reaction was stirred for 8 h. Palladium black precipitated from the solution over the course of

the reaction. The reaction mixture was poured into saturated NaHCO 3 (50 mL) and the aqueous

layer was extracted with ethyl acetate (3 x 50 mL). The combined organic phases were dried

over MgSO 4 and the solvent was removed under reduced pressure. Flash chromatography on

silica (4:1 toluene:ethyl acetate) afforded 3-30 (27 mg, 33.9 ýpmol, 83%) as a clear oil. Rf. 0.19

(hexanes:ethyl acetate 1:1). [a]24D: +26.0, c = 0.75. IR (thin film, NaCl plates) 3421, 1740 cm

I .H NMR (500 MHz, CDC13) 6 7.97 (d, J= 7.4 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.45 (t, J =

8.0 Hz, 1H), 7.27-7.38 (m, 10OH), 5.24 (d2, J= 9.3, 10.4 Hz, 1H), 5.13 (yt, 2H), 4.99-5.04 (m,

3H), 4.90 (d, J=1.6 Hz, 1H), 4.77 (d, J= 12.1 Hz, 1H), 4.70 (d, J= 3.5 Hz, 1H), 4.66 (d, J=

12.1 Hz, 1H), 4.38 (d2, J = 3.3, 12.3 Hz, 1H), 4.31 (d, J = 10.0 Hz, 1H), 4.04 (d, J = 11.4 Hz,

1H), 3.79-3.87 (m, 4H), 3.81 (s, 3H), 3.37 (s, 3H), 2.70 (d, J= 11.6 Hz, 1H), 2.13 (s, 3H), 1.92

(s, 3H). 13C NMR (125 MHz, CDC13) 6 171.5, 171.0, 169.6, 165.1, 156.0, 137.6, 136.4, 134.0,
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129.9, 128.9, 128.8, 128.75, 128.7, 128.6, 128.3, 128.2, 128.0, 127.6, 99.8, 98.6, 77.5, 77.0, 74.4,

72.3, 72.1, 68.8, 68.6, 68.1, 68.0, 67.5, 62.3, 55.5, 54.2, 52.4, 21.0, 20.8. ESI MS (C40H45NOs)

m/z (M + Na+) calcd 818.2636, obsd 818.2561.

Methyl [methyl (methyl [methyl (2-O-acetyl-4-O-allyl-3-O-benzyl-a-L-

idopyranosid)uronate (1-4) 2-N-acetylacetamido-3,6-di-O-benzyl-2-deoxy-a-D-

glucopyranoside (1--4) 2-O-acetyl-3-O-benzyl-c0-L-idopyranosid]uronate (1 -*4)) 2-azido-

3,6-di-O-benzyl-2-deoxy-D-glucopyranoside (1 -4) 2-O-acetyl-3-O-benzyl-a-L-

idopyranosid)uronate] (1-4) 3,6-di-O-acetyl-2-benzyloxycarbonylamino-2-deoxy--a-D-

glucopyranoside (3-32) In a typical trial, tetrasaccharide 4 (145 mg, 88 pmol) and disaccharide

3-5 (71 mg, 97 [pmol) were combined and coevaporated three times with anhydrous toluene. The

sugars were dissolved in anhydrous CH2C12 (1 mL) under N2 and cooled to -400 C and 4A

molecular sieves (300 mg) were added and the reaction was stirred for 30 min. TMSOTf (1.6 jIL,

9 imol) was added and the mixture was stirred for 1 h. The reaction was quenched by addition

of NEt3 (0.1 mL) and the solvent was removed under reduced pressure. Flash chromatography

on silica (hexanes:ethyl acetate 60:40) eluted first a low polarity fraction (61 mg), which

contained primarily 3-33 as a 1:1 a:p mixture, followed by a fraction containing 3-32. Further

elution (hexanes:ethyl acetate 40:60) afforded recovered 3-5 (37 mg). The product-containing

fraction was further purified by size exclusion chromatography on Biorad Biobeads, lx

crosslinking (40cm x 2.5 cm, toluene elutant) to yield 3-32 (104 mg, 47 tmol, 53%) as a 6:1 a:p

mixture. 'H NMR (500 MHz, CDCl3) major isomer characteristic peaks: 8 5.72-5.79 (m, 1H,

allyl CH=CH 2), 3.62 (s, 3H, methyl ester), 3.50 (s, 3H, methyl ester), 3.49 (s, 3H, methyl ester),

3.36 (s, 3H, methyl glycoside), 2.13 (s, 3H, acetate), 2.12 (s, 6H, NAc2), 2.07 (s, 3H, acetate),
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1.94 (s, 3H, acetate), 1.92 (s, 3H, acetate), 1.87 (s, 3H, acetate). ESI MS (C114 H13 1N50 40) m/z (M

+ Na÷) calcd 2232.8263, obsd 2232.8263.

t-Butyldimethylsilyl 4-O-allyl-2-azido-3,6-di-O-benzyl-2-deoxy-j-D-glucopyranoside (3-34)

Compound 3-7(32) (140 mg, 0.28 mmol) was coevaporated three times with anhydrous toluene

and dissolved in CH2C12 (1.5 mL). Freshly activated 4A molecular sieves (300 mg) and allyl

bromide (114 ýiL, 1.4 mmol) were added and the reaction stirred 30 min. Silver (I) oxide (227

mg, 0.98 mmol) was added, light was excluded and the reaction was stirred for 40 h. The

reaction was filtered through celite, concentrated, and purified via flash column chromatography

on silica (elutant 50:1 hexanes:ethyl acetate) to yield 3-34 (114 mg, 0.21 mmol, 75%) as a clear

oil. Rf. 0.38 (hexanes:ethyl acetate 10:1). [a]24D: -3.57, c = 1.15. IR (thin film, NaCl plates)

2929, 2858, 2110 cm -'. H NMR (500 MHz, CDCl3) 8 7.28-7.42 (m, 10H), 5.82-5.90 (m, 1H),

5.21(d3 , J= 1.6, 3.3, 17.2 Hz, 1H), 5.14 (dyt, J= 10.4, 1.7 Hz, 1H), 4.86 (d, J=10.9 Hz, 1H),

4.79 (d, J= 10.9 Hz, 1H), 4.64 (d, J= 12 Hz, 1H), 4.58 (d, J= 12 Hz, 1H), 4.51-4.52 (m, 1H),

4.27-2.31 (m, 1H), 4.07-4.11 (m, 1H), 3.70 (m, 2H), 3.49-3.52 (m, 1H), 3.38-3.41 (m, 1H), 3.31-

3.36 (m, 2H), 0.97 (s, 9H), 0.20 (s, 3H), 0.18 (s, 3H). 13C NMR (125 MHz, CDCl 3) 6 138.4,

138.3, 134.8, 128.6, 128.5, 128.3, 128.0, 127.8, 127.79, 117.2, 97.4, 83.0, 77.8, 75.6, 75.3, 74.0,

73.7, 69.0, 68.8, 25.8, 18.2, -4.0, -5.0. ESI MS (C29H41C13N305Si) m/z (M + Na+) calcd

562.2708, obsd 562.2681.

4-O-Allyl-2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside trichloroacetimidate (3-35)

Monosaccharide 3-34 (155 mg, 0.287 mmol) was coevaporated three times with toluene and

dissolved in THF (2.5 mL). The solution was cooled to 00 C and acetic acid (18 pL, 0.313 mmol)

was added followed by TBAF (1.0 M in THF, 299 pL). After 30 min, the reaction was poured
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into saturated NH 4Cl and extracted four times with CH2C12. The organic phases were combined

and dried over MgSO4, filtered, and the solvent was removed under reduced pressure.

The residue was coevaporated three times with toluene and dissolved in CH 2C12 (2.5 mL)

under N2. The solution was cooled to 00 C and trichloroacetonitrile (409 ptL, 4.08 mmol) and

DBU (7.5 ptL, 0.054 mmol) were added. The reaction was stirred for 30 min, allowed to warm to

room temperature, and stirred for an additional 30 min. The solvent was evaporated and the

residue was purified by flash silica gel column chromatography (hexanes:ethyl acetate 9:1)

afforded 3-35 (133 mg, 0.23 mmol, 81%,-3:2 a:p mixture) as a yellow oil. Rf. 0.2, 0.3

(hexanes:ethyl acetate 85:15). IR (thin film, NaCl plates) 3340, 2868, 2112, 1675 cm -'. 'H

NMR (500 MHz, CDC13) 6 8.75 (s, 0.4H), 8.72 (s, 0.6H), 7.27-7.43 (m, 10H), 6.42 (d, J= 3.4

Hz, 0.6H), 5.83-5.86 (m, 1H), 5.62 (d, J= 8.4 Hz, 0.4H), 5.14-5.23 (m, 2H), 4.87-4.94 (m, 2H),

4.64 (d, J= 11.4 Hz, 1H), 4.50-4.57 (m, 1H), 4.27-4.30 (m, 1H), 3.95-4.09 (m, 2.4H), 3.50-3.79

(m, 5.6H). 13C NMR (125 MHz, CDC13) 6 161.3, 160.9, 138.1, 137.95, 137.8, 134.5, 134.4,

128.7, 128.65, 128.6, 128.5, 128.4, 128.3, 128.2, 128.13, 128.1, 128.05, 128.0, 127.9, 117.6,

117.4, 96.9, 95.1, 91.1, 89.5, 83.0, 80.0, 77.6, 77.0, 76.3, 75.8, 75.7, 74.2, 74.0, 73.75, 73.7, 73.6,

68.0, 67.5, 65.8, 63.0. ESI MS (C25H27C13N40 5) m/z (M + Na+) calcd 591.0945, obsd 591.0939.

Methyl [methyl (4-O-allyl-2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 2-O-acetyl-3-

O-benzyl-a-L-idopyranosid)uronate] (1 -4) 3,6-di-O-acetyl-2-benzyloxycarbonylamino-2-

deoxy-a-D-glucopyranoside (3-36) Trichloroacetimidate 3-35 (30 mg, 52 jtmol) and

disaccharide 3-5 (19 mg, 26 ptmol) were combined and coevaporated three times with anhydrous

toluene. The sugars were dissolved in anhydrous CH 2C12 (1 mL) under N2 and cooled to -40 0C

and 4A molecular sieves (90 mg) were added and the reaction was stirred for 30 min. TMSOTf

(1 ýtL) was added and the mixture was stirred for 2 h. The reaction was quenched by addition of
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NEt 3 (0.1 mL) and the solvent was removed under reduced pressure. Flash chromatography on

silica (hexanes:ethyl acetate 90:10) eluted 3-38 (22.6 mg, 39 ptmol) as a 1:1 a:Bf mixture. Further

elution (hexanes:ethyl acetate 70:30) afforded 3-36 (9 mg) as a -20:1 a:p mixture.

Characterization data is reported for major isomer only. IR (thin film, NaCl plates) cm -1 2936,

2108, 1741.5, 15.14. 'H NMR (500 MHz, CDC13) 6 7.31-7.42 (m, 20H), 5.73-5.82 (m, 1H),

4.99-5.24 (m, 8H), 4.93 (d, J= 2.3 Hz, 1H), 4.62-4.86 (m, 10H), 4.51 (d, J= 12.1 Hz, 1H), 4.20-

4.33 (m, 4H), 3.56-4.05 (m, 15H), 3.71 (s, 3H), 3.34 (s, 3H), 3.24 (m, 2H), 2.12 (s, 3H), 2.08 (s,

3H), 1.90 (s, 3H). 13C NMR (125 MHz, CDC13) 6 171.5, 171.0, 170.2, 169.5, 150.1, 137.94,

137.93, 137.6, 136.5, 134.8, 128.7, 128.68, 128.64, 128.6, 128.5, 128.4, 128.3, 128.14, 128.11,

128.05, 128.0, 127.8, 127.7, 116.5, 99.5, 98.8, 97.3, 79.9, 77.8, 76.4, 75.5, 73.7, 73.69, 73.0,

72.4, 72.2, 72.1, 71.6, 69.0, 68.7, 68.2, 67.9, 67.1, 63.3, 62.3, 55.6, 54.3, 52.3, 21.1, 21.0, 20.9.

ESI MS (C61H69 C13N2 0 2 1) m/z (M + Na+) calcd 1163.4325, obsd 1163.4331.

Methyl [methyl (4-O-allyl-2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside 2-O-benzoyl-

3-O-benzyl-a-L-idopyranosid)uronate] (1 4) 3,6-di-O-acetyl-2-benzyloxycarbonylamino-2-

deoxy-0a-D-glucopyranoside (3-37) Trichloroacetimidate 3-35 (13 mg, 23 ýpmol) and

disaccharide 3-30 (9 mg, 11 tmol) were combined and coevaporated three times with anhydrous

toluene. The sugars were dissolved in anhydrous CH 2C12 (500 ptL) under N2 and cooled to -400 C

and 4A molecular sieves (40 mg) were added and the reaction was stirred for 30 min. TMSOTf

(1 ptL) was added and the mixture was stirred for 2 h. The reaction was quenched by addition of

NEt 3 (0.1 mL) and the solvent was removed under reduced pressure. Flash chromatography on

silica (hexanes:ethyl acetate 90:10) eluted 3-38 (8 mg) as a 1:1 oa:p mixture. Further elution

(hexanes:ethyl acetate 70:30) afforded 3-37 (9 mg, 68%). Characterization data is reported for

major isomer only. IR (thin film, NaCl plates) 3032, 2928, 2110, 1767, 1742, 1723 cm -'. H
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NMR (500 MHz, CDC13) Characteristic peaks 6 8.13 (d, J= 8.1 Hz, 2H, benzoate), 7.52 (Wt,

1IH, benzoate), 7.45 (yt, 2H, benzoate), 5.77-5.85 (m, 1H, allyl CH=CH2), 3.75 (s, 3H, methyl

ester), 3.35 (s, 3H, methyl glycoside), 2.06 (s, 3H, acetate), 1.90 (s, 3H, acetate). 13C NMR (125

MHz, CDC13)6 171.4, 170.8, 169.5, 165.7, 156.1, 138.2, 137.9, 137.7, 136.5, 134.9, 133.6,

133.5, 130.2, 129.9, 129.6, 128.9, 128.7, 128.6, 128.5, 128.41, 128.28, 128.23, 128.13, 128.0,

127.92, 127.84, 127.6, 116.6, 99.9, 99.1, 98.6, 80.2, 77.5, 76.6, 75.2, 74.7, 73.8, 73.7, 72.9, 72.1,

69.4, 69.3, 68.8, 68.0, 67.1 63.6, 63.4, 55.6, 54.3, 52.3, 21.0, 20.9. ESI MS (C6 1H69C13N20 21)

m/z (M + Na+) calcd 1225.4481, obsd 1225.4477.

IV-(4-O-Allyl-2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside) trichloroacetamide (3-

38) This compound was isolated as a byproduct from the synthesis of 3-36 and 3-37 as a 3:2

mixture of anomers. Rf. 0.23, 0.29 (hexanes:ethyl acetate 85:15). IR (thin film, NaCI plates)

3333, 3065, 2917, 2866, 2713, 1709, 1705 cm -'. 'H NMR (500 MHz, CDC13) 6 7.29-7.41 (m,

10H), 7.13 (d, J= 9.1 Hz, 0.6H), 7.01 (d, J= 6.5 Hz, 0.4H), 5.75-5.87 (m, 1H), 5.64 (Wt, 0.4H),

5.13-5.23 (m, 2H), 4.85-4.98 (m, 2.6H), 4.63-4.67 (m, 1H), 4.50-4.53 (m, 1H), 4.22-4.27 (m,

IH), 4.01-4.09 (m, 1H), 3.87-3.90 (m, 0.4H), 3.42-3.73 (m, 5.6H). 13C NMR (125 MHz, CDC13)

6 162.1, 161.9, 137.8, 137.6, 137.3, 134.4, 134.2, 128.8, 128.7, 128.61, 128.6, 128.5, 128.45,

128.4, 128.3, 128.2, 128.15, 128.1, 128.0, 117.9, 117.3, 83.9, 81.2, 80.5, 77.5, 77.1, 70.0, 76.0,

75.9, 74.0, 73.95, 73.8, 72.7, 67.9, 67.8, 65.8, 61.7. ESI MS (C25H27C13N40 5) m/z (M + Na+)

calcd 591.0945, obsd 591.0942.
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3.3 Results and Discussion

Synthesis of non-reducing end disaccharide trichloroacetimidate 3-3

Disaccharide 3-3 was synthesized by coupling iduronic acid trichloroacetimidate 3-6 and

glucosamine azide 3-7 to yield the desired disaccharide 3-11 in 74% yield (Scheme 3-1).

Removal of the levulinate (Lev) ester with hydrazine proceeded in 92% yield to give 3-12. This

product was converted to its benzyl ether 3-13 in 76% yield using benzyl trichloroacetimidate

and trifluoromethanesulfonic acid (TfOH) activator. Cleavage of the anomeric silyl ether with

TBAF/AcOH, followed by reaction with DBU/Cl 3CCN yielded 78% of trichloroacetimidate

disaccharide building block 3-3.

0.1 eq TMSOTf,

1.2 eq 3-6, CH2Cl2  E

74%

NH2NH2, Pyr, AcOH 3-11, R = Lev, R' = TBDMS
BnOC(NH)CCl 3, TfOH, CH 2CI2  3-12 , R = H, R' = TBDMS, 92%

3-13, R = Bn, R'= TBDMS, 76%
TBAF, AcOH, THF
DBU, CI3CCN, CH2CI2  3-3,R = Bn, R' = C(NH)CC3, 78%

Scheme 3-1. Synthesis of non-reducing end disaccharide.

Synthesis of Tetrasaccharide Trichloroacetimidate 3-4

Synthesis of the central tetrasaccharide 3-4 presented more of a challenge (Scheme 3-2).

Iduronic acid donor 3-9 and GlcN 3 derivative 3-7 were coupled through TMSOTf activation in

88% yield. Conversion of the product disaccharide 3-14 into glycosyl trichloroacetimidate 3-15

was accomplished by cleavage of the TBDMS group followed by reaction with DBU/Cl 3CCN

(96% yield for two steps). Union of 3-15 with iduronic acid derivative 3-8 afforded trisaccharide

3-16 with complete c-selectivity in 83% yield.
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MeO OBn

0.1 eq TMSOTf, Meo 2C OBn 0.1 eq TMSOTf, oeOBn \
1.2 eq 3-9, CH2C12  OBn 1.2 eq 3-8, CH2 2 AIIO BnO MeO

BnOANO AcO X O n
AcO N3

1) TBAF, AcOH, TH 3-14, R = TBDMS, 88%

2) DBU, Cl3CCN, CH2CI2 L3-15 , R = C(NH)CCl3, 96% AcSH/Pyr. 3-16, X = N3, 83%3-17, X = AcNH, 84%

1) TFA (90% aq.)
2) TBDMSCI, Imid. MeO 2C OBn

CH2CI2  OBn
S AIO O BnO MeO 2C

AcO AcNRo 0

RO OR'

AcOC(CH 3)CH2, TsOH, ýk 3-18, R = H, R' = TBDMS, 93%
AcOC(CH3)CH2, 3-19, R = Ac, R' = TBDMS, 86%

1) TBAF, AcOH, THF
2) DBU, CI3CCN, CH2CI2 L_ 3-20, R = Ac, R'= C(NH)CC13, 84%

0.1 eq TMSOTf,
5 eq 3-7, CH2CI2

1) TBAF, AcOH, THF 3-21, R= TBDMS, 71%

2) DBU, CI3CCN, CH2CI2 L 3-4, R = C(NH)CCl3, 89%

Scheme 3-2. Synthesis of middle tetrasaccharide.

Conversion of the azide moiety in trisaccharide 3-16 to an N-acetate was accomplished in

one pot and 84% yield by treatment with thiolacetic acid in pyridine.(70) Removal of the

isopropylidene group from product trisaccharide 3-17 with trifluoroacetic acid followed by

selective silyl ether formation at the anomeric hydroxyl group(71) furnished 3-18 in a 93% yield.

Microwave irradiation of 3-18 in isopropenyl acetate with catalytic p-toluene sulfonic

acid(68)simultaneously installed the desired N-diacetate and acetylated the free hydroxyl,

forming 3-19 in 86% yield. This transformation could not be achieved under a variety of thermal

conditions, with only poor yields of 3-19 achieved even after several days. Conversion of 3-19
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to trisaccharide trichloroacetimidate building block 3-20 was achieved in 84% yield by cleavage

of the TBDMS ether and reaction with DBU/Cl 3CCN.

Glycosylating agent 3-20 coupled only poorly with 2-azido-glucose 7 in the presence of

catalytic TMSOTf, with mainly hydrolyzed trisaccharide lactol formed instead. Use of a large

excess (5 equiv.) of 7 resulted in a 71% conversion to 3-21; most unreacted 3-7 could be

recovered and recycled. Tetrasaccharide 3-21 was converted to glycosyl trichloroacetimidate 3-4

in 89% yield.

Synthesis of Reducing End Disaccharides 3-5 and 3-30.

The reducing end disaccharide 3-5 was synthesized from known 2-N-CBz glucosamine 3-

22 (Scheme 3-3).(72) Selective acetylation of the primary hydroxyl with acetyl chloride in

2,4,6-collidine afforded acceptor 3-10 in 82% yield.(73) Glucosamine 3-10 reacted with

iduronic acid donor 3-9 under TMSOTf activation to form disaccharide 3-23 in highly variable

yields. Close monitoring by TLC revealed that 3-10 was rapidly consumed to form orthoester 3-

24 that was identified by 'H-NMR (Figure 3-3). When left under reaction conditions for several

hours 3-24 rearranged to the desired disaccharide 3-23. Rearrangement and hydrolysis of the

orthoester intermediate was highly sensitive to the reaction conditions and resulted in the

variability in yield of desired disaccharide 3-23.

OH 2,4,6-collidine, 0.15 eq TMSOTf, MeO 2 C OAc

HO o AcCl, -400C > 3-10 1.5 eq. 3-9, CH2C RO OBn O O
AcO 82% AcO82%

ZNH OMe AcO ZNH OMe

3-22 3-23 R = All, 50-83%
PdCI2, NaOAc, AcOH 3-5, R = H, 86%

Scheme 3-3. Synthesis of reducing end disaccharide.
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OBn
MeO 2C O OAc

OAII Q 0
AcO

ZNH OMe
3-24

Figure 3-3. Orthoester byproduct.

While sufficient quantities of 3-5 could be produced via PdCl2-catalyzed allyl ether

removal from disaccharide 3-23, an alternate reducing end disaccharide was also prepared

(Scheme 3-4). Synthesis of iduronic acid 3-28 followed established procedures,(30) with the

exception of the use of a C2 benzoate ester, which was included to reduce orthoester formation.

Glycosylating agent 3-28 reacted cleanly with the CBz glucosamine derivative 3-10 to give 3-29

in excellent yield. No orthoester intermediate was observed. This disaccharide was treated with

PdC12/NaOAc in acetic acid and water to afford disaccharide 3-30 in 83% yield.

1) TFA (90% aq.)
9Bn 2) TBDMSCI imid., Bn

Me 2C 0 CH2 CI2  MeO 2C -. OR'

OAII 0 QOAII OR

3-25, DMAP 3-26, R = H, R' = TBDMS, 71%
BzCI, DMAP 3-27, R = Bz, R' = TBDMS, 77%

1) TBAF, AcOH, THF
2) DBU, CI3CCN, CH2CI2L 3-28, R =Bz, R' = C(NH)CC13, 66%

A .r TA/CIfT~C _

U. Ib 5 L I IVM %J I I,

1.2 eq. 3-28, CH2CI23-10

-J IVlU

PdCI 2, NaQAc, AcOH E ý3-29, R = All, 93%
3-30, R = H, 83%

Scheme 3-4. Synthesis of second reducing end disaccharide.
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The replacement of a C2 acetate with a C2 benzoate group dramatically improved the

yield of this coupling reaction. Interestingly, glycosylating agent 3-9 containing a C2 acetate and

the N-CBz glucosamine n-pentenyl glycoside 3-31 (Figure 3-4) coupled in high yield without the

formation of orthoester (data not shown). All other couplings of iduronic acid donors reported

here proceed in good yields to 1-O-TBDMS ether P-glucosamines. Based on these and

previous(32) observations it appears that the stereoelectronics of x-glucosamine acceptors can

negatively influence the outcome of coupling reactions with uronic acid trichloroacetimidates,

greatly favoring orthoester formation. Use of a C2 benzoate protecting group can overcome this

effect.

H O Ac
HO 0D

AcO
ZNH

3-31

Figure 3-4. Glucosamine CBz acceptor.

Attempted Block Coupling of Tetrasaccharide 3-4 with Reducing End Disaccharides 3-5 and 3-

30

With compounds 3-3, 3-4, and 3-5 as well as alternate reducing end acceptor 3-30 in

hand, assembly of the fully protected target 3-2 was attempted (Scheme 3-5). Coupling of 3-4

and 3-5 under TMSOTf activation proceeded in 59% yield when reacted at -400 C in the presence

of molecular sieves. Although the desired a-linked hexasaccharide 3-32 was obtained as the

major product, it was contaminated with 17% of an inseparable impurity. Even after purification

via normal and reverse phase silica gel HPLC and size exclusion chromatography (Bio-rad Bio-

Beads), some of the contaminant always remained.
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0.2 eq TMSOTf,
0.9-2 eq 4, CH 2CI2

40-60%4 - -60%40-60%

ACO LUl OMe

32, -6:1 mixture of isomers

Scheme 3-5. Block coupling of tetrasaccharide donor and reducing end disaccharide.

Varying the reaction conditions for coupling 3-4 and 3-5 did not prevent formation of the

minor product. Variation of reaction temperature (from -78 oC to 0 oC) and activator (TMSOTf

and TBDMSOTf) affected the coupling yields, but the isolated product always contained the

minor product. Varying the polarity of the reaction solvent through addition of heptanes had no

effect on the ratio of the products.

Removal of the allyl protecting group through treatment of the mixture with

PdCl2/NaOAc in acetic acid and water and further coupling with disaccharide 3-3 to form the

octasaccharide 3-2 did not allow for the separation of the minor product at this later stage of the

synithesis. Spectral data indicated that the major isomer did react as desired, but a minor product

copurified at each step, suggesting that the contaminant reacted similarly. Finally, coupling of

tetrasaccharide 3-4 with disaccharide 3-30 under the best conditions found for the coupling with

3-5 resulted in the formation of a 1:1 mixture of inseparable products.

To identify the minor product contaminating 3-32, possible reaction byproducts were

systematically eliminated. Size exclusion purification ruled out any decomposition products of

3-5. Small amounts of hydrolyzed 3-4 were detected and separated from the products through

silica gel chromatography. Tetrasaccharide 3-33, formed by rearrangement of 3-4, was also

observed in the crude reaction mixture, but could be readily separated from product 3-2 (Figure

3-5). Acetylation, N-diacetylation, and silylation to cap potentially rearranged tetrasaccharides
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containing a free hydroxyl group or an N-acetamide resulted in re-isolated 3-32 that contained

the same contaminant in an unchanged ratio.

AMr%

OBn
Bn0

ABnO N kCCI3
CC N3 H

ACU "3

33 38

Figure 3-5. Rearranged trichloroacetimidate donors.

Based on these observations, the minor product was likely an isomer of the desired

hexasaccharide. Two major possibilities exist: either acceptor 3-5 rearranged under the reaction

conditions to result in 1-2 linked hexasaccharide, or an a:p mixture of 1 4 linked isomers was

being produced. Treatment of acceptors 3-5 and 3-30 under coupling conditions in the absence

of a glycosylating agent resulted exclusively in the re-isolation of unchanged starting materials.

Thus, the formation of 1 2 linked regioisomer hexasaccharide could be ruled out. In direct

contrast to previous reports,(33, 48, 57, 60) the coupling of a 2-azido glucosamine donor and the

C4 hydroxyl group of iduronic acid seemed to produce an anomeric mixture of products.

150



Examination of Model Trisaccharides 3-36 and 3-3 7.

1) TBAF, AcOH,
THF

Ag20, AIIBr, OBn 2) DBU, CI3CCN, OBn

3-7 C2 AIIOn~OTBDMS  CH2Cl2 OBOCC1CH2CI2 \ A CH2CI275% BnO 89% BnAo-'- ' CC13
N3  N3

3-34 3-35

.e.OAc 0.15 eq TMSOTf,
MeOzC OB n 1.5 eq 3-35, CH2CI2

RO ZNH AcO

RO ZNH OM.
3- 5.,, OAMe

3-5, R = Ac 3-36, R = Ac, >20:1 a:P3-30, R = Bz 3-37, R = Bz, 5:1 a:3

Scheme 3-6. Model trisaccharide.

Since a detailed NMR analysis of the hexasaccharide mixture was difficult due to the

large number of overlapping signals, a simplified model system was devised (Scheme 3-6).

Allylation of 3-7 using silver oxide and allyl bromide furnished glucosamine 3-34 in 75% yield.

Conversion of 3-34 to trichloroacetimidate 3-35 was achieved in 89% yield. Reaction of

monosaccharide trichloroacetimidate 3-35 with 3-5 and 3-30 yielded trisaccharides 3-36 and 3-

37 respectively. The structure of rearranged glycosylating agent 3-38 (Figure 3-5) was

confirmed by 2-D NMR experiments. Trisaccharide 3-36 contained less than 5% of a

contaminating product, while trisaccharide 3-37 was isolated as a 5:1 mixture. Detailed analysis

of 3-37 of by NMR and mass spectrometry identified an apparent mixture of trisaccharide

isomers. Carbon-proton correlation spectroscopy (HSQC, Figure 3-6), showed that one

anomeric cross peak of the minor isomer was consistent with a P-GlcN3 anomeric cross

peak.(74-76)

151

|



F2

4.1-
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4.6-
_A 4.7-

" _• 4.8-
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104 103 102 101 100 99 98

71 (ppm)

Figure 3-6. HSQC spectrum of the anomeric region of trisaccharide 37. The indicated cross peak arises from the
minor isomer and is consistent with a 3-glucosamine H1-C1 cross peak.

These observations indicate that the erosion of anomeric selectivity is dependent both on

the size of the glycosylating agent and on the exact nature of the nucleophile. The conformation

of uronic acid acceptors has a profound influence on the anomeric selectivity of couplings

involving such monomers,(33, 77) whereby the IC4 conformation normally adopted by iduronic

acid derivatives overwhelmingly favors a-products. This selectivity has also been observed for

oligosaccharides containing an iduronic acid at the non-reducing end.

In the case described here, it is hypothesized that the selectivity is eroded due to an

altered conformation of the iduronic acid. The 2-N-CBz glucosamine residue connected to the

anomeric position of the iduronic acid is the major difference between acceptor 3-5 and

previously described, a-selective iduronic acid disaccharide acceptors. The nitrogen protecting
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group used to differentiate the glucosamine may be responsible for loss of selectivity in the

union of 3-4 and 3-5. Presumably the iduronic acid acceptor is forced out of the IC4

conformation that appears to allow 2-azido glucosyl trichloroacetimidates to react with complete

a-selectivity. The loss of selectivity was apparently exacerbated by the change of the C2

protecting group from acetate to the sterically bulkier benzoate. The C2 substituent is placed

axial when the sugar ring is in the 1C4 conformation; thus larger substituents likely favor the 4C1

conformation.

Due to the loss of selectivity in this block coupling, and the difficulties encountered with

purification, it was judged that the proposed strategy was not useful for producing the target

octasaccharide. It is becoming increasingly clear that the coupling of larger oligosaccharide

building blocks in the synthesis of heparin-like glycosaminoglycans is greatly influenced by the

conformation of the nucleophile. The loss of selectivity in these couplings is a significant

obstacle to the general synthesis of HLGAGs. A systematic reevaluation of the protecting group

and anomeric leaving group chemistries used in heparin synthesis will greatly facilitate further

work on the assembly of larger structures using the modular approach.

Future Directions

These results, showing erosion of selectivity for a GlcN 3 reducing end

trichloroacetimidate donor, taken with the previous results in ATIII synthesis showing poor

yields (apparently zero) when coupling uronic acid reducing end donors onto polysaccharide

acceptors,(32) obviously drastically limit the remaining options for a general, modular synthesis

of heparin. The loss of good selectivity when coupling to disaccharides 3-5 and 3-30 suggests

that a GlcN 3 reducing end disaccharide approach, used in most previously published syntheses of

153



large heparin structures, will not work well for general, modular approaches to HLGAG

synthesis.

The results shown above (Scheme 3-3, Scheme 3-4) indicate that a return to the original

disaccharide strategy may be fruitful if the C2 protecting group on the uronic acid residues is

switched to benzoate or another ester with low electrophilicity. In the synthesis of 3-5, yields

were poor due to orthoester formation followed by rearrangement or hydrolysis. Results from

previous attempts at a modular synthesis with uronic acid terminated donors(32) also indicated

orthoesters formation was a problem when acetate, levulinyl, or monochloroacetate was used as

the C2 protecting group on a glucuronic acid trichloroacetimidate. A C2 allyl carbonate did not

give product either: while the carbonyl should be less electrophilic, destruction of the donor

could occur through the formation of a cyclic carbonate (Figure 3-7), a mechanism previously

found to operate for another carbonate group(78). Switching to benzoate has a dramatic effect

on the synthesis described in this chapter. In the formation of disaccharide 3-30, the reaction

went cleanly and rapidly to product with no isolatable orthoester found or visualized on TLC.

OBn OBn
OBn If Me0 2C Me02 C~L 9

7\

OR 0 RIr 0 
1+O--L 04

Figure 3-7. Rearrangement of alloc protected iduronates.
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OR

HO 0 MeO 2C • n ,
RO -' OR

x
R'O

All
Deprotect Allyl

OR

AIIO MeO 2C Bn

RO X IT O R'
RR'O

R = Ac or Bn
R' = Piv or Bz
X = NAc 2, NHZ, or N3

OR

SMeO 2C OBn
RO R'

X OTCA

0 R'O

Figure 3-8. Proposed modular synthesis of HLGAGs.

A return to the uronic acid trichloroacetimidate disaccharide strategy may well be

promising if benzoyl or pivaloyl esters are employed as C2 protecting groups on the uronic acids

(Figure 3-8). In this strategy, the permanent protecting groups on most hydroxyl positions

remain unchanged, with acetate masking sites to be sulfated and benzyl ethers masking sites to

be unmodified. As presented, the requirement of esters with low electrophilicity does not allow

for a temporary uronic acid protecting group, and only C2 sulfated structures could be produced.

In order to allow the uronic acid C2 hydroxyls to be unmodified, a new protecting group would

be required that had a carbonyl with low electrophilicity, yet could be orthogonally cleaved in

the presence of other esters. The uronic acid trichloroacetimidate strategy has the obvious

benefits of forming the a-glucosamine linkage with complete selectivity using conformationally

locked acceptors,(32, 33) and allows for reduction of the azide and reprotection as in the

installation of the N-diacetate group in 3-4. This uronic acid donor strategy suggest the
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disconnection shown for future attempts at synthesis of the HSV-1 binding octasaccharide

(Figure 3-9).

OBn

, .- 0 .

MeOU2COBn O  meuOBnMe02C.0-•,O ,3 7 OTCA
O BzO

OBn OBn

OBn

A-1 \Me02C- OBn
Bnu-Ac,/N 7O 

OTCA

BzO

Figure 3-9. Alternate disconnection of HSV binding octasaccharide.

If this strategy is successful at assembling 3-2, the next task will be the implementation of

the new deprotection scheme. Briefly, the suggested plan is to cleave all acetate and benzoate

esters, deprotect the methyl esters and transform the N-diacetate to a N-acetate using the standard

ester deprotection procedure. Next, selective reduction of the azides using Staudinger chemistry,

thiol reagents, Raney Ni, or other chemistry must be examined. Sulfation of all revealed

hydroxyls and amines should be achievable by using the SO 3:NEt3 reagent employed in the 0-

sulfation step of previous heparin syntheses. Finally, Pd/C reduction should remove all benzyl

ethers and CBz groups.

If this strategy does not work, a complete reassessment of the chemistries used will be

necessary. One possibility is to try methods involving protected glucose or idose terminated
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donors and adding a late stage oxidation to the deprotection/elaboration scheme.(79-81) While

adding another reaction step to the deprotection scheme is certainly undesirable, the

improvements to coupling chemistry might offset this disadvantage. Alternatively, new donor

types will have to be explored. Examining other donor types, such as thio donors and fluoro

donors, may make this disconnection feasible. While these chemistries may not be compatible

with the solid phase,(82) it may be unnecessarily limiting to allow worries of solid-phase

compatibility to prevent the development of any working modular synthesis. The benefits of

producing a working solution-phase synthesis alone are great; after accomplishment of this goal

the issue of solid phase and automation can be addressed.
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PART II:

Investigations into the Mechanism of Inactivation of RTPR by Gemcitabine

Triphosphate.
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Chapter 4
Ribonucleotide Reductases: Mechanism and Inhibition
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4.1 Overview

Ribonucleotide reductase (RNR) is a key enzyme, found in nearly all organisms-

mammals, plants, single-celled eukaryotes and prokaryotes, even some viruses.(1-7) RNR

catalyzes the reduction of nucleotides to 2'-deoxynucleotides, generating the pools of these

molecules vital to DNA synthesis and repair. RNRs all catalyze the basic reaction shown in

Figure 4-1, in which nucleoside di- or triphosphates (NDPs or NTPs) are reduced to the

corresponding deoxynucleoside di-or tri-phosphates (dNDPs or dNTPs).(1) In all cases, the

nucleotides accepted are adenosine (A), uridine (U), guanosine (G), and cytidine (C). The

reaction involves abstraction of the indicated 3' hydrogen, loss of water from the 2' position, and

reduction of the intermediate to the deoxynucleotide product.

Nucleotide reductase activity was first observed in living organisms by Rose and

coworkers,(8) and identified in cell lysates by Reichard and coworkers.(9) The E. coli

ribonucleoside diphosphate reductase (RDPR), an iron-dependent enzyme, was later purified by

this group.(10, 11) Thelander and coworkers demonstrated that the mammalian RNR is also an

iron-dependent enzyme of this type, which became known as class I RNR. Blakley and

coworkers discovered an adenosylcobalamin (AdoCbl) dependent ribonucleoside triphosphate

reductase (RTPR) in L. leichmannii, the class II enzyme.(10, 12) Most recently, the class III, S-

adenosylmethionine (SAM) dependent enzyme has been identified as the RNR utilized by strict

and facultative anaerobes growing under anaerobic conditions.(13-17) RNRs differ in substrate

specificity: all class I enzymes and many class II accept only diphosphates as substrates

(ribonucleoside diphosphate reductases, RDPR), while class III and some class II enzymes

accept only triphosphates as substrates (ribonucleoside triphosphate reductases, RTPR). All

RNRs have been shown to use protein-centered radicals to initiate the radical dependant
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nucleotide reduction process. The protein and substrate-based radical intermediates generated by

the enzyme are protected from side reactions by the structure of the active site.

(P)PPO.- NN RNR

H H -H
Hn nH

r-SH r-S
NDP (NTP) E-S E dNDP (dNTP)

N = A, U, G, C

Thioredoxin or
Glutaredoxin

Figure 4-1. The ribonucleotide reduction reaction.

Inhibition of these enzymes has been the subject of a great deal of research.(4, 18-26)

From a medical perspective, RNR has gained prominence as a target for both anti-viral(27) and

anti-tumor agents.(18, 25, 28, 29) Inhibitors have also been useful tools for the elucidation of the

mechanism of these enzymes.(4) A wide range of strategies have been employed in the

inhibition of RNRs, including disruption of subunit-subunit interactions, disruption of the diiron

cluster of class I enzymes by chelation of the iron, elimination of the class I tyrosyl radical, and

mechanism-based inhibition.(18-22, 25, 30) Mechanism-based inhibitors take advantage of the

natural enzymatic reaction to selectively destroy enzyme activity: typically, the enzyme is able

to initiate reaction normally with a mechanism-based inhibitor, but the alternate substrate forms a

reactive intermediate that eliminates enzyme activity through covalent modification, formation

of a tight-binding complex, or other damage to the active site. Understanding the mechanism of

reaction of enzymes with substrate analogs can provide insight into the natural mechanism in a

manner unachievable using only the normal substrate.
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Enzymes utilizing radical chemistry

Free radicals have earned a bad reputation in popular culture as contributors to aging,

DNA damage and cancer, and indeed uncontrolled radicals within biological systems can lead to

a wide range of oxidative damage. However, the chemistries made possible by the controlled

use of radical reactions are diverse and powerful tools in the hands of organic chemists.(31-33)

Nature has found many ways of its own to harness the power of free radicals, and over the last

thirty years, many enzymatic reactions employing radical chemistry with exquisite specificity

have been elucidated.(5, 7, 13, 15, 16, 34-45) Most enzymes utilizing radical chemistry require a

metal cofactor, commonly iron, cobalt, manganese or copper, for initial generation of the

radical.(36) The most common cofactor is S-adenosylmethionine (SAM), which also generates a

5'-deoxyadenosyl radical through one-electron reduction catalyzed by a [4-Fe-4-S] cluster.(13,

15, 39-41, 43, 46-48) In pyruvate-formate lyase, the initial 5'-deoxyadenosyl radical generates a

glycyl radical on the protein that catalyzes the reaction of pyruvate and coenzyme A to acetyl-

CoA and formate. Adenosyl cobalamin (AdoCbl) is a common cofactor for radical reactions,

believed to generate a 5'-deoxyadenosyl radical by homolysis of the cobalt-carbon bond. Diol

dehydratase and ethanolamine ammonia lyase, which respectively catalyze the transformation of

ethylene glycol and ethanolamine to acetaldehyde, are two particularly well characterized

examples of AdoCbl-dependent enzymes employing radical rearrangements.(39, 41, 49, 50)

Radicals, typically generated by metal cofactors, also play critical roles in respiration and

photosynthesis, cyclooxygenases, galactose oxidase and many other reactions within living

systems. Some enzymes utilize amino acid radicals for catalysis: common radical harboring

residues are glycine, tyrosine, tryptophan, and cysteine.(5, 51) RNRs are the paradigm for

enzymes requiring protein radicals, displaying a range of radical initiation chemistries, but a
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unifying reaction mechanism involving amino acid-centered radicals.(4-6, 52, 53) The radical

chemistry in RNR demonstrates the exquisite control enzymes can hold over these reactive

intermediates, and the importance of radical transformations in biology.

4.2 Ribonucleotide Reductases

Nucleoside Metabolism

RNRs play a central role in nucleotide metabolism: most organisms cannot subsist on

deoxynucleosides, instead producing dNTPs from nucleotide precursors.(1, 3, 52, 54) RNRs are

critical to maintaining the pools of deoxynucleotides in organisms, both the low levels needed

for normal maintenance and the larger pools that must be generated in response to DNA damage

or for replication.(55-58) The balance and absolute levels of the dNTPs pools are maintained by

a complex process of allosteric regulation, where deoxynucleotide triphosphates (dNTPs) and

ATP bind to the proteins, altering the active site affinity for various nucleotide bases.(59-62) It

has been speculated that an early RNR was the protein that made the transition from an RNA to

DNA world possible. The ancestral enzyme has been speculated to be most similar to either the

anaerobic class III or the oxygen-independent class 11.(63-68) Sequence similarity is low across

classes, making it difficult to develop clear phylogenic trees. Consequently, the evolution of

RNRs is a hotly debated area.

Structural features of ribonucleotide reductases

RNRs are complicated enzymes both structurally and mechanistically, and many

variations exist in nature.(1, 3, 4, 6, 52-54, 69-72) All RNRs possess a large (80-130 kDa) "a"

subunit where the catalytic conversion of nucleotides to deoxynucleotides takes place and
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containing the five cysteines essential for the reduction process.(73, 74) This subunit also

harbors binding sites for allosteric effectors, which control the specificity of the reduction

reaction, and the "activity site," which modulates the rate of nucleotide reduction (Figure 4-2).

The source of the radical initiator is the basis for the division of RNRs into their three major

classes.(]) The class I enzymes are dependent on a diferric-tyrosyl radical (Y*) harbored in a

second "0" subunit, which is generated in an oxygen and reductant dependent manner. Two

major variations of this class are known, designated class Ia and lb. Eukaryotes all contain

enzymes of class la, while some bacteria express Ia, some Ib, and some both. Recently, a class

Ic has been discovered, which possesses a phenylalanine in place of the widely conserved 3-

subunit tyrosine, yet has been shown to catalyze nucleotide reduction in vitro.(75) Both a and 13

function as homodimers in this class. The active forms of these enzymes are often designated

a212, but their precise quaternary structures remain an open question. The class II enzymes are

all AdoCbl dependent, and function both in the presence and absence of oxygen. These enzymes

are found in certain prokaryotes, and are either a (as is the best known L. leichmannii RTPR)(76)

or aC2, with the initiation role of the class 13 subunit fulfilled by AdoCbl. Some class II enzymes,

including that of L. leichmannii, lack an activity site (Figure 4-2 B). The class III enzyme(14,

15, 77) is expressed under anaerobic conditions and utilizes a P unit containing a SAM/[4Fe4S]++

cofactor to generate a catalytic glycyl radical in the a subunit.(78)
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Site

Figure 4-2. Crystal structures of the a subunits of E. coli class I (A)(79) and L. leichmannii class II (B)(80) RNR.

The active site, specificity site, and activity sites are indicated.

Class I Class II Class III

Figure 4-3. A comparison of the a/1• barrel fold found in the three classes of RNR.(80) The yellow sphere

represents the active site cysteine that is the site of the catalytic thiyl radical.

The crystal structures of at least one representative of each class and subunit have been

solved, with the exception of the class III P activating enzyme.(], 2, 71, 72, 79-89) In the a

structures, many common features and a unifying fold are seen (Figure 4-3). Structural

homology between members of class I and class II is particularly high.(61, 80) The first a

structure solved was of the E. coli enzyme(79) and revealed a 10 strand a/p barrel core common

to all a structures solved to date.(88) The binding sites for the effector are found on the dimer
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interface, and are composed of residues from both a subunits. The ATP binding site is found at

the N-terminus of the a subunit, which forms an ATP cone domain. The C-terminal tail is

flexible and not visible in any crystal structures.

The L. leichmannii class II crystal structure(80) shares many features with the class I a

subunit (Figure 4-3 B). The active site is formed by a similar barrel and active site residues are

positioned similarly. There is no ATP-binding cone domain, and the effector binding site is

created by an appended domain that reproduces the class I dimer interface. The L. leichmannii

structure with an AdoCbl analog (adeninylpentylcobalamin) bound reveals a unique B12 binding

site near the active site (Figure 4-4). This binding site does not resemble AdoCbl binding sites

on other B12 enzymes, even those that appear to catalyze similar chemistry to RNR such as diol

dehydratase.(80) Instead, the cofactor binds through contacts with two key 13 strands (residues

570-578 and 602-610 in the L. leichmannii structure) that have close structural homology to P

strands present in class I structures (residues 641-647 and 650-655 in the E. coli enzyme). Thus,

it appears that the AdoCbl binding site in class II bears more similarity to regions of the class I

structure than to binding sites for the cofactor in other AdoCbl-dependent enzymes.

Class I

Figure 4-4. The active site of E. coli class 1(79) and L. leichmannii class 11(80) RNR. The latter shows the binding
site of the AdoCbl cofactor.
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Features of the RNR active site

The active sites of the class I and II RNRs are very similar across enzymes (Figure 4-5).

Key features are a "top-face" cysteine, positioned above the plane of the ribose ring, (C439 in E.

coli RDPR, C408 in L. leichmannii RTPR), believed to be the site of the thiyl radical that

initiates nucleotide reduction, and a pair of "bottom-face" cysteines (C225 and C462 in RDPR,

C 119 and C419 in RTPR) that provide the reducing equivalents. All three of these cysteines

have been shown to be essential for catalysis by mutagenesis studies(90) and are confirmed to be

in the active site by multiple crystal structures.(2, 79, 80) The other catalytically essential active

site residues are a glutamate (E441 in RDPR, E410 in RTPR) and an asparagine that hydrogen

bonds to it.(91, 92) The cysteine that provides the active site thiyl radical, the glutamate and the

asparagine lie on a hairpin loop that extends into the active site. The other two essential

cysteines lie on P-strands on the inner wall of the a/W barrel. Recent structures of the S.

cerevisiae class I enzyme with substrate and effector bound show the interactions with the active

site residues.(93) The top-face cysteine (C428 in this enzyme) is positioned near the 3' hydrogen

on bound nucleotides. One of the bottom-face cysteines is found within hydrogen bonding

distance of the substrate 2' and 3' hydroxyls (C218), while the other (C443) is more remote. The

essential glutamate (E430) is positioned such that it is hydrogen-bonded to the substrate 3'

hydroxyl, as is the essential asparagine (N426).
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~..60

SL "427

Figure 4-5. The active site of S. cerevisiae class I with ADP bound (figure by Dealwis and coworkers),(93) The
"top-face" cysteine (C428) is positioned above the plane of the ribose ring, while the "bottom-face" reducing
equivalents (C218 and C443) are below it. The residues E430 and N426 are essential for catalysis as well, proposed
to be involved in the deprotonation of the nucleotide 3'-OH.

Radical initiation

The initiator of the reduction reaction is a thiyl radical generated in the active site of the

enzyme, and the major differences between the classes are the method by which this radical is

produced. The Y* essential for radical initiation in class I enzymes begins with the assembly of

the diferric cluster in P. The mechanism of cluster assembly is an area of active research, and a

detailed discussion of the evidence for each proposed intermediate is beyond the scope of this

chapter.(72, 94, 95) During cluster assembly, a nearby tyrosine (3 Y122) is oxidized to Y*,

easily visualized by its distinctive absorbance spectrum with a maximum at 410 nm.

Once the Y* is generated, the radical must somehow reach the active site of the a, -35A

away based on docking models using the E. coli a and 13 subunits.(96, 97) This process is

kinetically masked, and the EPR and UV-vis spectra of this tyrosyl radical do not disappear

during turnover. It has been proposed that the radical is transferred to the active site for each
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reaction, then transferred back to the 1-subunit tyrosine at the end of each catalytic cycle.(98)

The distance is too great for the radical to tunnel on a rapid enough timescale. Thus, an electron

transfer or proton-coupled electron transfer (ET/ PCET) pathway has been proposed, wherein the

radical is shuttled to the surface of 0 through a series of amino acids (P Y122, W48), transferred

to the a subunit through the proposed intermediacy of a tyrosyl radical (1 Y356) on the C-

terminal tail of the p subunit, then continuing through the PCET pathway in the a subunit (a

Y731 and Y730).(1, 89, 98) Docking models indicate a distance of 25A between 0 W48 and a

Y73 1, and it is proposed that P Y356 transfers the radical through a conformational change that

allows it to move from proximity to 0 W48 to a Y731, carrying the radical with it. Evidence for

the importance of 13 Y356 in the radical transfer is strong, based on the incorporation of unnatural

amino acids into this position with altered reduction potentials.(98-103) The use of fluorinated

tyrosines in these positions produced enzymes with altered pH-rate profiles related to the pKa of

the unnatural amino acid used, and a decrease in reduction activity as the reduction potential of

the substituted amino acid increased.(104-106)

In the class II system, AdoCbl is believed to generate the active site thiyl radical directly

upon binding to the enzyme.(50) The binding pocket for AdoCbl in L leichmannii RTPR is

unique amongst AdoCbl enzymes, and binds very weakly. Extensive kinetic studies indicate that

the thiyl radical is generated in a coupled fashion, with homolysis of the C-Co bond concurrent

with abstraction of a hydrogen atom from the active site cysteine (detailed in the next

section).(107) The 5'-deoxyadenosyl radical is not thought to exist as a free species in this

transformation. The radical exchange occurs even in the absence of substrate, as evidenced by

isotope incorporation from solvent into the deoxyadenosine, the scrambling of stereospecifically

deuterated 5'-deoxyadenosine AdoCbl upon incubation with RTPR,(108) and the decomposition
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of AdoCbl to hydroxycobalamin (HOCbl) upon addition to RTPR. The homolysis of the C-Co

bond is an oxygen independent process, with oxygen neither required as in the class I system or

hindering, as in class III, allowing class II enzymes to function under both aerobic and anaerobic

conditions.

The class III system is dependent on a [4Fe4S] ÷÷ cluster to generate a 5'-deoxyadenosyl

radical through reduction of a SAM cofactor on the class III 3 subunit.(14, 15, 77) This radical

abstracts a hydrogen atom from a glycine, which in turn generates the active site thiyl radical.

Each glycyl radical catalyzes many turnovers before regeneration by the activating enzyme. The

glycyl radical is oxygen sensitive, and is destroyed rapidly under aerobic conditions.

The physical placement of the radical precursors and the active site thiyl radical are very

similar across all three classes, lending support to the notion of disparate radical precursors

feeding into a common mechanism. Figure 4-6 shows crystal structures from class I, II, and III

enzymes overlaid with the top-face cysteines in the same location. In the overlaid structures, it is

also clear that the terminal residues of the class I ET pathway (E. coli Y731, Y730), the class II

AdoCbl, and the class III glycyl radical all lie very close in space as well. Upon substrate

binding, the thiyl radical initiates a cascade of transformations resulting in nucleotide reduction.
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Figure 4-6. Generation of the thiyl radicals in the active site of RNRs.(80)

Mechanism of nucleotide reduction

The mechanism of RNR with its natural substrates is now fairly well established (Figure

4-7).(4, 5, 74, 109, 110) The first step (4-1 to 4-2) is the abstraction of the 3' hydrogen atom:

early isotope studies with 3'-[ 3H]-UDP on the E. coli enzyme revealed an isotope effect that

varied as a function of buffer pH and the effector used, and that a small amount of [3H]20 was

released during turnover.(111) The abstraction is performed by a top-face thiyl radical; in the

class II system, this thiyl radical has been observed by EPR spectroscopy to be exchange-

coupled to cobalt and shown to be kinetically competent.(112) Using RTPR grown under

177



conditions that allow incorporation of 3-[2H] cysteine in place of all normal cysteines sharpens

the RFQ-EPR signal of the initial radical formed (at 22 ms) on the L. leichmannii class II

enzyme, indicating that these deuteriums are coupled to the radical. This Co(II)-coupled thiyl

radical forms at the same rate that Co(II) is generated, giving strong evidence that the homolysis

of the Co-C bond is giving rise to the new radical. Analogous experiments with 5'-[2H]-AdoCbl

show no effect on the EPR spectrum.(112) The formation of Co(II) and the associated coupled

radical occur with kob, of 40 s-1 in the presence of effector and absence of substrate, and >200 s-1

in the presence of substrate, making it kinetically competent to catalyze nucleotide reduction,

which occurs with a turnover number of 1-2 s-1 depending on substrate/effector pair.(107)

Further evidence for this thiyl radical abstracting the 3' hydrogen of the nucleotide is

provided by experiments with 3'- [H]-UDP that showed no incorporation of [3H] into 5'-

deoxyadenosine (5'-dA) released upon rapid chemical quench of this reaction on the ms time

scale.(113) If the 5'-dA radical generated by AdoCbl homolysis were abstracting the substrate

hydrogen directly, one would have expected significant incorporation of this tritium into the

reduced 5'-dA. Conversely, using 5'-[ 3H]-AdoCbl, tritium is washed into the solvent at a

calculated rate of 4.8 s-1 when incubated with RTPR, dGTP, and TR/TRR/NADPH

reductant.(112) This result indicates the Co-C bond homolysis generates a radical through

abstraction of a hydrogen atom from a solvent-exchangeable position. When this new radical re-

abstracts a hydrogen atom from 5'-dA, a tritium can be taken instead, and exchanged with water.

This observation provides further evidence for the formation of an intermediate protein radical

by AdoCbl. While this radical has been directly observed only in the case of the L. leichmannii

enzyme, an isotope effect is also observed when using 3'-[3H]-NDPs in the E. coli, suggesting 3'-

C-H bond cleavage is involved in the mechanism.(l14, 115)
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4-1 4-2 4-3

4

4-6 4-5 4-4

Figure 4-7. Proposed mechanism of nucleotide reduction by RNR.

After generation of 3' radical 4-2, the next step in the reduction mechanism is loss of the

water from the 2' position with protonation from a bottom face cysteine to generate 2' a-keto

radical 4-3. This process is accompanied by deprotonation of the 3' hydroxyl by the active site

glutamate. The timing of deprotonation of the 3'-OH and loss of water leads to different

chemically plausible mechanisms. The formation of 4-3 could follow radical-anion mechanism,

where deprotonation occurs first and loss of the water is driven by the formation of negative

charge. Also possible is a radical-cation mechanism, where protonation and loss of the 2'-

hydroxyl precedes deprotonation and formation of the a-keto radical.(4, 6, 116) Finally, these

steps could be happening in a concerted fashion, with simultaneous deprotonation of the 3'

hydroxyl and protonation/loss of the 2'-hydroxyl as water. These possibilities cannot be
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distinguished by available experimental data, but several model systems give insight into this

process. The one-electron oxidation of ethylene glycol provides a good model for the 2',3'-diol

of the nucleotides in reduction by RNR.(116-118) When oxidized with either H202/photolysis or

H20 2/titanous ion in the absence of acid, ethylene glycol forms the a-hydroxy radical 4-7 as

detected by EPR. In the presence of acid (-pH 2.5) the EPR spectrum changes markedly,

indicating the presence of the acetaldehyde radical 4-8. This result indicates that an acid-

catalyzed, radical-cation mechanism can account for the dehydration of this type of radical

system.

H202, TiCl3HO OH or H202, hv HO OH H or HO- H
H (H -p H- -- o

H H H H H H

4-7 4-8
Figure 4-8. One electron oxidation of ethylene glycol.(116-118)

However, it is also apparent that this type of dehydration can be catalyzed by base. A 3'-

selenocarbonyl adenosine (Figure 4-9) model system, wherein the radical is generated selectively

at the 3' position by photolysis, eliminates the 2' hydroxyl exclusively under basic conditions,

and not under acidic conditions.(119) Studies of ethylene glycol radicals generated using pulsed

radiolysis demonstrate that the dehydration can be generated both by H' and OH-, and are several

orders of magnitude faster in each case than the uncatalyzed decomposition.(120, 121) It is clear

from studies involving mutant enzymes that neither deprotonation by the glutamate nor

protonation by a bottom face cysteine is strictly necessary to catalyze dehydration of the

substrate. The E. coli E441Q mutant,(91, 92, 122) which would not be expected to be able to

undergo base catalysis, and the C225S and C462S mutants (and their RTPR analogs),(90, 123)

which should not be able to undergo acid-catalyzed dehydration, both seem to undergo

abstraction of the 3'-hydrogen and subsequent dehydration. In all cases, the elimination of base
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is seen, indicative of formation of the a-keto radical and reduction to form a 3'-keto, 2' deoxy

nucleotide (as in the case of the 2'-monohalo inhibitors discussed below, Figure 4-12). It is

plausible that the dehydration may be catalyzed by either mechanism in the active site, or that a

concerted 3'-deprotonation, 2' protonation catalyzes the dehydration in the wild type

enzyme.(116)

HO A HO HO HO
HO hv Base •• [H], -A 0

PhSeO OH HO OH 0 HO

Figure 4-9. Selenocarbonyl nucleotide model system of Giese and coworkers.(119)

Regardless of the mechanism of dehydration, this radical can be reduced by the bottom-

face cysteines to generate a 3'-keto nucleoside and a disulfide radical anion (4-4, Figure 4-7). It

is proposed that the reduction occurs by single electron transfer from the thiolate generated when

water is eliminated from 4-3, either coupled with proton transfer from the other bottom-face

cysteine or with direct generation, then rapid protonation of an enolate anion.(4, 124) The

reduction of the ca-keto acetaldehyde radical by DTT was found to be several orders of

magnitude greater at pH 10 than at pH <8.4, indicating the thiolate is the preferred

reductant.(124) This reduction would generate a disulfide radical-anion on the bottom face of

the nucleotide, allowing reduction of the ketone by the radical-anion with return of the proton

from the glutamate (4-5).(116) A buildup of a disulfide radical anion has been detected by EPR

spectroscopy in the E441Q mutant of E. coli RDPR,(125) and is the only RNR system where this

radical has been directly observed. The final step in the mechanism (4-5 to 4-6, Figure 4-7) is

return of the same hydrogen atom to the 3' position that was abstracted to initiate the reaction,

with regeneration of the top-face thiyl radical (4-6).
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C-terminal
tail

Figure 4-10. Disulfide interchange from the active site to the C-terminal tail. The tail is presumed to enter the
active site after turnover, and the disulfide is transferred from the oxidized active site to the tail cysteines.

The initial state of the enzyme is then regenerated by reduction of the disulfide in the

active site (Figure 4-10).(73) This reduction is mediated by a second pair of cysteines on the C-

terminal tail (C749 and C754 in the E. coli RDPR, C733 and C736 L. leichmannii RTPR) of the

enzymes, which is believed to enter the active site after product release and reduce the active site

disulfide by disulfide interchange.(74, 90, 123, 126, 127) The limiting step in turnover of the L.

leichmannii class II enzyme is believed to be this re-reduction (or a conformational change

associated with this chemistry).(128) These C-terminal cysteines are in turn reduced by disulfide

interchange with thioredoxin (TR) or glutaredoxin, themselves reduced by thioredoxin reductase

and glutaredoxin reductase, respectively. These enzymes are reduced by NADPH, the ultimate

source of reducing electrons. The reduction system of class III RNR differs from the others: it
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possess only one active-site cysteine apart from the catalytic thiyl radical, does not have a C-

terminal cysteine pair, and the reducing equivalents are provided by formate.(1, 3, 129, 130)

4.3 Inhibitors of RNRs

A wide range of strategies have been applied to inhibit RNRs. Many known inhibitors

are nucleoside analogues, of which the 5'-diphosphate or 5'-triphosphate forms can act as

mechanism-based or competitive inhibitors (Figure 4-11).(109) Nucleotide analogues inactivate

RNR through a range of mechanisms: destroying the radical cofactor (Y., AdoCbl, or G),

specific or non-specific alkylation of a, or a combination of a and P inhibition. Mechanism-

based inhibitors have been useful probes of the mechanism of RNRs, but few successfully inhibit

RNR in vivo. However, in the past decade, gemcitabine (2',2'-diflurodeoxycytidine, F2C) (131-

133) and tezacitabine (2'-fluoromethylene cytidine, FMC)(122, 134, 135) have been developed

into successful anti-tumor agents.(30)

In addition to mechanism-based inhibitors that bind at the RNR active site, nucleotide

analogues (clofarabine) can also compete with effector binding.(18) Other classes of inhibitors

target the p subunit of class I RNR exclusively,(18) quenching the tyrosyl radical

(hydroxyurea)(136-140) or destroying the diferric cluster (thiosemicarbazones).(141, 142)

Finally, disruption of a-3 interactions by small molecule peptidomimetics has been successful, as

the interaction is largely governed by the 20 amino acid C-terminal tail of P.(22) Species

specificity has been achieved as this region is highly diverse between human, bacterial, and viral

enzymes. A survey of RNR inhibitors and an examination of their mechanism is discussed in the

remainder of this chapter.
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Figure 4-11. Some nucleoside analog inhibitors of RNR. The active inhibitors are the 5'-diphosphates (for RDPR)
or triphosphates (for RTPR).

2 '-Halonucleotides

Among the first mechanism-based inhibitors studied were the 2'-monohalo-2'-deoxy-

nucleotides.(143) These compounds were shown to irreversibly inhibit a of E. coli and

mammalian RNRs,(144, 145) as well as L. leichmannii RTPR.(146, 147) Inactivation of the

enzyme is accompanied by the elimination of base and pyrophosphate, and the generation of a

new chromophore with an absorption maximum at 320 nm. The mechanism proposed for

inhibition by these compounds is shown in Figure 4-12.(6) Initiation is expected to proceed as in

the normal reaction mechanism, with a hydrogen atom abstracted from 4-9 to generate 4-10. The

key difference in the reaction with the 2'-halonucleotides, as compared to the mechanism with

the natural substrates (Figure 4-7), comes in the next step. Due to their better leaving group

ability and lower pKa, halides can leave without protonation from the bottom cysteine to give 4-

11. Model studies of the oxidation of 2-chloroethanol with H20 2/titanous ion support this
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mechanism: 2-chloroethanol can be reacted to the acetaldehyde a-carbonyl radical in the

absence of the acid or base catalysis that is required to see rapid elimination of water in the case

of ethylene glycol.(117, 118) This system indicates CI can be eliminated without need for

leaving group protonation or deprotonation of the alcohol.

CI"

4-9

Dissociation

--.a

4-14

PPbSbase4-13
Reduction from

top face

P- a alkylation
0

4-15

Figure 4-12. Inhibition of RNR by 2' halonucleotides.

From 4-11, reduction must proceed by abstraction of a hydrogen atom from an active site

cysteine, rather than by electron transfer from a thiolate, as proposed for the natural substrates.

Studies with 3'-[2H]-UDP demonstrated that this reduction can occur from the top face cysteine
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(4-12), as well as the bottom face cysteine (4-13).(148) In the former case, the deuterium can be

transferred from the 3'-position to the 2'-position, indicating its return by the top face cysteine

after its initial abstraction from the 3' carbon. This rearrangement is strikingly similar to more

typical AdoCbl-requiring enzymatic reactions,(49, 149-151) in particular, diol dehydratase and

ethanolamine ammonia lyase (Figure 4-13).(152-154) In these enzymes, the 5'-dA radical

generated by AdoCbl homolysis directly abstracts a hydrogen atom from C of the substrate,

water (or ammonia) is eliminated with formation of a carbonyl at this carbon and a radical on C2.

This radical then re-abstracts a hydrogen from 5'-dA, accomplishing a net 1,2-hydrogen shift.

HO OH HO OH R OH H 0
R-) 4 H R~L * -(-OH

H H H H H H H H
*CH2Ad CH3Ad CH3Ad *CH2Ad

Figure 4-13. Reaction catalyzed by diol dehydratase. The indicated hydrogen atom is abstracted by a 5'-dA radical
from C1 and returned to C2.

Whether hydrogen atom transfer occurs from the top face or bottom face of the ribose

ring, no disulfide radical anion capable of reducing the carbonyl is produced. The 3'-

ketonucleoside 4-14 is released into solution. The ultimate source of inactivation results from

the decomposition of the released ketonucleotide to the furanone 4-15 through elimination of

inorganic phosphate and base.(144, 148, 155) This compound inactivates the enzyme through

alkylation from solution, forming the characteristic chromophore at 320. This chromophore is

believed to result from the reaction of furanone with a C-terminal lysine, and has been observed

in both the E. coli class I and L. leichmannii class II enzymes.(155) Partial loss of the Y* also

occurs in class I enzymes; in cases when the hydrogen atom is provided by the bottom face

cysteine, the radical cannot return to the P3 subunit.(148, 155) In class II enzymes, this pathway

would result in the destruction of the AdoCbl cofactor.(146, 147, 155-157)
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Multiple turnovers are required for each a inactivation-use of 3'-[3H] inhibitors show

the release of up to 10 equivalents of [3H]20 for each inactivation event in the absence of

exogenous reductants.(157) Reaction in the presence of DTT protects the enzyme from

inactivation, presumably through scavenging of the furanone electrophile by DTT, and up to

1000 equivalents of [3H]20 can be released under these conditions. (143-146, 148, 155) Very

similar results are observed for a range of 2'-monohalo nucleotides. For RTPR, it was

demonstrated that the 2'-chloro, 2'-bromo, 2'-iodo ATP analogs and even the ara configured 2'-

chloro and 2'-bromo ATP analogs display extremely similar inactivation chemistry to 2'-chloro

LUTP. Studies of the corresponding 2'-fluoro-2'-deoxy-CTP and UTP analogs (FNTPs) reveal

somewhat different behavior.(145, 146) These analogs do inactivate RNRs along with the

release of inorganic phosphate, base, fluoride, and formation of the 320 nm chromophore,

suggesting a mode of inactivation similar to chloro (Figure 4-12). However, substantial amounts

of dNTPs are also produced, and much more fluoride is released than base and phosphate (some

deoxynucleotide production can also be observed for 2'-chloro UTP, but with a much lower

frequency).(146, 155) This result indicates that FNTPs can sometimes act as the normal

substrate. The ratio of turnover to inactivation is dependent on the fluoronucleotide base, the

effector, and reductant used. (146, 155) It has been proposed that this partial turnover results

from the intermediate leaving group ability of fluoride relative to hydroxide and chloride.(146)

The implication is that fluoride sometimes leaves as HF, removing a proton from the bottom face

thiol, and sometimes as F-. The former leads to turnover, the latter to inactivation. Partitioning

between the two mechanisms seems driven solely by conformational factors, though it has been

recently suggested that release of the ketonucleotide to solution (and thus, turnover vs.

inactivation) is controlled by the degree of solvation of the leaving group.(158)
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Gemcitabine

The 2'-monohalo-2'-deoxynucleotides show low cytotoxicity in tissue culture. It is thus

very interesting that the most widely used RNR-targeting nucleoside analog in cancer treatment

today, F2C, differs from these analogs only by the inclusion of a second fluorine at the 2'

position. F2C was designed based on the mechanistic knowledge of inactivation by the 2'-

monohalo analogs (159-161) with the assumption that the mechanism of RDPR inactivation by

F2CDP would be similar, but the loss of the second fluoride would make inhibition irreversible.

The first detailed mechanistic study on F2CDP was carried out on purified E. coli

RDPR.(159) The studies revealed rapid, irreversible inactivation of the enzyme along with loss

of cytosine (detected by HPLC and UV-vis spectroscopy). Approximately two equivalents of

cytosine were released per a2 and any excess F2C was recovered unreacted (after

dephosphorylation). No other nucleoside products were detected. Separation of inactivated

protein from small molecules did not allow recovery of activity. The 320 nm chromophore,

indicative of furanone alkylation, was not observed and the presence of DTT did not protect

RDPR from inactivation. These results gave the first indication that the mechanism of

inactivation by difluoronucleotides was distinct from the monohalo derivatives, and that

inactivation was not due to alkylation by furanone from solution.

Further efforts to understand the details of the inactivation of E. coli RDPR(133) and L.

leichmannii RTPR(132) were undertaken in the late 1990's in the Stubbe laboratory. The

inactivation of RDPR was studied with 5 equivalents of F2CDP per a2, in both the presence of

reductants (TR/TRR/NADPH or DTT) or in their absence. Intriguingly, a different inactivation

phenotype was observed depending on whether or not reductants were present. In the presence

of reductants, complete (>90%) inactivation of a was observed within 2-3 min, concurrent with
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20-30%1oss of P activity (corresponding to a proportional loss of the tyrosyl radical absorbance

peak at 410 nm). The solution phase products of inactivation were characterized, but

quantification was difficult as isotopically labeled F2CDP was not available. Two equivalents of

F (detected by fluoride electrode) and 1 equivalent of cytosine (detected by UV-vis

spectroscopy) were observed per a2 inactivated. This result contradicts the earlier results

showing loss of 2 equiv. of cytosine per a2.(159)

In the absence of reductants, 0 was inactivated due to loss of Y* (95% by 10 min), and a

was only partially inactivated. Initially activity fell to 40-50% of the initial rate, then recovered

to a steady state with 70% of initial activity. Two equivalents of F- and I equivalent of cytosine

were released per Y- consumed, and F was released on the same timescale as Y* was lost. Loss

of Y* was concomitant with formation of a new organic radical species observed by EPR

spectroscopy (9 GHz) (Figure 4-14). This new radical was stable for long time periods, still

detectable after 15 min. The spectra of the new radical (Figure 4-14 C) was obtained by

subtraction of the spectrum of Y* (Figure 4-14 B), a difficult process due to the overlap of the

two spectra. The new spectrum appears to be a pseudo-triplet, indicating the radical is

interacting with two similar spin 1/2 nuclei. Recent results(162) using 1'-[ 2H]-F 2CDP showed the

collapse of this signal to a doublet, indicating that one of the couplings is due to the interaction

with the 1' hydrogen. When examined by high-field EPR (140 GHz) (Figure 4-15), the radical

was found to possesses g values consistent with a delocalized, a-keto radical (gx = 2.00738, gy =

2.00592, gZ = 2.00230).(162)
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Figure 4-14. Low field (9GHz) EPR of the nucleotide radical detected upon inactivation of RDPR with F2CDP in
the absence of reductants. (A) New radical signal observed during the inactivation. (B) Y* (control) (C) nucleotide
radical revealed after subtraction of tyrosyl radical signal.(133)
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Figure 4-15. High field (140GHz) EPR of the nucleotide radical detected upon inactivation of RDPR with F2CDP in
the absence of reductants.

Detailed studies have also been carried out with RTPR and F2CTP.(132) Incubation of

RTPR with 1 equiv F2CTP resulted in complete (>90%) inactivation within the first time point (<

30s), too fast to accurately measure the rate by the hand-quench method used. Stoichiometric

inactivation occurred in the presence and absence of external reductants. The majority of

experiments were designed to characterize the end products of RTPR inactivation and were run

in the absence of reductants.

Interestingly, alkylation of RTPR by an AdoCbl-derived species was detected. (132)

Separation of the protein from the solution phase molecules by Sephadex G-50 chromatography

in the dark resulted in the co-elution of a red color with a UV-vis spectrum of cobalamin. This

species closely resembled the spectrum of glutathionylcobalamin (GSCbl) in its features, and

was speculated to be due to loss of the adenosyl ligand and covalent modification to the protein

through a Co-S bond, forming on the minute timescale. This assignment was confirmed by
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digestion of RTPR with endoproteinase Glu-C and separation of peptides by reverse-phase

HPLC; this protease was used over the more common trypsin as it is active at the slightly acidic

pH where the corrin-protein bond was found to be the most stable. A peptide containing the

cobalamin chromophore was shown to include residues 411-420 of the peptide by N-terminal

sequencing, which includes C419, one of the bottom face reducing equivalents. Further,

sequencing gave no detected amino acid for the ninth residue, consistent with a modified

cysteine. The modified peptides were also analyzed by electrospray ionization (ESI) mass

spectrometry. Several peaks were found with m/z consistent with that predicted for the peptide

(411-423) conjugated to cobalamin. Further, the kinetics of cleavage of the cobalamin from the

peptide using CN were examined. They were similar to those observed with CN- and GSCbl,

and the cobalamin product produced was identical. ESI of the product mixture showed m/z

peaks consistent with the unmodified 411-423 peptide after CN treatment. This data suggested

that the primary site of cobalamin modification was at C419 through a Co-S bond.

The small molecule products of this inactivation were also characterized. Two

equivalents of F- were lost per RTPR inactivated, as measured by fluoride electrode. Kinetic

studies revealed one equivalent was lost within the dead time of the instrument and a second

equivalent lost within one minute. In contrast to RDPR, no base release was detected. Note that

experiments described in Chapter 6 indicate that the apparent lack of base release was due to a

contaminating cytosine deaminase in the RTPR, and the uracil was overlooked in the original

study (a uracil peak is evident in the original HPLC traces from these studies).(163) It now

appears one equivalent of base is released per equivalent of F2CTP consumed. The release of 5'-

dA was also detected: approximately 0.8 equivalents were released per equivalent of

F2CTP/RTPR.
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Rapid freeze-quench EPR studies were carried out on F2CTP inactivations of RTPR.

Within the first time point (22 ms) an exchange-coupled thiyl radical-cob(II)alamin species was

detected (0.9 equiv based on AdoCbl). RFQ analysis on multiple time points revealed the

disappearance of the exchange-coupled thiyl radical and the formation of a new species that was

one or more organic radicals coupled to cob(II)alamin with weaker interactions than the initial

radical. It was demonstrated that the initially generated thiyl radical was converted to this new

radical in a quantitative and kinetically competent fashion. The spin present as a thiyl radical at

22 ms is converted entirely to the new radical by 141 ms, and remains at 255 ms. This radical

persists on the minute timescale, with 36% of the initial spin density radical remaining at 20s. It

is clear from these studies that the mechanism of inhibition of RNRs by F2C phosphates is

complex and distinct from the monohalonucleotides. However, without radiolabeled F2CTP,

information as to the fate of the ribose ring was lacking and proposal of a mechanism proved

difficult.

Recently, DFT computational methods have been applied in an attempt to elucidate this

mechanism of F2CDP with RNR in the absence of exogenous reductants.(164) In these

calculations, the active site cysteines were modeled by methanethiols, the glutamate by a

formate, and the F2CDP as only the sugar ring without the base, phosphate or C5'. The structural

omissions to make the calculations feasible remove several potentially reactive groups. This

omission may be an acceptable approximation, if any elimination of base and inorganic

pyrophosphate occur on long timescales, as with furanone-generating RNR inhibitors. The key

features of this proposed mechanism are shown in Figure 4-16. The nucleotide is expected to

behave normally in the initiation step, with the initial thiyl radical (4-16) abstracting of a

hydrogen atom from C3' (4-17), followed by elimination of one fluorine and formation of an a-
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keto radical (4-18). The calculations indicated that the fluorine must be protonated to be lost

with a reasonable rate, with the proximal bottom-face thiol serving that function. No explanation

was provided for previous experimental results on monofluoro nucleotide analogues where

dNTP was also detected.(145, 146)

Assuming the fluoride does leave with protonation, the loss of HF would place the

bottom face cysteines in the correct protonation states to generate the a-fluoro ketone and a

disulfide radical anion (4-19), analogously to the reaction mechanism of the normal substrate. It

is after the next step, reduction of the ketone to the C3' radical species (4-20), that the reaction

mechanism would deviate from the normal mechanism of substrate reduction. Rather than the

return of a hydrogen atom from the top-face thiol, the calculations reveal that loss of the second

fluorine with protonation from the top-face cysteine is more favorable, resulting in loss of a

second HF with formation of the a-keto radical (4-21). This step would generate the nucleotide

radical shown with no abstractable hydrogens nearby.
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Figure 4-16. Mechanism of reaction of F2CDP with RDPR in the absence of reductants proposed by Ramos and
coworkers. The mechanism is based on DFT calculations modeling only the ribose ring (without base,
pyrophosphate, or C5' included) and key active site side chains (cysteines as CH3SH and the glutamate as formate),
not the full active site.(164)

The authors go on to propose a series of rearrangements to generate a stable C4' radical:

reprotonation of the top-face cysteine by the glutamate, transfer of a hydrogen atom to C2', and

abstraction of the 4' hydrogen atom (4-22). However, crystal structures of RDPR with substrate
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bound allow little chance of the top-face cysteine interacting with the opposite face of the ribose

ring.(93, 165) Further, it has been shown in the case of the C2'-chloronucleoside that once the

3'-keto nucleotide is formed by transfer of a hydrogen atom from either face of the ring, it is

released from the active site and decomposes in solution into furanone.(148) This experimental

data rules out the possibility of the 3'-keto nucleotide remaining in the active site long enough for

the abstraction of the 4' hydrogen.

Further insight into the inactivation may be gained from comparison of X-ray crystal

structures with F2CDP or CDP bound. Recent structures of S. cerevisiae (yeast) class I

ribonucleotide reductase show an unusual binding mode of gemcitabine in the enzyme active

site.(165) The structures of the yeast a were produced by crystallization in the absence of

substrate, then soaking in a solution containing 20 mM DTT, 10 mM MgC12, 20 mM adenosine

5'-(13,y-imido)triphosphate (AMPPNP) and 20 mM of either CDP or F2CDP. Despite their

similar molecular shapes, F2CDP and CDP exhibit markedly different binding modes (Figure

4-17). The CDP binds such that the 2' and 3' carbons are situated near the catalytically relevant

glutamate and asparagine residues (N426 and E430) and the radical initiation and proximal

reducing equivalent cysteines (C428 and C218, respectively). In the F2CDP structure, the ribose

ring is rotated up away from the active site, such that C2' is positioned where the cytosine atoms

02, C2, and N3 are located in the CDP structure. This binding mode leaves the 3' hydrogen in

approximately the same orientation and position relative to C428, suggesting that chemistry can

still be initiated by abstraction of this hydrogen. However, the rotation moves the 2'-OH away

from the bottom-face reducing equivalents, and allows two additional waters to bind to the active

site, hydrogen-bonded to the ribose. One of these is hydrogen-bonded to the ring oxygen and is

situated above the plane of the ring. The cytosine base is further removed from the active site
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pocket, and shows interactions with different residues within the base-binding loop 2 relative to

CDP. If F2CDP binds such that initiation proceeds as in the normal mechanism, but is physically

removed from the normal reducing equivalents required for turnover, it could have significant

mechanistic consequences. It is important to note, however, that these structures may not

represent physiologically-relevant binding arrangements.

of yeast RDPR.(165) Figure reprinted with permission of the author.

2 '-Azidonucleotides

2'-Azido-2'-deoxynucleotides have also been examined in detail and found to be

mechanistically distinct from the 2'-halo-2'-deoxynucleotides.(143) The azide group could be

lost from the 3'-hydroxy radical as HN3 or N3_ to generate the a-keto radical without

deprotonation of the bottom face cysteine.(166, 167) In studies using E. coli RDPR, the end

products on a long (min) timescale were similar to the monohalo case, with both pyrophosphate

and base released (Figure 4-18). Azide release was not detected, however, in the case of the wild

type enzyme. Instead, N2 release was observed on a rapid (ms) timescale, and a new, nitrogen

centered radical was detected by EPR, forming concomitant with loss of Y-.(166, 168-171)

Studies using [15N]-labeled inhibitor showed that both the radical and the N2 gas were derived
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from the azido group. When oxidized a or the C225S or C462S mutants were used, azide release

could be detected, suggesting that interaction with the bottom-face reducing equivalents is

leading to alterations in the mechanism of inactivation.(171) Further, the new radical was not

detected for the oxidized enzyme or C225S mutant, but was seen for the C462S mutant. To

further elucidate the structure of the radical, a range of isotopically labeled inhibitors were

used.(169) Studies performed using 1'-, 2'-, 3'-, or 4'-[2H]-N 3UDPs showed no hyperfine

interactions to the radical from these deuterons.(171) Electron spin echo envelope modulation

(ESEEM) spectroscopy indicated distances of 3.3±0.2 and 2.6±0.3 A from the nitrogen centered

radical to the l'-and 4' deuterons, respectively.(171) The use of 2'-[15N 3, 13C]-N 3UDP showed

that the 2'-C-N3 bond is cleaved before formation of the new radical. This data collectively

suggested the radical was covalently bonded to the 3' carbon.(171) The EPR spectra were

judged to be consistent with a sulfinylamine radical based on model systems, and studies using

3-[2H]-cysteine a showed the sulfur was derived from an active site cysteine.(172) The question

of whether the nitrogen was linked directly to the 3' carbon, or by a connecting oxygen, was

recently resolved by the use of [170] labeled N3UDP and computational analysis. EPR

spectroscopy with this inhibitor assigned the structure shown (4-23) based on the hyperfine

coupling measured to the 170.(169)

PPO N base, PPi,
• fastH O slow

HO N3  VNsOH
N2  L 0

4-23

Figure 4-18. Products of inhibition of RNR by 2'-azido-2'-deoxynucleotides.
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Figure 4-19. Inhibition of RNR by 2' azidonucleotides, and the proposed structure of the stable radical species.

Two mechanisms have been proposed; in both, the initial top face thiyl radical (4-24)

abstracts the 3'-hydrogen (4-25), leading loss of azide and formation of an a-keto radical (4-26).

In the first proposal, the released azide attacks the carbonyl of the a-keto radical to give 4-27,

similar to the AdoCbl catalyzed rearrangements discussed above (Figure 4-13). This radical is

reduced by the proximal bottom face cysteine (4-28), and the resulting sulfur radical attacks the

R-N 3 leading to elimination of nitrogen. Alternatively, the keto radical may be reduced by the
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cysteine (4-29) while HN3 remains in the active site. The thiyl radical traps the HN 3 with loss of

N2 (4-30), and the new nitrogen centered radical attacks the carbonyl (4-31). The first

mechanism is favored by theoretical studies,(173) but both are possible and cannot be

distinguished based on current experimental data. Destruction of this radical is a slow process

occurring on the s to min timescale, and results in release of a 3'-keto nucleotide from the active

site that decomposes with elimination of base and PPi to generate a furanone species. This

breakdown is analogous to the 2'-halonucleotide case, and leads to the inactivation of a through

alkylation by this furanone.

Fluoromethylene nucleotides

A deoxycytidine analog 2'-substituted with a fluoromethylene group is a potent

mechanism-based inhibitor, now in phase III clinical trials.(18, 135, 174, 175) As with F2CDP,

the diphosphate of this analog is the active species in vivo. The reaction requires 1.4 turnovers

per inactivation event. Both a and P are inactivated to varying extents, and elimination of

fluoride and cytosine accompanies inactivation.(122, 159, 176) As typical of all mechanism-

based inhibitors that inactivate 0, Y* is lost. In this case, this loss is accompanied by the

formation of a nucleotide-based radical in the active site of a. This radial has been characterized

by EPR spectroscopy of both the unlabeled compound and the isotopically labeled 6'-[2H]- and

6'-[13C]- derivatives. The EPR spectrum was altered for both isotopically labeled derivatives,

providing the first solid evidence of a nucleotide radical in a RNR system, and allowing a

structure to be proposed (Figure 4-20).(134, 177)

In the proposed mechanism for this inactivation, the initial top face thiyl radical (4-32)

abstracts the 3'-hydrogen, generating an allylic radical stabilized by the fluorine (4-33 and 4-34).
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Transfer of a hydrogen atom from the bottom-face cysteine would cause loss of radical from the

P subunit and result in a system (4-35) that would eliminate fluoride and generate an a,p

unsaturated ketone (4-36). This ketone could alkylate a nucleophile through conjugate addition;

studies indicate the active site glutamate is the primary site of alkylation (4-37).(122, 177) The

radical could also be reduced by transfer of a hydrogen atom from the top face, which would lead

to the same electrophile, but return the radical to P. This system can be reduced by the bottom

face thiyl radical, forming the nucleotide-based allylic radical (4-38). This radical is believed to

be the species observed by EPR spectroscopy in this system.

4-32 4-33 4-34i
PO SH

O N

H
'O H H-
CONH 2 F S

4-37

SHPPON N
O

SH
CO&1H2H

CONH 2 S

4-36

P0 SH

ON

SHCONH 2 HS SH

4-38

Figure 4-20. Inhibition of RNR by 2' fluoromethylene cytidine, and the proposed structure of the stable radical
species.
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2'-Mercapto nucleotides

Another inhibitor class that has been investigated are the 2'-mercapto-2'-

deoxynucleosides (Figure 4-11).(178, 179) The 2'-mercapto nucleoside 5'-diphosphate was

found to be a potent inhibitor of E. coli class I RNR with Ki = 35 [IM and kinact = 0.18 s-', but

only inactivated RNR in the presence of molecular oxygen.(178) The 0 subunit was found to be

inactivated by Y- loss. No a inactivation is observed with this inhibitor. During the course of

this reaction, a new organic radical was observed by EPR, with g values and hyperfine structure

consistent with a perthiyl radical (RSS.). This radical was shown to be on an a subunit cysteine

by incorporation of p3-[ 2H] cysteine into a and the observed loss of hyperfine couplings that

resulted.(178) The compound was found to be active in vivo; like many of the previously-used

in vivo inhibitors, the cytidine derivative was the most active in depressing deoxynucleotide

pools in cells.(180) Few experimental studies have been performed to investigate this

mechanism, and, in particular, the role of molecular oxygen yet to be established. In order to

account for the formation of the perthiyl radical on a, it has been proposed that the first step in

inhibition (Figure 4-21) requires binding to the active site (4-39) and the generation of a disulfide

between the nucleotide 2'-thiol and active site cysteine, probably the proximal bottom face

cysteine (4-40).(178, 179) Initiation by abstraction of the 3' hydrogen (4-41) would trigger

elimination of a perthiyl radical (4-42). It is not clear how the initial oxidation step would occur

specifically, however, or why the enzyme-substrate disulfide would be stable to disulfide

exchange with the distal bottom-face cysteine.
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Figure 4-21. Proposed mechanism of inhibition of RNR by 2' mercapto-CDP.

Other nucleoside analogs

The adenosine analogues cladribine, fludarabine, and clofarabine (Figure 4-22) are

nucleoside analogues that have seen clinical use as chemotherapeutics.(18, 29, 181-183) These

compounds have complex mechanisms of action in vivo. The compounds are inhibitors of DNA

synthesis, and can also incorporate into DNA, triggering a cascade of events leading to

apoptosis. In addition, the triphosphate derivatives of these compounds have been shown to be

inhibitors of RNR in vitro in crude cell extracts (IC50 of 130 nm for cladribine).(184, 185) It has

been hypothesized that suppression of RNR activity is derived by competition with ATP binding

at the effector and activity sites of a.
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Figure 4-22. RNR inhibitors that bind to the effector and activity sites.

Radical quenchers and metal chelators

Hydroxyurea (HU), the related compounds didiox and trimidox (Figure 4-23), inhibit

class I RNRs through reduction of the tyrosyl radical on the P subunit.(140, 186-192) The Y* is

deeply buried in the 13 subunit, and is quenched with a rate several orders of magnitude slower

than Y* in solution. The rate of quenching is enhanced more than tenfold when the inactivation

is performed in the presence of a, effector and substrate, indicating that the radical becomes

more accessible during the transfer to the active site.(191) These radical scavengers inhibit RNR

in vivo and are useful chemotherapeutics against hematologic cancers, leading to the arrest of

DNA synthesis presumably through the polymerases becoming starved for dNTPs.(193)

Semicarbazones and thiosemicarbazones such as Triapine are potent iron chelators, and

inhibit RNR through destruction of the iron center by an unknown mechanism.(194-197) These

compounds appear to associate with 3 prior to rapid enzyme inactivation, and are believed to

inhibit RNR both through radical quenching and by perturbations in iron metabolism that prevent
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the formation of the diferric-Y* cofactor on P.(141, 142, 195, 198-200) Other iron-chelating

siderophores such as desferoxamine (DFO) have no effect on the tyrosyl radical of active 0 RNR

subunits, but rather are believed to act solely by disruption of iron homeostasis, preventing

proper loading of newly translated RNR.(201)

nd ical SIcavelnge!
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Figure 4-23. Structure of radical scavengers and iron chelators applied to the inhibition of RNR.

Inhibitors of subunit-subunit interactions

Class I RNR is one of the few protein systems in which inhibitors of protein-protein

interactions have been successfully designed and shown to work in vivo.(20, 22, 202-206) This

area is of particular interest because the binding interface between the a and P subunits differ in a

species dependent manner, creating the opportunity for antibiotic and antiviral RNR inhibitors

with little or no effect on mammalian cells.(22, 207-214) Inhibitors designed specifically to

disrupt the subunit-subunit interactions in mammalian cells have also been proposed as potential

chemotherapeutics that would specifically target nucleotide reduction.(202, 204, 215) The
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development of subunit-subunit interaction inhibitors stems from the early observation that the

C-terminal peptide of the 13 subunit can inhibit nucleotide reduction in class I systems.(205, 206,

212, 213, 216) Efforts have also been made to synthesize inhibitors of this interaction based on

cyclic peptide or peptidomimetic scaffolds, a necessary step for the use of these inhibitors as

therapeutics (Figure 4-24).(217-219) Several compounds developed at Boehringer-Ingelheim to

inhibit herpes simplex virus (HSV) RNR. Compounds in this series bind HSV R1 with KD's in

the 0.2-5 nmol range.(207, 208, 214, 220, 221) Several were quite successful in reducing

replication of the virus in culture, and in reducing the severity of symptoms of viral eye

infections in murine models.(220)

Inhibitors of Herpes Simplex Virus RNR A cyclic peptide inhibitor of mammalian RNR

HN

R OO

BILD 1257, R = COOH
BILD 1263, R = CH20H
BILD 1357, R = CH2CH3

Figure 4-24. Structures of some RNR subunit-subunit interaction inhibitors.

4.4 Summary

Ribonucleotide reductase is a complex, multifaceted enzyme critical to the function of

living cells. RNRs are found in nearly all organisms, and though primary sequence may vary

considerably, the enzymes share remarkable structural homology across classes. These radical-

dependent enzymes utilize a wide range of cofactors for the initial generation of the radical, from

oxidation of a tyrosine to reduction of SAM to homolysis of AdoCbl, yet have very similar
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active sites that reduce nucleotides through a common mechanism. RNRs central role in

nucleotide metabolism has made it an attractive target for both antitumor and antiviral

therapeutics, and the strategies devised to inactivate RNR are numerous. An understanding of

the mechanism is key to the development of new inhibitors, and data from many inhibitors can

give deeper understanding of the mechanism of nucleotide reduction. The study of RNR remains

an active area of research-elucidating the evolution of RNR has the potential to give insight on

the development of a DNA world, understanding of allosteric regulation will give a clearer

picture of nucleotide homeostasis within cells, and development of new inhibitors may improve

existing therapies or unlock new ones. Much more remains to be learned about these fascinating

enzymes, and their elegant control of a radical reaction within the cell.
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Chapter 5

Synthesis of Isotopically-Labeled Gemcitabine (F2C) 5'-Phosphates
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5.1 Introduction

F2C and ribonucleotide reductase

The nucleoside analogue 2'-deoxy-2',2'-difluoro-cytidine (F2C, GemzarTM, 5-1) is a

clinically used anti-cancer drug, believed to target both ribonucleotide reductase and DNA

polymerases in vivo.(1-6) F2C was initially synthesized at Merrell Dow Pharmaceuticals(6) and

Eli Lilly Research Laboratory(7) as part of an effort to determine the usefulness of nucleoside

analogues as potential anti-viral and anti-tumor agents. F2C itself showed strong activity against

a broad spectrum of RNA and DNA viruses, but was deemed unsuitable for use as an antiviral

due to its narrow therapeutic window.(3) Subsequent studies found F2C was also a potent

antitumor agent, whose activity could be maintained while reducing side-effects to tolerable

levels.(8) F2C has since seen broad application to a range of cancers.(], 9-27)

NH2

NZ

HO

HO F

5-1

Figure 5-1. Gemcitabine (F2C).

The mechanism by which F2C inactivates ribonucleotide reductase (RNR) has been the

subject of a number of investigations(28-31) modeled on the detailed understanding of the

mechanism by which 2'-substituted nucleotides inhibit RNR.(32) These studies revealed that

gemcitabine 5'-diphosphate (F2CDP) (or -triphosphate (F2CTP) in the case of RTPR) is a

stoichiometric, mechanism-based inhibitor. Inactivation is irreversible, and accompanied by the

loss of two equiv. of fluoride. This inactivation behavior has been observed for both E. coli

RDPR(30) and L. leichmannii RTPR.(31) As with most nucleotide mechanism-based inhibitors,
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base release was detected in the case of RDPR. In the case of RTPR, however, no cytosine

release was detected. The lack of radiolabeled F2C analogs made monitoring the fate of the

nucleotide, both base and sugar, challenging. In order to gain new insights into the mechanism

of inactivation, the synthesis of isotopically labeled derivatives of F2C was required.

This chapter reports the synthesis of 1'-[ 2H], 1 '-[3H], 5-[3H], and 3'-[ 2H] labeled F2CDP

and F2CTP. The radiolabeled compounds have allowed us to track the fate of the nucleotide base

and sugar moieties during the inactivation of RNR. The deuterated compounds have facilitated

identification of peptides modified during the inactivation, provided insight into the structure of

the nucleotide radical generated during inactivation, and provided the potential to examine

effects on 3' C-H bond cleavage on rate and mechanism.

Syntheses of F2C in the literature

The original synthesis of F2C is outlined in Scheme 5-1.(7) Traditional methods of

inserting a gem-difluoro moiety, such as (diethylamino)sulfur trifluoride (DAST), work poorly

on five-membered sugar ring systems, due to competitive elimination and, for the 2-ketones,

migration of the anomeric group, instead of addition of the second fluorine.(33) To avoid this

problem, the group is installed as part of a total synthesis of the sugar ring. The D-

stereochemistry desired in the final ribose analogue is first introduced as (R)-2,3-O-

isopropylideneglyceraldehyde (5-2), itself prepared from D-mannitol by the method of Baer and

Fischer. This compound was coupled under Reformatsky conditions with ethyl

bromodifluoroacetate to give a 3:1 mixture of the diastereomeric products 5-3a and 5-3b. These

isomers were separated by HPLC to give the desired isomer 5-3a in 65% yield.
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"O FF
O• C 5-3a

BrCC0Et, Zn H Dowex 50W-X1 2, HO
BrF2CCO 2Et, Zn OH HPLC 5-3a 2:1 MeOH:HO. O

65% 94% H
CHO O FF HO F

5-2 O .CO 2 Et 5-3b 54
OH

TBDMSOTfI, TBDMSO TBDMSO TBDMSO
Lutidine O H O DIBAL-H H-O- OH MsCI, TEA _ Hu oMs

92% 79%i 92%
TBDMSO F TBDMSO F TBDMSO F

5-5 5-6 5-7

TMSOTf TBDMSO HO N
5-8 or 5-9 _F HPLC; HBr

50%, 4:1 : TBDMSO F HO F

5-10, N=C 5-1, N=C
5-11, N=U 5-12, N=U

NHTMS OTMS

TMSO N TMSO N

5-8 5-9

Scheme 5-1. First reported synthesis of F2C.

The isopropylidene group of compound 5-3a was cleaved under hydrolytic conditions

with DOWEX 50W-X12 resin (acidic form) in 2:1 methanol: water, simultaneously closing the

ring to the lactone product 5-4 in 94% yield. This compound was protected with TBDMS-ethers

through reaction with TBDMS-triflate and lutidine to give 5-5 in 92% yield. The lactone could

then be reduced by treatment with DIBAL-H to give the lactol 5-6 in 79% yield. The protected

lactol 5-6 was converted to the anomeric mesylate 5-7 by treatment with methanesulfonyl

chloride. The mesylate was used in this case due to the enhanced stability of anomeric leaving

groups on 2,2-difluororibose derivatives, cause by the presence of the gem-difluoro moiety.(34)

The presumed coupling mechanism using anomeric leaving groups such as mesyl is a SN 1-like

Lewis-acid catalyzed loss of mesyl alcohol. The generation of the carbocationic species is

highly disfavored by the electronegative gem-difluoro group. Coupling of the mesylate to bis-
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trimethylsilyl-cytosine 5-8 or -uracil 5-9 could be achieved by extended reflux in the presence of

trimethylsilyl triflate to give the product protected nucleosides 5-10 and 5-11 in 50% yield as a

4:1 a:P mixture. The desired P anomer could be separated by HPLC and deprotected by acidic

hydrolysis to give 5-1 or its uracil analogue 5-12.

A later refinement of this synthesis by Lilly researchers is outlined in Scheme 5-2.(34)

The goal of this group was to produce a synthesis suitable for kilogram scale production. They

thus needed to eliminate the HPLC purification steps and improve the yield of the desired P

anomer. These goals were accomplished by use of the benzoyl ester protecting group in place of

the TBDMS ethers used in the original synthesis. Here, the products of the initial coupling were

esterified with benzoyl chloride in good yield to give 5-13a and 5-13b; the benzoyl group was

introduced at this stage solely to provide a convenient chromophore for reaction monitoring by

HPLC or TLC.(34) The isopropylidene group was removed by acid hydrolysis, and the

deprotected compound converted to the furanose lactone derivatives through azeotropic

distillation in toluene, then esterified with benzoyl chloride to give the isomers 5-14a and 5-14b .

A selective crystallization from the crude reaction mixture provided the desired ribo isomer 5-

14a in good yields even on very large (thousand-gallon) scale.

BzO

2Et 5-13a H 0 O 5-14a

1) BrF2CCO 2Et, Zn OBz 1) toluene, reflux BzO F crystalization

2) BzCI, lutidine, 2) BzCI, lutidine, BzO
cHO DMAP O F F DMAP

o 5-13b BzO O 5-14b
5-3 CO 2Et

OBz H F

5-14a LiAI(O-t-Bu)3H MsCI, TEA O 5-10 or 5-115-14_ OH T OMs H
H FO 2) NH3, MeOH H F

BzO F BzO F HO F
5-15 5-16 5-1, N=C

5-12, N=U

Scheme 5-2. Second generation F2C synthesis.
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The lactone 5-14a was reduced to the lactol 5-15 through treatment with lithium tri-tert-

butoxy aluminum hydride and converted to the mesylate 5-16 (1:1 mixture of anomers). The

presence of the gem-difluoro group was found to render these mesylates very stable in inert

solvents, even at elevated temperatures. Through the procedure outlined in the original

publication, the mesylates could be coupled with the TMS derivatives of cytosine or uracil to

give the protected nucleosides as 1:1 anomeric mixtures, a significant improvement over the

original method. The desired 0 anomer could be separated from the a anomer through

crystallization, either before or after cleavage of the benzoate esters by treatment with

methanolic ammonia.

Other variations on the syntheses of 2,2-difluoro ribose have been published. Yatsuda

and coworkers(35) described optimized coupling conditions for the condensation under

Reformatsky conditions of chiral aldehydes and halodifluoroacetates. They surveyed a range of

Lewis acids and concluded that use of Cp 2TiCl2 gave the best results, with yields near 90% and

enantioselectivities of 10-20:1 for the desired isomer when coupling (R)-2,3-O-

cyclohexylideneglyceraldehyde and ethyl difluoroiodoacetate in the synthesis of 2,2-

difluororibose.

Using a different approach to installing the gem-difluoro moiety, Castill6n and coworkers

devised a route to 2,2-difluororibose that allowed the insertion of the fluorines using the reagent

DAST (Scheme 5-3). By starting from D-glucose or D-mannose, the problem of

diastereoselectivity is entirely avoided, as all stereocenters that will be in the 2,2-difluororibose

are already set in the starting material. In preliminary work, the authors confirmed that attempts

to react ribo-2-keto sugar with DAST produced only degradation products, while glucose 2- and

3-keto sugars reacted to produce the gem-difluoro moiety (though some products from
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competitive reactions were observed).(33) A protected glucose derivative was oxidized to the

corresponding keto sugar 5-17 using pyridinium chlorochromate (PCC) in 90% yield. This keto

sugar was treated with DAST in refluxing benzene to yield the difluoro derivative 5-18 in 60%

yield. The benzylidene was hydrolyzed with acid and the free hydroxyls were esterified with

benzoyl chloride to give 5-19 in 85% yield. The benzyl ethers were removed by hydrogenation

over Pd/C in 59% yield, and the resultant diol was converted to the ribo derivative by NaIO 4

cleavage followed by treatment with methanolic ammonia to give the lactol 5-15 in 43% yield.

DAST O BzO B FPh0O Ph O 1)LH 1) H2, Pd/C z H
O BnOOBn F BnOOBn 2) BzCI BnO 2) NalO4 BzO F

5F BnOBn 3) NH3/MeOH
5-17 5-18 5-19 5-15

PhOO- O  DAST PhOFO 1)C H BzOf

OF - 2) Bz WBzO j 4ý
0 OMe F OMe 2) BzCIOMe

F OMe

5-20 5-21 5-22

PhSeH, OBz OBz

BF3 Et2  BzO t-BuOOH Bz

F SePh F 3)1
Me2S
NH3/MeOH

BzO

BzO FOH
BzO F

5-23 5-24 5-15

Scheme 5-3. Alternative synthesis of protected difluororibose.

Similarly, the authors synthesized 5-15 beginning from the D-mannose-derivative 5-20.

Treatment of this keto sugar with DAST gave 5-21 in 70% yield; the increased yield relative to

the reaction of 5-17 is likely due to the less hindered nature of this keto sugar. Cleavage of the

benzylidene followed by esterification with benzoyl chloride gave 5-22 in 85% yield. Reaction

of this methyl glycoside with PhSeH and BF3-Et20 resulted in the seleno glycoside 5-23 in 72%

yield; reaction with the radical initiator t-BuOOH gave the 1,2-anhydro sugar 5-24 in 72% yield.

Ozonolysis of this compound, followed by treatment with Me2S, then methanolic ammonia gave
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5-15 in 42% yield. While approaches beginning with hexoses have the advantage of eliminating

the separation of stereoisomers, the increased length and lower yields prevent them from

displacing the Lilly synthesis (Scheme 5-2) as the method of choice for production of 2,2-

difluororibose.

Synthesis of 2-[' 4C] and 5-[3H] F2C

An early report from Eli Lilly(36) describes preparation of several radio-labeled versions

of F2C. The 2-[ 14C] derivative was prepared by substitution of 2-[ 14C]-cytosine in the normal

reaction scheme (Scheme 5-2). Substitution of [2H] or [3H] at C5 was accomplished as shown in

Scheme 5-4: F2C was treated with HI0 4 and 12 in CC14 in a procedure analogous to that used

previously on cytidine(37) to give the 5-iodo derivative 5-25, then treated with deuterium or

tritium gas in the presence of Pd/CaSO4 in 1:1 dioxane:D 20.

H10 4, 12, CC4

NH2

x N
X2, Pd/CaSO 4  HO N,

WO = HOH N/O

O
HO F
HO F

5-1 5-25 5-1, X = [2H] or [3H]

Scheme 5-4. Isotopic labeling of F 2C.

Phosphorylation of F2C

The synthesis of the F2C di- and triphosphate substrates for RDPR and RTPR have also

been challenging. In the early studies,(28, 29) the F2C phosphates used were reported to have

been prepared by the standard chemical methods (Scheme 5-5).(38-41) However, early studies

in the McCarthy, Robins, and Stubbe groups (unpublished results) revealed that the primary
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product of this chemistry was the 3',5' cyclic phosphate 5-26. In retrospect, this result was not

surprising due to the high acidity of the 3' hydroxyl group caused by the nearby fluorines; the

desired 5'-phosphates can only be accessed in very low yield through these methods.

NH2  NH2  NH2
HON O N

HO N POCPO(OEt)3 CI- NO NaOH Titration

H F Hý FO

HO F HO F - OF

5-1 5-26

- - M _
NH2  2

Carbonyldiimidazole I)m O-- ' NO0

HO F 0
HO F - 0 F

5-26

Scheme 5-5. Chemical phosphorylation of F2C.

Several researchers have been able to circumvent this problem through the use of

enzymatic phosphorylation methods. Early work at Merrell Dow,(29, 42) and later

investigations have explored the use of human deoxycytidine kinase (dCK)(43-45) and human

UMP/CMP kinase (UMP-CMP K)(46-48) as tools for the production of F2CMP and F2CDP.(43,

47, 48) The availability of large quantities of these proteins has been made possible through

recombinant technology, and recent studies in the Stubbe laboratory have allowed the use of

these enzymes for the production of large quantities of F2C mono- and diphosphates (Scheme

5-6).(49)

HO C P C UMP- PPO C
.F dCK CMPK F

HO F ATP ADP HO F ATP ADP HO F

Scheme 5-6. Enzymatic phosphorylation of F2C.
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Goals of current work

The primary limiting factors in the continued elucidation of the mechanism of action of

F2C has been the lack of derivatives isotopically labeled on the sugar ring, and a lack of a simple,

generally applicable method for the production of F2C 5'-phosphates. The current work

describes syntheses that allow for the incorporation of [2H] or [3H] at the 1'- and 3'-positions of

F2C. Refinements to the enzymatic synthesis of F2C 5'-phosphates are described, allowing easy

production of significant quantities of F2CDP and the extension of these methods to the

production of F2CTP, phosphorylation of isotopically-labeled derivatives of F2C, and to the

phosphorylation of 2'-deoxy-2'-fluorocytidine. The deuterated and tritiated compounds have

been used for the mechanistic studies described in Chapter 6.

5.2 Experimental

General Procedures. Pyridine and triethylamine were dried by distillation from KOH. All

other organic solvents were dried by distillation from CaH or purchased anhydrous, unless

otherwise noted. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica

gel 60 F254 plate (50.25 mm). Compounds were visualized by cerium sulfate-ammonium

molybdate stain and heating or by exposure to UV light. Triethyl ammonium bicarbonate

(TEAB) buffers, pH 6.8 were prepared by bubbling CO2 through IM triethylamine in water on

ice for 30 min; dilutions were made from 1 M stocks and CO 2 bubbled through for 15 min on ice.

Human dCK expression plasmids were a gift of Dr. Staffan Eriksson,(45) and the protein was

expressed and purified as described previously(49) and stored in 20 mM Tris pH 7.9, 0.5 M

NaC1, 10 mM DTT, 20% glycerol, with a SA of 150 nmol mg-1min1 . UMP/CMP kinase

plasmids were a kind gift of Dr. Anna Karlsson,(47) and was expressed and purified as described
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previously(49) and stored in 50 mM TRIS pH 8.0 containing 10 mM reduced glutathione, with a

SA of 2.1-4.8 pLmol mg-~min -1. UMP-CMP K concentration was determined by Bradford assay

with a BSA standard. 2-Deoxy-3,5-di-O-benzoly-2,2-difluororibonolactone was a gift of Eli

Lilly & Co. Inorganic pyrophosphatase (baker's yeast), SA 868 U/mg, was obtained from Sigma

as a lyophilized powder and taken up in 165 mM Tris pH 7.2 immediately prior to use. Pyruvate

kinase (rabbit muscle), SA 450 U/mg, was obtained from Sigma as a lyophilized powder and

prepared as a 1200 U/mL stock in 50 mM Tris pH 7.5, 80 mM KC1, 20 mM MgC12. Extinction

coefficients used were: dCK (E2808 = 56755 at pH 7.0); F2C, (E268 = 9360 at pH 7.0);(34) cytidine

(6271 = 9100 at pH 7.0), cytosine (E267 = 6100 at pH 7.0), adenosine (E259 = 15400 at pH 7.0).(50)

Solutions of BSA were quantified assuming an A(280) of 0.67 for a 1 mg/mL solution. (50) UV-

vis spectra were taken on a Cary-3 spectrometer. Anion exchange column fractions were

assayed using a Ultramark Bio-RAD fixed wavelength plate reader. Scintillation counting was

performed using Emulsifier-Safe liquid scintillation counting cocktail (Perkin Elmer) on a

Beckman LS6500 multipurpose scintillation counter.

Purification of 2-deoxy-3,5-di-O-benzoly-2,2-difluororibonolactone (5-14a)(34) Compound

5-14a was purified before use by suspension in CH2C12 (5 mL/g of material) followed by

filtration to remove the insoluble hydrolyzed lactone (5-27) The solvent was removed via rotary

evaporator to give purified 5-14a. To convert the hydrolyzed lactone back to 5-14a, the

compound (5-27, 2g, 5.29 mmol) was suspended in toluene (80 mL) in a round bottom flask. A

Dean-Stark trap and condenser were attached and the trap filled with additional toluene (20 mL).

The reaction was heated to reflux for 24 h. All solids went into solution upon boiling. The

reaction was cooled to room temperature, filtered through a pad of celite, and the solvent

231



removed in vacuo. The product (1.9 g, 5.05 mmol, 95%) was a white powder fully soluble in

CH 2C12. The proton NMR spectrum was consistent with authentic 5-14a.(34)

2-Deoxy-3,5-di-O-benzoyl-2,2-difluoro-1-O-methanesulfonyl-D-ribofuranoside (5-16).

Procedure A:(34) All solvents and liquid reagents were distilled from CaH before use, except

methanesulfonyl chloride, which was distilled from P20 5. Lactone 5-14a (276 mg, 0.72 mmol)

was dissolved in Et20 (5.8 mL) and THF (1.4 mL). The reaction was cooled to OOC in an

ice/water bath, LiAl(O-t-Bu) 3H (218 mg, 0.86 mmol) was added as a solid, and the reaction was

stirred 90 min at OOC under N2. The mixture was diluted to 100 mL with ethyl acetate and

washed with 50 mL each of 1N HC1, brine, and saturated NaHCO 3. The organic layer was dried

over MgSO 4, filtered, and the solvent removed in vacuo. The residue was dried by co-

evaporation with toluene, dissolved in CH2C12 (7 mL), and cooled to 0oC. Triethylamine (350

jtL, 2.5 mmol) and methanesulfonyl chloride (111 p.L, 1.44 mmol) were added and the reaction

stirred 1.5 h at room temperature. The reaction was diluted to 100 mL with CH2C12, washed with

50 mL each of IN HC1, water, and saturated NaHCO 3. The organic layer was dried over

MgSO 4, filtered, and the solvent removed in vacuo. The residue was purified on silica gel (1 cm

x 15 cm column, 4:1 hexanes:ethyl acetate elutant) to yield 5-16 (279 mg, 0.61 mmol, 85%) as a

clear oil. The 1H NMR spectrum was consistent with previously reported data.(34)

Procedure B:(51, 52) All solid reagents were dried over P20O under vacuum overnight. All

solvents and liquid reagents were distilled from CaH immediately before use, except mesyl

chloride, which was distilled from P20 5. NaBH4 (152 mg, 4 mmol) was dissolved in diglyme (4

mL) under N2 to make a 1.0 M solution. The apparatus was assembled as pictured (Figure 5-2)

under N2 flow with flame drying. When the apparatus had cooled to room temperature, the cold

finger attached to the three-necked flask was filled with dry ice/acetone (this was to prevent
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solvents, particularly Et20, from exiting the three-necked flask and condensing in the pear

shaped flask. The NaBH 4 solution was added to the dropping funnel and boron trifluoride

diethyl etherate (1.25 mL, 10 mmol, 2.5 eq.) was added to the three-necked flask. The three-

necked flask was placed in an oil bath initially at room temperature. The conical flask was

immersed in a dry ice/acetone bath and THF (2 mL) added. The needle was immersed in the

THF and the N2 flow turned to a minimum. Dropwise addition of the borohydride solution was

begun, adding the solution over 1 h. The evolution of gas was immediately evident and a white

precipitate (NaBF4)(53) formed over the course of the reaction. The oil bath was heated to 70"C

for 30 min to distill off any remaining diborane. The apparatus was disassembled, leaving the

THF flask under N2 in the dry ice/acetone bath.

The concentration of BH 3:THF was established by titration.(51, 52) A 50 gLL aliquot was

removed from the THF solution of borane and added slowly to 3 mL acetone containing a trace

of phenolphthalein (audible hissing occurred). To this solution was added water (3 mL) and

mannitol (0.1 g). The solution was titrated with 0.10 M NaOH to the phenolphthalein endpoint

(1.12 mL added, 2.4 M concentration of the original solution). The yield of BH 3:THF was 4.8

mmol, 90%. (the maximum theoretical yield is 5.33 mmol, as one equivalent of BF 3 can also be

converted to borane for every three equiv. NaBH 4 reacted).(53)

The solution of BH 3:THF was transferred to a ice/salt bath (-15C) and 2-methyl-2-

butene (1.03 mL, 9.6 mmol) added slowly dropwise via syringe over 1 h. The reaction mixture

was stirred an additional 1 h at -150 C. The solution of disiamyl borane was transferred to an ice

bath (O0C) and a solution of 5-14a (188 mg, 0.5 mmol) in 1 mL THF was added dropwise via

syringe over 30 min. The reaction was stirred 1 h at 00 C followed by 16h at room temperature.

Water (1 mL) was added slowly. Foaming occurred as H2 gas evolved. The flask was equipped
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with a reflux condenser and the mixture was refluxed 30 min, then cooled to 0oC and the reflux

condenser removed. Hydrogen peroxide (1 mL, 30% solution) was added dropwise over 5 min,

along with enough 2N NaOH to keep the pH at 7.5-8.0 (monitored by microelectrode, -200 giL

over the course of the quench). The mixture was poured into EtOAc (100 mL) and washed with

water (2 x 50 mL). The organic layer was dried over MgSO 4, filtered, and the solvent removed

in vacuo.

The residue was dried over P20 5 and dissolved in CH2C12 (5 mL). The reaction was

cooled to OoC and triethyl amine (0.5 mL) and mesyl chloride (0.39 mL, 5 mmol) were added.

The ice bath was removed and the reaction stirred 3 h at room temperature. The reaction was

diluted to 100 mL with CH 2C12 and the organic layer washed with 1N HC1, water, saturated

NaHCO 3, and water. The organic layer was dried over MgSO 4, filtered, and the solvent removed

in vacuo. Purification using silica gel chromatography (1 cm x 15 cm column, 4:1 hexanes:ethyl

acetate elutant) yielded 5-16 (143 mg, 0.313 mmol, 63%) as a clear oil. The 'H-NMR spectrum

was consistent with previously reported data.(34)
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Figure 5-2. Apparatus for production of BH3:THF.

Bis(trimethylsilyl)cytosine (5-8).(54) Cytosine (44.5 mg, 0.4 mmol) was dried overnight over

P2 0 5 and suspended in hexamethyldisilazane (HMDS) (4 mL) and trimethylsilyl chloride

(TMSC1) (0.4 mL) in a three-necked flask equipped with a reflux condenser. The solution was

heated to reflux under N2 for 2 h. The solvent was removed by distillation in vacuo with heating

and the white crystalline solid 5-8 dried on a vacuum line for 15 min.

2'-Deoxy-2',2'-difluorocytidine a/lp mixture (5-1 a/P). The 5-8 (0.4 mmol) produced in the

previous step was dissolved in xylenes (1.5 mL) in the three-necked flask in which it was

synthesized. Trimethylsilyl trifluoromethanesulfonate (72.5 ptL, 0.4 mmol) was added and the

reaction stirred 30 min at room temperature under N2. A solution of 5-16 (114 mg, 0.25 mmol)
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in anhydrous xylenes (1 mL) was added via cannula and the reaction heated to reflux for 5 h.

The reaction was cooled to room temperature and diluted to 100 mL with ethyl acetate, washed

with 50 mL each water and saturated NaHCO 3. The organic layer was dried over MgSO 4,

filtered, and the solvent removed in vacuo. The crude material was suspended in methanol (2.5

mL). Sodium metal (25mg, 1.1 mmol) was dissolved in methanol (1 mL) and 100 gL of this

solution added to the reaction mixture. All solids dissolved within 5 min. The reaction was

stirred for 1 h at room temperature, then Dowex 50W-X8 acidic resin (-1 mL) added until the

pH was -6. The reaction was filtered and the solvent removed in vacuo. The residue was taken

up in water (50 mL) and extracted with Et20 (2 x 20 mL). The aqueous phase was collected and

the water removed in vacuo to yield 5-1 as a 6:4 a:p3 mixture, which was quantified by UV

absorbance (E268 = 9360 at pH 7.0), 190.5 jimol, 76% from 5-16. 'H-NMR was consistent with

reported data(34) and the product was >95% pure by NMR.

2'-Deoxy-2',2'-difluorocytidine -5'-monophosphate (F2CMP).(45, 49) F2C was converted to

its monophosphate directly from the a/p mixture. The reaction contained in a final volume of 1

mL: 5 mM p F2C (assuming a 6:4 a:P ratio as measured by NMR), 10 mM ATP, 2 mM DTT,

0.5 mg/mL BSA, 1.4 mg/mL human dCK, 50 mM Tris pH 7.6, 100 mM KC1, and 10 mM

MgCl 2. The reaction was initiated by addition of dCK and incubated at 37"C for 45 min. The

reaction mixture was loaded on a DEAE Sephadex A25 column (20 mL, 20 cm x 1 cm)

equilibrated in 5 mM TEAB pH 6.8 and then column washed with 50 mL 5 mM TEAB. The

product was eluted using a 100 mL x 100 mL linear gradient from 5 mM - 400 mM TEAB

gradient. Fractions (5 mL) were assayed for A260 nm and the nucleotide containing fractions

were combined and the solvent was removed in vacuo. The product was co-evaporated with

50% ethanol in water (5 x 20 mL). 'H-NMR analysis of the flow-through from the initial wash
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showed only the presence of the a anomer, (34) with no unphosphorylated f3 detectable. F2CMP

eluted at 250 mM TEAB (4.45 gmol, 90%). 'H-NMR (500 MHz, D20), selected peaks, 8 7.83

(d, J= 7.5 Hz, 1H), 6.15 (t, J= 6.4 1H), 6.05 (d, J= 7.5 Hz, 1H), 4.36 (dd, J= 12.4, 21.1 Hz,

1H), 4.02-4.09 (m, 2H), 3.91-3.96 (m, 1H). 31P-NMR (121.5 MHz, D20, phosphoric acid

external reference) 6 4.6.

2'-Deoxy-2',2'-difluorocytidine -5'-diphosphate (F2CDP).(47, 49, 55) The reaction mixture

contained in a final volume of 5 mL: 2 mM F2CMP, 8 mM ATP, 2 mM DTT, 50 mM Tris pH 8,

and 25 mM MgCl 2, 66.5 tg/mL UMP-CMP kinase. The reaction was incubated 30 min at 370 C,

diluted to 50 mL with cold water and loaded onto a DEAE-Sephadex A-25 column (30 mL, 18

cm x 1.5 cm). The column was washed with water (100 mL) and the product eluted with a 400

mL x 400 mL linear gradient from 0 -> 600 mM TEAB. The fractions (7.5 mL) were assayed by

A260 nm, with F2CDP eluting along with ADP at 450 mM TEAB. The fractions were combined

and the solvent removed in vacuo. The product was co-evaporated with 50% ethanol in water

(5x20 mL) to remove excess TEAB. This material was dissolved in water (24 mL) and NaIO 4

(0.5 mmol, ImL of a 0.5 M solution) was added. The reaction was incubated 10 min at 370 C,

then methyl amine (2.5 mmol, 640 [tL of 3.9 M solution in water, pH adjusted to 7.5 with

phosphoric acid) added and the reaction incubated an additional 20 min. The reaction was

quenched by addition of rhamnose (1 mmol, 1 mL of a 1M solution). To this mixture was added

6.6 mL of 8 mM MgC12, 165 mM Tris pH 7.2 and yeast inorganic pyrophosphatase (165 gL of a

50 U/mL stock in 165 mM Tris pH 7.2) to give final concentrations of2 mM MgCl 2, 55 mM Tris

pH 7.2 and 0.25 U/mL inorganic pyrophosphatase. This mixture was incubated 45 min at 370C,

diluted to 300 mL with cold water, and loaded onto a DEAE Sephadex A25 column (30 mL, 18

cm x 1.5 cm). The column was washed with water (100 mL) and the product eluted with a 400

237



mL x 400 mL linear gradient from 0 - 600 mM TEAB. The fractions (7.5 mL) were assayed by

A260 and the F2CDP containing fractions eluting at 450 mM TEAB were combined and the

solvent was removed in vacuo. The product was co-evaporated with 50% ethanol in water (5 x

20 mL). The product was lyophilized to dryness and resuspended in water (1 mL) giving 5.6

pLmol, 56% yield. 1H-NMR (500 MHz, D20) 8 7.71 (d, J= 7.7 Hz, 1H), 6.09 (t, J= 7.2 Hz, 1H),

5.96 (d, J= 7.7 Hz, 1H), 4.40 (dd, J= 13.3, 22.2 Hz, 1H), 4.05-4.21 (m, 2H), 3.99-4.03 (m, 1H).

31P-NMR (121.5 MHz, D20) 8 (phosphoric acid external reference) -9.5 (d, J= 22.1 Hz), -10.6

(d, J= 22.1 Hz). The 31P NMR showed no contamination by inorganic pyrophosphate.

2'-Deoxy-2',2'-difluorocytidine -5'-triphosphate (F2CTP). The reaction (20 mL) contained 2

mM F2CDP, 4 mM phosphoenolpyruvate (PEP), 50 mM Tris pH 7.5, 80 mM KC1, 20 mM

MgCl 2, and 120 U/mL pyruvate kinase. The reaction was incubated at 370 C for 1 h. The

reaction was then diluted with cold water (50 mL) and loaded on a DEAE-Sephadex A-25

column (60 mL, 20 cm x 2 cm), the column was washed with water (100 mL), and the product

eluted with a 400 mL x 400 mL linear gradient from 04750 mM TEAB. The fractions (10 mL)

were assayed for A260 nm. The triphosphate containing fractions eluting at 550 mM TEAB

were combined and the solvent removed in vacuo. The product was co-evaporated with 50%

ethanol in water (5 x 20 mL). The product was lyophilized to dryness and dissolved in 5 mL

ddH20 to give 35 jtmol, 88% yield. 'H-NMR (500 MHz, D20), selected peaks, 6 7.75 (d, J= 7.7

Hz, 1H), 6.09 (t, J= 7.2 Hz, 1H), 6.02 (d, J= 7.3 Hz, 1H), 4.33-4.40 (m, 1H), 4.21-4.26 (m, 1H),

4.10-4.14 (m, 1H), 4.03-4.06 (m, 1H). 31P-NMR (121.5 MHz, D20) 8 (phosphoric acid external

reference) -9.3, -10.5, -21.4.

1 '-[2 H]-F 2C. The synthesis of 5-16 was repeated (procedure B) with the substitution of NaBD4

(98% [2H], Sigma) for NaBH 4. The 5-16 produced was carried on to 5-1 using the procedure for
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the cold material to yield 1'-[2H]-F 2C, 274 Apmol, 64%. [2H] incorporation was 93% by 'H-NMR

and ESI-MS.

1'-[ H]-F 2C-5'-diphosphate (1'-[ 2H]-F 2CMP). a/p 1 '-[2H]-F 2C (5 imol P) was converted to the

monophosphate by the human dCk procedure described for the unlabeled compound. Yield 4.3

pmol, 86%.

1 '-1 H]-F 2C-5'-diphosphate (1'-[2 H-F 2CDP). 1'-[ 2H]-F 2CMP (15 iimol) was converted to the

diphosphate by the UMP-CMP kinase procedure described for the unlabeled compound. Yield

10 pLmol, 60%.

1 '-[2 H-F2C-5'-triphosphate (1'-[2H]-F 2CTP). 1'-[2H]-F 2CDP (10 Apmol) was converted to the

triphosphate by the PEP/pyruvate kinase procedure described for the unlabeled compound.

Yield 7.75 pmol, 77.5%.

1 '-[3HI-F 2C. The synthesis of 5-16 was repeated (procedure B) with the addition of 500 mCi

NaB[3 H]4 (SA 14.22 Ci/mM, Perkin Elmer) to the cold NaBH 4 used in the preparation of the

Sia2BH. The 5-16 produced was carried on to 5-1 using the procedure for the cold material to

yield 1'-[ 3H]-5-1, 306 pmol, 71%. SA could not be determined at this stage due to [3H]

containing impurities.

1'-[3H]-F 2C-5'-monophosphate (1 '-[3H-F 2CMP). The enzymatic phosphorylation was carried

out on 25 Apmol 1'-[3H]-P-F 2C (from the 6:4 anomeric mixture) using the procedure described for

the unlabeled compound. Yield 21.25 imol, 85 %, SA 8700 cpm/nmol.

1'-[3H]-F 2C-5'-diphosphate (1 '-[3H]-F 2CDP). The enzymatic phosphorylation was carried out

on 21 .mol 1 '-[3H]-F 2CTP using the procedure described for the unlabeled compound. Yield

12.8 Aimol, 60%, SA 8620 cpm/nmol.
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1'-[3H]-FzC-5'-triphosphate (1 '-[3H]-F 2CTP). 1 '-[3H]-F 2CDP (5 gmol) was converted to the

triphosphate using the procedure described for the unlabeled compound. Yield 4.44 gmol , 88%,

SA 8620 cpm/nmol. This material (1 nmol) was combined with 50 nmol unlabelled F2CTP and

treated with 2 U alkaline phosphatase in 100 mM Tris pH 8.6, 0.2 mM EDTA for 2 h at 370 C

and purified by HPLC (Rainin SD-200) using a Adsorbosphere Nucleotide Nucleoside, Alltech

(250mm x 4.6mm) with a flow rate of 1 mL/min. The solvent system was Buffer A, 10 mM

NH40Ac, pH 6.8; Buffer B: 100% methanol. The flow program was 100% A until 10 min, then

a linear gradient to 40% B over 25 min, then to 100% B over 5 min, collecting 1 mL fractions.

The fractions were assayed for radioactivity; 97% of the radioactivity co-eluted with the F2C

peak.

5-['H]-F2C-5'-triphosphate (5-[ 3H]-F 2CTP). 5-[3H]-F 2CDP was synthesized by E. Artin from

5-[3H]-F 2C provided by Eli Lilly.(49) 5-[3H]-F 2CDP (2.2 gmol) was converted to the

triphosphate by the PEP/pyruvate kinase procedure described for the unlabeled compound.

Yield 1.85 pmol, 85%, SA 10060 cpm/nmol.

Synthesis of 3 '-[2H]-F2C

2-Deoxy-2,2-difluoro-l-thexyldimethylsilyl-D-ribofuranoside (5-28).(56) 3,5-Di-O-benzoyl-

2-deoxy-2,2-difluoro-ribonolactone (5-14a)(34) (1.33 g, 3.53 mmol) was dissolved in THF (7

mL) and ether (28 mL). The reaction was cooled to 00 C and LiAl(O-t-Bu) 3H (1.08 g, 4.29

mmol) was added slowly. The ice bath was removed and the reaction stirred 2.5 h at room

temperature. The reaction was diluted with ethyl acetate (250 mL), washed with 100 mL each

IN HC1, brine, and saturated sodium bicarbonate. The organic layer was dried over Na2SO 4,

filtered, and the solvent evaporated in vacuo. The crude product was dried by co-evaporation
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twice with toluene, then dissolved in CH 2C12 (35 mL). Imidazole (477 mg, 7 mmol) and

thexyldimethylsilyl chloride (TDSC1, 757 gL, 3.85 mmol) were added. The reaction was stirred

16 h at room temperature; a white precipitate was observed after 15 min. The reaction was

diluted with ethyl acetate (250 mL), washed with 100 mL each IN HC1, brine, and saturated

sodium bicarbonate. The organic layer was dried over Na2SO 4, filtered, and the solvent

evaporated in vacuo. The crude product was dissolved in methanol (35 mL) and sodium

methoxide (320 gL of a 25% solution in methanol, 1.4 mmol) was added. The reaction was

stirred 1.5 h and Dowex 50W-X8 resin (acidic form) added until the pH was -6 (-2 mL). The

reaction was filtered and the solvent removed in vacuo. The crude product was purified by silica

gel chromatography (1 cm x 15 cm column, 9:1 (2 cv) then 7:3 hexanes:ethyl acetate (5 cv)

elutant) to yield 5-28 (760 mg, 2.43 mmol, 69%, 3:1 mixture of anomers) as a clear oil. Rf. 0.36

(2:1 hexanes:ethyl acetate). FT-IR (thin film, NaCl plate) 3397, 2960 cm'1 . 1H-NMR (500

MHz, CDCl3) 8 5.25 (d, J= 5.7 Hz, 0.25H), 5.15 (t,J =6.7 Hz, 0.75H), 4.48 (m, 0.75H), 4.19

(m, 0.25H), 4.05 (dd, J= 4.8, 17. 3 Hz, 0.25H), 3.96 (m, 0.75H), 3.76-3.90 (m, 1.25H), 3.69 (dd,

J= 3.1, 12.2 Hz, 0.75 H), 2.3 (bs, 2H), 1.60-1.66 (m, 1H), 0.86-0.90 (m, 12H), 0.21 (s, 0.75H),

0.205 (s, 2.25H), 0.20 (s, 0.75H), 0.195 (s, 2.25H). 13C-NMR (125 MHz, CDC13) major isomer:

8 1.22.2 (dd, J= 248, 265 Hz), 95.4 (dd, J= 24.8, 39.4 Hz), 81.5 (d, J= 9.2 Hz), 69.1 (dd, J=

8.2, 13.8 Hz), 61.8, 34.1, 25.1, 20.1, 20.0, 18.7, 18.6, -2.3, -2.9; minor isomer: 8 122.0 (dd, J=

250, 268 Hz), 96.5 (dd, J= 23.8, 39.2 Hz), 84.3 (dd, J= 3, 4 Hz), 71.5 (dd, J= 10.3, 11.9 Hz),

61.8, 34.2, 25.3, 25.1, 20.1, 18.6, -2.3, -3.2. ESI MS (C13H 26F20 4 Si) m/z (M + Na÷) calcd

335.1461, obsd 335.1470.

1-Thexyldimethylsilyl-2-deoxy-2,2-difluoro-5-(di-phenyl-mono-p-methoxyphenyl)methyl-D-

ribofuranoside(5-29). Compound 5-28 (360 mg, 1.15 mmol), dried by co-evaporation with
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toluene (3 x 5 mL), and monomethoxytrityl chloride (MMTCl, 292 mg, 1.27 mmol), were

dissolved in anhydrous pyridine (5 mL). The reaction was stirred 2 d at room temperature under

N2, diluted with CH2C12 (50 mL), and washed with 25 mL each saturated NaHCO 3 and water.

The organic layer was dried over Na2 SO 4 , filtered and the solvent removed in vacuo. The crude

product was purified by silica gel chromatography (1 cm x 15 cm column, 100% toluene (2 cv)

then 30:1 toluene:ethyl acetate (5 cv) elutant) yielded 5-29 (715 mg, contaminated with 0.2 eq. of

MMTOH based on 'H-NMR, 95% yield of 5-29) Further purification did not allow separation of

the MMTOH and showed decomposition of the product through loss of the MMT group. The

product was partially characterized as this mixture. Rf. 0.23, 0.29 (9:1 hexanes:ethyl acetate).

'H-NMR (500 MHz, CDC13) Major isomer 8: 7.48 (d, J= 7.9 Hz, 2H), 7.18-7.37 (m, 10H), 6.84-

6.87 (m, 2H), 5.13 (d, J= 7.3 Hz, 1H), 4.31-4.37 (m, 1H), 4.00 (m, 1H), 3.81 (s, 3H), 3.35 (dd, J

= 9.6, 5 Hz, 1H), 3.26 (dd, J= 5.8, 9.6 Hz, 1H), 2.05 (d, J= 1.5 Hz, 1H), 1.55-1.6 (m, 1H), 0.82-

0.88 (m, 12H), 0.08 (s, 3H), 0.17 (s, 3H). Minor isomer: 8 7.48 (d, J= 7.7 Hz, 4H), 7.23-7.37

(m, 8H), 6.85 (d, J= 8.7 Hz, 2H), 5.29 (d, J= 5.3 Hz, 1H), 4.23 (dd, J =4.8, 9.4 Hz, 1H), 4.04

(m, 1H), 3.82 (s, 3H), 3.32 (d, J= 4.9 Hz, 2H), 2.24 (d, J= 8.8 Hz, 1H), 1.59-1.69 (m, 1H), 0.93

(s, 3H), 0.92 (s, 3H), 0.91 (s, 3H), 0.90 (s, 3H), 0.25 (s, 3H), 0.24 (s, 3H). ESI MS

(C33H42F205Si) m/z (M + Na') calcd 607.2662, obsd 607.2685.

Preparation of 5-28 from 5-29.(57, 58) Compound 5-29 (103 mg, 0.176 mmol) was dried by

co-evaporation with toluene then dissolved in CH 2C12 (1.75 mL). The solution was cooled to

00 C and Dess-Martin periodinane (187 mg, 0.44 mmol) was added. The solution was warmed to

room temperature and stirred 16 h. The reaction was filtered through a pad of Celite, diluted to

50 mL with ethyl acetate and stirred with an equal volume of saturated NaHCO3. Na2 S20 3 (2 g)

was added, and the mixture was stirred 10 min. The layers were separated, the organic layer was
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washed with 100 mL brine, dried over Na2SO 4, filtered and the solvent removed in vacuo. The

crude material was dried by co-evaporation with toluene and used in further steps without

purification. The product was prone to decomposition, but a small amount was partially

characterized to confirm the presence of a carbonyl. FT-IR (thin film, NaCl plate) 1799 (C=O),

1726 (C=O) cm-'. '3C-NMR 200.1 (C=O).

This crude material was dissolved in acetic acid (2 mL) and water (0.5 mL) and stirred 2

h. The reaction was diluted with ethyl acetate (100 mL) and washed with saturated NaHCO 3 and

brine (100 mL). The organic layer was separated, dried over Na2SO 4, filtered, and the solvent

removed. The crude material was dried with coevaporation toluene (5 x 2 mL) and carried on to

the reduction step without further purification. Acetic acid (2 mL) and NaBH 4 (66 mg, 1.75

mmol) were combined at OoC. When all solids were dissolved, this mixture was added to the

crude material (-0.175 mmol), warmed to room temperature and the reaction stirred 16 h. The

reaction was diluted with ethyl acetate (100 mL) and washed with saturated NaHCO 3 (100 mL).

The organic layer was separated, dried over Na2SO 4, filtered, and the solvent removed. The

crude product was purified by silica gel chromatography (0.5 cm x 15 cm column, 3:1

hexanes:ethyl acetate elutant) to yield 5-28 (22 mg, 70 jimol, 40% from 5-29). Spectra were

consistent with those reported above.

3-[ 2H]-1-Thexyldimethylsilyl-2-deoxy-2,2-difluoro-1-O- D-ribofuranoside (3-[ 2H]-5-28) The

synthesis of 5-28 from 5-29 was repeated substituting AcOD and NaBD4 in the reduction step,

Reacting 140 mg, 0.45 mmol 5-28 to yield 3-[2H]-5-28 (53 mg, 0.175 mmol, 38% from 5-29).

The 'H-NMR showed >99% [2H] incorporation.

3 '-[2H]-2-Deoxy-3,5-di-O-benzoyl-2,2-difluoro-1-O-methanesulfonyl-D-ribofuranoside (3'-

[2H]--5-16). Compound 3-[2H]-5-28 (52 mg, 0.166 mmol) was dried by co-evaporation with
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toluene then dissolved in pyridine (1.7 mL). Dimethylaminopyridine (2mg, 0.017 mmol) and

benzoyl chloride (77 jpL, 0.66 mmol) were added and the reaction stirred 16 h under N2. The

reaction was diluted with ethyl acetate (100 mL) and washed with 100 mL each saturated

NaHCHO3 and brine. The organic layer was dried over Na2SO 4, filtered and the solvent

removed in vacuo. The crude product was purified by silica gel chromatography (0.5 cm x 15

cm column, 25:1 hexanes:ethyl acetate (2 cv), then 10:1 hexanes:ethyl acetate (5 cv) elutant) to

yield the dibenzoyl ester derivative (72 mg, 0.139 mmol, 84%). This product was dried by co-

evaporation with toluene then dissolved in THF (1.2 mL). The reaction was cooled to 0oC and

acetic acid (9.1 [tL, 0.16 mmol) was added, followed by tetrabutylammonium fluoride(152 jgL of

a 1.0 M solution in THF, 0.152 mmol) and the reaction stirred 1 h under N2. The reaction was

diluted with ethyl acetate (50 mL) and washed with 25 mL each saturated NH4Cl and water. The

organic layer was dried over Na2 SO 4, filtered, and the solvent removed in vacuo.

The crude material was dried by co-evaporation with toluene then dissolved in CH 2C12

(1.2 mL). The reaction was cooled to 00 C and triethyl amine (120 pL, 1.63 mmol) and mesyl

chloride (53.4 ptL, 0.69 mmol) were added. The ice bath was removed and the reaction stirred 3

h at room temperature under N2. The crude product was purified by silica gel chromatography

(0.5 cm x 15 cm column, 9:1 hexanes:ethyl acetate elutant) to yield 3'-[ 2H]-5-16 (48.5 mg, 0.105

mmol, 77%). [2H] incorporation was >99% by NMR. [2H] incorporation was shown to be >99%

by ESI MS: (C20H17DF20sS) m/z (M + Na+) calcd 480.0645, obsd 480.0636.

3'-[2H]-F 2C. Compound 3'-[ 2H]-5-16 (48 mg, 0.105 mmol) was converted to a/P 3'-[2H]-F2 C

(65 p.mol, 62%, 6/4 a/P) through the procedure described for the unlabeled compound.
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3'-[2H]-F 2CMP. The enzymatic phosphorylation was carried out on 17.25 jtmol 3 3'-[ 2H]-F 2C

(from a 6:4 anomeric mixture) using the procedure described for the unlabeled compound. Yield

15 jimol, 87%.

3'-[2H]-F 2CDP. The enzymatic phosphorylation was carried out on 15 gmol 3'-[ 2H]-F 2CMP

using the procedure described for the unlabeled compound. Yield 10.2 iimol, 68%.

3'-[2 H-F 2CTP. The enzymatic phosphorylation was carried out on 5 gimol 3'-[ 2H]-F 2CDP using

the procedure described for the unlabeled compound. Yield 3.4 gtmol, 68%.

5.3 Results and Discussion

Refinements to published synthesis ofF2C for synthesis of isotopically labeled derivatives

For all syntheses described in this chapter, the starting material used was the 2,2-

difluororibose precursor 5-14a.(34) Compound 5-14a is very prone to hydrolysis due to the

enhancement of lactone electrophilicity by the vicinal gem-difluoro group (Scheme 5-7), and the

starting material was found to be -40% hydrolyzed by NMR. The lactone could be separated

from its hydrolyzed form 5-27 readily by dissolution in CH 2C12; the hydrolyzed lactone is

sparingly soluble in this solvent and can be filtered off. Further, the hydrolyzed lactone can be

recovered by dehydrative ring closure through azeotropic distillation of the H20 in refluxing

toluene, allowing 5-27 to be converted back to the lactone 5-14a in 95% yield.

BzO-- OBz 0
O +H20 BzO . OH

BzO F OHF F

5-14a 5-27

4 toluene, reflux, -H20 5

Scheme 5-7. Purification and recovery of 5-14a.
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The synthesis of F2C from 5-14a through a modification of the previous synthesis is

outlined in Scheme 5-8. The reduction of the lactol using LiAl(O-t-Bu) 3H was performed as

previously described;(34) conversion to the mesylate 5-16 by treatment with mesyl chloride and

triethylamine was done on the crude reduction product, producing 5-16 in 85% yield from 5-14a.

This mesylate was coupled to bis-trimethylsilylcytosine 5-8 as described in the original

publication, however, a different method for production of 5-8 from cytosine was employed.

The previously described procedure used a "catalytic" amount of ammonium sulfate, added as

dry crystals, to a mixture of cytosine suspended in HMDS. The mixture is heated to reflux,

effecting the reaction of cytosine to 5-8 by proton catalyzed transfer of TMS groups from the

HMDS. The HMDS was then distilled off, leaving 5-8 and the non-volatile ammonium sulfate

behind. This product was dissolved in xylenes, and 5-16 added. While suitable for large scale

synthesis, on small scale the difficulty of adding a consistent amount of ammonium sulfate

caused problems in the later coupling reaction. Ammonium sulfate is only slightly soluble in

HMDS at room temperature, and thus could only be added to the reaction as individual crystals.

On the hundred-gtmol scale typically employed in production of isotopically labeled F2C, a small

crystal often represented a significant molar fraction of 5-16. The ammonium sulfate remaining

in the reaction led to variable coupling yields (in one case, no product was detected at all).

More reproducible results were obtained using an alternative procedure.(54) Here, 5-8

was produced by the reflux of cytosine in 10:1 HMDS:TMSC1. In this case, TMS is the catalyst,

and no proton source or salts are present. After reaction, both the HMDS and TMSC1 are

distilled off, leaving only 5-8. Addition of 5-16 dissolved in xylenes and refluxing in the

presence of TMSOTf resulted in the protected nucleoside as a 6:4 a:13 mixture. This crude
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mixture can deprotected by treatment with methanolic sodium methoxide to give a:3 5-1 in 74%

yield from 5-16.

BzO LiAI(Ot-Bu)H, BzO MsCI, NEt 3, BzO
0 9:1 THF:Et2 0  OH CH2Cl2  0'.F OM

BzO F or (Sia)2BH, BzO F BzO FCH2C12
5-1 4a 5-15 5-16

NH2
NH 1) TMSOTf, 5-16 NH

2 TMSCI, HMDS, NH(TMS) xylenes, reflux N
reflux 2) NaOMe/MeOH HN 10 N HOO

JN 76% (from 5-16) N
H TMSO N 6:4 a•: F

HO F
5-8 5-1

Scheme 5-8. Synthesis of F 2C.

The published procedure separated the F2C anomers by crystallization at either the

benzoate protected or fully deprotected stages. However, the much smaller scale used here

(generally < 100 mg) with labeled F2C derivatives was not conducive to high recoveries of pure

product from crystallization. Thus, other methods for separating the anomers were explored. It

was initially thought that the best place to remove the undesired a anomer was at the stage of the

protected compounds prior to treatment with NaOMe. The mobility of this mixture on silica gel

TLC plates indicated that silica gel chromatography using dichloromethane/methanol systems

might allow separation of the anomers. Silica gel columns run in a variety of solvent systems

partially separated the anomers, but they were time intensive, resulted in material loss, and never

gave clean separation. Difficulty was encountered with compound solubility in the solvent

systems used, but even dry loading did not result in good separation. In order to improve

solubility in CH2Cl2/methanol, the N-acetyl derivatives(34) were synthesized by substitution of

trimethysilyl N-acetyl cytosine in the coupling to 5-16 (data not shown). Though this compound

was isolated as an oil and was easily soluble in CH 2C12, both anomers co-ran in all solvent
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systems tried and proved no easier to purify. While the deprotected F2 C anomers could be

separated by HPLC as described in the original publication, ultimately, it was found to be most

convenient to resolve the a: p mixture enzymatically during the conversion of F2C to F2CMP.

Conversion ofF2C--F2CMP

In order to circumvent the problems associated with chemical phosphorylation of F2C a

procedure involving nucleoside kinases(59-61) was desired. Initial work on the development of

the enzymatic synthesis of F2C 5'-mono- and diphosphates was performed at Merrell-Dow(6, 42)

and by Momparler,(43) Eriksson,(45, 61-63) and Karlsson(47). Modifications to the procedures

allowing access to F2C nucleotides on 100 tmol scale were performed by Artin in the Stubbe

group.(49) The phosphorylation procedures used for the synthesis of F2C nucleotides described

in this chapter are outlined in Scheme 5-9. Treatment of a/P-F 2C with human deoxycytidine

kinase (dCK) using ATP as a phosphate donor allowed selective conversion of the P anomer to

the 5'-monophosphate (F2CMP) in 85% yield. The desired product was purified by anion

exchange chromatography. The non-phosphorylated a anomer eluted in the void volume of the

column; assignment of this product as the a anomer was made by comparison of the 'H-NMR of

this fraction to the previously reported spectrum.(34) The dCk proved 100% selective for the

desired anomer, and thus could be used to resolve the anomeric mixture.
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HO PO d-- C 1) UMP-CMP K, PPO--- C

HO F HO F 2) NalO4; HO F
MeNH 2 pH 7.5;
inorganic
pyrophosphitase

PPO C PPPO CF PK, PEP O\!

HO F HO F

Scheme 5-9. Enzymatic phosphorylation of F2C.

Conversion of F2CMP -F 2CDP

F2CDP was also produced enzymatically using human UMP-CMP kinase (UMP-CMP

K).(47, 49) In the version of the procedure described here, the concentration of enzyme was

dropped 20-fold over previous conditions, without affecting yield (Scheme 5-9). Reaction of

F2CMP with UMP-CMP kinase equilibrates the mono-phosphate and ATP to a mixture of

F2CDP and ADP. The diphosphate fraction was isolated by anion exchange chromatography. In

contrast to results using UMP-CMP kinase to produce diphosphates of isotopically labeled

cytidines,(49) where the CDP elutes just before the ADP and can be separated through two

anion-exchange columns, the F2CDP co-elutes with ADP (Figure 5-3). In order to separate

F2CDP, a periodate cleavage step is included to destroy contaminating ADP (Scheme 5-10).(49,

55) Treatment of the F2CDP/ADP mixture with NaIO4 (aq) selectively reacts with the syn-diol

of the ADP to cleave the 2'-3' bond generating a dialdehyde. The F2CDP is unreactive due to the

replacement of the 2' hydroxyl with the gem-difluoro moiety. The remaining periodate is reacted

by the addition of an excess of rhamnose. MeNH 2 phosphate (pH 7.5) was added to catalyze

elimination of pyrophosphate from the 5' position of the dialdehyde. Final treatment with
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inorganic pyrophosphatase converts the inorganic pyrophosphate to inorganic phosphate, but

does not react with the F2CDP. Anion exchange chromatography of this reaction mixture

allowed separation of F2CDP in 56% yield.

Figure 5-3. Anion exchange chromatography (DEAE-Sephadex) of the reaction of F2CMP with UMP-CMP K and
ATP. F2CDP and ADP elute as one peak.

PPO -~ A PPO-- ANalO4 0

HO OH 0 O

Scheme 5-10. Destruction of ADP by periodate cleavage.

A
MeNH 2, -PP •Oy /

0 O

Conversion of F2CDP -F 2CTP

In the development of the UMP-CMP kinase procedure for production of F2CDP,

attempts were made to include pyruvate kinase (PK) and phosphoenolpyruvate (PEP) in order to

recycle the ADP to ATP.(49) Such a strategy would have removed the need for the periodate
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cleavage of the ADP that is produced by the reaction. However, HPLC analysis indicated that

the F2CDP was being phosphorylated as well. This observation led us to believe F2CDP could

replace ADP in the PK reaction, converting it to F2CTP (Scheme 5-9). Test reactions at 2mM

F2CTP, using variable concentrations of PEP (2mM, 4mM, 16mM), and pyruvate kinase (6

U/mL, 12 U/mL, 60 U/mL, and 120 U/mL) were carried out. PEP was saturating at all

concentrations, but high concentrations of pyruvate kinase were needed to effect complete

conversion to the triphosphate. Two equiv. of PEP and 120 U/mL pyruvate kinase could effect

high (88%) conversion of F2CDP to F2CTP in 1 h. The enzymatic phosphorylation methods

described here were also used to prepare F2CDP and F2CTP in 10-100 itmol quantities, 5-[3H]-

F2CDP and 5-[3H]-F 2CTP from the previously reported 5-[3H]-F 2C(36) and the di- and

triphosphates of the isotopically labeled derivatives described in the remainder of this chapter.

The use of these products in biochemical experiments is described in Chapter 6.

Synthesis of '-[2H]- and 1'-[H]-F2C

The incorporation of a radiolabel into the sugar ring of F2C nucleotides would allow

convenient identification of the products of the inactivation of RNR derived from the ribose ring

and the ability to accurately quantify covalent modification of the protein. Incorporation of

radioactivity at the 1' position was chosen due to the available lactone 5-14a, which could be

reduced with an isotopically labeled reductant. In order to introduce [3H] into F2C at the 1', a

reduction involving commercially available NaB[3H]4 as a starting material was desired. While

the previously described reduction using LiAl(O-t-Bu) 3H is suitable for introduction of

deuterium using the commercially available [2H] version of this reductant, no [3H] containing

aluminum hydride reagents are commercially available. Of the previously reported
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methodologies for the reductions of ribonolactones to lactols, the use of disiamylborane

((Sia)2BH), a reagent conveniently prepared from NaBH 4, was chosen.(51) Similar methodology

has been applied by the Stubbe group in the production of radiolabeled nucleotides for studies on

the chemistry of bleomycin interaction with DNA.(64)

The preparation of this reagent has been previously described.(51, 52) Briefly, a solution

of NaBH 4 in anhydrous diglyme was added slowly dropwise to BF 3-Et20 with gentle heating.

Diborane gas (B2H6) evolved from this mixture and was bubbled into THF cooled to -780 C to

generate a solution of BH 3*THF. The concentration of borane was determined by titration, and 2

equiv. of 2-methyl-2-butene were added slowly dropwise at -150 C over 1 h and the reaction

stirred and additional 1 h to ensure complete reaction to (Sia)2BH. Immediate use of the reagent

gave the best results. The prepared (Sia)2BH could be used in place of the LiAl(O-t-Bu) 3H in the

reduction of lactone 5-14a (Scheme 5-8). In this procedure, the lactone in THF (0.5 M) was

added directly to the solution of (Sia)2BH solution at OOC, followed by stirring overnight at room

temperature. While 3-4 equiv. of (Sia)2BH was enough for complete reaction of

dibenzoylribonolactone,(51) 8-10 equiv. (Sia)2BH were required for complete reaction of 5-14a.

After workup to destroy remaining (Sia)2BH, the crude lactol produced was converted directly to

the mesylate 5-16 without purification. In order to get good conversion, 10 equiv. of mesyl

chloride were required, allowing isolation of 5-16 in 88% yield starting from 500 iimol 5-14a, a

convenient scale for the isotopic synthesis. This mesylate was converted to F2C and its

phosphates through the procedures described above.

The above reaction sequence was also performed using NaBD4 to quantify isotope

incorporation by NMR and ESI-MS. ESI-MS revealed [2H] incorporation to be 93%. This

material was carried forward to the di and tri phosphates by the procedure described above.
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Given the success of this method, the reaction was repeated using NaB[3H]4 (SA 14.2 Ci/mmol)

to give 1-[3H]-5-16. Through extension of the previous methodologies, 1'-[ 3H]-F 2CDP and 1'-

[3H]-F 2CTP were produced with SA of 8620 cpm/nmol.

Synthesis of 3 '-[3H]-F2C

3'-[ 2H] labeled F2C was synthesized for use in EPR experiments, and as a potential probe

for isotope effects on the kinetics of inactivation of ribonucleotide reductases by F2C nucleotides.

Other mechanism-based inhibitors have shown a 3', 2' shift during reaction with RNR,(65) and

3'-[2H]-F 2C nucleotides were thus desired to investigate cleavage of this bond and potential

rearrangements of the nucleotide during inactivation. A modification of the procedure used by

Robins and coworkers(57, 58) to produce 2'- and 3'- isotopically labeled adenosines was selected

to generate this compound. Incorporation was attempted on a 2,2-difluororibose, 3-ketone

protected as the anomeric thexyldimethylsilyl (TDS) ether derivative, rather than F2C itself, as

previous results on cytidine derivatives indicate that the presence of the cytosine base can

interfere with this chemistry.(66) Working with the ribose also eliminates the need for

protection of the 4-amino group of the cytosine which is often required when working with

cytidine derivatives.(67)

The initial synthetic plan sought to take advantage of the reported high stability of the

2,2-difluororibo anomeric mesylates(34) and to simply use the mesylate to block the 1-hydroxy

group. However, the anomeric mesylate was not stable to the alkaline cleavage conditions used

to remove benzoyl esters. Thus, a silyl protecting group (TDS) was employed to block the 1-

hydroxyl (Scheme 5-11). Starting from difluorolactone 5-14a, the lactone was reduced with

LiA1(O-t-Bu) 3H in THF:Et20, followed by protection of the lactol with (TDS) chloride.(56) The
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thexyl group was chosen as the more common TBDMS group was too labile in subsequent

reactions. It appears that the presence of the gem-difluoro group increases the liability of silyl

ethers at this position. The crude product from the silyl ether formation was treated with sodium

methoxide in methanol to cleave the benzoyl esters to give 5-28 in 69% yield from 5-14a.

Compound 5-28 was converted to the monomethoxytrityl (MMT) ether by reaction with MMTCl

in pyridine over 2 days, yielding 5-29 in excellent yield, although the product was contaminated

with MMT alcohol.(68, 69) MMT was chosen over related ethers as the trityl group was found

to be too difficult to cleave in subsequent steps, and dimethoxytrityl (DMT) was not completely

selective for the 5'-OH. The product 5-29 was oxidized to the 3-keto compound 5-30 by

treatment with the Dess-Martin periodane in CH2C12 at neutral pH.(57, 58) The MMT was

cleaved from the crude ketone by treatment with AcOH, and the crude product of this reaction

was reduced with AcOH/NaBH 4 to regenerate 5-28 (40% from 5-29) with no other isomers

detected by 'H-NMR.

Substitution of AcOD and NaBD 4 in this step yielded 3-[2H]-5-28 (38% from 5-29). The

deuterated product was esterified with benzoyl chloride to yield the dibenzoyl derivative, and

further converted to the anomeric mesylate by cleavage of the TDS ether through treatment with

TBAF/AcOH in THF, followed by reaction of the crude lactol with mesyl chloride in

CH 2Cl2/pyridine. The mesylate 3-[2H]-5-16 was isolated in 65% yield from 5-28. This mesylate

was converted to the a/P-3'-[2H]-F2C by the procedure used for the unlabeled compound, and

atom incorporation confirmed to be >99% by NMR and ESI MS at this stage (Appendix 2). This

compound was transformed into the corresponding 5'-mono-, di- and triphosphates by

procedures described above.
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1) LiAI(O-t-Bu) 3H,
Et2O:THF

2) TDSCI,
BzO ..I  imidazole HO MMTCI, MMTO Dess-martin MMTO

O 3) MeOH/NaOMe OF Pyridine OTDSF periodane OTDS0"~c · 69% O 95% O
BzO F 69% HO F HO F F

5-14a 5-28 5-29 5-30

1) AcOH 1) BzCI, DMAP, pyridine
2) NaBH4, AcOH or HO- 2) TBAF/AcOH,THF B

NaBD 4, AcOD XO~ F OTDS 3) MsCI, TEA, CH2CI2  F OMs

40% from 5-29 HO F 65% F

5-28, X = [1H] or [2H] 5-16, X = [' H or [2H1

Scheme 5-11. Synthesis of 3'-[2 H]-F 2C.

Conclusions

The synthetic procedures described allow rapid production of large quantities of F2C 5'-

di- and tri- phosphates for use in a variety of biochemical studies. The enzymatic

phosphorylation procedures described circumvent difficulties with the standard chemical

phosphorylation methods and permit convenient and completely selective separation of the

desired 3-anomer from the a/P mixture produced in the coupling reaction. Routes are described

to produce F2C di- and triphosphates with isotopes of hydrogen incorporated selectively at the 1'-

and 3'- positions, allowing production of [2H] derivatives for EPR and kinetic studies and for use

as a tracer in mass spectrometry experiments. F2C phosphates labeled with [3H] at the 1' position

was produced as a tracer for detecting end products of the inactivation of RNR by gemcitabine.
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Chapter 6

Products of the Inactivation of Ribonucleoside Triphosphate Reductase by

Gemcitabine Triphosphate
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6.1 Introduction

Development of gemcitabine

Gemcitabine (2'-deoxy-2',2'-difluoro-cytidine, GemzarTM , F2C) was first produced by Eli

Lilly Research Laboratory(], 2) and at Merrell Dow Pharmaceuticals(3) in independent research

efforts to produce nucleoside analogues as potential anti-viral(4) and anti-tumor agents.(4, 5)

Nucleotide analogues have the potential to inhibit DNA polymerase as well as many enzymes

involved in nucleoside metabolism, including ribonucleotide reductase (RNR).(5-10) Ultimately

these inhibitors can lead to the alteration of DNA replication and repair and trigger a cascade

ending in apoptotic cell death. F2C is a prodrug, and must be phosphorylated to the 5'-

diphosphate to inhibit the class I ribonucleoside diphosphate reductase (RDPR), and to the 5'-

triphosphate to inhibit class II ribonucleoside triphosphate reductases (RTPR) or become

inhibitors of or substrates for DNA polymerases.

NH2

N
HO N1F O

HO F

Figure 6-1. Gemcitabine (F2C). The 5'-diphosphate and 5'-triphosphate are required for the inhibition of RDPR
and RTPR, respectively.

The addition of fluorines to a potential inhibitor is a common substitution made by

medicinal chemists. The van der Waals radius of fluorine (1.35 A) is similar to that of hydrogen

(1.2 A).(11, 12) It is thus often considered to be a good isostere for hydrogen, though

electronically the C-F group more closely resembles C-OH.(12-14) Replacement of a hydrogen

or hydroxyl by fluorine can create a substrate analog with similar binding affinity to the natural
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substrate, but with altered reactivity. Such compounds can be competitive inhibitors, binding

preferentially over the natural substrate, or also mechanism-based inhibitors, taking advantage of

enzyme chemistry to inactivate the enzyme.(15) Gemcitabine differs from the natural substrate

cytidine only by the substitution of the CF 2 moiety for the CHOH at C2' (Figure 6-1), yet this

simple change gives rise to potent cytotoxic activity in vivo.

Cytotoxicity and therapeutic potential

Gemcitabine now sees wide application as an anti-cancer therapeutic for a range of

diseases.(16, 17) Alone, it has been approved as a treatment for non-small cell lung cancer(18-

21) and advanced pancreatic cancer.(22-28) It is considered the first line treatment for advanced

pancreatic cancer, though only 25% of patients benefit from F2C therapy.(25) Gemcitabine has

also been investigated as a single agent or in combination chemotherapy for the treatment of

bladder cancer,(29-35) renal cancer,(36) leukemia and lymphoma,(37) ovarian cancer,(38, 39)

and breast cancer.(40, 41)

It is well established that F2CTP can be incorporated into both DNA and RNA. (42-48)

The cytotoxic activity of F2C correlates with the intracellular levels of F2CTP.(49, 50)

Incorporation of the nucleotide into DNA or RNA is believed to be followed by the insertion of

an additional nucleotide before chain termination.(44, 45) This "masked" chain termination is

resistant to exonuclease repair(44, 51) and begins a poorly-understood chain of events that lead

to cell-cycle arrest in S-phase, DNA fragmentation, and cell death through apoptosis.(52-64)

Treatment with F2C has also been shown to result in inhibition of nucleotide reduction in cancer

cell lines,(65, 66) resulting in depletion of intracellular deoxynucleotide pools.(67) Reduced

dNTP pool sizes have been shown to be associated with the 5'-diphosphate (F2CDP), a specific,
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mechanism-based inhibitor of RDPR.(40, 66, 68-71) Inhibition of nucleotide reduction by

F2CDP primarily reduces the levels of intracellular dATP and dGTP and, more modestly,

dCTP.(67) Depletion of dCTP pools is proposed to be an important self-potentiating mechanism

of F2C: reduction of dCTP alleviates dCTP inhibition of deoxycytidine kinase (dCk) thus

increasing phosphorylation of F2C, and increases the likelihood of F2CTP entering DNA

metabolism in place of dCTP.(2, 66) F2CTP is also an inhibitor of CTP synthase, resulting in

depleted CTP pools and, consequently, increased incorporation of F2CTP into RNA.(2, 43)

Recently, it has been suggested that dNTPs, in particular dATP, play a role in inhibiting

the apoptosome complex.(72) dNTPs bind to cytochrome c, preventing its interaction with

Apaf-1 and the generation of the apoptosome. Depletion in dNTP pools may thus increase the

likelihood of this apoptotic mechanism of occurring, and may explain why RNR inhibitors like

F2CDP enhance the cytotoxic activity of other DNA damaging agents.

Gemcitabine resistance

The phenotypes of resistant cell lines often grant insight into the mechanism, specificity

and targets of a therapeutic agent. The determinants of resistance to F2C in cancer cell lines have

been well investigated.(73-75). Low expression levels of the human concentrative and

equilibrative nucleoside transporters (hCNT and hENT) can lead to F2C resistance.(76, 77) F2C,

like most nucleoside analogues, is too hydrophilic to passively diffuse across membranes.

Gemcitabine uptake takes place through facilitated diffusion mediated by the human

equilibrative nucleoside transporters hENT1 and hENT2, and through the sodium-coupled

concentrative transporters hCNT1 and hCNT3.(75, 76, 78-84). Cells deficient in nucleoside

transporters will avoid F2C toxicity by excluding the drug from the cell.
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The major mode of metabolic inactivation of F2C is its deamination to difluorouridine

(F2U) by enzymes in the liver and plasma, and the deamination of F2CMP to F2UMP by

intracellular dCMP-deaminase and its subsequent dephosphorylation. (34, 85-91) Typically,

77% of the F2C injected is excreted by patients unchanged or as F2U, never having entered

intracellular metabolism.(86) While F2UDP can still inhibit RNRs, the F2U itself is not a good

substrate for intracellular phosphorylation enzymes,(74, 89) and thus never becomes activated to

the diphosphate, a requirement to be a substrate for RNR, or the triphosphate required for the

cell's DNA/RNA synthesis and repair machinery. Intracellular F2CMP deaminated to F2UMP is

also an inhibitor of thymidylate synthase, and can act to deplete TTP pools in the cell.

The most common mechanism of resistance stems from alterations in the expression or

activity of deoxycytidine kinase (dCK).(65, 85, 92-94) Reduced expression of the protein is

highly correlated with gemcitabine resistance.(22, 92, 94-98) Genetic mutation in the dCK genes

themselves do not seem a common method of gemcitabine resistance.(36) Activity of dCK is

also down-regulated by high dCTP pools, and cells maintaining high levels of dCTP have shown

resistance to F2C, likely by inhibition of dCK activity.(95)

Of primary interest to our research efforts is the contribution of RNR inactivation to F2C

cytotoxicity. Resistance related to nucleotide reduction enzymes provides some insight into the

role of RNR as a target. Resistance in some cell lines appears to be related to increases in

expression of either the RNR a subunit(99-102) or the radical-generating P subunit.(95, 103,

104) Further, patients with lower expression levels of the a subunit display longer survival times

than those with high levels of expression.(105) Resistance through the over-expression of the

active site subunit a is significantly more common than over-expression of P.
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Several potential roles for the resultant resistance to F2C have been proposed. By

maintaining high nucleotide reduction activity, the pools of dCTP may be better maintained,

reducing both incorporation of F2CTP into DNA and reducing the phosphorylation of F2C by

dCK. It has also been proposed that the a-subunit is acting as a molecular sink, permanently

associating with the F2CDP and sequestering (or destroying) it, preventing the buildup of the

F2CTP critical for cytotoxic activity.(100) Interestingly, some cell lines which develop a

resistance to hydroxyurea through up regulation of the f3-subunit do not show cross resistance to

gemcitabine,(106) and one hydroxyurea-resistant cell line actually displayed gemcitabine

sensitivity.(107)

In recent years, attempts have been made to overcome problems of F2C resistance(97,

108) and toxicity(109-111) through the synthesis of conjugates to a range of other molecules.

F2C was conjugated to folate through a succinate linker(109) to target and increase uptake by

cancer cells which overexpress folate receptors. A F2C-lipid conjugate synthesized as a

phosphodiester has been shown to bypass several resistance mechanisms in cell culture.(108,

112) The lipid modification bypasses resistance due to reduced transport by increasing the rate

of association with and passive diffusion across cell membranes. Once in cells, the lipid is

believed to be hydrolyzed selectively, releasing F2CMP and avoiding the need for

phosphorylation by dCK.(97, 112)
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Figure 6-2. Cellular metabolism of F2C. A red square indicates an enzyme inhibited by an F2C metabolite.

From the many pharmacological studies of F2C, a picture of its cellular metabolism has

emerged (Figure 6-2).(75) The first step is uptake by the cell, mediated by the ENTs and CNTs.

F2C in the plasma can also be processed by the liver to F2U, a poor substrate for the uptake

system, which is excreted. F2C within the cell is phosphorylated first by dCk. The

monophosphate is further phosphorylated to F2CDP by action of CMP/UMP kinase,(113-115)

and to the triphosphate by the non-base specific enzyme nucleoside diphosphate kinase.(65) The

monophosphate is also subject to deactivation by CMP deaminase activity, forming F2UMP,

which is dephosphorylated and excreted.(85) F2UMP is also an inhibitor of thymidylate
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synthase. The F2CTP can then be incorporated in DNA and RNA through the normal synthetic

machinery, and is an inhibitor of CTP synthase.(43-46) Strand breaks caused by this

incorporation trigger a cascade of events leading to cell death via apoptosis.

Specific Aims

The focus of the current study is on further investigating the outcome and mechanism of

inactivation of RNR by phosphorylated F2C derivatives. This inactivation is of particular interest

as F2C is one of the few nucleoside analogues that can inactivate RNR in vivo. The closely

structurally related 2'-monohalo-2'-deoxynucleotides inhibit RNR only in vitro, and it is

surprising that the addition of a second fluorine transforms F2C into a potent mechanism based

inhibitor that is active in live cells. Additionally, F2CDP and F2CTP have proven to be

stoichiometric inhibitors of E. coli, human, and yeast RDPR and L. leichmannii RTPR

respectively. The investigation of the mechanism and end products of RNR inactivation by F2C

5'-phosphates has been the subject of several prior studies, reviewed in Chapter 4.(3, 66, 68-70,

116)

The current work aims to further characterize the inactivation of RTPR by F2CTP

through the use of 1'- and 3'-[2H] and 1'- and 5-[3H] labeled compounds. As described in

Chapter 5, F2CTP was synthesized containing [3H] at the 5-position of the base or at the 1'-

position of the ribose ring. In this chapter, experiments are described utilizing these materials to

track the fate of the base and the sugar ring and to quantify the products released. Small

molecule products identified in this manner were characterized by NMR and mass spectrometry.

The covalent modification of RTPR has also been investigated: labeled peptides have been

identified through use of the sugar-[3H]-labeled inhibitor and structurally characterized through
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the use of MALDI and post source decay (PSD) MS/MS. Deuterated derivatives of F2CTP have

been employed as mass labels to facilitate identification of MALDI peaks containing fragments

derived from the inhibitor and for EPR studies in collaboration with Dr. Gary Gerfen (Albert

Einstein College of Medicine).

Based on the results of these investigations, a working hypothesis for the mechanism of

inactivation of RTPR by F2CTP can be proposed (Figure 6-3 and Figure 6-4). In this model, the

initial steps of reaction are analogous to the normal reaction mechanism. Initiation by the top

face thio radical (6-1) proceeds by abstraction of the 3' hydrogen to give a 3' nucleotide-based

radical (6-2). Deprotonation of the 3' hydroxyl by the glutamate residue catalyzes rearrangement

to an a-keto radical with loss of fluoride (as HF, 6-3). The mechanism then branches from this

common intermediate into an "alkylative" pathway or a "non-alkylative pathway." Partitioning

between these two is dependent on the manner in which fluoride is lost. If fluoride leaves as HF,

resulting in deprotonation of the bottom-face thiol, the alkylative mechanism proceeds. If

fluoride leaves as F-, the non-alkylative pathway proceeds instead. This idea is based on the past

results with the monofluoro compounds, which show partitioning between dCDP formation or

inactivation depending on whether or not fluoride removes this proton when it is

eliminated.(117, 118)
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Figure 6-3. Proposed mechanism of F2CTP inhibition of RTPR, "alkylative" pathway.

In the proposed alkylative pathway, fluoride leaves with deprotonation of the proximal

bottom face cysteine (Figure 6-3). This results in a partial "turnover," very similar to the

mechanism proposed by Ramos based on DFT calculations (described in Chapter 4).(116) Here,

the keto nucleotide radical may be reduced by proton-coupled electron transfer from the bottom

face reducing equivalents with concomitant generation of a disulfide radical anion, producing a
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3'-keto-2'-monofluoro nucleotide with the fluorine in the ara configuration (6-4). The disulfide

radical anion may re-reduce the ketone with protonation from the glutamate to generate the 3'

radical shown (6-5). Here, DFT calculations indicated that rearrangement to a second 3'-keto

radical with loss of HF is more favorable than hydrogen abstraction to yield a fluoro ketone, and

the first occurs with a much faster rate than reduction.(119) Thus, the top-face thiol is

deprotonated by the leaving fluoride, generating a 3'-keto radical identical to that proposed for

inhibition by monohalo nucleotides (6-6).(117, 118, 120-123) The key difference in this case is

that there are no abstractable hydrogen atoms available on nearby cysteines. The most likely

method of reduction for this keto-radical species would be by single-electron transfer from the

top face thiolate,(124) regenerating the initial thio radical but placing a negative charge on the

nucleotide. This intermediate would rapidly eliminate base, generating an a,P3-ketone in the

active site which could react with any nearby nucleophile to alkylate the protein by conjugate

addition (6-7).
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Figure 6-4. Proposed mechanism of F2CTP inhibition of RTPR, "non-alkylative" pathway. The addition of water
can be viewed as the reverse of the second step elimination of fluoride.

The non-alkylative pathway (Figure 6-4) results if the fluoride leaves without

deprotonation of the proximal bottom-face cysteine (6-8). This loss of F might result if the

ribose ring is bound too far away from the reducing equivalents to interact with them, as

suggested by the recent yeast crystal structure.(125) It may simply be related to the leaving

group ability of fluoride being intermediate between hydroxide, which must be protonated to

leave at a reasonable rate, and the other halides, which can be lost without protonation.(118) In

either case, reduction of the radical by proton-coupled electron transfer to generate a disulfide

radical anion would not be possible. Further, if the F2CTP was indeed bound too far from the

272

OH2

Ob

6-8

04



reducing equivalents to permit protonation, reduction by hydrogen atom transfer would also be

impossible. A fluorine substituent has also been shown in some cases to provide stabilization to

the radical(126) and may thus slow down the rate of hydrogen atom abstraction in 6-8 relative to

the unfluorinated species. In particular fluorinated hydrocarbon radicals have been shown to

abstract hydrogen atoms from benzene thiol more slowly than non-fluorinated analogs.(126-128)

In the absence of reduction, the radical would be long-lived enough to react with water at

the 2' position, in what amounts to a reversal of the first two steps of the RNR reaction. The

resulting 3' radical generated (6-9) could now lose the second fluoride, generating a 2'-hydroxy

substituted radical (6-10). This radical would be expected to be much more stable than the 2'

unsubstituted radical proposed in the alkylative pathway, and is a good candidate for the stable

radical previously described in this system, seen at time scales of 20s and longer.(69) This

radical is structurally very similar to the stable glycoaldehyde radical detected when diol

dehydratase is inactivated by glycoaldehyde, a radical stable for days at room temperature under

anaerobic conditions.(129, 130) This radical might disassociate from the active site and become

reduced by solvent or be reduced within the active site by an amino acid to produce the 3'-keto

nucleotide product which would decompose in a manner similar to the 2'-deoxy-3'-

ketonucleotides generated in other systems (see Chapter 4). This radical might also decompose

by a mechanism similar to that proposed for the 2' unsubstituted radical (Figure 6-3).

This proposal accounts for many of the previous experimental observations and is

supported by the experiments described here. The alkylative pathway leads to the generation of

an unsaturated ketone directly in the active site which could inactivate the a subunit by conjugate

addition without ever releasing furanone into solution. Further, it explains how the alkylative

pathway could return the radical to the top-face thiol, allowing regeneration of the tyrosyl radical
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of the RDPR 13 subunit. The non-alkylative pathway shows a possible mechanism for loss of

radical from the active site. In RDPR, this would result in inactivation of the 3 subunit but

perhaps only partial inactivation of the a subunit through alkylation on a slow time scale. In the

case of RTPR, the non-alkylative pathway could result in a Co(II) species tightly associated with

the enzyme that may react on a slower timescale to inactivate the enzyme through the previously

described alkylation of C419, though the mechanism of this process is currently unknown.(69)

The differing results observed in RDPR and RTPR, and RDPR with and without reductants, may

be explained as variations in partitioning between the two pathways described, influenced by

variations in enzyme conformation and inhibitor binding. The model of inactivation proposed

here is complex, but provides a useful framework for the consideration of the inactivation of

RTPR by F2CTP, and the specific experiments described here.

6.2 Experimental

Materials. 2-[14C]-CTP (250 ýpCi, 55 mCi/mmol, 99.2% pure) was purchased from Moravek

Biochemicals, and diluted with cold CTP in 25 mM HEPES pH 7.5, 1 mM MgC12, 4 mM EDTA

to a specific activity of 1000-3000 cpm/nmol. F2CTP and isotopically labeled derivatives were

produced as described in Chapter 5. All other reagents were purchased from Sigma or

Mallinckrodt and used without further purification unless otherwise indicated. Silanized

glassware was prepared by treatment with Sigmacote (Sigma), allowed to air dry, and washed

with acetone, methanol and water before use. Calf intestine alkaline phosphatase was purchased

from Roche as a 20U/pL stock in 100 mM Tris pH 8.5. E. coli thioredoxin (TR, SA of 40

units/mg) and E. coli thioredoxin reductase (TRR, SA of 1320 units/mg) were isolated as

previously described.(131-133) RTPR (SA of 0.38-0.42 imol mg-' min -') was isolated using a

274



variant of a previously described procedure,(134) the second anion exchange column described

in the original procedure was omitted. AdoCbl was handled with minimal exposure to light. All

reactions including AdoCbl were kept wrapped in foil at all times. Transfer of AdoCbl solutions

and other manipulations that required exposure to ambient lighting were performed under very

dim or red light conditions.

Physical Measurements. ESI-MS was performed on a Bruker Daltonics APEXIV 4.7 Tesla

Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS) at the MIT

Department of Chemistry Instrumentation Facility. 1H NMR spectra were recorded on a Varian

500 MHz NMR spectrometer at the MIT Department of Chemistry Instrumentation Facility.

NMR samples were internally referenced to the solvent residual peak or to 3-

(trimethylsilyl)propionic acid. Scintillation counting was performed using Emulsifier-Safe liquid

scintillation counting cocktail (Perkin Elmer) on a Beckman LS6500 multipurpose scintillation

counter. For [3 H] samples, recoveries of radioactivity in all experiments were high (>95% for

Sephadex columns, >80% for HPLC chromatography) and it was thus assumed no changes in

quenching of the radioactivity were being observed. All spectrophotometric assays and UV-vis

spectra were recorded on either a Cary 3 or a Cary 118-OLIS spectrophotometer. In both cases,

the temperature was regulated using a Lauda water bath. Extinction coefficients at pH 7.0 (100

mM KPi) used were: F2C (8268 = 9360 M -1 cm1);(135) cytidine (E271 = 9100 M-1 cm'), cytosine

(8267 = 6100 at M'1 cml'), adenosine (8259 = 15400 M-1), adenosylcobalamin (8524 = 8000 M -1 cm

1). NADPH (8340 =6200 M -1 cm-1);(136) RTPR (8280 = 100960 M-1).(134, 137)

RTPR assay (Spectrophotometric assay 1). The assay mixture contained in a final volume of

500gL: RTPR (typically 0.25, 0.5 or 1 [IM), ATP (2 mM), NADPH (0.2 mM), TR (20 [tM), TRR

(0.15 p.M), KPi (50 mM, pH 7.5), EDTA (4 mM), and NaOAc (1 M). The background rate at
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37oC was measured as the change in A 340 nm. AdoCbl (80 RM) was added to initiate the

reaction. The change in A 340 nm at 370 C over time was measured. The SA of RTPR was

typically 1.2-1.8 jimol mg-1 min-'.

RTPR assay (Spectrophotometric assay 2). The assay mixture contained in a final volume of

500gL: RTPR (typically 0.25, 0.5 or 1 jM), CTP (1 mM), dATP (100 RLM), NADPH (0.2 mM),

TR (20 [iM), TRR (0.2 RiM), HEPES (25 mM, pH 7.5), EDTA (4 mM), and MgCl2 (1 mM). The

reaction was initiated with AdoCbl (20 [iM) at 370 C and monitored as in spectrophotometric

assay 1. The SA of RTPR was typically 0.28-0.44 [imol mg-1 min-'.

RTPR assay ([14C-] dCTP monitoring). The assay mixture contained in a final volume of 300

[iL: RTPR (1 tiM), [14C-CTP] (specific activity used was typically 1500-2500 cpm/nmol, 1 mM),

dATP (100 [M), NADPH (1 mM), TR (20 jiM), TRR (0.2 jiM), HEPES (25 mM, pH 7.5),

EDTA (4 mM), and MgC12 (1 mM). The reaction was initiated by the addition of AdoCbl (20

[M) and incubated at 370 C; a control aliquot was removed before addition of AdoCbl. Four

aliquots (50 [tL) were removed at time points over five min, and the reaction quenched by

addition of 2% perchloric acid (25 jL). The aliquots were neutralized with 0.4 M KOH (25 tiL)

after all time points were collected. Alternatively, for a single time point assay, the reaction (100

QL) was initiated by addition of RTPR, incubated 5 min at 370 C, quenched with 2% perchloric

acid (50 QL) and neutralized with 0.4 M KOH (50 jiL). Cytosine (50 nmol) and dC (50 nmol)

were added to each aliquot, then 20 U alkaline phosphatase in 500 mM Tris pH 8.6, 1 mM

EDTA (26.5 tL) was added and the aliquots were incubated 2h at 37°C. The aliquots were

centrifuged (5 min at 5000 rpm) and 100 jiL portions were loaded on 2 mL AG-1-X8 resin

(borate form) columns, and the dC eluted with water (10 mL). The flow through (10 mL) was

collected, mixed and 1 mL analyzed by scintillation counting. RTPR specific activity was
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determined from a linear least-squares fit of activity versus time, and typically ranged from 0.20-

0.40 gtmol mg-1 min'.

Pre-reduction of RTPR. DTT was added to an aliquot of RTPR stock solution (-1 mM) to a

final concentration of 30 mM. The solution was incubated 15 min at 37oC, then passed through

a Sephadex G-25 size exclusion column (SEC) (1 cm x 20 cm, 20 mL for 0.5-1 mL of pre-

reduction mixture), eluting with assay buffer (25 HEPES, pH 7.5, 4 mM EDTA 1 mM MgCl 2 ).

The protein-containing fractions were combined and the concentration of RTPR determined by

UV-vis spectroscopy.

Pre-reduction of RTPR with elimination of cytosine deaminase activity. RTPR stock

solution (-1 mM, 250 CpL) was mixed with 5 mM o-phenanthroline (750 jgL) and DTT was added

to a final concentration of 30 mM. The solution was incubated 20 min at 370 C, and the protein

isolated and quantified as above.

Time dependent inactivation of RTPR with F2CTP.(69, 70) The inactivation mixture

contained in final volume of 100 [tL: pre-reduced RTPR (5 gIM), dATP (100 [iM), NADPH (1

mM), TR (20 [tM), TRR (0.2 [iM), AdoCbl (20 itM), HEPES (25 mM, pH 7.5), EDTA (4 mM),

and MgC12 (1 mM). NADPH, TR, and TRR were excluded from the inactivation mixture if the

inactivation was to be assayed in the absence of reductants. The inactivation was initiated by

addition of F2CTP (or isotopically labeled derivative, 5 [M) and the reaction carried out at 37°C.

At each time point (4 total over 5 min), 20 pL of the inactivation mixture was removed and

assayed as described for the radioactive assay at an enzyme concentration of 1 pM. Control

aliquots were removed before addition of F2CTP. The t = 0 control was assayed immediately;

the endpoint control was incubated at 370 C until the last inactivation time point was collected,
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then assayed. A blank (20 [tL ddH20) was also assayed as a control in place of an aliquot from

the inactivation mixture.

SEC on RTPR inactivated with 1'-[3H]- or 5-[3H]-F 2CTP. Inactivation mixtures were

prepared as described in the time dependent inactivation studies in a final volume of 500 [tL.

Experiments were run both in the presence and absence of reductants. Inactivations were

initiated by addition of F2CTP (1'-[ 3H], SA 7200 cpm/nmol or 5-[3H], SA 10800 cpm/nmol) and

incubated for 2 min at 370 C. An aliquot was assayed for activity using spectrophotometric assay

2 before initiation and at the inactivation endpoint. After 2 min, an aliquot (200 [tL) was loaded

on Sephadex G-50 columns (1 cm x 20 cm, 20 mL), equilibrated with and eluting with assay

buffer (25 mM HEPES pH 7.5, 1 mM MgC12, 4 mM EDTA) and 1 mL fractions were collected.

A second aliquot (210 tiL) was mixed with 630 [tL 8 M guanidine, then loaded on a Sephadex

G-50 column (1 cm x 20 cm, 20 mL) equilibrated in and eluted with 2M guanidine in assay

buffer and 800 [pL fractions were collected. Alternatively, the aliquot (200 QL) was combined

with 50 jtL of 250 mM NaBH4, 500 mM Tris pH 8.5 in a 1.5 mL falcon tube and incubated 5

min at 37°C. The NaBH4 solution was prepared by combining solid NaBH4 with the buffer

solution immediately before use; vigorous foaming occurred upon addition to the inactivation

mixture. The mixture was then loaded on a Sephadex G-50 column (1 cm x 20 cm, 20 mL),

equilibrated and eluted with assay buffer (25 mM HEPES pH 7.5, 1 mM MgCl 2, 4 mM EDTA)

and 1 mL fractions were collected. In all cases, fractions were assayed for A260 nm and A280

nm and for radioactivity by scintillation counting (500 [tL aliquots). Total cpm in each fraction

were calculated as [(cpm measured)-(background)]*(fraction volume in [lL)/(500 RLL). Total

recovery of radioactivity was typically >95%. Recovery of protein was determined from A280
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nm and was typically >90%. The reported equiv. of nucleotide bound and in solution were

adjusted for recovery and determined by (total cpm)/(F2CTP SA)/(RTPR recovered (nmol)).

UV Detection of cytosine deaminase activity in the RTPR preparation. The conversion of

cytosine (aa = 269 nm) to uracil (aax = 258 nm) was monitored by UV on a Cary-3

spectrometer. The reaction mixture contained in 500 [tL: 50 [tM cytosine, 5 [tM RTPR, 20 [iM

AdoCbl, 5 mM DTT, 25 mM HEPES pH 7.5, 1 mM MgCl 2, and 4 mM EDTA. Three different

preparations of RTPR were assayed: as isolated, purified by S-300 SEC, or pre-treated with 3

mM o-phenanthroline. The UV spectra were collected at t = 0, 30 min, 1 h, 6 h, and 1 day.

Purification of RTPR by SEC. RTPR (200 tiL of a 1.06 mM stock) was loaded onto a S-300

column (1.5 x 75 cm) equilibrated in 25 mM HEPES pH 7.5, 1 mM MgC12, 4 mM EDTA, 5%

v/v glycerol and eluted in the same buffer at a rate of 1 mL/min. The center of the main peak

was collected and tested for RTPR activity by the UV CTP/dATP assay (S.A. 0.41).

HPLC analysis of products generated on incubation of RTPR with F2CTP. Inactivation

mixtures, in a final volume of 220 [tL or 1020 tL, contained pre-reduced RTPR (50 pM), dATP

(500 [IM), AdoCbl (50 [iM), HEPES (25 mM, pH 7.5), EDTA (4 mM), and MgC12 (1 mM). 1'-

[3H]-F 2CTP (50 [tM, 7200 cpm/nmol), 5-[ 3H]-F 2CTP (50 ptM, 10,800 cpm/nmol) or unlabeled

F2CTP (50 [pM) was added to initiate the reaction which was then incubated 2 min at 37oC.

Before initiation with F2CTP and after the inactivation was complete, 10 iLL aliquots were

removed and assayed for RTPR activity by spectrophotometric assay 2 (final assay volume 500

[tL). At 2 min the inactivation mixture was filtered through a YM-30 membrane (30,000

MWCO minicon), 10 min at 14,000 x g at 4°C. Alternatively, the reaction was first quenched

with 50 [LL (250 [tL for the large scale reaction) of 250 mM NaBH 4, 500 mM Tris pH 8.5. The

NaBH 4 solution was prepared by combining solid NaBH 4 with the buffer solution immediately
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before use. In the case of NaBH4 quench, the inactivation was run in a falcon tube of at least 4

times the volume of the inactivation mixture, due to vigorous foaming upon the addition of the

NaBH 4 stock, and the inactivation/NaBH 4 mixture was incubated 5 min at 370C and the reaction

filtered through a YM-30 membrane (30,000 MWCO minicon) 10 min at 14,000 x g at 40 C. If

radiolabeled F2CTP was used, F2C (50 nmol) and cytosine (50 nmol) were added as carrier

before filtration. To the flow-through was added 20 U (100 U for large scale) alkaline

phosphatase, the reaction incubated 3 h at 370C, then filtered through a second YM-30 centricon.

In the case of reactions quenched with NaBH4, the sample was acidified by addition of glacial

acetic acid (5% of the final volume) and the resulting mixture was lyophilized to dryness to

hydrolyze borate esters.

In all cases, the entirety of the product mixture was purified by HPLC using a Rainin SD-

200 HPLC and an Altech Adsorbosphere Nucleotide Nucleoside C-18 column (250 mm x 4.6

mm) with elution at a flow rate of 1 mL/min. The solvent system was: Buffer A, 10 mM

NH4OAc, pH 6.8; Buffer B: 100% methanol. The flow program was 100% A for 10 min

followed by a linear gradient to 40% B over 25 min, then to 100% B over 5 min. Under these

conditions, standards eluted as follows: cytosine, 5.7 min; uracil, 7.9 min; C, 12.6 min; ara-C-

17.4 min; dC, 19.0 min; F2C, 23.2 min. Fractions (1 mL) were collected; for samples with

radiolabeled F2CTP, 200 [lL of each fraction was analyzed by scintillation counting. The

cytosine peak was isolated and recovery (based on cytosine loaded as carrier) was calculated;

recovery was also calculated based on the radioactivity eluted and agreed with the UV recovery

to within 10%. The radioactivity in each fraction was adjusted for calculated recovery. To

quantify base release on a fast time scale, the alkaline phosphatase step was omitted and the

reaction injected on the HPLC after filtration through the first YM-30 membrane, using the same
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purification conditions (injected 15 min after reaction initiated). Products produced during the

inactivation were also examined using ion-pairing conditions, omitting the alkaline phosphatase

step and injecting the reaction on the HPLC after filtration through the first YM-30 membrane.

This purification was performed on a Rainin SD-200 HPLC and an Altech Adsorbosphere

Nucleotide Nucleoside C- 18 column (250 mm x 4.6 mm), eluted with a flow rate of 1 mL/min.

The solvent system was Buffer A, 60 mM KPi pH 5, 5 mM tetrabutylammonium phosphate

(TBAP), Buffer B, 100% methanol, 5 mM TBAP. The flow program was a linear gradient to

50% B over 20 min, then to 100% B over 10 min. Under these conditions, F2CTP elutes at 27

min.

Characterization of major nucleoside product isolated from NaBH 4 quenched

RTPR/F 2CTP inactivation mixture. A large-scale inactivation reaction quenched with NaBH 4

was run as described above. In a final volume of 2 mL, the reaction mixture contained: RTPR

(125 [iM), dATP (500 [tM), AdoCbl (125 [pM), F2CTP (125 iM), HEPES (25 mM, pH 7.5),

EDTA (4 mM), and MgCl 2 (1 mM). The inactivation was quenched at 2 min with 500 [iL of 250

mM NaBH 4, 500 mM Tris pH 8.5 as described above and filtered through a YM-30 membrane

(30,000 MWCO minicon) 15 min at 14,000 x g at 4°C, and the flow through treated with 200 U

alkaline phosphatase for 2 h at 370 C, followed by filtration through a second YM-30 membrane.

The sample was acidified by addition of glacial acetic acid (5% of the final volume) and the

resulting mixture was lyophilized to dryness to hydrolyze borate esters, then taken up in 1 mL 10

mM NH4OAc. For the first chromatography step, the reaction was purified using identical

equipment and buffer system to the smaller scale inactivation; the only difference was the use of

a larger (2 mL) injection loop. Peaks displaying a cytosine UV-vis spectrum (diode-array

detector equipped HPLC) were collected in each step directly. The peaks eluting between 16
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min and 22 min were collected (estimated amount of cytosine-containing material in this region

was -60 nmol based on A 270). This material was lyophilized to dryness, taken up in 1 mM

NH40OAc, and repurified using the same elution program, substituting 1 mM NH4OAc, pH 6.8,

for buffer A and keeping buffer B 100% MeOH. The major cytosine-containing peak (diode-

array UV spectrum) eluting at 16.2 min was collected (estimated quantity in this peak -35 nmol,

the remainder of the material in minor peaks that were not collected). Only silanized glassware

was used for handling the repurified material. In order to collect material pure enough for NMR

characterization, the product was again lyophilized and repurified by HPLC, and only the center

of the major peak was isolated. Final recovery was typically 8-12 nmol of this product after

three purifications. This product was characterized by NMR and ESI MS. 'H-NMR (500 MHz,

D20) 6: 7.71 (d, J= 7.5 Hz, 1H, H6), 5.99 (d, J = 6.1 Hz, 1H, HI'), 5.85 (d, J = 7.5 Hz, 1H,

H5), 4.41 (dd, J = 5, 6 Hz, 1H, H2'), 4.24 (dd, J = 4.3 Hz, 4.9 Hz, 1H, H3'), 4.02 (m, 1H, H4'),

3.80 (dd, J = 4.0, 12 Hz, 1H, H5'), 3.75 (dd, J = 7.0, 12 Hz, 1H, H5"). ESI-MS (C9H13N30 5) m/z

(M + Na÷) calcd 266.0747, obsd 266.0743; (M + H÷) calcd 244.0928, obsd 244.0921.

Characterization of major nucleoside product isolated from NaBD 4 quenched

RTPR/F2CTP inactivation mixture. A reaction was run identically to the previous procedure,

substituting NaBD 4 for NaBH4. The purification protocol was the same, with the same region

collected in the first purification. In the second chromatography step, the peak eluting at the

same retention time as the compound characterized in the previous experiment was collected,

and this compound repurified collecting only the center of the peak as described. The final

recovery of this peak was -5-8 nmol in this case. 1H-NMR (500 MHz, D20) 8: 7.71 (d, J = 7.5

Hz, 1H, H6), 5.98 (s, 1H, H1'), 5.84 (d, J = 7.5 Hz, 1H, H5), 4.01 (dd, J= 4.0 Hz, 7.1 Hz, 1H,

H4'), 3.80 (dd, J = 4.0, 12 Hz, 1H, H5'), 3.75 (dd, J = 7.0, 12 Hz, 1H, H5").
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Quantification and characterization of cobalamin, cytosine and protein labeling products

from RTPR inactivated with F2CTP. The inactivation mixture in final volume of 1250 tL

contained: pre-reduced RTPR (50 [IM), dATP (500 [iM), AdoCbl (50 [M), HEPES (25 mM, pH

7.5), EDTA (4 mM), and MgCl 2 (1 mM). After addition of AdoCbl, all aliquots were handled

with minimal exposure to light (under red light and wrapped with foil). The inactivation was

initiated by addition of either I'-[3H]-F 2CTP (SA 1985 cpm/nmol) or 5-[ 3H]-F 2CTP (SA 1350

cpm/nmol) to a final concentration of 50 iM. An aliquot was assayed for activity as described in

the assay sections at t=O and at the inactivation endpoint. The inactivation was incubated for

either 2 min or 1 h at 37oC. An aliquots (100 iL) was removed from each reaction at the

endpoint, quenched by filtration through a YM-30 membrane, dephosphorylated and analyzed as

described in the section HPLC analysis of products generated on incubation of RTPR with

F2CTP. A second aliquot (100 [tL) was removed and analyzed by HPLC directly after the initial

filtration, as described in the same section. An aliquot (1000 pL) from the inactivation mixture

was loaded on a Sephadex G-50 column (1 x 20 cm, 20 mL) wrapped in foil, run at 4VC under

dim red light at the inactivation endpoint. The column was equilibrated in and eluted with assay

buffer (25 mM HEPES pH 7.5, 4 mM EDTA, and 1 mM MgCl2), and 1 mL fractions were

collected. Aliquots (200 QL) were removed from each fraction and assayed for A260 nm A280

nm, and 100 tL assayed for radioactivity. The amount of radioactivity eluting with the protein

peak was used to determine the equiv. bound, as described in the section on the SEC of

inactivated RTPR. Aliquots (750 jtL) from the protein containing fractions were combined and

the UV-vis spectrum recorded. These fractions were then lyophilized to dryness (excluding

light). Aliquots (750 jiL) from the small molecules fractions (determined by fractions where

A260 >A280) were combined and lyophilized to dryness (excluding light). These samples were
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dissolved in 500 [tL water, and the UV-vis spectra recorded. The spectrometer baseline was

determined by lyophilizing an equal volume of buffer identical to that used in the experimental

samples, redissoving in 500 [LL water. The spectra were deconvoluted by subtraction of linear

combinations of standard spectra (AdoCbl, HOCbl).(138) For the solution phase products,

combinations of AdoCbl and HOCbl were produced by adding the two standard spectra in

proportions ranging from 1:0 AdoCbl:HOCbl to 0:1 AdoCbl HOCbl in 0.05 equiv. increments,

scaled to match the A525 of the experimental sample, and subtracted.

Stability of [3H]-RTPR generated by inactivation with 1'-[3H]-F 2CTP. The mixture in final

volume of 700 tL contained: pre-reduced RTPR (15 IiM), dATP (100 pM), AdoCbl (22.5 [pM),

HEPES (25 mM, pH 7.5), EDTA (4 mM), and MgC12 (1 mM). The reaction was initiated by

addition of 1 '-[3H]-F 2CTP (SA 7200) to a final concentration of 15 [tM. The reaction was

incubated 2 min at 37'C. The mixture was split into three 200 [tL aliquots and passed through

Sephadex G-50 columns (1 cm x 20 cm, 20 mL). Each column was equilibrated and eluted in a

different buffer (0.1 M NH4HC0 3, pH 8; 0.1 M NH4HCO3, pH 8, 2M urea; or 160 mM KPi, pH

5.6, 2M urea) and the protein containing fractions assayed for A280 and radioactivity. The

samples (1.5 mL of each) were loaded into Slidalizer dialysis cassettes (10,000 MWCO) and

dialyzed against the same buffer in which the sample was eluted. Aliquots (250 [tL) were

removed at lh, 2h, 4h, and 6h. The dialysis buffers were changed and the samples were dialyzed

an additional 14h. A final aliquot was removed, and all aliquots were assayed for radioactivity

by scintillation counting.

Trypsin Digestion of RTPR inactivated with 1'-[3H]-F 2CTP. The reaction in a final volume

of 220 [tL contained: pre-reduced RTPR (50 [M), dATP (500 tM), AdoCbl (75 [LM), HEPES

(25 mM, pH 7.5), EDTA (4 mM), and MgC12 (1 mM). l'-[3 H]-F 2CTP (50 ptM, SA 7200
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cpm/nmol) was added to initiate the reaction, and the reaction incubated for 2 min at 370C.

Before initiation with F2CTP and after the inactivation was complete, 10 [L aliquots were

removed and assayed for RTPR activity by spectrophotometric assay 2. At 2 min the

inactivation mixture was quenched with 50 [tL of 250 mM NaBH 4, 400 mM Tris pH 8.3 and

incubated for an additional 5 min at 37'C. The NaBH 4 solution was prepared by combining

solid NaBH 4 with the buffer solution immediately before use; vigorous foaming occurred upon

addition to the inactivation mixture. To this mixture was added 750 ktL 8M guanidine, 40 mM

DTT, 5.33 mM EDTA, 400 mM Tris pH 8.3 and the reaction incubated 30 min at 37°C.

Ilodoacetamide was added to a final concentration of 250 mM (25000 equiv. per RTPR) and the

reaction incubated an additional 1 h at 370 C. The protein was then separated from small

molecules on a Sephadex G-50 column (1cm x 20 cm, 20 mL) equilibrated into 0.1 M NH 4HCO3

pH 8.2 (or 0.1 M NH 4HCO3 pH 8.2, 2M urea). The protein containing fractions (detected by

A280) were combined (typically 2 mL total volume, 90% recovery of protein, >95% recovery of

loaded radioactivity, 0.28 equiv. of radioactivity coeluting with protein). Trypsin (Worthington)

was added from a freshly prepared stock solution to a final concentration of 4:1 RTPR:trypsin

w/w, and incubated 2 h at 37'C. The reaction was quenched by addition of 25 [tL TFA (to pH

1-2), and the peptides were immediately separated using a Waters 2487 HPLC with a

Phenomenex Jupiter C18 peptide column (150 x 4.6mm, 5 micron, 300 A pore size) with a flow

rate of 1 mL/min. The solvent system used was: Buffer A, 0.1% TFA in ddH20, Buffer B, 0.1%

TFA in acetonitrile. A linear gradient of 0-45% B over 90 min was used. Fractions were

collected (1 mL) and aliquots of each fraction (100 VL) were assayed for radioactivity by

scintillation counting. The recovery of injected radioactivity was 70-85%, with a typical

recovery of 80%. Four regions of radioactivity were observed: I, 48-50 min, a sharp peak
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containing 17-20% of eluting radioactivity; II, 51-59 min, a broad region containing 20-30% of

eluting radioactivity; III, 61-63 min, a sharp peak containing 13-17% of eluting radioactivity;

and IV, 64-70 min, a broad, tailing peak containing 15-25% of eluting radioactivity. Very small

quantities of radioactivity (< 2%) eluted in the dead volume. Fractions were pooled based on the

observed peaks of radioactivity, concentrated to < 1 mL on a lyophilizer, and repurified using the

same column with a flow rate of 1 mL/min. The solvent system used in repurifications was:

Buffer A, 10 mM NH4OAc, pH 6.8, buffer B, 100% acetonitrile with a gradient of 0-35% B over

90 min. Fractions (1 mL) were collected and aliquots of each fraction (250 [tL) were assayed for

radioactivity by scintillation counting. The major peaks of radioactivity were pooled from each

run and submitted for peptide mass spectrometry without concentration. A summary of the

recoveries at each stage is in Figure 6-5. In variants on this purification, the NaBH4 treatment

was omitted, or applied after digestion. Reactions were also run using this procedure substituting

NaBD4 or F2CTP that was a mixture of 1'-[2H] and 1 '-[3H], SA 7200 cpm/nmol, to give a stock

with 60% 1'-[ 2H] with SA 2600 cpm/nmol.
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Inactivation Mixture, SEC
Denaturation, | Trypsin Digestion

lodoacetamide treatment 2.8 nmol F2CTP
10 nmol F2CTP 028 equiv F2CTPcoelute with protein HPLC

80% recovery
four regions

isolated

HPLC
Repurification

I II HI IV
one peak several close one peak no peaks

0.35 nmol F2CTP eluting peaks 0.066 nmol F2CTP
0.5 nmol F2CTP

Figure 6-5. Outline of purification of labeled RTPR peptides and recoveries at each stage. The quantity of F2CTP
reported at each stage is estimated based on typical recoveries in these experiments.

Peptide mass spectrometry.(139) MALDI-TOF and tandem MS/MS mass spectrometry were

performed by Dr. John Leszyk at UMass Medical School on a Kratos Axima CFR (Shimadzu

Instruments) matrix-assisted-laser desorption/ionization (MALDI) mass spectrometer. Samples

(0.5 p.L, containing 50-100 fmol of F2CTP labeled peptide, determined by SA) were applied to

the target and mixed with 0.5 gl of matrix which was 2,5-dihydroxybenzoic acid at 15mg/ml in

(CH 3CN:0.1%TFA 50:50). Samples were allowed to air dry prior to insertion into the mass

spectrometer. Peptides were analyzed in positive ion mode in mid mass range (100-3000 Da)

with an accuracy to within 100 ppm. The instrument was externally calibrated with bradykinin

(757.40), P14R (MS mass standard, Sigma-Aldrich, 1533.86 Da), and adrenocorticotropic

hormone fragment 18-39 (Sigma-Aldrich, 2465.20 Da). Post-source decay (PSD) analysis were

performed on the same instrument using a timed ion gate for precursor selection with a laser
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power about 20% higher than for MS acquisition. PSD fragments were separated in a curved

field reflectron which allowed for a seamless full mass range acquisition of the spectrum, with an

accuracy of within 1000 ppm. All spectra were processed with Mascot Distiller (Matrix

Sciences, Ltd.) prior to database searching.(140) Database searches were performed with

Mascot (Matrix Sciences, Ltd.). For MS searches the Peptide Mass Fingerprint program was

used with a peptide mass tolerance of 150 ppm. For MS/MS searching, the MS/MS Ion Search

program was used with a Precursor tolerance of 150 ppm and a fragment tolerance of 1 Da.

6.3 Results

Time dependent inactivation of RTPR with F2CTP

A brief study of the time dependant inactivation behavior of RTPR treated with F2CTP

prepared by the methods described in Chapter 5 was undertaken to establish that the same

inactivation behavior was observed as previously described (Figure 6-6).(69) One equivalent of

F2CTP is sufficient to eliminate >90% of the activity within the first time point (20 s) in the

presence of reductants (TR/TRR/NADPH), with >95% of activity eliminated by 2 min. Very

similar results are seen in the absence of reductants using pre-reduced RTPR. It was typical to

see >95% inactivation at 2 min in the presence of reductants, and 90-95% inactivation at 2 min in

the absence of reductants. The results of these inactivations are very similar to those observed

previously by Silva.(69)
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Figure 6-6. Time dependent inactivation of RTPR with F2CTP (1 equiv.) in the presence of TR/TRR/NADPH (*),

the absence of reductants (n).

Determination of covalent labeling of RTPR inactivated by 1 '-[3H]- and 5-[3H]-F2CTP

Previous studies have shown that F2CTP is a stoichiometric, mechanism-based inhibitor

of RTPR, and have suggested that inactivation proceeds in part by alkylation of the enzyme, and

in part by the covalent labeling of C419 by a cobalamin species.(69) Radiolabeled material was

unavailable in these early studies. The synthesis of radiolabeled derivatives of F2CTP has

provided for the first time a method for quantifying alkylation of RTPR by F2CTP. RTPR

inactivated with 1'-[3H]- or 5-['H]- F2CTP was separated from small molecules by SEC in the

presence or absence of denaturant. Radioactivity co-eluting with the protein is indicative of a

covalent or tightly-bound non-covalent species. The results of a number of experiments are

summarized in Table 6-1. In the case of I'-[3 H]-F 2CTP, 0.47 + 0.02 equiv. co-elute with RTPR.

The extent of labeling is the same in presence and absence of reductants. With 5-[3H]-F 2CTP,
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0.16 equiv. co-elute with RTPR in the presence and absence of reductants, with a slight reduction

in labeling under denaturing conditions. The substoichiometric labeling, combined with the

>90% inactivation observed and the C419-Co bond observed by Silva together led to the initial

proposal of a branching mechanism for this inactivation.(69)

Table 6-1. SEC of RTPR inactivated with I'-[3H] and 5-[ 3H]-F 2CTP. (a) Under these conditions, the small
molecules were analyzed by HPLC, and 0.71 equiv. of base and 0.18 equiv. of F2C were found in the solution phase
products after dephosphorylation and separation by reverse-phase HPLC.

Label eluting with
F2CTP Denaturing protein

Enzyme Label Reductants Column (equivJRTPR)
wt ,1'-[3lH] Y N 0.46
wt ,1'-[3H] Y Y 0.47
wt 1'-[3H] N N 0.49
wt 1 '-[3H] N Y 0.44

wt, NaBH 4 @ 2min 1'-r[H] N N 0.33
wt 5-_[3H] Y N 0.17
wt 5-[3H] Y Y 0.13
wt 5-[3H] N N 0.15"

wt 5-[3H] N Y 0.12

wt, NaBH 4 @ 2min 5-[H] N N 0.03

Identification of cytosine release

It was initially surprising that there was significantly less base bound to RTPR than

ribose, as earlier studies failed to detect cytosine release during the inactivation.(69) Given the

apparent loss of cytosine in these experiments and its previous loss observed when E. coli RDPR

was inactivated with F2CDP,(68) we refocused our efforts to determine if cytosine was being

metabolized to uracil which would explain the apparent discrepancy. In order to confirm

cytosine release, inactivations were run as described in the experimental section and the small

molecule products were analyzed by HPLC. The retention time of 5-[ 3H]-labeled material was

identical to a uracil standard at -8 min (data not shown). Isolation of this material and

examination by UV-vis and NMR confirmed its identity. To determine if a cytosine deaminase

activity was present in RTPR preparations, cytosine was incubated with RTPR and was
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completely converted to uracil within 2 h. This activity suggested RTPR was contaminated with

E. coli cytosine deaminase.(141) This enzyme requires Fe2+, and therefore 3mM o-

phenanthroline was included in the RTRP pre-reduction mixture to chelate the iron and eliminate

this activity. Alternatively, RTPR was further purified by SEC (S-300) chromatography to

separate it from cytosine deaminase, expected to be a 300 kDa hexamer. In both cases, the

contaminating activity was eliminated.

Removal of cytosine deaminase activity by inclusion of o-phenanthroline in the pre-

reduction mixture allowed quantification of base release. Inactivations were performed using 5-

[3H]-F 2CTP and the small molecules dephosphorylated and analyzed by HPLC (Figure 6-7 A).

The majority (>95%) of radioactivity co-eluted with the cytosine and F2C added as carrier. The

other peaks visible in the absorbance spectrum are dA (30 min) and unknown products related to

breakdown of AdoCbl. From this experiment, staring with a 1:1 ratio of F2CTP:RTPR, 0.71

equiv. of cytosine were released and 0.19 equiv. of unreacted F2C remained. As the previously

described SEC showed 0.15 equiv. of cytosine co-elute with RTPR at 2 min, thus all the cytosine

is accounted for.

To determine how rapidly cytosine is released, a reaction was performed where the

products were not dephosphorylated, a process that takes several hours. Instead, the reaction

mixture was filtered through a YM-30 membrane for 10 min at 14,000 x g at 40C and injected

directly onto the HPLC column (~ 15 min after the inactivation was initiated). In this case

(Figure 6-7 B), 0.6 equiv. of cytosine were released, and the remainder eluted in the solvent front

(most likely as F2CTP and unknown phosphorylated nucleotide products). Thus, the majority of

the nucleotide base (0.7 equiv. based on F2CTP added, 0.87 equiv. of F2CTP consumed) is

released as cytosine, and most of this (0.6 equiv.) is released on timescales shorter than 15 min.
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Previously-investigated mechanism-based inhibitors are always accompanied by base

release. However, this base release was believed to be non-enzymatic, occurring in solution

from 3'-keto-2'-deoxynucleotides on a minute time scale. Thus, results with F2CTP indicate this

inhibitor is unique with most cytosine eliminated from the RTPR-bound products by 2 min, and

0.6 equiv. present as free cytosine by 15 min. To gain more information on the timescale of

cytosine release, the reaction mixtures were treated with NaBH 4 at the endpoint of inactivation (2

min). NaBH4 can potentially reduce any 3'-ketonucleotides, preventing loss of base by 13-

elimination. The results of such an experiment show 0.33 equiv. of ribose coeluting with RTPR,

and only 0.03 equiv. of cytosine. The depression in labeling is likely due to the base-catalyzed

elimination of cytosine competing with the reduction of a ketone, or elimination of cytosine on a

fast time scale. In either case, it is clear that most of the base is being eliminated from the

labeled RTPR faster than a putative ketone can be reduced. This result suggested the loss of base

was occurring during the course of the inactivation (Figure 6-3).
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Figure 6-7. HPLC analysis of cytosine release from RTPR inactivated with 5-[3H]-F 2CTP, Absorbance (-), and

cpm (m). Gradient (. .) Buffer A, 10 mM NH40Ac, pH 6.8; Buffer B: 100% methanol, 100% A until 10 min,

followed by a linear gradient to 40% B over 25 min, then to 100% B over 5 min. (A) Small molecule products

dephosphorylated with alkaline phosphatase. Authentic cytosine and F2C were included as carrier, and 95% of

radioactivity co-elutes with these two peaks. 0.70 ± 0.03 equiv. of cytosine were detected, and 0.19 ± 0.02 equiv. of

F2C were observed. (B) Small molecule products not dephosphorylated. Authentic cytosine and F2C were included

as carrier, 0.6 equiv. of radioactivity elutes with cytosine.
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Identification and quantification of products derived from the F2CTP ribose ring.

With all of the cytosine accounted for, the next task was to establish the fate of the sugar

moiety. From the SEC experiments, 0.47 equiv. were shown to co-elute with the protein, and the

cytosine quantification experiments indicate -0.2 equiv. remain in unreacted F2C. Thus, -0.3

equiv. of sugar are yet to be accounted for. To find this missing piece, inactivations were

performed using 1'-[3H]-F 2CTP and the small molecules fraction, isolated by ultrafiltration and

dephosphorylated with alkaline phosphatase, was analyzed by reverse-phase HPLC (Figure 6-8

A). Unreacted F2C (0.15 equiv.) is again apparent. The majority of the radioactivity (0.28

equiv.) eluted with the solvent front, and the remainder (0.13 equiv.) is eluted as a broad region

of radioactivity from 14-20 min. This elution profile suggests that the ribose-containing small

molecules decompose over the course of the analysis.

An examination of an identical reaction mixture under ion-pairing chromatography

conditions gives the result shown in (Figure 6-8 B). In this case, the small molecule fraction was

not subjected to alkaline phosphatase treatment and analyzed after filtration through one YM-30

membrane (10 min at 14,000 x g at 4oC) and injected onto the HPLC (-15 min after the

inactivation was initiated). In this case, the HPLC trace shows some unreacted F2CTP (0.12

equiv.), some material eluting in the solvent front (0.15 equiv.), and a third region of

radioactivity (0.22 equiv.) eluting as a triphosphate (25.5 min), but earlier than F2CTP. These

results suggest that there is a solution phase nucleotide that can eliminate cytosine on a relatively

slow timescale, in contrast to the peptide-bound species which seems to eliminate all cytosine

very rapidly. If this nucleotide has been converted 3'-ketone as observed for other mechanism
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based inhibitors (Chapter 4) it should be possible to reduce it with NaBH 4, trapping this product

before base and inorganic triphosphate can be eliminated.

Figure 6-9 A shows the results of the HPLC analysis of an inactivation reaction with 1'-

[3H]-F 2CTP, treated with NaBH4 at 2 min, followed by treatment with alkaline phosphatase. In

this case, the trace shows unreacted F2C (0.25 equiv.) but now only a small amount of

radioactivity (<5%) elutes in the solvent front. A new, broad peak of radioactivity (0.28 equiv.)

is observed at 13-17 min, a retention time consistent with cytosine nucleosides. The absorption

is low as the peak appears to contain a number of compounds; the spectrum observed by the

diode-array detector during elution appeared similar to cytosine throughout this region despite

the low absolute absorbance. Repeats of these inactivation conditions found 0.24 equiv. and 0.41

equiv. of the new product; the latter case was accompanied by the presence of much less (<0.05

equiv.) unreacted F2C than in the other two cases.

To test the hypothesis that the stable solution species was the 2'-OH radical proposed

(Figure 6-4), 5 mM DTT was included in the reaction mixture in an effort to force reduction by

hydrogen atom transfer before trapping by NaBH 4 reduction, and thus affect the number of

hydrogen atoms delivered by NaBH4 (see below). Interestingly, when the inactivation is run in

the presence of 5 mM DTT, none of this new product is observed, and all radioactivity was seen

eluting at the solvent front (Figure 6-9 B). Under these conditions almost all the F2CTP was

consumed; <2% of radioactivity is recovered as F2C. The presence of DTT appears not only to

facilitate complete reaction of the F2CTP, but elimination of cytosine from the sugar ring as

evidenced by the inability to trap any nucleotide products. No cytosine-containing peaks were

observed by UV other than the free base. Note that cytosine release was not quantified under

these conditions. It is possible that the DT'T encouraged reduction to a ketone species that favors
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elimination of cytosine over ketone reduction in the presence of NaBH4. It is also possible that

DTT does not reduce the glycoaldehyde-like radical directly; model systems have shown that the

thiolate form of DTT reduces a-keto radicals (of acetaldehyde) several orders of magnitude

faster than the thiol form.(124) Thus, the radical may persist in the presence of DTT, and the

addition of NaBH4 first deprotonated the DTT, and this thiolate rapidly reduces the radical by

single electron transfer, generating a negative charge on C2' causing rapid elimination of base in

a mechanism similar to that proposed in Figure 6-3.
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Figure 6-8. (A) Reverse-phase HPLC analysis of small molecule products from RTPR inactivated with 1'-[ 3 H]-
F2CTP, dephosphorylated with alkaline phosphatase, absorbance (-), and cpm (n). Gradient (."") Buffer A, 10
mM NH40Ac, pH 6.8; Buffer B: 100% methanol, 100% A for 10 min, followed by a linear gradient to 40% B over
25 min, then to 100% B over 5 min. The first peak of radioactivity elutes in the solvent front (0.28 equiv.); the
second corresponds to unreacted gemcitabine (0.15 equiv.) and 0.13 equiv. elute in a broad region from 14-20 min.
(B) Reverse-phase HPLC of small molecule products from RTPR inactivated with 1'-[ 3H]-F 2CTP, not
dephosphorylated and eluted under ion-pairing HPLC conditions, Buffer A, 60 mM KPi pH 5, 5 mM TBAP, Buffer
B, 100% methanol, 5 mM TBAP. The elution program used was a linear gradient to 50% B over 20 min, then to
100% B over 10 min. Here, 0.15 equiv. of radioactivity elute at the solvent front. 0.12 equiv. elute as F2CTP (28
min), and 0.23 equiv. elute in a region consistent with a NTP (25.5 min) but earlier than F2CTP.
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Figure 6-9. (A) Reverse-phase HPLC of small molecule products from RTPR inactivated with 1'-[ 3H]-F 2CTP
treated with NaBH 4, and dephosphorylated with alkaline phosphatase, absorbance (-), cpm (m). Gradient (.. )
Buffer A, 10 mM NH40Ac, pH 6.8; Buffer B: 100% methanol, 100% A for 10 min, followed by a linear gradient to
40% B over 25 min, then to 100% B over 5 min. The new peak (I) represents 0.28 equiv. of ribose, and 0.25 equiv.
of F2C seen. (B) Reverse-phase HPLC of small molecule products from RTPR inactivated with 1'-[ 3H]-F 2CTP in
the presence of DTT, treated with NaBH 4, and dephosphorylated with alkaline phosphatase, purified under the same
conditions. All radioactivity eluted in the solvent front.

To identify the new products generated during the inactivation, the reaction was run on a

large scale with unlabeled F2CTP, and the new products isolated and characterized. The
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products were identified by their retention time and the similarity of their UV-vis spectrum to

cytosine using a diode-array equipped HPLC. In the chromatogram of the initial purification,

(Figure 6-10 A), several peaks eluted from 17-22 min, slightly later than the radioactive region

seen in Figure 6-9 A. This effect is likely due to overloading of the column used for the

purification (the same column was used for both scales) and the larger injection loop used (2 mL

in this case vs. 200 tL in the previous case) with the same flow rate. Examination of the peaks

eluting between 17 min and 22 min showed that they possessed a UV-vis spectra consistent with

cytosine, and contained -0.25 equiv. of the F2CTP in the initial reaction mixture quantified by

A270. This is very similar to the equiv. calculated by radioactivity in the previous set of

experiments. The initial repurification of this region (Figure 6-10 B) shows a sharpening of the

peaks, an apparent decrease in the later-eluting peak, and a number of other contaminants,

suggesting decomposition or the presence of multiple isomers of the product. It is suspected that

the reason this initial peak was so broad is that borate esters are formed during the treatment with

NaBH 4, and that these do not completely hydrolyze during workup, but decompose over the

course of repurification and lyophilization in the presence of the NH40Ac buffer after each

isolation. Later attempts to isolate the second peak in the initial quench failed, and this peak

appeared to decompose primarily to a species which matched the first eluting peak, supporting

this hypothesis. Further, the reduction with NaBH4 of ketone species may well result in more

than one isomer., which may also explain the multiple peaks seen; only the major isomer was

characterized.
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Figure 6-10. Reverse-phase HPLC of small molecule products from RTPR inactivated with F2CTP treated with
NaBH 4, and dephosphorylated with alkaline phosphatase. Absorbance (-), gradient (."") Buffer A, 10 mM
NH4OAc, pH 6.8; Buffer B: 100% methanol, 100% A until 10 min, then a linear gradient to 40% B over 25 min,
then to 100% B over 5 min. The double headed arrow indicates the region pooled in each step. (A) Initial
purification: the material eluting from 17-22 min was collected. These products elute later than in the
repurifications due primarily to the use of a larger injection loop. (B) Repurification of this region; in this and
subsequent steps the elution program was identical, but Buffer A was changed to 1 mM NH40Ac, pH 6.8. The
major peak has sharpened, and was collected directly (15.5-17 min). (C) Final repurification of this region; only the
major product was collected. This material was characterized after this purification. (D) Elution of the purified
product, retention time of 16.2 min.
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The major peak was collected, representing approximately half of the total material, and

purified again using the same gradient, but with the concentration of NH40Ac in Buffer A

reduced to 1 mM (pH 6.8) (Figure 6-10 C). The center of the major peak was collected from this

purification to ensure only a single isomer was isolated. The product now eluted as one peak by

HPLC (Figure 6-10 D) and was of sufficient purity for characterization by NMR spectroscopy

(Figure 6-11 A, Figure 6-12 A, and Figure 6-13 A; a peak list and coupling constants can be

found in the experimental section). The product displays a spectrum consistent with that of a

cytidine nucleotide (ara-C is shown for comparison, Figure 6-11 C). The use of gCOSY allowed

confirmation of connectivity (full spectra can be found in Appendix 2), and ESI MS confirmed

the mass is consistent with an isomer of cytidine. An expansion of the sugar ring region (Figure

6-12) shows the chemical shifts and splitting patterns are similar, but not identical to, ara-C (or

cytidine, not shown). The compound has a different retention time from cytidine (12.6 min) or

ara-C (17.4 min). These results suggest that the nucleoside is an isomer of cytidine differing in

stereochemistry at one or more carbons. The major isomer formed is likely a consequence of

NaBH 4 reduction of the precursor. The trapped nucleoside lead to the surprising conclusion that

not only had both fluorines been eliminated from the F2CTP, but that an oxygen had been added,

proposed to occur through the addition of water to an intermediate radical (Figure 6-4).
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Figure 6-11. Comparison of 'H-NMR (500 MHz, D20) spectra of new products isolated from NaBH 4 quench of
RTRP inactivated with F2CTP. (A) New product resulting from NaBH 4 quench; (B) new product resulting from
NaBD 4 quench; (C) ara-C for comparison. The nucleoside proton resonances are labeled. In B and C, several
impurity peaks can be seen; these are marked with X. In the spectrum for the NaBD 4 quenched material, it is clear
that H 1' has collapsed to a singlet, H2' and H3' have disappeared. An expansion of the sugar region is found in
Figure 6-12, and the downfield region in Figure 6-13.

303

r
It .



4.4 4.3 4.2

L.,. !hA

H5"

H5"

S I I . I . I I I I I I I I I I I I I .I . . I I I . I I I ' I ' ' I

4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 ppm
Figure 6-12. Comparison of 'H-NMR (500 MHz, D20) spectra of new products isolated from NaBH 4 quench of
RTRP inactivated with F2CTP. (A) New product resulting from NaBH4 quench; (B) new product resulting from
NaBD 4 quench; (C) ara-C. Expansion of the region corresponding to 2', 3', 4' and 5' ribose ring protons. In B,
signals from H2' and H3' are not visible, and H4' has simplified to a dd from a ddd in B. This indicates nearly
complete [2H] incorporation at these positions. Several buffer-derived impurities are visible in C, marked with an X.
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Figure 6-13. Comparison of 'H-NMR (500 MHz, D20) spectra of new products isolated from NaBH 4 quench of
RTRP inactivated with F2CTP. (A) New product resulting from NaBH 4 quench; (B) new product resulting from
NaBD 4 quench; (C) ara-C. Expansion of the region corresponding to 1' ribose ring proton and cytosine base
protons. In B, the signal from H1' has collapsed to a singlet.
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Figure 6-14. Reverse-phase HPLC of small molecule products from RTPR inactivated with F2CTP treated with
NaBD 4, and dephosphorylated with alkaline phosphatase. Absorbance (-), gradient (""") Buffer A, 10 mM
NH 40Ac, pH 6.8; Buffer B: 100% methanol, 100% A until 10 min, then a linear gradient to 40% B over 25 min,
then to 100% B over 5 min. The double headed arrow indicates the region pooled in each step. (A) Initial
purification: the material eluting from 17-22 min was collected. These products elute later than in the
repurifications due primarily to the use of a larger injection loop. (B) Repurification of this region; in this and
subsequent steps the elution program was identical, but Buffer A was changed to 1 mM NH 40Ac, pH 6.8. Two
major peaks were seen, and collected directly based on absorbance (15.5-18 min). (C) Final repurification of this
region; only the first product, which co-elutes with the material characterized in the NaBH 4 quench was collected.
This material was characterized after this purification. Attempts to purify the second peak failed; it appeared to
decompose into the first peak + minor contaminants with each attempted purification (data not shown).

To gain information on the precursor to this isolated structure, the inactivation was

repeated, using NaBD4 in place of NaBH4. The same peak was isolated from this inactivation as

in the previous experiment (Figure 6-14), and characterized by NMR. In this case an enhanced

amount of one of the later running peaks was seen in the repurification; only the peak with the

same retention time as the major peak in the first inactivation was purified for characterization.

Later attempts to purify the second major peak found that the amount of this peak present varied

from inactivation to inactivation, and seemed to decompose with each successive purification,

primarily into the peak eluting at 16.2 minutes. The 'H-NMR of the isolated species can be

found in Figure 6-11 B, Figure 6-12 B, and Figure 6-13 B. Based on the model (Figure 6-4) and
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precedent from the 2'-halo-2'-deoxynucleotides, a keto radical precursor would be expected to

first be reduced by a hydrogen atom abstraction, and a single ketone would be reduced by

NaBH 4, with the deuterium incorporation into the 3' position. Alternatively, the precursor

radical proposed (Figure 6-4) might rearrange to the corresponding 2'-keto, 3' radical through a

semidione intermediate (Figure 6-15). This isomerization would give rise to partial deuterium

incorporation at C2' and C3' subsequent to initial reduction by hydrogen atom abstraction to

generate the 2'- and 3'-keto sugars. Thus, the results of our spectroscopic analysis revealed

another surprise, >99% [2H] incorporation was observed at both the 2' and 3' positions (Figure

6-11 B and Figure 6-12 B). In the compound resulting from trapping with NaBD 4, the chemical

shifts are the same as in the NaBH4 trapped material. However, the signals for the 2' and 3'

hydrogens are absent, the signal for 1' has collapsed to a singlet, and the signal for the 4' to a dd.

This result suggests the direct precursor to reduction was not a monoketonucleotide as

expected, but the 2',3'-diketonucleotide. This diketone would be unable to eliminate cytosine,

which was detected and quantified as described in the previous section, providing insight into the

timing of formation of this precursor. In the cytosine quantification experiments, it was found

that after dephosphorylation of the product mixtures, the only cytosine-containing compounds

were free cytosine and unreacted F2C. The proposed stable radical intermediate radical (6-10,

Figure 6-4) would be expected to be reduced by hydrogen atom transfer at long time scales,

allowing elimination of the cytosine. If this radical is the precursor to the trapped nucleoside,

however, it must be being oxidized under the NaBH 4 quench conditions.

A model for the observed deuterium incorporation during borohydride quenching is

illustrated in Figure 6-15. Initial deprotonation of the hydroxyketone radical (6-11) would

generate a semidione radical anion (6-12).(130) This compound might undergo reduction by
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hydride transfer from NaBH4, giving rise to a ketone radical-anion (6-13). This compound is a

potent reductant, which could lose an electron to oxygen, or other oxidant to generate a second

ketone, which would be itself reduced by NaBH4.(142) Reduction of this new ketone by NaBD 4

would give the observed atom incorporation (6-14). Unfortunately no data on the trapping of

semidione radicals exists in the literature, so it is currently unknown if this trapping pattern is

what would be expected for this type of precursor radical.

Oo NaBD4, -DH O Na B D4  O [Ox]; NaBD4 O

O H O HO OH

6-11 6-12 6-13 6-14

Figure 6-15. Deuterium incorporation at 2' and 3'. The proposed a-hydroxy keto radical is converted to a
semidione radical anion by deprotonation. This species undergoes reduction by NaBH 4 to generate a ketone radical-
anion, which loses an electron (potentially to oxygen) to form a second ketone. This ketone is in turn reduced by
NaBH 4.

Identification and efforts to quantify cobalamin species accompanying F2CTP inactivation of
RTPR

Previous investigations showed that RTPR inactivation by F2CTP was accompanied by

the release of 0.84 equiv. of 5'-dA and the formation of a cobalamin species covalently linked to

RTPR.(69) The UV-vis spectra of this species resembled the spectrum of glutathionyl cobalamin

(GSCbl). Evidence from peptide digests and mass spectrometry indicated that this species was

bound to C419 (one of the active site reducing equivalents) through a Co-S bond. Stopped-flow

UV-vis spectroscopy at 525 nm of the inactivation on the ms time scale indicated the

disappearance of 0.6-0.7 equiv. of cob(III)alamin, presumed to form a cob(II)alamin species.

RFQ EPR experiments on the 22-250 ms timescale indicated the presence of a cob(II)alamin-

thiyl radical coupled species which is converted to a cob(II)alamin-nucleotide radical coupled

species. The cob(II)alamin precursor was hypothesized to react with a thiyl radical on RTPR (or

a cob(III) species with a thiolate) to form the S-Co (III) species observed on the minute
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timescale, determined to be to C419 by peptide mapping experiments. (69) To gain a better

understanding of the partitioning between inactivation mechanisms and the relationship of the

non-alkylative mechanism of inactivation to the formation of the Co-S bond to C419, the fate of

AdoCbl was investigated.

Figure 6-16. Standards of cobalamin compounds recorded at 25 [M. The spectrum of cob(II)alamin is at 21.5yiM
and was recorded by J. Robblee.

In order to quantify the amount of cobalamin-protein adduct formed and determine the

identity of the cobalamin products remaining in solution, several inactivations were carried out

and the products analyzed by SEC. Inactivations were run with a 1:1:1 ratio of AdoCbl, RTPR,

and F2CTP and the products cobalamin bound to RTPR and remaining free in solution were

characterized by UV-vis spectroscopy. The protein was separated from the small molecules by

Sephadex G-50 chromatography in the dark and the protein-containing fractions combined and

the UV-vis spectrum recorded. The combined protein-containing fractions were concentrated by
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lyophilization in the dark (~ 16 h at room temperature), taken up un 0.5 mL water and the UV-vis

spectrum recorded a second time. The small molecules-containing fractions were too dilute to

observe a spectrum directly, so were simply combined and concentrated by lyophilization, then

redissolved in 0.5 mL water and the UV-vis spectrum recorded. The experiments were run with

inactivation endpoints of 2 min and 1 hr. This analysis was run once with 1'-[ 3H]-F 2CTP and

once with 5-[3H]-F 2CTP, and the amount of alkylation by F2CTP derived species and the amount

of cytosine release also recorded; these values were consistent with the independent

quantification experiments described above.

For quantification of the amounts of cobalamin species in solution, the products were

assumed to be a mixture of AdoCbl, hydroxycobalamin (HOCbl) or other Co(III) species. No

evidence of features associated with cob(II)alamin were observed in any of the described

experiments timescale. The visible region of the Co(III) species associated with corrins are

dominated by features related to the corrin ring.(143) Both AdoCbl and HOCbl possess an max

= 8000 M-1 cm'- in the red-visible region of the spectrum (523 nm), and this extinction

coefficient was used to quantify the total amount of cobalamin. GSCbl is reported to possess an

Sman = 8000 M-' cm-1 at 525 nm,(69) and this extinction coefficient was used to quantify the

protein-bound species, under the assumption that the cobalamin is bound to C419 as previously

observed and thus has similar extinction coefficients.(69)

The UV-vis spectra of authentic AdoCbl, HOCbl, GSCbl and cob(II)alamin are shown in

Figure 6-16.(143) All cob(III)alamin species posses features in the visible region (roughly 450

nm to 600 nm) which results from electronic and a series of C=C vibrational transitions in the

corrin ring. Cob(III)alamins lacking a Co-C bond (such as HOCbl) also possess a sharp feature

at 320-340 nm. AdoCbl itself has a strong absorbance feature at 260 nm from the adenosyl
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moiety, but the transition that results in the intense near-UV species in HOCbl is distributed over

a series of lower intensity transitions throughout the near UV.(143) GSCbl shows many features

similar to AdoCbl, but is notably red shifted in the 450-600 nm feature, and has no absorption

feature at 260 nm.

Figure 6-17 shows the UV-vis spectrum of the products of inactivation from SEC at 2

min (A) and 1 h (B), both protein-bound and in solution, recorded after lyophilization and

resuspension. Using 8525 nm = 8000 M-'cm "1, 0.24 ± 0.3 equiv. were calculated to have co-eluted

with RTPR at the 2 min time point, and 0.48 ± 0.03 equiv. for the 1 h time point (average of

three experiments). The quantity of cob(III)alamin species remaining in solution at each time

point (2 min and 1 hr) was also calculated, showing 0.65 ± 0.1 equiv. at 2 min, and 0.45 ± 0.1

equiv. at 1 h (average of three experiments). The total recovery of B12 species was 85-95%, with

the greatest variability seen in the solution phase products. The values of corrin coeluting with

the protein were also determined for the spectra recorded before lyophilization (Figure 6-18 A).

The 2 min RTPR was in a total volume of 3 mL, and showed 0.23 equiv. of cob(III)alamin with a

A525/A280 of 0.021. The 1 h RTPR was in a total volume of 2 mL, showed 0.46 equiv. of

cob(III)alamin and possessed an A525/A280 of 0.040. Assuming the A280 is due mostly to the

RTPR (8525 nm = 101,000 M-1 cm-1) and A525 is due to the cobalamin species, RTPR that is

labeled with 1 equiv. of the corrin would have an A525/A280 of -0.08. In previous studies, it

was reported that the RTPR isolated had an A525/A280 of 0.08, indicating nearly stoichiometric

labeling.(69) It is not clear why the stoichiometry measured in these experiments is lower. The

original study was run in degassed buffers, and used 2 equiv. of AdoCbl, while this study used 1

equiv. and was not degassed. A repeat run with degassed buffers gave nearly identical results

(0.26 equiv. cobalamin species, 0.4 equiv. sugar ring coeluting with the protein at 2 min).
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(A\
k )

(B)'
Figure 6-17. UV-vis spectra of peptide-bound (red line) and solution phase (blue line) products of inactivation of
RTPR by F2CTP in the presence of 1 equiv. of AdoCbl. (A) quench at 2 min. (B) quench at 1 h.

In both cases, the protein-bound species at 1 h resembled the GSCbl spectrum (Figure

6-18 A), though less so after lyophilization (Figure 6-18 B).(69) In the latter case, there are

some differences in the ratios of the features, which may be due to absorption caused by protein

that did not fully redissolve, or may be a cobalamin species which has cleaved from the protein

during the lyophilization period (-16 h). Substantially more of this product is seen at 1 h than at

2 min, suggesting the covalent modification is occurring on a slow (minute) timescale, and
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continues after inactivation is completed. Additionally, the product formed rapidly (by 2

minutes) is notably different from the GSCbl spectrum and the slow-forming product, lacking the

feature at 350 nm and with an equal ratio between the 525 nm and 420 nm feature.

The spectra of the small molecule fraction products is markedly different between the

two time points (Figure 6-17). Analysis of these spectra by subtracting linear combinations of

the spectra of HOCbl and AdoCbl was performed, and showed an intriguing difference between

the time points (Figure 6-19). The features in the spectrum of the small molecules fractions at 1

h (Figure 6-19 A) can be accounted for almost entirely by the combination of AdoCbl and

HOCbl. Mixing the standard spectra of these compounds in a 1:1 proportion and scaling

appropriately reproduces all the key features of this spectrum. Subtraction of this combination

eliminates most absorption in the visible range. It is unclear if the residual features are related to

another species, or simply result from imperfect subtraction.

The spectrum at 2 min (Figure 6-19 B) cannot be reproduced by the addition of the

HOCbl or AdoCbl spectra in any proportion tried, and it appears that a third species is present.

The small molecules fraction contained 0.6 equiv. of cob(III)alamin compounds at 2 min, and 0.4

equiv. at 1 h. The difference between these values is close to the observed increase in protein

modification (0.25 equiv. of cob(III)alamin at 2 min, 0.5 equiv. at 1 hr), and thus may represent a

third species which reacts during this period to form the Co-S bond. The subtraction of a 1:1

combination of HOCbl and AdoCbl scaled to 0.4 equiv. of cob(III)alamin species from the

spectrum thus reveals the spectrum of the third component that makes up the difference (Figure

6-19 B, subtraction). A remarkably similar spectrum can also be produced by directly

subtracting the spectrum of the small molecules fraction at I h from the spectrum at 2 min

(Figure 6-20). Without knowing the identity of the third species present, it is impossible to
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conclusively determine the relative proportions; the 1:1 ratio of AdoCbl to HOCbl represents a

best approximation based on the appearance of the spectrum revealed by the subtraction. Since

no combination could completely reproduce the spectrum, the combination which produced a

cobalamin-type spectrum was chosen. The use of this specific combination was also chosen

based on the presence of these species at 1 h, and the assumption that the unreacted AdoCbl

should be present at the same proportion at 2 min.
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(A)

11n \

Figure 6-18. UV-vis spectra of peptide bound products at 2 min (blue line) and 1 h (red line). The spectra of
GSCbl is shown for comparison (green line). (A) Spectra recorded directly off the SEC columns. The material at 2
min was in a total volume of 3 mL, and the material at 1 h was in a total volume of 2 mL. Found 0.23 equiv.
cobalamin eluting with the protein at 2 min, 0.45 equiv. at 1 h, with A530/A280 ratios of 0.021 and 0.04
respectively. (B) Spectra recorded after lyophilization to dryness in the dark, followed by resuspension in 0.5 mL
water. Found 0.25 equiv. cobalamin eluting with the protein at 2 min, 0.5 equiv. at 1 h.
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Figure 6-19. UV-vis spectra of small molecules fraction from SEC of inactivation experiments. (A) Spectra of
products at 1 h (red line) compared to the scaled spectra of HOCbl and AdoCbl standards, combined in a 1:1
proportion. The subtraction (green line) shows almost complete elimination of features in the visible region, leaving
only a strong back absorption due to high salt concentrations. (B) Similar comparison of the solution- products at 2
min (blue line) to a standard spectrum of HOCbl and AdoCbl (red line). No linear combination of theses two
standards can eliminate the features in the visible region, and the subtraction (green line) indicates the presence of a
third species.
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Figure 6-20. Comparison of subtraction spectra obtained from solution phase products of RTPR inactivation by
F2CTP in the presence of 1 equiv. of AdoCbl. The spectra of the small molecules fraction at 2 min minus the
spectrum at 1 h (red line) reveals a third species. A similar spectrum can be obtained by subtracting appropriately
scaled standard spectra of HOCbl and AdoCbl from the spectrum of the small molecule products at 2 min (blue
line).

This spectrum represents a third cobalamin species present in solution at 2 min, but

which has been consumed by 1 hr, presumably through covalent modification of the RTPR. This

new spectrum closely resembles a Co(III) cobalamin species. The spectra in the 450-550 nm

range shows a broad absorption feature with a local minimum, very much like the feature of

HOCbl (Figure 6-16). The ma in this feature in the red-visible region is red shifted - 15nm

relative to HOCbl. There is also a distinct peak at 360 nm, again similar to HOCbl but red

shifted -10 nm, and not as sharp. This third species may represent a decomposition product

(over the 16 h lyophilization period) of the precursor species that would normally react to form

the Co-S bond to C419. This hypothesis would explain the disappearance of this species as the

extent of alkylation increases. A Co(II) species may not be stable once separated from the

protein by the SEC, and over the time scale of this experiment (30 min for the G-50 Sephadex
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column, followed by -16h of lyophilization) could well result in its oxidation to the observed

species. The identity of this third species is unknown.

The analysis suggested that the small molecules fractions contained 0.2 equiv. of AdoCbl

and 0.2 equiv. of HOCbl at the long timescale (1 h). At a shorter time point (2 min) the small

molecules fraction contained -0.2 equiv. of a third, unknown species in addition to 0.2 equiv. of

AdoCbl and 0.2 equiv. of HOCbl. The amount of unreacted AdoCbl observed (0.2 equiv.) is

consistent with earlier studies, which showed the release of 0.84 equiv. of 5'-dA when RTPR was

inactivated with 1 equiv. F2CTP in the presence of 1 equiv. of AdoCbl.(69) The direct analysis

of the specific species present at 2 min and I h may bear further investigation. It is also unclear

why this study showed only partial modification by cobalamin when the previous study

suggested the RTPR was stoichiometrically modified.(69)

Summary of Inactivation Stoichiometry

The inactivation has been investigated with 1 equiv. RTPR and 1 equiv. F2CTP with and

without the use of a NaBH 4 quench at two minutes. A summary of the products characterized in

each case, determined by use of 5-[ 3H]-F 2CTP and 1 '-[3H]-F 2CTP, is outlined in Figure 6-21. In

the absence of a NaBH 4 quench (Figure 6-21 A), 0.47 equiv. sugar, 0.16 equiv. of a nucleoside

with cytosine attached, and 0.25 equiv. cobalamin are found coeluting with the protein after

SEC. HPLC analysis after filtration, but before dephosphorylation, showed 0.6 equiv. of

cytosine and 0.23 equiv. of an unknown phosphorylated sugar product. HPLC after

dephosphorylation found 0.7 equiv. cytosine and 0.15-0.2 equiv. unreacted F2C. When a NaBH4

quench was employed at 2 min, (Figure 6-21 B) 0.33 equiv. of sugar and 0.03 equiv. of a

nucleoside with cytosine attached were found coeluting with the protein. After
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dephosphorylation, HPLC analysis showed 0.55 equiv. cytosine, 0.2-025 equiv F2C, and 0.25

equiv. of a new nucleoside product.

Inactivation Mixture,
1 equiv. RTPR,

1 eauiv.

SEC at 2 min
Recovery >95%,

Filtration at 2min,
YM-30 Membrane

10 min filtration

Small molecules
fraction

HPLC
-80% recovery,

0.47 equiv. sugar
0.16 equiv. cytosine nucleotide

0.25 equiv. Cbl
coelute with protein

0.6 equiv. cytosine
0.23 equiv. phosphorylated

sugar product

alkaline phosphatase
2 h treatment,
YM-30 Filtration

dephosphorylated
small molecules

fraction

HPLC
-75% recovery. 0.7 equiv. cytosine

0.15-02 equiv. F2C

Inactivation Mixture,
1 equiv. RTPR,

1 eauiv.

NaBH4 reduction at 2min
5 min reaction time

Reduced
inactivation

SEC
Recovery >95% 0.33 equiv. sugar

0.03 equiv. cytosine nucleotidck
I coelute with protein

Filtration
YM-30 Membrane

alkaline phosphatase
2 h treatment,

YM-30 Filtration

dephosphorylated
small molecules

fraction

HPLC
-75% recovery. 0.55 equiv. cytosine

0.2-0.25 equiv. F2C
0.25 equiv. nucleoside

product
Figure 6-21. Summary of inactivation stoichiometry and recoveries with no quench (A) and with a NaBH 4 quench
at 2 min (B). In all cases, the equiv. reported are adjusted for recovery.

320

v
7

w

~----J

- v
1

| . . .



Attempts to identify peptides of RTPR labeled during its inactivation with F2CTP

The small molecule products of inactivation now characterized, our attention turned to

the identification of peptide-bound fragments derived from the ribose ring of F2CTP, and

identification of the sites of labeling. To first test the stability of the sugar attached to RTPR,

RTPR was inactivated with 1'-[ 3H]-F 2CTP and analyzed under conditions required for trypsin

digestion of RTPR. The labeled RTPR was dialyzed against 0.1 M NH4HCO 3, pH 8.2 with and

without 2 M urea, typical conditions for trypsin digestion. A similar experiment was carried out

in 160 mM KPi, pH 5.6, 2M urea, conditions used for digestion with endoproteinase C in a

previous study.(69) The dialysis was carried out at 40C over 20h, and aliquots were examined

for the amount of radioactivity remaining inside the membrane. While there was some loss of

label (20-25% lost by 20 h), the rate was slow enough that labeled peptides could be isolated

(Figure 6-22).

Figure 6-22. Loss of radioactivity over time from RTPR inactivated with 1'-[3H]-F 2CTP dialyzed against
potential protein digestion buffers. (-) 0.1 M NH4HCO 3, pH 8.2; (- -) 0.1 M NH4HCO3, pH 8.2, 2 M urea;
( )160 mM KPi, pH 5.6, 2M urea. Aliquots (0.25 mL) were removed and assayed for cpm remaining at each time
point.
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These results suggested that RTPR could be successfully digested with trypsin without

loss of the majority of the label. In order to minimize loss, digestion was performed over a short

period of time with elevated levels of trypsin (1:4 vs 1:20). The inactivation was carried out with

1'-[ 3H]-F 2CTP and the inactivated protein was denatured in 8M guanidine then labeled with

iodoacetamide. The alkylated RTPR was then exchanged into the trypsin digest buffer (0.1 M

NH4HCO3, pH 8.2) by Sephadex G-50 chromatography and fractions were assayed for

radioactivity. While recovery of protein off this column was good (-80% by A280), only 0.14

equiv. of radioactivity co-eluted with the protein of the expected 0.45 equiv. This result

indicated substantial loss of the covalent label during the denaturation and iodoacetamide

treatment.

The labeled RTPR was then digested with trypsin and the peptides were separated by

reverse-phase HPLC. A typical HPLC trace is shown in Figure 6-23. Radioactivity eluted

between 45 min and 75 min in a very broad peak. A sharper feature was contained within this

region, eluting from 58-62 min. Loss of label from the protein was evident, as 10% of the

radioactivity eluted in the void volume. The recovery off the column was 80%; 0.11 equiv. of

the total initial radioactivity remained. The broad region of radioactivity suggests the

inactivation process results in many sites of labeling, or potentially that one or more initial sites

of label became redistributed to multiple residues during the workup and digestion of the RTPR.
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Figure 6-23. HPLC separation of peptides from RTPR inactivated with 1'-[ 3H]-F 2CTP, alkylated with
iodoacetamide and digested with trypsin. Absorbance (-), cpm (m). Linear gradient (."") 0.1% TFA, 0-45%
CH 3CN over 90 min. 10% of the radioactivity eluted in the void volume. The remainder of radioactivity eluted
from 45-70 min, with a sharper peak eluting from 58-62 min.

Given the substantial label loss during the denaturation, alkylation and digestion steps, a

method of stabilizing the label was sought.(144) The inactivation and trypsin digestion were

repeated, but prior to denaturation the inactivation mixture at 2 min was treated with 50 mM

NaBH 4. Previous experiments (Table 6-1) reveal a lower amount of labeled RTPR recovered in

the case of NaBH4 quenched reactions. Of the 0.33 equiv. of radioactivity expected to co-elute

with the protein, 0.28 equiv. were observed in this experiment, indicating less loss of label

during the denaturation and alkylation steps. Subsequent to trypsin digestion and acidification to

pH -2 with TFA to help break potential borate esters, the peptides were separated by HPLC as

described above. Recovery from the chromatography was again 80% with no radioactivity

eluting in the void volume. A typical chromatogram from a digestion of this type is found in

Figure 6-24 A. Four main regions of radioactivity were seen. The first (Region I) was the

sharpest peak, eluting from 50-53 min (25-26% acetonitrile) and accounted for 18% of the total
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radioactivity. This peak rechromatographed as a single peak with 80% recovery (Figure 6-24 B).

Region II, eluting from 54-59 min (27-29% acetonitrile) accounted for 19.7% of the

radioactivity, and rechromatographed as several peaks with similar retention times with 70%

recovery (Figure 6-24 C). Region III, eluting from 60-63 min (30-32% acetonitrile) accounted

for 13.9% of the radioactivity. It rechromatographed as a single peak of radioactivity, but the

recovery was very low (< 20%) and the radioactivity did not appear to co-elute with any peptides

(Figure 6-24 D). Region IV represents the region of radioactivity from 63-67 min and accounts

for 26% of the radioactivity. This region showed no peak of radioactivity in any attempts at

repurification (Figure 6-24 E) and most radioactivity was lost. It is not clear what happened to

these peptides, but it is possible they were not stable in solution after the initial purification.

Over six experiments using these conditions, total recover off the column was 74 + 5 %. Of the

eluting radioactivity, 20 + 2% was found in region I, 26 ± 4% in region II, 20 ± 5% in region III

and 21 ± 4 % in region IV.

Initial efforts for peptide identification by mass spectrometry focused on region I. In the

rechromatogram, the radioactivity appeared associated with peptides and the recovery was

excellent. The total recovery for this peak was (.28 equiv. labeled RTPR)*(.8)*(.18)*(.8) =0.032

equiv. of radioactivity, representing ~10% of the alkylated RTPR, and the amount of

radioactivity eluting in this region was consistent across experiments. Regions II and III were

also investigated by similar methods. A discussion of the results of these experiments can be

found in the next section.
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(D) Region III
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Figure 6-24. HPLC purification of peptides from RTPR inactivated with 1'-[3H]-F 2CTP, treated with NaBH4 at 2
min, alkylated with iodoacetamide and digested with trypsin. Absorbance (-), cpm (m). (A) Initial purification,
linear gradient (."") 0.1% TFA, 0-45% CH3CN over 90 min. Region I, 50-53 min, 18.1% of radioactivity. Region
II, 54-59 min, 19.7% of radioactivity. Region III, 60-63 min, 13.9% of radioactivity. Region IV, 63-67 min, 26% of
radioactivity. (B-E) Linear gradient (."") 10 mM NH40Ac, pH 6.8, 0-35% CH3CN over 90 min. (B) repurification
of I. (C) repurification of II. (D) repurification of III. (E) repurification of IV. For most of the repurifications, only
regions showing peptide and the void volume were assayed for radioactivity.

Analysis of labeled peptides by mass spectrometry

MALDI analysis was performed on the peptides isolated regions I, II and III, described

above (Figure 6-24 B-D). To provide a method for the identification of peaks containing a

fragment derived from F2CTP, a second inactivation was carried out under identical conditions,

except the F2CTP used was produced by combining l'-[2H]-F 2CTP (93% 2H incorporation) with

1'-[ 3H]-F 2CTP (s. a. 7200 cpm/nmol). This F2CTP stock contained -60% 2H at the 1' position

with a specific activity of 2600 cpm/nmol. Inactivations involving with this material would

produce the same labeled peptides, except that 0.6 equiv. of a hydrogen will be replaced by

deuterium. Isolated peptides will give the normal mass distribution with 1'-[3H]-F 2CTP (99.9%

'H at the 1' position), but will show an increase in the +1 Da isotope with the partially [2H]
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labeled F2CTP. Thus, peptides modified by F2CTP could be identified by a predictable change

in mass distribution.

This concept is illustrated in Figure 6-25 for the C-terminal tryptic peptide from RTPR

(722-739, DLELVDQTDCEGGACPIK) with both cysteines blocked with acetamide. This

peptide was chosen for this discussion as several different labeled peptides identified in these

experiments were determined to have this primary sequence. Figure 6-25 A shows the mass

distribution predicted for the natural isotopic distribution of this peptide.(145) If the peptide had

one hydrogen completely replaced by deuterium, the distribution would shift in its entirety by +1

Da. The mass distribution of a peptide that has 0.6 equiv. of deuterium would be the weighted

average of the unlabeled distribution and the labeled distribution, and appear as in Figure 6-25

B.(145)

A D\
k ) kU )
Figure 6-25. Predicted distribution of masses for the RTPR C-terminal peptide from trypsin digestion
(DLELVDQTDCEGGACPIK, 2020 Da). (A) normal isotopic distribution and (B) with 0.6 equiv. of deuterium
replacing 0.6 equiv. of hydrogen. C-terminal peptides modified with an inhibitor-derived fragment should have
nearly identical distributions, shifted to the appropriate absolute mass.(145)
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Figure 6-26. Full MALDI of peptides isolated in Region I from the trypsin di est of RTPR inactivated with F2CTP
and treated with NaBH 4 (Figure 6-24 B). (A) 1 '-[H]-F2CTP, NaBH 4. (B) 1 '-[ H,H]-F2CTP, NaBH4. (C) 1'-[ H]-
F2CTP, NaBD4. The features at 1102.5 Da and 1347.7 Da do not appear to be derived from RTPR, as they do not
match any expected peptides from trypsin digestion and MS/MS fragmentation analysis showed no matches with
sequences from RTPR.
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Figure 6-27. MALDI of peptides isolated in Region I from the trypsin digest of RTPR inactivated with F2CTP and
treated with NaBH 4, expansion on the region around the 2004 Da peak (Figure 6-24 B). (A) 1'-['H]-F2 CTP, NaBH 4.
(B) 1'-[ 2H,3H]-F 2CTP, NaBH4. (C) 1I'-[3 H]-F 2CTP, NaBD 4.
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Figure 6-28. MALDI feature at 2004 Da, from Region I of the trypsin digest of RTPR inactivated with F2CTP and
treated with NaBH 4 (Figure 6-24 B). (A) 1'-[ 3H]-F 2CTP, NaBH 4. (B) 1'-[ 2H, 3H]-F 2CTP, NaBH 4. (C) l'-[3H]-
F2CTP, NaBD 4.
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Figure 6-29. MALDI feature at 2063 Da, from Region I of the trypsin digest of RTPR inactivated with F2CTP
(Figure 6-24 B). (A) 1'-[ 3H]-F 2CTP, NaBH 4. (B) 1'-[ 2H,3H]-F 2CTP, NaBH4. (C) 1'-[ 3H]-F 2CTP, NaBD 4.

Using this methodology, the MADLI spectra of the peptides isolated from the trypsin

digest of RTPR inactivated with 1'-[ 3H]-F 2CTP were investigated (Figure 6-24). The fractions

corresponding to the major peaks of radioactivity in each of Regions I, II and III (Figure 6-24 B-

D) were analyzed for inactivation with the 1'-[ 3H]-F 2CTP and with 1'-[2H,3H]-F 2CTP. Two

peptides of interest were identified in the MALDI spectra of region I (Figure 6-26 and Figure

6-27), at 2004 Da (Figure 6-28) and 2063 Da (Figure 6-29). These peaks show the predicted

shift in isotopic distribution from the non deuterated (Figure 6-28 A and Figure 6-29 A) to the

partially deuterated case (Figure 6-28 B and Figure 6-29 B). No peptides showing the shift in

isotopic distribution predicted for peptides alkylated by a fragment of F2CTP were detected in

the MALDI for the region II and III peptides (Appendix 2). Regions II and III represent a

substantial percentage of the radioactivity recovered from the trypsin digests, thus surprising that
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no labeled peptides could be found. This negative result is discussed further below (see

Interpretation of MALDI and MS/MS data).

Sequencing through post-source decay (PSD) MS/MS analysis (discussed in greater

detail in the next section) revealed that the 2004 and 2063 Da peptides as being modified C-

terminal peptides of RTPR. This peptide was previously observed in experiments with RTPR

and C1UTP as a site of covalent modification using 2'-[3H]-CIUTP and NaBH4 trapping, as well,

apparently modified on the cysteines.(144) The expected mass of this C-terminal peptide with

both cysteines acetamide blocked is 2019.90 (Table 6-2); this peptide can itself be seen as a

minor peak in Figure 6-27 A (detected at 2020.04 Da). The differences in mass between this

peptide (2020 Da) and the peptides incorporating a fragment of F2CTP (2004 Da and 2063 Da) is

-16 Da and +43 Da, respectively, and are indicative of the size of the covalent label.

This appears to indicate a label with negative mass; however, as two cysteines within this

peptide are a likely sites of alkylation (C731 and C736) and one must take into account the

possibility of one or both acetamide groups being replaced by the covalent label derived from

F2CTP. Since the protein is treated with iodoacetamide after the inactivation is complete, any

cysteines modified by the F2CTP would not have reacted with iodoacetamide. Consequently, the

labeled peptide would be missing one acetamide, which would be replaced by the F2CTP derived

label. The mass of one iodoacetamide unit is 58 Da (Table 6-2), and thus the peptide with

unmodified cysteines is 2020 - 2 (58) = 1904 Da. If one considerers possibilities for

replacement of acetamides, the peak at 2004 can be seen to be a peptide missing both

acetamides, alkylated by a group derived from F2CTP of 100 Da. (1904 + 100 = 2004).

Similarly, the peak at 2063 Da corresponds to the C-terminal peptide with one acetamide and a

group derived from F2CTP of 101 Da (1904 + 58 + 101 = 2063).
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Table 6-2. Masses of the C-terminal tryptic peptide of RTPR, DLELVDQTD(C-R')EGGA(C-R")PIK, with various
cysteine modifications. X and Y represent the masses of hypothetical alkylations of unknown structure.

Cysteine modification Mass of Mass of Mass of
R (Da) R' (Da) Peptide (Da)

Oxidized (unmodified) 0 0 1904
Reduced: R' = R" = H 1 1 1906
Acetamide labeled: 58 58 2020
R' = R" = -CH2 (CO)NH2
R' = -CH 2(CO)NH2  58 X 1962 + X
R" = unknown
R' = unknown X Y 1904 + X + Y
R" = unknown
R'= R" = unknown X N/A 1904 + X
crosslink

The labeled structures observed were produced from reaction mixtures treated with

NaBH 4. There is good evidence that the precursor structure contained a ketone or an a,j3

unsaturated ketone system, based on the nucleoside product isolated from the small molecule

trapping experiments. Thus, one or more hydrogens in the label may originate from 1,2 or 1,4

reduction by NaBH 4 (Figure 6-30). In order to learn more about the structure of the labeled

species and the precise number of hydrogen atoms derived from NaBH 4, the inactivation study

was repeated a third time, using '-[3H]-F 2CTP, with NaBD4 (98% D) in place of NaBH 4. Each

hydrogen that originated from the borohydride will now be a deuterium, increasing the mass of

the labeled peptides by 1 Da. Thus, the shift in mass indicates the number of hydrogens derived

from the borohydride. The 1,2 reduction of a ketone or the 1,4 reduction of an unsaturated

ketone would each result in the addition of one deuterium to the molecule. In addition, the

ketone generated by 1,4 reduction would then be reduced, resulting in the incorporation of a

second deuterium.
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Figure 6-30. Reduction of ketones by NaBD 4.

Figure 6-26 C, Figure 6-27 C, Figure 6-28 C, and Figure 6-29 C show the MALDI trace

from the samples quenched by NaBD4. In the expansion on the 2004 Da peak (Figure 6-28 C),

the mass of the peptide shifts from 2004 Da to 2005 Da. In the expansion on the 2063 Da peak

(Figure 6-29 C), the mass was shifted by 2 Da to 2065 Da. This result indicates that one

hydrogen in the 2004 Da and two hydrogens in the 2063 Da peptide came from NaBH 4, and has

the structural implication that both contained ketones.

Analysis by MS/MS

In order to gain more information about the structure of the modification, the sequence of

the peptide and the residues alkylated, MS/MS analysis was performed. As shown in Figure

6-27, a peptides of 2020 Da were detected. This mass matches that expected for the C-terminal

peptide of RTPR (722-739, DLELVDQTDCEGGACPIK), when both cysteines are modified by

acetamide (MW calcd 2019.90, Table 6-2). This assignment was confirmed by PSD

fragmentation (Figure 6-31). In this method, additional energy is applied to the peptide of

interest, initiating several predictable fragmentation modes. The major site of fragmentation

using this method is at peptide bonds (Figure 6-32). This fragmentation gives two series of ions:
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the y series in which charge is retained on the N-terminus, and the b series with charge retained

on the C-terminus.(146, 147) Each mass peak within a given series is thus associated with a

truncated peptide, and the difference in mass between each peak within a given series is the mass

of one amino acid in the sequence. The relative abundance of each ion series detected is highly

peptide dependent and, in the case of this peptide (Figure 6-31), the y series dominates the

spectrum. A number of additional peaks can be seen that are -18 and -17 Da from the main y

series. These are the yO and y* series, representing loss of water or ammonia from the y series

ions. The peaks from the major "y" series are marked, and the difference in mass indicates the

amino acid lost, allowing sequencing of the peptide. Most remaining peaks visible in the

spectrum are b series peptides. This spectra essentially allows N-terminal sequencing by

viewing the y series. Fourteen y ions are observable, showing mass differences consistent with

the C-terminal RTPR peptide, with both cysteines modified by acetamide.
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Figure 6-31. Annotated MS/MS spectrum of the 2020 Da peptide corresponding to the diacetamide labeled C-
terminal RTPR peptide (DLELVDQTDCEGGACPIK). The y ion series is highlighted, representing fragmentation
along the peptide bond with charge retention on the N-terminus. The difference in mass between each ion is the
mass of the amino acid cleaved. C* = acetamide modified cysteine.
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Figure 6-32. PSD fragmentation along the peptide-bonds to give b type and y type ions.
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The MS/MS of the 2063 Da peptide shows the same series of ions, but shifted by +43 Da

(Figure 6-33 A). The same series is visible in the 2065 Da peptide from the NaBD4 quenched

reaction, but at +45 Da relative to the y series in the 2020 Da peptide (Figure 6-33 B). Once the

first cysteine is removed, both the normal series seen in the MS/MS for the acetamide modified

peptide (generating the peaks at 831, 702, 645, 588 and 517 Da) and a series which remains at

+43 Da (+45 Da in Figure 6-33 B) can be seen. After the cleavage of the second cysteine, only

the normal mass peak remains (a fragment at 357 Da). The label derived from the inhibitor sugar

fragment is thus attached to either C731 or C736. This method is not quantitative, and nothing

concrete can be said about the relative extent of labeling at each site. As predicted by the

MALDI, the sugar fragment has a mass of 101 Da (43 Da larger than acetamide) and

incorporates two deuteriums when the inactivation is quenched with NaBD4.

The MS/MS of the major labeled peak at 2004 Da is more complex (Figure 6-34 A). The

expected y series for the C-terminal peptide is still evident, -16 Da relative to the diacetamide

modified C-terminal peptide (Figure 6-31). Each of these peaks shows several closely related

series, fragments that are -17 or -18 Da relative to each y ion (the y* series that has lost ammonia,

and the y0 series that has lost water) and often one that is -35 Da, representing the loss of both

water and ammonia (Figure 6-34 B). It is unclear why the intensities of these secondary

fragments are enhanced relative to the corresponding series in the 2020 Da (Figure 6-31) and

2063 Da (Figure 6-33) peptides. Additionally, after the loss of the aspartate before C731 (giving

the peak at 975), the peaks visible until the loss of the second cysteine do not correlate with any

simple mass series. This result indicates some irregular fragmentation of the peptides in this

mass range, and the nature of this fragmentation is not readily apparent. The final tripeptide

peak after cleavage of C736 (PIK) appears the same in this spectra as in those for the 2020 and
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2063 species. The PSD for the 2005 Da peak in the NaBD 4 spectra is similar, but shifted +1 Da

relative to the 2004 Da spectra and the primary y series is of even lower abundance relative to

the yo and y* series (Appendix 2).
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Figure 6-33. (A) MS/MS of peak at 2063 Da, containing a label derived from F2CTP. (B) the same peptide, from
the inactivation quenched with NaBD 4. The y series is indicated in each, shifted +43 Da in A and +45 Da in B
relative to the acetamide labeled C-terminal peptide (DLELVDQTDCEGGACPIK). The final mass difference
shows that the cysteine cleaved is modified with an alkylation 43 Da (45 Da in B) larger than acetamide. The
modification is present to some extent on each cysteine, as indicated by the appearance of the y series of the normal
peptide after C731 is cleaved (indicated at 831, 702, 645, 588 and 517 Da in both spectra).
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Figure 6-34. MS/MS of peak at 2004 Da, corresponding to the C-terminal peptide of RTPR
(DLELVDQTDCEGGACPIK) containing an internal cysteine-cysteine crosslink derived from F2CTP. (A) Full
PSD with y ion series marked. (B) Expansion, indicating primary y ions and the peaks representing the yo and y*
series (-18 Da and -17 Da, overlapped) and peaks -35 Da representing both the loss of a water and of an ammonia.
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This data is consistent with modification at C731 and C736, and the apparent mass of the

fragment derived from F2CTP agrees with the MALDI data. If both acetamides are missing, a

fragment of mass 100 derived from F2CTP would account for the observed mass (2020 - 2*58

+100 = 2004). Based on the PSD spectra, this modification is unlikely to be two 50 Da

fragments, one on each cysteine. Were this the case, we would expect to see a series of ions after

the loss of C731 that was - 8 Da relative to the spectrum of the 2020 Da peptide. Instead, it

seems likely this modification is a 100 Da fragment that is covalently modifying both cysteines,

providing an internal crosslink. Cleavages in the backbone in between the two cysteines would

not actually fragment the peptide if they were connected through a side-chain crosslink, and

could account for the lack of regular fragments in this region.

Interpretation of MALDI and MS/MS data.

The peptides associated with masses at 2004 and 2063 Da represent cysteine-modified C-

terminal peptides of RTPR. Modification is evident at both C731 and C736. The mass at 2004

Da is consistent with the replacement of both acetamides with a fragment of 100 Da that is

covalently linked to both cysteines. The peptide at 2063 is consistent with the same tryptic

peptide that has one cysteine labeled with acetamide and one with a sugar fragment label of 101

Da. The NaBD 4 quenched sample shows that one hydrogen on the 100 Da fragment comes from

NaBH4 and that two on the 101 Da fragment come from NaBH4.

Figure 6-35 outlines a scheme consistent with this data. A furanone equivalent (see

Figure 6-3) could react with the C-terminal cysteines though conjugate addition, either with one

cysteine leaving a compound with an a,p3 unsaturated ketone, or with both cysteines giving rise to

a saturated ketone. Reduction with NaBH 4 would provide the structure with the correct mass and
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number of hydrogens delivered from NaBH4. An alternate proposal (Figure 6-36) can be drawn

that gives the same masses associated with the sugar fragment. In this proposal, the first

alkylation by cysteine would take place through a mechanism analogous to the addition of water

proposed to explain the small molecule product (Figure 6-4). However, this mechanism would

require an additional 1,4 reduction for each label, leading to expected incorporation of two

deuteriums in the case of the 2004 Da peptide and three in the case of the 2063 Da peptide.

Therefore, this second mechanism is eliminated by the results of the NaBD 4 reduction

experiment.
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Figure 6-35. Proposal for label structure and mechanism of formation.
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Figure 6-36. Alternate proposal for label structure. This proposal is inconsistent with the data from the NaBD4
quenched inactivations, requiring one more hydrogen in the label structures than is observed.

The site of the RTPR alkylation is on the C-terminal tail and not the active site cysteines,

and is derived from a furanone-like precursor. This observation places strong constraints on the

mechanism of adduct formation. This observation led to the "alkylative" mechanism proposed

(Figure 6-3). The alkylation of RTPR by F2CTP occurs within 2 min based on size exclusion

chromatography experiments, with one equiv. of F2CTP resulting in -0.45 equiv. of labeled

protein. Similar results were in fact previously observed in the inactivation of RTPR by 2'-[3H]-

C1UTP.(144) In this case, the inactivation could be run with 13 equiv. of the inhibitor in the

presence of NaBH4, and one equiv. of alkylation was observed with the RTPR. Trypsin
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digestion and purification by HPLC allowed isolation of three close-eluting peptides. Only one

was of sufficient purity for identification by sequencing, found to be the C-terminal tail peptide

with modifications on the cysteines. The mass measured was 2006, consistent with a furanone

modified cysteine and the second cysteine unmodified, a surprise given that the RTPR was

alkylated with iodoacetamide prior to digestion. No evidence of a species consistent with the

characteristic chromophore formed in these systems was observed.

When furanone is generated in most other nucleotide analog inhibitors, the alkylation of

the peptide occurs on the minute timescale, and requires multiple equivalents of the inhibitor to

see significant amounts of alkylation, 2-100 depending on the inhibitor and the effector

used.(18, 121-123, 144, 148-151) In the case of the ClUTP/RTPR system described

above,(144) alkylation and inactivation were high with only one equivalent of the inhibitor, with

>0.8 equiv. bound and >80% inactivation by 10 min, and formation of the chromophore was

observed to an extent determined only by the initial alkylation, and did not increase with

increasing alkylation. In the case of these experiments, treatment with NaBH4 rules out

alkylation during the denaturation and iodoacetamide labeling steps. The NaBH4 would reduce

any ketone-containing species in solution, preventing modification through conjugate addition.

Previous results support this assumption, as 13 equiv. of C1UTP resulted in only 1.3 equiv. or

labeled RTPR as compared to >4 equiv. in the absence of NaBH4 . Finally, the characteristic

chromophores that develop in RNRs alkylated by furanone have not been observed after

inactivations using F2CDP or F2CTP, though in the case of RTPR observation of this potential

chromophore is frustrated by the covalent modification by cobalamin, obscuring this region of

the UV-vis spectrum.(69) However, it seems unlikely that F2CTP is forming a free furanone

species that can inactivate RTPR from reaction from solution; instead the primary source of
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inactivation seems to be due to a specific alkylation, of a phenotype similar to that observed in

the ClUTP/RTPR system.(144)

The mass spectrometry studies indicate a specific, rapid alkylation pathway, which we

propose is associated with rapid loss of base, and provides the basis for the mechanism described

in Figure 6-3. The mechanism likely involves rapid loss of cytosine to generate 6-7 (Figure 6-3)

which is trapped by a nucleophile derived from RTPR (Figure 6-35). The loss of inorganic

triphosphate is likely slow, but once released the product is set up for a second, rapid alkylation.

The location of this label on the C-terminal tail rather than the active site, combined with the

evidence against a non-specific alkylation from solution, suggests that the tail enters the active

site, as it would during normal turnover to re-reduce the active site cysteine, while a reactive

species is still bound. Reaction with C731 or C736 results in the modifications described. The

proposed mechanism (Figure 6-3) provides an explanation for why the tail is the site of

alkylation rather than the bottom-face active site cysteines. These cysteines (C 119, C419) are

proposed to be in an oxidized state and are thus unavailable for nucleophilic attack on the

reactive sugar moiety.

The broad regions of radiolabeled peptides observed in HPLC analysis of the trypsin

digests indicate multiple labeled peptides are present. However, no peptides could be identified

in regions II or III by the MALDI methods described (Appendix 2). It is an important caveat that

the label identified accounts for only -18% of the total RTPR alkylated at 2 min. One possible

explanation for the inability to detect additional peptides may be related to their size. If

alkylation was occurring on C408 (the top-face active site cysteine) for example, the predicted

peptide from trypsin digestion would be >6000 Da, too large to be visible using the MALDI

method used here.(152) It is also possible that the label is crosslinking to other sites on the
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protein, producing a mixture of peptides, many of which might also be too large to see by

MALDI. Future experiments using electrospray ionization (ESI) methods may allow

identification of additional sites of alkylation.

Additional Studies using 1 '-[2H]-F2CTP and 3'-[2H]-F2CTP

The deuterated derivatives of F2CTP produced as described in Chapter 5 have been used

for several additional studies. The 3'-[ 2H]-F 2CTP has potential for giving information on the

kinetics of this inactivation, and a preliminary experiment was done on the minute time scale. A

time-dependant inactivation using the radioactive assay was performed as described above

substituting 3'-[2H]-F 2CTP for F2CTP. No difference in inactivation behavior was observed

when using the 3'-[2H] inhibitor relative to F2CTP.

Both I'-[.2H]-F 2CTP and 3'-[2H]-F 2CTP have been used in the investigation of the

structure of the radical formed upon inactivation of RTPR through EPR methods. Inactivation

studies were carried out using these compounds and quenched at 20 s in isopentane/liquid N2

slurry. Analysis at 9 GHz showed no differences relative to each other and the EPR previously

reported by Silva(69). These compounds were also used to prepare high-field (130 GHz) EPR

samples by Gary Gerfen at the Albert Einstein College of Medicine at Yeshiva University.

These samples were prepared at 300 RiM RTPR, 450 •M AdoCbl, 1 mM dATP and 300 tgM

F2CTP (either unlabeled, I'-[2H], or 3'-[2H]). No differences were noted between the unlabeled

inhibitor and the 3'-[2H]. The 1 '-[2H]-F 2CTP/RTPR spectrum showed some differences which

have not been fully deconvoluted at this stage. The differences suggested that D-ENDOR

experiments might be informative to look for coupling of a deuteron to the radical. In this case,

the sample prepared with 1'-[ 2H]-F 2CTP shows a clear 8.6 MHz coupling of the radical to a
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deuteron, consistent with a radical at the 2'-position coupled to the 1' deuteron (Appendix

2).(153) This result provided the first direct evidence that the observed organic radical is indeed

a nucleotide-based radical, and provides support for a mechanism that produces a stable, 2'-

radical (Figure 6-4).

6.4 Discussion

Mechanistic implications of the inactivation products

The use of radiolabeled F2CTP has allowed us to provide additional insight into the

inactivation of RTPR by F2CTP relative to our earlier studies.(69) Our studies with 5-[3H]-

F2CTP and 1'-[3H]-F 2CTP quantified the degree of RTPR alkylation by F2CTP fragments derived

from the base and the sugar ring, respectively, and of the quantity of each nucleotide fragment in

solution. The analysis revealed that during the inactivation of RTPR, the majority of the

cytosine is fairly rapidly cleaved from the inhibitor into solution. The kinetics of this release

unfortunately cannot be measured, but 0.6 equiv. are observed to be lost from F2CTP, in < 15

min. Further, SEC experiments showed that when quenched at 2 min by loading onto the

Sephadex G-50 column, 0.45 equiv. of sugar ring co-eluted with the protein, but only 0.15 equiv.

of cytosine, indicating cleavage of the cytosine in this short timeframe. The rate of loss is

probably faster than seen in RNR inhibition by a variety of other nucleotide analogs, where

reaction to a 3'-keto nucleotide results in loss of base through 03 elimination on a timescale of

minutes.(117, 118, 121-123, 149, 154) This result suggests that loss of base is an integral part of

the inactivation mechanism.

The SEC experiments indicated that although >90% of the RTPR was inactivated and

0.8-0.9 equiv. of F2CTP was consumed, only 0.45 equiv. of F2CTP was found covalently bound
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to RTPR at the inactivation endpoint. This result was the first indication that the inactivation

proceeded by multiple pathways, perhaps involving a common intermediate. One path involves

F2CTP alkylation of RTPR, while another results in F2CTP consumption with all fragments of

the inhibitor released into solution. The latter pathway suggests that the reaction with the

AdoCbl cofactor previously characterized, resulting in the formation of a Co-S bond to C419,

may be responsible for the remainder of the inactivation.(69) Our current studies found 0.25

equiv. of AdoCbl co-elute with RTPR in SEC experiments at 2 min, a value which rises to 0.5

equiv. on long (1 h) timescales. In the absence of modification by the F2CTP, this adduct seems

a likely suspect for the cause of the remaining activation. At 2 min, not enough has formed a

covalent linkage with the protein to account for the remainder of the inactivation, but the

increase to 0.5 equiv. suggests a tightly associated precursor may be present which forms the

covalent species slowly, but leaves the RTPR unable to bind additional substrate at 2 min.

Several of the end products of the F2CTP/RTPR reaction have been characterized as well,

providing further mechanistic insight. One product of the alkylative pathway has been well

characterized through the application of the MALDI and PSD techniques described in the

previous section. The alkylation appears to result from a furanone-like precursor. The

mechanism also must account for the site of alkylation observed (the C-terminal cysteines) and

explain why multiple alkylated peptides are evident in the trypsin digests. The mechanism

described in Figure 6-3 accounts for the features observed for this system. The loss of both

fluorides occurs in a manner that also removes all abstractable protons from the active site, and

leaves the bottorn-face cysteines oxidized. Thus, the a-keto radical must be reduced by single-

electron transfer, not hydrogen atom abstraction. The generation of a negative charge at the 2'-

position would result in the rapid elimination of cytosine, explaining rapid base release and the
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lack of peptide species isolated with a cytosine attached in the alkylating fragment and the low

amount of radioactivity seen eluting with the protein in SEC experiments when 5-[ 3H]-F 2CTP

was used. The product would be a furanone precursor generated in the active site rather than

solution. The oxidized state of the bottom-face cysteines explains why these were not the site of

alkylation-instead, the inhibitor fragment reacted with the C-terminal tail when it entered the

active site to reduce the active site disulfide. It is interesting that this peptide is also observed

when RTPR is inactivated by an excess of ClUTP in the presence of NaBH 4. This strongly

suggests that a similar mechanism must account for at least a portion of the inactivation with 2'-

monohalo-2'-deoxy analogs as well. (144)

The proposed mechanism suggests the other major site of alkylation should be the top-

face cysteine, which has not been observed. It is important to note that only one region of

radioactivity from the trypsin digest, accounting for - 18% of the total RTPR labeled during the

reaction, has been well characterized, and no peptides have been identified from the remaining

regions. This could mean that the peptide masses were too large to see by this method, such as is

the case for peptides containing the top-face cysteine. The potential for the fragment to crosslink,

and the reversible nature of alkylation through conjugate addition, may also explain the broad

regions of radioactivity seen in the trypsin digests. Low abundance peptides consisting of the C-

terminal tail cross linked to other side chain nucleophiles would be difficult to detect by MALDI

methods.

However, the alkylation by F2CTP accounts for only half of the inactivation. The small

molecule products have been well characterized, but the formation of the proposed

glycoaldehyde radical (Figure 6-4) and the resultant breakdown products cannot directly account

for the inactivation of RTPR on a fast timescale. The working hypothesis is that the RTPR not
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inactivated by alkylation by F2CTP is inactivated through the covalent modification of C419 by

cobalamin. This modification appears to be -0.5 equiv., so could account for the difference

between the total amount of RTPR inactivated (>90% inactivation observed at 2 min) and that

alkylated by F2CTP. It must be considered that the formation of the Co-S bond occurs on a

slower timescale than inactivation: only -0.25 equiv. co-elute with the protein at 2 min. The

inactivation initially may result from the tight association of a precursor cob(II)alamin species, a

nucleotide radical coupled to it, and RTPR. Further, previous studies gave a different result for

this stoichiometry (1 equiv. at 20 min), and the reason for the discrepancy has not been

elucidated. The relationship between inactivation and cobalamin alkylation bears further

investigation.

A model for the overall inactivation taking into account both results could proceed from

the initially generated cob(II)alamin-nucleotide radical species observed at 140 ms in previous

studies.(69) This initial species may partition over time into the observed products. Reaction of

the nucleotide radical terminating with one electron reduction of the nucleotide by a top face

thiolate (6-6 and 6-7, Figure 6-3) would return the radical to C408 where it could exchange with

the cob(II) species. This would generate could a terminal cob(III) species and an F2CTP-derived

electrophile that could alkylate the protein. Alternatively, if the nucleotide radical formed the

proposed stable glycoaldehyde species 6-10 and was reduced by eventual hydrogen atom

abstraction, a cob(II)alamin-protein thiyl radical coupled species could result. If the abstraction

took place from the bottom face C419, this could lead to the formation of the protein S-Co bond.

Thus, the partitioning between alkylation by F2CTP and the formation of a stable protein-

cobalamin species would account for the entirety of the inactivation.
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Future Directions

Clearly, the current proposed model is open to further testing, and several specific issues

may be resolved by future experiments. In particular, a kinetic analysis of this reaction would

help elucidate many details of the mechanism. The release of cytosine is of particular interest.

The model presented predicts rapid loss of cytosine from the alkylative pathway, and slower loss

of cytosine from the non-alkylative pathway. The current model would assume a rapid loss of

cytosine equal to the amount of alkylation measured. If the remainder of the cytosine is coming

from the breakdown of the 2'-hydroxy radical, one would expect the remainder of the cytosine to

be lost more slowly. Detection of cytosine at fast time points is complicated by the fact that

chemical quenches to halt the reaction would catalyze breakdown of the nucleotide

intermediates.

Revisiting the kinetics of AdoCbl consumption and formation of the Co(II) species is also

warranted. The formation of an apparent steady-state of -0.7 equiv. of cob(II)alamin species by

200 ms was observed in previous studies in this system by stopped-flow UV-vis spectroscopy,

and 0.7 equiv. of a cob(II)alamin-nucleotide radical coupled species is observed by stopped flow

EPR.(69) If the cob(II) species seen at this time is the species which forms a covalent linkage to

C419, it should be possible to correlate the disappearance of this species on a s to min timescale

to the formation of the peptide bound species.

Further characterization of the nucleotide radical species formed over the course of this

reaction has the potential to give a great deal of information on the details of the mechanism.

High-field EPR and the use of isotopically labeled derivatives of F2CTP have to potential to give

information beyond that already observed in this system.(69) Structural characterization of the

radical formed on long time scales could confirm the presence of the proposed glycoaldehyde
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radical product (Figure 6-4), and rapid freeze quench (RFQ) methods on the ms timescale have

the further potential to identify radical intermediates generated early in the reaction pathway.

The interpretation of these EPR spectra is complicated by exchange-coupling between

cob(II)alamin and thiyl radicals and cob(II)alamin and nucleotide radicals. The distribution of

radical species present at each time point has not been established.(69) Thus the ability to

examine the radical at high field (130 GHz) on the ms and s timescales is also desired.

Collaboration with the Gerfen laboratory (Albert Einstein College of Medicine) has begun to

address these issues. His lab has developed a method for packing high-field EPR tubes from

RFQ samples on the pts to ms timescales(155) and is presently examining the radical species

generated during the inactivation of F2CTP with RTPR.(153) Preliminary results on the structure

of the 20s radical using I'-[ 2H]-F 2CTP indicates a coupling of the deuterium to the radical

detected by D-ENDOR spectroscopy (Appendix 2). No coupling is observed using 3'-[ 2H]-

F2CTP. Analysis of the 130 GHz H-ENDOR spectrum shows hyperfine interactions of 20 G and

4 G to the radical. The 20 G coupling disappears when I'-[2H]-F 2CTP is used, replaced by a 3.1

G deuterium coupling. The results are thus far consistent with the proposed glycoaldehyde-type

radical 6-10.(153) Work is underway to prepare high-field samples at different time points on

the ms scale.

Finally, studies on model systems have the potential to provide insight on this

mechanism. Rapid flow EPR studies similar to the original Gilbert and Norman

investigations(156, 157) of radical formation upon the oxidation of ethylene glycol, P-

chloroethanol, and related species by hydrogen peroxide/titanous ion could be repeated using

commercially available P-difluoroethanol. EPR spectroscopy could be employed to monitor the

formation of the glycoaldehyde radical, and GC-MS investigation of the end products could give
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insight into the formation of the cytidine species trapped in the current studies. Additionally,

generation of a semidione radical(158) and its trapping with NaBD4 can determine whether such

a radical precursor could give rise to the deuterium incorporation pattern observed in the small

molecule trapping experiments. Further information on the mechanism could be gained from

running the inactivation of RTPR with F2CTP in the presence of [170] water or oxygen gas and

trapping with NaBH4 as described above. These experiments would allow conclusive

determination of the source of the oxygen at 2' of the trapped nucleotide: water as proposed in

Figure 6-4, or oxygen as a result of the oxidation of the 2'-unsubstituted radical proposed to form

in the alkylative mechanism (Figure 6-3) or another mechanism. EPR analysis and DFT

calculations of the radical formed under these conditions would also give further evidence for the

structure of the proposed stable radical, and its connection to the nucleoside product isolated

after NaBH4 quench.

Conclusions

The use of isotopically labeled F2CTP has allowed the first quantitative analysis of the

products of the inactivation of RTPR by this inhibitor. Use of 5-[ 3H]-F 2CTP allowed

identification of cytosine release from the sugar ring on a rapid (s to min) timescale. Use of 1'-

[3H]-F 2CTP revealed that inactivation is accompanied by only partial (0.45 equiv.) alkylation of

RTPR by fragments derived from the ribose ring, supporting the proposal that multiple modes of

inactivation are present. The 1'-[ 3H]-F 2CTP was further used to identify the soluble and protein-

bound products generated during inactivation. The solution product trapped when the

inactivation was quenched with NaBH4 has provided evidence that not only are both fluorines

rapidly eliminated from F2CTP as previously observed,(69) but an oxygen, possibly from water,
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is added to the 2' position. The protein-bound product shows a different result, proposed to be

generated by alkylation with a furanone-like precursor on the C-terminal tail cysteines of RTPR.

The alkylation by F2CTP appears to account for only half the inactivation, indicating the

covalent modification of C419S accounts for the remainder. An early intermediate may partition

into two different pathways: one, the reduction of an initially formed nucleotide radical species

which can alkylate RTPR by conjugate addition, or two, the release of the nucleotide species into

the solution followed by the reaction of cob(II)alamin with a protein-based thiyl radical. The

characterization of these products has for the first time allowed the proposal of a mechanistic

model to describe this inactivation, paving the way for further studies into the details of the

reaction.
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Appendix 2: Supporting Information from Part II
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Supporting information for Chapter 5

Compound 5-27
Compound 5-14a
Compound 5-16
1 '-[2H]-F 2C
F2CMP
F2CDP
F2CTP
1'-[2H]-5-14a
Compound 5-28
Compound 5-29
Compound 5-30
1 '-[2H]-5-28
3 '-[2H]-5-14a
3'-[2H]-F 2C
3'-[2H]-F 2CMP

531

531
532
535
539
540
543
546
549
553
555
556
559
560
565
566

Supporting information for Chapter 6 567

NMR of ara-C
NMR of small molecule product of

inactivation. NaBD4 quench
NMR of small molecule product of

inactivation, NaBD 4 quench

MALDI of region II peptides
MALDI of region III peptides
MS/MS of 2005 Da peptide

H-ENDOR of RTPR/F 2CTP
D-ENDOR of RTPR/1 '- [2H]-F 2CTP
130 GHz EPR of RTPR/F 2CTP
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with 1'-[3H]-F 2CTP,
NaBH4 quench a 2 min. From rechromatographed samples, first part of the peak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1'-[ H]-F 2CTP,
the bottom (red) from an inactivation using 1'-[2H, 3H]-F 2CTP, -60% D. The first
spectrum is the full view, subsequent are zooms on the visible peaks.
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with 1 '-[3H]-F 2CTP,
NaBH 4 quench a 2 min. From rechromatographed samples, first part of the peak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1'-[3H]-F 2CTP,
the bottom (red) from an inactivation using 1 '-[2H, 3H]-F 2CTP, -60% D. Expansions on
individual peaks.
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with 1'-[ 3H]-F 2CTP,
NaBH4 quench a 2 min. From rechromatographed samples, first part of thep eak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1'-[ H]-F 2CTP,
the bottom (red) from an inactivation using 1 '-[2 H, 3H]-F 2CTP, -60% D. Expansions on
individual Deaks.
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with I'-[3H]-F 2CTP,
NaBH 4 quench a 2 min. From rechromatographed samples, second part of the peak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1'-[ 3H]-F 2CTP,
the bottom (red) from an inactivation using 1 '-[2H, 3H]-F 2CTP, -60% D. The first
spectrum is the full view, subsequent are zooms on the visible peaks.
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with I'-[3H]-F 2CTP,
NaBH4 quench a 2 min. From rechromatographed samples, second part of the peak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1 '-[3H]-F 2CTP,
the bottom (red) from an inactivation using 1 '-[2H, 3H]-F 2CTP, -60% D. Expansions on
individual peaks.
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with I'-[3H]-F 2CTP,
NaBH 4 quench a 2 min. From rechromatographed samples, second part of the peak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1 '-[3H]-F 2CTP,
the bottom (red) from an inactivation using 1 '-[2H, 3H]-F 2CTP, -60% D. Expansions on
individual peaks.
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MALDI of R II peptides from trypsin digest of inactivation of RTPR with l'-[3H]-F 2CTP,
NaBH4 quench a 2 min. From rechromatographed samples, second part of the peak of
radioactivity. In all spectra, the top (blue) is from an inactivation using 1 '-[3H]-F 2CTP,
the bottom (red) from an inactivation using 1'-[2H, 3H]-F 2CTP, -60% D. Expansions on
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MALDI of R III peptides from trypsin digest of inactivation of RTPR with 1'-[j3H]-
F2CTP, NaBH4 quench a 2 min. In all spectra, the top (blue) is from an inactivation using
1'-[3H]-F 2CTP, the bottom (red) from an inactivation using 1 '-[2H, 3H]-F 2CTP, -60% D.
This region did not appear to have any peptide running with the radioactivity in the
rechromatograph, and the MALDI do not show consistent peaks from sample to sample
as the RI and RII do. Expansions are shown for the quench with the partially deuterated
material; none of these peaks show an unusual isotopic distribution.
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MALDI of R III peptides from trypsin digest of inactivation of RTPR with 1'-[ 3H]-
F2CTP, NaBH4 quench a 2 min. From rechromatographed samples, first part of the peak
of radioactivity. All spectra are from an inactivation using 1 '-[ H, 3H]-F 2CTP, -60% D.
Expansions on individual peaks.
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MALDI of R III peptides from trypsin digest of inactivation of RTPR with 1'-[3H]-
F2CTP, NaBH 4 quench a 2 min. From rechromatographed samples, first part of the peak
of radioactivity. All spectra are from an inactivation using 1'-[ H, 3H]-F 2CTP, -60% D.
Expansions on individual peaks.
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MS/MS of peak at 2005 Da, corresponding to the C-terminal peptide of RTPR
(DLELVDQTDCEGGACPIK) containing an internal cysteine-cysteine crosslink derived from F2CTP,
from NaBD 4 quench. (A) Full PSD with y ion series marked; this series is of low intensity in this sample
compared to the yo and y*. (B) Expansion, indicating primary y ions and the peaks representing the y0 and

y* series (-18 Da and -17 Da, overlapped) and peaks -35 Da representing both the loss of a water and of an
ammonia.
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MHz
Davies H-ENDOR of RTPR/F 2CTP, 300 jtM in each, 450 gM AdoCbl, 1 mM dATP,
hand freeze-quench at 20s. Temperature: 7 K; RF pulse width: 6.8 microseconds;
Microwave pulse widths: 70 ns, 35 ns, 70 ns; time between 2nd and 3rd pulse: 200 ns;
800 averages per point; Repetition rate: 100 Hz; RF pulse toggled for baseline
subtraction; RF frequency increment: 200 KHz; RF Power: - 300 W. Top sample:
I'D; Bottom sample: wild type. Experiment performed by Gary Gerfen and Julia
Manzerova, Albert Einstein College of Medicine, Yeshiva University, New York.
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MHz

Davies D-ENDOR of RTPR/1'-[2H]-F 2CTP, 300 pM in each, 450 pLM AdoCbl, 1 mM
dATP, hand freeze-quench at 20s. Parameters were: Temperature: 7 K; RF pulse width:
20 microseconds; Microwave pulse widths: 80 ns, 40 ns, 80 ns; time between 2nd and
3 rd pulse: 200 ns; 8000 averages per point; Repetition rate: 100 Hz; RF pulse toggled for
baseline subtraction; RF frequency increment: 50 KHz; RF Power: - 300 W.
Experiment performed by Gary Gerfen and Julia Manzerova, Albert Einstein College of
Medicine, Yeshiva University, New York.
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High Field (130 GHz) RTPR/F 2CTP, 300 ptM in each, 450 pM AdoCbl, 1 mM dATP,
hand freeze-quench at 20s. (A) Unlabeled. (B) 1'-[2H]-F 2CTP. Experiment performed
by Gary Gerfen and Julia Manzerova, Albert Einstein College of Medicine, Yeshiva
University, New York.
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