
 

  
Abstract— We address the problem of integrating objects from 

a source taxonomy into a master taxonomy. This problem is not 
only pervasive on the nowadays web, but also important to the 
emerging semantic web. A straightforward approach to 
automating this process would be to train a classifier for each 
category in the master taxonomy, and then classify objects from 
the source taxonomy into these categories. In this paper we 
attempt to use a powerful classification method, Support Vector 
Machine (SVM), to attack this problem. Our key insight is that 
the availability of the source taxonomy data could be helpful to 
build better classifiers in this scenario, therefore it would be 
beneficial to do transductive learning rather than inductive 
learning, i.e., learning to optimize classification performance on a 
particular set of test examples. Noticing that the categorization of 
the master and source taxonomies often have some semantic 
overlap, we propose a new method, Cluster Shrinkage (CS), to 
further enhance the classification by exploiting such implicit 
knowledge. Our experiments with real-world web data show 
substantial improvements in the performance of taxonomy 
integration. 
 

Index Terms—Web Taxonomy Integration, Classification, 
Support Vector Machines, Transductive Learning 
 

I. INTRODUCTION 

 TAXONOMY, or directory or catalog, is a division of a set of 
objects (documents, images, products, goods, services, etc.) 

into a set of categories. There are a tremendous number of 
taxonomies on the web, and we often need to integrate objects 
from a source taxonomy into a master taxonomy. 

This problem is pervasive on the nowadays web, given that 
many websites are aggregators of information from various 
other websites [1]. A few examples will illustrate the scenario. 
A web marketplace like Amazon (http:// www. amazon. com/) 
may want to combine goods from multiple vendors’ catalogs 
into its own. A web portal like DBLP (http:// dblp. uni-trier. de/) 
may want to combine documents from multiple libraries’ 
directories into its own. A company may want to merge its 
service taxonomy with its partners’. A researcher may want to 
merge his/her bookmark taxonomy with his/her peers’. 
Singapore - MIT Alliance (http:// web. mit. edu/ sma/), an 
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innovative engineering education and research collaboration 
among MIT, NUS and NTU, has a need to integrate the 
academic resource (courses, seminars, reports, softwares, etc.) 
taxonomies of these three universities.  

This problem is also important to the emerging semantic 
web [2], where data has structure and ontologies describe the 
semantics of the data, thus better enabling computers and 
people to work in cooperation. On the semantic web, data often 
come from many different ontologies, and information 
processing across ontologies is not possible without knowing 
the semantic mappings between them. Since taxonomies are 
central components of ontologies, ontology mapping 
necessarily involves finding the correspondences between two 
taxonomies, which is often based on integrating objects from 
one taxonomy into the other and vice versa [3]. 

If all taxonomy creators and users agreed on a universal 
standard, taxonomy integration would not be so difficult. But 
the web has evolved without central editorship. Hence the 
correspondences between two taxonomies are inevitably noisy 
and fuzzy. For illustration, consider the taxonomies of Google 
(http:// www. google. com/) and Yahoo (http:// www. yahoo. 
com/): what is “Arts/ Music/ Styles/” in one may be 
“Entertainment/ Music/ Genres/” in the other, 
“Computers_and_Internet/ Software/ Freeware” and 
“Computers/ Open_Source/ Software” have similar contents 
but meanwhile show non-trivial differences, and so on. It is 
unclear if a universal standard will appear outside specific 
domains, and even for those domains, there is a need to 
integrate objects from legacy taxonomy into the standard 
taxonomy. These standards, moreover, are far from static. 

Manually taxonomy integration is tedious, error-prone, and 
clearly not possible at the web scale. A straightforward 
approach to automating this process would be to formulate it as 
a classification problem which has being well-studied in 
machine learning area [4]. In this paper, we attempt to use a 
powerful classification method, Support Vector Machine 
(SVM) [5], to attack this problem.  

Our key insight is that the availability of the source 
taxonomy data could be helpful to build better classifiers in this 
scenario, therefore it would be beneficial to do transductive 
learning rather than inductive learning, i.e., learning to 
optimize classification performance on a particular set of test 
examples. Noticing that the categorization of the master and 
source taxonomies often have some semantic overlap, we 
propose a new method, Cluster Shrinkage (CS), to further 
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enhance the classification by exploiting such implicit 
knowledge. Our experiments with real-world web data show 
substantial improvements in the performance of taxonomy 
integration. 

The rest of this paper is organized as follows. In §2, we give 
the detailed problem statement. In §3, we review Support 
Vector Machines. In §4, we describe transductive learning and 
explain why it is more suitable to our task. In §5, we present our 
proposed Cluster Shrinkage method and analyze its effect. In 
§6, we conduct empirical evaluation that show the promise of 
our approach. In §7, we discuss the related work. In §8, we 
make concluding remarks. 

 

II. PROBLEM STATEMENT 

Now we formally define the taxonomy integration problem 
we are solving. Given two taxonomies: 
•  a master taxonomy M with a set of categories 1 2, ,..., MC C C  

each containing a set of objects, and 
•  a source taxonomy N with a set of categories 1 2, ,..., NS S S  

each containing a set of objects, 
we need to find the category in M for each object in N.  

To formulate taxonomy integration as a classification 
problem, we take 1 2, ,..., MC C C  as classes, the objects in M as 

training examples, the objects in N as test examples, so that 

taxonomy integration can be automatically accomplished by 
predicting the class of each test example. 

It is possible that an object in N belongs to multiple 

categories in M. Besides, some objects in N may not fit well in 

any existing category in M, so users may want to have the 

option to form a new category for them. It is therefore 
instructive to create an ensemble of binary (yes/no) classifiers, 
one for each category C  in M. When training the classifier 

for C , an object in M is labeled as  a positive example if it is 

contained by C  or as a negative example otherwise, all objects 

in N are unlabeled and wait to be classified. This is called the 

“one-vs-rest” ensemble approach. 
Taxonomies are often organized as hierarchies. In this paper, 

we focus on flat taxonomies. Generalizing our approach to 
hierarchical taxonomies is straightforward. 

 

III. SUPPORT VECTOR MACHINES 

Support Vector Machine (SVM) [5] is a powerful 
classification method which has shown outstanding 
classification performance in practice. It has a solid theoretical 
foundation called structural risk minimization [6]. 

In its simplest linear form, an SVM is a hyperplane that 
separates the positive and negative training examples with 
maximum margin, as shown in Fig. 1. 

 
The formula for the output of a linear SVM is 

( )f x b= • +w x , where •w x   is the dot product between 

w (the normal vector to the hyperplane) and x  (the feature 
vector representing an example). The margin for an input 
vector ix  is ( )i iy f x  where { }1,1iy ∈ −  is the correct class 

label for ix . In the linear case, the margin is geometrically the 

distance from the hyperplane to the nearest positive and 
negative examples. Seeking the maximal margin can be 
expressed as an quadratic optimization problem: minimizing 

•w w  subject to ( ) 1i iy b• + ≥w x , i∀ . When positive and 

negative examples are linearly inseparable, soft-margin SVM 
tries to solve a modified optimization problem that allows but 
penalizes the examples falling on the wrong side of the 
hyperplane. Large margin between positive and negative 
examples has been proven to lead to good generalization 
capacity [6].  

 

IV. TRANSDUCTIVE LEARNING 

A regular SVM tries to induce a general classifying function 
which has high accuracy on the whole distribution of examples. 
However, this so-called inductive learning setting is often 
unnecessarily complex. For the classification problem in 
taxonomy integration situations, the set of test examples to be 
classified are already known to the learning algorithm. In fact, 
we do not care about the general classifying function, but rather 
attempt to achieve good classification performance on that 
particular set of test examples. This is exactly the goal of 
transductive learning [7].  

Transductive SVM (TSVM) introduced by Joachims [8] 
extends SVM to transductive learning setting. A TSVM is 
essentially a hyperplane that separates the positive and 
negative training examples with maximum margin on both 

Fig. 1. An SVM is a hyperplane that separates the positive and negative 
training examples with maximum margin. The examples closest to the 
hyperplane are called support vectors (marked with circles). 



 

training and test examples, as shown in Fig. 2.  

 
Why TSVM can be better than SVM? There usually exists a 

clustering structure of training and test examples: the examples 
in same class tend to be close to each other in feature space. As 
explained in [8], it is this clustering structure of examples that 
TSVM exploits as prior knowledge to boost classification 
performance. This is especially beneficial when the number of 
training examples is small. 

 

V. CLUSTER SHRINKAGE 

Applying TSVM, we can effectively use the objects in the 
source taxonomy (test examples) to boost classification 
performance. However, thus far we have completely ignored 
the categorization of the source taxonomy. 

Although the master and source taxonomies are usually not 
identical, their categorizations often have some semantic 
overlap. Therefore the categorization of the source taxonomy 
contains valuable implicit knowledge about the categorization 
of the master taxonomy. For example, if two objects belong to 
the same category S  in N, they are more likely to belong to the 

same category C  in M rather than to be assigned into 

different categories. We here propose a new method, Cluster 
Shrinkage (CS), to further enhance the classification by 
exploiting such implicit knowledge. 

A. Algorithm 

Since the success of TSVM relies on the clustering structure 
of examples, we intend to use the categorization information in 
the taxonomies to strengthen this clustering structure and thus 
help TSVM to find better classification. This can be achieved 
by treating each category as a cluster and shrinking it. 

Fig. 3. presents our proposed Cluster Shrinkage algorithm, 
and Fig. 4. depicts its process. 

 

 
The formula (1 )λ λ′ = + −x c x  is actually a linear 

interpolation of the example x  and the its category’s center c . 
When an example x  belongs to multiple categories 

(1) (2) ( ), ,..., gS S S  whose centers are (1) (2) ( ), ,..., gc c c  respectively, 

the above formula should be amended as follows: 

( )

1

1
(1 )

g
h

hg
λ λ

=

 ′ = + − 
 
∑x c x . 

Before run TSVM, we do Cluster Shrinkage on source 
categories 1 2, ,..., NS S S  as well as on master categories 

1 2, ,..., MC C C . We name this approach CS-TSVM. 

CS-TSVM not only makes effective use of the objects from 
the source taxonomy like TSVM, but also makes effective use 
of the categorization of the source taxonomy in addition. 

B. Analysis 

Denoting the distance between two examples u and v by 
function ( , )d u v , we can get the following  theorems about 

Cluster Shrinkage. 
THEOREM 1. For any example S∈x , suppose the center of 

S  is c , x  becomes ′x  after Cluster Shrinkage, then 
( , ) (1 ) ( , ) ( , )d d dλ′ = − ≤x c x c x c . 

Proof:  
Since (1 )λ λ′ = + −x c x , we get 

( )( , ) (1 )d λ λ′ ′= − = + − −x c x c c x c  

(1 )( ) (1 ) (1 ) ( , )dλ λ λ= − − = − − = −x c x c x c . 

 
Fig. 4. The Cluster Shrinkage process. 

Fig. 3. The Cluster Shrinkage algorithm. 

for each category S  { 

    compute its center: 
1

SS ∈
= ∑

x

c x ; 

    for each example S∈x  { 
        replace it with ' (1 )λ λ= + −x c x , where 0 1λ≤ ≤ ; 

    } 
} 
 

 
Fig. 2. A TSVM is essentially a hyperplane that separates the positive and 
negative training examples with maximum margin on both training and test 
examples (cf. Fig. 1). 



 

Since 0 1λ≤ ≤ , we get 

0 1 1λ≤ − ≤ , (1 ) ( , ) ( , )d dλ− ≤x c x c . 

THEOREM 2. For any pair of examples 1 S∈x  and 2 S∈x , 

suppose the center of S  is c , 1x and 2x  become 1′x  and 

2′x respectively after Cluster Shrinkage, then 

1 2 1 2 1 2( , ) (1 ) ( , ) ( , )d d dλ′ ′ = − ≤x x x x x x . 

Proof:  
Since 1 1(1 )λ λ′ = + −x c x and 2 2(1 )λ λ′ = + −x c x , we get 

( ) ( )1 2 1 2 1 2( , ) (1 ) (1 )d λ λ λ λ′ ′ ′ ′= − = + − − + −x x x x c x c x  

1 2 1 2 1 2(1 )( ) (1 ) (1 ) ( , )dλ λ λ= − − = − − = −x x x x x x  

Since 0 1λ≤ ≤ , we get 

0 1 1λ≤ − ≤ , 1 2 1 2(1 ) ( , ) ( , )d dλ− ≤x x x x . 

From the above theorems, we see that Cluster Shrinkage let 
all examples in a category move closer to the center, meanwhile 
become closer to each other. Because TSVM finds the 
maximum margin hyperplane (i.e. the thickest slab) in both 
training and test examples, making the examples in source 
category S  closer to each other directs TSVM to avoid 
splitting S .  In other words, Cluster Shrinkage guides TSVM 
to reserve the original categorization of the source taxonomy to 
some degree when do classification, as shown in Fig. 5.  

 
On the other hand, we also do Cluster Shrinkage for master 

categories, to reduce TSVM’s dependence on training 
examples and thus put more emphasis on taking advantage of 
the source taxonomy. If the number of training examples is 
small, we think this operation could help reduce the variance of 
the learned classifying functions.  

Note that in inductive learning (e.g. SVM) setting, Cluster 
Shrinkage is not likely to work well, because the test examples 
(objects in the source taxonomy) have no influence on the 
classifying hyperplane. This thought has been confirmed by our 
experiments. 

The parameter 0 1λ≤ ≤  controls the strength of the 
clustering structure of examples. Increasing λ  results in more 

influence of the categorization information on classification. 
When 1λ = , CS-TSVM classifies all examples in one source 
category as a whole into a specific master category.  When 

0λ = , CS-TSVM is just the same as TSVM. As long as the 
value of λ  is set appropriately, CS-TSVM should never be 
worse than TSVM because it includes TSVM as a special case.  
The optimal value of λ  can be found using a tune set (a set of 
objects whose categories in both taxonomies are known). The 
tune set can be made available via random sampling or active 
learning, as described in [1].  

Another way to incorporate the categorization of the source 
taxonomy into classification is to treat the source category 
labels 1 2, ,..., nS S S  as binary features, and expand each feature 

vector x  to ′′x  by appending extra columns for these label 
features. Similarly a parameter 0 1λ≤ ≤  can be used to decide 
the relative importance of category and ordinary features: 
category features are scaled by factor λ  and ordinary features 
are scaled by 1 λ− . This method looks simpler, but it does not 
leverage as much categorization information as Cluster 
Shrinkage. For illustration, consider two different categories 

1S  and 2S  whose centers are 1c  and 2c  respectively, given 

two examples 1 1S∈x  and 2 2S∈x , let parameter 1λ = , the 

above simpler method will get 1 2 0′′ ′′• =x x  , while Cluster 

Shrinkage will get a more reasonable dot product function 

1 2 1 2
′ ′ ′ ′• = •x x c c .  

 

VI. EXPERIMENTS 

We conduct experiments with real-world web data, to 
demonstrate the advantage of TSVM over SVM as well as the 
advantage of CS-TSVM over TSVM, for taxonomy 
integration.  

A. Datasets 

We have collected 5 datasets from Google (http:// www. 
google. com/) and Yahoo (http:// www. yahoo. com/). One 
dataset includes the slice of Google’s taxonomy and the slice of 
Yahoo’s taxonomy about websites on one specific topic, as 
shown in Table 1. 

 

TABLE I 
THE DATASETS 

 Google Yahoo 
Book / Top/ Shopping/ Publications/ 

Books/ 
/ Business_and_Economy/ 
Shopping_and_Services/ 
Books/ Bookstores/ 

Disease / Top/ Health/ 
Conditions_and_Diseases/ 

/ Health/ 
Diseases_and_Conditions/ 

Movie / Top/ Arts/ Movies/ Genres/ / Entertainment/ 
Movies_and_Film/ Genres/ 

Music / Top/ Arts/ Music/ Styles/ / Entertainment/ Music/ 
Genres/ 

News / Top/ News/ By_Subject/ / News_and_Media/ 

 

 
Fig. 5. Cluster Shrinkage guides TSVM to reserve the original categorization 
of the source taxonomy in some degree when do classification (cf. Fig. 2.). 



 

In each slice of taxonomy, we take only the top level 
directories as categories, e.g., the “Movie” slice of Google’s 
taxonomy has categories like “Action”, “Comedy”, “Horror”, 
etc. 

 For each dataset, we show in Table 2 the number of 
categories occurred in Google and Yahoo respectively. 

 
 In each category, we take all items listed on the 

corresponding directory page and its sub-directory pages as its 
objects. An object (listed item) corresponds to a website on the 
world wide web, which is usually described by its URL, its title, 
and optionally a short annotation about its content, as 
illustrated in Fig. 6.  

 
For each dataset, we show in Table 3 the number of objects 

occurred in Google, Yahoo, either of them (G∪Y), and both of 
them (G∩Y) respectively. The set of objects in G∩Y covers 
only a small portion (usually less than 10%) of the set of objects 
in Google or Yahoo alone, which suggests the great benefit of 
automatically integrating them. This observation is consistent 
with [1]. 

 

B. Tasks 

For each dataset, we pose 2 symmetric taxonomy integration 
tasks: G←Y (taking Google as the master taxonomy and 
Yahoo as the source taxonomy) and Y←G (taking Yahoo as the 
master taxonomy and Google as the source taxonomy). 

For each task, we use the objects in G∩Y for experiments, 
because we know their categorization in both taxonomies [1]. 
We randomly split this set of objects into a training set and a 
test set. For all objects in the training set, we discard their 
source categories. For all objects in the test set, we hide their 

master categories from the learning algorithm during the 
training phase, and then compare their hidden master 
categories with the predictions of the learning algorithm 
during the test phase. For each task, we do such random split 5 
times, each time allocating 20% objects to the training set and 
the rest 80% objects to the test set. It is common in practice that 
the training set is much smaller than the test set. Then we 
formulate each task as a classification problem, as described in 
§2.  

C. Features 

For each object, we assume that the title and annotation of its 
corresponding website summarizes its content. So each object 
can be considered as a text document composed of its title and 
annotation. 

The most commonly used feature extraction technique for 
text data is to treat a document as a bag-of-words [8, 9]. For 
each document d  in a collection of documents D , its 
bag-of-words is first pre-processed by removal of stop-words 
and stemming. Then it is represented as a feature vector 

1 2( , ,..., )mx x x=x , where ix  indicates the importance weight 

of term iw  (the i-th distinct word occurred in D ). Following 

the TF×IDF weighting scheme, we set the  value of ix  to the 

product of the term frequency ( , )iTF w d  and the inverse 

document frequency ( )iIDF w , i.e., ( , ) ( )i iTF w d IDF w× . The 

term frequency ( , )iTF w d  means the number of occurrences of 

iw  in d . The inverse document frequency is defined as 

( ) log
( )i

i

D
IDF w

DF w

 
=  

 
, where D  is the total number of 

documents in D , and ( )iDF w is the number of documents in 

which iw  occur. Finally all feature vectors are normalized to 

have unit length.  

D. Measures 

As stated in §2, each task is formulated as a classification 
problem. To measure classification performance, we use the 
standard F-score (F1 measure) [10]. The F-score is defined as 
the harmonic average of precision (p) and recall (r), 

2 ( )F pr p r= + , where precision is the proportion of correctly 

predicted positive examples among all predicted positive 
examples, and recall is the proportion of correctly predicted 
positive examples among all true positive examples. For each 
task, the F-scores are first computed on each individual class 
(master category), then averaged over all classes, finally 
averaged over all random train-test splits. In order to ensure the 
meaningfulness of evaluation, we do not take into account the 
F-scores on the classes with inadequate (less than 10) training 
or test examples. 

E. Settings 

We use SVMlight (available at http:// svmlight. joachims. 
org/) for the implementation of SVM / TSVM. We take linear 

TABLE II 
THE NUMBER OF CATEGORIES 

 Google Yahoo 
Book 49 41 
Disease 30 51 
Movie 34 25 
Music 47 24 
News 27 34 

 

 
Fig. 6. An object (listed item) corresponds a website on the world wide web, 
which is usually described by its URL, its title, and optionally a short 
annotation about its content. 

TABLE III 
THE NUMBER OF OBJECTS 

 Google Yahoo G∪Y G∩Y 
Book 10,842 11,268 21,111 999 
Disease 34,047 9,785 41,439 2,393 
Movie 36,787 14,366 49,744 1,409 
Music 76,420 24,518 95,971 4,967 
News 31,504 19,419 49,303 1,620 
 



 

kernel, and accept all default values of parameters except “-j”. 
We set the parameter “-j” to balance the cost of training errors 
on positive and negative examples.  

The Cluster Shrinkage algorithm is very simple and very fast. 
It only requires one sequential scan to compute the cluster 
centers and another sequential scan to reposition the examples.  

In all our CS-TSVM experiments, the CS parameter λ  was 
fixed at 0.6. Fine-tuning λ  using tune sets would decisively 
generate better results than sticking with a pre-fixed value. In 
other words, the performance superiority of CS-TSVM would 
be under-estimated. 

F. Results 

For each taxonomy integration task on each dataset, we try 
three approaches (SVM, TSVM, and CS-TSVM) and compare 
their performances measured by average F-scores.  

The experimental results for G←Y tasks (integrating objects 
from Yahoo taxonomy into Google taxonomy) are shown in 
Table 4 and Fig. 7. 

 

 
The experimental results for Y←G tasks (integrating objects 

from Google taxonomy into Yahoo taxonomy) are shown in 
Table 5 and Fig. 8. 

 

 
These experimental results show TSVM outperforms SVM 

consistently and significantly, which implies that making 
effective use of objects from the source taxonomy is helpful. 
Moreover, these experimental results also show CS-TSVM 
outperforms TSVM consistently and significantly, which 
implies that exploiting categorization of the source taxonomy is 
a plus.  

 

VII. RELATED WORK 

Our work is inspired by the exploration of Agrawal and 
Srikant. They have proposed an enhanced Naïve Bayes 
algorithm for taxonomy integration in [1].  

The Naïve Bayes (NB) algorithm is a well-known text 
classification technique [4]. NB tries to fit a generative model 
for documents using training examples and apply this model to 
classify test examples.  

Although the enhanced NB algorithm has been shown to 
work well for taxonomy integration, we think an approach 
based on SVM but not NB is still interesting and attractive. In 
contrast to NB, SVM is a discriminative classification method, 
i.e., SVM does not posit a generative model but seek to find the 
best classifying function directly. It is generally believed that 
SVM is more promising than NB for text classification [11, 12], 
and SVM has been successfully applied to many other kinds of 
data such as images [5]. Moreover, our proposed CS-TSVM 

TABLE V 
EXPERIMENTAL RESULTS FOR Y←G TASKS 

 SVM TSVM CS-TSVM 
Book 0.4022 0.5777 0.7630 
Disease 0.6044 0.7361 0.7725 
Movie 0.3658 0.4883 0.5857 
Music 0.5391 0.6077 0.7526 
News 0.4863 0.6338 0.7158 

 

TABLE IV 
EXPERIMENTAL RESULTS FOR G←Y TASKS 

 SVM TSVM CS-TSVM 
Book 0.4152 0.6026 0.7793 
Disease 0.6065 0.7175 0.7576 
Movie 0.3615 0.4664 0.5513 
Music 0.4637 0.5482 0.6079 
News 0.4844 0.6260 0.7345 
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Fig. 8. Experimental results for Y←G tasks. 
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Fig. 7. Experimental results for G←Y tasks. 



 

approach has the potential to be extended to achieve non-linear 
and hierarchical  classifications. 

The empirical comparison between the enhanced NB 
algorithm and CS-TSVM is left for future work.  

 

VIII. CONCLUSION 

We have presented a new technique, CS-TSVM, for 
integrating objects from a source taxonomy into a master 
taxonomy. Our technique based on transductive learning 
enhances the standard SVM classifiers by exploiting the 
implicit knowledge in the source taxonomy. Our experiments 
using real-world web data indicate that the proposed approach 
can result in large improvements in taxonomy integration 
performance. 

Our work suggests several natural research directions. What 
is the best way to find the optimal value of parameter λ  for 
Cluster Shrinkage? How can other transductive learning 
algorithms exploit the implicit knowledge in the source 
taxonomy? And which transductive learning algorithm is most 
suitable for this task?  
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