

Abstract— We address the problem of integrating objects from

a source taxonomy into a master taxonomy. This problem is not
only pervasive on the nowadays web, but also important to the
emerging semantic web. A straightforward approach to
automating this process would be to train a classifier for each
category in the master taxonomy, and then classify objects from
the source taxonomy into these categories. In this paper we
attempt to use a powerful classification method, Support Vector
Machine (SVM), to attack this problem. Our key insight is that
the availability of the source taxonomy data could be helpful to
build better classifiers in this scenario, therefore it would be
beneficial to do transductive learning rather than inductive
learning, i.e., learning to optimize classification performance on a
particular set of test examples. Noticing that the categorization of
the master and source taxonomies often have some semantic
overlap, we propose a new method, Cluster Shrinkage (CS), to
further enhance the classification by exploiting such implicit
knowledge. Our experiments with real-world web data show
substantial improvements in the performance of taxonomy
integration.

Index Terms—Web Taxonomy Integration, Classification,
Support Vector Machines, Transductive Learning

I. INTRODUCTION

 TAXONOMY, or directory or catalog, is a division of a set of
objects (documents, images, products, goods, services, etc.)

into a set of categories. There are a tremendous number of
taxonomies on the web, and we often need to integrate objects
from a source taxonomy into a master taxonomy.

This problem is pervasive on the nowadays web, given that
many websites are aggregators of information from various
other websites [1]. A few examples will illustrate the scenario.
A web marketplace like Amazon (http:// www. amazon. com/)
may want to combine goods from multiple vendors’ catalogs
into its own. A web portal like DBLP (http:// dblp. uni-trier. de/)
may want to combine documents from multiple libraries’
directories into its own. A company may want to merge its
service taxonomy with its partners’. A researcher may want to
merge his/her bookmark taxonomy with his/her peers’.
Singapore - MIT Alliance (http:// web. mit. edu/ sma/), an

Dell Zhang is with the Computer Science Program in Singapore-MIT Alliance,

National University of Singapore, Singapore 117543 (phone: 65-6874-4251; fax:
65-6779-4580; e-mail: dell.z@ieee.org).

Wee Sun Lee is with the Computer Science Program in Singapore-MIT
Alliance, and Department of Computer Science in National University of
Singapore, Singapore 117543 (e-mail: leews@comp.nus.edu.sg).

innovative engineering education and research collaboration
among MIT, NUS and NTU, has a need to integrate the
academic resource (courses, seminars, reports, softwares, etc.)
taxonomies of these three universities.

This problem is also important to the emerging semantic
web [2], where data has structure and ontologies describe the
semantics of the data, thus better enabling computers and
people to work in cooperation. On the semantic web, data often
come from many different ontologies, and information
processing across ontologies is not possible without knowing
the semantic mappings between them. Since taxonomies are
central components of ontologies, ontology mapping
necessarily involves finding the correspondences between two
taxonomies, which is often based on integrating objects from
one taxonomy into the other and vice versa [3].

If all taxonomy creators and users agreed on a universal
standard, taxonomy integration would not be so difficult. But
the web has evolved without central editorship. Hence the
correspondences between two taxonomies are inevitably noisy
and fuzzy. For illustration, consider the taxonomies of Google
(http:// www. google. com/) and Yahoo (http:// www. yahoo.
com/): what is “Arts/ Music/ Styles/” in one may be
“Entertainment/ Music/ Genres/” in the other,
“Computers_and_Internet/ Software/ Freeware” and
“Computers/ Open_Source/ Software” have similar contents
but meanwhile show non-trivial differences, and so on. It is
unclear if a universal standard will appear outside specific
domains, and even for those domains, there is a need to
integrate objects from legacy taxonomy into the standard
taxonomy. These standards, moreover, are far from static.

Manually taxonomy integration is tedious, error-prone, and
clearly not possible at the web scale. A straightforward
approach to automating this process would be to formulate it as
a classification problem which has being well-studied in
machine learning area [4]. In this paper, we attempt to use a
powerful classification method, Support Vector Machine
(SVM) [5], to attack this problem.

Our key insight is that the availability of the source
taxonomy data could be helpful to build better classifiers in this
scenario, therefore it would be beneficial to do transductive
learning rather than inductive learning, i.e., learning to
optimize classification performance on a particular set of test
examples. Noticing that the categorization of the master and
source taxonomies often have some semantic overlap, we
propose a new method, Cluster Shrinkage (CS), to further

On Web Taxonomy Integration

Dell Zhang and Wee Sun Lee
Singapore-MIT Alliance, 4 Engineering Drive 3, National University of Singapore, Singapore-117576

A

enhance the classification by exploiting such implicit
knowledge. Our experiments with real-world web data show
substantial improvements in the performance of taxonomy
integration.

The rest of this paper is organized as follows. In §2, we give
the detailed problem statement. In §3, we review Support
Vector Machines. In §4, we describe transductive learning and
explain why it is more suitable to our task. In §5, we present our
proposed Cluster Shrinkage method and analyze its effect. In
§6, we conduct empirical evaluation that show the promise of
our approach. In §7, we discuss the related work. In §8, we
make concluding remarks.

II. PROBLEM STATEMENT

Now we formally define the taxonomy integration problem
we are solving. Given two taxonomies:
• a master taxonomy M with a set of categories 1 2, ,..., MC C C

each containing a set of objects, and
• a source taxonomy N with a set of categories 1 2, ,..., NS S S

each containing a set of objects,
we need to find the category in M for each object in N.

To formulate taxonomy integration as a classification
problem, we take 1 2, ,..., MC C C as classes, the objects in M as

training examples, the objects in N as test examples, so that

taxonomy integration can be automatically accomplished by
predicting the class of each test example.

It is possible that an object in N belongs to multiple

categories in M. Besides, some objects in N may not fit well in

any existing category in M, so users may want to have the

option to form a new category for them. It is therefore
instructive to create an ensemble of binary (yes/no) classifiers,
one for each category C in M. When training the classifier

for C , an object in M is labeled as a positive example if it is

contained by C or as a negative example otherwise, all objects

in N are unlabeled and wait to be classified. This is called the

“one-vs-rest” ensemble approach.
Taxonomies are often organized as hierarchies. In this paper,

we focus on flat taxonomies. Generalizing our approach to
hierarchical taxonomies is straightforward.

III. SUPPORT VECTOR MACHINES

Support Vector Machine (SVM) [5] is a powerful
classification method which has shown outstanding
classification performance in practice. It has a solid theoretical
foundation called structural risk minimization [6].

In its simplest linear form, an SVM is a hyperplane that
separates the positive and negative training examples with
maximum margin, as shown in Fig. 1.

The formula for the output of a linear SVM is

()f x b= • +w x , where •w x is the dot product between

w (the normal vector to the hyperplane) and x (the feature
vector representing an example). The margin for an input
vector ix is ()i iy f x where { }1,1iy ∈ − is the correct class

label for ix . In the linear case, the margin is geometrically the

distance from the hyperplane to the nearest positive and
negative examples. Seeking the maximal margin can be
expressed as an quadratic optimization problem: minimizing

•w w subject to () 1i iy b• + ≥w x , i∀ . When positive and

negative examples are linearly inseparable, soft-margin SVM
tries to solve a modified optimization problem that allows but
penalizes the examples falling on the wrong side of the
hyperplane. Large margin between positive and negative
examples has been proven to lead to good generalization
capacity [6].

IV. TRANSDUCTIVE LEARNING

A regular SVM tries to induce a general classifying function
which has high accuracy on the whole distribution of examples.
However, this so-called inductive learning setting is often
unnecessarily complex. For the classification problem in
taxonomy integration situations, the set of test examples to be
classified are already known to the learning algorithm. In fact,
we do not care about the general classifying function, but rather
attempt to achieve good classification performance on that
particular set of test examples. This is exactly the goal of
transductive learning [7].

Transductive SVM (TSVM) introduced by Joachims [8]
extends SVM to transductive learning setting. A TSVM is
essentially a hyperplane that separates the positive and
negative training examples with maximum margin on both

Fig. 1. An SVM is a hyperplane that separates the positive and negative
training examples with maximum margin. The examples closest to the
hyperplane are called support vectors (marked with circles).

training and test examples, as shown in Fig. 2.

Why TSVM can be better than SVM? There usually exists a

clustering structure of training and test examples: the examples
in same class tend to be close to each other in feature space. As
explained in [8], it is this clustering structure of examples that
TSVM exploits as prior knowledge to boost classification
performance. This is especially beneficial when the number of
training examples is small.

V. CLUSTER SHRINKAGE

Applying TSVM, we can effectively use the objects in the
source taxonomy (test examples) to boost classification
performance. However, thus far we have completely ignored
the categorization of the source taxonomy.

Although the master and source taxonomies are usually not
identical, their categorizations often have some semantic
overlap. Therefore the categorization of the source taxonomy
contains valuable implicit knowledge about the categorization
of the master taxonomy. For example, if two objects belong to
the same category S in N, they are more likely to belong to the

same category C in M rather than to be assigned into

different categories. We here propose a new method, Cluster
Shrinkage (CS), to further enhance the classification by
exploiting such implicit knowledge.

A. Algorithm

Since the success of TSVM relies on the clustering structure
of examples, we intend to use the categorization information in
the taxonomies to strengthen this clustering structure and thus
help TSVM to find better classification. This can be achieved
by treating each category as a cluster and shrinking it.

Fig. 3. presents our proposed Cluster Shrinkage algorithm,
and Fig. 4. depicts its process.

The formula (1)λ λ′ = + −x c x is actually a linear

interpolation of the example x and the its category’s center c .
When an example x belongs to multiple categories

(1) (2) (), ,..., gS S S whose centers are (1) (2) (), ,..., gc c c respectively,

the above formula should be amended as follows:

()

1

1
(1)

g
h

hg
λ λ

=

 ′ = + − 
 
∑x c x .

Before run TSVM, we do Cluster Shrinkage on source
categories 1 2, ,..., NS S S as well as on master categories

1 2, ,..., MC C C . We name this approach CS-TSVM.

CS-TSVM not only makes effective use of the objects from
the source taxonomy like TSVM, but also makes effective use
of the categorization of the source taxonomy in addition.

B. Analysis

Denoting the distance between two examples u and v by
function (,)d u v , we can get the following theorems about

Cluster Shrinkage.
THEOREM 1. For any example S∈x , suppose the center of

S is c , x becomes ′x after Cluster Shrinkage, then
(,) (1) (,) (,)d d dλ′ = − ≤x c x c x c .

Proof:
Since (1)λ λ′ = + −x c x , we get

()(,) (1)d λ λ′ ′= − = + − −x c x c c x c

(1)() (1) (1) (,)dλ λ λ= − − = − − = −x c x c x c .

Fig. 4. The Cluster Shrinkage process.

Fig. 3. The Cluster Shrinkage algorithm.

for each category S {

 compute its center:
1

SS ∈
= ∑

x

c x ;

 for each example S∈x {
 replace it with ' (1)λ λ= + −x c x , where 0 1λ≤ ≤ ;

 }
}

Fig. 2. A TSVM is essentially a hyperplane that separates the positive and
negative training examples with maximum margin on both training and test
examples (cf. Fig. 1).

Since 0 1λ≤ ≤ , we get

0 1 1λ≤ − ≤ , (1) (,) (,)d dλ− ≤x c x c .

THEOREM 2. For any pair of examples 1 S∈x and 2 S∈x ,

suppose the center of S is c , 1x and 2x become 1′x and

2′x respectively after Cluster Shrinkage, then

1 2 1 2 1 2(,) (1) (,) (,)d d dλ′ ′ = − ≤x x x x x x .

Proof:
Since 1 1(1)λ λ′ = + −x c x and 2 2(1)λ λ′ = + −x c x , we get

() ()1 2 1 2 1 2(,) (1) (1)d λ λ λ λ′ ′ ′ ′= − = + − − + −x x x x c x c x

1 2 1 2 1 2(1)() (1) (1) (,)dλ λ λ= − − = − − = −x x x x x x

Since 0 1λ≤ ≤ , we get

0 1 1λ≤ − ≤ , 1 2 1 2(1) (,) (,)d dλ− ≤x x x x .

From the above theorems, we see that Cluster Shrinkage let
all examples in a category move closer to the center, meanwhile
become closer to each other. Because TSVM finds the
maximum margin hyperplane (i.e. the thickest slab) in both
training and test examples, making the examples in source
category S closer to each other directs TSVM to avoid
splitting S . In other words, Cluster Shrinkage guides TSVM
to reserve the original categorization of the source taxonomy to
some degree when do classification, as shown in Fig. 5.

On the other hand, we also do Cluster Shrinkage for master

categories, to reduce TSVM’s dependence on training
examples and thus put more emphasis on taking advantage of
the source taxonomy. If the number of training examples is
small, we think this operation could help reduce the variance of
the learned classifying functions.

Note that in inductive learning (e.g. SVM) setting, Cluster
Shrinkage is not likely to work well, because the test examples
(objects in the source taxonomy) have no influence on the
classifying hyperplane. This thought has been confirmed by our
experiments.

The parameter 0 1λ≤ ≤ controls the strength of the
clustering structure of examples. Increasing λ results in more

influence of the categorization information on classification.
When 1λ = , CS-TSVM classifies all examples in one source
category as a whole into a specific master category. When

0λ = , CS-TSVM is just the same as TSVM. As long as the
value of λ is set appropriately, CS-TSVM should never be
worse than TSVM because it includes TSVM as a special case.
The optimal value of λ can be found using a tune set (a set of
objects whose categories in both taxonomies are known). The
tune set can be made available via random sampling or active
learning, as described in [1].

Another way to incorporate the categorization of the source
taxonomy into classification is to treat the source category
labels 1 2, ,..., nS S S as binary features, and expand each feature

vector x to ′′x by appending extra columns for these label
features. Similarly a parameter 0 1λ≤ ≤ can be used to decide
the relative importance of category and ordinary features:
category features are scaled by factor λ and ordinary features
are scaled by 1 λ− . This method looks simpler, but it does not
leverage as much categorization information as Cluster
Shrinkage. For illustration, consider two different categories

1S and 2S whose centers are 1c and 2c respectively, given

two examples 1 1S∈x and 2 2S∈x , let parameter 1λ = , the

above simpler method will get 1 2 0′′ ′′• =x x , while Cluster

Shrinkage will get a more reasonable dot product function

1 2 1 2
′ ′ ′ ′• = •x x c c .

VI. EXPERIMENTS

We conduct experiments with real-world web data, to
demonstrate the advantage of TSVM over SVM as well as the
advantage of CS-TSVM over TSVM, for taxonomy
integration.

A. Datasets

We have collected 5 datasets from Google (http:// www.
google. com/) and Yahoo (http:// www. yahoo. com/). One
dataset includes the slice of Google’s taxonomy and the slice of
Yahoo’s taxonomy about websites on one specific topic, as
shown in Table 1.

TABLE I
THE DATASETS

 Google Yahoo
Book / Top/ Shopping/ Publications/

Books/
/ Business_and_Economy/
Shopping_and_Services/
Books/ Bookstores/

Disease / Top/ Health/
Conditions_and_Diseases/

/ Health/
Diseases_and_Conditions/

Movie / Top/ Arts/ Movies/ Genres/ / Entertainment/
Movies_and_Film/ Genres/

Music / Top/ Arts/ Music/ Styles/ / Entertainment/ Music/
Genres/

News / Top/ News/ By_Subject/ / News_and_Media/

Fig. 5. Cluster Shrinkage guides TSVM to reserve the original categorization
of the source taxonomy in some degree when do classification (cf. Fig. 2.).

In each slice of taxonomy, we take only the top level
directories as categories, e.g., the “Movie” slice of Google’s
taxonomy has categories like “Action”, “Comedy”, “Horror”,
etc.

 For each dataset, we show in Table 2 the number of
categories occurred in Google and Yahoo respectively.

 In each category, we take all items listed on the

corresponding directory page and its sub-directory pages as its
objects. An object (listed item) corresponds to a website on the
world wide web, which is usually described by its URL, its title,
and optionally a short annotation about its content, as
illustrated in Fig. 6.

For each dataset, we show in Table 3 the number of objects

occurred in Google, Yahoo, either of them (G∪Y), and both of
them (G∩Y) respectively. The set of objects in G∩Y covers
only a small portion (usually less than 10%) of the set of objects
in Google or Yahoo alone, which suggests the great benefit of
automatically integrating them. This observation is consistent
with [1].

B. Tasks

For each dataset, we pose 2 symmetric taxonomy integration
tasks: G←Y (taking Google as the master taxonomy and
Yahoo as the source taxonomy) and Y←G (taking Yahoo as the
master taxonomy and Google as the source taxonomy).

For each task, we use the objects in G∩Y for experiments,
because we know their categorization in both taxonomies [1].
We randomly split this set of objects into a training set and a
test set. For all objects in the training set, we discard their
source categories. For all objects in the test set, we hide their

master categories from the learning algorithm during the
training phase, and then compare their hidden master
categories with the predictions of the learning algorithm
during the test phase. For each task, we do such random split 5
times, each time allocating 20% objects to the training set and
the rest 80% objects to the test set. It is common in practice that
the training set is much smaller than the test set. Then we
formulate each task as a classification problem, as described in
§2.

C. Features

For each object, we assume that the title and annotation of its
corresponding website summarizes its content. So each object
can be considered as a text document composed of its title and
annotation.

The most commonly used feature extraction technique for
text data is to treat a document as a bag-of-words [8, 9]. For
each document d in a collection of documents D , its
bag-of-words is first pre-processed by removal of stop-words
and stemming. Then it is represented as a feature vector

1 2(, ,...,)mx x x=x , where ix indicates the importance weight

of term iw (the i-th distinct word occurred in D). Following

the TF×IDF weighting scheme, we set the value of ix to the

product of the term frequency (,)iTF w d and the inverse

document frequency ()iIDF w , i.e., (,) ()i iTF w d IDF w× . The

term frequency (,)iTF w d means the number of occurrences of

iw in d . The inverse document frequency is defined as

() log
()i

i

D
IDF w

DF w

 
=  

 
, where D is the total number of

documents in D , and ()iDF w is the number of documents in

which iw occur. Finally all feature vectors are normalized to

have unit length.

D. Measures

As stated in §2, each task is formulated as a classification
problem. To measure classification performance, we use the
standard F-score (F1 measure) [10]. The F-score is defined as
the harmonic average of precision (p) and recall (r),

2 ()F pr p r= + , where precision is the proportion of correctly

predicted positive examples among all predicted positive
examples, and recall is the proportion of correctly predicted
positive examples among all true positive examples. For each
task, the F-scores are first computed on each individual class
(master category), then averaged over all classes, finally
averaged over all random train-test splits. In order to ensure the
meaningfulness of evaluation, we do not take into account the
F-scores on the classes with inadequate (less than 10) training
or test examples.

E. Settings

We use SVMlight (available at http:// svmlight. joachims.
org/) for the implementation of SVM / TSVM. We take linear

TABLE II
THE NUMBER OF CATEGORIES

 Google Yahoo
Book 49 41
Disease 30 51
Movie 34 25
Music 47 24
News 27 34

Fig. 6. An object (listed item) corresponds a website on the world wide web,
which is usually described by its URL, its title, and optionally a short
annotation about its content.

TABLE III
THE NUMBER OF OBJECTS

 Google Yahoo G∪Y G∩Y
Book 10,842 11,268 21,111 999
Disease 34,047 9,785 41,439 2,393
Movie 36,787 14,366 49,744 1,409
Music 76,420 24,518 95,971 4,967
News 31,504 19,419 49,303 1,620

kernel, and accept all default values of parameters except “-j”.
We set the parameter “-j” to balance the cost of training errors
on positive and negative examples.

The Cluster Shrinkage algorithm is very simple and very fast.
It only requires one sequential scan to compute the cluster
centers and another sequential scan to reposition the examples.

In all our CS-TSVM experiments, the CS parameter λ was
fixed at 0.6. Fine-tuning λ using tune sets would decisively
generate better results than sticking with a pre-fixed value. In
other words, the performance superiority of CS-TSVM would
be under-estimated.

F. Results

For each taxonomy integration task on each dataset, we try
three approaches (SVM, TSVM, and CS-TSVM) and compare
their performances measured by average F-scores.

The experimental results for G←Y tasks (integrating objects
from Yahoo taxonomy into Google taxonomy) are shown in
Table 4 and Fig. 7.

The experimental results for Y←G tasks (integrating objects

from Google taxonomy into Yahoo taxonomy) are shown in
Table 5 and Fig. 8.

These experimental results show TSVM outperforms SVM

consistently and significantly, which implies that making
effective use of objects from the source taxonomy is helpful.
Moreover, these experimental results also show CS-TSVM
outperforms TSVM consistently and significantly, which
implies that exploiting categorization of the source taxonomy is
a plus.

VII. RELATED WORK

Our work is inspired by the exploration of Agrawal and
Srikant. They have proposed an enhanced Naïve Bayes
algorithm for taxonomy integration in [1].

The Naïve Bayes (NB) algorithm is a well-known text
classification technique [4]. NB tries to fit a generative model
for documents using training examples and apply this model to
classify test examples.

Although the enhanced NB algorithm has been shown to
work well for taxonomy integration, we think an approach
based on SVM but not NB is still interesting and attractive. In
contrast to NB, SVM is a discriminative classification method,
i.e., SVM does not posit a generative model but seek to find the
best classifying function directly. It is generally believed that
SVM is more promising than NB for text classification [11, 12],
and SVM has been successfully applied to many other kinds of
data such as images [5]. Moreover, our proposed CS-TSVM

TABLE V
EXPERIMENTAL RESULTS FOR Y←G TASKS

 SVM TSVM CS-TSVM
Book 0.4022 0.5777 0.7630
Disease 0.6044 0.7361 0.7725
Movie 0.3658 0.4883 0.5857
Music 0.5391 0.6077 0.7526
News 0.4863 0.6338 0.7158

TABLE IV
EXPERIMENTAL RESULTS FOR G←Y TASKS

 SVM TSVM CS-TSVM
Book 0.4152 0.6026 0.7793
Disease 0.6065 0.7175 0.7576
Movie 0.3615 0.4664 0.5513
Music 0.4637 0.5482 0.6079
News 0.4844 0.6260 0.7345

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Book Disease Movie Music New s

SVM TSVM CS-TSVM

Fig. 8. Experimental results for Y←G tasks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Book Disease Movie Music New s

SVM TSVM CS-TSVM

Fig. 7. Experimental results for G←Y tasks.

approach has the potential to be extended to achieve non-linear
and hierarchical classifications.

The empirical comparison between the enhanced NB
algorithm and CS-TSVM is left for future work.

VIII. CONCLUSION

We have presented a new technique, CS-TSVM, for
integrating objects from a source taxonomy into a master
taxonomy. Our technique based on transductive learning
enhances the standard SVM classifiers by exploiting the
implicit knowledge in the source taxonomy. Our experiments
using real-world web data indicate that the proposed approach
can result in large improvements in taxonomy integration
performance.

Our work suggests several natural research directions. What
is the best way to find the optimal value of parameter λ for
Cluster Shrinkage? How can other transductive learning
algorithms exploit the implicit knowledge in the source
taxonomy? And which transductive learning algorithm is most
suitable for this task?

REFERENCES
[1] R. Agrawal and R. Srikant, "On Integrating Catalogs," in Proceedings of

the 10th International World Wide Web Conference (WWW). Hong Kong,
2001, pp. 603-612.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web," in
Scientific American, 2001.

[3] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, "Learning to Map
between Ontologies on the Semantic Web," in Proceedings of the 11th
International World Wide Web Conference (WWW). Hawaii, USA, 2002.

[4] T. Mitchell, Machine Learning, international ed. Singapore: McGraw Hill,
1997.

[5] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, UK: Cambridge University Press, 2000.

[6] V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New
York, NY: Springer-Verlag, 2000.

[7] V. N. Vapnik, Statistical Learning Theory. New York, NY: Wiley, 1998.
[8] T. Joachims, "Transductive Inference for Text Classification using Support

Vector Machines," in Proceedings of the 16th International Conference on
Machine Learning (ICML). Bled, Slovenia, 1999, pp. 200-209.

[9] T. Joachims, "Text Categorization with Support Vector Machines: Learning
with Many Relevant Features," in Proceedings of the 10th European
Conference on Machine Learning (ECML). Chemnitz, Germany, 1998, pp.
137-142.

[10] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. New
York, NY: Addison-Wesley, 1999.

[11] S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive Learning
Algorithms and Representations for Text Categorization," in Proceedings of
the 7th ACM International Conference on Information and Knowledge
Management (CIKM). Bethesda, MD, 1998, pp. 148-155.

[12] Y. Yang and X. Liu, "A Re-examination of Text Categorization Methods,"
in Proceedings of the 22nd ACM International Conference on Research
and Development in Information Retrieval (SIGIR). Berkeley, CA, 1999,
pp. 42-49.

Dell Zhang is a research fellow in the National University of Singapore under the
Singapore-MIT Alliance (SMA). He has received his BEng and PhD in Computer
Science from the Southeast University, Nanjing, China. His primary research
interests include machine learning, data mining, and information retrieval.
Wee Sun Lee is an Assistant Professor at the Department of Computer Science,
National University of Singapore, and a Fellow of the Singapore-MIT Alliance
(SMA). He obtained his Bachelor of Engineering degree in Computer Systems
Engineering from the University of Queensland in 1992, and his PhD from the
Department of Systems Engineering at the Australian National University in 1996.
He is interested in computational learning theory, machine learning and
information retrieval.

