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Abstract

To provide end users with economic access to high bandwidth, the architecture of the
next generation metropolitan area networks (MANs) needs to be judiciously designed
from the cost perspective. In addition to a low initial capital investment, the ultimate
goal is to design networks that exhibit excellent scalability - a decreasing cost-per-
node-per-unit-traffic as user number and transaction size increase.

As an effort to achieve this goal, in this thesis we search for the scalable net-
work architectures over the solution space that embodies the key aspects of optical
networks: fiber connection topology, switching architecture selection and resource
dimensioning, routing and wavelength assignment (RWA). Due to the inter-related
nature of these design elements, we intended to solve the design problem jointly in the
optimization process in order to achieve over-all good performance. To evaluate how
the cost drives architectural tradeoffs, an analytical approach is taken in most parts
of the thesis by first focusing on networks with symmetric and well defined structures
(i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic),
which are fair representations that give us suggestions of trends, etc.

We starts with a examination of various measures of regular topologies. The
average minimum hop distance plays a crucial role in evaluating the efficiency of net-
work architecture. From the perspective of designing optical networks, the amount
of switching resources used at nodes is proportional to the average minimum hop dis-
tance. Thus a smaller average minimum hop distance translates into a lower fraction
of pass-through traffic and less switching resources required.

Next, a first-order cost model is set up and an optimization problem is formulated
for the purpose of characterizing the tradeoffs between fiber and switching resources.
Via convex optimization techniques, the joint optimization problem is solved ana-
lytically for (static) uniform traffic and symmetric networks. Two classes of regular
graphs - Generalized Moore Graphs and A-nearest Neighbors Graphs - are identi-
fied to yield lower and upper cost bounds, respectively. The investigation of the cost



scalability further demonstrates the advantage of the Generalized Moore Graphs as
benchmark topologies: with linear switching cost structure, the minimal normalized
cost per unit traffic decreases with increasing network size for the Generalized Moore
Graphs and their relatives. In comparison, for less efficient fiber topologies (e.g., A-
nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal
normalized cost per unit traffic plateaus or even increases with increasing network
size. The study also reveals other attractive properties of Generalized Moore Graphs
in conjunction with minimum hop routing - the aggregate network load is evenly dis-
tributed over each fiber. Thus, Generalized Moore Graphs also require the minimum
number of wavelengths to support a given uniform traffic demand.

Further more, the theoretical works on the Generalized Moore Graphs and their
close relatives are extended to study more realistic design scenarios in two aspects.
One aspect addresses the irregular topologies and (static) non-uniform traffic, for
which the results of Generalized Moore networks are used to provide useful estimates
of network cost, and are thus offering good references for cost-efficient optical net-
works. The other aspect deals with network design under random demands. Two
optimization formulations that incorporate the traffic variability are presented. The
results show that as physical architecture, Generalized Moore Graphs are most robust

(in cost) to the demand uncertainties. Analytical results also provided design guide-
lines on how optimum dimensioning, network connectivity, and network costs vary as
functions of risk aversion, service level requirements, and probability distributions of
demands.

Thesis Supervisor: Vincent W. S. Chan
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Thesis Motivation

As we move forward in the Information Age, the ravenous demands for bandwidth

grow at an alarming rate with each passing decade. Despite significant cycles in the

economy that supports digital demands, traffic volume is still expected to have ex-

ponential growth in the foreseeable future. This comes as more and more households

are switching to broadband access and network operators are aggressively marketing

advanced services, such as FiOS 1 and Triple/Quadruple Play2 . In addition, con-

sumers' ever growing appetite for bandwidth-devouring applications, such as IPTV,

digital movie, and peer-to-peer file sharing, is driving the demand for high data rate

infrastructure.

To keep up with the rising traffic volume, telecom carriers have drastically in-

creased the capacity of long-haul networks with the deployment of wavelength divi-

sion multiplexing (WDM) technology. WDM transmission systems can have capacity

greater than 10 Tb/s (1013 b/s) over a single fiber, a feat achieved by multiplexing

1FiOS is an abbreviation of Fiber Optic Service, a fiber to the premises (FTTP) service offered

by Verizon.
2Triple Play: a marketing term for offering three services over a single broadband connection:

high-speed Internet, television (Video on Demand (VoD) or regular broadcast), and telephone ser-

vice. Triple Play leads to the term Quadruple Play, where wireless communication is introduced as

another way to deliver video, Internet, and voice content.



more than 200 channels at 40 Gb/s (4 x 1010 b/s) each [1]. At the same time, service

providers are laying fiber cables with more than 100 fibers per cable, with a total

capacity of 1 Pb/s (1015 b/s). This capacity allows 1 million user-pairs to transmit

simultaneously, each at a data rate as high as 1 Gb/s.

While the deployment of capacity in backbone networks has been impressive, end-

users' access to the broad array of services made available by this deployment is quite

limited. The current data rates for most end-users are in the range of kilobits to a few

megabits per second; and the access to higher data rates (in the range of hundreds

megabits per second) is still considerably more expensive [2]. In these situations,

because the access cost is so dominant, even if long haul transmission cost could be

reduced to zero, the cost incurred to end-users would not come down significantly.

End-users still pay heftily for high bandwidth usage. One can say that aggregation

and access have become the new bottlenecks for the growth and the adoption of high

bandwidth applications. As such, the full potential of optical network, which promises

low-cost and high data rate access to the masses, has not yet been realized [2].

From an engineering perspective, the discrepancy between the bandwidth glut at

the backbone and the high access cost for the end-users can be attributed to the

following factors. The first factor, which is widely recognized among both industry

and research communities, is related to the predominant routing and switching mech-

anism utilized by the current network. Though the WDM technology has been a

huge success in providing high-capacity point-to-point transmissions, the routing and

switching are exclusively carried out electronically in the current metro and access

environment. Though this router-centric architecture is cost-effective in supporting

low data rate traffic 3, the architecture does not scale well with increasing network

size and traffic. The complexity of route computations at the network processing

units of the routers grows with increasing network size. In addition, at high data

rate the router port utilization needs to be kept low (less than 30% [4]) to ensure

that the delay and packet loss meet the service level requirement. As such, the elec-

3 For example, a data rate below 1 Gb/s for every source-destination pair for a 50-node network,

according to the analysis in this thesis and [3].



tronic processing, which advances at a rate quantified by Moore's Law (the number

of transistors on a chip doubles every 18 to 20 months), is both costly and slow in

keeping up with future's surge of high capacity demand. As network traffic grows,

router-centric networks will require increasingly higher capacity routers, yet there

are clear limits to the footprint and speed of an electronic router in terms of space,

power, and reliability. For carrier-grade networks, where scalability of growth is of

paramount importance, these limitations start to cause problems. To provide relief,

optical cross-connect based lightpath switching can be incorporated with electronic

routing and switching in the metro networks.

The second factor is the optimization of network architectures. It is in most

part overlooked, yet is crucial in our opinion. The architectures of metro and ac-

cess networks have not been well thought-out, especially from the perspective of cost

scalability. Most of the proposed WDM network architectures are direct adoption

of those with electronic circuit and packet switching paradigms. There are still few

guidelines on how to properly design various architectural elements of metro and

access networks. Take the design of network fiber connection topology 4 as an exam-

ple, traditionally ring configuration - the legacy topology for SONET (Synchronous

Optical Network) based electronic switching - is chosen as the default topology for

optical switching networks, without considering mesh topologies as viable alternatives

[5] and [6]. Though recent years witness the migration to mesh networks from ring

networks, the optimal topology as the tradeoff among various network resources and

technologies has not been carefully considered to date. Since architectures optimized

for optical switching paradigms will not be the same as the router-centric network

architectures that are widely adopted for today's Internet, efficient optical network

architectures that truly take the advantage of WDM technology need to be created.

In this thesis, our main focus is to address these challenges by proposing viable

solutions. In regard to the scalability issue of a router-centric architecture, the consen-

4In this thesis, we distinguish the notions of network cable plant topology (also referred as physical

topology in most of the research literatures) and fiber connection topology, as elaborated in Section
1.2.1.



sus is that the optical switching can be introduced to work in synergy with electonic

routing and switching [5]. Compared with electronic switching, optical switching

offers the following advantages:

* Transparency: each wavelength can carry data that are encoded and transmit-

ted at different bit rate and use different formats and protocols. This allows

the networks to interface with customers in need of a wide variety of services.

* Lower capital expenditure (CapEx) and operational expenditure (OpEx): in

stead of handling the pass-through traffic at the packet level, well groomed

lightpaths 5 can bypass costly router ports, reducing the route computation

and forwarding load on the routers. In addition, network operators can im-

plement end-to-end lightpath scheduling (e.g., optical flow switching [7]) and

dynamic protection and restoration in the optical domain. With well considered

designs, these advantages can translate into a reduction of capital investment

and maintenance cost.

Optical cross-connect and other enabling technologies (such as tunable transceiver

and wavelength converter, etc.), when judiciously integrated with current electronic-

centric network infrastructure, provide us the technological foundations to build dy-

namically reconfigurable networks that offer end users with higher data rate services

at lower cost-per-bit. To fully realize the potential of these enabling technologies, net-

work architectures need to be carefully designed, in terms of cost and performance.

That is, finding sensible architectures involves searching over a broad solution space

of fiber connection topology, switching, routing and wavelength assignment (RWA),

transport mechanism, transport protocol, as well as network management, which are

allowable by the current and possible future technologies [2]. In addition to a low

subscriber cost, the ultimate goal is to design networks that exhibit excellent scal-

ability - a decreasing cost-per-node-per-unit-traffic as user number and transaction

size increase.

5Traffics are aggregated and groomed electronically at the edge of the feeder network, as described

in Section 2.3.2.



Obviously, solving this optimization problem entails a gigantic endeavor. Our ap-

proach is to decouple this optimization into more manageable tasks with the belief

that by focusing on a less ambitious goal, we can still obtain insights into the intrinsic

tradeoff that characterizes the global optimum. As such, in this thesis we study scal-

able optical network architecture by focusing on a solution subspace that includes fiber

connection topology, switching, routing and wavelength assignment, with emphasis

on analyzing the role of fiber connection topology design. The problem statement is

provided in detail in the next section.

1.2 Problem Statement, Complexity, and Approaches

1.2.1 Problem Statement

The central theme of this thesis is searching for cost-effective network architectures

over the solution space that embodies the key aspects of an optical network: fiber

connection topologies, physical layer switching, routing and wavelength assignment

(RWA), etc. In particular, the question we ask is, given the locations of network

nodes and a traffic demand matrix (or a range of matrices), how we can minimize the

total network cost (capital investment) over the following design elements:

* Network fiber connection topologies. While the cable plant topologies (also

called as physical topology in most of the research literatures, as illustrated in

Figure 1-1) are determined by factors such as speculated traffic and rights of

way, how these fibers (inside the cables) are connected (via fiber patch panels)

to form the fiber connection topologies (as illustrated in Figure 1-1), is a key

design element that has significant leverage on the network cost. In this the-

sis, we optimize over two aspects of fiber connection topologies - node degree

(connectivity) and connection rules (patterns).

* Dimensioning switching resources and selecting switching architectures. A light-

path that traverses multiple physical hops has to be switched at intermedi-

ate nodes. As such, sizing the switching resources to support the given traf-



fic demand (on a given fiber connection topology) is crucial. Also switching

mechanism comes with different forms, such as optical-electrical-optical (OEO)

switching or all-optical switching. With different switching technologies, the

cost of an optical switch scales differently as a function of the port count. For

example, for 3-dimensional (3-D) switching architecture (as shown in Figure

1-2 (a)), the cost, to the first order, can be modeled as approximately linear

with the number of ports (e.g., FI(Ko) = 01Ko, where Ko denotes the number

of ports and pf denotes the corresponding cost per port). For 2-dimensional

(2-D) switching architecture (as shown in Figure 1-2 (b)), the cost increases

approximately quadratically with the number of ports (e.g., F3 (Ko) = 33Ko2,

where P3 denotes the corresponding cost per port). In addition to the cost

scalings, parameters such as cost per port P1 and 03, which depend highly on

the technologies and manufacturing yields, play an equally important role in

the switching cost 6. from the perspective of designing a cost-effective optical

network, properly dimensioning the switching resources and choosing a suitable

switching mechanism is also important.

Routing and wavelength assignment (RWA). In designing optical networks, the

demands among node pairs are first mapped into a set of lightpaths. For a

given network fiber connection topology, we need to decide how to establish

these lightpaths through routing and assigning a wavelength for each lightpath.

When wavelength continuity constraint (the same wavelength must be used on

every fiber along the route of a lightpath) is enforced, RWA problem is quite

difficult to solve, as will be explained in Section 1.2.2. Nonetheless, for Moore

Graphs and uniform traffic, the RWA problem can be solved, as the results of

symmetry and special constructions of Moore Graphs. This result is then used

as bounds for other types of topologies.

Among these design elements, this thesis emphasizes the importance of designing

fiber connection topologies, which is largely overlooked in current research. Using a

6The cost model will be described in detail in Chapter 5.
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Figure 1-1: We can set up a fiber connection between two nodes that are not directly

linked by a cable (e.g., node 1 and node 2), using fiber patch panels (at node 3).

These fiber connections constitute network physical (fiber) topology.
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Figure 1-2: Optical switching architectures: (a) 3-D and (b) 2-D architectures.



50-node network as an example (the details of the analysis are presented in Chapter

4 to Chapter 6), Figure 1-3 plots the normalized network cost (cost per node) as

a function of network node degree A to support a uniform traffic, for two types of

topologies - A-nearest Neighbors and Generalized Moore Graphs '. As shown in

the plot, the maximum normalized network cost (at A = 49) is about 2.5 times of

the minimum cost (at A = 8). This shows that finding the optimal connectivity is

essential. Also, finding the optimal connection rule is equally vital. For example,

connecting the same set of 50 nodes via a Generalized Moore Graph will save about

40% in (minimum) normalized cost per unit traffic than connecting via a A-nearest

Neighbors, as illustrated in Figure 1-3 and Figure 1-8 and discussed in detail in Section

1.3. From this example, we also note that the optimal node degree (at A = 4 )for

the Generalized Moore Graphs is different from that for the A-nearest Neighbors (at

A = 8).
Since these design elements (fiber connection topology, switching resources dimen-

sioning, routing and wavelength assignment) are inter-related, ideally they need to be

considered jointly in the optimization process in order to achieve good performance

8. Besides the network cost at the initial deployment, the ultimate goal is to de-

sign a network architecture (a combination of fiber connection topologies, RWA, and

switching mechanisms) that has the best cost scalability - a decreasing cost per user

per transaction with increasing number of users and data rates. Thus, in this thesis

we call this problem as the Design of Scalable Optical Network Architectures.

1.2.2 Complexity

The Design of Scalable Optical Network Architectures belongs to a class of prob-

lems known as combinatorial optimization. Solving them involves selecting suitable

combinations of discrete alternatives, i.e., where the solution is a set of integers or

7 A-nearest Neighbors and Generalized Moore Graphs provide upper bounds and lower bounds

on the average minimum hop distances and network costs for regular networks of the same size and

connectivity, as to be presented in Chapter 4 to Chapter 6.
8In this thesis, we only solve the joint problem for Generalized Moore Graphs.
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Figure 1-3: The normalized network cost (cost per node) as a function of network

node degree A, with N = 50. Two types of topologies A- -nearest Neighbors

and Generalized Moore Graphs are compared. The switching architecture is lin-

ear (F1(Ko) = 31Ko). The elaborations of fiber topology and network cost models

are deferred to Chapter 4, 5, and 6.



other discrete objects. In combinatorial optimization, the number of feasible solutions

increases rapidly as the size of the input increases. Moreover, though it is usually

easy to construct a feasible solution, finding an optimal solution remains extremely

difficult.

To gauge the problem's complexity, we first look at the size of the solution space

of a sub-problem - the designing of network physical topologies. As illustrated in

Figure 1-3, finding the global optimal solution for a network of N nodes requires a

consideration of every distinct subset of N - 1 or more edges (at least N - 1 edges are

required to ensure that all nodes in the network are interconnected) out of N(N -1)/2

possible edges 9. In other words, the complexity for a strictly optimal solution involves

testing the following number of scenarios:

N(N-1)/2z (N - 1)/i ) (1.1)
i=N-1

A simple manipulation in algebra shows that

N(N-1)/2 N(N-1)/2
N(N - 1)/2 N(N - 1)/2 2 N(N-1)/2, (1.2)

i=N-1 i=0

when N is large (e.g., N > 20). That is, the topology design problem has a complexity

of o( 2N 2 ). For a design that involves 10 nodes, 3.518 x 1013 scenarios need to be tested.

If, for the sake of argument, 106 cases could be tested in one second, an exhaustive

search would still require 400 days!

Notice that to find the global optimal solution to the Design of Scalable Optical

Network Architectures, we also need to solve the RWA for every topology (that is

enumerated among z.,1i=g-1 2 (N(N1l)/ 2) scenarios). For a given network topology

and a given traffic matrix, the solution of the associated RWA can be found via

solving an equivalent node-coloring problem [8]. Since node-coloring problems are

NP-complete [9], finding solutions for a RWA is far from trivial. Even if a RWA can

be approximately divided into routing only and wavelength assignment only, each of

9We consider an undirected topology. For a directed topology, we need to consider N- 1 or more

edges out of N(N - 1) possible edges.



Figure 1-4: Finding the global optimal solution for a network of nodes requires a

consideration of every distinct subset of N - 1 or more edges (at least N - 1 edges

are required to ensure that all nodes in the network are interconnected) out of the

N(N - 1)/2 possible edges.

the sub-problem is still NP-complete [10]. Moreover, solving decoupled problems may

not generate global optimum.

In addition to the topologies and RWA problems 10, we also need to consider the

problem of selecting switching architectures and dimensioning switching resources.

This will further increase the complexity. By now, we can easily see that, by brute

force, the global optimum solution can be obtained only for very small networks (e.g.,

for N < 8) [4].

1.2.3 Approaches

Analytical Approach

As discussed in the previous section, when the size of a design problem becomes

large, the required computation can be prohibitive and the notions of the dependen-

cies among design parameters can be lost. In this thesis work, we are more interested

in evaluating how the cost affects and drives architectural tradeoffs, rather than in

1oWe only solve the RWA problem for Generalized Moore Graphs in this thesis.



finding solutions for specific network design problems. Therefore, we take an analyti-

cal approach in most parts of the thesis by focusing on networks with symmetric and

well-defined structures (i.e., regular networks) and symmetric traffic patterns (e.g.,

all-to-all uniform traffic). These are reasonable approximations for the metro envi-

ronment. More practically, these assumptions and simplifications keep the analysis

tractable. For quite a few classes of regular networks, we first derive or approximate

the closed-form expressions for important parameters, such as average minimum hop

distance, switch size, and network cost. We then set up and solve the correspond-

ing optimization formulations. The analytical solutions obtained can show in concise

form the relationships among key network design parameters, thus providing valu-

able references as points of departure for the final design. By analytically solving the

Design of Scalable Optical Network Architectures over the space of fiber connection

topologies, RWA, and switching architectures, this thesis offers insights and guidelines

that numerical approaches cannot provide. Moreover, analytical results obtained un-

der regular topology and uniform traffic assumptions can be extended to evaluate the

performance of irregular networks under arbitrary traffic pattern (including random),

for which analytical results are difficult to derive directly.

Numerical Approach

In reality, traffic is seldom symmetric, nor are networks regular or regularizable.

Therefore we also study the design of irregular networks under non-uniform traf-

fic. For these cases, it is difficult, most of the time impossible, to derive analytical

expressions and solutions. We first formulate the corresponding designs as linear pro-

gramming (LP), integer linear programming (ILP), or nonlinear programming (NLP)

problems. We then obtain the solutions numerically, either by using solver packages

or by developing heuristics. In this thesis, these numerical solutions are used mostly

to evaluate the tightness of various analytical lower or upper bounds. We strive to

find good analytical approximations in this thesis because we want to provide the sys-

tem architecture a tractable view across a wide range of the solution space through

simple analytical expressions.



1.3 Main Results and Related Works

1.3.1 Main Results

As stated in previous sections, we concentrate on illustrating the trends and the

scaling of optimal architecture as functions of network parameters, traffic demands,

and technologies via an analytical approach. For the sake of tractability, we first

focus our attention to uniform all-to-all traffic and regular topologies, which are fair

representations of realistic metro networks.

We start by examining various measures of regular topologies. Among these mea-

sures, the average minimum hop distance Hmin plays a crucial role in evaluating the

efficiencies of network architectures. From the perspective of designing optical net-

works, we show that the amount of switching resources used at nodes is proportional

to Hmin. Thus a smaller Hmin will translate into fewer expensive switching ports.

We also demonstrate that topologies with smaller average minimum hop distance

have a lower fraction of pass-through traffic and hence require less optical switches.

This is especially important for both optical and electronic switching, since a scal-

able network architecture clearly wants to minimize the network resources that every

transaction must use.

The average minimum hop distance is clearly a strong function of network size

N and node degree A. For a fixed N, the larger the node degree, the shorter the

Hmin. To illustrate how the Hmin scales for different topologies, we plot Hmin as a

function of N, with A set to 3, as shown in Figure 1-4. It is evident that there

are significant differences among network topologies for degree 3 networks. These

differences can be as large as an order of magnitude. Generalized Moore Graphs

(e.g., Petersen Graph, as shown in Figure 1-6) provide lower bounds (Moore Bound)

on Hmin (with a scaling of logs N). Compared with Generalized Moore Graph, some

topologies, such as (one-sided) A-nearest Neighbors (as shown in Figure 1-7) and

Symmetric Hamilton Graphs, scale poorly as N increases (e.g., N/2A for A-nearest

Neighbors topology). Other more complex topologies, such as the ShuffieNet and

deBruijn Graphs, which come close to the Moore Bound, also scale favorably with
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loga N, thus keeping Hmin short. Since the magnitude of difference in Hmin means

a similar magnitude of difference in switching cost of the corresponding networks,

choosing a good topology is tremendously beneficial.

We next set up a first-order cost model and formulate a cost minimization problem

(over choices of fiber topologies, switching architectures, and RWA)for the purpose

of characterizing the tradeoffs between fiber and switching resources. Under uniform

traffic and symmetric networks, the optimization problem can be solved analytically.

An important result, given in Figure 1-8, depicts the minimum normalized cost per

unit traffic with respect to network size, including both analytical asymptotes and

exhaustive search results. These curves highlight the cost-optimality of Generalized

Moore Graphs as network physical topologies: the minimal normalized cost per unit

traffic decreases with increasing network size for Generalized Moore Graphs and their
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Figure 1-6: (a) An example of Generalized Moore Graphs - the Petersen Graph, with

N = 10, A = 3, and D = 2; (b) The routing spanning tree from node 1.

3 2 2 5 8

3 6

I I I ID=3
I I I I

1st 2nd 3rd
Level Level Level

(b)

Figure 1-7: (a) (One-sided) A-nearest Neighbors topology with N = 10, A = 3, and

D = 3; (b) Routing spanning tree from node 1.
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Figure 1-8: Minimal normalized network cost per unit traffic as a function of network

size N for the A-nearest Neighbors (in red) and the Generalized Moore Graphs (in

blue).

relatives; whereas the minimum normalized cost per unit traffic for A-nearest neigh-

bors topologies stays constant with increasing network size. Our study also reveals

other attractive properties of Generalized Moore Graphs in conjunction with min-

imum hop routing. When minimum hop routing is employed for uniform traffic in

Generalized Moore Graphs, the aggregate network load is evenly distributed over each

fiber. Thus, Generalized Moore Graphs require the minimum (or close to minimum)

number of wavelengths to support a given uniform traffic demand.

In addition, we have taken steps in broadening the scope of this work to irregular

network topologies and non-uniform traffic, which represent most existing networks.

By investigating the implications of topology regularity, traffic uniformity, and switch-

ing cost scaling on the minimum hop routing (the results are summarized in Table

10.1 and Table 10.2), we show that if switching cost is linear with port count the

minimum hop routing still optimal for arbitrary (regular and non-regular) traffic.



Table 1.1: Minimum hop routing for linear increasing switching cost.

Topology Traffic / Traffic Uniform All-to-all Non-uniform

Regular Topology Optimal Optimal

Irregular Topology Optimal Optimal

Table 1.2: Minimum hop routing for super-linear increasing switching cost.

Topology Traffic / Traffic Uniform All-to-all Non-uniform

Regular Topology Optimal Not necessarily optimal

Irregular Topology Optimal Not necessarily optimal

The results of Generalized Moore networks may be used to provide useful estimates

for the cost of irregular networks under uniform or non-uniform demand, offering a

benchmark for designing cost-efficient WDM optical networks.

Up until this point, we have focused on deterministic traffic, which is effective only

when traffic volume and pattern are well known in advance. With more recent diver-

sification of services, change in usage patterns, and data-dominated traffic, accurate

forecasting of future demands for transport network planning has become increasingly

complex. Thus designing networks that are robust to demand uncertainty is of great

importance. In this thesis, we also present a framework to dimension optical networks

incorporating uncertainties in demands. In this framework the interplay among topol-

ogy design, switching resource provisioning, and routing are analyzed based on two

optimization models. In one model, the weighted sum of network installation cost

and expected penalty cost for unsatisfied traffic is minimized. In another model, the

network installation cost is minimized subject to certain service level requirements

(e.g., blocking probability). The optimization results enable us to identify the phys-

ical architectures that are most robust (in cost) to demand uncertainties. We also

provide analytical references on how optimum dimensioning, network connectivity,

and network costs change as functions of risk aversion, service level requirements,



and probability distributions of demands.

We conclude this section by commenting on the assumptions used in setting up the

switching cost model. We use static all-to-all uniform model as an idealization of real

world traffic, which is in general dynamic. We further assume that dynamic switching

handles every wavelength of the pass-through and add-drop traffic, The main advan-

tages of dynamic optical switching, besides protection and restoration switching, lies

in its capability to adapt to traffic fluctuation and pattern change. More importantly,

with dynamic switching wavelength resources are no longer reserved permanently -

they can be efficiently shared among user pairs. Depending on the characteristic of

the traffic, it may not be necessary to switch every wavelength dynamically. For ex-

ample, when the network traffic is constant (e.g., the traffic has a very small variance

to mean ratio), the lightpaths can be provisioned statically - they can be setup via

"hard-wiring" using fixed routing and wavelength assignment. The main advantage

of the static provisioning is that it can be implemented with the equipments such as

fiber-patched panels, which incur much lower cost, compared with active switching

equipment. In other words, the per port cost of quasi-static provisioning is smaller

than that of dynamic switching. The downside of the static provisioning is the ineffi-

cient use of the network resources, especially for dynamic traffic. For dynamic traffic,

it is practical to take a "hybrid" approach in network dimensioning. That is, low-cost

switching equipments, such as fiber-patched panels, handle the static or quasi-static

portions of the traffic, while more expensive dynamic switching equipments accom-

modate the fluctuating portions. For this scenario, the parametric formulation of

network cost optimization does include the patch panel case with lower cost per port.

The hybrid network dimensioning is a natural extension of this thesis. In addition to

network cost, other design objectives, such as network blocking probability, through-

put, network resource utilization, and the number of users supported, are also to be

included. It is reasonable to expect that the optimal amount of static and dynamic

provisioning is likely to be determined by the factors such as characteristics of traf-

fic, the relative (per port) cost ratio between static and dynamic provisioning, fiber

topology, and routing algorithm, etc. Correctly formulating and efficiently solving



such an optimization problem with multi-objectives is difficult, thus out of the scope

of this thesis. Nonetheless, we comment of possible first steps and directions to study

hybrid network dimensioning at the end of this thesis.

1.3.2 Related Works

The problems of designing cost-effective architectures for WDM networks have re-

ceived considerable attention in the past decade. In most of these works, the con-

cepts between cable plant topologies and fiber connection topologies are not differ-

entiated. That is, the fiber connection topologies are assumed identical to the cable

plant topologies, which are provided upfront. As such, with given network topologies

and traffic demands, these studies mostly focus on solving the dimensioning or RWA

problems.

There exists a significant amount of research in network dimensioning for given

physical topologies. Some of these works take an analytical approach, such as [11]

and [3]. [11] presents a set of equations that relate network size, average network

node degree, traffic demand, and capacity. These results can be used to assess the

characteristics of the topology required to support a given traffic matrix. However, in

[11] a network cost model is not explicitly set up and the effects of different switching

architectures are not considered. [3] follows a similar approach and goes a step further

by constructing a detailed network cost model that considers switching architectures.

[3] shows that for uniform demands, the parameters, such as network size, node degree,

traffic between a node pair, and equipment cost structures, are sufficient to estimate

the network cost. Since network fiber connection topology is given, the author does

not address how the network costs are affected by different fiber connection topologies.

Throughout this thesis, we show that there is a significant cost difference between an

optimized topology and a casually designed one, as already illustrated in Figure 1-3

and Figure 1-8. Thus, the benefit of choosing a good topology is evident.

Other studies in network dimensioning of a given physical topology, such as [12],

[13], [14], [15], and [16], focus on formulating ILP problems with the objective to

minimize the total capital investment. These optimization problems, even with the



topology given, are shown to be NP-hard. As such, various heuristics and numerical

techniques have been proposed for solving problems of realistic sizes. These results are

drawn upon the case studies of existing national or regional networks, thus providing

limited insights on how the optimal architectures scale and how they depend on

critical design parameters. In comparison, the results presented in this thesis illustrate

the analytical trends (e.g., Table 6.1, Table 6.2, and Table 6.3, etc.).

There are also a great deal of works that focus on RWA, from the early studies,

such as [8], [9], [17], and [18], to the more recent ones, such as [10], [19], and [20].

Most of the RWA literatures to date use wavelength usage as the primary figure of

merit. The typical objective in these studies is to minimize the maximum number

of wavelengths required to support a set of lightpaths. Though these works provide

various results on how to efficiently provision wavelength resources, they suffer from

the following shortcomings:

* Using number of wavelengths as a figure of merit only makes sense when the cost

is linear in the number of wavelengths. However, the cost is usually highly non-

linear in reality. For example, for a line system of 64 wavelengths, the cost of

using 50 and 55 wavelengths is almost the same. However, if 65 wavelengths are

required and an additional fiber is unavailable, setting up a new fiber connection

will substantially increase the cost.

* Some works, while minimizing the maximum number of wavelengths, force data

to take much longer routes than the shortest path from source to destination,

thus incurring higher switching cost. In addition, optical signals traveling via

a longer path are more susceptible to attenuation and noise, thus more ampli-

fiers are required and accumulated dispersion requires more expensive disper-

sion management hardware (in the form of specialty fiber, electronic dispersion

compensation, and even regenerators).

There are a few works that study the design of network physical topologies. Among

them, [21] represents an early foray into designing physical topologies at the infancy

of WDM networks. At the time, routing and wavelength were usually statically pro-



visioned, this work focuses on hierarchically clustering stations and couplers, with the

objective of minimizing the length of optical fibers. [5] addresses the topology design

issue for the feeder of metropolitan area networks (MANs). However, the work con-

siders the ring as the default topology, without considering mesh topologies as viable

alternatives. [22] provides a cost-comparison analysis between mesh and multi-ring

architectures. The results indicate that the average node degree has significant im-

pact on network cost and upgradability. However, the comparisons are merely based

on the analysis of several existing networks. [4] formulates the joint mesh topology

design, routing, and spare capacity dimensioning as an ILP problem. Since the ILP

problem can only be solved optimally for networks of small size, the work concen-

trates on developing heuristics to provide near-optimal solutions. Though some of the

heuristic approaches share some similarities with the analytical approach adopted in

this thesis (e.g., integer relaxation and rounding), the very nature of the ILP formu-

lations predetermines that the results can only qualitatively reveal the dependencies

of the optimal network connectivity (node degree) on the tradeoffs between the cost

of fiber connection and the cost of routing and provisioning lightpaths. Moreover, the

formulation does not take different switching architectures into account. The work

does not address what kind of physical architectures exhibit good scalability.

In regard to network design with traffic demand uncertainties, most recent works,

such as [23], [24], [25], [26], and [27], also assume that network physical topology is

given (thus only dimensioning and routing sub-problems remain to be solved); the

effects of traffic uncertainties on the network cost and its robustness are only evaluated

and quantified with simulations or with stochastic programming techniques.

1.3.3 Summary

This thesis differs from the existing works in that it addresses the following important

network design issues in detail via an analytical approach:

* Exploring the optimization of fiber connection topologies on top of a cable plant

topology.



* Suggesting connection architectures that exhibit good scalability - a decreasing

cost per node per unit traffic with increasing number of users and transcation

size.

* Incorporating the switching architectures into the modeling.

* Gaining insights through analytically solution.

Most of the existing works related to this thesis inadvertently neglect one or more of

the aspects mentioned above. Thus, the design principles derived from these works

are incomplete, if not flawed. For example, in Section 9.2.2 we compare the costs

of the network topologies used in some of these existing works with the costs of

optimized network topologies. We show that a simple "rewiring" of the same set of

nodes via a Generalized Moore Graph results in savings on the number of switching

ports 11. Through thoroughly tackling these design issues, this thesis gives more

complete and creditable insights and benchmarks for designing cost-efficient WDM

optical networks.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2, 3, 4, and 5 are preparatory parts of the

thesis. Chapter 2 gives background on technological and architectural issues related to

WDM networks. In Chapter 3, we model the traffic demand among access nodes. In

Chapter 4, we take a graph theoretical approach to set up models for network physical

architectures. Besides reviewing some important concepts in graph theory, we focus

on presenting graph theoretical results derived for this work. In Chapter 5, we set

up a parametric, first-order, and homogeneous network cost model in preparation for

the analysis of optimal network architectures.

Chapter 6, 7, 8 and 9 are the core of the thesis. In Chapter 6, we formulate and

solve analytically the joint optimization problem of physical topology, dimensioning

11In these examples, every improved network uses the same number of fiber connections as the

original one does, as illustrated in Section 9.2.2



of network resources, and routing algorithms. In Chapter 7, we study the RWA

for Generalized Moore Graph. In Chapter 8, we address the issues of dimensioning

WDM networks under random traffic demand. In Chapter 9, we study how we can use

the results for symmetric regular networks to evaluate the cost-efficiency of irregular

networks under uniform or non-uniform traffic.

Chapter 10 concludes the thesis and suggests possible extensions of the work.





Chapter 2

Enabling Technologies and

Architectures for WDM Networks

This chapter gives background on technological and architectural issues related to

WDM networks, to provide a self-contained "setting of stage" for this thesis. The

objectives here are: 1) to give a survey of the state-of-the-art of current photonic

and optoelectronic technologies as they apply to optical networking; and more im-

portantly, 2) to understand how the availability and the limitations of the enabling

technologies affect a designer's choices of network architectures. As such, we first give

brief descriptions of key building blocks of optical networks in Section 2.1. We then

review the architectural evolutions of long-haul networks during the past decades in

Section 2.2. Finally, in Section 2.3, we turn our attention to MAN by presenting a

high-level architectural view of the next generation WDM-based MAN.

2.1 Key Building Blocks of WDM Networks

In this section, we present the basic features of representative devices and systems

used in the implementation of optical networks [6], [28], and [29]. This area has

experienced rapid developments and innovations with continuous upgrading and in-

tegration. By integration, multiple functionalities are joined into a single module or

subsystem to provide higher performance and reliability, as well as to lower overall



cost. The component market is diverse, dynamic, and crowded, despite the indus-

try downturn in late 1990s. It is common that several different products compete

for a single area of application. To deal with the diversity, international committees

have kept pushing out standards to define key performance parameters and interface

specifications. Nevertheless, there are still differences in the secondary parameters.

So it has been the carrier's choice, in the network design and upgrading, to select

right combinations of technologies based on the system requirements in capacity, up-

gradeability/scalability, power consumption, environment condition, cost, etc., with

the cost as the biggest driver.

2.1.1 DWDM and CWDM

Emerged in 1990s, the WDM technology was aimed to resolve bandwidth exhaustion

and to enable multiple services over the same network. With a simultaneous trans-

mission of 100 or more wavelength channels at a rate of 10Gb/s per channel in the

same fiber link, WDM potentially allows an aggregate traffic of many terabits per

second per fiber.

Depending on the number of optical channel (wavelength) specifications, a WDM

system can be classified as dense WDM (DWDM) system, if many wavelengths are

used (above 40 channels); or as coarse WDM (CWDM) system, if only a few wave-

lengths are used (4 . 16 channels). In this thesis, we use the terms WDM and

DWDM indistinguishably.

* DWDM systems require precise standardization of the carrier frequencies. The

International Telecommunications Union (ITU) recommended 81 wavelengths

(channels) in the C-band (1528-1561 nm) of the fiber attenuation minimum with

a line spacing of 50 GHz (or 0.39 nm). To maintain such high accuracy, light

channels of DWDM systems must have extremely narrow line-widths and are

usually under active feedback control for absolute center frequency stabiliza-

tion to within 0.1 nm. Also, the powers of all channels need to be maintained

at a relatively equal level. Driven by the competition among carriers to pro-



vide broadband service to the masses, metropolitan networks are now the fast

growing segment for DWDM technology.

* CWDM systems, with ITU specified line spacing of 20 nm, are allowed to have

a much broader spectral occupancy and looser center frequency stability. Also,

in CWDM systems the issue of power equalization is in general not present.

CWDMs are considered as low capacity and lower cost choice for access network

which requires low channel count, short distance, but a wide variety of client

interfaces. For this market, CWDM technology still faces challenges, such as

cost reduction, small size, low insertion loss, and reliable performance in the

temperature-uncontrolled environment.

2.1.2 Transmitter

In WDM systems, the main function of a transmitter is to send out a modulated

optical signal complying with a set of specifications, such as bit error rate (BER) or

signal-to-noise ratio (SNR). The important components of a transmitter include the

light source and the modulator.

Light Source

In optical communication, light sources are required to be compact, monochromatic,

stable, and long lasting. The background of the most popular light sources, light-

emitting diode (LED) and semiconductor laser, along with tunable laser is given in

the following.

* LED is a p-n semiconductor device. The light emission takes place when the

excited electrons and holes are recombined at the junction. LEDs, though in-

expensive, are slow devices and exhibit a relatively broad spectral range. Also,

LEDs emit light with a relatively wide cone. Therefore, they are mostly used

in multimode fiber communication links for short-distance and low-bit rate ap-

plications.



* Semiconductor laser is similar to LED, but with an additional active layer (with

high index) sandwiched between n-type and p-type layers. The cleaved end sur-

faces of the chip serve as cavity mirrors. Semiconductor lasers transmit coherent

light within a very narrow cone, and thus the beam can be more efficiently cou-

pled to optical fibers. In addition, they can be directly modulated and thus

are better suited for high bit rates and long fiber spans. Lasers for DWDM

applications are required to have precise wavelengths of ITU grid, narrow spec-

trum width, high power output. Currently, there are different types of commer-

cially available semiconductor lasers, such as Fabry-Perot (FP) laser, distributed

Bragg reflector (DBR) laser, distributed feedback (DFB) laser, quantum well

laser, and vertical-cavity surface-emitting laser (VCSEL), etc. The most com-

monly used lasers in communications are FP and DFB lasers. The DFB laser,

with a built-in narrow-bandwidth filter in the laser cavity, is well suited for

DWDM application. To deal with the wavelength drift by temperature (0.1

nm/ oC) or aging, a wavelength locker is used to provide an active feed back

to stabilize the wavelength by adjusting the temperature via a thermal electric

cooler (TEC).

* Tunable lasers can simplify network design and inventory management [31]. The

advances in laser chip technology have enabled narrow-band and full C-band

tunability. There are various technical approaches for the tunability. In the

monolithic InP technology, the wavelength is selected by the thermal tuning to

different peaks of the built-in grating. Another approach for rapid tunability

is to use multi-wavelength laser arrays with wavelengths that span the desired

tuning range. One or more lasers in an array can be activated to produce

simultaneous transmission, or be selected by the external cavity structures, in-

cluding tunable mirrors, tunable filters, etc. Although different technologies

have to meet common specifications (ITU grid wavelength accuracy, stability,

linewidth, etc.), they are different in tuning speed, size, cost, etc. Tunable laser

has drawn significant attentions in the current market. Together with reconfig-



urable add/drop multiplexer (see Section 2.1.8), it enables extreme flexibility

and cost reduction in the new generation of optical system.

Modulator

In optical communication, modulations come in two different forms: internal modu-

lation and external modulation.

* For internal modulations, electrical signals representing a data stream directly

modulate the light source. Directly modulated FP and DFB lasers have simple

structures (thus lower cost). They are used for transmission distance up to

200-400 km and data rate up to 2.5 Gb/s.

* For external modulations, an external optical modulator is positioned in line

with a continuous wave (CW) laser. Electrical signals act on the optical mod-

ulator, so the light that passes through is modulated. The major benefit of

the external modulators is that they have negligible phase jitter, as compared

with direct modulation. Thus external modulators are used in high data rate

(above 2.5 Gb/s) applications. An external modulator can be based on a Mach-

Zehnder interferometer structure fabricated on a LiNbO 3 substrate. Other types

of optical modulators include semiconductor multiple quantum well (MQW)

modulator and electro-refraction modulator.

Note that modulators are normally integrated with laser diodes to form modules,

which contain also electronic circuitry, TEC and controller, semiconductor amplifier,

and even electronic dispersion compensation, etc.

2.1.3 Receiver

The main function of a receiver is to detect a modulated photonic signal with a prede-

termined level of accuracy, which is measured in BER. Normally, a receiver consists of

optical preamplifier (optional), polarization filter (optional), power equalizer, focus-

ing lens, photodetector, electronic low-pass filter, and electronic circuits that extract



the clock from the incoming signal and determine the time and threshold level for

sampling (in on-off keying demodulation).

The most crucial component in a receiver is the photodetector, which is required to

have high power sensitivity, very fast response time (fast rise and fast fall time), and

a spectral response that matches the range of transmitted wavelengths. The types

of such photodetectors include the semiconductor positive intrinsic negative (PIN)

photodiode and the avalanche photodiode (APD).

* PIN photodiode is a semiconductor device that consists of an intrinsic (lightly

doped) region that is sandwiched between a p-type layer and a n-type layer.

In the reversely biased PIN photodiodes, each absorbed photon produces one

electron of photocurrent and thus the output current is proportional to the

input optical power.

* APD has a more sophisticated structure than PIN photodiode. In the reversely

biased APD, a strong electric field is formed in the junction, where the primary

electrons are accelerated and acquire enough energy to excite new electron-hole

pairs - an avalanche (multiplication) process arises. Because of the avalanche

process one arriving photon can produce 10 to 100 or so photoelectrons.

In general, an APD photodetector has a much higher gain a PIN photodetector

has. PINs, however, have a much faster switching speed, thus they have been largely

deployed in high bit rate (e.g., 10Gb/s) detection.

For the applications in metropolitan and access networks, transmitter module and

receiver module, along with drivers and other electronic circuitry are integrated to a

compact transceiver. DWDM transceivers include also wavelength locker by active

TEC control loop and protection circuit. The telecom carriers also seek for designs

with small size, low power consumption, and plugability for high density and flexible

deployment.



2.1.4 Regenerator and Optical Amplifier

An optical signal attenuates and becomes distorted as it travels in the fiber. To reach

destinations that are hundreds of kilometers away, the power level of the optical signal

must be periodically amplified and reconditioned, so that it can be detected with an

expected BER at the receiver side. In optical communication networks, there are two

distinct amplification devices: regenerator and optical amplifier.

* A regenerator transforms the optical signal to an electronic signal of the same

bit rate, amplifies it, and then converts the electronic signal back to optical

domain. Regenerators provide also additional functions, such as timing, error

recovery, and pulse shaping. Regenerators are classified as 2R or 3R amplifiers

- 2R, if they amplify and reshape; 3R, if they amplify, reshape, and retime.

Prior to the introduction of DWDM, the regenerators incur very high cost and

they are maintenance intensive, because for a multi-wavelength system an equal

number of regenerators are needed. Considering the fact that a fiber contains

multi-wavelengths and an optical link requires several stages of regenerations

(typically spaced every 50 km), the cost of regeneration is significant.

* An optical amplifier is a device based on conventional laser principles. It receives

one or more optical signals and simultaneously amplifies all wavelengths with-

out OEO conversion. This is a significant advantage over regenerators, since

only one device is required, instead of one for each wavelength. The key per-

formance parameters of optical amplifiers are gain, gain flatness (all signals are

amplified uniformly), noise level, and output power. There are different types

of optical amplifiers, such as semiconductor optical amplifiers (SOA) and fiber-

type amplifier: erbium-doped fiber amplifier (EDFA) or praseodymium-doped

fiber amplifier (PDFA). In addition, there are other amplifying devices that

are based on the nonlinear properties of optical materials, such as stimulated

Raman scattering (SRS) and stimulated Brillouin scattering (SBS) amplifiers.

Currently the most commonly used optical amplifiers are SOA and EDFA.

- A SOA is based on the same technology as a Fabry-Perot diode laser. The
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Figure 2-1: Schematics of a dual-pumped EDFA in-line with an optical path.

amplification is achieved by current injection of electrical pumping in its

active layer.

- An EDFA, as shown in Figure 2-1 is based on the stimulated emission of

erbium around 1550 nm, when the erbium doped in fiber is excited by

optical pumping at 980 nm or 1480 nm. EDFA can have single-pump for

shorter distance application or dual-pump for longer distance application.

PDFA operates at 1300 nm.

Optical amplifiers are IR amplifiers. That is, they only amplify the optical power. In

practice, the signals can travel up to 120 km between amplifiers, but need regeneration

after a distance of 600 to 1000 km.

2.1.5 Optical Multiplexer/Demultiplexer

An optical multiplexer receives several spatially separated wavelengths and form a

single beam that consists of all these wavelengths; an optical demultiplexer performs

the reverse functionality by spatially spliting the multi-wavelenght beam and coupling

them into individual fibers. Demultiplexer can be passive or active in design. The

passive demultiplexers are based on prisms, diffraction gratings, arrayed waveguide

gratings (AWG), or spectral filters. Active demultiplexers are based on a combination

of passive components and tunable filters. The two major technologies for DWDM



demultiplexer are thin film filter (TFF) and AWG, although a high-end bulk grating

can have a comparable performance as the AWG.

* A TFF is a multi-layer dielectric filter that allows one wavelength to pass while

reflects all other wavelengths. By cascading the filters in a substrate level inte-

gration, as shown in Figure 2-2, the wavelengths can be demultiplexed. TFFs

are stable and low cost, but have higher insertion loss, thus are normally used

in CWDM systems or DWDM systems with lower channel count.

* An AWG functions based on diffraction principle. It consists of an array of

curved-channel waveguides with a fix difference in path length between adjacent

channels. A lihgt beam with multiple wavelengths is launched into waveguides.

At the output port the light beams with different phase delays are recombined

and the interference among the beams diffracts different wavelengths to spa-

tially separated output channels, as illustrated in Figure 2-3. AWGs are batch

fabricated with planar lightwave circuits (PLC) technology by taking advantage

of the mature semiconductor technology. This offers cost advantage at the chip

level. Their insertion loss is independent of channel count, but their temper-

ature sensitivity increases the packaging complexity. They are mostly used in

high channel count applications (40 channels).

2.1.6 Optical Wavelength Converter

Wavelength converters are important devices that convert signal from one incoming

wavelength to another outgoing wavelength. An intelligent deployment of wavelength

conversion capability in an optical network can improve the utilization of the available

wavelength resources and reduce the blocking of traffic. There are three basic ways to

achieve wavelength conversion [6]: opto-electronic converter, cross-gain modulation,

and four-wave mixing.

* Opto-electronic approach is the most practical method today to realize wave-

length conversion - the input signal is converted to electronic form, regenerated,

and then retransmitted using a laser at a different wavelength.
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Figure 2-2: Schematics of cascaded TFF arrays as a wavelength demultiplexer.
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I_



Input data on p-type InP output data on ,

Active Region
•.•-, -

Target A
(unmodulated) Inverted data on A,

Figure 2-4: A Cross-gain modulating device transfers inverted data from one wave-

length channel to another.

* Cross-gain modulation is based on the gain saturation in an optical amplifier.

When high optical power is injected in the active region and the carrier con-

centration is depleted through stimulated emission, the optical gain is reduced.

Based on this, consider two wavelengths injected in the active region of an opti-

cal amplifier. Wavelength A1 is modulated with binary data, and wavelength A2

is not modulated. When the input bit in AX is a logic ONE (i.e., high power),

depletion occurs and A2 is blocked. When the input bit in A1 is a logic ZERO

(i.e., low power), depletion does not occur and A2 is at high power. Thus, a

transfer of inverted data from A1 to A2 takes place, as illustrated in Figure 2-4.

* Four-wave mixing is a nonlinear optical phenomenon. Consider three closely

spaced lightwave frequencies: fl, f2, and f3. Due to the nonlinear interaction of

the three, a fourth frequency is generated at fFWM = fi + f2 - f3, as shown in

Figure 2-5. If a modulated wavelength A1 is to be converted to another AFWM,

one can select two more wavelengths, A2 and A3, in addition to A• , such that

when all three are injected in the fiber device, a fourth wavelength AFWM is

generated due to four-wave mixing. By inserting a pass-band filter in series

with the fiber device, only the new wavelength AFWM is allowed to pass through

and thus a wavelength conversion is realized.

We note that the latter two all-optical approaches are not yet mature enough for

practical deployment.
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Figure 2-5: Principle of four-wave mixing.

2.1.7 Cross-Connect Fabrics

The cross-connection of communication channels is a key function in most commu-

nications systems. In electronic systems, the electronic cross-connecting fabric is

constructed with massively integrated circuits and is capable of interconnecting thou-

sands of inputs with thousands of outputs. The same interconnection functionality

is also crucial in optical communication systems. In general, optical (channel) cross-

connect can be accomplished in two ways:

* Optical-electrical-optical (OEO): the optical data streams are first converted

into electronic data streams, then cross-connected in electronic domain, and

converted back into optical data streams.

* All optical switching: the optical data streams are cross-connected within the

optical domain.

The OEO approach is currently more popular in handling medium aggregate band-

width due to the maturity in designing high-bandwidth and non-blocking electronic

cross-connect fabrics. However, for high aggregate bandwidth on the order of several

Tb/s, all-optical switching becomes more efficient and cost-effective. Currently, the

optical switch size is from 2 to perhaps 64. Larger sizes up to 1000 are in experimental

and planning phases. An economically feasible and reliable 1000 x 1000 all-photonic

A 1
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non-blocking and dynamically reconfigurable switch, though promising, remains as a

challenge.

All-optical cross-connect fabrics are based on at least three competing technolo-

gies: Mach-Zehnder waveguide grating router (WGR), solid-sate devices, and micro-

electromechanical systems (MEMS). It is still too early to predict which technology

will dominate, but the winner will likely offer network designer advantages of modu-

larity, upgradeability, protection, and fault tolerance.

* Mach-Zehnder WGR: this is the most promising switch with many input ports

and many output ports, as shown in Figure 2-6. In this device, a given wave-

length at any input port appears at a specified output port, an input-to-output

connectivity map is thus constructed. The functionality accomplished by this

type of free-space optical switching is also known as wavelength routing.

* Solid-sate device: this device is essentially a semiconductor directional coupler,

which can selectively change one of their optical properties on a path upon the

application of a control signal, as shown in Figure 2-7. The optical property in

consideration can be polarization, absorption, or index of refraction. Depending

on the type of material, the optical property can be changed by applying heat,

light, mechanical stress, electric current, or electric field (voltage). For example,

electric field can be applied to modulate the index of refraction of ferroelectric

LiNbO 3 crystals. Thin film heater can also be applied for the modulation. The

material type, the controlling mechanism, and the controlled property impact

the switching speed of the device, as well as the number of ports of the switch.

For example, switches made with LiNbO 3 crystal exhibit switching speeds in the

order of nanoseconds; whereas those made with SiO 2 on Si exhibit speeds in the

order of microseconds. In practice a multi-port switch is constructed by using

several 2 x 2 directional switches in multi-stage (Clos or Banyan) architecture,

as illustrated in Figure 2-8.

* MEMS: this technology uses traditional semiconductor process to fabricate mov-

able mirrors on a silicon substrate. These mirrors are placed vertically in the gap



Input Output

Figure 2-8: A multi-port switch is constructed by using many 2 x 2 solid-state direc-

tional switches in a multi-stage architecture.

of 3 intersecting optical paths and the mirrors' configurations can be electrically

actuated, as shown in Figure 2-9. This arrangement constructs an optical switch

whereby the mirror may either reflect a beam to different directions or block (or

pass through) a beam, depending on the fabrication technology. For example,

by rotating to two positions, a mirror directs a beam to one of two directions,

as shown in Figure 2-9 (a). In another construction, a mirror may be pulled

down (when a voltage is applied) or up (when no voltage), as shown in Figure

2-9 (b). There are in general two types of configurations of the micro switching

elements for constructing an all-optical switching fabric: two-dimensional (2-D)

switching fabrics and three-dimensional (3-D) switching fabrics (Figure 2-10).

2-D fabrics consist of two-dimensional arrays of micro switching elements that

have one degree of freedom. 3-D fabrics are built using two arrays of micro

switching elements, each of which has two degrees of freedom, allowing light to

be directed from one input port to any output port.

2.1.8 Optical Add/Drop Multiplexer and Optical Cross-connect

Optical Add/Drop Multiplexer

An optical add/drop muiltiplexer (OADM) operates between demultiplexing and mul-

tiplexing points to drop certain wavelengths and add others, as schematically illus-
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Figure 2-11: OADM or ROADM

trated in Figure 2-11. The first generation of OADM is a fixed one that is configured

to drop and add predetermined wavelengths, so it works as a wavelength blocker.

The new generation reconfigurable optical add/drop multiplexer (ROADM) works as

wavelength-selective switch that can drop any wavelength to any fiber. ROADMs were

first constructed for long haul DWDM networks. They started to move to the metro

and regional networks in the past two years, driven by the increasing requirements in

bandwidths and flexible service provisioning. ROADM is an optical subsystem with

a high level integration of several critical functionalities: wavelength demultiplexing,

switching, variable optical attenuator, and embedded control and circuitry. Various

combinations of technologies and architectures have been applied in the design, e.g.,

diffractive grating or AWG for demultiplexing, MEMS mirrors or planar waveguides

for switching, PLC technology for photonic integration, etc. The selection of specific

types of OADMs depends on the targeted sector of networks. Fixed OADMs are

used in a ring to reconfigure pass-through and add/drop wavelengths; Multi-degree

ROADMs are for ring-to-ring interconnects and mesh networks. In fact, the mi-

gration of metro networks to mesh architectures is a secondary driver for ROADM

deployment, next to cost.
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Optical Cross-connect

Compared with OADM or ROADM, an optical cross-connect (OXC) usually has

higher capacity and are more flexible in supporting different topological configura-

tions. OADM or ROADM are normally used for ring or interconnected ring topologies;

while an OXC can support an arbitrary mesh topology. In Section 2.2.2 and 2.2.3, we

will give a detailed discussion of different functionalities and configurations of OXC

in the context of the second and the third generation long-haul network architectures.

2.2 Architecture Evolution of Long-haul Networks

2.2.1 First Generation Architecture

In 1980s, the necessity of interconnecting telecom carriers' existing fiber networks

throughout the world led to the Synchronous Optical NETwork (SONET) standard

in North America and the Synchronous Digital Hierarchy (SDH) standard in Europe.

Both SONET and SDH define a hierarchy of interface rates that allow data streams

at different rates to be multiplexed in a network element (NE). Specific to SONET,

the established optical carrier (OC) levels are from OC-1 (51.8 Mb/s) to OC-3072

(159.2 Gb/s) 1. With these standard interfaces, the NEs convert the received signals,

which are of different formats (such as DS1, DS3, and ATM), into SONET format.

The first generation of long-haul infrastructure is based on a traditional SONET/SDH

ring topology, as illustrated in Figure 2-12. Point-to-point WDM links are terminated

and interconnected using SONET add-drop multiplexer (ADM), and the rings are

interconnected using digital cross-connect system (DCS). The ADMs also support

standard SONET/SDH protection schemes, such as automatic protection switch-

ing (APS), unidirectional path-switched rings (UPSR), or bi-directional line-switched

rings (BLSR). This architecture provided a reliable infrastructure, but suffered from

a number of drawbacks:

* Artificial partitioning of meshes into rings (or interconnected rings): although

'As of 2006, OC-3072 is still a work in progress. It has not yet been manufactured.



Figure 2-12: The first generation of long-haul infrastructure is based on a traditional

SONET/SDH ring topology. Point-to-point WDM links are terminated and intercon-

nected using SONET add-drop multiplexer (ADM), and the rings are interconnected

using digital cross-connect (DCS).

the physical topologies of most long-haul networks are meshes, they are arti-

ficially partitioned into rings. This results in back-to-back line systems along

many segments, which lead to inefficiencies in dimensioning network resources.

Identifying the optimum ring partitioning and balancing the traffic loads on

these rings are usually difficult, often resulting in increased bandwidth con-

sumption and CapEx.

* Manual provisioning of services: new service request has to be manually pro-

visioned, thus necessitating lengthy contracts, cumbersome provisioning se-

quences, and increased OpEx.

* Cumbersome scaling: stacking SONET rings to accommodate higher bandwidth

does not scale gracefully, especially when rings need to be interconnected. This

results in large increases in OpEx for real estate, power, and fiber management

issues.



2.2.2 Second Generation Architecture

The second generation long-haul networks are built with intelligent OEO grooming

switches that are connected by point-to-point WDM links in a mesh topology, as

shown in Figure 2-13. Figure 2-14 shows a functional diagram of an OEO grooming

switch. The central electronic switch core is essentially the same as that for a SONET

DCS. The core operates at some standard synchronous rate and may be implemented

in several stages, such as Clos non-blocking configuration [32]. Each individual in-

coming optical signal (wavelength) is converted to electronic signal, demodulated, and

regenerated, so that the payload (carried by each incoming wavelength) is adapted to

the format and the rate of the electronic switching fabric. The switching rate, which

depends on the clock speed of electronic switching fabric, is called port (interface)

rate. Electronic fabrics can "groom" several low-rate payloads to a port rate for a

better utilization of switching resources. When the payloads are of higher rate than

port rate, approaches such as parallel paths or inverse multiplexing [4] can be used

to "break up" the high-rate payload into several port-rate payloads. Currently some

commercially available switch fabrics can provide non-blocking switching capability

of up to 512 x 512 OC-48 (2.5 Gb/s) signals. These switching fabrics can also support

sub wavelength grooming at STS-1 granularity, as well as all standard SONET rates.

The OEO switches in long-haul networks are deployed in two phases. In the first

phase, they serve as high capacity replacements for SONET ADMs and DCS. In this

role, the OEO switches provide traditional ring termination and protection services

like BLSR, UPSR, and APS. This phase allows a graceful upgrade for carriers, without

obsolescing capital investments already made in line and terminal WDM equipment.

In the second phase, these OEO switches are deployed in a mesh topology. Compared

to a ring topology, the use of a mesh topology provides additional flexibility in terms

of bandwidth allocation and shared protection / restoration schemes. Moreover, an

intelligent network management system enables a number of advanced features that

were not possible with traditional SONET/SDH systems, such as point and click



Figure 2-13: The second generation long-haul networks are built with intelligent

OEO grooming switches that are connected by point-to-point WDM links in a mesh

topology.

provisioning (or tearing down) of end-to-end services and advanced dynamic mesh

restoration schemes.

One drawback of second-generation architecture lies in the all-electronic switching:

OEO transponders and large electronic switching cores are installed at each node.

They are expensive and power-consuming when operating at high data rates. As

traffic rates increase, the pure-electronic switching approach becomes less feasible.

2.2.3 Third Generation Architecture

The third generation long-haul networks are built with optical OXC switches that are

connected by point-to-point WDM links in a mesh topology, as shown in Figure 2-15.

The third generation networks are often referred to as "all-optical" networks, since

in contrary to the previous two generations, the switching for the third generation

networks is carried out in optical domain. All-optical networking can take different

forms, depending on how wavelength conversion and electronic processing are used in

setting up lightpaths.

In the purest form of optical networking, each lightpath is assigned a dedicated



Figure 2-14: Functional diagram of an OEO grooming switch.

Figure 2-15: The third generation long-haul networks are built with OXC switches

that are connected by point-to-point WDM links in a mesh topology.



wavelength and is routed from source to destination without any electronic processing

at intermediate nodes. Under the circumstance, the intermediate nodes do not per-

form any wavelength conversion, and every path must have the same wavelength on

each fiber. We call such a lightpath transparent, in the sense that the transmission

of the signal is indifferent to the payload being in specific format in terms of framing,

bit-rate, coding, etc. The respective OXC architecture is depicted in Figure 2-16. The

wavelength channels on each incoming fiber are first demultiplexed into separated lo-

cal jumper fibers. Then all copies of the same wavelength from each incoming fiber

are directed to an optical switch module where they can be routed to any outgoing

fiber and multiplexed with other wavelengths. Since wavelength channels are already

separated when they are demultiplexed, the middle stage optical switches do not have

to be wavelength selective; they need only to redirect the entire band of light from

each incoming fiber to a specific outgoing fiber. For this reason, 3-D or 2-D MEMs

switches are good candidates. The main advantage of a pure all-optical network is

that the wavelength converters are not required and the lightpaths are transparent to

payloads. Also, compared with OEO switches, OXCs have less power consumption

[6]. However, there are also disadvantages:

* Wavelength assignment is much more complex, because a lightpath must use

the same wavelength end-to-end. Routing and wavelength assignment can be a

difficult problem, as already discussed in Section 1.2.2.

* To avoid wavelength blocking that a path cannot be routed because a single

wavelength is not available on every span of any routing, more wavelength

channels and OXC ports are required at fibers and nodes, respectively.

Current technological limitations and issues in network management and control make

such all-optical networks difficult to implement. Performance assurance is especially

an issue when the lightpaths are to carry a data rate at 10 Gb/s or 40 Gb/s. At high

rates, the point-to-point transmission is so dependent on dispersion, noise, polariza-

tion, and nonlinearity of the fiber, etc., that the electronic regeneration at each OXC

node is almost required to maintain the end-to-end BER performance.
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Figure 2-16: Functional diagram of a wavelength-selective optical switch in a trans-

parent optical network.

In another form of optical networking, all the OXC nodes are capable of full re-

generation and wavelength conversion. This type of networks is often called opaque

optical networks. Figure 2-17 shows a representative architecture, in which the OXC

use a single optical space-switch core. Any incoming lightpath can be transformed

to any other wavelength on any outgoing fiber through conversion and remodulation.

The practical advantage is that, once the signal is converted to electronic domain,

monitoring and regeneration can be performed to maintain its quality. Also, wave-

length blocking problem can be eliminated. The capacity design and routing problem

are logically similar to that of traditional circuit switching network. The disadvantage

is that every node requires a large number of expensive transponders.

A third form of all-optical network can strike a balance between transparency and

opaqueness of the network. This type of network is often called transluscent optical

network. A translucent optical network consists of OXC nodes that can perform a

limited number of wavelength conversions using a shared pool of wavelength convert-



Figure 2-17: Functional diagram of an optical

converters in an opaque optical networks.

switch followed by separate wavelength

Figure 2-18: Functional diagram of an optical switch with

converters in a translucent optical network.

a small pool of wavelength



ers, as shown in Figure 2-18. If a lightpath does not require wavelength conversion, it

is space-switched to an appropriate outgoing fiber. Otherwise, the lightpath can be

locally switched to a free port in the pool of wavelength converters. From there, the

output of the wavelength converter is space-switched again to the desired output fiber

on its new wavelength. This architecture may be the most important and practical

approach for optical networking in the near future, because the blocking performance

is close to that of a network with full wavelength conversion at every node. That is,

the wavelength blocking can be greatly reduced by provisioning a small number of

wavelength converters.

2.3 Metropolitan Area Networks (MANs)

As mentioned in Chapter 1, while the growth of the capacity in long-haul network

has been tremendous, an economical deployment of capacity in metro and access

networks has been lagging behind. Aggregation and access have replaced capacity as

the new bottleneck. As a result, end-users' access to this capacity is still expensive

and limited to the data rates of kilobits and megabits per second. As such, seeking

low-cost architecture becomes ever important to ensure the efficient utilization of the

bandwidth glut. This is the motivation behind this thesis work. In this section, we

illustrate the key physical architectures of the next generation MAN in preparation

for the analysis in the chapters to follow.

Current access networks mostly operate in the electronic domain. The electronic-

based switching can't keep up with the future surge of traffic demand, mainly due to

the super-linear complexity increase (with respect to traffic) in route computation as

the network processing units of the OEO switch [2]. We believe that the introduction

of WDM technologies as both transport and switching mechanisms can significantly

improve the capabilities of the access network and enhance the range and the quality

of services. First, WDM technologies can increase the capacity that is critically

needed in a metropolitan environment. Second, WDM can provide intelligent network

functionality at the optical layer, as well as allows optical and electronic switching



Figure 2-19: Physical architecture of an optical metropolitan access network.

layer to operate in synergy. Finally, WDM provides a degree of transparency - services

can be carried by the network independent of data rate and format. This is very

important in an access environment, as the carriers need to serve the customers with

wide varieties of service demands.

The envisioned next generation MAN is divided hierarchically into a feeder net-

work and multiple distribution networks. End users are locally connected to the

distribution networks, which in turn are connected to the access nodes in the feeder

network, as shown in Figure 2-19. In the following, we present a high-level view of

the distribution and feeder portions of the MAN.

2.3.1 Distribution Networks

The distribution network directly interfaces with the customer premises and is respon-

sible for collecting and delivering traffic. Extending from access nodes, the distribu-

tion networks use several types of topologies, including tree, bus, and ring, as shown



in Figure 2-19. The choices of a specific type of topology depend on the required

redundancy and the geographical distribution of the customers. Also high-end user

can directly connect to an access node by bypassing the distribution network. The

distribution architecture is flexible with respect to the density and the allocation of

wavelengths: in some cases, each end-user can have a dedicated wavelength; in other

cases, many end users share a single wavelength.

An important feature of a distribution network is that it should be kept mostly

passive, i.e., it should contain as few amplifiers or active switches as possible. The

distribution portion of the network is geographically diverse, making it highly de-

sirable that required maintenance be minimized. Since a significant percentage of

network failures is due to power problems, deploying only passive components should

greatly improve the reliability of the network. Also, a distribution network, and hence

its cost, is shared among relatively fewer users. this is another motivation for using

mostly low-cost, low-maintenance passive components.

2.3.2 Feeder Networks

The main functionalities of feeder networks include: aggregating traffic, delivering

traffic to a hub (that interfaces with other MANs or long-haul networks), and trans-

ferring traffic from one distribution network to another. The feeder also supports

the protection switching for high reliability, differentiated Quality of Service (QoS),

and all network management and control functions of the access network. In short, a

feeder network is no different from a long-haul network in functionality. Given the fact

that there is significant traffic aggregation at the feeder, important core technology

building blocks such as OXCs and tunable filters can be used.

A feeder network consists of a set of access nodes and hub nodes that are con-

nected either in a ring or in a mesh topology (searching for the optimal topology

is the central theme of this thesis). Access nodes, equipped with optical and elec-

tronic switches, serve as intermediary points between the feeder and the distribution

portion of the network. As illustrated in Figure 2-20, demands from the distribu-

tion network enter the feeder at an access node via electronic switch where they



Figure 2-20: Functional diagram of an access node in the feeder of a MAN network.

are groomed (switched and multiplexed) into the fundamental units of inter-nodal

bandwidth. The groomed output channels from the electronic switch then enter the

optical switch, where they are directed to appropriate fiber of the feeder according

to a routing scheme determined by either a centralized or a distributed management

system. Note that a high-end user can bypass the distribution network and electronic

aggregation via a dedicated wavelength that is directly added/dropped at the access

node. Configurability in the access nodes provides efficient utilization of resources

while accommodating dynamic traffic patterns. By allowing resources to be shared,

it enables a given blocking probability to be achieved with fewer deployed switch-

ing ports and wavelengths. Configurability can be provided at the wavelength level

(shown in Figure 2-20), waveband level (not shown in Figure 2-20), or even fiber level

(not shown in Figure 2-20). Hub nodes serve as the interface between the access

network and a backbone network or another access network. Therefore a hub node is

equipped with optical and electronic switches of much higher capacities. A node can

serve as both an access and a hub node. At a feeder network, a fiber can carry 10 to

100 wavelength channels, each at a data rate of 2.5 Gb/s (OC-48), 10 Gb/s (OC-192),

and potentially higher. Since a feeder network can support a large number of users,



it allows more expensive equipments to be used; and at the same time, it makes the

scalability of network cost a crucial issue. As such, in this thesis, we concentrate on

finding a scalable feeder network architecture via the joint optimization over physical

topology, routing and wavelength assignment, and dimensioning switching resources.



Chapter 3

Traffic Model

As discussed in Chapter 2, access nodes serve as intermediary points between the

feeder and the distribution portion of the network. The key functionalities of an

access node are to aggregate and to deliver the traffics from and to the end users of

the distribution networks based on their common destinations, as illustrated in Figure

3-1. The aggregation of flows between each pair of access nodes constitutes the traffic

demand of the feeder network. From the perspective of designing an optical feeder

network, the traffic demand is normally specified in terms of the number of lightpaths

to be set up between each node pair. Each of theses lightpaths carry data streams in

an application-specific format and at a certain data rate.

In general, a network with limited resources cannot be designed to meet arbitrary

traffic demand, thus we need certain models that reflect different modes of operations.

In this chapter, we establish models to simulate the characteristics of the traffic

demand among access nodes. Each of these models has its pros and cons, and none of

them can provide an entirely complete and realistic account of network traffic demand.

Different models can lead to substantially different performance criteria. Therefore,

an understanding of the nature of the traffic in the target network and a selection of

an appropriate traffic model are critical to the success of identifying optimal network

architectures.

Based on different aspects of the network operation, past literatures on network

design and planning gave a variety of classifications on traffic models. We summarize
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Figure 3-1: An access node aggregates/delivers traffic from/to the

distribution network.

end users of the

these classifications here to facilitate the discussions.

* Offline and online model [33] [34]: in the offline model, an entire set of lightpaths

is given upfront; while in the online model, the demand for lightpaths arises

one at a time, and each lightpath must be provisioned on demand without

waiting for future demand to become known. Specifically, in the online model,

existing lightpaths cannot be rerouted to accommodate new lightpath requests.

An offline model normally concentrates on long-term network operations and

aggregated traffic demands; while an online model focuses on instantaneous

network states and individual connections.

* Static (deterministic) and random model[4] [33]: in a static model, the number

of lighpaths between a node pair is given as a fixed value; while in a random

traffic model, the amount of traffic between a node pair is treated as a random

variable.

* Blocking and non-blocking model [4] [33]: in a blocking model, the network is al-

lowed to block some lightpaths; while in a non-blocking model the network must

L
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support all lightpaths. For example, the traditional voice network is designed

to support the majority of call requests. Some call requests may be blocked due

to insufficient capacity in the network. With the blocking model, the goal is to

design the network to keep the blocking probability within an acceptable limit.

In the following, we provide detailed descriptions of the traffic models employed

in this thesis. In the process we also discuss the relative pros and cons of each model.

3.1 Deterministic (Static) Traffic Model

For the deterministic traffic model, the entire traffic demand is provided a priori. The

set of lightpaths to be set up is given in the form of a traffic matrix T = [tij], where

ti,j, a deterministic value, represents the number of lightpaths between node i and

j. With the deterministic traffic model, the network is designed to support all the

lightpath requests. In other words, this is an offline, static, and non-blocking model.

We note that sometimes the demand of lightpaths is also called logical links to

highlight the relationship to and the distinction from the physical links (edges) [4] [33].

If a lightpath is set up between node i and j, there is a corresponding logical link

(edge) that connects node i to node j. More precisely, the set of lightpath requests

forms a logical topology.

A deterministic traffic model can have an arbitrary demand pattern T = [ti,j].

Researches in network design and planning use two patterns extensively: all-to-all

uniform traffic and all-to-one traffic [4][35]. Each of these two demand patterns

captures the reality of the network traffic to certain degree, and, more importantly,

using them can keep the analysis tractable.

* All-to-all uniform traffic: each node sends exactly t lightpaths of traffic to each

of other nodes in the network. That is, in the traffic matrix T = [tij], we have

tij = t, for i $ j. In other words, the lightpaths constitute a fully connected

(complete) logical topology, as shown in Figure 3-2 (a). This type of demand

pattern occurs in dense metropolitan area networks where the communities of
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Figure 3-2: (a) Lightpaths in an all-to-all uniform traffic model constitute a fully

connected logical topology; (b) lightpaths in an all-to-one traffic model constitute a

star logical topology.

interest among all nodes are almost equal. Callers and other forms of commu-

nications from each node are as likely to go to one node as any other nodes in

the rest of the network.

* All-to-one traffic: in this case, one node in the network is designated as a hub.

Each of other nodes sends and receives t lightpaths of traffic to and from the

hub. For example, let node k be the hub. In the traffic matrix T = [ti,j], we

have ti,k = tk,i = t and tij = 0, for i,j # k. In other words, the lightpaths

constitute a star logical topology, as shown in Figure 3-2 (b). The hub traffic

pattern often characterizes metro or regional networks involving hub sites.

3.2 Random Traffic Model

The deterministic traffic model is effective when the traffic volumes and patterns

are reasonably well known in advance, such as voice-dominated traffic. But with

recent diversification of services, changing usage patterns, and data-dominated traffic,

an accurate forecast of future demand volumes and patterns for transport network

planning has become difficult. This is especially true in today's metro environment,
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Figure 3-3: In random traffic model, traffic between a node pair is treated as a random

variable.

in which the traffic demands among end users become more volatile [34], and the

uncertainties of the traffic forecast increase. For these scenarios, the deterministic

model becomes inadequate; we need a random model to account for the variability

associated with the traffic.

In the random traffic model, the demand between a node pair is characterized

by a random variable x, specified by its probability density function (PDF) f(z), as

shown in Figure 3-3. The mean e represents the mean (expected) value of the traffic

demand; while the standard deviation o measures the level of volatility of the demand

forecast.

Based on the information obtained from market analysis and business models, a

network designer can choose a suitable PDF that reflects the "best guess" of the de-

mand. When such information is unavailable, various known theoretical distributions

are employed to gauge the impact of the demand uncertainties [23]. Table 3.1 lists

the theoretical distributions and their corresponding PDFs used in this work. For fair

comparisons, the PDFs are all expressed with independently adjustable mean 2 and

standard deviation o. For example, the uniform distribution, which corresponds to

the case that only the maximum and the minimum of the demand (denoted as trax,



Table 3.1: Probability distributions expressed with independently adjustable mean

and standard deviation.

Distributions PDF with Independently Adjustable Mean 2

and Standard Deviation a

Uniform f(x) = , if a - V x < + va;

0, otherwise.

1-e , if > -T;

Exponential f(x) =
0, otherwise.

Half Normal
vf2bre- 2B if x > A;

0, otherwise.

A = 2 - (7r/2 - 1)-1a

B = (1 - 2/r) 2-

Upper Bound f(x) = if = + -P
1 - p, if x = 2 - P.

and tmin, respectively) are known, is normally specified by

1

f () tmx-tmin

0,

if tmin < x < tmax;

otherwise.

The definition given by (3.1) can be expressed with independently adjustable 2 and

standard a,

if t- /3rw < x < t + V fa;

otherwise,
(3.2)

where ± = (tmax + tmin)/2 and a 2 = (tmax - tmin) 2/12. Since a demand x is non-

negative, for a given mean x, the maximal possible standard deviation for the uniform

distribution is a = 2//3.

For a practical network provisioning under random traffic, it is often not necessary

(3.1)

1f(X) = 2

0,



(or impossible) to achieve totally non-blocking operation - it suffices if the blocking

probability is sufficiently low. In this thesis, we are primarily concerned with a special

blocking event that we call overflow. An overflow event occurs when the capacity

provisioned cannot accommodate the traffic demand. We call the probability of this

event as the overflow probability, denoted as p. For a random demand x and its

associated probability density function f(x), if t units of bandwidth are provisioned,

the overflow probability p is defined by

p = f f(x)dx. (3.3)

With the meaning of the fraction of unserved traffic, the overflow probability p is

usually used as a Quality of Service (QoS) parameter in the network provisioning and

is also called as shortage probability requirement. Given a fixed low value of p (e.g.,

p = 10-6 ), the network designer needs to determine the minimum bandwidth t to

meet the targeted overflow requirement.

For the convenience of analysis, we write t as t = 2 + qo , with q being a constant

to be determined. In this thesis, we call the constant q as the margin with the

meaning of extra dimensioning required. A larger q means that more bandwidth is

to be provisioned and the network cost will increase accordingly.

Among all PDFs with the same mean ± and standard deviation u, we prove

that there exists one probability distribution that requires the maximum (worst case)

margin q = (t - 2)/o,

{:'-p, if x = +Y o;

if(x) f (3.4)
1 -, if x = 2 - r U.

We term this distribution as the "Upper Bound" distribution and list it also in Table

3.1. We note that, in addition to being specified by a t and a a, the "Upper Bound"

distribution is also parameterized by an overflow probability p. In Chapter 8, we use

this distribution as an upper bound in comparing the results from different PDFs that

model the random demand. The proof of (3.4) is deferred to Appendix 8.5.3. For the

analysis in Chapter 8, we assume also that the network traffic between node pairs



is independent and identically distributed (i.i.d.). That is, traffic demands between

each node pair have the same PDF f(x), and they are independent from each other.

In summary, here we characterize the demand variability with an offline, random, and

blocking model.

3.3 Stochastic Traffic Model

The stochastic traffic model is used to depict the bursty traffic from the end-users,

by focusing on the instantaneous state of lightpath arrival and departure process, as

illustrated in Figure 3-4. In this model, theoretical distributions are usually used to

describe the process of lightpath establishment and release. For example, the requests

for lightpaths between each node pair may be assumed to form a Poisson process with

a known rate. The holding time (the time between establishment and release of a

lightpath) has an exponential distribution with a known rate. This kind of stochastic

model has traditionally been used in the design of voice network. For optical data

networks, it is difficult to predict the statistics of the lightpath arrivals and holding

times. This limits the validity of this model. Most of the current researches using

this model assume a Poisson traffic, although there have been some recent works on

non-Poisson traffic [36]. To summarize, this is usually an online and blocking model.
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Figure 3-4: The stochastic traffic model focuses on the instantaneous state of the

lightpath arrival and departure process.
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Chapter 4

Network Model

Having established various traffic models in Chapter 3, in this chapter, we take a

graph theoretical approach to set up models for network physical architectures. Be-

sides reviewing some important concepts in graph theory, we focus on presenting

graph theoretical results derived in this thesis work, especially the results of the Gen-

eralized Moore Graphs and other relevant regular topologies. Based on theses results,

we also provide close estimates for irregular topologies, for which analytical solutions

are difficult to obtain. The concepts and results in this chapter will serve as founda-

tions for the in-depth analysis of scalable network architectures in Chapter 5 through

Chapter 9.

4.1 Regular Topologies

On first order, the physical architecture of an optical network consists of cable plants,

with each cable containing numerous fibers, and optical switches that are intercon-

nected by the cables, as illustrated in Figure 4-1. Such a cable plant layout is called

the cable plant topology, which is determined by speculated traffic and target of op-

portunities for affordable rights of way, as well as other factors, such as bi-lateral

agreements between the carriers. How the fibers within the cables are connected is

called the physical (fiber) topology, which is a key design element that has a signifi-

cant leverage and is largely up to the network designer, as illustrated in Figure 4-2. In



Cable

Fibers

To Distri
Netw,

Figure 4-1: On first order, the physical architecture of an optical network consists

of cable plants and optical switches that interconnect the fiber plants. Each cable

contains numerous fibers.

this thesis, we follow the practice of representing a WDM mesh network as a (directed

or undirected) graph G(V, E). Vertices V (or nodes) represent the optical switches,

and (directed or undirected) edges E represent the fiber connections. A path from a

source node to a destination node consists of several edges. We call the number of

edges of a path as the number of hops.

The network physical topologies can be broadly classified into two categories:

regular and irregular (arbitrary). In this work we mostly focus on networks with

regular topologies, since with their symmetric and well-defined connectivity pattern,

they are analytically more tractable than irregular ones. Regular topologies are good

approximations for MANs and local area networks (LANs), and can also be used as

guidelines for wide area networks (WANs). For an irregular cable plant topology, a

regular fiber connection topology can be constructed on top of it by connecting fibers
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(a) (b)

Figure 4-2: A regular fiber connection topology (shown in dashed line in (b)) can be

constructed on an irregular cable plant topology (shown in solid line in (a) and (b))

by connecting fibers at nodes via static patch panel. For example, fiber connection

between node 1 and node 2 can be implemented by patching fibers in the cable 1 -* 3

and 3 -* 2 at node 3.

via static patch panel, as illustrated in Figure 4-2. The analysis of such constructed

regular topologies can provide estimates for the irregular ones. A detailed study of

the irregular topologies by this method will be presented in Chapter 9.

In graph theory literatures, regular topology is defined differently in various con-

texts. In this thesis, we provide our definition of regular topology to cover a broad

class of topologies that exhibit symmetric and well-defined structures. We say that a

topology is regular of node degree A, when it satisfies the following conditions:

* There are A outgoing edges from and A incoming edges to each of its nodes.

* Each node links to A other nodes following the same set of (predefined) con-

nectivity rules. In other words, the regular topologies studied in this work have

nodal symmetry.



A topology needs to be A-connected. That is, n(i) _ A, 1 < i < D - 1, as

defined in [37]. In this definition, n(i) denotes the number of nodes that are i

hops away from a node via minimum hop routing; D denotes the diameter of a

topology - the maximum distance among all possible node pairs via minimum

hop routing.

Besides node degree, diameter, and connectivity rule, some other parameters are

used to characterize a regular topology:

* The average minimum hop distance Hmin between node pairs is an important

quality measure for a network. For a regular topology of N nodes, Hmin can be

expressed as
D

Hmin -N i n (i ) . (4.1)
i=1

Hmin is usually used as an indicator of the propagation delay performance of a

network [29] [33]. In this thesis, we will show that it can also be interpreted as

a measure for the switching and wavelength resources required for supporting

uniform all-to-all traffic. As such, Hmin serves as a fundamental parameter and

has an ultra importance in our work.

* The load of an edge is defined as the number of source and destination pairs

using this edge. Obviously, for a given network and traffic demand, the load

depends on the routing strategies. Assume that minimum hop routing is used

and there is one unit of traffic for each source-destination pair (t = 1), the

total (aggregated) load on the network, denoted as L, is related to the average

minimum hop distance Hmin in a simple way,
D

L(N,A) = N in(i)
i=l

=N(N - 1)Hmin(N, A). (4.2)

The average load on each edge Lavg for a network of size N and node degree A

is

L (N - 1)Hmin(N, A) (4.3)
L~N(N, A = (4.3)



Next we define Li, Lmax, and Lmin as the load on the edge i (i E E), the

maximum load (also called congestion), and the minimum load, respectively,

all under minimum hop routing algorithms. To achieve a minimum congestion,

the best we can do is to distribute the total load evenly over each fiber. That

is, if Li = Lavg for every i E E, we have an evenly distributed load.

4.2 Moore Graph and Generalized Moore Graph

4.2.1 Moore Graph

As to be presented in the subsequent chapters, Moore Graphs are a class of graphs

that have great importance in this thesis. The Moore Graph concept stems from the

problem of finding an upper bound on the number of vertices in a graph, given a

diameter D and a maximum node degree Amax. Such a bound, which was established

by E. F. Moore, exists for both directed and undirected graphs. For a directed graph,

the maximum number of nodes that can be supported is

D

Nmax(Amax, D) <1 + (Amax) i

i=1

maxD+ I
- 1

- max (4.4)

Amax - 1

For an undirected graph, the maximum number of nodes that can be supported is

D-1

Nmax(Amax, D) < 1 + Amax (Amax - 1)
i=O

= +Amax (Amax" D (4.5)
Amax - 2

For a regular graph of node degree A, we have Amax = A . We call the class of regular

graphs for which N(A, D) = Nmax(A, D) as Moore Graphs. In other words, a Moore

Graph is an ideal (not necessarily realizable) regular topology, in which each node

reaches every other node in a fully populated A-ary minimum hop routing spanning

tree. (A spanning tree is a connected subgraph that includes all the nodes and has
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Figure 4-3: (a) The Petersen Graph, N = 10, A = 3, and D = 2; (b) The routing

spanning tree from node 1.

no cycles). As an example, Figure 4-3 shows the Petersen Graph - one of the existing

Moore Graphs - and the routing spanning tree from node 1.

To our interests, the most important property of a Moore Graph is that, among

regular topologies with the same node number and node degree, a Moore Graph

provides the lower bound on the average minimum hop distance. For given D and A,

the lower bound on the average minimum hop distances, denoted as Hmin(A, D) , is

given by

DA D  1
Hmin(A, D) = AD 1(4.6)

AD -1 A-1

for a directed Moore Graph; or is given by

D(A - 1)D 1
Hmin(A, D)= 1 D  1 (4.7)

(A- 1)D - 1 A- 2'

for an undirected Moore Graph.

Directed Moore Graphs exist only for trivial cases where A = 1 or D = 1 [38].

Undirected Moore Graphs also exist, though there are only few of them. For D = 1 (

of any value), we have Moore Graphs that are full (complete) graphs; and for A = 2,

(b)
Lpvel Li-vpl
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Figure 4-4: The minimum hop routing spanning trees of the Petersen Graph.

we have Moore Graphs that are rings (with odd number of nodes). The Petersen

Graph, show in 4-3, is with N = 10, A = 3, and D = 2. The Hoffman-Singleton

Graph, with N = 50, A = 7, and D = 2, is also an existing Moore Graphs [39]. A

Moore Graph with A = 57 and D = 2 may exist, though its construction has not been

realized yet [39]. It has been shown that a (undirected) Moore Graph with D > 3

does not exist [39].

Next we use the Petersen Graph to show some important properties of Moore

Graphs. To facilitate the discussion, we relabel node 1 to node 10 as node A to node

J. By enumerating the routing spanning trees of all nodes, as shown in Figure 4-4, we

make the following observations and generalizations. First, the minimum hop routing

spanning tree from each node of the Petersen Graph is unique. For instance, source

node A can reach nodes E, F, and B on the first level of its routing spanning tree. Also

node A can reach D and J only through E; reach I and H only through F; and reach

G and C only through B. Every source-destination pair has a unique minimum hop

path in the Petersen Graph. For example, A can only reach D via the minimum hop

path A -- E --+ D. The observation can be generalized as in Theorem 1. A detailed



Figure 4-5: The load generated on edge AE by uniform all-to-all traffic.

proof is provided in Appendix 4.5.1.

Theorem 1 Each node of a Moore Graph has a unique minimum hop routing span-

ning tree. Thus, every source destination pair of a Moore Graph has a unique mini-

mum hop path.

Second, the minimum hop routing perfectly distributes the load on every edge of the

Petersen Graph. As illustrated in Figure 4-4, edge AE is used as the 1st hop by

lightpaths A -4 E, A -+ E -+ D, and A - E -+ J; it is also used as the 2nd hop by

B - A --+ E and F --+ A -4 E. In total, 5 source-destination pairs use the edge AE,

generating a load of 5, as shown in Figure 4-5. It is easy to verify that every edge has

the exact load of 5. As provided in Appendix 4.5.2, the same result holds for other

Moore Graphs, as summarized in Theorem 2.

Theorem 2 For a Moore Graph of degree A and diameter D, balanced load distri-

bution can be achieved for the static uniform all-to-all traffic, with each edge having

a load of Z=l(A - 1)i- 1

4.2.2 Generalized Moore Graph

A Generalized Moore Graph refers to a regular (directed or undirected) graph, which

does not achieve the upper bound on the number of nodes (as given in (4.4) and
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Figure 4-6: (a) The Heawood Graph with N = 14, A = 3, and D = 3; (b) The

routing spanning tree of node 1.

(4.5)), but achieves the lower bound on the average minimum hop distance [?][40]. In

other words, Moore Graphs belong to a special subset of Generalized Moore Graphs.

In a Generalized Moore Graph, the routing spanning tree has all the levels that are

full, except possibly the last level. Figure 4-6 shows an example of Generalized Moore

Graphs - Heawood Graph (N = 14, A = 3, D = 3) and the routing spanning tree

from node 1.

For a directed Generalized Moore Graph with size N and node degree A, the

diameter is

D(N, A) = [logA (1 + N(A - 1))] - 1, (4.8)

and the average minimum hop distance is

Hin(N, A) = A - AD+1 + ND(A - 1)2 + D(A - 1)
HM (N, ) (4.9)(N - 1)(A - 1)2

The average minimum hop distance can be approximated as

Hin(N, A) ; loga [1 + N(A - 1)] - 1. (4.10)

S

t s1 2nd rd



As N - oo, we have the asymptotic scaling of the average minimum hop distance

In N
Hym (N, A) - log a N = In (4.11)

The derivation of (4.11) is provided in Appendix 4.5.3.

For an undirected Generalized Moore Graph with size N and node degree A, the

diameter is

D(N, A) = g N(A -2) + 2, (4.12)

and the average minimum hop distance is

A [1 - (A - 1)D] + ND(A - 2) 2 + 2D(A - 2)
HM (N, A) = (N - 1)(A - 2)2 (4.13)(N- 1)(A- 2)2

This average minimum hop distance can be approximated as

HM (N, A) [logA 1 N(A- 2) + 2 (4.14)

As N -- oo, we have the asymptotic scaling of the average minimum hop distance

In NH ym(A, N) -+ log l N = n(- 1)(4.15)asyM In(A - 1)(

Compared with Moore Graphs, the routing spanning tree of a Generalized Moore

Graph is not unique, as shown in Figure 4-7 using the example of the Heawood Graph.

In general, there are multiple minimum-hop paths between a source-destination pair.

As a result, minimum hop routing does not necessarily distribute the load evenly

on every edge, even under a uniform traffic. Routing and load distribution of a

Generalized Moore Graph will be discussed in detail in Chapter 7 in the context of

solving RWA problems.

In contrast to Moore Graphs, there exists a richer class of directed [40] and undi-

rected [40] Generalized Moore Graphs. For example, in [41] directed Generalized

Moore Graphs with size up to a 100 are constructed for A = 3, A = 4, and A = 5.

4.3 Other Important Regular Topologies

In this section, we provide descriptions of some other important regular network

topologies and a comparative study of their various performance metrics, e.g., average
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Figure 4-7: Two different routing spanning trees from node 1 for the Heawood Graph.

minimum hop distance, routing complexity, and scalability. These topologies, which

will be used as examples in facilitating the analysis in the subsequent chapters, include

(one-sided) A-nearest Neighbors, Symmetric Hamilton Graph, ShuffleNets, de Bruijn

Graph, Kautz Graph, GEMNet, Manhattan Street Network (MSN), and (binary)

Hypercube. Among these topologies, (one-sided) A-nearest Neighbors and Symmetric

Hamilton Graph are constructed and analyzed first time in this thesis work, to the

best of our knowledge. As such, these two classes of topologies will be described in

detail in the following. The rest of the topologies have been well studied in various

literatures, thus we give only a brief summary of the properties that are relevant to

this work.

4.3.1 (One-Sided) A-Nearest Neighbors Topology

Figure 4-8 depicts a 6-node (one-sided) A-nearest Neighbors, in which each node

connects to its 3 closest (one-sided) neighbors in a cyclic fashion. For succinctness,

we refer (one-sided) A-nearest Neighbors simply as A-nearest Neighbors in the rest

of the thesis. In a general way, for each node i, there are A directed connections from

node i to node Ii + 1 N, i + 21N, ... , li + AIN , where IXIN denotes x module over N.
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Figure 4-8: (One-sided) A-nearest Neighbors topology (N = 6, A = 3, and D = 2).

For a A-nearest Neighbor topology, the network diameter D is given by

D = NA 1. (4.16)

The average minimum hop distance is given by

A N-1 A ([N-_1(2
HmNin= 2(N - 1) 2(N 1) A ' (4.17)

if N can not be evenly divided by A; and

1 N-1

m'in 2 2A (4.18)

if N can be evenly divided by A. The derivations of (4.17) and (4.18) are provided

in Appendix 4.5.4.

Compared with the Generalized Moore Graphs, a A-nearest Neighbors topology

provides the upper bound on the average minimum hop distance among all regu-

lar topologies with the same node number and node degree, as summarized in the

following theorem.
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Figure 4-9: (a) (One-sided) A-nearest Neighbors topology (N = 10, A = 3, and

D = 3 ); (b) Routing spanning tree from node 1.

Theorem 3 A A-nearest Neighbors Topology provides the upper bound on the average

minimum hop distance among all regular topologies with the same node number N and

node degree A.

A rigorous substantiation is provided in Appendix 4.5.5. The intuition is illustrated

in Figure 4-9, using a A-nearest Neighbors topology with N = 10, A = 3, and D = 3

as an example. From the point of view of a routing spanning tree, each of its level

is packed with A nodes - the minimum number of nodes required to maintain the

connectivity (compared with A' nodes at ith level, with 1 < i < D - 1, for a directed

Generalized Moore Graph).

This class of topologies also exhibits some desired properties in terms of modu-

larity:

* Since each node connects to its A closest neighbors in a cyclic fashion, a A-

nearest Neighbors topology allows us to construct a N-node network with any

node degree from 1 to N - 1. This good property provides us flexibility for the

analysis in Chapter 5 through Chapter 9.

* For the same network size N, a topology of degree A+i (i = 1, 2,..., N-1- A )

can be built on top of a topology of degree A, without tearing down the existing

fiber connections (edges), as shown in Figure 4-10.
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New Edges

Figure 4-10: For the same network size N, a A + i-nearest Neighbors of degree A + i

(i = 1, 2, ... , N - 1 - A ) can be built on top of a A-nearest Neighbors of degree A,

without tearing down the existing edges.

4.3.2 Symmetric Hamilton Graph

This class of graphs belongs to a subset of Hamilton Graph (a graph containing a

cycle that connects all the nodes and passes through each node exactly once). Their

specific constructions are introduced first time in this thesis work. In a Symmetric

Hamilton Graph of node degree A, each node connects to other A nodes with an even

"spacing" between nodes in a cyclic fashion, as shown in Figure 4-11. That is, denote

an integer s as the spacing parameter, there are directed edges from each node i to

nodes i+1IN, i + + SIN, Ii+1+2SIN, ... , Ii+1+ksIN, ... , i+N-1N, where k

is an integer satisfying k < A - 1 and zXIN denotes x module over N. The size of a

Symmetric Hamilton Graph is determined by both s and A, that is, N = (A - 1)s+2.

Figure 4-12 shows some other examples of the Symmetric Hamilton Graphs.

The diameter of a Symmetric Hamilton Graph is given by

D q+= 1 if s is odd;
D = , i (4.19)

[-9 -], if s is even.
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Figure 4-11: A Symmetric Hamilton Graph with N = 6, A = 3, s = 2, and D = 2.

The expression, for average minimum hop distance as a function of N, A, and s can

be derived as

A (N-A-1)(N+5A-7)
Hi N-- 4(N-1)(A-1)

A (N-2)2 +4(N-2)(A-1)-4(A-1)
N-1 4(N-1)(A-1)

if s is odd;

if s is even.
(4.20)

The derivations of (4.19) and (4.20) are provided in Appendix 4.5.6.

It is worthy,to point out that when A = 2, a Symmetric Hamilton Graph is simply

a (undirected) ring topology. By substituting A = 2 into (4.20), we have the following

expression:

N+1Hmin =
N+1 + 1

4 4(N-1)

if N is odd;

if N is even,

which agrees with the expression for the average minimum hop distance of a ring

network [33].

For a Symmetric Hamilton Graph, Hmin can be approximated by (the approxima-

tion is denoted as Hain):

3 N-2
mn 4 4(A - 1)' (4.22)
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(c) (d)

Figure 4-12: Examples of Symmetric Hamilton Graphs: (a) N = 8, A = 4, s = 2,

and D= 2 (b) N 8 A=- 3, s =3, and D=- 2; (c) N= 10, A =3, s=- 4, and

D=2; (d) N- = 11, A=4, s =3, and D = 2.
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which is convex in A. When A <«N , we have the asymptotic average hop distance

N
Hasym- 4(A - 1) (4.23)

It is interesting to note that the class of Symmetric Hamilton Graph includes some

instances of Generalized Moore Graphs. For example, Symmetric Hamilton Graphs

shown in 4-12 (a), (b), and (d) are Generalized Moore Graphs.

Unlike a A-nearest Neighbors topology, the construction of a N-node Symmetric

Hamilton Graph has fewer choices on node degree, owing to the restriction of N =

(A - 1)s + 2. However, we still have more options on node degree, especially when N

is large, compared with other types of topologies (e.g., ShuffleNet, De Bruijn Graphs,

and Kautz Graphs). As an illustrative example, a ShuffieNet with N = 18 can only

have a node degree 3; while a Symmetric Hamilton Graph of the same size can have

node degrees of 2, 3, 5, 9, or 17.

4.3.3 ShuffieNet

In a ShuffleNet the nodes are arranged in columns. Given a node degree A and a

column number k, a ShuffleNet, denoted as SN(A, k), consists of k columns of nodes.

With each column having Ak nodes, the total number of nodes is given by N = kAk

(k = 1, 2, 3 .. .). The kth column connects to the first column, as if the topology

is wrapped around a cylinder. In general, in a SN(A, k), a node (r, c) on row r and

column c is connected to nodes (JA - rlAk, IC + Ilk ), (JA . rIAk + 1, IC + lk), ... , (

IA .rl• + A - 1, c+ llk), where Ixly denotes x module over y. That is, the structure

of a ShuffieNet can be viewed as a spanning tree rooted at each node, as shown by

the nodes and edges that are highlighted in red in Figure 4-13. The diameter of a

ShuffleNet is given by [42]

D = 2k - 1. (4.24)

The average minimum hop distance is given by [42]

Hmin(A, k) = kAk(A - 1)(3k - 1) - 2k(Ak - 1)
2(A - 1)(kAk - 1) (4.25)
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Figure 4-13: The ShuffleNet SN(2,2) with N = 8, A = 2, k = 2, and D = 2k - 1 = 3.

Next, we describe a simple addressing and (fixed) routing scheme for the Shuf-

fleNet [42]. We first assign a node (r, c) in a SN(A, k) an address (rk-1rk-2"" ' 1ro0 , c).

That is, we write every r in terms of base-A digits and every c in decimal digits. The

routing algorithm involves comparing the address of every node (i, a) on the route

(starting with the source node) with the address of the destination node (rd, cd). If

(i, 6)=(rd, Cd), the destination node is reached. If (?, a) # (rd , cd), we need to first

calculate the distance between (ý, 6) and (rd, Cd), which is denoted as X and is given

as following:

X = k + cd -, ifCd a; (4.26)

k, if cd E= .

The address of the next node on the route follows (rk-2rk-3 ... r 1ror 1, C + 1lk).

That is, out of the A nodes in the next column to which node (i, 8) may route traffic

to, we choose the node whose coordinate r has rx_l as the least significant digit.

As an example, for a SN(2,2), the minimum hop path from (0,0) to (1,0) follows
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Figure 4-14: The de Bruijn Graph B(2,3) with N = 8, A = 2, and D = 3.

(0, 0) -+ (0, 1) -- (1, 0), as shown in Figure 4-13.

For minimum hop routing and uniform traffic demand, the total network load

cannot be evenly distributed - some of the links are more congested than others.

4.3.4 De Bruijn Graph

Given a node degree A (A > 2) and a diameter D (D > 1), a de Bruijn Graph,

denoted by B(A, D), is a regular directed graph having N = AD nodes [43]. Each

node in a de Bruijn Graph is represented by a string of D digits, each of which takes

values from {0, 1, 2, .- - , D-1}. There is a directed edge from node (al, a2, . . ., aD)

to node (bl, b2, ... , bD), if and only if bi = ai+l for 1 < i < D - 1. In other words,

there is one-to-one correspondence between all possible states of a A-shift register of

length D and the connectivity from node i to node j. For example, in the de Bruijn

Graph B(2,3), shown in Figure 4-14, there are direct edges from node 001 to node 010

and to node 011, since one (left) shift operation on string 001 yields string 010 and

string 011. Note that for a de Bruijn Graph , there are D nodes that have self-loops,
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which are presented in the graph (such as node 0 (000) and node 7 (111) in a B(2,3),

as shown in Figure 4-14), but will not be presented in the actual network.

Next we illustrate the routing algorithm for a de Bruijn Graph [43]. From the

shift register analogy, an edge from node A to node B can be represented by a string

of D + 1 digits, with the first D digits representing node A and the last D digits

representing node B. Similarly, any path of k hops can be represented by a string of

D + k digits. For better explaining the routing algorithm, we also need to define two

operations on strings:

* shift-match(i, A, B) operates on two strings (al, a2 , ... , aD) and (bl, b2, ... , bD).

The operation yields true, if and only if (bl, b2 , ... , bD-i) = (ai+, ai+2 , *.. , aD)

for 0 < i < D; otherwise, the operation yields false.

* merge(i, A, B) combines two strings (a,, a2, . .. , aD) and (b1, b2 , ... , bD) into a

new string of length D+i, in the form of (al, a2, . .. , aD, bD-i+l, bD-i+2, ... , bD).

The minimum hop path routing algorithm from a node A = (a,, a2, ... , aD) to a

node B = (bl, b2 , ... , bD) can then be described as follows:

Using B(2,3) as an example, the minimum hop path from node 001 to node 101

follows 001 --+ 010 -- 101. We also note that the minimum hop path between a

source-destination pair is unique.

There is no closed form expression for the average minimum hop distance of a de

Bruijn Graph. In [43], a lower and an upper bound on the average minimum hop

distance are presented as:

N A logAN
(logA N) N+ Hmin(N, A)

N - 1 (A - 1)2 (N- 1)(A- 1) -

N 1
< (loga N) (4 .27)

N - 1 (A - 1)
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i = 0;

while shift - match(i, A, B) is false

i=ii+1;

end while

min-hop-path = merge(i, A, B).



for A > 2 and D > 1.

We next determine the edge loading of the minimum hop routing. The number

of edges in the network is NA - A, after excluding the edges from a node to itself.

Under the uniform traffic (t = 1), the average load on each edge is given by

Hmin(N, A)N(N - 1) D-1
Lav = NA - A = Hmin(N, A)A (4.28)

In a de Brujin Graph, even for uniform traffic, the minimum hop routing algorithm

can not distribute the load evenly on each edge, due to the graph's inherent asymme-

try (some nodes have self-loops). Other routing algorithms, such as maximum hop

routing, can mitigate the discrepancies of loadings on the edges, albeit at an expense

of increasing the total load on the network [43].

4.3.5 Kautz Graph

Given a node degree A and a diameter D, a Kautz Graph, denoted by Ka(A,D),

satisfies N = AD + AD-1. Similar to a de Brujin Graph, the nodes of a Kautz Graph

are also represented by all possible strings of length D, with each symbol of the

string taking the values from the set {0, 1, 2, ... , A}. Compared with a de Brujin

Graph, these strings have the restrictions that two consecutive symbols are always

different. Thus it is simple to see that there are N = (A + 1)AD - 1 = AD + AD- 1

such strings, since the first symbol of such a string can be chosen in A + 1 possible

ways and all subsequent ones in A possible ways. Two nodes (strings) A and B will

have an edge from A to B, if B is a shifted version of A. That is, there is an edge from

A = (a,, a2, . - -, aD) to a node B = (a2, a3, ... , aD, bl) with ai f ai+l, 1 < i < D-1,

and bl an. Compared with de Bruijn graphs, none of the nodes in a Kautz Graph

has a self-loop, since two consecutive symbols in a string always differ. An example

of Kautz Graph is shown in Figure 4-15.

The minimum hop routing algorithm from a source node to a destination node in

a Kautz Graph is similar to that in a de Brujin Graph. The algorithm also utilizes the

string representation of the nodes and the two string operations - shift-match(i, A, B)

and merge(i, A, B). Using Ka(2,3) as an example, the minimum hop path from node

111



Figure 4-15: The Kautz Graph Ka(2,3)with N = 12, A = 2, and D = 3.

201 to node 212 is 201 -- 012 -- 121 -ý 212. The minimum hop path for a source-

destination pair is also unique in a Kautz Graph. There is no closed form expression

for average minimum hop distance. In [44], a recursive upper bound on the minimum

hop distance is given as:

NA- A D +1
Hmin(A, D + 1) < 1 + Hmin(A, D) - 1 (4.29)

NA -1 2(NA - 1)(

In a Kautz Graph, even for uniform traffic, the minimum hop routing algorithm

can not distribute the load evenly on each link. Other routing algorithms, such as

maximum hop routing, can also be applied to make the load more evenly distributed,

albeit at an expense of increasing the total load on the network [44].

4.3.6 GEMNet

Generalized Shuffle Exchange Multihop NETwork (GEMNET)[45] is a generaliza-

tion of shuffle-exchange network and it can represent a family of network structures

(including ShuffleNet and de Bruijn Graph as special cases) for an arbitrary num-

ber of nodes. For a network of N nodes, if N is evenly divisible by an integer k,
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Figure 4-16: The GEMNet with N = 12, A = 2, and D = 3.
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there is a GEMNet with k columns. In the corresponding (k, m, A) GEMNet, the

N = k x m nodes are arranged in k columns (k > 1 ) and m rows (m > 1 ) with

each node having a degree A. Node a (a = 0, 1, 2, ... , N - 1) is located at column

c (c = 0, 1, 2, ... , k - 1) and row r (r = 0, 1, 2, ... , m - 1 ), where and c = lalk,
r = [a/k], and |xly denotes x module over y. The A edges emanating out of a node

are referred to as i-edge, i = 0, 1, 2, ... , A - 1. The i-edge from the node (c, r) is

connected to node (6, ý) for i = 0, 1, 2, ... , A- i, where a = Ic+ 1 k and = [r x A].

Figure 4-16 shows a 10-Node GEMNet with k = 2, m = 5, and A = 2.

The minimum hop routing algorithm is given as follows. Let (cs, rs) and (Cd, rd) be

the locations of the source and destination node, respectively. The column distance,

6, from the source node to the destination node is given by

6 = 1 + [(k - 1) + (Cd - Cs)lk. (4.30)

The hop distance from the source node to the destination node is given by the smallest

integer h of the form 6 + ik with i = 0, 1,..., satisfying the following expression:

R = I[M + rd - I(rsh)IM]IM < Ah. (4.31)

R, called as the route code, specifies the shortest route from the source to the desti-

nation, when it is expressed as a sequence of h base-A digits. For example, for the

route from source node (0,0) to destination node (1,4), we have c, = 0, Cd = 1, r, = 0,

and rd = 4. With (4.30) we have 6 = 1. Thus we have

R = [5-+4- (0.2h)15] 15 <2h.

Solving this inequality yields h = 3 and R = (100)bae-2. Thus minimum hop path

from node (0,0) to node (1,4) is (0,0) - (1, 1) -* (0, 2) -+ (1,4).

There is no closed form expression for the average minimum hop distance in GEM-

Net. However, tight upper and lower bounds of the average minimum hop distance

are obtained in [45] as

mk(D+ 1 - 1k) -- k A-k(D 1-1
Hupper(m, k, A) =- 2 11 (4.32)

mk - 1
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and

S S+k Li/kJ

Hiower(m, k, A) = iA/ + E i(M - A/ik Z Aki).
i=O i=S+1 j=0

In (4.33) S is given by

(4.33)

if AD-klk (Ak)F+-1 < M;

otherwise,

and F is given by

F = LD-k

4.3.7 Manhattan Street Network (MSN)

Developed by Maxemchuk in 1985, MSN (also called as a Two dimensional Torus)

is a directed and two connected network that resembles the geographical topology of

the streets and avenues of Manhattan, as shown in Figure 4-17. For a N-node MSN

with m rows and k columns, the average minimum hop distance can be computed as

N/4(m+k+4)-k-4
N-I

N/4(m+k+4)-m-4

Hmin -- N-l

N/4(m+k+4)-k
N-I

N/4(m+k+4)-m-k-4
N-I

if m/2 is even, k/2 is odd;

if m/2 is odd, k/2 is even;

if m/2 is even, k/2 is even;

if m/2 is odd, k/2 is odd.

For large N and m = k, we have Hmin , VN• [29]. [29] shows that if both m and

k are divisible by 4, a minimum hop routing can distribute the load evenly on each

edge (fiber), under the uniform all-to-all traffic.

4.3.8 Binary Hypercube

A A-cube graph [46] is a degree A undirected graph consisting of N = 2A nodes that

are labeled from 0 to 2A- 1 in base-2 numbers. There is an edge between any two
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Figure 4-17: A 16-node (4 x 4)Manhattan Street Network.

vertices, if and only if the binary representations of their labels differ by only one bit.

As an example, Figure 4-18 shows an 8-node 3-cube (N - 23 = 8).

The minimum hop routing in a binary hypercube is quite simple. Let x 1x 2X3 ... XA

and Y1Y2Y3 ... YA be the base-2 representations of node x and y, respectively. The

minimum hop path between these two nodes XlX2X3 ... XA and Y1Y2Y3 ... YA in a A-

dimensional binary hypercube corresponds to correcting the first different bit in x

and y, then the second, and so on to the last bit different in x and y. For convenience

but without losing generality, we assume that A and B differ in their first bits. Then

the minimum hop path from x to y is given as the following:

x = node A = XIX2X3 ... xixi+1 ... XA;

= ylZ2x 3 ... xii+l ... XA

= YlY2X3 .. .ii+l ... A;

y = node B = Y1Y2Y3 ... Yii+l ... A. (4.35)

For example, in a 3-cube the minimum hop path between node 010 and 101 follows

010 --- 110 -+ 100 -- 101, as shown in Figure 4-18.
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000 001

Figure 4-18: A 3-cube with A = 3 and N = 23 = 8 . The highlighted nodes and

edges illustrate a minimum hop path from node (010) to node (101).

It is easy to see that a A-cube is a graph of diameter A. The average minimum

hop distance between node A and node B is equal to the number of bits that differ

between A and B, i.e., the Hamming distance Hham [46]. The average minimum hop

distance as a function of N and D is given by

Hmin(N, A) = N=1N-1

2A 1

A

22 (4.36)

Another important property of the A-cube is that it can be constructed recur-

sively from lower dimensional cubes. Consider two identical A-cubes whose nodes are

numbered likewise from 0 to 2A - 1 - 1. By joining every node of the first A - 1-cubes

with the node of the same number in the second cube, we obtain a A-cube. Figure

4-19 shows how a 4-cube is constructed from two 3-cubes.
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* Nodes of a 3-cube
o Nodes added to form a 4-cube

Figure 4-19: A 4-cube constructed from two 3-cubes.

4.3.9 Summary of Regular Topologies

Table 4.1 summarizes the important measures of the regular topologies surveyed in

Sections 4.2 and 4.3. These measures include network diameter, average minimum

hop distance, routing complexity, modularity, and symmetry. Among these measures,

the performance of average minimum hop distance plays a crucial role in evaluating

the efficiencies of physical architectures. The average minimum hop distance (as

well as the network diameter) is clearly a strong function of node degree A. The

larger the node degree, the shorter the average minimum hop distance (as well as the

network diameter). To illustrate how the average minimum hop distances for different

topologies scale, we plot the average minimum hop distance between all node pairs

as a function of network size N, all with node degree set at 3, as shown in Figure

4-20. It is evident that there are significant differences between good and pedestrian

network topologies for degree 3 networks. These differences can be over an order of

magnitude. Generalized Moore Graphs provide lower bound (Moore Bound) on the

average minimum hop distance (with a scaling of log A N). Some topologies, such as

A-nearest Neighbors and Symmetric Hamilton Graphs, scale poorly (with a scaling
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Figure 4-20: Average minimum hop distances Hmin for different classes of symmetric

regular physical topologies as a function of number of nodes N. The node degree is

set at A = 3.

of N/A) with the number of nodes N in the network. Other more sophisticated

topologies, such as the ShuffleNet and deBruijn graphs, which come close to the

Moore Bound, scale favorably as logA N, thus keeping the minimum average hop

distance between a node pair short.

From the perspective of designing optical network, we show in Chapter 5 that the

amount of switching resources used at nodes is proportional to the average minimum

hop distance Hmin of a regular topology. Thus a smaller Hmin will translate into

fewer number of expensive optical switch ports. This is especially crucial for optical

switching, since minimizing the network resources is desirable for a good network

architecture. In this sense, the order of magnitude difference in average minimum hop

distance most likely means a similar difference in cost of the corresponding networks,

owing to the usage of optical switching ports at the nodes. In Chapter 5, we also
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Table 4.1: Comparisons of the important measures of the regular topologies.

Number Diameter Avg. Min. Routing Modularity Symmetry

of Nodes D Hop Dist. Complexity

N Hmin

Moore i =(A - 1)i D logA N Low Very Perfect

Graph poor symmetry

Shuffle- kAk 2k - 1 logA N Medium Poor Perfect

Net symmetry

De Bruijn AD D logA N Low Poor Good

Graph

Kautz AD + AD - 1  D logA N Low Poor Perfect

Graph symmetry

GEMNet k x m [loga m] logA N Medium Good Perfect

+k - 1 symmetry

Hyper- 2A  log 2 N logg N Low Poor Perfect2

cube symmetry

MSN m x k VY v-N Medium Good Good

A-Nearest Any N [__ N Medium Excellent Perfect

Neighbors symmetry

Symmetric 2(A - 1) + s (s + 1)/2 N Medium Good Perfect

Hamilton symmetry

Graph
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demonstrate that topologies with smaller average minimum hop distance have a lower

fraction of pass-through traffic and hence require small optical switches. This provides

another way to appreciate the fact that a good topology is crucial from the aspect of

switching cost at the nodes.

As discussed in Section 4.2.1, the existence of Moore Graphs is rare, due to the

stringent requirement for their constructions (e.g., a fully populated routing spanning

tree from every node). However, there exists a very rich class of Generalized Moore

Graphs. And also, regular graphs such as ShuffleNets, de Brujin Graphs, and Kautz

Graphs are known as close relatives to Generalized Moore Graphs in the sense that

they have average minimum hop distances that are very close to those of Generalized

Moore Graphs. In summary, Generalized Moore Graphs and their close relatives

provide sufficient instances that could serve as starting points for the final design of

networks. To illustrate this, in Figure 4-20 we plot a map of the existing Generalized

Moore Graphs and their close relatives. In this plot, the network size is in the range

from 4 to 100 nodes, which are typical sizes for most metropolitan area networks.

4.4 Irregular Topologies

In reality, traffic is seldom symmetric, nor are networks regular or regularizable,

thus we also study the design of irregular network. We can characterize an irregular

topology by the following parameters:

* The number of nodes N;

* The maximum node degree Amax;

* The minimum node degree Amin;

* The average node degree A, A = I iE 1 Ai , where Ai is the degree of node i.

For the convenience of discussion, we denote an irregular topology as (N, Amax, Amin, A).

In studying the irregular topologies, it is hard to derive analytical expressions

and solutions. However, we can apply the results of symmetric regular networks to
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provide estimates for irregular networks. Under this guideline, we concentrate on

the following two approaches to study the irregular topologies. The first approach is

to use the results of average minimum hop distances for Generalized Moore Graphs

and A-nearest Neighbors to gauge the average minimum hop distance of an irregular

topology (N, Am,,, Amin, A). The Theorems 4 and 5 summarize our findings. The

proofs are provided in Chapter Appendix 4.5.7 and 4.5.8, respectively.

Theorem 4 The average minimum hop distance of an irregular topology (N, Amax, Amin, )

is lower bounded by the average minimum hop distance of a Generalized Moore Graph

of N nodes and node degree Ama,,. That is,

Hmin(N, Amax, Amin, A) H (N, Amax). (4.37)

Theorem 5 The average minimum hop distance of an irregular topology (N, Amax, Amin, )

is upper bounded by the average minimum hop distance of a A-nearest Neighbors

Topology of N nodes and node degree Amin. That is

Hmin(N, Amax, Amin, A) H Ain(N, Amin). (4.38)

The second approach is to "embed" an irregular topology into a regular one. That

is, by adding nodes and edges, we can construct a Ama,-regular topology from an irreg-

ular one(N, Amax, Amin, A) . Reference [47] gives the upper bound on the additional

nodes required to regularize an irregular topology. This property is summarized in

the following theorem.

Theorem 6 Let G = (V, E) be a graph with maximum degree Amax. If Amax is odd,

the G is a subgraph of a Amax regular graph G' = (V', E') with

IV' - V 5 Amax + 2; (4.39)

if Amax is even, the G is a subgraph of a Amax regular graph G' = (V', E') with

IV' - V( 5 Ama + 1. (4.40)
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4.5 Chapter Appendix

In this section, we provide the proofs of the theorems and other results presented in

this chapter.

4.5.1 Proof for Theorem 1

Proof: We first show that the minimum hop routing spanning tree is unique. For an

arbitrary Moore Graph of degree A and diameter D, we note that, by definition, each

of the nodes appears only once in each routing spanning tree. Every source node has

A edges to A 1st level nodes; every 1st level node then has A - 1 edges to A - 1 2nd

level nodes. None of the 2nd level nodes can be reached from the source node in one

hop. Generally, every node at the ith level (1 < i < N - 1) can reach A - 1 nodes at

the (i + 1)th level. None of the nodes at the (i + 1)th level can be reached from the

source node in less than i + 1 hops. More importantly, there are no edge connecting

two nodes that are of both i hops away from the source node, for 1 < i < D - 1 [39].

With such a construction, if a source node could reach every other nodes in more than

one minimum hop routing spanning tree (non-uniqueness), there would exist at least

one node whose node degree is larger than D. This violates the regularity required

by a Moore Graph. Thus the construction and regularity of a Moore Graph ensure

the uniqueness of the minimum hop routing spanning tree of each node.

Next, we show that every source destination pair has a unique minimum hop

path. For an arbitrary Moore Graph of degree A and diameter D, suppose that there

exist two minimum hop paths from a source node So to a destination node Do, as

illustrated in Figure 4-22. Without loss of generality, let Do be at the bottom level

of the minimum hop routing spanning tree. One minimum hop path from So to Do

traverses along the path of So - Si .. -- A --+ Do, another traverses along the path

of So -4 S2 ... -- B - Do . Due to the uniqueness of the minimum hop routing

spanning tree of Moore Graphs, node B has A - 1 directed edges to the A - 1 nodes

at the bottom level and one directed edge to a node one level up. All these nodes

are distinct from node Do. As a result, there are at least A + 1 outgoing edges from
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Figure 4-22: The uniqueness of the minimum hop path of a Moore Graph.

node B. This violates the regularity required by Moore Graphs. Thus the minimum

hop path between the node pairs must be unique.

4.5.2 Proof for Theorem 2

Proof: To prove this result, we count how many times a given edge is traversed as

the ith (i = 1, ... D) hop and then sum over all possible i from 1 to D. The times

that a given edge is used by lightpaths equal to the load on this edge.

From the enumerations of the routing spanning trees of an arbitrary full Moore

Graph, we note that every edge in the graph is enumerated exactly once as the 1st

hop. Let 11 denote the load on a given edge generated by lightpaths using this edge

as their 1st hops,

D-1

11 = - 1)i. (4.41)
i=O

Similarly, at the ith level of all the routing spanning trees with i < D, each edge is

125



enumerated exactly (A - l)i - 1 times. Let li denote the load on a given edge generated

by lightpaths using this edge as their ith hops,

D-1

j =i-(A -
j=i-1

Finally, at the Dth level of all routing spanning trees, each edge is enumerated exactly

(A - 1)D-1 times. We have

ID = (A -- 1) D - 1
(4.43)

By summing up the load li over i = 1 to D, we have the total load on a given edge,

(4.42)

i=1
i=1

= 1+2(A-1)+3(A- 1)2 +... + D(A- 1)D - 1

(4.44)
i=1

The actual load on a given edge equals to the average load for a Moore Graph. Thus

we conclude that a balanced load distribution can be achieved.

4.5.3 Derivation of Asymptotic Average Minimum Hop Dis-

tance for Generalized Moore Graphs

We first make an assumption that each node has a full routing spanning tree, so the

number of nodes N satisfies

D

N = ZA'

1 - AD+1

1-A
(4.45)

We next assume that A A - 1 and N > A. Then, the network diameter D can be

further approximated as

D(A, N) = [logA (I + N(A - 1))] - 1 , logs N.
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We proceed to obtain the asymptotic average minimum hop distance of a Generalized

Moore Graph as a function of N and A, as stated in (4.11),

E in(i)
H4n (N, A) =- i

N-1

Ei=1 
i A ý

:o Ai - 1
(D+1)(A-1)AD+1 -

A(AD+l -1)
(A-i)

2

AD+D1- +A-1

D

loga N. (4.47)

Note that the function loga N is strictly convex in A.

4.5.4 Derivation of Average Minimum Hop Distance for A-

Nearest Neighbors Topology

In a A-nearest Neighbors topology of size N, for every node i, there are directed

connections (from node i) to node i + 1 N, Ii + 2 N, ... , li + D N, where xI N denotes

x module over N. For a A-nearest Neighbors topology, the network diameter D is

given by

D = [A 1. (4.48)

For an arbitrary node j, let nj(i) denote the number of nodes that can be reached

(from node j) in i hops. With the symmetry of A-nearest Neighbors topology, nj (i) =

nk(i) = n(i) for any node j and k. To obtain the path length distribution n(i) for a

A-nearest Neighbors topology, we need to consider two cases:

* Case 1: N - 1 cannot be divided evenly by A. For 1 < i < D - 1, n(i) is given

by

n(i) = A, if 1 < i < D- 1; (4.49)
N - 1 - LN[-1, if i = D.
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With the path length distribution n(i), we can evaluate the average minimum

hop distance of a A-nearest Neighbors topology of size N, as stated in (4.17),

1 D

Hin (N, A) = 1 in(i)
i= 1

( A N-1 A ([N- 1) 2(0)
(1+ 2(N- 1)) A 2(N- 1) A•450)

* Case 2: N - 1 can be divided evenly by A. For 1 < i < D, n(i) is given by

n(i) = A. (4.51)

The expression for the average minimum hop distance takes the form, as state

in (4.18),

1 N-1
Hmin(N, A) = 2A (4.52)

2 2A

4.5.5 Proof of Theorem 3

In this section, we provide the substantiation that a A-nearest Neighbors topology

provides the upper bound on the average minimum hop distance among all regu-

lar topologies with the same network size N and node degree A, as summarized in

Theorem 3.

To prove this, we first show that A-nearest Neighbors topology has the maximum

diameter among all regular topologies with the same network size N and node degree

A. As in the derivation in Section 4.5.4, the diameter of a A-nearest Neighbor

topology is given as [(N - 1)/A], which is exactly the maximum diameter for a A-

connected graph, according to a theorem in [37]. Note that the definition of regular

topologies in this thesis includes A-connectivity.

Next, we look at the n(i) for a A-nearest Neighbors topology. As shown in the

derivation in Section 4.5.4, we have n(i) = A (for 1 < i < D - 1), which meets the

minimum requirement to maintain the A-connectivity. (Note that A-connectivity

requires that n(i) > A, 1 < i < D - 1, as defined in [37]).

By combining these two results and use the the definition of average minimum hop

distance, we can easily see that a A-nearest Neighbors topology has the maximum
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average minimum hop distance among all regular topologies with the same network

size N and node degree A.

4.5.6 Derivation of Average Minimum Hop Distance for Sym-

metric Hamilton Graph

In a Symmetric Hamilton Graph with degree A, each node connects to A other

nodes with even "spacing" between nodes in a symmetric and cyclic fashion. Denote

an integer s as the spacing parameter, there are directed connections from each node

i to nodes li + 1IN, i + 1 + sIN, i + 1 + 2N,..., i + 1 + ksIN, ... , li + N - 1N,

where k is an integer satisfying k < D - 1. The size of a Symmetric Hamilton Graph

is determined by s and A. That is, N = (A - 1)s + 2. To obtain the path length

distribution n(i), we need to consider the following two cases:

* Case 1: the spacing parameter s is odd. For an odd s, the network diameter D

is given by

s+l
D = 2 (4.53)

From node i, there are:

- A nodes that can be reached in 1 hop, i.e., n(1) = D;

- 2(A - 1) nodes that can be reached in i hops, i.e., n(i) = 2(A - 1), for

2<i <D.

By using the path length distribution n(i), the average minimum hop distance,

as a function of N, A, and s, can be expressed as

D

Hmin(N, A, s) - 1 in(i)
i=l

N- A + 2(A - 1) i
I i=2

1 [A+ 2(A - 1)(2 + D 2)] (4.54)1 229

129



With s = A, Hmin can also be expressed as a function of N and A only, as

stated in

A (N- A- 1)(N + 5A- 7)
Hmi(N, A) N-+ 4(N- 1)(A- 1(4.55)

N-1 (N 1(A 1

Taking the second derivative of Hmin(N, A) in regard to A, we have

a 2Hmin (N, A) (N - 2) 2
( ((4.56)aA 2  2(N - 1)(A - 1)3'

For any N > 3 and D > 2, we have

a 2Hmin(N, A) > 0. (4.57)aA2

Hmin(N, A) is strictly convex in A.

* Case 2: the spacing parameter s is even. For an even s, the network diameter

D is given by

D = . (4.58)

From node i, there are:

- A nodes that can be reached in 1 hop, i.e., n(1) = D;

- 2(D - 1) nodes that can be reached in i hops, i.e., n(i) = 2(D - 1), for

2<_i<D-1:

- A - 1 nodes that can be reached in D hops, i.e., n(D) = A - 1.

By using the path length distribution n(i), the average minimum hop distance,

as a function of N, A, and s, can be expressed as

D

Hmin(N, A, s) = 1 in(i)
N-I

i=1

D-1

- 1 [A + 2(A - 1) i + (A - 1)D]
i=2

1
- - [A + (A - 1)(D 2 - 2)]. (4.59)N-1
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With s = -, Hmin can also be expressed as a function of N and A only, as

stated in

A (N - 2) 2 + 4(N - 2)(A - 1) - 4(A - 1)
Hmin(N, A) = N- + (4.60)N-1 4(N-1)(A-1)

Taking the second derivative of Hmin(N, A) in regard to A, we have

82 Hmin(N, A) (N - 2) 2

= (4.61)OA2  2(N - 1)(A - 1)3'

For any N > 3 and D > 2, we have

02 Hmin (N, A) > 0. (4A > 2 . (4.62)

Hmin (N, A) is strictly convex in A.

For Symmetric Hamilton graph, when N ; N - 1, Hmin can be approximated by

H in, which is also convex in A,

3 N-2H a 3 + N (4.63)min = 4 4(A - 1)

When A <C N, we have the asymptotic minimum hop distance as

N
Hasym = N (4.64)4(A - 1) (4.64)

4.5.7 Proof for Theorem 4

We compare the average minimum hop distances of a Generalized Moore Graph

(with N nodes and degree Ama) and that of an irregular topology specified by

(N, Amax, Amin, A) . Let DM and DG denote the network diameters for a Gener-

alized Moore Graph and an irregular topology, respectively. For a Generalized Moore

Graph, let nN,(i) denote the number of nodes that are i hops away from every node;

for an irregular topology, let n1"G(i) denote the number of nodes that are i hops away

from node j. This proof hinges on the following properties of a Generalized Moore

Graph:

DM _ DG (4.65)
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and

nM(i) > nG (i), 1 < i < DM - 1, Vj E N. (4.66)

In the following derivation, we drop the superscript in the notation of nG(i) for the

clarity of presentation. First, with a simple manipulation, we have

nM(1) = nG(1)+[ M(1)- G(1) 1

SnG(1) + 2[nM(1) - nG(1)1

= nG(1) + 2An(l), (4.67)

where An(1) = nM(1) - nG (l1).

Next, we have

2nM(2) < 2nG(2) + 3[nM(2) - nG(2)]

< 2nG(2) + 3An(2) + An(1)
= 2[nG(2) - An(l)] + 3[An(2) + An(l)], (4.68)

where An(2) = nM(2) - nG(2).

Similarly, for 2 < i < DM - 1, we have

i-1 i

inM(i) 5 i[nG(i) - E An(j)] + (i + 1)[1 An(j)], (4.69)
j=1 j=1

where An(i) = niM(i) - nG(i). We also need this trivially held relation,

DMnM(DM) < DMnM(DM). (4.70)

By adding both sides of equations (4.67) to (4.70), we have

DM DM-1 DC

inM(i) < inG(i) + DM[ E nG(j)
i=-1 i=1 i=DM

Dc

< ZinG(i). (4.71)
i=l
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Dividing (4.71) by N - 1, we have, as stated in Theorem 4,

Hin (N, Amax)

DM.

N-1
< N Z inG(i)

i= 1

N Do

- N(N - 1) in 'G(i)
j=1 i=1

= Hmin(N, Amax, Amin, A). (4.72)

4.5.8 Proof for Theorem 5

We compare the average minimum hop distances of a A-nearest Neighbors topol-

ogy (with N nodes and degree Amin) and that of an irregular topology specified by

(N, Amax, Amin, A). Let DN and DG denote the network diameters for a A-nearest

Neighbors topology and for an irregular topology, respectively. For a A-nearest Neigh-

bors topology, let nN(i) denote the number of nodes that are i hops away from every

node; for an irregular topology, let ni (i) denote the number of nodes that are i

hops away from node j. This proof hinges on the following properties of a A-nearest

Neighbors topology:

DG : DN (4.73)

and

n7G(i) > nN(i), 1 < i < DN - 1, Vj E N. (4.74)

In the following derivation, we drop the superscript in the notation of nG (i) for the

clarity of presentation. First, with a simple manipulation, we have

nG(1) = N(1) + [rG(1) - N(1)]

_< 2N(1) + 2[nG(1) - 2N (1)

- nN(1) + 2An'(1), (4.75)
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where An'(1) nG(l) - nN(1).

Similarly, for 2 < i < DcG - 1, we have

i-I i

- S An'(j)] + (i + 1) [ An'(j)],

where An'(i) = nG(i) - nN(i). We also need this trivially held relation,

DGnG(DG) < DGnG(DG).

By adding both sides of equations (4.75) to (4.77), we have

DG -1

< inN(i) +
i=1

DN

DG[ 1 nN(j)]
i=DG

DN

< inN(i).
i=1

Dividing (4.78) by N - 1, we have, as stated in Theorem 5,

(4.78)

N DC

< N(N - 1) EEZinG(i)
j=1 i=1

= Hmin (N, Amax, Amin, A)
DN inN(i)

i=1

= Hmin(N, amin). (4.79)
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(4.77)

DC

inG (i)
i=1

1 D

N -I E inG(i)

inG (i)< i[ni(i)
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Chapter 5

Parametric, First-Order, and

Homogeneous Network Cost Model

In this section, we set up network cost model in preparation for the analysis of op-

timal network architectures in the following chapters. In the process of establishing

the model, we seek a balance between the analytical tractability and a good repre-

sentation of today's network. As such, the cost model is parametric, first-order, and

homogeneous.

We establish a parametric model, since cost estimates for some key network com-

ponents, such as for OXC ports, could vary by 50% - 200% according to different

market researches. With a parametric model the dependencies of network architec-

ture on the key design parameters can be easily analyzed when these parameters vary

over a realistic range of values. Our cost model is also first-order in the sense that the

parameters and metrics are estimated and represented by their first moments (e.g.,

the arithmetic mean) rather than by their distributions over time or space. In this

thesis, we mostly restrict our attention to regular fiber topology with nodal symmetry

and uniform all-to-all traffic. We thus dimension the network homogeneously. This

means that each fiber connection has the same cost and the switches installed at

nodes are of the same type and size (port count).

In our model, the network cost consists of three parts: the transmitter/receiver

cost, the fiber connection cost, and the switching (optical cross-connect or OEO
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Fiber cos cost

ansceiver Cost

Figure 5-1: Three constituent parts of network cost - transmitter/receiver cost, fiber

connection cost, and switching cost.

switch) cost, as shown from a perspective near a node in Figure 5-1. They are

described in detail in the following.

5.1 Transmitter/Receiver Cost

To support a uniform traffic demand of a unit traffic (t = 1) , each node needs N - 1

transmitters/receivers to send/receive traffic to/from every other N - 1 nodes in the

network. For a network of size N, we need N(N - 1) transmitters/receivers. Once

N is given, the cost associated with transmitters/receivers does not change with the

node degree A. Thus the transmitter/receiver cost can be considered as a constant

offset and will not be included in the following cost analysis.

5.2 Fiber Connection Cost

As mentioned in Chapter 4, by using fiber patch panels we can set up a fiber connec-

tion between two nodes that are not directly linked by a cable, as shown in Figure 5-2.
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In a metro environment, a fiber connection spans much shorter distance than that in

a wide-area network, thus amplifiers, which dominate the long haul fiber connection

costs, are not required in general. As such, we can assume that all fiber connections

have approximately the same cost. In other words, when modeling the fiber connec-

tion cost, the dependency of cost on distance can be suppressed. Let Cf denote the

cost associated with fiber connections in the network, we have CQ as a linear function

of N and A,

Cf = aNA, (5.1)

where the proportional coefficient a is denoted as the marginal cost of a new fiber

connection. Note that depending on whether the cable plants pre-exist or not, we

assign the marginal cost of a fiber connection differently. For green-field scenarios,

network operators need to install the complete network by digging all the ducts and

laying all the cables. As a result, the cost for digging and laying is included in the

fiber cost usually by dividing this cost over all fibers installed in a single duct. On the

contrary, when the cable plants have already existed, the cost of digging the ducts and

laying the cable is usually not included in the fiber cost. Various technical researches

and market analyses provide references on the cost of fiber connection in the long haul

or metro environments [48]. For a MAN, the cost for a fiber connection is estimated

in the range of $2K-$25K/km. A typical fiber in MAN is 5 to 20km in length; a in

(5.1) is in the range of $10K -$500K/fiber.

5.3 Switching Cost

One of the key attributes of optical switches is the port count K, which depends on

the network traffic demand and the network physical topology, etc. In this chapter

and Chapter 6, we assume that the network traffic is uniform all-to-all, i.e., each

node sends exactly t wavelengths of traffic to every other node, with each wavelength

modulated at a data rate of r (Gb/s). We first use this deterministic traffic model to

approximate the mean of the random traffic and to dimension the capacities of the
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Fiber that
connects Node

Cable
1 and 2

Patch Panel

Figure 5-2: By using fiber patch panels, a fiber connection can be established between

two nodes that are not directly linked by a cable.

fibers and nodes accordingly. We leave the analysis of network dimensioning under

random traffic in Chapter 8. For the time being, we also assume that dynamic switch-

ing handles all the pass-through and add-drop traffic. This assumption is realistic -

even static traffic requires active protection switching for network reliability 1.

5.3.1 Number of Ports and Size of an Optical Switch

The number of ports on an optical switch in a mesh network can be determined by

counting the number of ports that each lightpath occupies as it traverses through the

network, tallying the number of ports for all the demands, and then dividing the sum

by the number of cross-connects. In our analysis, an optical switch is placed at each

node of the network to manage transport bandwidth, thus the number of switches is

given by the number of nodes N.

iTo be economical, low-cost switching equipment, such as fiber-patched panels, can handle the

static or quasi-static portion of the traffic with fixed routing and quasi-static switching; while more

expensive dynamic switching equipment accommodate the fluctuating/stochastic portions. In Chap-

ter 10, we provide comments on the issue of "mixed" switching and lightpath dimensioning.
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Drop + Pass-through

op

Figure 5-3: Lightpaths and cross-connect ports. The figure serves as a guideline

to count the number of cross-connect ports occupied by a lightpath as it traverses

through the network. The relationship among the local add, drop, and pass-through

channels are also illustrated. Here, the number of add and drop traffic, N - 1 each,

corresponds to the all-to-all uniform traffic demand (t = 1).

Sizing the Pass-Through and Add/Drop Traffic

Lightpaths of more than one hop have to be switched at the intermediate nodes,

thus they generate pass-through traffic, as depicted in Figure 5-3. We first size up

the amount of the pass-through traffic (in terms of number of wavelengths) at each

node under uniform traffic, by looking at the case of t = 1, i.e., each node sends 1

wavelength of traffic to every other node. Referring to Figure 5-3, a lightpath of j hops

is switched j - 1 times at the intermediate nodes, thus generating j - 1 wavelengths

of pass-through traffic. Let qj denote the pass-through traffic generated by the traffic

from node i. With minimum hop routing, qi satisfies

D

q= EZni(j)(j- 1), (5.2)
j=1

where ni(j) denotes the number of nodes whose minimum hop path from node i

consists of j hops. Let Q denote the average pass-through traffic (in the number of

wavelengths) at each node of the network, we have

1 ND

Q = N E E ni(j)(j - 1). (5.3)
i=1 j=1
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By exploiting the symmetry of a regular topology (ni(j) = n(j) ) and using (4.1), we

can further simplify Q as follows:

D

Q = N [ n(i)(i - 1)]
i=1

S(Hmin- 1) (N- 1). (5.4)

Since Hmin < D for a regular topology, we can have an upper bound on Q,

Q 5 (D - 1)(N - 1). (5.5)

The add-drop traffic at each node, denoted as A, is N - 1 for uniform traffic. Thus

the ratio between the average pass-through and the add-drop traffic is given by

Q (Hmin - 1)(N- 1) - -1. (5.6)= (- N- l -- Hmin - 1. (5.6)
A (N - 1)

Next we look at the general case of t > 1. With derivations similar to those for t = 1,

we have the average pass-through traffic at each node Q(t) as

D

Q (t) = N [ n(i)(i - 1)t]
i=1

= (Hmin - 1)(N - 1)t. (5.7)

Since the add-drop traffic also scales proportionally with t, the ratio between the

pass-through and the add-drop traffic stays the same as Hmin - 1.

The insight provided by (5.7) is revealing: the ratio between the pass-through and

the add-drop traffic under uniform traffic can be tied to a fundamental parameter of

the regular topology - the average minimum hop distance Hmin -

* When node degree A is fixed, Hmin increases as the network size N grows,

according to previous results summarized in Table 4.1. Thus pass-through traffic

tends to dominate add-drop traffic for large network size N.

* When network size N is fixed, Hmin decreases, as node degree A increases, thus

there is less pass-through traffic at each node. For maximal A = N - 1, the

case of a fully connected network with each node reaching every other node in
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one hop, i.e., Hmin = 1. From (5.7) the pass-through traffic is eliminated. This

agrees with a simple fact that when the network's connectivity allows each node

to reach every other node in one hop, then there is no pass-through traffic on

each node. This validates the correctness of (5.7).

To illustrate this trend, for N = 50, we plot in Figure 5-4 the ratio between pass-

through and add-drop traffic with respect to node degree A for three types of topolo-

gies: A-nearest Neighbors, Symmetric Hamilton Graphs, and Generalized Moore

Graphs. We can see that when the node degree is small, a A-nearest Neighbors

topology has the highest ratio of pass-through traffic vs. add-drop traffic; while a

Generalized Moore Graphs has the lowest. As A increases, the difference of the ratios

among the three topologies diminishes. Since more switch ports are needed to handle

more pass-through traffic, one can already see that Generalized Moore Graphs have

superior performances in terms of switch size, especially when the node degree A is

small.

The Size of an OXC Switch

On the first order, the capacity of an OXC is independent of the actual data rate r of

each wavelength. Referring to Figure 5-3, consider a directed demand that is added

to the network via the switch at the node on the left. Adding the demand requires

one input port. Eventually, this demand exits the network, by entering and exiting

the switch at the destination node, such as the node on the right. Thus dropping the

demand also requires one output port. Consequently, the size of a switch Ko, which

equals to the sum of the number of lightpaths that pass-through and add-drop at

each node, can be obtained as

Ko(N, A, t) = (N - 1)t[Hmin(N, A) - 1] + 2(N - 1)t

= (N - 1)t[Hmin(N, A) + 1]. (5.8)
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The Size of an OEO Switch

From (5.8), we note that if a wavelength carries a r Gb/s data rate, the total traffic

switched at each node, in the unit of Gb/s, is t(N - 1)r[Hmin(N, A) + 1]. Compared

with that of an OXC switch, the port count of an OEO switch depends on the data

rate per wavelength r. With the port (interface) rate R and the port utilization 4,

the number of OEO switching port Ke is given by

Ke(N, A, t, r, R,) - t(N - 1)r[Hmin(N, A) + 1] (59)
R?7

5.3.2 Modeling the Cost of an OXC

In this section we model the cost of an OXC as a function of the number of switching

ports required. Since the traffic is all-to-all and the topologies are regular, we can

assume that the size of OXC at each node is the same. If there are Ko lightpaths

to be switched, added, and dropped at a node, the OXC needs at least Ko input

ports and Ko output ports. For simplicity of analysis, we assume that OXCs have

strictly non-blocking switching fabrics. We also suppress the wavelength continuity

constraint by assuming that

* Either there are enough numbers of wavelengths available. This assumption is

realistic at least in the foreseeable future, given the abundance of wavelengths

in the metropolitan environment.

* Or the optical switches allow a full wavelength conversion, i.e., any wavelength

channel on an input port can be switched to any wavelength channel on an

output port. In general OXCs with wavelength conversions have higher cost

per port. As a result, WDM networks equipped with such OXCs have higher

optimal connectivity and higher network cost (as will be explained in detail in

Chapter 6 and Chapter 7).

With wavelength continuity constraint suppressed, Ko ports are enough to switch

lightpaths without causing any blocking on the network. In this thesis work, we focus
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Figure 5-5: Switching architectures: (a) 3-D, (b) multi-stage, and (c) 2-D architec-

tures.
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Table 5.1: Cost of OXC switching architecture as functions of the number of ports

Ko.

on three most representative optical switching architectures: 3-D, multi-stage, and 2-

D OXC, as depicted in 5-5. As described in Section 2.1.7, 3-D architectures, shown in

5-5 (a), are built using two arrays of micro switching elements, each of which has two

degrees of freedom, allowing light to be directed from one input port to any output

port. Multi-stage architectures, shown in 5-5 (b), refer to rearrangeable architectures,

such as Clos or Banyan architectures. 2-D architectures, shown in 5-5 (c), consist of

two-dimensional arrays of micro switching elements that have one degree of freedom.

The cost of OXC scales differently for different types of switching architectures. Table

5.1 lists the first-order cost functions corresponding to these switching fabrics. In this

table, ( (0 < ( < 1), 0 (0 < 0 < 1), and 6 (0 < 6 < 1) are coefficients associated with

reliability and yield issues in the manufacturing of 3-D, multi-stage, and 2-D OXC

switches, respectively. Notice that in modeling the cost of the multi-stage switching

architecture, we assume that the basic switching element is of the size 2 x 2.

As stated in (5.8), Ko is a function of network size N, node degree A, and wave-

lengths of traffic t between node pairs. Let CO denote the cost of OXC, CO is given

by

Co = NF [Ko(N,A,t)]

- NFi[(N- 1)t(Hmin + 1)],i E {1,2,3}, (5.10)

where i indexes the switch type and therefore P1, 02, and 33 are scaling factors (cost

per port) for 3-D, multi-stage, and 2-D switching fabrics, respectively. The ratios

between 01,, 32, and /3 can be evaluated by using a cost crossover point Kc for
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different switching fabrics, based on the status of the current technologies. Suppose

the costs for 3-D, multi-stage, and 2-D switching fabrics are the same for a size of

Kc x Kc, then the ratios between pi, /2, and P3 are

01 = 32 log K. = 33Kc. (5.11)

We estimate 31 at $10k/port for 8 x 8 OXC of 3-D fabrics; realistic a/l31 ratio can

be in the range from 1 to 50.

5.3.3 Modeling the Cost of an OEO Switch

We model the cost of an OEO switch as a linear function of the number of OEO

switching ports Ke:

cO = 3eKe(N,A,t,r, 1)
t(N - 1)r= (Ne [r Hmin (N, A) + 1], (5.12)

where 3e is the per port cost of an OEO switch. We set 3e at $40k/port for a 2.5 Gb/s

interface and $80k/port for a 10 Gb/s interface, respectively, based on the estimate

in [14].

It is worthy to point out that the the cost model for switches is general enough to

include the static (patch panel) and dynamic switching. In other words, in addition

to 31, /2, 33, and /e, we assign /p as per port cost for patch panel switching.

5.4 Network Cost

For a network equipped with OXC, according to (5.1) and (5.10), the total network

cost C is

C = cf+cS

= N{aA+ Fi[Ko(N,A,t)]}, i E {1,2,3}. (5.13)

The total cost can be further normalized as cost per node - normalized network cost

C
Cn = - {caA + F [Ko(N, A, t)]}, i E {1, 2, 3}, (5.14)

N
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and cost per node per unit traffic - normalized network cost per unit traffic

CCn/ {aA + Fi[Ko(N, A, t)]} i 1,2, 3. (515)
/ie{1,2,3}. (5.15)

Similarly, for a network equipped with OEO switches, according to (5.1) and (5.12),

the total network cost C is

C = + Ce

= N{&A + 6eKe(N, A, t, r, ,)}. (5.16)

The corresponding normalized network cost is

C
Cn = -A + 3eKe(N,A, t,r,?7), (5.17)

N

and the normalized network cost per unit traffic is

Cn/t Cn = {aA + eKe(N, A, t, r,)} (518)
t t

We note that the normalized cost Cn also depends on the type of regular topologies

through the expression of Hmin. For a given class of regular topologies, once we have

the Hmin as a function of network size and node degree, we can analyze the optimal

node degree A* that achieves the minimal cost.
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Chapter 6

Optimal Network Architecture

Under Deterministic Traffic

With models for network traffic, physical architectures, and cost set up in place,

we are to formulate and solve the joint optimization problem of physical topology,

dimensioning of network resources, and routing algorithms. By solving the joint

problems analytically, we can obtain fundamental cost bounds as benchmarks for

proposed architectures. More importantly, these results provide insights into what

constitutes scalable network architectures.

As a first step in approaching the joint optimization problem, we give a qualitative

appraisal of the key tradeoffs that influence the optimal network architectures. After

examining and discussing these push-pull effects from a qualitative point of view, we

rigorously set up the joint network optimization problem and quantitatively analyze

the dependencies of the optimal network architectures on key design parameters.

When the locations of nodes (Figure 6-1 (a)) are given, there can be different un-

derlying physical topologies to serve the same (deterministic) traffic demand, albeit

at very different costs. In this thesis work, we approach the finding of a cost-effective

physical topology by setting up a first-order network cost model and then analyz-

ing the tradeoffs among key network resources. As described in Chapter 5, in our

first-order cost model, the costs for fiber connections and switching resources vary

with network connectivity. We note that lightpaths of more than one hop have to
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(a)

(C) (d)

Figure 6-1: (a) Locations of the nodes; (b) Ring topology (sparsely connected); (c)

Degree 3 topology; (d) Fully connected topology.
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Figure 6-2: Tradeoff between the cost of fiber and the cost of switching.

be switched at intermediate nodes, thus taking up a certain amount of switching

resources. A network with higher connectivity requires more fiber connections, but

the lightpath traverses on average fewer hops and intermediate nodes, requiring less

switching resources, albeit at the expense of more fiber costs. To better understand

the tradeoffs, we consider two extreme cases and their implications on optimal network

topologies: 1) if the cost of fiber plants dominates the cost of switches, the optimal

network topology should be as sparsely connected as possible (Figure 6-1(b)); 2) if

the cost of switches dominates the cost of fiber plants, the optimal network should be

as fully connected as possible (Figure 6-1(d)). Realistic cost ratios between the fiber

plants and the switching resources are in between these two extremes. Thus a tradeoff

between fiber and switching resources will lead to an optimal network connectivity

that is in between these two extreme cases, as shown conceptually in Figure 6-1(c).

Figure 6-2 illustrates how the choice of network connectivity (topology) drives the

fiber cost in one direction, and simultaneously, drives the switching cost in a counter-

acting direction. At an optimal connectivity or an optimal node degree, the minimal
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network cost is achieved, as the result of optimal tradeoff between fiber connection

cost and switching cost. Solving for the optimal node degree is the center of this

chapter.

6.1 Problem Formulation

Using the network cost model in Chapter 5, we are now ready to formulate the phys-

ical topology design problem as an optimization over the type of symmetric regular

topology (denoted as "tpl." in the formulation), the routing algorithms (denoted as

"r.a." in the formulation), and the network node degree A. The formulation has a

general form as follows:

min C (N, A, t)
{tpl.},{r.a.},A

s.t. 2 < A < N-1;

AE Z+;

N and t are given. (6.1)

In this optimization formulation, the inputs are:

* The number of nodes ( network size) N;

* The traffic demand between a source-destination pair t (note that we assume a

uniform all-to-all traffic);

* The type of optical switches and the corresponding parameters, as described in

Section 5.3:

- For OXC switching architecture, the inputs include the cost scaling func-

tion Fi(Ko) , where Ko is the number of OXC ports, and the corresponding

per port cost (cf. Table 5.1);

- For OEO switching architecture, the inputs include the port (interface)

rate R, data rate per wavelength r, port utilization 7r, and per port cost
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. The cost per fiber connection a.

The objective is to minimize the normalized network cost over:

* The type of symmetric regular topology;

* The type of routing algorithm;

* The node degree of the symmetric regular topology.

In the formulation (6.1), the constraint A < N - 1 imposes an upper limit to the

possible values of the optimal node degree A* for a topology of N nodes; while the

constraint A > 2 ensures that the optimal topology meets the reliability requirement

of more than one connected. Since A represents the node degree, the optimal node

degree A* should be a positive integer.

Note that to maintain the tractability of the analysis and to shed light on the

key properties of optimal network architecture, in our formulation we temporarily

suppress some practical issues of network design:

* We take an "infinite capacity" approach in formulating the network optimization

problem by assuming that a fiber can support as many wavelengths as needed.

In other words, we don't impose the upper limit on the number of wavelengths

that a fiber can carry.

* We consider a "capacity only" problem - we temporarily omit the details of

wavelength assignment. The reason is that in a long-term context, costs and

architecture efficiencies do not depend on the detailed channel assignment, as

long as suitable channel assignment is feasible under the capacity available [4].

The wavelengths assignment problem will be discussed in detail in Chapter 7.

* We dimension the network for working capacity only - the extra fiber connec-

tions and switching ports that are required for network survivability are not

included in our cost model and thus in the formulation (6.1).

In Chapter 10, we will extend the network optimization framework (6.1) to address

some of these issues.
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6.2 Optimal Routing Algorithm and Optimal Reg-

ular Topology

Though the optimization in (6.1) is carried out over all possible classes of routing

algorithms and regular topologies, an exhaustive enumeration approach would be dif-

ficult and unnecessary. A close examination of the cost model reveals that only the

switching costs depend on the routing algorithm and the type of the topology. In

regard to the routing algorithm, we note that shorter lightpaths pass through fewer

intermediate nodes, thus requiring fewer switching ports. Following this observation,

we can prove that minimum hop routing is optimal for any given regular network, as

long as the switch cost is a non-decreasing function of switch size (Ko or Ke). As for

the optimal class of topology, existing classes of graphs - Generalized Moore Graphs -

are known to achieve the lower bounds on the average minimum hop distance among

regular topologies with the same node number and node degree. By making connec-

tions between this important property and the switching cost model, we identify that

Generalized Moore Graphs yield cost lower bounds.

In this section, we show that for all classes of regular topologies and uniform traffic,

we can rigorously solve the problem jointly and optimally. To proceed the analysis,

we use a simple yet important concept - we refer to this as "dominated function"

technique, as summarized in the following lemma. Since this lemma trivially holds,

we omit the proof.

Lemma 1 Consider two bounded functions on a closed and bounded set X, fi (x) and

f 2(x). Suppose for any x E X, fi(x) < f 2(x), then we have min. fl(x) < minx f 2 (x).

6.2.1 Optimization Over Routing Algorithms

In regard to the optimal routing algorithm, we have the following result:

Theorem 7 Under uniform all-to-all traffic, minimum hop routing is optimal for

any given regular network with a non-decreasing switch cost function.
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To see why minimum hop routing is optimal, we compare the cost incurred by

a minimum hop routing algorithm with that by other (non minimum hop) routing

algorithms for a given regular network of size N and node degree A. For simplicity we

only consider networks equipped with OXC switches; yet the following substantiations

also hold for networks equipped with OEO switches. Denote the average minimum

hop distance of a regular topology as Hmin and the average hop distance with another

routing algorithm for the same topology as H'. By definition,

Hmin(N, A) • H'(N, A). (6.2)

For the minimum hop routing algorithm, according to (5.14), the incurred normalized

network cost, denoted by C., is

C = aA + Fi(Ko)

= aA + Fi[(N - 1)(Hmin(N, A) + 1)], i E {1, 2, 3}. (6.3)

For any other routing algorithm, the normalized network cost, denoted by Cn, is

obtained as

Cn = a + F(Ko)
= aA + Fi[(N - 1)(H'(N, A) + 1)], i E {1, 2, 3}. (6.4)

Since the switch size Ko and Ko are linear in average minimum hop distance Hmin

and average hop distance H', respectively, and Fi(K)is non-decreasing in K, for a

regular topology with size N and node degree A, the minimum hop routing achieves

the minimal cost. That is,

Cm(N, A) < Cn(N, A), (6.5)

for any A (1 < A < N - 1). Using Lemma 1 (note that the set {A 2 < A <

N - 1 and A E Z + } is closed and bounded), we have

min Cm(N, A) K min C,(N, A). (6.6)
A A

Thus we conclude that minimum hop routing is optimal for any given regular network

with a non-decreasing switch cost function.
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6.2.2 Optimization Over Different Types of Topologies

In regard to the optimal type of physical topology, we have the following result:

Theorem 8 With minimum hop routing, among all classes of regular topologies,

Generalized Moore Graphs provide the lower bound on the network cost under uniform

traffic.

To see why the Generalized Moore Graphs are optimal, we compare the costs of

networks of the same size, but of different types of topologies. Here all the networks

use minimum hop routing. For simplicity we again only consider networks equipped

with OXC switches; yet the following substantiations also hold for networks equipped

with OEO switches. As discussed in Section 4.2, for any regular topology with size

N and node degree D, a Generalized Moore Graph achieves the lower bound on

the average minimum hop distance. Denote the average minimum hop distance of a

Generalized Moore Graph as Hi n and that of a general regular topology as Han, we

have

in(NA) < Hi(N, ) (6.7)

Following the same reasoning that leads to (6.5), for any regular topology of the same

size N and node degree A, Generalized Moore Graphs achieve the minimal cost. That

is,

CM(N, A) < CnG(N, A), (6.8)

for any A (1 < A < N - 1), where CM and Cn are the normalize network cost of a

Generalized Moore Graph and a general regular topology, respectively.

Using the dominated function technique (Lemma 1) again, for a given N, we have

min CM(N, A) < min CG(N, A). (6.9)
A A

Thus, with minimum hop routing, among all classes of regular topologies, General

Moore Graphs achieve the lower bound on the network cost under uniform traffic.
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6.2.3 Network Topologies that Provide Upper (Worst Case)

Bounds on Network Cost

As a natural extension, it is of interest to find a class of regular topologies that provides

upper (worst case) bounds on network cost. We have already shown in Chapter 4.3.1

that a A-nearest Neighbors topology, in which each node connects to its A closest

neighbors in a cyclic fashion, achieves upper bound on the average minimum hop

distance among all the regular topologies of the same node number N and node

degree A. By making connections between their properties of average minimum hop

distance and switching cost model, we identify that A-nearest Neighbors yield a cost

upper bounds. We summarize this result and provide a formal substantiation in the

following:

Theorem 9 A A-nearest Neighbors topology provides an upper bound on the average

minimum hop distance among all regular topologies with the same node number and

node degree. Moreover, A-nearest Neighbors topologies also achieve the upper bounds

on the network cost under uniform traffic.

As discussed in Section 4.3.1, for any regular topology with size N and node degree

A, a A-nearest Neighbors Graph achieves the upper bound on the average minimum

hop distance. Denote the average minimum hop distance of a A-nearest Neighbors
N G

topology as H in and that of a general regular topology as Hin, we have

Hmin(N, A ) > HGin(N, A). (6.10)

Following the same reasoning that leads to (6.5), for any regular topology of the same

size N and node degree A, a A-nearest Neighbors topology achieves the maximum

cost. That is,

CN (N,A (N, ), (6.11)

for any A (1 < A < N - 1), where CN and CG are the normalized network costs of

a A-nearest Neighbors Graph and a general regular topology, respectively.
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Using the dominated function technique (Lemma 1) again, for a given N, we have

min CN(N, A) > min CnG(N, A). (6.12)
A A

Thus, with minimum hop routing, among all classes of regular topologies, A-nearest

Neighbors topologies achieve the upper bound on the network cost under uniform

traffic.

6.3 Minimal Cost and Optimal Node Degree for

Given Classes of Topologies

In this section, we obtain the optimal node degree A* and minimal normalized network

cost C* in the formulation (6.1) for several classes of candidate topologies, all using

minimum hop routing.

6.3.1 The Convexity of the Network Cost Functions

Before solving the optimization problem, we discuss the convexity of the network cost

functions. We first relax A as a continuous variable and later round the result back to

integer. In 6.4.1 we confirm that this approximation is very good. With a continuous

A, the normalized cost Cn is also continuous and differentiable over A, according to

(5.14). For a given N, the average minimum hop distance of the topologies studied

in this work is (or can be approximated as) a convex function of A (cf. (4.11),(4.18),

and (4.22)). Directly from (5.8) and (5.9), the number of OXC ports Ko and the

number of OEO ports Ke are given by

Ko(N, A, t) = (N - 1)t(Hmin(N, A) + 1) (6.13)

and
Ke(N, A, t,r,R,) = t(N - 1)r(Hmin(N, A) + 1)
Ke (N, A, t, r, R, l) = (6.14)Rrq

respectively. Thus both K, and Ke are also convex in A. Further more, any OXC cost

function Fi(Ko) listed in Table 5.1 is convex and monotonically non-decreasing in Ko,
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therefore is convex in A, according to the theorem of convexity under composition

[49]. Similarly, an OEO cost function is linear with A, thus also convex in A. As

such, the normalized network cost Cn is convex in A and thus a local optimal A* is

also a global optimum, as illustrated in Figure 6-2.

6.3.2 Minimal Cost and Optimal Node Degree for a Given

Class of Topologies

In this subsection, we proceed to find the optimal node degree as a function of N for

three classes of topologies: A-nearest Neighbors, Symmetric Hamilton Graphs, and

Generalized Moore Graphs. For each class of topologies, we analyze their optimal

node degrees for three different types of OXC switching fabrics - 3-D, multi-stage,

and 2-D switching fabrics, as well as for OEO switching fabrics. The analytical and

asymptotic results are summarized in Table 6.1, Table 6.2, and Table 6.3. As an

example, here we provide the analysis of A-nearest Neighbors topology equipped

with 3-D OXC in the following. With some simplifications, the derivations for the

rest of the combinations of topologies and switching fabrics (both OXC and OEO)

are provided in Chapter Appendix 6.5.

From Section 4.3.1, the average minimum hop distance of the A-nearest Neighbors

topology is given by

Hin  (1 + 1 A ([ )2 (6.15)man 2(N - 1) A 2(N - 1) A
if N can not be evenly divided by A; and

HN 1 N-1
Hmin = 2 2A (6.16)

if N can be evenly divided by A. The average minimum hop distance can be approx-

imated using (6.16). This approximated average minimum hop distance is a convex

function of node degree A.

For 3-D OXC switching fabrics, we have Fi(Ko) = 1Ko (for simplicity we let

= 0, cf. Table 5.1), then the normalized network cost (cf. (5.8) and (5.14)) is

3 N-i
aA + Plt(N - 1)( + - ). (6.17)2 2A
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We have the following optimization problem with two inequality constraints,

mmin a + lt(N- 1)(-+ N-
A 2 2A

s.t. gl(A) = A- N + 1 < 0;

g2(A) = -A + 2 < 0. (6.18)

For an optimal A* and its associated Lagrange multipliers I* and [p, the Karush-

Kuhn-Tucker (KKT) necessary conditions [50] yield

-lt(N - 1)2  - 0;
a - it 22 + ± -[4 = 0;2A*2

ml(A*- N+ 1) = 0;

2((-A* +2) = 0;

A* > 0; pI 2 0. (6.19)

There are two possible cases:

* Case 1: the above constraints are inactive,

2 < A* < N - 1. (6.20)

For this case we have 0p = 0 and [4 = 0. Then, we obtain

A = (N - 1). (6.21)

Note that the inactivity of the constraint requires the fiber-to-switching cost

ratio to satisfy

N- < (•t) < 1. (6.22)N - 1 2a 1

* Case 2: one constraint is active. We have either

A*= N- 1, (6.23)

in which case pL = 01/2 - a and p4 = 0; or

A* = 2, (6.24)
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Table 6.1: Optimal node degree A* and minimal normalized network cost Cn for

A-nearest Neighbors.

Switch Optimal Node Degree A* Minimal Normalized Cost C*

Architecture

3-D ()(N - 1) ( + )(N - 1)

Multi-stage Transcendental optimal equation Numerical exact solution

Numerical exact solution

2-D - (N-1) 1+ 1- (22) (N-1)] aA*+ 3 [t(N- ) (N )]2

-+ = (-2)3(N) -)1 +I- ( 3+ 1 2- (N - 1)] oc (tN)-

ca cct2 N + c2t N

OEO a7R1 V I + 2R77]OEO ( (N-1)2___ + 2 et )(N 1)

in which case 4 = 0 and ,p = •(N - 1)2 - a. As in the [50], 1* and p1 both

can be viewed as the rate of change of minimal cost when the level of constraints

changes. Since we are more interested in finding the optimal node degree A* as

a function of N for a given type of topology with certain type of OXC switching

fabrics, we focus on the Case 1, in which /4 = 1p = 0. Substituting (6.21) into

(6.17), we have the minimal normalized network cost

C* 2alt + t)(N - 1). (6.25)

6.4 Results and Discussions

Having obtained the analytical and asymptotic results in the previous section (as sum-

marized in Table 6.1, Table 6.2, and Table 6.3), in this section we plot the analytical

results or numerical solutions for various design examples to illustrate the effects of

various design parameters on the optimal WDM network architecture. From Section

6.4.1 to Section 6.4.4, we focus on the OXC-switched WDM networks. In Section
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Table 6.2: Optimal node degree A* and minimal normalized network cost C* for

Symmetric Hamilton Graph.

Switch Optimal Node Degree A* Minimal Normalized Cost C,*

type

3-D I(N - 1)(N-2)+1 ( + 4)/(N - 1)(N - 2) + a

3 ( (N -1)+1 ~ arc- + )(N - 1)+a
multi Transcendental optimal equation Numerical exact solution

stage Numerical exact solution

2-D ( (Nat - 1) ~{4+ [2233 -6 73 +( ) 1]3}+ 3 2+[-)

14 (!) (N-1)5 {4+ [22 6.73 ( ) (N-1)]} +1 oc(tN)2

oc c3t N3  + c 4t3Nj

OEO (N
- 

1)(N - 2) + 1 + 7 (N - 1)(N - 2) + a

((N-1)+1 4r+ I 3 
( N 

- 1)(+2 a7Rs V R,+ 4R77

Table 6.3: Optimal node degree A* and minimal normalized network cost C* for

Generalized Moore Graphs.

Switch Optimal Node Degree A* Minimal Normalized Cost Cn

type

3-D - W (pV(l t/c)(N-1) In N In A * )

c ItN- oc tN 1 +

multi Transcendental optimal equation Numerical exact solution

stage Numerical exact solution

2-D 2 t• (N-1 •(InN) a* +  [t(N - 1) (I•- + 1)]2

c0t 2
N

2  oc (tN)2 1

OEO 1 rt) (N - 1) InN a* + (N - 1)( nN +1)
4 (W er/n )(N-1) ) 1A

oc 3RNN oc tN (1 + In(N)
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6.4.5, we turn our attention to the OEO-switched WDM networks. In Section 6.4.6

we provide a summary.

6.4.1 Dependencies of Optimal Network Connectivity on the

Type of Topology and the Type of OXC Switching Fab-

ric

In Section 6.3 and Chapter Appendix 6.5, we solve for the optimal node degrees and

the minimal costs of different types of topologies and switching fabrics. As presented

in Table 6.1 to Table 6.3, the optimal node degree depends on the network size, the

fiber-to-switching cost ratio, as well as the number of wavelengths of traffic between

each node pairs, etc. To illustrate these dependencies, we plot the normalized optimal

node degree as a function of network size N in Figure 6-3. Here, we define the

normalized optimal node degree as A*/(N - 1). For a fully connected network, the

normalized node degree is one. In Figure 6-3, the traffic demand between each node

pair is set at t = 1. We also let the cost crossover point equals to 32, thus the ratios

between pf, /2, and P3 are P0 = 502 = 3203. Based on the estimates of the realistic

cost ratio between fiber and switch in metropolitan area networks, we set Pu = 1,

a = 40, thus a/01 = 40. For comparison, we also plot the normalized node degrees

of rings and fully connected mesh networks. We have the following observations:

* For a metropolitan area network of moderate size (a few tens to a hundred

nodes), neither rings nor fully connected mesh networks is optimal physical

topologies. The optimal network connectivity is in the range of 0.03N to 0.1N

(the optimal node degrees are in the range of 0.03N to 0.1N for Generalized

Moore Graphs of 50 -100 nodes).

* When we compare the optimal connectivity among different topologies that use

the same type of OXC switching fabrics, we notice that a A-nearest Neighbors

topology generally has the highest optimal node degree, while a Generalized

Moore Graph has the lowest. When the network size N is fixed and the node
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degree A is variable or vice versa, among the three types of topologies stud-

ied, a A-nearest Neighbors topology always has the largest average minimum

hop distance, while a Generalized Moore Graph has the least. By correlating

the optimal connectivity with the average minimum hop distance, we conclude

that for the same network size, a topology with smaller average minimum hop

distance generally has lower optimal connectivity.

* When we compare the optimal connectivity of a particular topology with differ-

ent types of OXC switching fabrics, we note that a network with 3-D switching

fabrics has the smallest optimal node degrees; while that with 2-D switching

fabrics has the largest optimal node degrees. For 2-D switching fabrics the opti-

mal node degree (as a solution of the optimality equation) grows approximately

as polynomials of N (for all three classes of the topologies studied, cf. Table

6.1 to Table 6.3). As such, the normalized optimal node degree (A*/(N - 1))

increases as N increases. With this trend, as N is large enough, the solutions of

the optimality equations will eventually surpass N - 1, violating the constraint

A < N - 1. When this happens, the constraint A < N- I becomes active - the

optimal node degree A* equals to N - 1. In other words, the optimal network

has to be fully connected so that the dominant switching cost can be minimized.

It is also worth noticing that for the A-nearest Neighbors and Symmetric Hamil-

ton Graph with 3-D switching fabrics, the normalized optimal node degrees are

asymptotically independent of network size. They are determined only by the

fiber-to-switching cost ratio a//1.

* In the process of finding the optimal node degree, A is relaxed as a positive real

number. As a result, A*, obtained by solving the optimality equation, may not

be an integer. We then round A* to an integer - we compare the network cost

at [A*] and LA*J, and choose the one with lower network cost. To evaluate

the accuracy of the approximations, we compare the rounded analytical results

with the results of exhaustive searches - we look for the node degree (an integer)

for which the network achieves the minimal cost. In Figure 6-4, we plot both
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Figure 6-3: Normalized optimal node degree A*/(N - 1) as a function of network size

N for A-nearest Neighbors, Symmetric Hamilton Graphs, and Generalized Moore

Graphs. The fiber and switching cost parameters are: P3 = 1, /fl1 = 40, and

0i = 502 = 3203.

analytical and exhaustive search results of normalized optimal node degree with

respect to network size for the A-nearest Neighbors topology. It shows that the

analytical solutions fit well with the exhaustive search results when the network

size N is larger than 20. The "ripple" effect shown in the exhaustive search

results reflects the discontinuity of the average minimum hop distance as a

function of integers N and A, especially for smaller N. After running tests of

this rounding algorithm, the results show that the maximum rounding error is

within 1 node degree. The agreement between the analytical results and the

exhaustive searches is also provided in Figures 6-5, 6-6, and 6-8.
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Figure 6-4: Normalized optimal node degree A*/(N - 1) as a function of network

size N for A-nearest Neighbors topology. The lines represent the analytical results;

while the points represent the results of extensive search. The fiber and switching

cost parameters are: 01 = 1, a//l1 = 40, and Pl = 502 = 32,33.
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Figure 6-5: Normalized minimal network cost CQ as a function of network size N

for A-nearest Neighbors topology. The lines represent the analytical results; while

the points represent the results of exhaustive search. The fiber and switching cost

parameters are: pl = 1, a/01 = 40, and 01 = 502 = 3203.

6.4.2 Minimal Cost as a Function of Topology and OXC

Switching Fabrics

Based on Table 6.1 to 6.3, we can demonstrate how well the minimal network cost

scales with different types of topologies and technologies. For this purpose, we plot

from Figure 6-5 to Figure 6-9 the minimal normalized cost and minimal normalized

cost per unit traffic, for different topologies and switching fabrics. Figure 6-5 compares

the minimal normalized network cost CQ of A-nearest Neighbors topology for three

different types of switching fabrics. It is evident that, for small size networks (a few

up to 10 nodes), it is more economical to use 2-D or multi-stage switching fabrics.

As networks size increases, the differences in cost of various switching fabrics become
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Figure 6-6: Normalized minimal network cost per unit traffic CQ/(N-1) as a function

of network size N for A-nearest Neighbors topology. The lines represent the analytical

results; while the points represent the results of exhaustive search. The fiber and

switching cost parameters are: 01 = 1, a/01 = 40, and P1 = 5,32 = 32/33.

more evident, mostly due to the scaling of the OXC cost Fi(Ko) (i E {1,2, 3}, cf.

Table 5.1). It is thus cost effective to use 3-D switching fabrics in a network of

moderate size (a few tens to a hundred nodes).

Under uniform all-to-all traffic, the add-drop traffic at each node grows linearly

with the network size. Figure 6-6 takes this factor into account. It plots the minimal

normalized cost per unit traffic C*/(N - 1) with respect to network size N for three

different types of switching fabrics. Both the plot and the analytical asymptote in

this figure indicate the cost effectiveness of using 3-D switching fabrics as the size

of the network increases: the minimal normalized cost per unit traffic stays constant

with respect to N for 3-D fabrics, while it grows as the polynomials of N for 2-D

fabrics.
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Figure 6-7: Minimal normalized network cost C* as a function of network size N. The

switching fabric is 3-D with F1(Ko) = 01Ko. Results of ShuffleNets and de Brujin

Graph are labeled as SN(A, k) and B(A, D), respectively. The fiber and switching

cost parameters are: 01 = 1, a/01 = 40, and P1 = 502 = 32,3.

Figure 6-7 compares the minimal normalized network cost for different classes

of topologies all with 3-D OXC switching fabrics. The results for ShuffleNets and

de Brujin Graph are also presented. We note that some ShuffleNets and de Brujin

Graphs have costs that are close to that of Generalized Moore Graphs, thus from a

cost perspective they are potential candidates for physical topologies of networks of

certain sizes.

Figure 6-8 depicts the minimal normalized network cost per unit traffic with re-

spect to network size N, with both analytical asymptotes and exhaustive search

results. Both the plot and the analytical asymptote again show the cost effectiveness

of Generalized Moore Graphs as network physical topologies: the minimal normal-

ized cost per unit traffic decreases with respect to N for Generalized Moore Graphs;
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represent the results of exhaustive searches; while the lines represent the analytical

asymptotes. The switching fabric is 3-D with F1(Ko) = 31Ko. The fiber and switching

cost parameters are: 0 = 1, a/,3l = 40, and f1 = 32/33.
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while it stays constant (with the asymptote of (2a,31)1 ) with respect to N for A-

nearest-neighbor topologies. The analytical asymptote for Moore Graphs is given by

(a = 01/a):

Ca(N) P31 In(N)
N-i f i inn 1 n[1(N - 1) 4n(N In ± !n[![(N-1) In(N)]] 12N -1 4 n[(N -1) n(N)] - n[ In[ (N -1) n(N)]] + n[(N-1)n(N)]

+ 31 In N (6.26)

n (N-1) In(N)) nN)

1 {n[ (N-1) ln(N)]-1ln[ 1n[~ (N-) In(N)]]+ 11I (N-) )1In(N

The trends depicted in the above figures are what we expected. From the view-

point of physical topology designs, Generalized Moore Graphs are very "efficient",

in the sense that as their sizes increase, their diameter and average minimum hop

distance scale favorably as loga N, compared to A-nearest Neighbors or Symmet-

ric Hamilton Graphs, whose diameter and average minimum hop distance scale as

N/A. These efficiencies are further manifested when we consider the dimensioning of

switching resource as traffic per node increases.

To stress the importance in choosing both physical topologies and OXC architec-

tures that have good scalability, in Figure 6-9 we plot the minimal normalized network

cost per unit traffic with respect to network size N, for combinations of two different

classes of topologies (A-nearest Neighbors and Moore Graphs) and two types of OXCs

(3-D and 2-D architectures). As shown in Figure 6-9, even with Generalized Moore

Graphs as physical topology, which exhibit excellent scalability in average minimum

hop distance, if 2-D OXCs, instead of 3-D OXCs, are deployed, the per node cost to

support unit traffic still increases, as the network size increases. In other words, this

particular choice of architecture (physical topology and switching technology) does

not scale well.
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Figure 6-9: Minimal normalized cost per unit traffic C*/(N - 1) as a function of

network size N for combinations of two different classes of topologies (A-nearest

Neighbors and Generalized Moore Graphs) and two types of OXCs (3-D and 2-D

fabrics). The fiber and switching cost parameters are : 0 = 1, a/fl = 40, and

01 = 32/33.
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Figure 6-10: Normalized optimal node degree as a function of fiber-to-switching cost

ratio a/,31 for 3-D OXC. The network size is set as N = 100.

6.4.3 Optimal Network Connectivity and Minimal Cost as

Functions of Fiber-to-Switching Cost Ratio

Using A-nearest Neighbors and Generalized Moore Graphs as examples, Figure 6-10

and Figure 6-11 illustrate how the optimal network connectivity and minimal normal-

ized network cost vary as functions of fiber-to-switching cost ratio. For both figures,

the network size is set as N = 100 and the OXC type is 3-D, i.e., FI(Ko) = 31Ko.

The fiber-to-switching cost ratio varies from 2 to 50, which are realistic estimates of

current technologies. The trends depicted in both figures confirm our intuitions: a low

c//1 ratio translates to a relatively small cost for a fiber connection, thus the optimal

networks tend to have higher normalized optimal node degree (a densely connected

network); a high a/0 1 ratio translates to a relatively large cost for a fiber connection,
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Figure 6-11: Normalized optimal node degree as a function of fiber-to-switching cost

ratio a/f31 for 3-D OXC. The network size is set as N = 100.

thus the optimal networks tend to be sparsely connected. We also note that per

node cost increases monotonically with the ratio, as shown in Figure 6-11. To explain

this trend, we plot in Figure 6-12 how the optimal fiber cost and optimal switching

cost (both normalized to per node per unit traffic) change with ratio. Figure 6-12

shows that as per fiber connection cost a becomes more expensive relative to per port

switching cost Pi, the optimal connectivity tends to decrease - the optimal physical

topology uses less fibers. However, the actual fiber cost (the product of the optimal

node degree A* and the cost per fiber connection a ) still increases. Moreover, as

the result of a sparser network, a lightpath on average travels through more hops,

increasing the number of ports, thus the cost of switching.

174



101

Z

0

D - 0 .. ..... . . .. . .. , . .' .

U . . . . . . . . . . . . . : .: . . . .. . . .. . . . . . . . . . . . . . . .... . . . . . . . . . . . . .: . . . .. . . .. . . . .. . .

o ...... Fiber Cost A-Nearest Neighbors
..................... ......... - Fiber Cost Generalized Moore Graphs

.E --- 3-D OXC Cost A-Nearest Neighbors
S ............ ....... ... - - 3-D OXC Cost Generalized Moore Graphs

10- 1
10

Fiber-to-Switching Cost Ratio al /

Figure 6-12: Optimal normalized fiber cost and optimal normalized 3-D OXC cost as

functions of fiber-to-switching cost ratio a/l 1 . The network size is set as N = 100.
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6.4.4 Network Scalability as Traffic Increase

Our analytical results in Table 6.1 to Table 6.3 show that the optimal network node

degree is also a function of wavelengths of traffic t between node pairs. The normalized

optimal node degree A*/(N - 1) versus t is shown in Figure 6-13 for combinations of

two classes of topologies and three types of OXC switching fabrics. The dependencies

for fully connected mesh networks and ring topologies are also plotted for reference.

It is shown in this figure that the Moore Graphs maintain smaller optimal connec-

tivity than the A-nearest Neighbors topologies do for every type of OXC switching

fabrics. In other words, Moore Graphs have better scalability. The impact of switch-

ing technologies is shown again in Figure 6-13 - networks with 3-D switching fabrics

have the best scalability, while networks with 2-D switching fabrics do not scale well,

in the sense that networks tend to be fully connected when the traffic between node

pairs exceeds a certain value. In Figure 6-14, we plot the corresponding minimal

normalized network cost per unit traffic with respect to t. The plot illustrates the

trend that as the traffic between node pair increases, the minimal normalized cost per

unit traffic actually decreases for networks using 3-D or multi-stage switching fabrics;

while it increases for that using 2-D switching fabrics.

6.4.5 Comparisons of OXC and OEO Switches

In this section we turn our attention to OEO-switched WDM networks. The focus is to

compare the relative cost benefits of deploying OXC or OEO switches in the network.

As stated in Section 5.3.3, the cost of an OEO switch depends also on the port rate

R and data rate per wavelength r; while the cost of an OXC switch can be considered

as rate independent. Based on Table 6.1 and Table 6.3, in Figure 6-15 we plot the

minimal normalized network cost C* as a function of data rate per wavelength for two

classes of network topologies (A-nearest Neighbors and Moore Graphs) in conjunction

with two types of switching fabrics (OEO switch and 3-D OXC). The network size,

fiber connection cost, OEO per port cost, and 3-D OXC per port cost are set as

N = 50, a = 20, f3 = 7.5, and P1 = 1, respectively. We also assume that there is one

176



100

..... .. ................... .......
. .. . . . . . . . . . . . . . . .. . . . . .. . . . . . . . .- . . . . . . . . . . . . . . . . . . . . . ... . . . . . .. ... . ...

0 .'.'. ...... ........ * ............ ...... Generalized Moore Graph 2-D

N . .A-nearest Neighbors 3-D

... ..... Ring ................... A-nearest Neighbors Multi-stages
-e- A-nearest Neighbors 2-D- Fully connected network

100 Wavelengths of Traffic t 10l

Figure 6-13: Normalized optimal node degree A*/(N - 1) as a function of the wave-

lengths of traffic between a source-destination pair, under uniform traffic. The size of

the network is fixed at N = 50. The fiber and switching cost parameters are: $1 = 1,
a/0 1 = 40, and #1 = 502 3203.

177o3 -·~l .·~. ·o a*, o --c
o -~.·~

z -- '9I S'X'

177



s5
IV

Z

10rj-
o

4-

0o

3

E
0
z

E

i-

·I €n

10o  101
Wavelengths of traffic t

Figure 6-14: Minimal normalized cost per unit traffic C*I(N - 1) as a function of the

wavelengths of traffic between a source-destination pair, under uniform traffic. The

size of the network is fixed at N = 50. The fiber and switching cost parameters are:

01 = 1, a/i 1 = 40, and 3 1 = 5/32 = 3203.

178

o Generalized Moore Graph 3-D ........... .............
- Generalized Moore Graph Multi-stages ....... ...... .....

-e- Generalized Moore Graph 2-D
...... A-nearest Neighbors 3-D
- - A-nearest Neighbors Multi-stages

- A-nearest Neighbors 2-D

. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.*........*... - . . 0

...... ........... ....................... ...........·I · · ···· ···- - -- I· ··I·· ·

1



wavelength of traffic between each node pair, i.e., t = 1. Figure 6-15 shows that the

minimal normalized cost of a network with OXC switches does not depend on the data

rate carried by each wavelength; while the normalized minimal cost for a network with

OEO switches increases as the per wavelength data rate increase. At low data rate, it

is economical to use OEO switches; as the per wavelength data rate increases, using

3-D OXC becomes more favorable. Figure 6-16 plots the minimal normalized network

cost per unit traffic per data rate C*/r as a function of data rate per wavelength for

combinations of two classes of network topologies (A-nearest Neighbors and Moore

Graphs) and two types of switching fabrics (OEO switch and 3-D OXC). This plot

demonstrates that at high data rate (>10 Gb/s), networks with 3D-OXC exhibit

much better scalability in terms of minimal normalized network cost per data rate,

primarily due to the fact that the cost of OXC switches are intrinsically independent

of data rate. In Figures 6-17, we plot minimal normalized network cost per data rate

C'/[(N- 1)r] as a function of network size N, for the same combinations of two classes

of network topologies and two types of switching fabrics, with per wavelength data

rate set at 0.625 Gb/s (an OC-12 connection). In 6-18 we plot the same dependency

with per wavelength data rate of 2.5 Gb/s (an OC-48 connection). From these plots,

we again come to the conclusion that at a low data rate, it is economical to use OEO

switches; at a high data rate, it is more cost-advantageous to use OXC switches.

6.4.6 Section Summary

In this thesis, we adopt an analytical approach to find cost-effective physical topolo-

gies and to select scalable switching technologies. We have so far focus on regular

networks and static uniform traffic model. By setting up a first order cost model and

analyzing the tradeoff between fiber and switching resources, we have found that for

regular networks and uniform traffic, the joint design problems of physical topology,

dimensioning, and routing can be solved optimally and analytically. We prove that

with minimum hop routing, Generalized Moore Graphs achieve the lower bound on

network cost and are good reference topologies. We also show that topologies with

structures close to those of Generalized Moore Graphs can achieve near-optimal cost.
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Figure 6-15: Minimal normalized network cost as a function of data rate per wave-

length for combinations of two classes of network topologies (A-Nearest Neighbors

and Generalized Moore Graphs) and two types of switching fabrics (OEO switch and

3-D OXC). N = 50, a = 20, 13 = 1, and /e = 7.5.
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Figure 6-16: Minimal normalized network cost per data rate C*/r as a function of

data rate per wavelength for combinations of two classes of network topologies (A-

Nearest Neighbors and Generalized Moore Graphs) and two types of switching fabrics

(OEO switch and 3-D OXC). N = 50, a = 20, Pi = 1, and 0e = 7.5.
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Figure 6-17: Minimal normalized network cost per unit traffic per data rate C*/[(N-

1)r] as a function of network size N, for combinations of two classes of network

topologies (A-nearest Neighbors and Generalized Moore Graphs) and two types of

switching fabrics (OEO switch and 3-D OXC), r = 0.625Gb/s, a = 20, 01 = 1, and

e = 7.5.
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Figure 6-18: Minimal normalized network cost per unit traffic per data rate C*/[(N-

1)r] as a function of network size N, for combinations of two classes of network

topologies (A-nearest Neighbors and Generalized Moore Graphs) and two types of

switching fabrics (OEO switch and 3-D OXC), r = 2.5Gb/s, a = 20, P1 = 1, and

e = 7.5.
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With simple network cost structures, closed-form solutions of the optimal degree and

cost as functions of various network design parameters (such as network size and

wavelengths of traffic between node pairs) are obtained. These results show that for

a metropolitan area network of moderate size (a few tens to a few hundred nodes),

neither rings nor fully connected mesh networks are optimal topologies. The optimal

network connectivity is in the range of 0.03N to 0.1N. The advantages of analyti-

cal approaches are self-evident: they provide valuable references on how the optimal

network connectivity scales as the design parameters change. More importantly, the

results demonstrate that switching technologies have a tremendous impact on the

final topological architectures. The optimal topologies connecting the same set of

nodes can differ significantly when different switching fabrics are used, even when

these topologies are designed to serve the same traffic demand. Among all-optical

technologies currently available, for smaller networks (a few to a dozen nodes) and

light traffic, 2-D switching fabrics have cost advantage over the 3-D switching fabrics.

However, as the size of the networks and the traffic among node pairs increases, 3-D

switching fabrics have the best scalability. Thus, the cost benefit of deploying the

latter type of technology for the future becomes apparent. Moreover, a comparison

of the cost benefit between OXC and OEO switches shows that at a low data rate, it

is economical to use OEO switches; at a high data rate, it is more cost-advantageous

to use OXC switches.

The results presented in this section demonstrate the importance of making the

right choices on both physical topologies and switching technologies in the network

design process. At this stage, we shall also caution that the plots presented in this

chapter serve primarily to illustrate the trends and the scaling of optimal topologies

as functions of network parameters, traffic demands, and technologies, rather than to

make a definitive recommendation based on the exact values in the plots.
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6.5 Chapter Appendix

As shown in Section 6.3.1, the normalized network cost Cn is convex in A for the

three classes of topologies: A-nearest Neighbors, Symmetric Hamilton Graphs, and

Moore Graphs. We now proceed to find the optimal node degree as a function of

N for these topologies in combination with different types of switching fabric: 3-D,

multi-stage, 2-D, and electronic (OEO).

6.5.1 A-Nearest Neighbors Topoloy

The average minimum hop distance can be approximated using (6.16). This approx-

imated average minimum hop distance is a convex function of node degree A.

3-D Switching Fabrics

The derivation of optimal node degree for A-nearest Neighbors networks with 3-D

OXC switching fabrics is already presented in Section 6.3.2 and is thereby omitted

here.

Multi-Stage Switching Fabrics

For multi-stage switching fabrics the OXC cost function has the form of F2(Ko) =

32Ko1+ 0 log 2 Ko. In the following 0 is set to 0 for simplicity. The optimal node degree

A* shall satisfy

A*2 (N- 1)2 n[3 t(N - 1) t(N - 1)2 (N - 1)2
ad* 2 - p 2 l InA i 32 t = 0. (6.27)2In2 2 2A* 2In2

This optimality condition is a transcendental equation that can be solved numerically

with given a, /2, and N.

2-D Switching Fabrics

For 2-D switching fabrics, the switch cost function has the form of F3(Ko) = 33K 2+ 6 .

In the following 6 is set to 0 for simplicity. When the constraint is inactive, the
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optimality condition for A* is

3  
23(N - 1)3 _a*3 32 2

2

03 t2(N - 1)4- 0.
2

Solving for optimal node degree A*, we have the only real and positive solution

1 (t2 3 -

=+ -- 
(N - 1) 3

23

{ 1+
-- 1

- (N - 1)1OL1 + 11

In the case of 2-D switching fabrics, optimal node degree A* grows with the linear

combination of N polynomials,

24 45
A* o( clt3N3 + c2t3N3, (6.30)

where cl and c 2 are constants. When A* becomes larger than N - 1, the constraint

2 < A < N - 1 becomes active. Hence, A* = N - 1, i.e., the optimal topology is

fully connected.

OEO Switching Fabrics

The derivation of optimal node degree for OEO switching fabrics is similar to that

for 3-D OXC. The optimality condition leads to

aetr (N - 1)2
Rr7 2A*2 (6.31)

Solving A* yields

1 ( /etr 2A* =
~z \JYIlR}

(N- 1). (6.32)

6.5.2 Symmetric Hamilton Graph

As presented in Section 4.3.2, we can approximate the average minimum hop distance

of a Symmetric Hamilton Graph as

3 N-2
Hmin =- + - -

4 4(A- 1)'

This approximated average minimum hop distance is convex in A.

(6.33)
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3-D Switching Fabrics

With 3-D switching fabrics, the optimality condition leads to

(N - 1)(N - 2) -0.
4(A* - 1)2

Solving for A* yields

(N - 1)(N - 2) + 1.

Multi-Stage Switching Fabrics

For multi-stage switching fabrics, the optimal node degree A* satisfies:

(N- 1)(N- 2) In
4 In 2

7t(N- 1) +
4

t(N-1)(N- 2) 1
4(A* - 1)

(N- 1)(N- 2)
- 2t 41= 0.

4 In 2
(6.36)

The optimality condition is a transcendental equation that can be solved numerically

with given a, #2, and N.

2-D Switching Fabrics

Similarly, for 2-D OXC switching fabrics we have the optimality equation

n(a* - 1) - 31 2 7(N - 1)2 (N - 2 ) ( -* - R i(N - 1) 2 (N - 2)2= - (6.37)

For large N, solving for A* yields

1
4

(3 t2)

+ 14 3t

(N-1)1 {4+

(N- 1) 4 +{

S223 73 ( 3- 2 )

22 -. 33 -6.7 (3 3 )

The optimal node degree of a Symmetric Hamilton Graph is also a linear combination

of N polynomials,

A* c c3t3N3 + C4t N3, (6.39)

where c3 and c4 are constants.
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(6.34)

(6.35)

a(A* - 1)2

1

2

(N- 1)]

a* = )

•\ • -2 /--o 'V~. V
\ V
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OEO Switching Fabric

The derivation of optimal node degree for OEO switching fabric is similar to that for

3-D OXC. One can simply replace P1 with )er/Ri, thus the optimal node degree A*

is

1 (/etr I (

*= 2 \ R / (N-1)(N - 2) + 1, (6.40)2 a7nR
which can be approximated as

A* t (N - 1) + 1, (6.41)2 arjR)(
when N is large.

6.5.3 Generalized Moore Graphs

The exact expression of average minimum hop distance for a Generalized Moore

Graph in (4.9) is not only cumbersome but also discontinuous due to the ceiling func-

tion in the expression. Our purpose here is to gain some insight into the asymptotic

behavior of optimal node degree for a Generalized Moore Graph. As derived in Sec-

tion 4.5.3, by assuming A d A - 1 and N > A, we can approximate the average

minimum hop distance Hmin for a Moore Graph of size N and degree A as

Hmin(N, A) = logA N. (6.42)

3-D Switching Fabrics

For 3-D OXC switching fabrics, the optimality condition leads to

A*(InA*) 2 = -t(N - 1) In N. (6.43)

Solving for A* yields

A*(N) = ( ) (N - 1) lnN(6.44)
4 (3188 (t/a)(N-1)lnN
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where W(x) denotes the Lambert function. Lambert function is the inverse of the

function f(W) = WeW. When x > 3, W(x) can be well approximated as

In[ln xz]
W(x) x In x - ln[lnx ] + (6.45)

In x

Let a = 31t/a, for large N (e.g., N > 100 and a = 1/40), A* can be approximated

as

a In N
a lnN - 1) In n[ Iln[ý (N-l) nN]] 

2  (6.46)
4{ ln[(N 2 1)lnN] - ln[ ln[(N 1)lnN]]+ 2 1n[4(N-l) In N]

Multi-Stage Switching Fabrics

For Multi-stage switching fabric, the optimality condition leads to

(N - 1) In N In [t(N - 1)]
A*(In A*)2 In 2

(N - 1) In N In (logA, N + 1)

A*(ln A*)2 In 2

(N - 1) In N
- 02t 1) = 0. (6.47)

A* (In A*)2 In 2

The optimality condition is a transcendental equation, which can be solved numeri-

cally with given a, /2, and N.

2-D Switching Fabrics

For 2-D switching fabrics, the optimality condition leads to

a - 23(t2 (N - 1)2 ln = 0. (6.48)
(lnA*)3 A*

Solving for A* yields

2 /3_ 2  (Iln N) 2
A*(N) = 2 (N - 1)2 (n N) 2  (6.49)

27 a ( 2) (N- 1)2(ln N)2]

where W(x) denotes the Lambert function. Let a = 33t2/a, for large N (e.g., N > 100

and a = 1/40), A* can be well approximated as

2a (N- 1)2 (lnN)2

27 1n[- (N - 1) In N] - In[-! n[ (N - 1) n IN]l + n in[~(N-1) ln N]] 3

189



OEO Switching Fabric

The derivation of optimal node degree for OEO switching fabric is similar to that for

3-D OXC. One can simply replace the 01 with 3er/RT, thus the optimal node degree

A* is

A*(N) = rt(N- 1)4 aR )
In N

W 
2

,O(r"Ot/·R)(N-1)InN 
2

(6.51)
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Chapter 7

Routing and Wavelength

Assignment (RWA) for Generalized

Moore Graphs

When we addressed the OXC cost in Chapter 5 and 6, we implicitly suppressed the

wavelength continuity constraints by assuming that either there are infinite number of

wavelengths or a full wavelength conversion is available. As such, Ko ports are enough

to switch Ko lightpaths, without causing wavelength blocking. The first assumption

is realistic, given the abundance of wavelengths in the metropolitan environment. The

second assumption is less realistic, given the fact that the current price of converters

is still high. This motivates us to expand the scope of this thesis by exploring whether

minimum hop routing algorithm, which minimizes the network switching cost, also

minimizes the number of wavelengths required to establish all-to-all uniform lightpath

connections for Moore Graphs, especially when wavelength conversion is not available.

Our approach is to construct upper and lower bounds on the minimal number of

wavelengths required: if the differences between the upper bound and lower bound are

small, then we can conclude that Moore Graphs exhibit good efficiency in wavelength

dimensioning.
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7.1 Definition and General Solving Approaches of

RWA Problems

We define the RWA problem as follows: given a network fiber topology and a set

of end-to-end lightpath requests, we are to determine routes and assign wavelengths

that require the minimal possible number of wavelengths. If the routing is already

provided, we only need to deal with the wavelength assignment (WA) problem. In

solving a WA problem, the following constraints, usually referred to as wavelength

continuity constraints, must be obeyed:

* Any two different lightpaths must be assigned with different wavelengths on a

given fiber.

* If wavelength conversion is not available, a lightpath must be assigned with the

same wavelength on all the fibers of its route.

There are in general two approaches to solve a WA problem for a set of lightpaths

and a given fiber topology. The first approach involves setting up the WA prob-

lem in the form of mathematical programming and solving it by using techniques

such as linear programming (LP) or nonlinear programming (NLP) [4] [9]. The second

approach involves first constructing either a node equivalence graph or an edge equiv-

alence graph and then solving the related problems of node coloring or edge coloring.

In this thesis, we concentrate on the second approach, since this approach usually

allows us to exploit good properties that are intrinsic to certain lightpath patterns

(logical topologies) and fiber topologies. A comparison of node coloring and edge col-

oring approaches are summarized in Table 7.1. Next we provide detailed descriptions

of the "graph coloring" approach [33].

First, we consider node coloring approach - constructing a node equivalence graph

and solving the corresponding node coloring problem. For clarity, we again denote

a given fiber topology as G and a set of lightpaths as P. We construct a node

equivalence graph, denoted as GN, as follows: each node in GN corresponds to a

lightpath in P and two nodes in GN are connected by an (undirected) edge, if the two
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Table 7.1: Comparison of node coloring and edge coloring approaches for solving

RWA problems

Node Coloring Edge Coloring

Limitation on the length No limitations < 2 hops

of a lightpath

Node of the Represents a lightpath Represents an edge

equivalence graph of the fiber topology

Edge of the If two lightpaths share If two edges are used

equivalence graph at least one node in one lightpath

Minimum number Node chromatic Edge chromatic

of wavelength required number number

corresponding lightpaths in P share a common fiber. Once GN is constructed, solving

the WA problem is then equivalent to solving the classical node coloring problem in

GN. That is, we find an assignment of colors to nodes of GN in such a way that

adjacent nodes have distinct colors and the minimal number of colors is used. The

minimal number of colors needed to color the nodes in this manner is called the node

chromatic number of the graph GN, denoted as X(GN). These colors correspond to

wavelengths used on G. Thus the minimal number of wavelengths required for the

WA problem equals to X(GN). There is a known result that provides an upper bound

on the node chromatic number for a connected graph with maximal node degree [51],

as summarized in the following:

Theorem 10 Let GN be a connected graph with maximal degree Amax. Suppose GN

is neither a complete graph nor an odd cycle, then X(G) 5 Amax.

Next we consider the edge coloring approach - constructing an edge equivalent

graph and solving the associated edge coloring problem. Unlike the node coloring

approach, which has no limitation on the length (in the number of hops) of a lightpath

request, the edge coloring approach can only apply to special cases in which all
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0-1

2-3 1-2

(a) (b)

Figure 7-1: (a) A line topology and a lightpath request of 3 hops; (b) The WA result

when edge coloring approach is used. This figure illustrates why the edge coloring

approach can only be applied to solve WA for lightpaths of no more than 2 hops.

In this example, it is trivial to see that one wavelength is enough to support this

lightpath of three hops. However, if we used the edge equivalence graph approach,

the constructed edge equivalence graph would be a 3-node ring, for which 3 colors

(wavelengths) are required to ensure that all edges incident on a node are shaded

with different colors.

lighpaths have at most two hops. The edge equivalent graph, denoted as GL, is

constructed as follows: for every edge e E E of the original fiber topology, we introduce

a node v, in GL. For a lightpath that uses both the edges el and e2, el 7 e2 , we add

an (undirected) edge that connects v,, and v, 2. Once GL is constructed, solving the

WA problem is then equivalent to solving the edge coloring problem of GL. That is,

we are to find the edge chromatic number Ae(GL) of GL - the minimal number of

colors to be assigned to the edges of GL, such that all edges incident on a node in

GL have different colors. These colors correspond to wavelengths used in the original

fiber network G.

To illustrate why edge coloring approach can only be applied to solve RWA for

lightpaths of no more than two hops, we provide a simple example, as shown in

Figure 7-1. We set up a lightpath of 3 hops on a line topology. It is trivial to see
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1-0-3

2-0-3

3-0-2 0-3

3-0-1 3-0

0-2

2-0

(a) (b) (c)

Figure 7-2: (a) End-to-end lightpath requests on a star topology: 1 --+ 2, 2 -+ 1, 1

3, 3 --- 1, 2 -* 3, and 3 - 2; (b) The node equivalence graph and the corresponding

node coloring; (c) The edge equivalence graph and the corresponding edge coloring.

that 1 wavelength is enough to support this lightpath. However, if we used the edge

equivalence graph approach, the constructed edge equivalence graph would be a 3-

node ring, for which 3 colors are required to ensure that all edges incident on a node

have different colors. In other words, an edge chromatic number of 3 would indicate

that 3 wavelengths are required for setting up the lightpath. Obviously this is not

true.

There is also a known result that provides an upper bound on the edge chromatic

number for a connected graph with maximal node degree Amx [52] [53], as summarized

in the following:

Theorem 11 For a connected graph GL with a maximal node degree Amax, the edge

chromatic number Ae(GL) is either Amax or Amax + 1.

To show how we can use both node equivalence graph and edge equivalence graph

approaches to solve RWA problems, we provide a simple example. As shown in

Figure 7-2 (a), we setup all-to-all uniform lightpath requests on a star network of

4 nodes. Figure 7-2 (b) and (c) show the constructed node and edge equivalence
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graphs, respectively. Note that since there is a unique minimum path between any

pair of nodes in a star topology, both the node-equivalence and the edge-equivalence

graphs are unique. It is straightforward to show that both node chromatic and edge

chromatic numbers are 2. We thus reach the conclusion that two wavelengths are

required to support the uniform lightpath requests.

7.2 Solving RWA Problems for Moore Graphs

In this section, we study whether minimum hop routing algorithm, which minimizes

the network cost, also minimizes the number of wavelengths required to establish

all-to-all uniform lightpath connections for Moore Graphs. In Theorem 2 of Chapter

4, we showed that, for Moore Graphs, with minimum hop routing, the total network

load generated by uniform all-to-all traffic can be evenly distributed on every fiber. In

this section, we rely on this property to solve the RWA problem for a Moore Graph.

For clarity, we again summarize the result of balanced load distribution.

Theorem 12 (Theorem 2) For a Moore Graph of degree A and diameter D, balanced

load distribution can be achieved for the static uniform all-to-all traffic, with each edge

having a load of EZ , i(A- l)i

We first consider the case when wavelength conversion is available, then the WDM

network is logically identical to the traditional circuit-switched networks. With wave-

length conversion, the joint RWA problem is simplified to a routing problem with the

objective of minimizing the maximum load on each fiber. A direct application of bal-

anced load distribution result (Theorem 12) leads to a conclusion that the minimum

hop routing does minimize the number of wavelengths for uniform traffic. In other

words, any other routing algorithms require at least the same number of wavelengths

to support the same traffic demand.

We next consider the case when wavelength conversion is not available. For this

case, RWA becomes rather complicated because of the wavelength continuity con-

straints. Since no two lightpaths that share a common fiber can use the same wave-

length, the balanced load result (Theorem 12) can only be used to construct a lower
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Table 7.2: RWA results for Moore Graphs

Graph Node number Min. no. of wavelengths Min. no. of wavlengths

Node degree, with conversion without conversion

and diameter

Fully connected A = N - 1 1

graphs D = 1

Rings (with odd N is odd N2 -1 N 2-18 8

no. of nodes) A = 2

Petersen N = 10, A = 3, 5 5

Graph and D = 2

Hoffman-Singleton N = 50, A = 7 13 < 14

Graph and D = 2

Possible N = 3250 N = 3250 113 < 114

A = 57, and D = 2 A = 57, and D = 2

bound on the number of wavelengths required. As such, we first solve the RWA

problem for each instance of Moore Graphs and later extrapolate the solutions to a

general result. RWA results for all the instances of Moore Graphs are summarized in

Table 7.2.

We start with a fully connected (complete) graph, which can be treated as a

(trivial) Moore Graph. In a complete graph, each node reaches every other node in

exactly one hop. It is trivial that such a graph requires exactly one wavelength with

or without wavelength conversion.

We next consider ring topologies (with odd number of nodes). A known result

[33] shows that it requires the same (minimal) number of wavelengths, indifferent

to the wavelength conversion capabilities of the network. The minimal number of

wavelength required is (N 2 - 1)/8.

The rest instances of the existing Moore Graphs all have diameters of 2, that

is, the longest lightpath has 2 hops. Using this property, we can transform a RWA
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Figure 7-3: (a) Petersen Graph; (b) Part of the edge equivalence graph GL and the

edge coloring of the Petersen Graph.

problem into an edge coloring problem of an equivalence graph GL and obtain a

tight upper bound on the minimal number of wavelengths. In other words, for a

Moore Graph (of diameter 2), finding the minimal number of wavelengths to support

a given set of lightpath requests is the same as finding the edge chromatic number

of the corresponding GL. An example of constructing edge equivalence graph of the

Petersen Graph is shown in Figure 7-3.

For solving a RWA, lightpaths using only a single fiber (edge) can always be

assigned a wavelength independently from other lightpaths (using more than one

fiber). Thus we only need to consider lightpaths of two hops. As shown in the proof

for Theorem 12 (cf. Section 4.5.2), for a Moore Graph under uniform all-to-all traffic,

each fiber is used as a first hop (of a two-hop path) for ZEDl (A - 1)i times (D = 2);

each fiber is used as a second hop (of a two-hop path) for (A - 1)D- 1 times (D = 2).
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In other words, the equivalence graph is regular with a node degree

2-1

A(GL) (A- 1)2-1 
+ • ( A - 1)i

i=1

D=2

- i(A- 1)i - l . (7.1)
i=1

According to Theorem 11, the minimal number of wavelengths to support all the

lightpaths of two hops is at most

D=2
A(GL) + 1 i(A - ) i - 1. (7.2)

i=1

Adding one additional wavelength that is used for the lightpath of one hop, we can

have an upper bound on the minimal number of wavelength WM as

D=2

WM < 1 + i(A- 1) i - 1 .  (7.3)
i=1

In summary, Theorem 12 provides a lower bound on the minimal number of wave-

lengths required for a Moore Graph. For complete graphs and rings, it requires the

same (minimal) number of wavelengths with or without wavelength conversions. An

upper bound on the minimal number of wavelengths is given in (7.3). By combin-

ing these results, we extrapolate to the following general conclusion on the minimal

number of wavelengths used to support all-to-all uniform traffic:

Theorem 13 For a Moore Graph of degree A and diameter D, a minimal number of

wavelengths required to support all-to-all uniform traffic with or without wavelength

conversions satisfies

D D

i(A - 1)i- 1 WM < 1 + i(A - 1)i- 1. (7.4)
i=1 i=1

Note that the difference of the upper and lower bound is 1. In other words, for

a Moore Graph, at most one additional wavelength is required in the absence of

wavelength conversion. As for the Petersen Graph, using minimum hop routing and

a simple wavelength assignment heuristic, a minimal 5 wavelengths are required to

support the all-to-all uniform traffic. The heuristic is a combination of "First-fit" and
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"Last-fit" RWA algorithm [10]. The details of the heuristic and the assignment result

are provided in the Appendix 7.4. Theorem 13 shows that Moore Graphs are also

efficient in regard to the wavelength usage, in the sense that wavelength conversions

do not provide significant advantages.

7.3 Solving RWA Problems for Generalized Moore

Graphs

The balanced load distribution property of a Moore Graph arises from its symmetric

construction - each of its nodes has a fully populated routing spanning tree. For a

Generalized Moore Graph, multiple minimum hop paths may exist for some source-

destination pairs. As a result, the minimum hop routing may or may not balance

the load or minimize the congestion even under uniform traffic. To illustrate this,

we first use an example of a (undirected) Generalized Moore Graph with N = 7

and A = 3, as shown in Figure 7-4 (a). In this example, with the minimum hop

routing illustrated in Figure 7-4 (b), a load of 2 can be evenly distributed on each

edge. We further show that 2 wavelengths are enough to support uniform all-to-all

traffic without any wavelength conversion. We next consider another example - a

Symmetric Hamilton Graph of 6 nodes and degree 3, shown in Figure 7-5 (a). This

Symmetric Hamilton Graph can be also considered as a complete K 3,3 bipartite graph

(a set of graph vertices can be decomposed into two disjoint sets, such that there are

no two vertices within the same set are adjacent, but every pair of vertices in the

two sets are adjacent). For the clarity of discussion, we redraw the same Symmetric

Hamilton Graph in the bipartite K3 ,3 form in Figure 7-5 (b). For this graph, the

minimum hop routing algorithm is not unique. Table 7.3 lists two different minimum

hop routing algorithms. We note that neither of the algorithms can distribute the

load evenly over each fiber. Routing algorithm 1 incurs a maximum load of 4; while

routing algorithm 2 minimizes the maximum load to 3. It is also straightforward

to show that using routing algorithm 2, a minimum of 3 wavelengths are enough to
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(b)

Figure 7-4: (a) A Generalized Moore Graph with N = 7 and A = 4; (b) A routing

spanning tree from node 1.

support a uniform demand (t = 1), even in the absence of wavelength conversion.

Using node coloring approaches, we investigate the wavelength assignments for

Generalized Moore Graphs with A = 3, 4 and D = 2, 3. The results are listed

in Table 4. It is seen that the wavelength conversion does not reduce the minimal

number of wavelengths required. We thus conclude that the wavelengths can also be

efficiently provisioned for these Generalized Moore Graphs.

7.4 Chapter Appendix

In this appendix, we present the wavelength assignment algorithm and the result for

the Petersen Graph. The following summarizes a RWA heuristic for the Petersen

Graph. Table 5 summarizes RWA results for the Petersen Graph.

1. Number the 5 wavelengths from 1 to 5.

2. Start the assignment first for the two-hop paths, in the order: from source A to

destination B, ... , J; from source B to destination C, ... , J; ... , from source I
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Figure 7-5: (a) A Symmetric Hamilton Graph with N = 6 and A = 3; (b) The same

graph is redrawn as a K3,3 complete bipartite graph.

Table 7.3: The minimum hop routing algorithms for a Symmetric Hamilton Graph

with N = 6 and A = 3.

Routing Algorithm 1 Algorithm 2

algorithm

Node i li6I i + 116, lii6 Ii + 116 -i + 216 lil -i + 116 , il6 ~li + 316 - i + 216

|il6 - 1 li + 316, |i16 - li + 316 - i 46  i + 316, il6 - i + 316 - i + 416
1is1 --+i + 516  i16 --+ i + 516

Max load 4 3
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Table 7.4: RWA results for Generalized Moore Graphs with A = 3, 4 and D = 2, 3.

Generalized Min. no. of wavelengths Min. no. of wavelengths

Moore Graphs with conversions without conversions

N=6, A=3, D= 2 3 3

N= 8, A= 3, D= 2 4 4

N = 14, A = 3, D = 3 10 10

N = 6, A = 4, D = 2 2 2

N= 7, A= 4, D= 2 2 2

N =8, A =4, D =2 3 3

N =9, A = 4, D =2 3 3

N = 10, = 4, D =2 4 4

N = 11, A= 4, D= 2 4 4

N = 12, A= 4, D= 2 5 5

N = 13,A = 4, D =2 5 5

Table 7.5: RWA result for the Petersen Graph.

A B C D E F G H I J

A - 5 1 1 4 5 2 1 2 2

B 1 - 4 2 3 4 5 3 1 3

C 5 1 - 5 1 1 4 5 3 2

D 5 3 2 - 4 1 2 4 5 3

E 1 4 5 2 - 3 1 4 4 5

F 1 3 5 5 5 - 1 2 4 3

G 2 1 5 4 5 5 -1 2 2

H 4 2 1 4 4 2 5 -3 1

1 2 3 1 3 2 3 5 4 - 4

J 2 4 3 3 1 5 2 2 3 -
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to destination J.

3. Assign to each two-hop path the lowest numbered wavelength that is previously

unused by both fibers of the path.

4. Assign the wavelength for the two-hop path, in the order from source B to

destination A; from source C to destination B, A; ... , from source J to destination

1, ... , A .

5. Assign to each two-hop path the highest numbered wavelength that is previously

unused.

6. Assign the unused wavelengths to all the one-hop paths.
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Chapter 8

Network Dimensioning Under

Demand Uncertainty

In this chapter, we address the issues of dimensioning WDM networks under random

traffic demand. We still focus on the small-scale networks that support both WDM

and OXC-based or OEO-based lightpath switching, such as next generation MAN

and SAN. As already discussed in Chapter 6, in a green field design scenario, when

the locations of nodes are known, a designer needs to determine the network physical

topology (e.g., the fiber connections among network nodes), dimension the necessary

switching resources (e.g., the size of optical switch at each node), and design routing

algorithms. In Chapter 5, 6, and 7, the joint optimization over topology, switching

resource dimensioning, and RWA is carried out based on a static traffic model, i.e., the

traffic demand between a node pair is given as a fixed quantity (e.g., the average or

the maximum possible traffic). This approach is effective when the traffic patterns are

reasonably well known in advance, but it is insufficient in today's metro environment,

where, as traffic demands among end users become more volatile [56], the uncertainties

of the traffic forecast increase. As such, it is more difficult to choose an appropriate

network topology and to provision the resources so that the actual demand can be

closely matched. On one hand, insufficient provisioning causes a loss of revenue and

a penalty cost for unsatisfied service level agreements (SLA); on the other hand,

over-provisioning will result in under-utilized network resources, hence a delay in
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the recovery of capital investment. Thus designing networks that are robust with

respect to demand uncertainties poses a key challenge, especially in today's telecom

environment where low cost and scalable solutions must be sought.

To achieve good performance, the design of the physical topology, as in the case

for static traffic, should be carried out jointly with the dimensioning of network re-

sources and the design of associated routing algorithm. Most prior works on network

planning under demand uncertainties [23]- [27] have been undertaken in the context

that network physical topologies are given (thus only dimensioning and routing sub-

problems remain to be solved). These works assess and quantify the effects of traffic

uncertainties on the network cost either via simulations or via stochastic program-

ming techniques. As discussed in Chapters 1,4, and 6, network physical topology is

a crucial design element that has significant influence on the network cost. Thus the

physical topology design should be addressed simultaneously with network resource

dimensioning and routing algorithm design. The works presented in this chapter rep-

resent an attempt to gain analytical insight into the impact of demand variability on

this joint (topology, dimensioning, and routing algorithm) design for WDM networks.

This chapter is organized as follows: in Section 8.1, we review the random traf-

fic model, which was introduced in Chapter 3. In Section 8.2, we introduce two

approaches to include the traffic variability in the network optimization model and

then formulate the network topology design problems with random traffic demand.

In Section 8.3, we first show that with a minimum hop routing algorithm, networks

with physical architectures of Generalized Moore Graphs exhibit the best robustness

(in cost) to demand uncertainties. We then give closed-form solutions of optimal

degree, traffic provisioned, and effective system cost as functions of various network

design parameters. In Section 8.4, we use results from various design examples to

understand the fundamental behaviors of networks under demand uncertainties and

to provide guidelines on designing optical networks in such dynamic environments.
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Figure 8-1: In random traffic model, traffic between a node pair is treated as a random

variable.

8.1 Modelling the Uncertain Demand

As discussed in Chapter 3, the random demand between a node pair is characterized

by a random variable x, specified by its probability density function (PDF) f(x), as

shown in Figure 8-1 (same as Figure 3-3). In this thesis work, we focus on using various

known theoretical distributions to appraise the impact of the demand uncertainties

on optimal network architecture. For fair comparisons, the PDFs are expressed with

independently adjustable mean ± and standard deviation a - the mean x represents

the magnitude of the expected demand; while the standard deviation o measures the

level of volatility of the forecast. The theoretical distributions used in this thesis are

listed in Table 3.1 and are plotted in Figure 8-2. To maintain the tractability of the

analysis, we further assume that traffic demands between node pairs are all-to-all

uniform and i.i.d.
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Figure 8-2: Distributions of random demand with t = 3 and a -- 3.

8.2 Optimization Models for Network Design Un-

der Demand Uncertainty

As mentioned previously, we assume that the network designer has a reasonable

knowledge of the traffic demand, albeit with some uncertainties, and the demand

between a node pair is characterized by a random variable. Thus, compared with the

deterministic network design problems, for which traffic demand between a node pair

is given as a fixed quantity, here we need to consider further how much bandwidth

t to be provisioned. To include traffic variability in the optimization models, we use

two approaches. The first approach is based on the bi-objective optimization tech-

nique; while the second one -service level requirement approach- is based on the idea

of setting a service level requirement as a constraint in the optimization model.
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8.2.1 Bi-Objective Optimization Approach

For bi-objective optimization, there are two objective functions, Y1 and Y2. A solution

is said to be optimal if any further improvement in one objective necessarily results

in a degradation of the other objective [49]. Such an optimal solution is call Pareto-

optimal [49].

To use the method of bi-objective optimization, we first introduce a penalty cost

associated with the unserved demand, which represents opportunity loss and also

quantifies the risk of a competitor entering the market. In our model, we assume

the penalty cost varies linearly with the expected unsatisfied demand. That is, when

the real demand x exceeds the provisioned bandwidth t, a penalty of y(x - t) will be

incurred. Here y is a coefficient representing per unit cost for unsatisfied traffic. Since

the traffic demands between node pairs are all-to-all uniform and i.i.d., the expected

penalty cost per node takes the form

E[Cp(x, t)] = (N - 1)7 (x - t)f(x)dx, (8.1)

where E[.] denotes the expectation function.

With the penalty cost for unserved traffic introduced, we note that there are clearly

two conflicting objectives to be optimized - network installation cost and penalty cost.

Under-provisioning the network saves on installation cost, but incurs more penalty

cost; over-provisioning the network can reduce penalty cost for unsatisfied traffic, but

increases the installation cost.

One common way to solve a bi-objective optimization problem is to form a weighted

sum of two counteracting objectives. We define such a weighted sum of normalized

network cost and expected penalty cost as the effective system cost, which is denoted

as Ceff(N, A, t). That is we have

Ceff(N, A, t) = Cn(N, A, t) + Ex[Cp(x, t)]

= Cn(N,A,t) + y(N - 1) (x - t)f (x)dx. (8.2)

In (8.2), y can be interpreted as the relative weight of the objective of minimizing

the under-provisioning penalty cost, compared to the objective of minimizing the
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network installation cost. It is worth pointing out that besides presenting the revenue

loss for per unit of unsatisfied traffic, y can also be interpreted as a risk index reflecting

levels of risk aversion. A high y value indicates the network designer's willingness to

increase network installation cost to avoid the risk of provisioning shortage. More

importantly, only when 7 is larger than a threshold, it is economical (feasible) to

dimension any capacity. More precisely, only when y is larger than the marginal

network cost (at bandwidth t), it is feasible to provide t units of capacity. We defer

the rigorous substantiation of this claim to Appendix 8.5.1.

The Pareto-optimal solution can be obtained by minimizing the effective system

cost, with a given per unit cost for unsatisfied traffic 7. That is

min Cn(N, A, t) + Ex[Cp(x, t)]
{tpl.},{r.a.},A,t

s.t. 2 < A<N- 1, (8.3)

A,t E Z + , N is given.

In this optimization formulation, the inputs are:

* The number of nodes (network size) N;

* The PDF f(x) that models the traffic demand between a source-destination

pair (note that we assume that the demands are uniform all-to-all and i.i.d);

* The type of optical switches and the corresponding parameters (cf. Section 5.3):

- For OXC switching architecture, the inputs include the cost scaling func-

tion Fi(Ko), where Ko is the number of OXC ports, and the corresponding

per port cost pi (cf. Table 5.1);

- For OEO switching architecture, the inputs include the port (interface

rate) R, per wavelength data rate r, port utilization 7, and per port cost

3e;

* The cost per fiber connection a;

* The per unit cost for unsatisfied traffic y.

210



The objective is to minimize the effective system cost over:

* The type of symmetric regular topology, denoted as "tpl." in (8.3);

* The type of routing algorithm, denoted as "r.a." in (8.3);

* The node degree of the symmetric regular topology A;

* The bandwidth to be provisioned t. For the convenience of analysis, we write

t as t = ± + qu, with q being a constant to be determined. In this thesis, q is

called the margin.

In (8.3), the constraint A < N - 1 imposes an upper limit to the possible values of the

optimal node degree A* for a topology of N nodes; the constraint A > 2 ensures that

the optimal topology meets the reliability requirement of more than one connected.

8.2.2 Service Level Requirement Approach

In our second approach, instead of assigning a monetary penalty for the provisioning

shortage, we use a fixed service level requirement as a constraint in the optimization

model and then minimizing the network cost of meeting it. This approach is well

suited for the situations, in which costs of shortage are difficult to quantify and are

probably not simply proportional to the magnitude of the shortage. Under these

scenarios identifying appropriate forms for the penalty functions and reasonable val-

ues for their parameters would be quite a challenge. In general, as the service level

requirement (such as the probability that a demand is unsatisfied due to bandwidth

shortage) becomes more stringent, more bandwidth needs to be provided - the net-

work cost will increase as a consequence.

As discussed in Chapter 3, for a practical network provisioning under random

traffic, it is often not necessary (or impossible) to achieve totally non-blocking oper-

ation - it suffices if the blocking is considerably low. For a random demand x and

its associated probability density function f(x), in Section 3.2 we have defined an

overflow probability (or fraction of unserved traffic) p. If t unites of bandwidth are
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provisioned, then p is define by (3.3),

f (x)dx = p. (8.4)

By including service level requirement (8.4), we have the second formulation as fol-

lows:

min Cn(N, A, t)
{tpl.},{r.a},A,t

s.t. j f(x)dx < p, (8.5)

2<AN-1,

A, t E Z+ , N is given.

In this optimization formulation, the inputs are:

* The number of nodes (network size) N;

* The PDF f(x) that models the traffic demand between a source-destination

pair (note that we assume demands are uniform all-to-all and i.i.d);

* The type of optical switches and the corresponding parameters (cf. Section 5.3):

- For OXC switching architecture, the inputs include the cost scaling func-

tion Fi(Ko), where Ko is the number of OXC ports, and the corresponding

per port cost pi (cf. Table 5.1);

- For OEO switching architecture, the inputs include the port (interface

rate) R, per wavelength data rate r, port utilization qr, and per port cost

Oe;

* The cost per fiber connection a;

* The fraction of unserved traffic (overflow probability) p.

The objective is to minimize the normalized effective system cost over:

* The type of symmetric regular topology, denoted as "tpl." in (8.5);
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. The type of routing algorithm, denoted as "r.a." in (8.5);

* The node degree of the symmetric regular topology A;

* The bandwidth to be provisioned t. For the convenience of analysis, we write

t as t = - + qu, with q being a constant to be determined. In this thesis, q is

called the margin.

In (8.5), we further assume that the network serves the same type of customers, thus

they have the same requirement on shortage probability.

8.3 Solving the Optimization Problems

8.3.1 Optimal Topology and Routing Algorithm

As a first step to solve (8.3) and (8.5), we need to identify the optimal topology

and the optimal routing algorithm. We have shown in Chapter 6 that, under all-to-

all uniform deterministic traffic (where t is a fixed given value), with minimum hop

routing algorithm, Generalized Moore Graphs achieve the lower bound on network

cost and are good reference topologies. In this section, we show that this result can

be extended to the random traffic case - with minimum hop routing, Generalized

Moore Graphs still provide the fundamental limit on the effective system (network

and penalty) cost. To prove this claim we again rely on the "dominated function"

technique, albeit we now compare functions of two variables (note that the optimiza-

tion is in regard to both A and t). Equations (8.3) and (8.5) imply that for a given

network size N and provisioned bandwidth t, the expected penalty cost is indepen-

dent of the type of topology and the routing algorithm. Thus for finding the optimal

topology and routing algorithm we can focus only on the network cost and show that

Generalized Moore Graphs achieve the lower bound (on the network cost) via mini-

mum hop routing. The rest of the proof follows the same line of development as that

in Chapter 6, and is omitted here.
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8.3.2 Optimal Bandwidth Provisioned, Node Degree, and Ef-

fective System Cost Obtained by Solving (8.3)

In this section, we solve the optimization problem (8.3) using the A-nearest Neigh-

bors topology under uniform traffic distribution as an example. For the A-nearest

Neighbors, 3-D switching fabrics (cf. Table 5.1 and set ( = 0), and uniform traffic

distributions (with given mean z and a), the optimization problem has the following

form:

min aA + lt(N - 1) + N- ) + 7N 1 ( - t)dxA't 2 2A 2 -,,,F3 o, t
s.t. 2 < A< N- 1, (8.6)

A, t E Z + , N is given.

By relaxing A and t as continuous variables, using Karush-Kuhn-Tucker (KKT)

condition, and considering the case when constraints are inactive, we have the follow-

ing first-order conditions:

(N - 1)2
S- t* 2A* 0, (8.7)

(3 N 1 - (N-1)(x +± u-t*) =
l - + --A 0. (8.8)

Note that we also need the condition under which the effective system cost in (8.6)

is jointly convex in A and t. The derivation of the convecity condition is provided

in Appendix 8.5.2. Solving for optimal provisioned bandwidth t* and optimal node

degree A*, we have

t* = -2-43•3 sa1 -3/•(1p,) + (243 V -3 3
3 2 1 4 2B1 3 -

+ 2 3-as'yB -3V(ae3) + (2 31B -3 ac) 2

= (N - 1) 2 3 -A a 1 -3vf3(a) 3)' + (2 - 3B a 3) (8.10)

+ 263-6,:-3 B [-3VB(a01) + (243 B7 3•• 3)] },

where B = _ - 7+v') to simplify the appearance of the expression.2 20a
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The expression in (8.9) for the optimal bandwidth provisioned can be expressed

in q* via t* = ± + q*a,

q* = - 2 3-uAy [-3vr(aP1)A + (2 3B - 33a3)] (8.11)

+ 2 3-i•a B -3a( )A + (243aB- - 33 ) jA 2 -1

q* is called the optimal margin, which gives the designer a reference on the extra

margin to be provisioned.

When 2 > a, we can simplify (8.9) to

2

2- 33 + 21 (32 Ba + 34  2 -3.22±3)
t* = (8.12)

2331 (-32 Biu + 34 0 2 - 3. 22±3)

where B 1 = V/-l/-y. When 7 > a, we have t* - 2.

For a uniform distribution (of non-negative random variables) with a mean ±, the

maximum possible variance is a = ±/v¶ (this corresponds to the case of tin = 0, as

shown in equation (3.2)). Under this condition, the expression for t* is

2.3B 2a + 2a -32B + 34B - 3. 22Ba 2

t* = (8.13)
23 U- (-32B1 + /34B1 - 3 .22B2a)

where B 2 = V(3(,31/1 - 2).

In the process of solving for A* and t*, we also note that as 'y - 0oo, we have

t* tm,, and A* -- V/,Ptmx/2a(N - 1), and the minimal effective system cost is

given by

Ceff= ( 2a3itmax + 2 (N- 1). (8.14)

This means, when the penalty for unsatisfied demand is extremely large, the design

problem (8.6) reduces to an optimization for deterministic traffic for the maximum

traffic. This result can be generalized to any demand PDF with a finite support. On

the other hand, when -y - 0, the constraint t > 0 is active, and we have t* -- 0. This

means, it is economical not to provision any bandwidth in this situation.
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Next we investigate the impact of the mean 2 and the variance a of a uniform

distribution to the minimal effective system cost. For a given mean 2 and variance

a, the minimal effective system cost Cff(2t, a), as a function of 2 and a, is given by

Ce*f(2,0) = min Cn(N, At) + Ex[Cp(x,t)] (8.15)A,t

s.t. 2<A< N-1,t>0.

Using the sensitivity analysis [49], we have

aCeff(t, a) _ {C(N, A, t) + Ex[Cp(x, t)]} (816)

+ [( ý ± a) - t*] [t* - (- )]
(tmax - t*)(t* - tmin) >

when t* > tmin. Thus as the uncertainty of the traffic demand increases, the optimal

effective system cost increases too. following the same line of development, we have

also

Ceff(z, -)C U) > 0. (8.17)

That is, as the mean of the random traffic demand increases, the minimal effective

system cost also increases. This is obvious.

For other types of topologies and traffic demand distribution, closed form solutions

do not exist when solving (8.3). We will provide numerical solutions for these cases

in Section 8.4.

8.3.3 Optimum Bandwidth Provisioned, Node Degree, and

Network Cost Obtained by Solving (8.5)

In this section, we solve the optimization problem (8.5) using A-nearest Neighbors

topology and uniform traffic distribution as an example. We also discuss the implica-

tions of some design parameters, such as fraction of unserved traffic p, to the optimal

solutions. With A-nearest Neighbors, 3-D switching fabrics (cf. Table 5.1 and set

r- = 0), and uniform traffic distributions (for simplicity we assume that tmin = 0 and
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tmax = 2f3), the optimization problem (8.5) takes into the following form:

3 N-1)
min aA +m3lt(N- 1) +
A,t 2

1
s.t. ] dx < p, (8.18)

2<AN-1,

A, t E Z +, N is given.

To solve this problem, we first relax A and t as continuous variables. The fraction

of unserved traffic constraint indicates that the feasible t would be in the range of

t E (to, 204a), where to satisfies

d1 = (1 -1) = p. (8.19)
2V4u Jto 2

We note that the objective function is linear and monotonically non-decreasing with

t. Therefore to be optimal, the fraction of unserved traffic constraint must be active:

t*(p) = to = 20oau(1 - p). (8.20)

After the optimal bandwidth provisioned t* is solved, the problem (8.18) can be

simplified to a convex optimization of node degree A only,
(3N-1)

min aA + lt*(N - 1) ( + N 1

s.t. 2 < A < N- 1, (8.21)

N and t*are given.

Solving for optimal node degree, we have(** - 1/ 2

a = 31 (N - 1) (8.22)2a
= ( l (N- 1).

Thus the minimal normalized network cost is given by

C/- (23 t* + 3t*) (N - 1) (8.23)

= [V4v/-3aiT(1 - p) + 3V/3#(1 - p) (N -1).
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Table 8.1: Optimal margin q* as a function of p for different PDFs of random demand.

Distribution q*(p) = (t*(p) - x)/a p - 0 p --+ 1

Uniform v3(1 - 2p) q* - q* -V

Exponential -[lnp + 1] q* 00 q* --+ -1

Half Normal /2-r/(r- 2)erf-(1 - p) q* oo q* - 2/(r- 2)

- 2 /(r -2)
Upper Bound /q q* 00 q* - 0

______________p _________________0

Table 8.2: Optimal node

functions of p for different

In the process of solving ft

t* --+ tmax = 2V4a and A* -

network cost is given by

C*=

degree A* and minimal normalized network cost Cn as

topologies.

or A* and t*, we also note that as p -- 0, we have

S,3i/ul/a(N - 1), then the minimal normalized

(8.24)V2a13itmax + 331tmax) (N - 1)

4Va/3•la + 3V/3au) (N - 1),

which is the same as (6.25). This means, when the requirement of the fraction of

unserved traffic is extremely stringent, the design problem (8.18) reduces to an opti-

mization of deterministic traffic for the maximum or minimum possible traffic. This

result can be generalized to any demand PDF with a finite support. On the other

hand, when p - 1, we have t* -- 0. This means that it is economical not to provision

any bandwidth in this situation.

Following the same procedure, we can solve (8.5) for various types of topologies

(such as Generalized Moore Graphs) and traffic distributions (cf. Table 3.1). The
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A - nearest Neighbors ( (N- 1)+ ) (N- 1)

1 _t*(P)) (N-1)ln N
Moore Graphs {w /(t*()/)(N-_1)1nN)} 2  aA* + lt* (p)(N - 1) (

n  
1)

al1t*(p) N t*(p)N 1+ In(tN)
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results are summarized in Table 8.1 and 8.2 and are discussed in Section 8.4.

As mentioned in Section 3.2, in solving (8.4), among all PDFs with the same mean

x and standard deviation a, the "Upper Bound" distribution (3.4) requires the maxi-

mum (worst case) margin. Since network cost increases with the amount of bandwidth

provisioned, the "Upper Bound" distribution can also be used to size the worst case

network cost. The theoretical substantiation for "Upper Bound" distribution is left

in Appendix 8.5.3.

8.4 Results and Discussion

As discussed previously, the optimal network architecture depends on network size,

fiber-OXC cost ratio, PDF of the random demand, as well as network designer's

risk aversion. Based on the models set up in Section 8.2 and the solutions obtained

in Section 8.3, this section provides results to illustrate and interpret these depen-

dencies. As examples, we consider a green field design of a network with 50-node

(N = 50), which resembles typical size of metropolitan access networks. According

to the estimation of the realistic cost ratio between fiber and OXC in metropolitan

area networks, we set a//)1 = 40. For simplicity but not losing generality, we set

01 = 1.

8.4.1 Results of Bi-Objective Optimization Approach

We start with the results of bi-objective optimization approach. In the process of

solving (8.3) for different types of topologies and distributions, both the node degree

A and provisioned bandwidth t are relaxed as positive real numbers. As such, A*

and t*, obtained by solving the optimality equations may not be integers. When

rounding non-integers A* and t*, we compare the effective system cost for ([A*],

Ft*]),(FA*], Lt*J),(LA*J, Ft*]), and (LA*j, Lt*]) and choose the one with the least

cost. To evaluate the accuracy of the results obtained by rounding, we compare them

with the results of exhaustive searches - we look for the node degree and provisioned

bandwidth (integers), for which the minimum effective system cost is achieved. The
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100
Per Unit Cost for Unserved Traffic y

Figure 8-3: Optimal margin q* vs. per unit cost of unserved

a//1 = 40, and P1 = 1.

traffic y, with N = 50,

comparisons verify that the relaxation-rounding solutions fit well with the exhaustive

search results. As discussed in 8.2, from the viewpoint of bi-objective optimization,

y represents the relative weight (importance) of the penalty cost for unserved traffic.

From the perspective of network operation, -y can be interpreted as the revenue loss

for per unit of unsatisfied traffic or as a risk index reflecting levels of risk aversion.

Only when y is above a threshold value, it is economical (feasible) to provision any

capacity for the network. To illustrate how the optimal network architecture changes

as a function of per unit cost of unsatisfied traffic y, according to the results of bi-

objective approach, Figure 8-3, Figure 8-4, and Figure 8-5 plot the 7 dependencies of

the optimal margin q*(q* = (t*-x)/c/), optimal node degree A*, and minimal effective

system cost CkfO, respectively. The per unit cost of unsatisfied traffic -y is normalized

in terms of the minimal normalized network cost per unit traffic, with y = 1 meaning

that per unit penalty cost equals to the minimal normalized network cost (per node)
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Figure 8-4: Normalized optimal node degree A*/(N- 1) vs.

traffic y, with N = 50, a/l01 = 40, and 1l = 1.

per unit cost of unserved

to support one unit of (static) traffic. For a 50-node network, the minimal normalized

network cost per unit traffic is 4.8 at 2 = 3, based on the calculations in Chapter 6

(cf.(6.26) and Table 6.3).

In these figures the y dependencies are plotted for the combinations of two types

of traffic distributions - uniform and exponential, both with 2 = 3 and a = v'3 (as

illustrated in Figure 8-2), and two types of topologies - A-nearest Neighbors and

Generalized Moore Graphs. As shown in these figures, there are three distinct 7-

regions of the dependencies and only for -7 in certain range (e.g., 0.9 - 3), are A*, t*,

and minimal effective system cost C0* sensitive to the change of y. Next we discuss

the behaviors of q*, A*, and C*, in these 7-regions in detail:

* When y is small enough, as shown in Figure 8-3, we have t* - 0 (q* -- -v/),

i.e., it is economical not to provision any bandwidth. The effective system cost

is dominated by the penalty cost for unserved traffic.
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Figure 8-5: Minimal effective system cost Ceff* vs. per unit cost of unserved traffic y,

with N = 50, a/01 = 40, and 31 = 1.
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* When y is large, it is economical to provide bandwidth, as discussed in Ap-

pendix 8.5.1. For this design example, as shown in Figure 8-3, the threshold -y

(to dimension any bandwidth) are 1.8, 1.6, 1.0, and 0.9 for A-nearest Neigh-

bors with uniform distribution, A-nearest Neighbors with exponential distri-

bution, Generalized Moore Graphs with uniform distribution, and Generalized

Moore Graphs with exponential distribution, respectively. For y value above

the threshold in the range of 0.9 - 3, the tradeoff between the network cost

and the penalty cost for unsatisfied traffic becomes notable. In this range, as

y increases, it is optimal to provision for more bandwidth. This leads to the

increase of the optimal node degree for the network, so a good balance between

the cost of fibers and OXCs can be achieved, as discussed in Chapter 6.

In this range, for the uniform distribution, which has a finite support, the design

problem (8.3) reduces to an optimization for the worst case uniform all-to-all

traffic, with demand between each node pair equal to tma,, as also shown in

Figure 8-3. It is also worth pointing out that in this range the values of A*,

and t*, and optimal effective system cost Ce, as shown in Figures 8-3, 8-4,

and 8-5, increase at a faster rate for exponential distributions than for the

uniform distributions. This phenomenon can be explained by the fact that the

exponential distribution has an infinite support.

* When 7 is very large, in Figure 8-4 we observe that with the same -y and traffic

distribution, a A-nearest Neighbors has a larger optimal node degree than a

Generalized Moore Graph does. This trend is consistent with the results for

the static (or quasi-static) traffic, as discussed in Chapter 6. At large 7, a

key observation from Figure 8-5 is that with a given y, the minimal effective

system cost for a Generalized Moore Graph is less than that for a A-nearest

Neighbors topology. This is consistent with our analysis in Section 8.3.1. This

again demonstrates the importance of choosing a good physical architecture.

According to the results in section 8.3.2 for bi-objective approach, we further assess

how the optimal network architecture changes as a function of the variance of the
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Figure 8-7: Minimal effective system cost Cf vs. variance a (normalized to mean 2),

with N = 50, a/01 = 40, P1 = 1, ý = 4, and y = 2.

distribution. In Figure 8-6, we plot the optimum provisioned bandwidth versus a

for two types of topologies - A-nearest Neighbors and Generalized Moore Graphs,

both have 50 nodes and with uniform distribution; in Figure 8-7 we plot the minimal

effective system cost versus a for the same topologies and under the same conditions.

In these plots, t is set to 4 and y is set to 2. As illustrated in these figures, the

optimal margin and the effective system cost all increase as the variance a increases.

The more detailed discussions are in the following:

* The case when a is small corresponds to the scenario in which the designer has a

fairly accurate prediction of the traffic demand. Thus it is optimal to provision

for the mean value of the traffic forecast. Again the optimization problem (8.3)

is reduced to a design for static (or quasi-static) traffic (6.1).

* The case when a is large corresponds to the situation in which the uncertainty

associated with the traffic prediction is large. Under this circumstance, it is

optimal to provision more bandwidth to match the increasing a. Therefore, the
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Figure 8-8: Optimal margin q* vs. fraction of unserved traffic p.

effective system cost increases with a greater rate.

8.4.2 Results of Service Level Requirement Approach

Next we illustrate and discuss the results based on the optimization model (8.5) of

service level requirement approach in Section 8.2.2. This model is well suited for the

situations in which y is hard to quantify. Then the Network designers can use these

results to size the effect of demand uncertainties on the network installation cost. The

results are presented in Tables 8.1 and 8.2 for the optimal margin q*, optimal node

degree A*, and optimal network cost CQ for different random demand distributions

and network topologies. Figure 8-8 and Figure 8-9 plot the optimal margin and

minimal normalizd network cost as functions of the fraction of unserved traffic p,

respectively. We note that p, like y, can also be interpreted as a risk index - a lower

p shows the designer's willingness to trade network cost over bandwidth shortage,

and vise versa. Figure 8-8 shows that the optimal margin q* decreases as the fraction

226

Upper Bound
Uniform Distribution
Exponential Distribution
Half Normal Distribution

I11 · ~ · ~ ~ · · · · · · · · ·

.
.

~~,.
-'-'- ~'IL*

I'''''''~~- - ~'~,e



r
0
Wz 3o 10
0

z

*0a,ZcN

z
ES

102

10-2  10-1  100
Fraction of Unserved Traffic p

Figure 8-9: Minimal normalized network cost C* vs. fraction of unserved traffic p.

of unserved traffic p increases. Figure 8-9 shows that the costs for networks with

physical topologies of Generalized Moore Graphs are less than those for networks

with physical topologies of A-nearest Neighbors, for the same demand distribution

and fraction of unserved traffic. In other words, the trends displayed in Figures 8-8

and 8-9 are consistent with the results of bi-objective optimization approach. We

also note that the "Upper Bound" distribution can be used to size the worst case (an

upper bound) optimal margin q* (Figure 8-8) and the worst case network cost (Figure

8-9) among all possible probability distributions with the same mean and variance,

albeit the upper bound is quite pessimistic, especially when p is small.
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8.5 Chapter Appendix

8.5.1 Derivation of the Feasibility Condition to Build a Net-

work

In this appendix, we provide a derivation of the condition, under which it is feasible

to build a network. Suppose the network installation cost for providing t units of

bandwidth to a single user is g(t), with the penalty cost for the unsatisfied traffic (for

a single user), the effective system cost takes the form of

g(t) + (x - t) f (x)dx. (8.25)

By setting the first derivative of the effective system cost to zero, we obtain

lg(t) i f(x)dx. (8.26)

This implies that to dimension any capacity t > 0, it requires that

7 > g'(t). (8.27)

That is, the per unit cost for unsatisfied traffic needs to be larger than the marginal

cost to provide t units of capacity. If g(t) = ct, we have y > c.

8.5.2 Derivation of the Joint Convexity Conditions in (8.6)

In this section, we derive the condition under which the effective system cost in (8.6)

is jointly convex in A and t.

As shown in (8.6), the effective system cost is

Ceff(N, A, t) = aA + )3t(N - 1) + N1 + -N (x - t)dx. (8.28)
2 2A 2'43u t

When the Hessian matrix of (8.28) is positive definite, the effective system cost is

jointly convex in A and t. The Hessian matrix is

0
2

Ceff 0 22Cff 3t(N-1)2 3(N- 1)2
aA2 MAat A3  

A2 (8.29)
02 t22 Ce2 (N-1)

2  -(N-1)
9taA at

2 A2 2V0a
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In order for the Hessian matrix to be positive definite, it must be true that the

determinant of the Hessian matrix is positive, that is

yt (N - 1) > 0. (8.30)

8.5.3 Proof for "Upper Bound" Distribution

In this section, we provide a detailed description on how we obtain the PDF that

requires the maximum (worst case) margin q = (t - t)/a, among all distributions

with the same mean I and standard deviation a (variance a 2).

For a given overflow probability p, the margin q is a function of both distribution

function f(x) and overflow probability p. we want to find a distribution f(x) that

has the mean t and the variance a2, and, at the same time, requires the maximal qa.

We can cast the finding of the maximal qa as an optimization problem:

max qa (8.31)
f( )

s.t. f(x) > 0;

f f(x)dx = 1;

xf(x)dx = t;

z2 f ()dX = t2 +

J f(x)dx = p.
0+qa

For a given qa, we are also interested in finding a distribution function f(x)

that has mean t and variance a2, and, at the same time, has the maximal overflow
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probability p. This gives rise to the following optimization problem,

max p =f f(x)dz (8.32)
f( )W t+qo-
s.t. f(x) > 0;

f (x)dx = 1;

xf (x)dx = 5;

x2 f(x)dx 2 .2.

q is given.

The optimization problems as described in equations (8.31) and (8.32) are equivalent,

in the sense that an optimal solution of one problem is also an optimal one of another.

We next provide an intuitive argument of the equivalence of these two optimization

problems. We first need the following lemma.

Lemma 2 fi(x) and f2(x) are two continuous and monotonically decreasing func-

tions, such that fi(x) E [0, 00) and f 2(x) E [0, c00). If fi(x) > f 2 (x) for all x E [0, 00)

and the inverse functions fl (y) and f2 1 (y) exist for y E [0, oo], then we have

fI (y) > fi' 1 (y) for y e [0, 00).

Proof: For any y E [0, oo], there is a x2 such that y = f 2(x 2) and fi(x) > y. fi(x) is

monotonically decreasing, thus fi (x) > fi (oo). Since fi(x) is also continuous, there

exists a xl E [x2, 00), such that fl(x1) = y [57]. Therefore, we have f-l(y) = xl >

X2 = f2 1(y).

We now define F(y) as F(y) = foJ f(x)dx. With Lemma 2, we verify that the

overflow probability of a given distribution, denoted as 1 - F(q.), decreases mono-

tonically as q increases. Assume that there are two distributions f* and f', both with

zero mean and a2 variance, and for any given q the overflow probability 1 - F(qu + .)

for distribution f* is greater or equal to the overflow probability 1 - F'(qu + ±) for

any other distribution f' (as shown in Figure 8-10). Let q*(po) and q'(p°) denote the

margins for f* and f' that achieve the overflow probability p', respectively. Using

Lemma 2, we reach the conclusion that q*(po) > q'(po). We thus prove that the

optimization problems of (8.31) and (8.32) are indeed equivalent.
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With the equivalence of the two formulations, we show that the following dis-

tributions are solutions to the optimization problems. That is, for a given qa, the

maximum overflow probability is p = 1.• The resulting distribution function that

has the maximum overflow probability is

11- x = x + qa;
f1+q) (8.33)
lXq2 X 0-

Similarly, for a given overflow probability requirement p, the maximum margin ob-

tained is q = !. The resulting distribution function that requires the maximum

margin is

f(X) = a (8.34)

Next, we use the Chebyshev Inequality to verify that the distribution is asymptotically

optimal. With the Chebyshev Inequality we have

,2  1
Pr[ x -  1 < q] < - q2, (8.35)

which is equivalent to

1
Pr[x - 2 2 gq] + Pr[x - ± < -qo] . (8.36)

q2

Clearly for any distribution, we have Pr[x - 2 < -qu] > 0. Thus

1
Pr[x - 2 > qu] < -. (8.37)q2

That is, for any distribution function f(1), the probability that 1 > qa is bounded

by -. The PDF, given in (8.33), has a blocking probability Pr[x - ± > a] = 1

As q - oc, we have 1q . Thus we show that the distribution in (8.33) is

asymptotically optimal for large q.
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Figure 8-10: Fraction of unserved traffic p = 1 - F(x + qu) as functions of q for

possible distributions.
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Chapter 9

Irregular Networks and

Non-Uniform Traffic

Up until now, we have been analyzing the scalable network architecture by focusing

on regular physical topologies and uniform traffic. In practice, network topologies are

seldom regular or even regularizable. Also, the number of demands on node pairs are

rarely equal. As such, it is often difficult to directly derive the analytical expressions

or solutions. Normally the evaluation of irregular topologies under non-uniform traffic

is carried out numerically. Despite these, we present in this chapter that, based on

the framework of this thesis, we can extend the results derived for symmetric regular

networks under uniform traffic to evaluate the cost efficiency of irregular networks

under non-uniform traffic. In particular, we use results of Chapters 5, 6, and 7

to construct network cost lower and upper bounds and estimates. This chapter is

organized as follows. In Section 9.1, we identify conditions under which minimum

hop routing is still optimal. In Section 9.2, we focus on irregular networks under

uniform traffic. We first show that the results for Generalized Moore Graphs and

A-nearest Neighbors can be used to provide useful estimates for irregular networks.

We next demonstrate how we use Generalized Moore Graphs as references to suggest

possible improvements for irregular physical topologies. In Section 9.3, we study

regular networks under non-uniform traffic. We first review the concept of minimum

and maximum flow trees. Based on these concepts, we provide network cost lower
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and upper bounds for regular networks under arbitrary (non-uniform) traffic. Finally

in 9.4, by combining the results from 9.2 and 9.3, we construct network cost lower

and upper bounds for irregular networks under arbitrary traffic.

9.1 Irregular Topologies, Arbitrary Traffic, and Min-

imum Hop Routing

As introduced in Section 4.4, an irregular topology, with Figure 9-1 as an example,

is characterized by the following parameters:

* The number of nodes N;

* The maximum node degree Amax;

* The minimum node degree Amin;

* The average node degree A, which is defined as

1 N
= k Ai (9.1)

i=1

where Ai is the degree of node i.

For the convenience of discussion, we denote an irregular topology as (N, Amax, Amin, A).

The average minimum hop distance Hmin(N, Amax, Amin, A) is then defined as

N Di

Hmin(N, Amax, Amin, A) = N(N1- 1) ni(j), (9.2)
i=1 j=1

where Di denotes the network diameter from node i (the maximal hop distance from

node i via minimum hop routing), and ni(j) denotes the number of nodes that are j

hops away from node i.

Before analyzing the cost efficiency of an irregular network, we need to identify

conditions under which minimum hop routing is still optimal. In Section 6.2.1, we

proved that under uniform traffic, minimum hop routing is optimal for any given

234



Amax = 4 Amin = 2

Figure 9-1: An irregular topology with N = 6, Amax = 4, Amin = 2, and A = 3.

regular network with a non-decreasing switching cost function. For an irregular net-

work, without regularity and nodal symmetry, the relationship between the minimum

hop routing and the network cost becomes much more complicated. To maintain the

tractability of our analysis, we restrict our analysis to linear switching cost structuree

(e.g., Fi(Ko) = 0P1Ko for 3-D OXC, where K. is the switch size at node i, cf. Table

5.1). Under this condition we can prove that minimum hop routing is still optimal,

as summarized in the following result.

Theorem 14 For a general (possibly irregular) network under arbitrary traffic, if

the per node switching cost is a linear function of port count, minimum hop routing

minimizes the switching cost.

The linearity of the switching cost implies that minimizing the total switching cost

is equivalent to minimizing the total network load. In other words, when switching

cost is linear, the minimum network load solution is also the minimum network cost

solution. The minimization of network load (also network cost) can only be achieved

by routing traffic via minimum hop. A rigorous substantiation of this result is deferred

to Appendix 9.5.1.
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We note that if there are multiple minimum hop paths between a node pair, all

the minimum hop routings minimize the switching cost, as long as the switching cost

is linear with the number of ports. In other words, the minimization is indifferent to

the detail of a routing algorithm. However, this is not the case if the switching cost

is super-linear with the port count. As an example, Figure 9-2 shows two different

minimum hop routing algorithms to support the same set of lightpath demands.

The number near each node indicates the number of ports required (via the routing

adopted). For a linear scaling of switching cost, both algorithms yield a total switching

cost of 1331. For a quadratic scaling, the routing in Figure 9-2 (a) incurs a total

switching cost of 39/3; while the routing in Figure 9-2 (b) incurs a total switching

cost of 47/3.

9.2 Irregular Networks Under Uniform Traffic

9.2.1 Lower and Upper Bounds on Network Cost

In light of Theorem 14, when analyzing the cost of an irregular network in this section,

we restrict our attention first to uniform all-to-all traffic, minimum hop routing, and

linear switching cost (e.g., Fl (Ki) = P1Ki). Our approach is to use the results of aver-

age minimum hop distances for Generalized Moore Graphs and A-nearest Neighbors

to size the average minimum hop distance of an irregular topology (N, Amax, Amin, A).

The results, already provided in section 4.4, are summarized here again for the con-

venience of discussion.

Theorem 15 (Theorems 4 and 5) The average minimum hop distance of an irregular

topology is lower bounded by the average minimum hop distance of a Generalized

Moore Graph of N nodes and node degree Amax. That is,

Hmin(N, Amax, Amin, A) > Hin(N, Amax). (9.3)

The average minimum hop distance of an irregular topology is upper bounded by the

average minimum hop distance of a A-nearest Neighbors Topology of N nodes and
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1 2 0

(b)

Figure 9-2: Two minimum hop routings to support demands A -- B, A -- C, A -+ E,

F - B, and B -- E. The switching cost is a quadratic function of number of ports.

For a linear scaling of switching cost, both algorithms yield the same switching cost.

For a quadratic scaling, two algorithms yield different total switching costs.
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node degree Amin. That is

Hmin(N, Amax, Amin, A) < HmNin(N, Amin). (9.4)

Since the switching cost is proportional to the average minimum hop distance,

a direct application of Theorem 15 provides us with a cost lower bound and a cost

upper bound for an irregular network.

Theorem 16 For an irregular network of (N, Amax, Amin, A), the network cost under

uniform traffic has a lower bound

C(N, Amax, Amin, A) > aNA + /3N(N - 1) [Hn(N, Amax) + 1], (9.5)

and an upper bound

C(N, Amax, Amin, A) • aNA + / 1N(N - 1)[Hin(N, Amin) + 1], (9.6)

The derivation for Theorem 16 is left in Appendix 9.5.2.

When N > A, N > Amax, and N > Amin, we approximate the ratio of the cost

upper bound to the cost lower bound as

aNA + /31N(N - 1)HNin(N, Amin) N In Amax
S(9.7)

aNA + f0IN(N - 1)Hin(N, Amax) ln N 2Amin

Equation (9.7) indicates that the ratio scales as N•. In Appendix 9.5.3, we provide

the derivations for this asymptotic result.

For an irregular networks with Amax = 6, Amin = 3, and A = 4, Figure 9-

3 plots these two bounds in the form of normalized network cost per unit traffic

C(N, Amax, Amin, A)/[N(N - 1)] as a function of network size N. Based on the

estimation of a realistic cost ratio between fiber and switching in metropolitan area

networks, we set a//31 = 40 and 01 = 1. The plot indicates that as N increases, the

gap between the upper and lower bounds increases with N (cf. 9.7). We also note

that, as the size of the network increases, the lower bound of the normalized network

cost per unit traffic decreases; while the upper bound of that first decreases and then

increases. This can be explained as follows: the minimum node degree is set as a

fixed value 3. This node degree (of 3) is optimal only for certain sizes of networks

238



IV

0

I-

0

510

z

m

L_
0Z

4 A
0

10 102Network Size N

Figure 9-3: Network cost upper and lower bounds (in the form of normalized net-

work cost per unit traffic) as functions of network size N. Fiber and switching cost

parameters are: o•a/01 = 40 and i1 = 1.
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(N = 10 - 30). As the size of the network increases, this node degree (of 3) becomes

less efficient, as discussed in Chapter 6 (cf. Figure. 6-8).

To have an idea on how close these two bounds match the actual cost of the

irregular networks, we employ randomly generated networks. That is, for a given set of

parameters (N, Amax, Amin, and A), we construct around 4000 instances of networks

at random, compute the cost of each of them, and compare their cost distributions

with the corresponding lower and upper bounds. We plot in Figure 9-4 and Figure

9-5 the cost histograms for random networks of size N = 20 and N = 40, respectively.

The node degree parameters for each N are set as Amax = 6, Amin = 3, and A =

4. These histograms demonstrate that Generalized Moore Graphs can be used for

effectively sizing the cost of an irregular network, especially when N is small (e.g.,

N = 10 - 30) and the network is densely connected (e.g., A/N > 0.2). On the

contrary, the cost upper bounds generated by using A-nearest Neighbors are loose,

especially when N is large (e.g., N < 40) and the network is sparsely connected (e.g.,

A/N < 0.1).

To look for a better estimates of network cost, we use A to replace Amax in (9.5)

and Amin in (9.6). Thus the new estimates are

aNA + 31N(N - 1)[H iM(N, A) + 1], (9.8)

and

aNA + 1 lN(N - 1) [Hin(N, A) + 1]. (9.9)

We also use the Symmetric Hamilton Graph to provide an alternative estimate of

network cost as following:

aNA + 011N(N - 1) [Hin(N, Amin) + 1], (9.10)

where H in(N, A) = 3/4 + (N - 2)/4(A - 1), as derived in Section 4.5.6. Including

these estimates to the corresponding Figures 9-4, 9-5, and ??, we find that they do

give better estimates. Note that we term (9.8) to (9.10) as "estimates", since we have

not been able to prove that they are indeed tighter bounds for every irregular network

(N, Amax, Amin, ý).
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N=20, Aavg=4, Amax=6, Amin=3

Cavg
= 4554, Cstd-dev=42.6avg std-dev
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Figure 9-4: Network cost histogram for randomly generated networks, with N = 20,

Amax = 6, Amin = 3, and /A = 4. The fiber and switching cost parameters are:

ca//P = 40 and f1 = 1.
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), Aavg=4, Amax=6, A min=3
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Figure 9-5: Network cost histogram for randomly generated networks, with N = 40,
Amax = 6, Amin = 3, and A = 4. The fiber and switching cost parameters are:

a/l1 = 40 and 3 1 = 1.
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1 9 1 2

9

S1 6 7 6

(a)

Figure 9-6: (a) Network 1 with N = 10, Amax = 5, Amin = 2, and A = 3; (b) Network

1 redrawn as a chordal ring; (c) The Petersen Graph (redrawn) with N = 10 and

A=3.

9.2.2 Generalized Moore Graphs as References for Possible

Improvements for an Irregular Physical Topology

In this section we use examples to demonstrate how we can use Generalized Moore

Graphs as references to suggest possible improvement for irregular physical topologies.

In particular, we consider three representative networks, which are labeled as Network

1, Network 2, and Network 3, with physical topologies illustrated in Figure 9-6(a),

Figure 9-7(a), and Figure 9-8(a), respectively. The key network design parameters of

them are summarized in Table 9.1. In our study, we assume that all fiber connections

have approximately the same cost and all nodes are equipped with 3-D OXCs (cf.

Table 5.1 with C set to 0). For clarity of discussion, we redraw the topologies of

Network 1, Network 2, and Network 3 in the form of chordal rings in Figure 9-6(b),

Figure 9-7(b), and Figure 9-8(b), respectively. For each of the networks, we look

for the minimum number of switching ports required by solving (9.27) to (9.29) in

Section 9.5.1 numerically. The results show that to support all-to-all uniform traffic,

a total of 261, 636, and 1292 switching ports are required for Network 1, Network
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Figure 9-7: (a) Network 2 with N = 14, Amx = 4, Amin = 2, and A = 3; (b) Network

2 redrawn as a chordal ring; (c) The Heawood Graph with N = 14 and A = 3.

2, and Network 3, respectively. We then connect the same set of nodes in the form

of Generalized Moore Graphs and their close relatives (via fiber patched panels). In

particular, we suggest that the nodes in Network 1 are connected via the Petersen

Graph, the nodes in Network 2 are connected via the Headwood Graph, and the nodes

in Network 3 are connected via a close relative of Generalized Moore Graphs, as shown

in Figure 9-6(c), Figure 9-7(c), and Figure 9-8(c), respectively. For a fair comparison,

here we let each suggested network uses the same number of fiber connection as its

original one does. The parameters and results of the suggested networks are also listed

in Table 9.1. It is seen that each of these suggested networks requires less ports. The

reduction of costs ranges from 7% to 15%. We believe that the savings are likely to

be more pronounced for larger networks. An interesting trend is observed in these

figures. From the perspective of a chordal ring, the original topologies of Network

1, Network 2, and Network 3 tend to have more "local" connections - most of the

nodes connect to their neighbors. In comparison, the improved topologies tend to

have more "diagonal" connections - more nodes are linked across the ring.
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Figure 9-8: (a) Network 3 with N = 20, Ama = 6, Amin = 3, and A = 4; (b) Network

3 redrawn as a chordal ring; (c) A close relative of Generalized Moore Graph with

N = 20 and A = 4.
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Table 9.1: Parameters for Network 1, Network 2, and Network 3.
Petersen Heawood Close

Network 1 Network 2 Network 3
Graph Graph Reltative

N 10 10 14 14 20 20

Amax 5 3 4 3 6 4

Amin 2 3 2 3 3 4

A 3 3 3 3 4 4

No. of fibers 30 30 52 52 80 80

No. of ports 261 240 636 560 1292 1140

9.3 Regular Networks Under Non-Uniform Traffic

In this section, we focus on evaluating cost efficiencies of regular networks under non-

uniform traffic. In particular, we derive network cost lower and upper bounds for any

regular networks of node number N, node degree A, and a traffic matrix T = [ti,j].

As in the analysis in Section 9.2, we still assume that switching cost at each node

is linear with number of ports. As such, minimum hop routing requires the least

number of switching ports (cf. Theorem 14). For simplicity and clarity, we also make

the assumption that all the fiber connections have the same cost.

9.3.1 Minimum and Maximum Flow Trees

The derivation of cost lower and upper bounds hinges on the concepts of minimum

and maximum flow trees. The concept of minimum flow tree is developed as a tool

to analyze network congestion [58] [59]. Following the rationale (of constructing a

minimum flow tree), we introduce the concept of maximum flow tree for our work.

The construction of a minimum flow tree is based on the routing spanning tree

of a Generalized Moore Graphs. That is, in a regular topology of node degree A,

for each node there can be at most A destinations one hop away, A2 destinations

two hops away, etc. Moreover, for each source the A destinations with the largest

traffic are connected by one hop paths, the next A2 destinations in descending order

of traffic are connected by two-hop paths, and so on. The intuition of minimum flow
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tree is to minimize the propagation of larger traffic values. As such, the larger traffic

ti,j is closer to node i. As an example, for the traffic matrix shown in Figure 9-9 (a),

Figure 9-9 (b) illustrates the construction of a minimum flow tree from node A.

The construction of a maximum flow tree is based on the routing spanning tree

of a A-nearest Neighbors. That is, in a regular topology of node degree A, for each

node there are A destinations one hop away, A destinations two hops away, etc. That

is, each (except probably the last) level is packed with only A nodes. Moreover, for

each source the A destinations with the smallest traffic are connected by one hop

paths, the next A destinations in ascending order of traffic are connected by two-hop

paths, and so on. The intuition of maximum flow tree is to maximize the propagation

of larger traffic values. As such, the smaller traffic ti,j is closer to node i. As an

example, for the traffic matrix shown in Figure 9-9 (a), Figure 9-9 (c) illustrates the

construction of a maximum flow tree from node A.

9.3.2 Network Cost Lower and Upper Bounds for Regular

Networks Under Non-Uniform Traffic

With the concepts of minimum and maximum flow trees, we are ready to provide cost

lower and upper bounds. To derive a lower bound, we first perform a permutation

for traffic matrix T = [ti,j], such that the elements of each row are in a descending

order. That is, for 1 < i < N and 1 < j < N, let 7i be a permutation of (1, 2, ... N)

and 7ri(j) be the jth element of Wi, such that

ti,7r(j) > ti,7(jy) forj < j'. (9.11)

We also define D as the network diameter and mk as the number of nodes packed in

1st to kth levels of the minimum flow tree. That is,

,k A, ifl<k<D-1,
nk = i 1 (9.12)

N - 1, if k = D.

As stated in Section 5.3.1, setting up a lightpath of k hops requires k + 1 ports. A

direct application of this fact gives us the lower bound on total switching cost for any
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Figure 9-9: (a) Traffic demand from node A to other nodes; (b) Minimum flow tree

from node A; (c) Maximum flow tree from node A.
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regular network of node number N and node degree A, with a traffic matrix T = [ti,j].

That is,

N D N-1

Cs 2 !1 E E ti,,(~(j)(k + 1). (9.13)
i=1 k=1 j=mk

Since the fiber cost is Cf = aNA, we have a lower bound of network cost

N D N-1

C > aNA + 01E E E ti,r, (j)(k + 1). (9.14)
i=1 k=1 j=mk

To derive an upper bound, we first perform a permutation for traffic matrix T =

[ti,j], such that the elements of each row are in an ascending order. That is, for

1 < i < N and and 1 < j 5 N, let 7r' be a permutation of (1, 2, ... N) and r(j) be

the jth element of 7ri, such that

tijr(j) • tijI(j,) forj < j'. (9.15)

We also define m' as the number of nodes packed in 1st to kth levels of the maximum

flow tree. That is,

kA, if 1 < k < D - 1,(9.16)

N - , if k = D.

A direct application of the fact that a k-hop lightpath requires k + 1 ports gives us

the upper bound on total switching cost for any regular network of node number N

and node degree A, with a traffic matrix T = [tij]. That is,

N D N-1

CS _ /•1 E E ti7rU(j)(k + 1). (9.17)
i=1 k=l1 j=m'k

Since the fiber cost is Cf = aNA, we have an upper bound of network cost

N D N-1

C < aNA + ,EE E tis,(j)(k + 1). (9.18)
i=1 k=l j=m'k
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9.4 Irregular Networks Under Arbitrary Traffic

Combining the results of Sections 9.1 - 9.3, in this section we provide network cost

lower and upper bounds for irregular networks under non-uniform traffic. As in the

analysis in the previous section, we assume minimum hop routing and linear switching

cost at every node.

To derive a lower bound, we first perform a permutation for traffic matrix T, such

that the elements of each row are in a descending order. That is, for 1 < i < N and

1 < j 5 N, let iri be a permutation of (1, 2, -- N) and ri(j) be the jth element of

7r, such that

ti,i7(j) ti,w(j,) forj < ij. (9.19)

We also define mk as the number of nodes packed in 1st to kth levels of the minimum

flow tree. That is,

mk =1 max if < k < D 1, (9.20)
N - 1, if k = D.

As stated in Section 5.3.1, setting up a lightpath of k hops requires k + 1 ports. A

direct application of the fact gives us the lower bound on total switching cost for any

irregular network (N, Amax, Amin, A), with a traffic matrix T = [ti,]. That is,

N D N-1

Cs 1 E ZE E tiri,(j)(k + 1). (9.21)
i=1 k=1 j=mk

Since the fiber cost is Cf = -aNA, we have a lower bound of network cost

N D N-1

C > aNA + 1E E E t 1,7(j)(k + 1). (9.22)
i=1 k=1 j=mk

To derive an upper bound, we first perform a permutation for traffic matrix T,

such that the elements of each row are in an ascending order. That is, for 1 < i < N

and 1 < j 5 N, let 7r' be a permutation of (1, 2, .-. N) and ir'(j) be the jth element

of 71r, such that

ti, (j) ti7, (y) for j j'. (9.23)
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We also define m' as the number of nodes packed in 1st to kth levels of the maximum

flow tree. That is,

mI kAmin, if 1< k < D - 1, (9.24)
{Nl (9.24)

N - 1, ifk = D.

A direct application of the fact that a k-hop lightpath requires k + 1 ports gives us

the upper bound on total switching cost for an irregular network (N, Am,, Amin, A),

with a traffic matrix T = [ti,j;. That is,

N D N-I

Cs < 1 EE ti7r'(j)(k + 1). (9.25)
i=1 k=1c j=m'

Since the fiber cost is Cf = aNA, we have an upper bound of network cost

N D N-1

C < aNA + 0L E E 4 tir(j)(k + 1). (9.26)
i=1 k=1 j=m'k

9.5 Chapter Appendix

9.5.1 Proof for Theorem 14

Proof: To prove this theorem, we first formulate a switching cost minimization prob-

lem for arbitrary topology, traffic, and switching cost function, using the framework of

multi-commodity flow. We then show that when the switching cost is linear with port

count, the formulation is equivalent to that of an (all-pairs) minimum hop routing

problem.

For a given traffic matrix on a given network topology, finding the optimal routing

that minimize the switching cost takes the following form:

min C-(l,') = (F(Ko) (9.27)

ts,d, if s = i;

s.t. 2Js'd - I='di, -ts,d, ifd i; (9.28)

0, otherwise;
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Ko/ = E E ljs" + tij + tii. (9.29)
soi,d j j j

In this formulation, the parameters for topology, traffic, and switching cost are

denoted as following:

* The integer parameter i, i E {1, 2, . - , N}, denotes the nodes of the network;

* The integer ordered pair (i, j), i E {1, 2, ... , N} and j E {1, 2, - , N}, with

i / j, denotes a fiber connection from node i to node j;

* The integer ordered pair (s, d), s E {1, 2, ... , N} and d E {1, 2, .. , N}, with

s f d, denotes a source-destination pair from s to d. Traffic demand between

the corresponding node pair is denoted by integer valued t,,d .

* The integer KO represents the number of ports at node i. KO equals to the sum

of the number of pass-through, added, and dropped lightpaths at node i, which

are of the value of Esoi,d Ej ld, j ti,j, and E-> tj,i, respectively.

* Fj(K), with j E {1,2, 3}, is the OXC cost function of type j (cf. (5.10) and

Table 5.1) at node i.

Also in this formulation, equation (9.28) is the conservation of flow constraint.

Equation (9.29) relates all the flows that pass-through, initiated and dropped at a

node i to the number of ports at node i. For a given irregular network topology and

a set of (arbitrary) traffic demands, we want to solve for Pý - the amount of traffic

for the source-destination pair (s, d) to be routed on the fiber (i, j).

Under arbitrary traffic, for every node i we have

Stij Z .,(9.30)
j s=i.d j

Thus the number of ports at node i is

K= +  tj,i; (9.31)
sd j j
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If the switching cost is a linear function of port count (e.g., Ff(Ko) = 31Ko for 3-D

OXC), the formulation (9.27) to (9.29) can be simplified as

,min Cd(l, -- J + t, (9.32)

s,d i j i j

ts,d, if S = i;

s.t. Iij' - I,j = -ts,d, if d=i; (9.33)
i j

0, otherwise.

Note that the term i tj ti in the objective function does not depend on l',, thus

(9.32) and (9.33) are equivalent to

min Cs(lsd1' Z= 01 (9.34)
Ss,d i j

ts,d, if S = i;

s.t. - , = -ts,d, if d i; (9.35)

0, otherwise.

Note that (9.34) and (9.35) are the exact formulation for a (all-pairs) minimum hop

routing problem [50], we thus prove that minimum hop routing minimizes the switch-

ing cost. We also note that the solution to this minimum hop routing problem may

not be unique.

9.5.2 Derivations of Network Cost Upper and Lower Bounds

In this section, we provide the derivation for Theorem 16, which gives network cost

lower bound (9.5) and upper bound (9.6). As stated in Chapter 5, the first-order

network cost model consists of fiber cost and optical switch cost. The fiber cost is
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proportional to the number of fibers used, that is

N

Cf = OaAi

= aN A

N

= aNA. (9.36)

Next, we consider the optical switch cost. Since we assume that the switching

cost is a linear function of port count, e.g., Ff(Ki) = OI1K, the total switching cost is

proportional to the total number of switching ports required. We again let Di denote

the diameter of node i and let ni(j) denote the number of nodes whose minimum hop

path from node i consists of j hops, the switching cost is expressed as

Cs(N, Amax, Amin, A)

N

i=1

N Di

0 31ZE E ( n i(j) + 1)

N Di= N Dij=
N Di N Di

1 E E ni,(j) +3lE 1
i=1 j=1 i=1 j=1

= ZN(NZ- 1) j)= =>1 +1
1N(N1) [N(N- 1) +

- p/N(N - 1)[Hmin(N, Amax, Amin, A) + 1]. (9.37)

Note that in the above derivation, we use the fact that

N Di

13 1 = N(N - 1).
i=1 j=1

(9.38)

Applying the inequalities in Theorem 15 to the above equation, we prove that an

irregular network of (N, Amax, Amin, A) has a network cost lower bound and network

cost upper bound, as expressed in (9.5) and (9.6), respectively.
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9.5.3 Derivation of the Asymptotic Ratio Between Network

Cost Upper and Lower Bound

In this section, we provide the derivation for the asymptotic ratio between network

cost upper and lower bound, as stated in (9.7). Theorem 16 indicates that for an

irregular network of (N, Amax, Amin, A), the network cost has a lower bound

C(N, Amax, Amin,, A) aNA + PfiN(N - 1) [Hin(N, Amax) + 1], (9.39)

and an upper bound

C(N, Amax, Amin, A) • aNA + / 1N(N - 1) [HNin(N, Amin) + 1]. (9.40)

The ratio of the upper bound to the lower bound is

aNA + / 1N(N - 1)[HNin(N, Amin) + 1]
aNA + N(N - 1)[Hin(N, Amax) + 1]

1 + i1) [H min(N, Amin)+ 1]
= + (9.41)

1 + [Hin(N, Amax) + 1]

When N > A, N > Amax, and N > Amin, we approximate the ratio of the upper

bound to the lower bound as

[H(N-) in(N, Amin) + 1] Hym(N, Amin) (9.42)

S[Hn (N, Amax) + 1] H ym(N, Amax)

We have derived the asymptotic expressions for Generalized Moore Graphs in Sec-

tion 4.5.3 and that for A-nearest Neighbors topologies in Section 4.5.4. That is, for

Generalized Moore Graphs we have (4.11)

Hym(A, N) --+ log N= In (9.43)

For A-nearest Neighbors topologies we have (4.18)

1 N-1
Haym(A, N) -• 2 2A . (9.44)

Substitute (9.43) and (9.44) into (9.42), we obtain the ratio of the upper bound to

the lower bound as N • Amix
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Chapter 10

Summary and Comments

In this chapter, we conclude this thesis and comment on possible further extensions.

10.1 Thesis Summary

In current telecom environment, carriers have deployed huge capacity in the long-

haul networks. At the meantime, end users' access to higher data rates is still costly.

To bridge the gap between the bandwidth glut at the backbone and the high access

cost for the end-users, the architecture of next generation optical MAN will be an

important contributor to the reduction of access network cost. The objective is to

design networks that not only require a low installation cost, but also have good

scalability - a decreasing cost-per-node-per-unit-traffic as the number of users and

transaction size increase. This architecture feature is essential for any commercially

deployed network to attract serious providers and investors to commit to the venture

as part of a sensible business.

The central theme of this thesis is to identify scalable network architectures over

the possibilities of optical networks as allowed by the technology: fiber connection

topologies, switching technology selection and dimensioning, as well as routing and

wavelengths assignment, with emphasis on exploring the benefit of optimizing over

fiber connection topologies. Due to the intrinsic complexity of such an optimization

problem and because of our interest in gaining insights into how the cost structures
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drive architectural tradeoffs, for the first part of this thesis, we take an analytical

approach by concentrating on networks with regular topologies and (static and ran-

dom) uniform all-to-all traffic. These assumptions are idealizations, nonetheless they

keep the analysis tractable and provide us insights into more complex problems and

they act as points of departures for the analysis of more realistic scenarios (such as

irregular networks and non-uniform traffic) in the later part of this thesis.

The search for the scalable fiber connection architecture hinges on analyzing the

tradeoffs among expensive network resources. In our parametric, first-order, and

homogeneous cost model, the constituent parts, which are closely related to fiber

topology, are fiber cost and switching cost. To build a network, one can support

lightpaths by laying down direct fiber connections among all source-destination nodes.

This design obviously requires minimal switching resources but maximal amount of

fibers. Another way to establish lightpaths is by hopping through one or more nodes.

Such a design requires less fiber connections but more switching resources. As such,

the optimal connectivity of a fiber connection topology is determined by the fiber-to-

switching cost ratio. Further, we show that the amount of switching resources used at

nodes is proportional to the average minimum hop distance (for regular topologies and

uniform traffic)'. To support the same set of (uniform) demands, we show that regular

topologies with the smallest average minimum hop distances have lowest fraction of

pass-through traffic and thus require less switching ports.

These provide guidelines for rigorous studies of cost-effective network architec-

tures. For a few representative classes of regular networks (e.g., A-nearest Neighbors

and Generalized Moore Graphs, whose constructions are detailed in Chapter 4), we

first derive or approximate the closed-form expressions for important parameters, such

as average minimum hop distance, switch size, and network cost. We then set up the

corresponding optimization formulations. We have found that for regular networks

and uniform traffic, the joint design problems of fiber connection topology, dimen-

'For example, in Chapter 5 we show that the size of an OXC, Ko, equals to (Hmin + 1)(N - 1)t,

with Hmin, N, and t denoting the average minimum hop distance, network size, and unit of traffic

between a node pair, respectively.
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sioning, and routing can be solved optimally and analytically for a special class of

regular graphs - Generalized Moore Graphs 2. That is, we prove that with minimum

hop routing, Generalized Moore Graphs, whose average minimum hop distances scale

favorably as logA N, achieve the lower bound on network cost and are good reference

topologies. We also show that topologies with structures close to Generalized Moore

Graphs can achieve close-to-minimum cost. The investigation of the cost scalability

further demonstrates the advantage of the Generalized Moore Graphs and their close

relatives as benchmark topologies: with linear switching cost, the minimal normal-

ized cost per unit traffic decreases with increasing network size. In comparison, for

less efficient fiber topologies (e.g., A-nearest Neighbors) and switching cost structures

(e.g., quadratic cost), the minimal normalized cost per unit traffic plateaus or even

increases with increasing network size. Our study has also revealed other attractive

properties of Generalized Moore Graphs in conjunction with minimum hop routing.

When minimum hop routing is employed for uniform traffic in Generalized Moore

Graphs, the aggregate network load is evenly distributed over each fiber. Further, to

support a given uniform traffic demand, Generalized Moore Graphs require the min-

imum (or close to the minimum) number of wavelengths, which directly affects the

complexity and the cost of dispersive elements and filters in the network. This is the

first time that Generalized Moore Graphs are identified as optimum architectures in

the context of network cost efficiency. These architectures are very different from the

currently used ones in MANs, such as rings, interconnected rings, or non-optimized

mesh networks.

With the parametric network cost structure, closed-form solutions of the optimal

degree and cost as functions of various network design parameters (such as network

sizes and wavelengths of traffic between node pairs) are obtained. These results show

that for a MAN of moderate size (a few tens to a few hundred nodes), under certain

cost structures, neither rings nor fully connected mesh networks are optimal topolo-

2 As elaborated in Chapter 4, 6, and 7, the assumptions of uniform traffic and symmetric topology,

as well as the special construction of Moore Graphs make this joint problem solvable. For non-

uniform traffic and other classes of graphs, the joint problem remains difficult to solve.
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gies. The optimal network connectivity is in the range of 0.03N to 0.1N (when the

fiber-to-switch cost ratio a/0 1 = 40, a and P1 denote the cost per fiber connection

and the cost per port for linear switching cost structure, respectively). The advantage

of analytical approaches is self-evident: they provide valuable references on how the

optimal network connectivity scales as the design parameters change. More impor-

tantly, the results demonstrate that switching technologies have a tremendous impact

on the final topological architectures. The optimal topologies connecting the same set

of nodes can differ significantly when different switching fabrics are used, even when

these topologies are designed to serve the same traffic demand. Among all-optical

technologies currently available, for smaller networks (a few to a dozen nodes) and

light traffic, quadratic switching cost structures (e.g., 2-D switching fabrics) have cost

advantage. However, as the size of the network and the demand among node pairs

increase, linear switching cost structure (e.g., 3-D switching fabrics) have the best

scalability. Thus, the cost benefit of deploying 3-D switching technology for the fu-

ture network is apparent. Moreover, a comparison of the cost benefit between OXC

and OEO switches shows that at low data rate (e.g., below 1Gb/s for every source-

destination pair for a 50-node network, as shown in Figure 6-16), it is economical to

use OEO switches; at high data rate (e.g., above 1Gb/s for every source-destination

pair for a 50-node network, as shown in Figure 6-16), it is more cost-advantageous to

use OXC switches.

We also take steps to broaden the scope of this work to address more realistic

design scenarios from two facets.

* We look into irregular network topologies and (static) non-uniform traffic, which

represent most existing networks. We show that if the switching cost is linear

with port counts, minimum hop routing is still optimum 3. The results of

Generalized Moore Graphs can be used to provide useful estimates for the cost

of irregular networks - a Generalized Moore Graph with a node degree that

equals to the minimal node degree of an irregular network provides lower bound

3 The implications of topology regularity, traffic uniformity, and switching cost structure are

summarized in Table 10.1 and Table 10.2 in Section 10.2.2.
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on network cost. Also Generalized Moore Graphs can be exploited to suggest

improvements for irregular fiber connection topologies. We show examples that

connecting the same set of nodes via a Generalized Moore Graph results in

savings on the number of switching ports 4

For irregular topology under arbitrary traffic, we provide the lower bound on

network cost using the concept of minimum flow tree, which is based on the

unique construction of Generalized Moore Graphs (each of its nodes has a full

(or almost full) A-ary routing spanning tree) and an (idealized, not always

realizable) permutation of traffic matrix (the A destinations with the largest

traffic are connected by one hop paths, the next A2 destinations in descending

order of traffic are connected by two-hop paths, and so on). More importantly,

the construction of the minimum flow tree, though idealized, yields a general

yet crucial design guideline: a cost-effective physical topology should minimize

the propagation of large traffic values.

* We also investigate designing networks that are robust to demand uncertainties,

which are caused by diversification of services, changing of usage patterns, and

data-dominated traffic in the metro environment, etc. We present a framework

to assist network designers to dimension optical MAN, incorporating uncer-

tainties in demands. In this framework the interplay among topology design,

resource provisioning, and routing are analyzed based on two stochastic opti-

mization models that use probability distributions of demands as inputs. In one

model, the weighted sum of network installation cost and expected penalty cost

for unsatisfied traffic is minimized. In another model, the network installation

cost is minimized subject to certain service level requirements. The optimiza-

tion results enable us: (1) to identify the Generalized Moore Graphs as the

physical architectures that are most robust (in cost) to demand uncertainties

among rich classes of regular topologies, assuming the (random) uniform all-to-

4 In these examples, every improved network uses the same number of fiber connections as the

original one does, as illustrated in Section 9.2.2
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all traffic, and (2) to provide analytical references on how optimal dimensioning,

network connectivity, and network costs change as functions of the designer's

level of risk aversion, service level requirements, and probability distributions

of the demand.

To summarize, in setting up the topology, traffic, and network cost models, we

seek a balance between the analytical tractability and a good representation of to-

day's network. As such, the results presented in this thesis mainly serve to explore

the landscape of options, to illustrate the trends, and to provide references for more

realistic design scenarios. For solving a real world problem, more detailed and more

accurate models need to be established, albeit at the cost of more intensive computa-

tion and the loss of analytical tractability. We will provide comments on the possible

extensions in next section.

10.2 Comments

10.2.1 Comments on the Design of Wide Area Networks

(WANs)

The complexity of designing WANs is still dominated by the size of the set of candi-

date edges, which grows approximately with 2N2 (cf. Section 1.2.2). Thus finding a

perfect solution via exhaustive search or solving ILP is unrealistic. (It is only practi-

cal for small size networks, N < 10). Besides the network size factor, compared with

MAN or LAN, in a WAN a fiber connection spans a much longer distance, e.g., a

few hundred to a thousand kilometers. With such a long distance, the optical signal

must be amplified and reconditioned periodically. Because either amplifiers or regen-

erators are required for every 50 to 100 kilometers (cf. Section 2.1.4), establishing

fiber connections may dominate the network cost. Moreover, the distances between

node pairs vary significantly. For example, a fiber between Seattle and Salt Lake City

spans a much longer distance than that between Boston and New York City, thus

requires more amplifiers and regenerators. As such, we can no longer assume that all
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Figure 10-1: The fiber topology of Level 3.

the fiber connections have approximately the same cost. In other word, the fiber cost

needs to be modeled as length-dependent. Due to this dependency, it is often difficult

to directly set up analytical models let alone obtain the solutions. Nonetheless, the

methodology established in this thesis and the results obtained from studying sym-

metric regular topologies and uniform traffics can be applied to the design of WAN

in the following directions.

First, the analysis of the tradeoff between the fiber and switching resources can

help us evaluate the cost efficiency and suggest possible changes of existing WAN

topologies as technologies evolve. As an example, Figure 10-1 shows the physical

topology of Level 3's national backbone network [60]. The network consists of 56 nodes

and 63 (bidirectional) edges. The network is sparsely connected, with the maximum

node degree of Amax = 4, the minimum node degree of Amin = 2, and an average node

degree of A = 2.25. Such a connectivity is economical if the costs of establishing fiber

connections are considerably higher compared with those of switching lightpaths. If

in the future, the cost reduction rate of fiber is faster than that of switching, adding
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Figure 10-2: The fiber topology of COST 239 network.

new fiber spans will maintain or increase the cost efficiency (provided that there are

enough dark fibers available). As another example, Figure 10-2 shows the physical

topology of COST 239 network [61] in Europe. The network consists of 11 nodes and

26 (bidirectional) edges. Compared with Level 3's network, this network is densely

connected, with the maximum node degree of Amax = 5, the minimum node degree of

Amin = 3, and an average node degree of A = 4.7. Such a connectivity makes sense

if the costs of fibers are considerably lower compared with those of switching. If in

the future, the cost reduction rate of fiber is slower than that of switching, selling off

or leasing some of the fiber spans will maintain or increase the cost efficiency of the

network.

In a green field design scenario, the analysis of the tradeoff between the fiber

and switching costs can also inform us the nodal characteristics of a good physical

topology, as illustrated in Figure 10-3. We can establish a region of plausible solutions,

which is bracketed by a minimum node degree Amin and a maximum node degree

Amax. The establishment of such a region significantly reduces the solution space,

allowing a more sophisticated topology construction that yields minimum or near-to-
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Figure 10-3: The analysis of the tradeoff between the fiber and switching costs can

inform us the nodal characteristics of a good physical topology.

minimum cost.

Moreover, the insights gained from the study of symmetric network can help us

construct efficient topology design algorithms. As previously mentioned, the construc-

tion of minimum flow tree provides us an important guideline in topology designs -

a good network topology should minimize the propagation of large traffic. As an

example of applying this guideline, We consider a design scenario in which the nodal

connectivity requirement is given [62]. That is, the design requires that 50% of the

nodes are degree-2 nodes, 35% degree-3 nodes and 15% degree-4 nodes (if needed, up

to 3% of the nodes can be changed to degree-5 or degree-6 nodes). We propose an

intuitive and efficient algorithm, which consists of two parts - node degree assignment

and connecting the nodes, as detailed in the following:

* Node degree assignment: for a given traffic matrix T = [ti,j], calculate the

aggregated traffic originated from each node EN , tij and rank them in the

descending order. The node with the maximum aggregated traffic is assigned

with the highest node degree; the node with the minimum aggregated traffic

is assigned with the lowest node degree, and so on. These steps, combined

with the steps in "connecting the nodes", limit the travels of large traffic

volume to as few number of hops as possible.
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* Connecting the nodes: given a set of locations, we can first connect the nodes

via a minimum spanning tree or "two tree" [4] to ensure that the network is one

or two connected, respectively. Then as long as the nodal degree requirement

is not violated, we add a fiber connection one at a time to increase the network

connectivity. Let ti,j, hiej, and disj denote the demand, number of hops, and

Euclidian distance between node i and node j, respectively. Each time we add

a new fiber span, we use it to the node pair with the largest . We repeat

the same process as long as the network connectivity constrain is satisfied. By

doing so, we not only let large traffic travel as few number of hops as

possible (illustrated in Figure 10-4 (a)), but also make effective use

of fiber (illustrated in Figure 10-4 (b)).

As preliminary testing, we apply this algorithm to small networks (N = 6 or

N = 7)5. The results show that the networks designed by this algorithm have costs

close to the minimum (obtained by exhaustive searches).

In summary, the length-dependency of fiber cost adds another layer of difficulty

in designing WANs. Owing to the intrinsic complexity associated with the design

problem, strict optimal solutions can be obtained only for networks of small sizes.

For networks of large size, we have to rely on heuristics. The insights and guidelines

obtained from this thesis, in combination with sophisticated search mechanisms (such

as "Tabu" search [63] and genetic algorithm [64]) are likely to provide near-optimal

solution in a computationally efficient manner.

10.2.2 Comments on Minimum Hop Routing

In Chapter 6, we show that, minimum hop routing minimizes the switching cost,

under the following conditions:

* The network is regular;

* The traffic is all-to-all uniform:

"We limit the testing cases to small networks, since finding the optimal solutions via exhaustive

searches is computationally prohibitive for networks with N > 8.
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Figure 10-4: A topology design algorithm: each time a fiber span is added, the node

pair with the largest i is connected, where ti,j, hi,j, and dj denote the demand,

number of hops, and Euclidian distance between node i and node j, respectively.

In (a) we have dA, D = dA, c and tA, D = tA, C. Since hA,c > hA, D, a fiber span is

added between nodes A and C. In (b) we have hA, D hA, C and tA, D = tA, C. Since

dA,D < dA,c, a fiber span is added between nodes A and D. The algorithm limits the

travel of large traffic to as few number of hops as possible and makes effective use of

fiber at the same time.
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Figure 10-5: Routing algorithms for arbitrary traffic and super-linear switching cost.

* The switching cost is an increasing function of the number of ports (this is

obvious, nonetheless we need this assumption for mathematical rigor);

* The routing is offline (the entire matrix is given upfront and routing decisions

are made in "one shot") and symmetric 6

In Chapter 9, we prove that, minimum hop routing also minimizes the switching cost,

under the conditions:

* The network is arbitrary;

* The traffic is arbitrary;

* The switching cost at a node is linear with the number of ports;

* The routing is offline.

In this section, we consider the situations that a part of above conditions is not

satisfied and minimum hop routing is not optimal. We provide examples and com-

ments for both offline and online cases. We first look into the offline case. As an

example, Figure 10-5 shows two different routings to send 4 wavelengths of traffic

from node 1 to node 3 in a 5-node ring network. In Figure 10-5 (a), every wavelength
6When the routing is non-symmetric, in order for minimum hop routing to be optimal, the

switching cost has to be increasing and convex function of the number of ports.
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Table 10.1: Minimum hop routing for linear increasing switching cost.

Topology / Traffic Uniform All-to-all Non-uniform

Regular Topology Optimal Optimal

Irregular Topology Optimal Optimal

Table 10.2: Minimum hop routing for super-linear increasing switching cost.

Topology / Traffic Uniform All-to-all Non-uniform

Regular Topology Optimal Not necessarily optimal

Irregular Topology Optimal Not necessarily optimal

of traffic is routed via the minimum hop path; while in Figure 10-5 (b), 3 wavelength

of traffic is routed via the minimum hop path and 1 wavelength of traffic is routed

via the maximum hop path. If the switching cost is quadratic with the port counts

(F3(Ko) = 03K,2, with Ko denoting the switch size and P3 denoting the cost per port,

cf. Table 5.1), the routing algorithm in Figure 10-5 (a) incurs a cost of 48a33, yet the

algorithm in Figure 10-5 (b) incurs a cost of 4303. This simple example shows that

under arbitrary traffic and super-linear switching cost, minimum hop routing does

not always generate the minimal switching cost - cost efficient routings may include

a combination of minimum and non-minimum hop routing algorithms. The results of

the implications of topology regularity, traffic uniformity, and switching cost scaling

on the minimum hop routing are summarized in Table 10.1 and Table 10.2.

We next look into the online case, in which the connection requests arrive at

random and the holding times of a connection are finite. In this case, routes need to

be determined one-by-one as they occur, without a prior knowledge of future demand.

For online routing, a common objective is to minimize the blocking probability. Under

certain circumstances, routing the demands through longer hops may enhance the

network blocking performance. Figure 10-6 shows such an example. Suppose that

lightpath requests from node A to node B and from node C to node F have occupied
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all the wavelength resources on link DE. When node G requests one wavelength of

demand to node K, the minimum hop routing would select the route G -- D - E -+

K. Because of insufficient resources on the link DE, this request would be blocked.

However, if we take a "greedy" approach to route the demand via a longer path

G -- H -* I --- J -, K (suppose there are no other demands occupying the wavelengths

on this path), the request can be granted. This example shows that non-minimum hop

routing may be beneficial in setting up a single lightpath. At the meantime, we should

be cautious that such a "greedy" approach tends to choose longer and longer paths

in an attempt to satisfy the current request without cosidering any possible future

requests. Depending on the arrivals and the durations of lightpath requests, the

overall blocking performance may suffer. Figure 10-6 (b) gives an example. Similar

to Figure 10-6 (a), the link DE is occupied at the time when node G requests one

wavelength of demand to node K. Routing via a longer hop G --+ H -- I -* J -* K can

satisfy this request. However, this longer path may interfere with potential future

traffic demands between other source destination pairs, such as (future) demands

between node L and node O, node M and node N. These demands, in turn, seek longer

routes. The long-term blocking performance degrades as a consequence. From this

example, it is reasonable to expect that whether routing via longer hops can improve

network blocking performance depends on the burstiness of the traffic between a node

pair, which is normally characterized by the ratio between the average holding time

and the average inter-arrival time [32]. When the ratio is small, the greedy approach

of using longer paths would lower the long-term blocking. As the ratio increases, the

benefit (in terms of blocking ) of routing via longer path is likely to diminish.

In general, constructing optimal routing schemes becomes much more complicated

for online cases. A sophisticated routing algorithm needs to consider not only mini-

mizing the usage of network resources, but also other factors such as network blocking

probability and load balancing, etc. A good online algorithm will strike a balance

between the solution quality and execution complexity.
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(a)

Figure 10-6: Online routing algorithms: (a) shows an example that routing the de-

mands through longer hops may enhance the network blocking performance; (b) shows

that a "greedy" approach tends to choose longer and longer paths in an attempt to

satisfy the current request without cosidering any possible future requests. Depending

on the arrivals and the durations of lightpath requests, the overall blocking perfor-

mance may suffer.
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Figure 10-7: Dynamic traffic, static and dynamic lightpath provisioning.

10.2.3 Comments on Dynamics vs. Static Lightpath Provi-

sioning

As mentioned in Chapter 1 and Chapter 5, the switching cost model used in this

thesis includes both patch panel and dynamic switching. That is, we assign different

per port cost for different type of switching - ,p for static switching (via patch panel)

and Oi (i = 1, 2, and3, 01, /2, and P3 are cost per port for linear, multi-stage, and

quadratic cost scaling, respectively) for different types of dynamic switching. The case

of mixed (cost per port) "P"s - 3p for static switching and fi for dynamic switching

- is an obvious extensions of this thesis. In this section, we provide comments on the

advantage of static and dynamic switching and lightpath provisioning and research

directions in hybrid network provisioning.

The main advantages of dynamic optical switching include:

* Protection and restoration: active switching elements are required for the suc-

cessful executions of various protection schemes, such as 1:N protection [33].
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We also note that even static traffic requires dynamic switching for network

reliability.

* Reconfigurability and efficient use of network resources: dynamic switching en-

ables lightpath to be set up at the moment when extra capacity is needed and

to be taken down when this extra capacity is no longer needed, thus enhances

a network's capability to adapt to traffic fluctuation (as shown in Figure 10-

7) and pattern change. More importantly, with dynamic switching wavelength

resources are no longer reserved permanently as in the case for static provision-

ing, where wavelengths are reserved even in the situation of no traffic flowing

through them. In other words, via careful design, dynamic switching allows

efficient sharing of network resources among user pairs. As an example, Figure

10-8 shows the cost saving enabled by the sharing of network resources - to

support traffic A-B and E-F, static provisioning requires 2 wavelengths (shown

in Figure 10-8 (b), while dynamic provisioning requires 1 wavelength (shown in

Figure 10-8 (c)).

Depending on the characteristic of the traffic, it may not be necessary to switch every

wavelength dynamically. For example, when the network traffic is constant (e.g., the

traffic has a very small variance to mean ratio), the lightpaths can be provisioned

statically - they can be setup via "hard-wiring" using fixed routing and wavelength

assignment. The main advantage of the static provisioning is that the cost (per port)

of the equipment required (such as fiber-patched panels) is much lower, compared with

active switching equipment. The downside of the static provisioning is the inefficient

use of the network resources, especially for dynamic traffic. In static provisioning,

the wavelength used by a lightpath is reserved quasi-permanently for a user pair. It

can not be used by others pairs, even there is no traffic between this user pair (cf.

Figure. 10-8).

For dynamic traffic, it is practical to take a hybrid approach in network dimen-

sioning [65]. That is, low-cost switching equipments, such as fiber-patched panels,

handle the static or quasi-static portions of the traffic, while more expensive dynamic
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switching equipments accommodate the fluctuating portions (as illustrated in Figure

10-7). For hybrid network dimensioning, in addition to network cost, other design

objectives, such as network blocking probability, network resource utilization, and the

number of users supported, are also to be included [65]. It is reasonable to expect that

the optimal amount of static and dynamic provisioning is likely to be determined by

the factors such as characteristics of traffic, the relative (per port) cost ratio between

static and dynamic provisioning, fiber topology, and routing algorithm, etc. How-

ever, correctly formulating and efficiently solving such an optimization problem with

multi-objectives remain difficult. A sensible first step is to focus on more manageable

tasks (that, study the dependency of one design objective as functions of one or two

design parameters). In addition, simplified and idealized network and traffic models

can be used to obtain quantitative insights. For example, as illustrated in Figure

10-9, a "shared link (fiber)" topology, in which a single fiber (link) (colored in red)

supports the (dynamic) traffic flowing from the nodes on the left side to the nodes on

the right side of the fiber (link), is a good starting point to study the hybrid capac-

ity provisioning. As for traffic models, both stochastic model ' and random model

8 are fair approximations of the network operations. Moreover, a known framework

for hybrid dimensioning (as illustrated in Figure 10-10) [65], together with the afore-

mentioned network and traffic models, allow us to analyze the intrinsic tradeoff in

hybrid capacity provisioning. In this framework, the traffic load of each user pair is

first offered to the statically provisioned capacity, which is reserved for a specific node

pair, thus can not be accessed by other user pairs even the capacity is not currently

used. If all the statically provisioned capacity is not enough to handle the traffic load,

the overflowing traffic is then offered to the dynamically provisioned capacity, which

can be shared by many user pairs. Some of the research directions, as addressed by

recent works [65] [66] [67], include:

7In the stochastic model, in the arrivals and departures of lightpaths (illustrated in Figure 10-7)

are modeled as stochastic process, as discussed in Section 3.2.
8The random model takes a "snapshot" view of network traffic. The demand between a node

pair at some instant is characterized by a random variable, as discussed in Section 3.3.
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* Optimal static and dynamic provisioning as a function traffic statistics and

blocking requirement. For example, using a random traffic model, [67] shows

that if the demand between a user pair has a Gaussian distribution with a

mean of ± and variance of a, a minimum ± wavelengths should be statically

provisioned. In [66], given a blocking probability requirement, an upper bound

(worst case) on required dynamic switching resources is obtained among the

sets of all possible random distributions.

* Optimal static and dynamic provisioning as a function of (average) traffic load

and relative cost ratio between static and dynamic bandwidth provisioning.

For example, with a simple cost structure (the cost is linear combination of the

statically and dynamically provisioned capacities), [65] shows that two factors,

which determine if and how much dynamically switched capacity is used, are

the offered load of a user pair (denoted as A in [65], in the units of Erlangs)

and the relative cost ratio between static and dynamic bandwidth provisioning

(denoted as CR in [65]). A plot of of A vs. CR prescribes the regions where

all-static, all-dynamic, and hybrid static-dynamic provisioning are used.

* Network utilization as a function of number of user supported and traffic statis-

tics, under given blocking probability requirement. Dynamic switching has the

potential of allowing efficient sharing of network resources among user pairs. To

what extent dynamic switching can reap the benefit of statistical multiplexing

of the aggregated traffic of user pairs is likely to depend on the number of users

and their traffic statics, thus needs to be analyzed.
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Figure 10-9: A shared fiber topology model.
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Figure 10-10: A model for stochastic traffic and hybrid static-dynamic dimensioning.
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