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Abstract

To provide end users with economic access to high bandwidth, the architecture of the
next generation metropolitan area networks (MANs) needs to be judiciously designed
from the cost perspective. In addition to a low initial capital investment, the ultimate
goal is to design networks that exhibit excellent scalability — a decreasing cost-per-
node-per-unit-traffic as user number and transaction size increase.

As an effort to achieve this goal, in this thesis we search for the scalable net-
work architectures over the solution space that embodies the key aspects of optical
networks: fiber connection topology, switching architecture selection and resource
dimensioning, routing and wavelength assignment (RWA). Due to the inter-related
nature of these design elements, we intended to solve the design problem jointly in the
optimization process in order to achieve over-all good performance. To evaluate how
the cost drives architectural tradeoffs, an analytical approach is taken in most parts
of the thesis by first focusing on networks with symmetric and well defined structures
(i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic),
which are fair representations that give us suggestions of trends, etc.

We starts with a examination of various measures of regular topologies. The
average minimum hop distance plays a crucial role in evaluating the efficiency of net-
work architecture. From the perspective of designing optical networks, the amount
of switching resources used at nodes is proportional to the average minimum hop dis-
tance. Thus a smaller average minimum hop distance translates into a lower fraction
of pass-through traffic and less switching resources required.

Next, a first-order cost model is set up and an optimization problem is formulated
for the purpose of characterizing the tradeoffs between fiber and switching resources.
Via convex optimization techniques, the joint optimization problem is solved ana-
lytically for (static) uniform traffic and symmetric networks. Two classes of regular
graphs — Generalized Moore Graphs and A-nearest Neighbors Graphs — are identi-
fied to yield lower and upper cost bounds, respectively. The investigation of the cost
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scalability further demonstrates the advantage of the Generalized Moore Graphs as
benchmark topologies: with linear switching cost structure, the minimal normalized
cost per unit traffic decreases with increasing network size for the Generalized Moore
Graphs and their relatives. In comparison, for less efficient fiber topologies (e.g., A-
nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal
normalized cost per unit traffic plateaus or even increases with increasing network
size. The study also reveals other attractive properties of Generalized Moore Graphs
in conjunction with minimum hop routing — the aggregate network load is evenly dis-
tributed over each fiber. Thus, Generalized Moore Graphs also require the minimum
number of wavelengths to support a given uniform traffic demand.

Further more, the theoretical works on the Generalized Moore Graphs and their
close relatives are extended to study more realistic design scenarios in two aspects.
One aspect addresses the irregular topologies and (static) non-uniform traffic, for
which the results of Generalized Moore networks are used to provide useful estimates
of network cost, and are thus offering good references for cost-efficient optical net-
works. The other aspect deals with network design under random demands. Two
optimization formulations that incorporate the traffic variability are presented. The
results show that as physical architecture, Generalized Moore Graphs are most robust
(in cost) to the demand uncertainties. Analytical results also provided design guide-
lines on how optimum dimensioning, network connectivity, and network costs vary as
functions of risk aversion, service level requirements, and probability distributions of
demands.

Thesis Supervisor: Vincent W. S. Chan
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Thesis Motivation

As we move forward in the Information Age, the ravenous demands for bandwidth
grow at an alarming rate with each passing decade. Despite significant cycles in the
economy that supports digital demands, traffic volume is still expected to have ex-
ponential growth in the foreseeable future. This comes as more and more households
are switching to broadband access and network operators are aggressively marketing
advanced services, such as FiOS! and Triple/Quadruple Play?. In addition, con-
sumers’ ever growing appetite for bandwidth-devouring applications, such as IPTV,
digital movie, and peer-to-peer file sharing, is driving the demand for high data rate
infrastructure.

To keep up with the rising traffic volume, telecom carriers have drastically in-
creased the capacity of long-haul networks with the deployment of wavelength divi-
sion multiplexing (WDM) technology. WDM transmission systems can have capacity

greater than 10 Tb/s (10'% b/s) over a single fiber, a feat achieved by multiplexing

IFiOS is an abbreviation of Fiber Optic Service, a fiber to the premises (FTTP) service offered

by Verizon.
2Triple Play: a marketing term for offering three services over a single broadband connection:

high-speed Internet, television (Video on Demand (VoD) or regular broadcast), and telephone ser-
vice. Triple Play leads to the term Quadruple Play, where wireless communication is introduced as

another way to deliver video, Internet, and voice content.
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more than 200 channels at 40 Gb/s (4 x 10 b/s) each [1]. At the same time, service
providers are laying fiber cables with more than 100 fibers per cable, with a total
capacity of 1 Pb/s (10'® b/s). This capacity allows 1 million user-pairs to transmit
simultaneously, each at a data rate as high as 1 Gb/s.

While the deployment of capacity in backbone networks has been impressive, end-
users’ access to the broad array of services made available by this deployment is quite
limited. The current data rates for most end-users are in the range of kilobits to a few
megabits per second; and the access to higher data rates (in the range of hundreds
megabits per second) is still considerably more expensive [2]. In these situations,
because the access cost is so dominant, even if long haul transmission cost could be
reduced to zero, the cost incurred to end-users would not come down significantly.
End-users still pay heftily for high bandwidth usage. One can say that aggregation
and access have become the new bottlenecks for the growth and the adoption of high
bandwidth applications. As such, the full potential of optical network, which promises

low-cost and high data rate access to the masses, has not yet been realized [2].

From an engineering perspective, the discrepancy between the bandwidth glut at
the backbone and the high access cost for the end-users can be attributed to the
following factors. The first factor, which is widely recognized among both industry
and research communities, is related to the predominant routing and switching mech-
anism utilized by the current network. Though the WDM technology has been a
huge success in providing high-capacity point-to-point transmissions, the routing and
switching are exclusively carried out electronically in the current metro and access
environment. Though this router-centric architecture is cost-effective in supporting
low data rate traffic 3, the architecture does not scale well with increasing network
size and traffic. The complexity of route computations at the network processing
units of the routers grows with increasing network size. In addition, at high data
rate the router port utilization needs to be kept low (less than 30% [4]) to ensure

that the delay and packet loss meet the service level requirement. As such, the elec-

3For example, a data rate below 1 Gb/s for every source-destination pair for a 50-node network,

according to the analysis in this thesis and [3].
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tronic processing, which advances at a rate quantified by Moore’s Law (the number
of transistors on a chip doubles every 18 to 20 months), is both costly and slow in
keeping up with future’s surge of high capacity demand. As network traffic grows,
router-centric networks will require increasingly higher capacity routers, yet there
are clear limits to the footprint and speed of an electronic router in terms of space,
power, and reliability. For carrier-grade networks, where scalability of growth is of
paramount importance, these limitations start to cause problems. To provide relief,
optical cross-connect based lightpath switching can be incorporated with electronic

routing and switching in the metro networks.

The second factor is the optimization of network architectures. It is in most
part overlooked, yet is crucial in our opinion. The architectures of metro and ac-
cess networks have not been well thought-out, especially from the perspective of cost
scalability. Most of the proposed WDM network architectures are direct adoption
of those with electronic circuit and packet switching paradigms. There are still few
guidelines on how to properly design various architectural elements of metro and
access networks. Take the design of network fiber connection topology * as an exam-
ple, traditionally ring configuration — the legacy topology for SONET (Synchronous
Optical Network) based electronic switching — is chosen as the default topology for
optical switching networks, without considering mesh topologies as viable alternatives
[5] and [6]. Though recent years witness the migration to mesh networks from ring
networks, the optimal topology as the tradeoff among various network resources and
technologies has not been carefully considered to date. Since architectures optimized
for optical switching paradigms will not be the same as the router-centric network
architectures that are widely adopted for today’s Internet, efficient optical network

architectures that truly take the advantage of WDM technology need to be created.

In this thesis, our main focus is to address these challenges by proposing viable

solutions. In regard to the scalability issue of a router-centric architecture, the consen-

“In this thesis, we distinguish the notions of network cable plant topology (also referred as physical

topology in most of the research literatures) and fiber connection topology, as elaborated in Section
1.2.1.
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sus is that the optical switching can be introduced to work in synergy with electonic
routing and switching [5]. Compared with electronic switching, optical switching

offers the following advantages:

e Transparency: each wavelength can carry data that are encoded and transmit-
ted at different bit rate and use different formats and protocols. This allows

the networks to interface with customers in need of a wide variety of services.

e Lower capital expenditure (CapEx) and operational expenditure (OpEx): in
stead of handling the pass-through traffic at the packet level, well groomed
lightpaths ® can bypass costly router ports, reducing the route computation
and forwarding load on the routers. In addition, network operators can im-
plement end-to-end lightpath scheduling (e.g., optical flow switching [7]) and
dynamic protection and restoration in the optical domain. With well considered
designs, these advantages can translate into a reduction of capital investment

and maintenance cost.

Optical cross-connect and other enabling technologies (such as tunable transceiver
and wavelength converter, etc.), when judiciously integrated with current electronic-
centric network infrastructure, provide us the technological foundations to build dy-
namically reconfigurable networks that offer end users with higher data rate services
at lower cost-per-bit. To fully realize the potential of these enabling technologies, net-
work architectures need to be carefully designed, in terms of cost and performance.
That is, finding sensible architectures involves searching over a broad solution space
of fiber connection topology, switching, routing and wavelength assignment (RWA),
transport mechanism, transport protocol, as well as network management, which are
allowable by the current and possible future technologies [2]. In addition to a low
subscriber cost, the ultimate goal is to design networks that exhibit excellent scal-
ability — a decreasing cost-per-node-per-unit-traffic as user number and transaction

size increase.

5Traffics are aggregated and groomed clectronically at the edge of the feeder network, as described
in Section 2.3.2.
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Obviously, solving this optimization problem entails a gigantic endeavor. Our ap-
proach is to decouple this optimization into more manageable tasks with the belief
that by focusing on a less ambitious goal, we can still obtain insights into the intrinsic
tradeoff that characterizes the global optimum. As such, in this thesis we study scal-
able optical network architecture by focusing on a solution subspace that includes fiber
connection topology, switching, routing and wavelength assignment, with emphasis
on analyzing the role of fiber connection topology design. The problem statement is

provided in detail in the next section.

1.2 Problem Statement, Complexity, and Approaches

1.2.1 Problem Statement

The central theme of this thesis is searching for cost-effective network architectures
over the solution space that embodies the key aspects of an optical network: fiber
connection topologies, physical layer switching, routing and wavelength assignment
(RWA), etc. In particular, the question we ask is, given the locations of network
nodes and a traffic demand matrix (or a range of matrices), how we can minimize the

total network cost (capital investment) over the following design elements:

e Network fiber connection topologies. While the cable plant topologies (also
called as physical topology in most of the research literatures, as illustrated in
Figure 1-1) are determined by factors such as speculated traffic and rights of
way, how these fibers (inside the cables) are connected (via fiber patch panels)
to form the fiber connection topologies (as illustrated in Figure 1-1), is a key
design element that has significant leverage on the network cost. In this the-
sis, we optimize over two aspects of fiber connection topologies — node degree

(connectivity) and connection rules (patterns).

e Dimensioning switching resources and selecting switching architectures. A light-
path that traverses multiple physical hops has to be switched at intermedi-

ate nodes. As such, sizing the switching resources to support the given traf-
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fic demand (on a given fiber connection topology) is crucial. Also switching
mechanism comes with different forms, such as optical-electrical-optical (OEQO)
switching or all-optical switching. With different switching technologies, the
cost of an optical switch scales differently as a function of the port count. For
example, for 3-dimensional (3-D) switching architecture (as shown in Figure
1-2 (a)), the cost, to the first order, can be modeled as approximately linear
with the number of ports (e.g., F1(K,) = 1Ko, where K, denotes the number
of ports and 3; denotes the corresponding cost per port). For 2-dimensional
(2-D) switching architecture (as shown in Figure 1-2 (b)), the cost increases
approximately quadratically with the number of ports (e.g., F3(K,) = BsK2,
where (3 denotes the corresponding cost per port). In addition to the cost
scalings, parameters such as cost per port 4 and (3, which depend highly on
the technologies and manufacturing yields, play an equally important role in
the switching cost 6. from the perspective of designing a cost-effective optical
network, properly dimensioning the switching resources and choosing a suitable

switching mechanism is also important.

e Routing and wavelength assignment (RWA). In designing optical networks, the
demands among node pairs are first mapped into a set of lightpaths. For a
given network fiber connection topology, we need to decide how to establish
these lightpaths through routing and assigning a wavelength for each lightpath.
When wavelength continuity constraint (the same wavelength must be used on
every fiber along the route of a lightpath) is enforced, RWA problem is quite
difficult to solve, as will be explained in Section 1.2.2. Nonetheless, for Moore
Graphs and uniform traffic, the RWA problem can be solved, as the results of
symmetry and special constructions of Moore Graphs. This result is then used

as bounds for other types of topologies.

Among these design elements, this thesis emphasizes the importance of designing

fiber connection topologies, which is largely overlooked in current research. Using a

6The cost model will be described in detail in Chapter 5.

32



Cable

Fibers

Fiber

Figure 1-1: We can set up a fiber connection between two nodes that are not directly
linked by a cable (e.g., node 1 and node 2), using fiber patch panels (at node 3).

These fiber connections constitute network physical (fiber) topology.
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Figure 1-2: Optical switching architectures: (a) 3-D and (b) 2-D architectures.
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50-node network as an example (the details of the analysis are presented in Chapter
4 to Chapter 6), Figure 1-3 plots the normalized network cost (cost per node) as
a function of network node degree A to support a uniform traffic, for two types of
topologies — A-nearest Neighbors and Generalized Moore Graphs 7. As shown in
the plot, the maximum normalized network cost (at A = 49) is about 2.5 times of
the minimum cost (at A = 8). This shows that finding the optimal connectivity is
essential. Also, finding the optimal connection rule is equally vital. For example,
connecting the same set of 50 nodes via a Generalized Moore Graph will save about
40% in (minimum) normalized cost per unit traffic than connecting via a A-nearest
Neighbors, as illustrated in Figure 1-3 and Figure 1-8 and discussed in detail in Section
1.3. From this example, we also note that the optimal node degree (at A = 4 )for
the Generalized Moore Graphs is different from that for the A-nearest Neighbors (at
A =38).

Since these design elements (fiber connection topology, switching resources dimen-
sioning, routing and wavelength assignment) are inter-related, ideally they need to be
considered jointly in the optimization process in order to achieve good performance
8. Besides the network cost at the initial deployment, the ultimate goal is to de-
sign a network architecture (a combination of fiber connection topologies, RWA, and
switching mechanisms) that has the best cost scalability — a decreasing cost per user
per transaction with increasing number of users and data rates. Thus, in this thesis

we call this problem as the Design of Scalable Optical Network Architectures.

1.2.2 Complexity

The Design of Scalable Optical Network Architectures belongs to a class of prob-
lems known as combinatorial optimization. Solving them involves selecting suitable

combinations of discrete alternatives, i.e., where the solution is a set of integers or

7A-nearest Neighbors and Generalized Moore Graphs provide upper bounds and lower bounds
on the average minimum hop distances and network costs for regular networks of the same size and

connectivity, as to be presented in Chapter 4 to Chapter 6.
8Tn this thesis, we only solve the joint problem for Generalized Moore Graphs.
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Figure 1-3: The normalized network cost (cost per node) as a function of network
node degree A, with N = 50. Two types of topologies — A-nearest Neighbors
and Generalized Moore Graphs are compared. The switching architecture is lin-
ear (F1(K,) = $1K,). The elaborations of fiber topology and network cost models
are deferred to Chapter 4, 5, and 6.
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other discrete objects. In combinatorial optimization, the number of feasible solutions
increases rapidly as the size of the input increases. Moreover, though it is usually
easy to construct a feasible solution, finding an optimal solution remains extremely
difficult.

To gauge the problem’s complexity, we first look at the size of the solution space
of a sub-problem ~ the designing of network physical topologies. As illustrated in
Figure 1-3, finding the global optimal solution for a network of N nodes requires a
consideration of every distinct subset of N —1 or more edges (at least N —1 edges are
required to ensure that all nodes in the network are interconnected) out of N(N—1)/2
possible edges . In other words, the complexity for a strictly optimal solution involves

testing the following number of scenarios:
N(N-1)/2
Z <N(N—— 1)/2)' (11)
i=N-1 v

A simple manipulation in algebra shows that

N(N-1)/2 N(N-1)/2
S (N(Nf 1)/2) ~ Y (N (N =1/ ?‘) —gND2 (1)
i=N—-1 ¢ =0 l

when N is large (e.g., N > 20). That is, the topology design problem has a complexity
of O(2V*). For a design that involves 10 nodes, 3.518 x 10'® scenarios need to be tested.
If, for the sake of argument, 106 cases could be tested in one second, an exhaustive
search would still require 400 days!

Notice that to find the global optimal solution to the Design of Scalable Optical
Network Architectures, we also need to solve the RWA for every topology (that is
enumerated among Zii(f\,v__ll )2 (N(N i_l)/ 2) scenarios). For a given network topology
and a given traffic matrix, the solution of the associated RWA can be found via
solving an equivalent node-coloring problem [8]. Since node-coloring problems are
NP-complete [9], finding solutions for a RWA is far from trivial. Even if a RWA can

be approximately divided into routing only and wavelength assignment only, each of

9We consider an undirected topology. For a directed topology, we need to consider N —1 or more

edges out of N(N — 1) possible cdges.
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Figure 1-4: Finding the global optimal solution for a network of nodes requires a
consideration of every distinct subset of N — 1 or more edges (at least N — 1 edges
are required to ensure that all nodes in the network are interconnected) out of the

N(N — 1)/2 possible edges.

the sub-problem is still NP-complete [10]. Moreover, solving decoupled problems may
not generate global optimum.

In addition to the topologies and RWA problems 1°, we also need to consider the
problem of selecting switching architectures and dimensioning switching resources.
This will further increase the complexity. By now, we can easily see that, by brute
force, the global optimum solution can be obtained only for very small networks (e.g.,

for N <8) [4].

1.2.3 Approaches
Analytical Approach

As discussed in the previous section, when the size of a design problem becomes
large, the required computation can be prohibitive and the notions of the dependen-
cies among design parameters can be lost. In this thesis work, we are more interested

in evaluating how the cost affects and drives architectural tradeoffs, rather than in

10We only solve the RWA problem for Generalized Moore Graphs in this thesis.

37



finding solutions for specific network design problems. Therefore, we take an analyti-
cal approach in most parts of the thesis by focusing on networks with symmetric and
well-defined structures (i.e., regular networks) and symmetric traffic patterns (e.g.,
all-to-all uniform traffic). These are reasonable approximations for the metro envi-
ronment. More practically, these assumptions and simplifications keep the analysis
tractable. For quite a few classes of regular networks, we first derive or approximate
the closed-form expressions for important parameters, such as average minimum hop
distance, switch size, and network cost. We then set up and solve the correspond-
ing optimization formulations. The analytical solutions obtained can show in concise
form the relationships among key network design parameters, thus providing valu-
able references as points of departure for the final design. By analytically solving the
Design of Scalable Optical Network Architectures over the space of fiber connection
topologies, RWA, and switching architectures, this thesis offers insights and guidelines
that numerical approaches cannot provide. Moreover, analytical results obtained un-
der regular topology and uniform traffic assumptions can be extended to evaluate the
performance of irregular networks under arbitrary traffic pattern (including random),

for which analytical results are difficult to derive directly.

Numerical Approach

In reality, traffic is seldom symmetric, nor are networks regular or regularizable.
Therefore we also study the design of irregular networks under non-uniform traf-
fic. For these cases, it is difficult, most of the time impossible, to derive analytical
expressions and solutions. We first formulate the corresponding designs as linear pro-
gramming (LP), integer linear programming (ILP), or nonlinear programming (NLP)
problems. We then obtain the solutions numerically, either by using solver packages
or by developing heuristics. In this thesis, these numerical solutions are used mostly
to evaluate the tightness of various analytical lower or upper bounds. We strive to
find good analytical approximations in this thesis because we want to provide the sys-
tem architecture a tractable view across a wide range of the solution space through

simple analytical expressions.
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1.3 Main Results and Related Works

1.3.1 Main Results

As stated in previous sections, we concentrate on illustrating the trends and the
scaling of optimal architecture as functions of network parameters, traffic demands,
and technologies via an analytical approach. For the sake of tractability, we first
focus our attention to uniform all-to-all traffic and regular topologies, which are fair
representations of realistic metro networks.

We start by examining various measures of regular topologies. Among these mea-
sures, the average minimum hop distance Hp;, plays a crucial role in evaluating the
efficiencies of network architectures. From the perspective of designing optical net-
works, we show that the amount of switching resources used at nodes is proportional
to Hpin. Thus a smaller Hy,;, will translate into fewer expensive switching ports.
We also demonstrate that topologies with smaller average minimum hop distance
have a lower fraction of pass-through traffic and hence require less optical switches.
This is especially important for both optical and electronic switching, since a scal-
able network architecture clearly wants to minimize the network resources that every
transaction must use.

The average minimum hop distance is clearly a strong function of network size
N and node degree A. For a fixed N, the larger the node degree, the shorter the
Hpin. To illustrate how the Hp;, scales for different topologies, we plot Hpi, as a
function of N, with A set to 3, as shown in Figure 1-4. It is evident that there
are significant differences among network topologies for degree 3 networks. These
differences can be as large as an order of magnitude. Generalized Moore Graphs
(e.g., Petersen Graph, as shown in Figure 1-6) provide lower bounds (Moore Bound)
on Hpy, (with a scaling of log, N). Compared with Generalized Moore Graph, some
topologies, such as (one-sided) A-nearest Neighbors (as shown in Figure 1-7) and
Symmetric Hamilton Graphs, scale poorly as N increases (e.g., N/2A for A-nearest
Neighbors topology). Other more complex topologies, such as the ShuffleNet and

deBruijn Graphs, which come close to the Moore Bound, also scale favorably with
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Figure 1-5: Average minimum hop distances Huyin for different classes of symmetric
regular physical topologies as a function of node number N. The node degree is set

at A =3.

logs N, thus keeping Hyn short. Since the magnitude of difference in H,;, means
a similar magnitude of difference in switching cost of the corresponding networks,
choosing a good topology is tremendously beneficial.

We next set up a first-order cost model and formulate a cost minimization problem
(over choices of fiber topologies, switching architectures, and RWA )for the purpose
of characterizing the tradeoffs between fiber and switching resources. Under uniform
traffic and symmetric networks, the optimization problem can be solved analytically.
An important result, given in Figure 1-8, depicts the minimum normalized cost per
unit traffic with respect to network size, including both analytical asymptotes and
exhaustive search results. These curves highlight the cost-optimality of Generalized
Moore Graphs as network physical topologies: the minimal normalized cost per unit

traffic decreases with increasing network size for Generalized Moore Graphs and their
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Figure 1-6: (a) An example of Generalized Moore Graphs — the Petersen Graph, with
N =10, A =3, and D = 2; (b) The routing spanning tree from node 1.
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Figure 1-7: (a) (One-sided) A-nearest Neighbors topology with N = 10, A = 3, and
D = 3; (b) Routing spanning tree from node 1.
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Figure 1-8: Minimal normalized network cost per unit traffic as a function of network
size N for the A-nearest Neighbors (in red) and the Generalized Moore Graphs (in
blue).

relatives; whereas the minimum normalized cost per unit traffic for A-nearest neigh-
bors topologies stays constant with increasing network size. Our study also reveals
other attractive properties of Generalized Moore Graphs in conjunction with min-
imum hop routing. When minimum hop routing is employed for uniform traffic in
Generalized Moore Graphs, the aggregate network load is evenly distributed over each
fiber. Thus, Generalized Moore Graphs require the minimum (or close to minimum)

number of wavelengths to support a given uniform traffic demand.

In addition, we have taken steps in broadening the scope of this work to irregular
network topologies and non-uniform traffic, which represent most existing networks.
By investigating the implications of topology regularity, traffic uniformity, and switch-
ing cost scaling on the minimum hop routing (the results are summarized in Table
10.1 and Table 10.2), we show that if switching cost is linear with port count the

minimum hop routing still optimal for arbitrary (regular and non-regular) traffic.

42



Table 1.1: Minimum hop routing for linear increasing switching cost.

Topology Traffic / Traffic | Uniform All-to-all | Non-uniform

Regular Topology Optimal Optimal

Irregular Topology Optimal Optimal

Table 1.2: Minimum hop routing for super-linear increasing switching cost.

Topology Traffic / Traffic | Uniform All-to-all Non-uniform
Regular Topology Optimal Not necessarily optimal
Irregular Topology Optimal Not necessarily optimal

The results of Generalized Moore networks may be used to provide useful estimates
for the cost of irregular networks under uniform or non-uniform demand, offering a
benchmark for designing cost-efficient WDM optical networks.

Up until this point, we have focused on deterministic traffic, which is effective only
when traffic volume and pattern are well known in advance. With more recent diver-
sification of services, change in usage patterns, and data-dominated traffic, accurate
forecasting of future demands for transport network planning has become increasingly
complex. Thus designing networks that are robust to demand uncertainty is of great
importance. In this thesis, we also present a framework to dimension optical networks
incorporating uncertainties in demands. In this framework the interplay among topol-
ogy design, switching resource provisioning, and routing are analyzed based on two
optimization models. In one model, the weighted sum of network installation cost
and expected penalty cost for unsatisfied traffic is minimized. In another model, the
network installation cost is minimized subject to certain service level requirements
(e.g., blocking probability). The optimization results enable us to identify the phys-
ical architectures that are most robust (in cost) to demand uncertainties. We also
provide analytical references on how optimum dimensioning, network connectivity,

and network costs change as functions of risk aversion, service level requirements,
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and probability distributions of demands.

We conclude this section by commenting on the assumptions used in setting up the
switching cost model. We use static all-to-all uniform model as an idealization of real
world traffic, which is in general dynamic. We further assume that dynamic switching
handles every wavelength of the pass-through and add-drop traffic, The main advan-
tages of dynamic optical switching, besides protection and restoration switching, lies
in its capability to adapt to traffic fluctuation and pattern change. More importantly,
with dynamic switching wavelength resources are no longer reserved permanently —
they can be efficiently shared among user pairs. Depending on the characteristic of
the traffic, it may not be necessary to switch every wavelength dynamically. For ex-
ample, when the network traffic is constant (e.g., the traffic has a very small variance
to mean ratio), the lightpaths can be provisioned statically — they can be setup via
“hard-wiring” using fixed routing and wavelength assignment. The main advantage
of the static provisioning is that it can be implemented with the equipments such as
fiber-patched panels, which incur much lower cost, compared with active switching
equipment. In other words, the per port cost of quasi-static provisioning is smaller
than that of dynamic switching. The downside of the static provisioning is the ineffi-
cient use of the network resources, especially for dynamic traffic. For dynamic traffic,
it is practical to take a “hybrid” approach in network dimensioning. That is, low-cost
switching equipments, such as fiber-patched panels, handle the static or quasi-static
portions of the traffic, while more expensive dynamic switching equipments accom-
modate the fluctuating portions. For this scenario, the parametric formulation of
network cost optimization does include the patch panel case with lower cost per port.
The hybrid network dimensioning is a natural extension of this thesis. In addition to
network cost, other design objectives, such as network blocking probability, through-
put, network resource utilization, and the number of users supported, are also to be
included. It is reasonable to expect that the optimal amount of static and dynamic
provisioning is likely to be determined by the factors such as characteristics of traf-
fic, the relative (per port) cost ratio between static and dynamic provisioning, fiber

topology, and routing algorithm, etc. Correctly formulating and efficiently solving
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such an optimization problem with multi-objectives is difficult, thus out of the scope
of this thesis. Nonetheless, we comment of possible first steps and directions to study

hybrid network dimensioning at the end of this thesis.

1.3.2 Related Works

The problems of designing cost-effective architectures for WDM networks have re-
ceived considerable attention in the past decade. In most of these works, the con-
cepts between cable plant topologies and fiber connection topologies are not differ-
entiated. That is, the fiber connection topologies are assumed identical to the cable
plant topologies, which are provided upfront. As such, with given network topologies
and traffic demands, these studies mostly focus on solving the dimensioning or RWA
problems.

There exists a significant amount of research in network dimensioning for given
physical topologies. Some of these works take an analytical approach, such as [11]
and [3]. [11] presents a set of equations that relate network size, average network
node degree, traffic demand, and capacity. These results can be used to assess the
characteristics of the topology required to support a given traffic matrix. However, in
{11] a network cost model is not explicitly set up and the effects of different switching
architectures are not considered. [3] follows a similar approach and goes a step further
by constructing a detailed network cost model that considers switching architectures.
[3] shows that for uniform demands, the parameters, such as network size, node degree,
traffic between a node pair, and equipment cost structures, are sufficient to estimate
the network cost. Since network fiber connection topology is given, the author does
not address how the network costs are affected by different fiber connection topologies.
Throughout this thesis, we show that there is a significant cost difference between an
optimized topology and a casually designed one, as already illustrated in Figure 1-3
and Figure 1-8. Thus, the benefit of choosing a good topology is evident.

Other studies in network dimensioning of a given physical topology, such as [12],
[13], [14], [15], and [16], focus on formulating ILP problems with the objective to

minimize the total capital investment. These optimization problems, even with the
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topology given, are shown to be NP-hard. As such, various heuristics and numerical
techniques have been proposed for solving problems of realistic sizes. These results are
drawn upon the case studies of existing national or regional networks, thus providing
limited insights on how the optimal architectures scale and how they depend on
critical design parameters. In comparison, the results presented in this thesis illustrate
the analytical trends (e.g., Table 6.1, Table 6.2, and Table 6.3, etc.).

There are also a great deal of works that focus on RWA, from the early studies,
such as [8], [9], [17], and [18], to the more recent ones, such as [10], [19}, and [20].
Most of the RWA literatures to date use wavelength usage as the primary figure of
merit. The typical objective in these studies is to minimize the maximum number
of wavelengths required to support a set of lightpaths. Though these works provide
various results on how to efficiently provision wavelength resources, they suffer from

the following shortcomings:

e Using number of wavelengths as a figure of merit only makes sense when the cost
is linear in the number of wavelengths. However, the cost is usually highly non-
linear in reality. For example, for a line system of 64 wavelengths, the cost of
using 50 and 55 wavelengths is almost the same. However, if 65 wavelengths are
required and an additional fiber is unavailable, setting up a new fiber connection

will substantially increase the cost.

e Some works, while minimizing the maximum number of wavelengths, force data
to take much longer routes than the shortest path from source to destination,
thus incurring higher switching cost. In addition, optical signals traveling via
a longer path are more susceptible to attenuation and noise, thus more ampli-
fiers are required and accumulated dispersion requires more expensive disper-
sion management hardware (in the form of specialty fiber, electronic dispersion

compensation, and even regenerators).

There are a few works that study the design of network physical topologies. Among
them, [21] represents an early foray into designing physical topologies at the infancy

of WDM networks. At the time, routing and wavelength were usually statically pro-
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visioned, this work focuses on hierarchically clustering stations and couplers, with the
objective of minimizing the length of optical fibers. [5] addresses the topology design
issue for the feeder of metropolitan area networks (MANs). However, the work con-
siders the ring as the default topology, without considering mesh topologies as viable
alternatives. [22] provides a cost-comparison analysis between mesh and multi-ring
architectures. The results indicate that the average node degree has significant im-
pact on network cost and upgradability. However, the comparisons are merely based
on the analysis of several existing networks. [4] formulates the joint mesh topology
design, routing, and spare capacity dimensioning as an ILP problem. Since the ILP
problem can only be solved optimally for networks of small size, the work concen-
trates on developing heuristics to provide near-optimal solutions. Though some of the
heuristic approaches share some similarities with the analytical approach adopted in
this thesis (e.g., integer relaxation and rounding), the very nature of the ILP formu-
lations predetermines that the results can only qualitatively reveal the dependencies
of the optimal network connectivity (node degree) on the tradeoffs between the cost
of fiber connection and the cost of routing and provisioning lightpaths. Moreover, the
formulation does not take different switching architectures into account. The work
does not address what kind of physical architectures exhibit good scalability.

In regard to network design with traffic demand uncertainties, most recent works,
such as [23], [24], [25], [26], and [27], also assume that network physical topology is
given (thus only dimensioning and routing sub-problems remain to be solved); the
effects of traffic uncertainties on the network cost and its robustness are only evaluated

and quantified with simulations or with stochastic programming techniques.

1.3.3 Summary

This thesis differs from the existing works in that it addresses the following important

network design issues in detail via an analytical approach:

e Exploring the optimization of fiber connection topologies on top of a cable plant

topology.
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e Suggesting connection architectures that exhibit good scalability — a decreasing
cost per node per unit traffic with increasing number of users and transcation

size.
e Incorporating the switching architectures into the modeling.
¢ Gaining insights through analytically solution.

Most of the existing works related to this thesis inadvertently neglect one or more of
the aspects mentioned above. Thus, the design principles derived from these works
are incomplete, if not flawed. For example, in Section 9.2.2 we compare the costs
of the network topologies used in some of these existing works with the costs of
optimized network topologies. We show that a simple “rewiring” of the same set of
nodes via a Generalized Moore Graph results in savings on the number of switching

ports H,

Through thoroughly tackling these design issues, this thesis gives more
complete and creditable insights and benchmarks for designing cost-efficient WDM

optical networks.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2, 3, 4, and 5 are preparatory parts of the
thesis. Chapter 2 gives background on technological and architectural issues related to
WDM networks. In Chapter 3, we model the traffic demand among access nodes. In
Chapter 4, we take a graph theoretical approach to set up models for network physical
architectures. Besides reviewing some important concepts in graph theory, we focus
on presenting graph theoretical results derived for this work. In Chapter 5, we set
up a parametric, first-order, and homogeneous network cost model in preparation for
the analysis of optimal network architectures.

Chapter 6, 7, 8 and 9 are the core of the thesis. In Chapter 6, we formulate and

solve analytically the joint optimization problem of physical topology, dimensioning

111n these examples, every improved network uses the same number of fiber connections as the

original one does, as illustrated in Section 9.2.2
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of network resources, and routing algorithms. In Chapter 7, we study the RWA
for Generalized Moore Graph. In Chapter 8, we address the issues of dimensioning
WDM networks under random traffic demand. In Chapter 9, we study how we can use
the results for symmetric regular networks to evaluate the cost-efficiency of irregular
networks under uniform or non-uniform traffic.

Chapter 10 concludes the thesis and suggests possible extensions of the work.
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Chapter 2

Enabling Technologies and
Architectures for WDM Networks

This chapter gives background on technological and architectural issues related to
WDM networks, to provide a self-contained “setting of stage” for this thesis. The
objectives here are: 1) to give a survey of the state-of-the-art of current photonic
and optoelectronic technologies as they apply to optical networking; and more im-
portantly, 2) to understand how the availability and the limitations of the enabling
technologies affect a designer’s choices of network architectures. As such, we first give
brief descriptions of key building blocks of optical networks in Section 2.1. We then
review the architectural evolutions of long-haul networks during the past decades in
Section 2.2. Finally, in Section 2.3, we turn our attention to MAN by presenting a

high-level architectural view of the next generation WDM-based MAN.

2.1 Key Building Blocks of WDM Networks

In this section, we present the basic features of representative devices and systems
used in the implementation of optical networks [6], [28], and [29]. This area has
experienced rapid developments and innovations with continuous upgrading and in-
tegration. By integration, multiple functionalities are joined into a single module or

subsystem to provide higher performance and reliability, as well as to lower overall
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cost. The component market is diverse, dynamic, and crowded, despite the indus-
try downturn in late 1990s. It is common that several different products compete
for a single area of application. To deal with the diversity, international committees
have kept pushing out standards to define key performance parameters and interface
specifications. Nevertheless, there are still differences in the secondary parameters.
So it has been the carrier’s choice, in the network design and upgrading, to select
right combinations of technologies based on the system requirements in capacity, up-
gradeability /scalability, power consumption, environment condition, cost, etc., with

the cost as the biggest driver.

2.1.1 DWDM and CWDM

Emerged in 1990s, the WDM technology was aimed to resolve bandwidth exhaustion
and to enable multiple services over the same network. With a simultaneous trans-
mission of 100 or more wavelength channels at a rate of 10Gb/s per channel in the
same fiber link, WDM potentially allows an aggregate traffic of many terabits per
second per fiber.

Depending on the number of optical channel (wavelength) specifications, a WDM
system can be classified as dense WDM (DWDM) system, if many wavelengths are
used (above 40 channels); or as coarse WDM (CWDM) system, if only a few wave-
lengths are used (4 ~ 16 channels). In this thesis, we use the terms WDM and
DWDM indistinguishably.

e DWDM systems require precise standardization of the carrier frequencies. The
International Telecommunications Union (ITU) recommended 81 wavelengths
(channels) in the C-band (1528-1561 nm) of the fiber attenuation minimum with
a line spacing of 50 GHz (or 0.39 nm). To maintain such high accuracy, light
channels of DWDM systems must have extremely narrow line-widths and are
usually under active feedback control for absolute center frequency stabiliza-
tion to within 0.1 nm. Also, the powers of all channels need to be maintained

at a relatively equal level. Driven by the competition among carriers to pro-
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vide broadband service to the masses, metropolitan networks are now the fast

growing segment for DWDM technology.

e CWDM systems, with ITU specified line spacing of 20 nm, are allowed to have
a much broader spectral occupancy and looser center frequency stability. Also,
in CWDM systems the issue of power equalization is in general not present.
CWDMs are considered as low capacity and lower cost choice for access network
which requires low channel count, short distance, but a wide variety of client
interfaces. For this market, CWDM technology still faces challenges, such as
cost reduction, small size, low insertion loss, and reliable performance in the

temperature-uncontrolled environment.

2.1.2 Transmitter

In WDM systems, the main function of a transmitter is to send out a modulated
optical signal complying with a set of specifications, such as bit error rate (BER) or
signal-to-noise ratio (SNR). The important components of a transmitter include the

light source and the modulator.

Light Source

In optical communication, light sources are required to be compact, monochromatic,
stable, and long lasting. The background of the most popular light sources, light-
emitting diode (LED) and semiconductor laser, along with tunable laser is given in

the following.

e LED is a p-n semiconductor device. The light emission takes place when the
excited electrons and holes are recombined at the junction. LEDs, though in-
expensive, are slow devices and exhibit a relatively broad spectral range. Also,
LEDs emit light with a relatively wide cone. Therefore, they are mostly used
in multimode fiber communication links for short-distance and low-bit rate ap-

plications.

53



e Semiconductor laser is similar to LED, but with an additional active layer (with
high index) sandwiched between n-type and p-type layers. The cleaved end sur-
faces of the chip serve as cavity mirrors. Semiconductor lasers transmit coherent
light within a very narrow cone, and thus the beam can be more efficiently cou-
pled to optical fibers. In addition, they can be directly modulated and thus
are better suited for high bit rates and long fiber spans. Lasers for DWDM
applications are required to have precise wavelengths of ITU grid, narrow spec-
trum width, high power output. Currently, there are different types of commer-
cially available semiconductor lasers, such as Fabry-Perot (FP) laser, distributed
Bragg reflector (DBR) laser, distributed feedback (DFB) laser, quantum well
laser, and vertical-cavity surface-emitting laser (VCSEL), etc. The most com-
monly used lasers in communications are FP and DFB lasers. The DFB laser,
with a built-in narrow-bandwidth filter in the laser cavity, is well suited for
DWDM application. To deal with the wavelength drift by temperature (0.1
nm/ °C) or aging, a wavelength locker is used to provide an active feed back
to stabilize the wavelength by adjusting the temperature via a thermal electric

cooler (TEC).

o Tunable lasers can simplify network design and inventory management [31]. The
advances in laser chip technology have enabled narrow-band and full C-band
tunability. There are various technical approaches for the tunability. In the
monolithic InP technology, the wavelength is selected by the thermal tuning to
different peaks of the built-in grating. Another approach for rapid tunability
is to use multi-wavelength laser arrays with wavelengths that span the desired
tuning range. One or more lasers in an array can be activated to produce
simultaneous transmission, or be selected by the external cavity structures, in-
cluding tunable mirrors, tunable filters, etc. Although different technologies
have to meet common specifications (ITU grid wavelength accuracy, stability,
linewidth, etc.), they are different in tuning speed, size, cost, etc. Tunable laser

has drawn significant attentions in the current market. Together with reconfig-
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urable add/drop multiplexer (see Section 2.1.8), it enables extreme flexibility

and cost reduction in the new generation of optical system.

Modulator

In optical communication, modulations come in two different forms: internal modu-

lation and external modulation.

e For internal modulations, electrical signals representing a data stream directly
modulate the light source. Directly modulated FP and DFB lasers have simple
structures (thus lower cost). They are used for transmission distance up to

200-400 km and data rate up to 2.5 Gb/s.

e For external modulations, an external optical modulator is positioned in line
with a continuous wave (CW) laser. Electrical signals act on the optical mod-
ulator, so the light that passes through is modulated. The major benefit of
the external modulators is that they have negligible phase jitter, as compared
with direct modulation. Thus external modulators are used in high data rate
(above 2.5 Gb/s) applications. An external modulator can be based on a Mach-
Zehnder interferometer structure fabricated on a LiNbOj substrate. Other types
of optical modulators include semiconductor multiple quantum well (MQW)

modulator and electro-refraction modulator.

Note that modulators are normally integrated with laser diodes to form modules,
which contain also electronic circuitry, TEC and controller, semiconductor amplifier,

and even electronic dispersion compensation, etc.

2.1.3 Receiver

The main function of a receiver is to detect a modulated photonic signal with a prede-
termined level of accuracy, which is measured in BER. Normally, a receiver consists of
optical preamplifier (optional), polarization filter (optional), power equalizer, focus-

ing lens, photodetector, electronic low-pass filter, and electronic circuits that extract
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the clock from the incoming signal and determine the time and threshold level for

sampling (in on-off keying demodulation).

The most crucial component in a receiver is the photodetector, which is required to
have high power sensitivity, very fast response time (fast rise and fast fall time), and
a spectral response that matches the range of transmitted wavelengths. The types
of such photodetectors include the semiconductor positive intrinsic negative (PIN)

photodiode and the avalanche photodiode (APD).

e PIN photodiode is a semiconductor device that consists of an intrinsic (lightly
doped) region that is sandwiched between a p-type layer and a n-type layer.
In the reversely biased PIN photodiodes, each absorbed photon produces one
electron of photocurrent and thus the output current is proportional to the

input optical power.

e APD has a more sophisticated structure than PIN photodiode. In the reversely
biased APD, a strong electric field is formed in the junction, where the primary
electrons are accelerated and acquire enough energy to excite new electron-hole
pairs — an avalanche (multiplication) process arises. Because of the avalanche

process one arriving photon can produce 10 to 100 or so photoelectrons.

In general, an APD photodetector has a much higher gain a PIN photodetector
has. PINs, however, have a much faster switching speed, thus they have been largely

deployed in high bit rate (e.g., 10Gb/s) detection.

For the applications in metropolitan and access networks, transmitter module and
receiver module, along with drivers and other electronic circuitry are integrated to a
compact transceiver. DWDM transceivers include also wavelength locker by active
TEC control loop and protection circuit. The telecom carriers also seek for designs
with small size, low power consumption, and plugability for high density and flexible

deployment.
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2.1.4 Regenerator and Optical Amplifier

An optical signal attenuates and becomes distorted as it travels in the fiber. To reach
destinations that are hundreds of kilometers away, the power level of the optical signal
must be periodically amplified and reconditioned, so that it can be detected with an
expected BER at t.he receiver side. In optical communication networks, there are two

distinct amplification devices: regenerator and optical amplifier.

e A regenerator transforms the optical signal to an electronic signal of the same
bit rate, amplifies it, and then converts the electronic signal back to optical
domain. Regenerators provide also additional functions, such as timing, error
recovery, and pulse shaping. Regenerators are classified as 2R or 3R amplifiers
— 2R, if they amplify and reshape; 3R, if they amplify, reshape, and retime.
Prior to the introduction of DWDM, the regenerators incur very high cost and
they are maintenance intensive, because for a multi-wavelength system an equal
number of regenerators are needed. Considering the fact that a fiber contains
multi-wavelengths and an optical link requires several stages of regenerations

(typically spaced every 50 km), the cost of regeneration is significant.

e An optical amplifier is a device based on conventional laser principles. It receives
one or more optical signals and simultaneously amplifies all wavelengths with-
out OEO conversion. This is a significant advantage over regenerators, since
only one device is required, instead of one for each wavelength. The key per-
formance parameters of optical amplifiers are gain, gain flatness (all signals are
amplified uniformly), noise level, and output power. There are different types
of optical amplifiers, such as semiconductor optical amplifiers (SOA) and fiber-
type amplifier: erbium-doped fiber amplifier (EDFA) or praseodymium-doped
fiber amplifier (PDFA). In addition, there are other amplifying devices that
are based on the nonlinear properties of optical materials, such as stimulated
Raman scattering (SRS) and stimulated Brillouin scattering (SBS) amplifiers.
Currently the most commonly used optical amplifiers are SOA and EDFA.

— A SOA is based on the same technology as a Fabry-Perot diode laser. The
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Figure 2-1: Schematics of a dual-pumped EDFA in-line with an optical path.

amplification is achieved by current injection of electrical pumping in its

active layer.

— An EDFA, as shown in Figure 2-1 is based on the stimulated emission of
erbium around 1550 nm, when the erbium doped in fiber is excited by
optical pumping at 980 nm or 1480 nm. EDFA can have single-pump for
shorter distance application or dual-pump for longer distance application.

PDFA operates at 1300 nm.

Optical amplifiers are 1R amplifiers. That is, they only amplify the optical power. In
practice, the signals can travel up to 120 km between amplifiers, but need regeneration

after a distance of 600 to 1000 km.

2.1.5 Optical Multiplexer /Demultiplexer

An optical multiplexer receives several spatially separated wavelengths and form a
single beam that consists of all these wavelengths; an optical demultiplexer performs
the reverse functionality by spatially spliting the multi-wavelenght beam and coupling
them into individual fibers. Demultiplexer can be passive or active in design. The
passive demultiplexers are based on prisms, diffraction gratings, arrayed waveguide
gratings (AWG), or spectral filters. Active demultiplexers are based on a combination

of passive components and tunable filters. The two major technologies for DWDM
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demultiplexer are thin film filter (TFF) and AWG, although a high-end bulk grating

can have a comparable performance as the AWG.

o A TFF is a multi-layer dielectric filter that allows one wavelength to pass while
reflects all other wavelengths. By cascading the filters in a substrate level inte-
gration, as shown in Figure 2-2, the wavelengths can be demultiplexed. TFFs
are stable and low cost, but have higher insertion loss, thus are normally used

in CWDM systems or DWDM systems with lower channel count.

e An AWG functions based on diffraction principle. It consists of an array of
curved-channel waveguides with a fix difference in path length between adjacent
channels. A lihgt beam with multiple wavelengths is launched into waveguides.
At the output port the light beams with different phase delays are recombined
and the interference among the beams diffracts different wavelengths to spa-
tially separated output channels, as illustrated in Figure 2-3. AWGs are batch
fabricated with planar lightwave circuits (PLC) technology by taking advantage
of the mature semiconductor technology. This offers cost advantage at the chip
level. Their insertion loss is independent of channel count, but their temper-
ature sensitivity increases the packaging complexity. They are mostly used in

high channel count applications (40 channels).

2.1.6 Optical Wavelength Converter

Wavelength converters are important devices that convert signal from one incoming
wavelength to another outgoing wavelength. An intelligent deployment of wavelength
conversion capability in an optical network can improve the utilization of the available
wavelength resources and reduce the blocking of traffic. There are three basic ways to
achieve wavelength conversion [6): opto-electronic converter, cross-gain modulation,

and four-wave mizing.

e Opto-electronic approach is the most practical method today to realize wave-
length conversion — the input signal is converted to electronic form, regenerated,

and then retransmitted using a laser at a different wavelength.
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Figure 2-2: Schematics of cascaded TFF arrays as a wavelength demultiplexer.

Figure 2-3: Schematics of arrayed waveguide grating.
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Figure 2-4: A Cross-gain modulating device transfers inverted data from one wave-

length channel to another.

e Cross-gain modulation is based on the gain saturation in an optical amplifier.
When high optical power is injected in the active region and the carrier con-
centration is depleted through stimulated emission, the optical gain is reduced.
Based on this, consider two wavelengths injected in the active region of an opti-
cal amplifier. Wavelength )\, is modulated with binary data, and wavelength Ay
is not modulated. When the input bit in A; is a logic ONE (i.e., high power),
depletion occurs and A, is blocked. When the input bit in A; is a logic ZERO
(i.e., low power), depletion does not occur and A, is at high power. Thus, a

transfer of inverted data from \; to Ay takes place, as illustrated in Figure 2-4.

e Four-wave mixing is a nonlinear optical phenomenon. Consider three closely
spaced lightwave frequencies: f1, f2, and f3. Due to the nonlinear interaction of
the three, a fourth frequency is generated at frwym = f1 + fo — f3, as shown in
Figure 2-5. If a modulated wavelength \; is to be converted to another Apwu,
one can select two more wavelengths, Ay and A3, in addition to A;, such that
when all three are injected in the fiber device, a fourth wavelength Apwn is
generated due to four-wave mixing. By inserting a pass-band filter in series
with the fiber device, only the new wavelength Apwy is allowed to pass through

and thus a wavelength conversion is realized.

We note that the latter two all-optical approaches are not yet mature enough for

practical deployment.
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Figure 2-5: Principle of four-wave mixing.

2.1.7 Cross-Connect Fabrics

The cross-connection of communication channels is a key function in most commu-
nications systems. In electronic systems, the electronic cross-connecting fabric is
constructed with massively integrated circuits and is capable of interconnecting thou-
sands of inputs with thousands of outputs. The same interconnection functionality
is also crucial in optical communication systems. In general, optical (channel) cross-

connect can be accomplished in two ways:

o Optical-electrical-optical (OEQO): the optical data streams are first converted
into electronic data streams, then cross-connected in electronic domain, and

converted back into optical data streams.

o All optical switching: the optical data streams are cross-connected within the

optical domain.

The OEO approach is currently more popular in handling medium aggregate band-
width due to the maturity in designing high-bandwidth and non-blocking electronic
cross-connect fabrics. However, for high aggregate bandwidth on the order of several
Tb/s, all-optical switching becomes more efficient and cost-effective. Currently, the
optical switch size is from 2 to perhaps 64. Larger sizes up to 1000 are in experimental

and planning phases. An economically feasible and reliable 1000 x 1000 all-photonic

62



S

i

Output
Fiber Ports

Figure 2-6: Free-space optical switching based on the generalized Mach-Zehnder

waveguide grating router.

Control (voltage)

oy

S m—— R

Off

| —

Figure 2-7: A solid-state optical cross-connect based on the principle of directional

coupler.

63



non-blocking and dynamically reconfigurable switch, though promising, remains as a
challenge.

All-optical cross-connect fabrics are based on at least three competing technolo-
gies: Mach-Zehnder waveguide grating router (WGR), solid-sate devices, and micro-
electromechanical systems (MEMS). It is still too early to predict which technology
will dominate, but the winner will likely offer network designer advantages of modu-

larity, upgradeability, protection, and fault tolerance.

o Mach-Zehnder WGR: this is the most promising switch with many input ports
and many output ports, as shown in Figure 2-6. In this device, a given wave-
length at any input port appears at a specified output port, an input-to-output
connectivity map is thus constructed. The functionality accomplished by this

type of free-space optical switching is also known as wavelength routing.

o Solid-sate device: this device is essentially a semiconductor directional coupler,
which can selectively change one of their optical properties on a path upon the
application of a control signal, as shown in Figure 2-7. The optical property in
consideration can be polarization, absorption, or index of refraction. Depending
on the type of material, the optical property can be changed by applying heat,
light, mechanical stress, electric current, or electric field (voltage). For example,
electric field can be applied to modulate the index of refraction of ferroelectric
LiNbOj crystals. Thin film heater can also be applied for the modulation. The
material type, the controlling mechanism, and the controlled property impact
the switching speed of the device, as well as the number of ports of the switch.
For example, switches made with LiNbOj crystal exhibit switching speeds in the
order of nanoseconds; whereas those made with SiO; on Si exhibit speeds in the
order of microseconds. In practice a multi-port switch is constructed by using
several 2 x 2 directional switches in multi-stage (Clos or Banyan) architecture,

as illustrated in Figure 2-8.

e MEMS: this technology uses traditional semiconductor process to fabricate mov-

able mirrors on a silicon substrate. These mirrors are placed vertically in the gap
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Figure 2-8: A multi-port switch is constructed by using many 2 x 2 solid-state direc-

tional switches in a multi-stage architecture.

of 3 intersecting optical paths and the mirrors’ configurations can be electrically
actuated, as shown in Figure 2-9. This arrangement constructs an optical switch
whereby the mirror may either reflect a beam to different directions or block (or
pass through) a beam, depending on the fabrication technology. For example,
by rotating to two positions, a mirror directs a beam to one of two directions,
as shown in Figure 2-9 (a). In another construction, a mirror may be pulled
down (when a voltage is applied) or up (when no voltage), as shown in Figure
2-9 (b). There are in general two types of configurations of the micro switching
elements for constructing an all-optical switching fabric: two-dimensional (2-D)
switching fabrics and three-dimensional (3-D) switching fabrics (Figure 2-10).
2-D fabrics consist of two-dimensional arrays of micro switching elements that
have one degree of freedom. 3-D fabrics are built using two arrays of micro
switching elements, each of which has two degrees of freedom, allowing light to

be directed from one input port to any output port.

2.1.8 Optical Add/Drop Multiplexer and Optical Cross-connect
Optical Add/Drop Multiplexer

An optical add/drop muiltiplexer (OADM) operates between demultiplexing and mul-

tiplexing points to drop certain wavelengths and add others, as schematically illus-
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Figure 2-10: (a) 3-D MEMS configuration; (b) 2-D MEMS configuration.
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Figure 2-11: OADM or ROADM

trated in Figure 2-11. The first generation of OADM is a fixed one that is configured
to drop and add predetermined wavelengths, so it works as a wavelength blocker.
The new generation reconfigurable optical add/drop multiplexer (ROADM) works as
wavelength-selective switch that can drop any wavelength to any fiber. ROADMs were
first constructed for long haul DWDM networks. They started to move to the metro
and regional networks in the past two years, driven by the increasing requirements in
bandwidths and flexible service provisioning. ROADM is an optical subsystem with
a high level integration of several critical functionalities: wavelength demultiplexing,
switching, variable optical attenuator, and embedded control and circuitry. Various
combinations of technologies and architectures have been applied in the design, e.g.,
diffractive grating or AWG for demultiplexing, MEMS mirrors or planar waveguides
for switching, PLC technology for photonic integration, etc. The selection of specific
types of OADMs depends on the targeted sector of networks. Fixed OADMs are
used in a ring to reconfigure pass-through and add/drop wavelengths; Multi-degree
ROADMs are for ring-to-ring interconnects and mesh networks. In fact, the mi-
gration of metro networks to mesh architectures is a secondary driver for ROADM

deployment, next to cost.

67



Optical Cross-connect

Compared with OADM or ROADM, an optical cross-connect (OXC) usually has
higher capacity and are more flexible in supporting different topological configura-
tions. OADM or ROADM are normally used for ring or interconnected ring topologies;
while an OXC can support an arbitrary mesh topology. In Section 2.2.2 and 2.2.3, we
will give a detailed discussion of different functionalities and configurations of OXC

in the context of the second and the third generation long-haul network architectures.

2.2 Architecture Evolution of Long-haul Networks

2.2.1 First Generation Architecture

In 1980s, the necessity of interconnecting telecom carriers’ existing fiber networks
throughout the world led to the Synchronous Optical NETwork (SONET) standard
in North America and the Synchronous Digital Hierarchy (SDH) standard in Europe.
Both SONET and SDH define a hierarchy of interface rates that allow data streams
at different rates to be multiplexed in a network element (NE). Specific to SONET,
the established optical carrier (OC) levels are from OC-1 (51.8 Mb/s) to OC-3072
(159.2 Gb/s)!. With these standard interfaces, the NEs convert the received signals,
which are of different formats (such as DS1, DS3, and ATM), into SONET format.
The first generation of long-haul infrastructure is based on a traditional SONET/SDH

ring topology, as illustrated in Figure 2-12. Point-to-point WDM links are terminated
and interconnected using SONET add-drop multiplexer (ADM), and the rings are
interconnected using digital cross-connect system (DCS). The ADMs also support
standard SONET/SDH protection schemes, such as automatic protection switch-
ing (APS), unidirectional path-switched rings (UPSR), or bi-directional line-switched
rings (BLSR). This architecture provided a reliable infrastructure, but suffered from

a number of drawbacks:

e Artificial partitioning of meshes into rings (or interconnected rings): although

L As of 2006, OC-3072 is still a work in progress. It has not yet been manufactured.
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Figure 2-12: The first generation of long-haul infrastructure is based on a traditional
SONET/SDH ring topology. Point-to-point WDM links are terminated and intercon-
nected using SONET add-drop multiplexer (ADM), and the rings are interconnected

using digital cross-connect (DCS).

the physical topologies of most long-haul networks are meshes, they are arti-
ficially partitioned into rings. This results in back-to-back line systems along
many segments, which lead to inefficiencies in dimensioning network resources.
Identifying the optimum ring partitioning and balancing the traffic loads on
these rings are usually difficult, often resulting in increased bandwidth con-

sumption and CapEx.

e Manual provisioning of services: new service request has to be manually pro-
visioned, thus necessitating lengthy contracts, cumbersome provisioning se-

quences, and increased OpEx.

e Cumbersome scaling: stacking SONET rings to accommodate higher bandwidth
does not scale gracefully, especially when rings need to be interconnected. This
results in large increases in OpEx for real estate, power, and fiber management

issues.
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2.2.2 Second Generation Architecture

The second generation long-haul networks are built with intelligent OEO grooming
switches that are connected by point-to-point WDM links in a mesh topology, as
shown in Figure 2-13. Figure 2-14 shows a functional diagram of an OEO grooming
switch. The central electronic switch core is essentially the same as that for a SONET
DCS. The core operates at some standard synchronous rate and may be implemented
in several stages, such as Clos non-blocking configuration [32]. Each individual in-
coming optical signal (wavelength) is converted to electronic signal, demodulated, and
regenerated, so that the payload (carried by each incoming wavelength) is adapted to
the format and the rate of the electronic switching fabric. The switching rate, which
depends on the clock speed of electronic switching fabric, is called port (interface)
rate. Electronic fabrics can “groom” several low-rate payloads to a port rate for a
better utilization of switching resources. When the payloads are of higher rate than
port rate, approaches such as parallel paths or inverse multiplexing [4] can be used
to “break up” the high-rate payload into several port-rate payloads. Currently some
commercially available switch fabrics can provide non-blocking switching capability
of up to 512 x 512 OC-48 (2.5 Gb/s) signals. These switching fabrics can also support
sub wavelength grooming at STS-1 granularity, as well as all standard SONET rates.

The OEQ switches in long-haul networks are deployed in two phases. In the first
phase, they serve as high capacity replacements for SONET ADMs and DCS. In this
role, the OEO switches provide traditional ring termination and protection services
like BLSR, UPSR, and APS. This phase allows a graceful upgrade for carriers, without
obsolescing capital investments already made in line and terminal WDM equipment.
In the second phase, these OEO switches are deployed in a mesh topology. Compared
to a ring topology, the use of a mesh topology provides additional flexibility in terms
of bandwidth allocation and shared protection / restoration schemes. Moreover, an
intelligent network management system enables a number of advanced features that

were not possible with traditional SONET/SDH systems, such as point and click
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Figure 2-13: The second generation long-haul networks are built with intelligent
OEO grooming switches that are connected by point-to-point WDM links in a mesh

topology.

provisioning (or tearing down) of end-to-end services and advanced dynamic mesh
restoration schemes.

One drawback of second-generation architecture lies in the all-electronic switching:
OEOQO transponders and large electronic switching cores are installed at each node.
They are expensive and power-consuming when operating at high data rates. As

traffic rates increase, the pure-electronic switching approach becomes less feasible.

2.2.3 Third Generation Architecture

The third generation long-haul networks are built with optical OXC switches that are
connected by point-to-point WDM links in a mesh topology, as shown in Figure 2-15.
The third generation networks are often referred to as “all-optical” networks, since
in contrary to the previous two generations, the switching for the third generation
networks is carried out in optical domain. All-optical networking can take different
forms, depending on how wavelength conversion and electronic processing are used in
setting up lightpaths.

In the purest form of optical networking, each lightpath is assigned a dedicated
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Figure 2-14: Functional diagram of an OEO grooming switch.

Figure 2-15: The third generation long-haul networks are built with OXC switches
that are connected by point-to-point WDM links in a mesh topology.
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wavelength and is routed from source to destination without any electronic processing
at intermediate nodes. Under the circumstance, the intermediate nodes do not per-
form any wavelength conversion, and every path must have the same wavelength on
each fiber. We call such a lightpath transparent, in the sense that the transmission
of the signal is indifferent to the payload being in specific format in terms of framing,
bit-rate, coding, etc. The respective OXC architecture is depicted in Figure 2-16. The
wavelength channels on each incoming fiber are first demultiplexed into separated lo-
cal jumper fibers. Then all copies of the same wavelength from each incoming fiber
are directed to an optical switch module where they can be routed to any outgoing
fiber and multiplexed with other wavelengths. Since wavelength channels are already
separated when they are demultiplexed, the middle stage optical switches do not have
to be wavelength selective; they need only to redirect the entire band of light from
each incoming fiber to a specific outgoing fiber. For this reason, 3-D or 2-D MEMs
switches are good candidates. The main advantage of a pure all-optical network is
that the wavelength converters are not required and the lightpaths are transparent to
payloads. Also, compared with OEO switches, OXCs have less power consumption

[6]. However, there are also disadvantages:

o Wavelength assignment is much more complex, because a lightpath must use
the same wavelength end-to-end. Routing and wavelength assignment can be a

difficult problem, as already discussed in Section 1.2.2.

e To avoid wavelength blocking that a path cannot be routed because a single
wavelength is not available on every span of any routing, more wavelength

channels and OXC ports are required at fibers and nodes, respectively.

Current technological limitations and issues in network management and control make
such all-optical networks difficult to implement. Performance assurance is especially
an issue when the lightpaths are to carry a data rate at 10 Gb/s or 40 Gb/s. At high
rates, the point-to-point transmission is so dependent on dispersion, noise, polariza-
tion, and nonlinearity of the fiber, etc., that the electronic regeneration at each OXC

node is almost required to maintain the end-to-end BER performance.
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Figure 2-16: Functional diagram of a wavelength-selective optical switch in a trans-

parent optical network.

In another form of optical networking, all the OXC nodes are capable of full re-
generation and wavelength conversion. This type of networks is often called opaque
optical networks. Figure 2-17 shows a representative architecture, in which the OXC
use a single optical space-switch core. Any incoming lightpath can be transformed
to any other wavelength on any outgoing fiber through conversion and remodulation.
The practical advantage is that, once the signal is converted to electronic domain,
monitoring and regeneration can be performed to maintain its quality. Also, wave-
length blocking problem can be eliminated. The capacity design and routing problem
are logically similar to that of traditional circuit switching network. The disadvantage

is that every node requires a large number of expensive transponders.

A third form of all-optical network can strike a balance between transparency and
opaqueness of the network. This type of network is often called transluscent optical
network. A translucent optical network consists of OXC nodes that can perform a

limited number of wavelength conversions using a shared pool of wavelength convert-
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ers, as shown in Figure 2-18. If a lightpath does not require wavelength conversion, it
is space-switched to an appropriate outgoing fiber. Otherwise, the lightpath can be
locally switched to a free port in the pool of wavelength converters. From there, the
output of the wavelength converter is space-switched again to the desired output fiber
on its new wavelength. This architecture may be the most important and practical
approach for optical networking in the near future, because the blocking performance
is close to that of a network with full wavelength conversion at every node. That is,
the wavelength blocking can be greatly reduced by provisioning a small number of

wavelength converters.

2.3 Metropolitan Area Networks (MANs)

As mentioned in Chapter 1, while the growth of the capacity in long-haul network
has been tremendous, an economical deployment of capacity in metro and access
networks has been lagging behind. Aggregation and access have replaced capacity as
the new bottleneck. As a result, end-users’ access to this capacity is still expensive
and limited to the data rates of kilobits and megabits per second. As such, seeking
low-cost architecture becomes ever important to ensure the efficient utilization of the
bandwidth glut. This is the motivation behind this thesis work. In this section, we
illustrate the key physical architectures of the next generation MAN in preparation
for the analysis in the chapters to follow.

Current access networks mostly operate in the electronic domain. The electronic-
based switching can’t keep up with the future surge of traffic demand, mainly due to
the super-linear complexity increase (with respect to traffic) in route computation as
the network processing units of the OEO switch [2]. We believe that the introduction
of WDM technologies as both transport and switching mechanisms can significantly
improve the capabilities of the access network and enhance the range and the quality
of services. First, WDM technologies can increase the capacity that is critically
needed in a metropolitan environment. Second, WDM can provide intelligent network

functionality at the optical layer, as well as allows optical and electronic switching
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Figure 2-19: Physical architecture of an optical metropolitan access network.

layer to operate in synergy. Finally, WDM provides a degree of transparency — services
can be carried by the network independent of data rate and format. This is very
important in an access environment, as the carriers need to serve the customers with
wide varieties of service demands.

The envisioned next generation MAN is divided hierarchically into a feeder net-
work and multiple distribution networks. End users are locally connected to the
distribution networks, which in turn are connected to the access nodes in the feeder
network, as shown in Figure 2-19. In the following, we present a high-level view of

the distribution and feeder portions of the MAN.

2.3.1 Distribution Networks

The distribution network directly interfaces with the customer premises and is respon-
sible for collecting and delivering traffic. Extending from access nodes, the distribu-

tion networks use several types of topologies, including tree, bus, and ring, as shown
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in Figure 2-19. The choices of a specific type of topology depend on the required
redundancy and the geographical distribution of the customers. Also high-end user
can directly connect to an access node by bypassing the distribution network. The
distribution architecture is flexible with respect to the density and the allocation of
wavelengths: in some cases, each end-user can have a dedicated wavelength; in other
cases, many end users share a single wavelength.

An important feature of a distribution network is that it should be kept mostly
passive, i.e., it should contain as few amplifiers or active switches as possible. The
distribution portion of the network is geographically diverse, making it highly de-
sirable that required maintenance be minimized. Since a significant percentage of
network failures is due to power problems, deploying only passive components should
greatly improve the reliability of the network. Also, a distribution network, and hence
its cost, is shared among relatively fewer users. this is another motivation for using

mostly low-cost, low-maintenance passive components.

2.3.2 Feeder Networks

The main functionalities of feeder networks include: aggregating traffic, delivering
traffic to a hub (that interfaces with other MANs or long-haul networks), and trans-
ferring traffic from one distribution network to another. The feeder also supports
the protection switching for high reliability, differentiated Quality of Service (QoS),
and all network management and control functions of the access network. In short, a
feeder network is no different from a long-haul network in functionality. Given the fact
that there is significant traffic aggregation at the feeder, important core technology
building blocks such as OXCs and tunable filters can be used.

A feeder network consists of a set of access nodes and hub nodes that are con-
nected either in a ring or in a mesh topology (searching for the optimal topology
is the central theme of this thesis). Access nodes, equipped with optical and elec-
tronic switches, serve as intermediary points between the feeder and the distribution
portion of the network. As illustrated in Figure 2-20, demands from the distribu-

tion network enter the feeder at an access node via electronic switch where they
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Figure 2-20: Functional diagram of an access node in the feeder of a MAN network.

are groomed (switched and multiplexed) into the fundamental units of inter-nodal
bandwidth. The groomed output channels from the electronic switch then enter the
optical switch, where they are directed to appropriate fiber of the feeder according
to a routing scheme determined by either a centralized or a distributed management
system. Note that a high-end user can bypass the distribution network and electronic
aggregation via a dedicated wavelength that is directly added/dropped at the access
node. Configurability in the access nodes provides efficient utilization of resources
while accommodating dynamic traffic patterns. By allowing resources to be shared,
it enables a given blocking probability to be achieved with fewer deployed switch-
ing ports and wavelengths. Configurability can be provided at the wavelength level
(shown in Figure 2-20), waveband level (not shown in Figure 2-20), or even fiber level
(not shown in Figure 2-20). Hub nodes serve as the interface between the access
network and a backbone network or another access network. Therefore a hub node is
equipped with optical and electronic switches of much higher capacities. A node can

serve as both an access and a hub node. At a feeder network, a fiber can carry 10 to
100 wavelength channels, each at a data rate of 2.5 Gb/s (0C-48), 10 Gb/s (OC-192),

and potentially higher. Since a feeder network can support a large number of users,
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it allows more expensive equipments to be used; and at the same time, it makes the
scalability of network cost a crucial issue. As such, in this thesis, we concentrate on
finding a scalable feeder network architecture via the joint optimization over physical

topology, routing and wavelength assignment, and dimensioning switching resources.
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Chapter 3

Traffic Model

As discussed in Chapter 2, access nodes serve as intermediary points between the
feeder and the distribution portion of the network. The key functionalities of an
access node are to aggregate and to deliver the traffics from and to the end users of
the distribution networks based on their common destinatiouns, as illustrated in Figure
3-1. The aggregation of flows between each pair of access nodes constitutes the traffic
demand of the feeder network. From the perspective of designing an optical feeder
network, the traffic demand is normally specified in terms of the number of lightpaths
to be set up between each node pair. Each of theses lightpaths carry data streams in
an application-specific format and at a certain data rate.

In general, a network with limited resources cannot be designed to meet arbitrary
traffic demand, thus we need certain models that reflect different modes of operations.
In this chapter, we establish models to simulate the characteristics of the traffic
demand among access nodes. Each of these models has its pros and cons, and none of
them can provide an entirely complete and realistic account of network traffic demand.
Different models can lead to substantially different performance criteria. Therefore,
an understanding of the nature of the traffic in the target network and a selection of
an appropriate traffic model are critical to the success of identifying optimal network
architectures.

Based on different aspects of the network operation, past literatures on network

design and planning gave a variety of classifications on traffic models. We summarize
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Figure 3-1: An access node aggregates/delivers traffic from/to the end users of the

distribution network.

these classifications here to facilitate the discussions.

e Offline and online model [33][34]: in the offline model, an entire set of lightpaths
is given upfront; while in the online model, the demand for lightpaths arises
one at a time, and each lightpath must be provisioned on demand without
waiting for future demand to become known. Specifically, in the online model,
existing lightpaths cannot be rerouted to accommodate new lightpath requests.
An offline model normally concentrates on long-term network operations and
aggregated traffic demands; while an online model focuses on instantaneous

network states and individual connections.

e Static (deterministic) and random model[4][33]: in a static model, the number
of lighpaths between a node pair is given as a fixed value; while in a random
traffic model, the amount of traffic between a node pair is treated as a random

variable.

e Blocking and non-blocking model [4][33]: in a blocking model, the network is al-

lowed to block some lightpaths; while in a non-blocking model the network must
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support all lightpaths. For example, the traditional voice network is designed
to support the majority of call requests. Some call requests may be blocked due
to insufficient capacity in the network. With the blocking model, the goal is to
design the network to keep the blocking probability within an acceptable limit.

In the following, we provide detailed descriptions of the traffic models employed

in this thesis. In the process we also discuss the relative pros and cons of each model.

3.1 Deterministic (Static) Traffic Model

For the deterministic traffic model, the entire traffic demand is provided a priori. The
set of lightpaths to be set up is given in the form of a traffic matrix T = [¢; ;], where
tij, a deterministic value, represents the number of lightpaths between node ¢ and
j. With the deterministic traffic model, the network is designed to support all the
lightpath requests. In other words, this is an offline, static, and non-blocking model.

We note that sometimes the demand of lightpaths is also called logical links to
highlight the relationship to and the distinction from the physical links (edges) [4][33].
If a lightpath is set up between node ¢ and j, there is a corresponding logical link
(edge) that connects node i to node j. More precisely, the set of lightpath requests
forms a logical topology.

A deterministic traffic model can have an arbitrary demand pattern T' = [¢;;].
Researches in network design and planning use two patterns extensively: all-to-all
uniform traffic and all-to-one traffic [4)[35]. Each of these two demand patterns
captures the reality of the network traffic to certain degree, and, more importantly,

using them can keep the analysis tractable.

e All-to-all uniform traffic: each node sends exactly ¢ lightpaths of traffic to each
of other nodes in the network. That is, in the traffic matrix T = [¢; ;], we have
tij = t, for i # j. In other words, the lightpaths constitute a fully connected
(complete) logical topology, as shown in Figure 3-2 (a). This type of demand

pattern occurs in dense metropolitan area networks where the communities of
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(a) (b)

Figure 3-2: (a) Lightpaths in an all-to-all uniform traffic model constitute a fully
connected logical topology; (b) lightpaths in an all-to-one traffic model constitute a
star logical topology.

interest among all nodes are almost equal. Callers and other forms of commu-
nications from each node are as likely to go to one node as any other nodes in

the rest of the network.

e All-to-one traffic: in this case, one node in the network is designated as a hub.
Each of other nodes sends and receives t lightpaths of traffic to and from the
hub. For example, let node k be the hub. In the traffic matrix T = [¢; ], we
have t;x = tx; = t and ¢;; = 0, for 4,5 # k. In other words, the lightpaths
constitute a star logical topology, as shown in Figure 3-2 (b). The hub traffic

pattern often characterizes metro or regional networks involving hub sites.

3.2 Random Traffic Model

The deterministic traffic model is effective when the traffic volumes and patterns
are reasonably well known in advance, such as voice-dominated traffic. But with
recent diversification of services, changing usage patterns, and data-dominated traffic,
an accurate forecast of future demand volumes and patterns for transport network

planning has become difficult. This is especially true in today’s metro environment,
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Figure 3-3: In random traffic model, traffic between a node pair is treated as a random

variable.

in which the traffic demands among end users become more volatile [34], and the
uncertainties of the traffic forecast increase. For these scenarios, the deterministic
model becomes inadequate; we need a random model to account for the variability
associated with the traffic.

In the random traffic model, the demand between a node pair is characterized
by a random variable z, specified by its probability density function (PDF) f(z), as
shown in Figure 3-3. The mean  represents the mean (expected) value of the traffic
demand; while the standard deviation o measures the level of volatility of the demand
forecast.

Based on the information obtained from market analysis and business models, a
network designer can choose a suitable PDF that reflects the “best guess” of the de-
mand. When such information is unavailable, various known theoretical distributions
are employed to gauge the impact of the demand uncertainties [23]. Table 3.1 lists
the theoretical distributions and their corresponding PDFs used in this work. For fair
comparisons, the PDFs are all expressed with independently adjustable mean z and
standard deviation o. For example, the uniform distribution, which corresponds to

the case that only the maximum and the minimum of the demand (denoted as #max
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Table 3.1: Probability distributions expressed with independently adjustable mean

and standard deviation.

Distributions | PDF with Independently Adjustable Mean %

and Standard Deviation o

L ifz—V30<z<Z+30;
Uniform flz) = 2o

0, otherwise.
%ei—z_m, ifz>z—o0;
Exponential flz) =
0, otherwise.
r—A)2
% e 357 if gz > A;
Half Normal f(z) =
0, otherwise.
A=z—(r/2-1)"%¢c
B=(1-2/7)"%0
P, if x =z + /120,
Upper Bound flz) =
- 1—p, fzx=%-— T%pa.

and tmin, respectively) are known, is normally specified by

tm&xitmin’ if tmin < T < tmax
flz) = (3.1)

0, otherwise.

The definition given by (3.1) can be expressed with independently adjustable Z and

standard o,

s HZT—V30<z<z+ V30

f(z) = (3.2)

0, otherwise,

where Z = (tmax + tmin)/2 and 6% = (tmax — tmin)2/12. Since a demand z is non-
negative, for a given mean Z, the maximal possible standard deviation for the uniform
distribution is o = #//3.

For a practical network provisioning under random traffic, it is often not necessary
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(or impossible) to achieve totally non-blocking operation — it suffices if the blocking
probability is sufficiently low. In this thesis, we are primarily concerned with a special
blocking event that we call overflow. An overflow event occurs when the capacity
provisioned cannot accommodate the traffic demand. We call the probability of this
event as the overflow probability, denoted as p. For a random demand z and its
associated probability density function f(z), if ¢ units of bandwidth are provisioned,

the overflow probability p is defined by

p= /t " fo)da. (33)

With the meaning of the fraction of unserved traffic, the overflow probability p is
usually used as a Quality of Service (QoS) parameter in the network provisioning and
is also called as shortage probability requirement. Given a fixed low value of p (e.g.,
p = 107% ), the network designer needs to determine the minimum bandwidth ¢ to
meet the targeted overflow requirement.

For the convenience of analysis, we write ¢ as t = Z 4 qo , with ¢ being a constant
to be determined. In this thesis, we call the constant ¢ as the margin with the
meaning of extra dimensioning required. A larger ¢ means that more bandwidth is
to be provisioned and the network cost will increase accordingly.

Among all PDFs with the same mean Z and standard deviation o, we prove
that there exists one probability distribution that requires the maximum (worst case)

margin ¢ = (t — z)/o,

ifp =7 1-p .
f@=4" 7 Py (3.4)

1-p, ifx=§:—1/£—pa.

We term this distribution as the “Upper Bound” distribution and list it also in Table
3.1. We note that, in addition to being specified by a % and a o, the “Upper Bound”
distribution is also parameterized by an overflow probability p. In Chapter 8, we use
this distribution as an upper bound in comparing the results from different PDF's that
model the random demand. The proof of (3.4) is deferred to Appendix 8.5.3. For the

analysis in Chapter 8, we assume also that the network traffic between node pairs
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is independent and identically distributed (i.i.d.). That is, traffic demands between
each node pair have the same PDF f(z), and they are independent from each other.
In summary, here we characterize the demand variability with an offline, random, and

blocking model.

3.3 Stochastic Traffic Model

The stochastic traffic model is used to depict the bursty traffic from the end-users,
by focusing on the instantaneous state of lightpath arrival and departure process, as
illustrated in Figure 3-4. In this model, theoretical distributions are usually used to
describe the process of lightpath establishment and release. For example, the requests
for lightpaths between each node pair may be assumed to form a Poisson process with
a known rate. The holding time (the time between establishment and release of a
lightpath) has an exponential distribution with a known rate. This kind of stochastic
model has traditionally been used in the design of voice network. For optical data
networks, it is difficult to predict the statistics of the lightpath arrivals and holding
times. This limits the validity of this model. Most of the current researches using
this model assume a Poisson traffic, although there have been some recent works on

non-Poisson traffic [36]. To summarize, this is usually an online and blocking model.
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Figure 3-4: The stochastic traffic model focuses on the instantaneous state of the

lightpath arrival and departure process.
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Chapter 4

Network Model

Having established various traffic models in Chapter 3, in this chapter, we take a
graph theoretical approach to set up models for network physical architectures. Be-
sides reviewing some important concepts in graph theory, we focus on presenting
graph theoretical results derived in this thesis work, especially the results of the Gen-
eralized Moore Graphs and other relevant regular topologies. Based on theses results,
we also provide close estimates for irregular topologies, for which analytical solutions
are difficult to obtain. The concepts and results in this chapter will serve as founda-
tions for the in-depth analysis of scalable network architectures in Chapter 5 through

Chapter 9.

4.1 Regular Topologies

On first order, the physical architecture of an optical network consists of cable plants,
with each cable containing numerous fibers, and optical switches that are intercon-
nected by the cables, as illustrated in Figure 4-1. Such a cable plant layout is called
the cable plant topology, which is determined by speculated traffic and target of op-
portunities for affordable rights of way, as well as other factors, such as bi-lateral
agreements between the carriers. How the fibers within the cables are connected is
called the physical (fiber) topology, which is a key design element that has a signifi-

cant leverage and is largely up to the network designer, as illustrated in Figure 4-2. In
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Node: Optical Fibers
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Figure 4-1: On first order, the physical architecture of an optical network consists
of cable plants and optical switches that interconnect the fiber plants. Each cable

contains numerous fibers.

this thesis, we follow the practice of representing a WDM mesh network as a (directed
or undirected) graph G(V, E). Vertices V' (or nodes) represent the optical switches,
and (directed or undirected) edges E represent the fiber connections. A path from a
source node to a destination node consists of several edges. We call the number of

edges of a path as the number of hops.

The network physical topologies can be broadly classified into two categories:
regular and irregular (arbitrary). In this work we mostly focus on networks with
regular topologies, since with their symmetric and well-defined connectivity pattern,
they are analytically more tractable than irregular ones. Regular topologies are good
approximations for MANs and local area networks (LANs), and can also be used as
guidelines for wide area networks (WANs). For an irregular cable plant topology, a

regular fiber connection topology can be constructed on top of it by connecting fibers
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Cable

Fibers

Fiber
'

Figure 4-2: A regular fiber connection topology (shown in dashed line in (b)) can be
constructed on an irregular cable plant topology (shown in solid line in (a) and (b))
by connecting fibers at nodes via static patch panel. For example, fiber connection
between node 1 and node 2 can be implemented by patching fibers in the cable 1 — 3

and 3 — 2 at node 3.

via static patch panel, as illustrated in Figure 4-2. The analysis of such constructed
regular topologies can provide estimates for the irregular ones. A detailed study of
the irregular topologies by this method will be presented in Chapter 9.

In graph theory literatures, regular topology is defined differently in various con-
texts. In this thesis, we provide our definition of regular topology to cover a broad
class of topologies that exhibit symmetric and well-defined structures. We say that a

topology is regular of node degree A, when it satisfies the following conditions:
e There are A outgoing edges from and A incoming edges to each of its nodes.

e Each node links to A other nodes following the same set of (predefined) con-
nectivity rules. In other words, the regular topologies studied in this work have

nodal symmetry.
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e A topology needs to be A-connected. That is, n(i) > A, 1 <i < D -1, as
defined in [37]. In this definition, n(z) denotes the number of nodes that are
hops away from a node via minimum hop routing; D denotes the diameter of a
topology — the maximum distance among all possible node pairs via minimum

hop routing,.

Besides node degree, diameter, and connectivity rule, some other parameters are

used to characterize a regular topology:

e The average minimum hop distance H,,;, between node pairs is an important
quality measure for a network. For a regular topology of N nodes, Hyy, can be

expressed as

D
1 Z .
Hmin = YV——I 2 m(z). (41)

Hin is usually used as an indicator of the propagation delay performance of a
network [29] [33]. In this thesis, we will show that it can also be interpreted as
a measure for the switching and wavelength resources required for supporting
uniform all-to-all traffic. As such, H;, serves as a fundamental parameter and

has an ultra importance in our work.

e The load of an edge is defined as the number of source and destination pairs
using this edge. Obviously, for a given network and traffic demand, the load
depends on the routing strategies. Assume that minimum hop routing is used
and there is one unit of traffic for each source-destination pair (¢ = 1), the
total (aggregated) load on the network, denoted as L, is related to the average

minimum hop distance Hpy, in a simple way,

L(N,A) = NZin(i)

N(N = 1)Huw(N, A). (4.2)

The average load on each edge Ly, for a network of size N and node degree A

is

L — (N_ I)Hmin(Nv A)

Lavg(N:B) = & A

(4.3)
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Next we define L;, Lyax, and Ly, as the load on the edge ¢ (i € E), the
maximum load (also called congestion), and the minimum load, respectively,
all under minimum hop routing algorithms. To achieve a minimum congestion,
the best we can do is to distribute the total load evenly over each fiber. That

is, if L; = Layg for every ¢ € E, we have an evenly distributed load.

4.2 Moore Graph and Generalized Moore Graph

4.2.1 Moore Graph

As to be presented in the subsequent chapters, Moore Graphs are a class of graphs
that have great importance in this thesis. The Moore Graph concept stems from the
problem of finding an upper bound on the number of vertices in a graph, given a
diameter D and a maximum node degree Aax. Such a bound, which was established
by E. F. Moore, exists for both directed and undirected graphs. For a directed graph,

the maximum number of nodes that can be supported is

D
Naax(Bmas D) < 14+ ) (Amax)’
i=1

Ama.xD+1 -1

For an undirected graph, the maximum number of nodes that can be supported is

D-1
Nma.x(Ama.xa D) 5 1 + Ama.x Z (Amax - 1)i
=0
_ (Amax — )P —1
= 14+ Apax A3 (4.5)

For a regular graph of node degree A, we have A, = A . We call the class of regular
graphs for which N(A, D) = Npax(A, D) as Moore Graphs. In other words, a Moore
Graph is an ideal (not necessarily realizable) regular topology, in which each node
reaches every other node in a fully populated A-ary minimum hop routing spanning

tree. (A spanning tree is a connected subgraph that includes all the nodes and has
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Figure 4-3: (a) The Petersen Graph, N = 10, A = 3, and D = 2; (b) The routing

spanning tree from node 1.

no cycles). As an example, Figure 4-3 shows the Petersen Graph — one of the existing
Moore Graphs — and the routing spanning tree from node 1.

To our interests, the most important property of a Moore Graph is that, among
regular topologies with the same node number and node degree, a Moore Graph
provides the lower bound on the average minimum hop distance. For given D and A,

the lower bound on the average minimum hop distances, denoted as HS;,(A, D) , is

given by
o DAP 1
min(AaD)—AD_l_A_la (46)
for a directed Moore Graph; or is given by
_1\D
oA D)= 28U (@)

A-1)P-1 A-2

for an undirected Moore Graph.

Directed Moore Graphs exist only for trivial cases where A =1 or D =1 [38].
Undirected Moore Graphs also exist, though there are only few of them. For D =1 (
of any value), we have Moore Graphs that are full (complete) graphs; and for A = 2,
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Figure 4-4: The minimum hop routing spanning trees of the Petersen Graph.

we have Moore Graphs that are rings (with odd number of nodes). The Petersen
Graph, show in 4-3, is with N = 10, A = 3, and D = 2. The Hoffman-Singleton
Graph, with N =50, A =7, and D = 2, is also an existing Moore Graphs [39]. A
Moore Graph with A = 57 and D = 2 may exist, though its construction has not been
realized yet [39]. It has been shown that a (undirected) Moore Graph with D > 3

does not exist [39].

Next we use the Petersen Graph to show some important properties of Moore
Graphs. To facilitate the discussion, we relabel node 1 to node 10 as node A to node
J. By enumerating the routing spanning trees of all nodes, as shown in Figure 4-4, we
make the following observations and generalizations. First, the minimum hop routing
spanning tree from each node of the Petersen Graph is unique. For instance, source
node A can reach nodes E, F, and B on the first level of its routing spanning tree. Also
node A can reach D and J only through E; reach | and H only through F; and reach
G and C only through B. Every source-destination pair has a unique minimum hop
path in the Petersen Graph. For example, A can only reach D via the minimum hop

path A — E — D. The observation can be generalized as in Theorem 1. A detailed
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Figure 4-5: The load generated on edge AE by uniform all-to-all traffic.

proof is provided in Appendix 4.5.1.

Theorem 1 Each node of a Moore Graph has a unique minimum hop routing span-
ning tree. Thus, every source destination pair of a Moore Graph has a unique mini-

mum hop path.

Second, the minimum hop routing perfectly distributes the load on every edge of the
Petersen Graph. As illustrated in Figure 4-4, edge AE is used as the 1st hop by
lightpaths A — E, A — E — D, and A —» E — J; it is also used as the 2nd hop by
B— A — Eand F— A — E. In total, 5 source-destination pairs use the edge AE,
generating a load of 5, as shown in Figure 4-5. It is easy to verify that every edge has
the exact load of 5. As provided in Appendix 4.5.2, the same result holds for other

Moore Graphs, as summarized in Theorem 2.

Theorem 2 For a Moore Graph of degree A and diameter D, balanced load distri-
bution can be achieved for the static uniform all-to-all traffic, with each edge having

a load of Y2 (A — 1)1

4.2.2 Generalized Moore Graph

A Generalized Moore Graph refers to a regular (directed or undirected) graph, which

does not achieve the upper bound on the number of nodes (as given in (4.4) and
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Figure 4-6: (a) The Heawood Graph with N = 14, A = 3, and D = 3; (b) The

routing spanning tree of node 1.

(4.5)), but achieves the lower bound on the average minimum hop distance [?][40]. In
other words, Moore Graphs belong to a special subset of Generalized Moore Graphs.
In a Generalized Moore Graph, the routing spanning tree has all the levels that are
full, except possibly the last level. Figure 4-6 shows an example of Generalized Moore
Graphs — Heawood Graph (N = 14, A = 3, D = 3) and the routing spanning tree
from node 1.

For a directed Generalized Moore Graph with size N and node degree A, the

diameter is
D(N,A) = [logs (1 + N(A -1))] -1, (4.8)

and the average minimum hop distance is

A-APF L NDA-1)2+D(A-1)
HX (N,A) = . :
mm( 7A) (N—l)(A—1)2 (49)
The average minimum hop distance can be approximated as
Hyi (N,A) = loga 1+ N(A—1)] - 1. (4.10)
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As N — oo, we have the asymptotic scaling of the average minimum hop distance

InN
M
Hasym(N7 A) — 10gAN = Tn—A' (411)

The derivation of (4.11) is provided in Appendix 4.5.3.
For an undirected Generalized Moore Graph with size N and node degree A, the

diameter is

N(A - 2
D, &) = |1oga, MEZHEE], (412)
and the average minimum hop distance is
Af1=(A-1)"] + ND(A —2)? +2D(A ~ 2)
M —
H_..(N,A) = (N —1)(a —2) . (4.13)
This average minimum hop distance can be approximated as
N(A-2)+2
B (V. 8) w g [FE D2 (4.14)
As N — oo, we have the asymptotic scaling of the average minimum hop distance
ln N
M N=—o0 . .
Hasym(A7 N) - lOgA-—l ln(A _ 1) (4 15)

Compared with Moore Graphs, the routing spanning tree of a Generalized Moore
Graph is not unique, as shown in Figure 4-7 using the example of the Heawood Graph.
In general, there are multiple minimum-hop paths between a source-destination pair.
As a result, minimum hop routing does not necessarily distribute the load evenly
on every edge, even under a uniform traffic. Routing and load distribution of a
Generalized Moore Graph will be discussed in detail in Chapter 7 in the context of
solving RWA problems.

In contrast to Moore Graphs, there exists a richer class of directed [40] and undi-
rected [40] Generalized Moore Graphs. For example, in [41] directed Generalized
Moore Graphs with size up to a 100 are constructed for A =3, A =4, and A = 5.

4.3 Other Important Regular Topologies

In this section, we provide descriptions of some other important regular network

topologies and a comparative study of their various performance metrics, e.g., average
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Figure 4-7: Two different routing spanning trees from node 1 for the Heawood Graph.

minimum hop distance, routing complexity, and scalability. These topologies, which
will be used as examples in facilitating the analysis in the subsequent chapters, include
(one-sided) A-nearest Neighbors, Symmetric Hamilton Graph, ShuffleNets, de Bruijn
Graph, Kautz Graph, GEMNet, Manhattan Street Network (MSN), and (binary)
Hypercube. Among these topologies, (one-sided) A-nearest Neighbors and Symmetric
Hamilton Graph are constructed and analyzed first time in this thesis work, to the
best of our knowledge. As such, these two classes of topologies will be described in
detail in the following. The rest of the topologies have been well studied in various
literatures, thus we give only a brief summary of the properties that are relevant to

this work.

4.3.1 (One-Sided) A-Nearest Neighbors Topology

Figure 4-8 depicts a 6-node (one-sided) A-nearest Neighbors, in which each node
connects to its 3 closest (one-sided) neighbors in a cyclic fashion. For succinctness,
we refer (one-sided) A-nearest Neighbors simply as A-nearest Neighbors in the rest
of the thesis. In a general way, for each node i, there are A directed connections from

node i to node |i +1|n, |¢+2|n, ..., |¢+ Aly , where |z|x denotes z module over N.

101



Figure 4-8: (One-sided) A-nearest Neighbors topology (N =6, A = 3, and D = 2).

For a A-nearest Neighbor topology, the network diameter D is given by
N -1
D={——1|. .
o) "
The average minimum hop distance is given by

mo= (v gey) "5 - awen (F50]) o

if N can not be evenly divided by A; and

1 N-1
N -
HYo = 5+ =5 (4.18)

if N can be evenly divided by A. The derivations of (4.17) and (4.18) are provided
in Appendix 4.5.4.

Compared with the Generalized Moore Graphs, a A-nearest Neighbors topology
provides the upper bound on the average minimum hop distance among all regu-
lar topologies with the same node number and node degree, as summarized in the

following theorem.
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Figure 4-9: (a) (One-sided) A-nearest Neighbors topology (N = 10, A = 3, and
D = 3); (b) Routing spanning tree from node 1.

Theorem 3 A A-nearest Neighbors Topology provides the upper bound on the average
minimum hop distance among all regular topologies with the same node number N and

node degree A.

A rigorous substantiation is provided in Appendix 4.5.5. The intuition is illustrated
in Figure 4-9, using a A-nearest Neighbors topology with N =10, A =3,and D =3
as an example. From the point of view of a routing spanning tree, each of its level
is packed with A nodes — the minimum number of nodes required to maintain the
connectivity (compared with A nodes at ith level, with 1 < i < D —1, for a directed
Generalized Moore Graph).

This class of topologies also exhibits some desired properties in terms of modu-

larity:

e Since each node connects to its A closest neighbors in a cyclic fashion, a A-
nearest Neighbors topology allows us to construct a N-node network with any
node degree from 1 to N — 1. This good property provides us flexibility for the
analysis in Chapter 5 through Chapter 9.

e For the same network size N, a topology of degree A+i (i =1,2,...,N—1-A)
can be built on top of a topology of degree A, without tearing down the existing

fiber connections (edges), as shown in Figure 4-10.
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Figure 4-10: For the same network size N, a A + i-nearest Neighbors of degree A + ¢
(1=1,2,...,N —1—A) can be built on top of a A-nearest Neighbors of degree A,

without tearing down the existing edges.

4.3.2 Symmetric Hamilton Graph

This class of graphs belongs to a subset of Hamilton Graph (a graph containing a
cycle that connects all the nodes and passes through each node exactly once). Their
specific constructions are introduced first time in this thesis work. In a Symmetric
Hamilton Graph of node degree A, each node connects to other A nodes with an even
“spacing” between nodes in a cyclic fashion, as shown in Figure 4-11. That is, denote
an integer s as the spacing parameter, there are directed edges from each node i to
nodes |i+ 1|y, [i+1+s|n, [i +14+2s|n, .. [i+ 1+ ks|N, ..., |i + N — 1|5, where &
is an integer satisfying k < A — 1 and |z|y denotes z module over N. The size of a
Symmetric Hamilton Graph is determined by both s and A, that is, N = (A—1)s+2.
Figure 4-12 shows some other examples of the Symmetric Hamilton Graphs.

The diameter of a Symmetric Hamilton Graph is given by

#l if s is odd;
Pes (4.19)

[££2], if s is even.
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Figure 4-11: A Symmetric Hamilton Graph with N =6, A=3,s=2,and D = 2.

The expression for average minimum hop distance as a function of N, A, and s can

be derived as

A | (N-A-1)(N+5A-T7) P _
— + — , if s is odd;
Hon =" @4;;: .ZE\? 21))(A 1)-4(A-1) (4.20)
A —2)2+4(N—2)(A-1)—4(A~ P
7o+ AN—D)(a=D) , if s is even.

The derivations of (4.19) and (4.20) are provided in Appendix 4.5.6.
It is worthy .to point out that when A = 2, a Symmetric Hamilton Graph is simply
a (undirected) ring topology. By substituting A = 2 into (4.20), we have the following

expression:

Lr 2% if N is odd;

Hoin = (4.21)

N+1

=t m, if N is even,

which agrees with the expression for the average minimum hop distance of a ring
network [33].
For a Symmetric Hamilton Graph, Hp, can be approximated by (the approxima-

tion is denoted as H2;.):

N-2
AA-1)

Lo —
min —

+ (4.22)

=]
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Figure 4-12: Examples of Symmetric Hamilton Graphs: (a) N =8, A =4, s = 2,
and D=2; (b)) N=8 A=3,s=3,and D=2; (c) N=10, A =3, s =4, and
D=2,(d) N=11,A=4,s=3,and D = 2.
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which is convex in A. When A « N , we have the asymptotic average hop distance

N

Hoom =32 =1

(4.23)

It is interesting to note that the class of Symmetric Hamilton Graph includes some
instances of Generalized Moore Graphs. For example, Symmetric Hamilton Graphs
shown in 4-12 (a), (b), and (d) are Generalized Moore Graphs.

Unlike a A-nearest Neighbors topology, the construction of a N-node Symmetric
Hamilton Graph has fewer choices on node degree, owing to the restriction of N =
(A —1)s+2. However, we still have more options on node degree, especially when N
is large, compared with other types of topologies (e.g., ShuffleNet, De Bruijn Graphs,
and Kautz Graphs). As an illustrative example, a ShufleNet with N = 18 can only
have a node degree 3; while a Symmetric Hamilton Graph of the same size can have

node degrees of 2, 3, 5, 9, or 17.

4.3.3 ShuffleNet

In a ShuffleNet the nodes are arranged in columns. Given a node degree A and a
column number k, a ShuffleNet, denoted as SN(A, k), consists of k columns of nodes.
With each column having A* nodes, the total number of nodes is given by N = kA
(k=1,2,3...). The kth column connects to the first column, as if the topology
is wrapped around a cylinder. In general, in a SN(A, k), a node (r,c) on row r and
column c is connected to nodes (|A - 7|ax, [c+ 1|k ), (A -r|ar + 1, [+ 1k), ... (
|A-7|ax + A =1, [c+1|), where |z|, denotes z module over y. That is, the structure
of a ShuffleNet can be viewed as a spanning tree rooted at each node, as shown by
the nodes and edges that are highlighted in red in Figure 4-13. The diameter of a
ShuffleNet is given by [42]

D=2k-1. (4.24)

The average minimum hop distance is given by [42]

EA*(A — 1)(3k — 1) — 2k(AF - 1)

Hmin(A,F) = 2(A “1)(kAF — 1)

(4.25)
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Figure 4-13: The ShuffleNet SN(2,2) with N =8, A=2,k=2,and D =2k—1=3.

Next, we describe a simple addressing and (fixed) routing scheme for the Shuf-
fleNet [42]. We first assign anode (r, ¢) in a SN(A, k) an address (rg_17%x—2 - - * 7170, €).
That is, we write every r in terms of base-A digits and every c in decimal digits. The
routing algorithm involves comparing the address of every node (7, ¢) on the route
(starting with the source node) with the address of the destination node (r?, ¢?). If
(7, &)=(r?, ¢%), the destination node is reached. If (7, &) # (r?, ¢%), we need to first
calculate the distance between (7, ¢) and (r?, c¢?), which is denoted as X and is given
as following:

k+ct—¢ ifc?+#é
X — (4.26)

K if ¢ =é.
The address of the next node on the route follows (rx_oTk_3- - T170T%_1, |¢ + 1[k)-
That is, out of the A nodes in the next column to which node (7, ¢) may route traffic
to, we choose the node whose coordinate r has r%_; as the least significant digit.

As an example, for a SN(2,2), the minimum hop path from (0,0) to (1,0) follows
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Figure 4-14: The de Bruijn Graph B(2,3) with N =8, A =2, and D =3.
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(0,0) — (0,1) — (1,0), as shown in Figure 4-13.
For minimum hop routing and uniform traffic demand, the total network load

cannot be evenly distributed — some of the links are more congested than others.

4.3.4 De Bruijn Graph

Given a node degree A (A > 2) and a diameter D (D > 1), a de Bruijn Graph,
denoted by B(A, D), is a regular directed graph having N = AP nodes [43]. Each
node in a de Bruijn Graph is represented by a string of D digits, each of which takes
values from {0, 1, 2, --- , D—1}. There is a directed edge from node (a1, as, ..., ap)
to node (b1, bs, ..., bp), if and only if b; = a;4; for 1 < i < D — 1. In other words,
there is one-to-one correspondence between all possible states of a A-shift register of
length D and the connectivity from node 7 to node j. For example, in the de Bruijn
Graph B(2,3), shown in Figure 4-14, there are direct edges from node 001 to node 010
and to node 011, since one (left) shift operation on string 001 yields string 010 and
string 011. Note that for a de Bruijn Graph , there are D nodes that have self-loops,
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which are presented in the graph (such as node 0 (000) and node 7 (111) in a B(2,3),
as shown in Figure 4-14), but will not be presented in the actual network.

Next we illustrate the routing algorithm for a de Bruijn Graph [43]. From the
shift register analogy, an edge from node A to node B can be represented by a string
of D + 1 digits, with the first D digits representing node A and the last D digits
representing node B. Similarly, any path of k& hops can be represented by a string of
D + k digits. For better explaining the routing algorithm, we also need to define two

operations on strings:

e shift—match(i, A, B) operates on two strings (a1, ag, ..., ap) and (b1, b, ..., bp).
The operation yields true, if and only if (b1, bs, ..., bp—i) = (@it1, Qit2, ..., @D)

for 0 < 7 < D; otherwise, the operation yields false.

e merge(i, A, B) combines two strings (ai, az, ..., ap) and (by, be, ..., bp) into a
new string of length D+, in the form of (a4, ag, ..., ap, bp—i+1, bp—it2, ..., bp).
The minimum hop path routing algorithm from a node A = (a1, ag, ..., ap) to a
node B = (by, bs, ..., bp) can then be described as follows:
i=0;
while shift — match(i, A, B) is false
1 =14+ 1;
end while
min-hop-path = merge(i, A, B).

Using B(2,3) as an example, the minimum hop path from node 001 to node 101
follows 001 — 010 — 101. We also note that the minimum hop path between a
source-destination pair is unique.

There is no closed form expression for the average minimum hop distance of a de
Bruijn Graph. In [43], a lower and an upper bound on the average minimum hop
distance are presented as:

N A loga N _

(loga N) 577 = 737427

IA
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for A>2and D > 1.
We next determine the edge loading of the minimum hop routing. The number
of edges in the network is NA — A, after excluding the edges from a node to itself.

Under the uniform traffic (¢ = 1), the average load on each edge is given by

Hypin(N,A)N(N — 1)

. D-1
T = Hyn(N, A)AD1, (4.28)

Lavg =

In a de Brujin Graph, even for uniform traffic, the minimum hop routing algorithm
can not distribute the load evenly on each edge, due to the graph’s inherent asymme-
try (some nodes have self-loops). Other routing algorithms, such as maximum hop
routing, can mitigate the discrepancies of loadings on the edges, albeit at an expense

of increasing the total load on the network [43].

4.3.5 Kautz Graph

Given a node degree A and a diameter D, a Kautz Graph, denoted by Ka(A,D),
satisfies N = AP + AP-1, Similar to a de Brujin Graph, the nodes of a Kautz Graph
are also represented by all possible strings of length D, with each symbol of the
string taking the values from the set {0, 1, 2, ..., A}. Compared with a de Brujin
Graph, these strings have the restrictions that two consecutive symbols are always
different. Thus it is simple to see that there are N = (A + 1)AP~1 = AP 4+ AD-1
such strings, since the first symbol of such a string can be chosen in A + 1 possible
ways and all subsequent ones in A possible ways. Two nodes (strings) A and B will
have an edge from A to B, if B is a shifted version of A. That is, there is an edge from
A = (ay, ag, ..., ap) toanode B = (ag, as, ..., ap, b)) with a; # a;4+1,1 <i < D-1,
and b; # ap. Compared with de Bruijn graphs, none of the nodes in a Kautz Graph
has a self-loop, since two consecutive symbols in a string always differ. An example
of Kautz Graph is shown in Figure 4-15.

The minimum hop routing algorithm from a source node to a destination node in
a Kautz Graph is similar to that in a de Brujin Graph. The algorithm also utilizes the
string representation of the nodes and the two string operations — shi ft-match(i, A, B)

and merge(i, A, B). Using Ka(2,3) as an example, the minimum hop path from node
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Figure 4-15: The Kautz Graph Ka(2,3)with N =12, A =2, and D = 3.

201 to node 212 is 201 — 012 — 121 — 212. The minimum hop path for a source-
destination pair is also unique in a Kautz Graph. There is no closed form expression
for average minimum hop distance. In [44], a recursive upper bound on the minimum

hop distance is given as:

Hmin(A, D+ 1) <1+

NA-A
— D+l (4.29)

NA Hyin(A, D) — SNA=T)’

In a Kautz Graph, even for uniform traffic, the minimum hop routing algorithm
can not distribute the load evenly on each link. Other routing algorithms, such as
maximum hop routing, can also be applied to make the load more evenly distributed,

albeit at an expense of increasing the total load on the network [44].

4.3.6 GEMNet

Generalized Shuffle Exchange Multihop NETwork (GEMNET)[45] is a generaliza-
tion of shuffle-exchange network and it can represent a family of network structures
(including ShuffleNet and de Bruijn Graph as special cases) for an arbitrary num-

ber of nodes. For a network of N nodes, if N is evenly divisible by an integer k,
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Figure 4-16: The GEMNet with N =12, A =2 and D = 3.
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there is a GEMNet with k columns. In the corresponding (k,m,A) GEMNet, the
N = k x m nodes are arranged in k columns (kK > 1 ) and m rows (m > 1) with
each node having a degree A. Node a (a =0, 1,2, ..., N — 1) is located at column
c(c=0,1,2,....,k—1)androwr (r=0,1,2,..., m— 1), where and ¢ = |al,
r = |a/k], and |z}, denotes z module over y. The A edges emanating out of a node
are referred to as i-edge, : = 0, 1,2, ..., A — 1. The i-edge from the node (c,r) is
connected to node (¢,7) fori =0, 1,2, ..., A—1, where é = [c+1|; and 7# = [r X A].
Figure 4-16 shows a 10-Node GEMNet with k =2, m =5, and A = 2.

The minimum hop routing algorithm is given as follows. Let (cs,7s) and (cq, r4) be
the locations of the source and destination node, respectively. The column distance,

4, from the source node to the destination node is given by
6 =1+|[(k— 1)+ (ca — cs)]lk- (4.30)

The hop distance from the source node to the destination node is given by the smallest

integer h of the form § + ik with i =0, 1,.. ., satisfying the following expression:
R =M +rq—|(rsA")|a]|nr < A" (4.31)

R, called as the route code, specifies the shortest route from the source to the desti-
nation, when it is expressed as a sequence of h base-A digits. For example, for the
route from source node (0,0) to destination node (1,4), we have ¢, =0,¢4 =1, 7, =0,

and ry = 4. With (4.30) we have § = 1. Thus we have
R=|[5+4-1(0-2")s]ls < 2"

Solving this inequality yields A = 3 and R = (100)pase.2- Thus minimum hop path
from node (0,0) to node (1,4) is (0,0) — (1,1) — (0,2) — (1,4).

There is no closed form expression for the average minimum hop distance in GEM-
Net. However, tight upper and lower bounds of the average minimum hop distance
are obtained in [45] as

mk(D + 1 — 1k) — k(22221

Hypper(m, k, A) = p—

(4.32)
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and

s S+k Li/k]

Higwer(m, k, A) = Y TiA + Y~ (M — Alile D™ AR), (4.33)
i=0 i=S+1 3=0
In (4.33) S is given by
D—k, if AIP—HL A9TE1 <y,

S =
D —k—1, otherwise,

and F' is given by

- 22

4.3.7 Manhattan Street Network (MSN)

Developed by Maxemchuk in 1985, MSN (also called as a Two dimensional Torus)
is a directed and two connected network that resembles the geographical topology of
the streets and avenues of Manhattan, as shown in Figure 4-17. For a N-node MSN

with m rows and k£ columns, the average minimum hop distance can be computed as

(

Mﬂﬂ%ﬁ"’_—é, if m/2 is even, k/2 is odd;
NA(miktd)—m=4 = if /2 is odd, k/2 is even;

Hmin = 4 N / / (434)

N 4(";*'_'“:'4)_’“, if m/2 is even, k/2 is even;

| Mt omkt - if m/2 is odd, k/2 is odd.

For large N and m = k, we have Hpi, ~ VN [29]. [29] shows that if both m and
k are divisible by 4, a minimum hop routing can distribute the load evenly on each

edge (fiber), under the uniform all-to-all traffic.

4.3.8 Binary Hypercube

A A-cube graph [46] is a degree A undirected graph consisting of N = 22 nodes that

are labeled from 0 to 227! in base-2 numbers. There is an edge between any two
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2,3

Figure 4-17: A 16-node (4 x 4)Manhattan Street Network.

vertices, if and only if the binary representations of their labels differ by only one bit.
As an example, Figure 4-18 shows an 8-node 3-cube (N = 23 = 8).

The minimum hop routing in a binary hypercube is quite simple. Let z;Z23. ..z
and 1%2ys...ya be the base-2 representations of node z and y, respectively. The
minimum hop path between these two nodes z1z2x3...2A and y192y3...ya in a A-
dimensional binary hypercube corresponds to correcting the first different bit in z
and y, then the second, and so on to the last bit different in z and y. For convenience
but without losing generality, we assume that A and B differ in their first bits. Then

the minimum hop path from z to y is given as the following:

z = node A= T1ZZ3 ... LiTit1.--TA,
= Y1T2T3...TiTi+1..-TA;

= NY2T3...TiTiy1 .- - TA;

y = node B =1y1y2ys5...¥iTi11...TA. (4.35)

For example, in a 3-cube the minimum hop path between node 010 and 101 follows

010 — 110 — 100 — 101, as shown in Figure 4-18.
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Figure 4-18: A 3-cube with A = 3 and N = 2% = 8 . The highlighted nodes and
edges illustrate a minimum hop path from node (010) to node (101).

It is easy to see that a A-cube is a graph of diameter A. The average minimum
hop distance between node A and node B is equal to the number of bits that differ
between A and B, i.e., the Hamming distance Hyay [46]. The average minimum hop
distance as a function of N and D is given by

A (AN,
Huin(N,A) = ____Z;-;l_ (i)’

= B2 ¥ (4.36)

Another important property of the A-cube is that it can be constructed recur-
sively from lower dimensional cubes. Consider two identical A-cubes whose nodes are

numbered likewise from 0 to 24!

— 1. By joining every node of the first A — 1-cubes
with the node of the same number in the second cube, we obtain a A-cube. Figure

4-19 shows how a 4-cube is constructed from two 3-cubes.
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Figure 4-19: A 4-cube constructed from two 3-cubes.

4.3.9 Summary of Regular Topologies

Table 4.1 summarizes the important measures of the regular topologies surveyed in
Sections 4.2 and 4.3. These measures include network diameter, average minimum
hop distance, routing complexity, modularity, and symmetry. Among these measures,
the performance of average minimum hop distance plays a crucial role in evaluating
the efficiencies of physical architectures. The average minimum hop distance (as
well as the network diameter) is clearly a strong function of node degree A. The
larger the node degree, the shorter the average minimum hop distance (as well as the
network diameter). To illustrate how the average minimum hop distances for different
topologies scale, we plot the average minimum hop distance between all node pairs
as a function of network size N, all with node degree set at 3, as shown in Figure
4-20. It is evident that there are significant differences between good and pedestrian
network topologies for degree 3 networks. These differences can be over an order of
magnitude. Generalized Moore Graphs provide lower bound (Moore Bound) on the
average minimum hop distance (with a scaling of log, N). Some topologies, such as

A-nearest Neighbors and Symmetric Hamilton Graphs, scale poorly (with a scaling
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Figure 4-20: Average minimum hop distances Hp, for different classes of symmetric
regular physical topologies as a function of number of nodes N. The node degree is

set at A = 3.

of N/A) with the number of nodes N in the network. Other more sophisticated
topologies, such as the ShuffleNet and deBruijn graphs, which come close to the
Moore Bound, scale favorably as log, N, thus keeping the minimum average hop
distance between a node pair short.

From the perspective of designing optical network, we show in Chapter 5 that the
amount of switching resources used at nodes is proportional to the average minimum
hop distance Hp, of a regular topology. Thus a smaller Hy;, will translate into
fewer number of expensive optical switch ports. This is especially crucial for optical
switching, since minimizing the network resources is desirable for a good network
architecture. In this sense, the order of magnitude difference in average minimum hop
distance most likely means a similar difference in cost of the corresponding networks,

owing to the usage of optical switching ports at the nodes. In Chapter 5, we also
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Table 4.1: Comparisons of the important measures of the regular topologies.

Number Diameter | Avg. Min. Routing | Modularity | Symmetry
of Nodes D Hop Dist. | Complexity
N Hpin

Moore | 2 (A — 1)t D loga N Low Very Perfect
Graph poor symmetry

Shuffie- kAk 2k -1 loga N Medium Poor Perfect
Net symmetry

De Bruijn AP D logpn N Low Poor Good

Graph

Kautz AP + AP-1 D loga N Low Poor Perfect
Graph symmetry

GEMNet kxm [loga m| loga N Medium Good Perfect
+k—1 symmetry

Hyper- 24 logo N k’—ggﬁ Low Poor Perfect
cube symmetry

MSN mx k vN vN Medium Good Good

A-Nearest Any N l- %1 2,—% Medium Excellent Perfect
Neighbors symmetry

Symmetric | 2(A-1)+s | (s+1)/2 1 AN_ 1 Medium Good Perfect
Hamilton symmetry

Graph
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demonstrate that topologies with smaller average minimum hop distance have a lower
fraction of pass-through traffic and hence require small optical switches. This provides
another way to appreciate the fact that a good topology is crucial from the aspect of
switching cost at the nodes.

As discussed in Section 4.2.1, the existence of Moore Graphs is rare, due to the
stringent requirement for their constructions (e.g., a fully populated routing spanning
tree from every node). However, there exists a very rich class of Generalized Moore
Graphs. And also, regular graphs such as ShuffleNets, de Brujin Graphs, and Kautz
Graphs are known as close relatives to Generalized Moore Graphs in the sense that
they have average minimum hop distances that are very close to those of Generalized
Moore Graphs. In summary, Generalized Moore Graphs and their close relatives
provide sufficient instances that could serve as starting points for the final design of
networks. To illustrate this, in Figure 4-20 we plot a map of the existing Generalized
Moore Graphs and their close relatives. In this plot, the network size is in the range

from 4 to 100 nodes, which are typical sizes for most metropolitan area networks.

4.4 Irregular Topologies

In reality, traffic is seldom symmetric, nor are networks regular or regularizable,
thus we also study the design of irregular network. We can characterize an irregular

topology by the following parameters:

e The number of nodes N;
e The maximum node degree Apax;

e The minimum node degree Ay;

e The average node degree A, A -11\7 Zf;l A;, where A; is the degree of node 1.

For the convenience of discussion, we denote an irregular topology as (N, Amax, Amin, A).
In studying the irregular topologies, it is hard to derive analytical expressions

and solutions. However, we can apply the results of symmetric regular networks to
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Figure 4-21: The density of Generalzied Moore Graphs and their close relatives for

N <100, A =3, 4, and 5.
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provide estimates for irregular networks. Under this guideline, we concentrate on
the following two approaches to study the irregular topologies. The first approach is
to use the results of average minimum hop distances for Generalized Moore Graphs
and A-nearest Neighbors to gauge the average minimum hop distance of an irregular
topology (N, Amaxs Amin; A). The Theorems 4 and 5 summarize our findings. The
proofs are provided in Chapter Appendix 4.5.7 and 4.5.8, respectively.

Theorem 4 The average minimum hop distance of an irregular topology (N, Amax, Amin, D)
is lower bounded by the average minimum hop distance of a Generalized Moore Graph

of N nodes and node degree Ayax. That is,

Hmin(Na Ama‘x, Amina A) Z HM (N, Ama.x) (437)

min
Theorem 5 The average minimum hop distance of an irregular topology (N, Amaxs Amin, A)

is upper bounded by the average minimum hop distance of a A-nearest Neighbors

Topology of N nodes and node degree Apin. That is

Hmin(Na A‘ma,x, Amina A) S Hgin(Na Amin)- (438)

The second approach is to “embed” an irregular topology into a regular one. That
is, by adding nodes and edges, we can construct a Apax-regular topology from an irreg-
ular one(N, Apax, Amin, A) . Reference [47] gives the upper bound on the additional
nodes required to regularize an irregular topology. This property is summarized in

the following theorem.

Theorem 6 Let G = (V, E) be a graph with mazimum degree Apax. If Amax s 0dd,
the G is a subgraph of a Amax regular graph G' = (V', E') with

V! = V] < Apax + 2; (4.39)
if Amax is even, the G is a subgraph of a Ayax Tegular graph G' = (V', E') with
V' = V| < Apax + 1. (4.40)
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4.5 Chapter Appendix

In this section, we provide the proofs of the theorems and other results presented in

this chapter.

4.5.1 Proof for Theorem 1

Proof: We first show that the minimum hop routing spanning tree is unique. For an
arbitrary Moore Graph of degree A and diameter D, we note that, by definition, each
of the nodes appears only once in each routing spanning tree. Every source node has
A edges to A 1st level nodes; every 1st level node then has A — 1 edges to A — 1 2nd
level nodes. None of the 2nd level nodes can be reached from the source node in one
hop. Generally, every node at the ith level (1 <i < N —1) can reach A — 1 nodes at
the (i + 1)th level. None of the nodes at the (¢ + 1)th level can be reached from the
source node in less than 7 + 1 hops. More importantly, there are no edge connecting
two nodes that are of both ¢ hops away from the source node, for 1 <7 < D —1 [39].
With such a construction, if a source node could reach every other nodes in more than
one minimum hop routing spanning tree (non-uniqueness), there would exist at least
one node whose node degree is larger than D. This violates the regularity required
by a Moore Graph. Thus the construction and regularity of a Moore Graph ensure
the uniqueness of the minimum hop routing spanning tree of each node.

Next, we show that every source destination pair has a unique minimum hop
path. For an arbitrary Moore Graph of degree A and diameter D, suppose that there
exist two minimum hop paths from a source node Sp to a destination node Dy, as
illustrated in Figure 4-22. Without loss of generality, let Dy be at the bottom level
of the minimum hop routing spanning tree. One minimum hop path from Sq to Dg
traverses along the path of S — S;... = A — Dy, another traverses along the path
of S = S;... > B — Dg . Due to the uniqueness of the minimum hop routing
spanning tree of Moore Graphs, node B has A — 1 directed edges to the A — 1 nodes
at the bottom level and one directed edge to a node one level up. All these nodes

are distinct from node Dy. As a result, there are at least A + 1 outgoing edges from
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Figure 4-22: The uniqueness of the minimum hop path of a Moore Graph.

node B. This violates the regularity required by Moore Graphs. Thus the minimum

hop path between the node pairs must be unique.

4.5.2 Proof for Theorem 2

Proof: To prove this result, we count how many times a given edge is traversed as
the ith (¢ = 1,...D) hop and then sum over all possible i from 1 to D. The times
that a given edge is used by lightpaths equal to the load on this edge.

From the enumerations of the routing spanning trees of an arbitrary full Moore
Graph, we note that every edge in the graph is enumerated exactly once as the 1st
hop. Let {1 denote the load on a given edge generated by lightpaths using this edge
as their 1st hops,

D-1

h=) (A-1) (4.41)

=0

Similarly, at the ith level of all the routing spanning trees with ¢ < D, each edge is
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enumerated exactly (A —1)*"! times. Let [; denote the load on a given edge generated

by lightpaths using this edge as their ith hops,

L= Y (A-1y. (4.42)

j=i—1

Finally, at the Dth level of all routing spanning trees, each edge is enumerated exactly

(A —1)P~1 times. We have
Ip=(A-1)PL (4.43)
By summing up the load {; over i = 1 to D, we have the total load on a given edge,

Zli = 142(A—1)+3(A—1)2+...+ D(A —1)P!

D

= Y i(a-1) (4.44)

i=1
The actual load on a given edge equals to the average load for a Moore Graph. Thus

we conclude that a balanced load distribution can be achieved.

4.5.3 Derivation of Asymptotic Average Minimum Hop Dis-

tance for Generalized Moore Graphs

We first make an assumption that each node has a full routing spanning tree, so the
number of nodes N satisfies

D

N=;A"

1— AD+1

We next assume that A ~# A —1 and N > A. Then, the network diameter D can be

further approximated as

D(A,N) = [logs (1+ N(A —1))] — 1 ~ loga N. (4.46)
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We proceed to obtain the asymptotic average minimum hop distance of a Generalized

Moore Graph as a function of N and A, as stated in (4.11),

D . ;.
M _ 2 iz i0(3)
Hmin(N’ A) N -1

Zi:l ZAz

Zizo At—1
(D+1)(A—1)AD+1_A(AD+1_1)
(A-1)2
AD+1_1 1
AT T

A

Q

~ D
~ logp N. (4.47)

Note that the function log, N is strictly convex in A.

4.5.4 Derivation of Average Minimum Hop Distance for A-

Nearest Neighbors Topology

In a A-nearest Neighbors topology of size N, for every node i, there are directed
connections (from node ¢) to node |i + 1|n, |¢+2|n, ..., |¢+ D|n, where |z|y denotes
z module over N. For a A-nearest Neighbors topology, the network diameter D is

given by

D= P’T_l-l ) (4.48)

For an arbitrary node j, let n;(i) denote the number of nodes that can be reached
(from node j) in ¢ hops. With the symmetry of A-nearest Neighbors topology, n;(7) =
nk (i) = n(i) for any node j and k. To obtain the path length distribution n(z) for a

A-nearest Neighbors topology, we need to consider two cases:

e Case 1: N —1 cannot be divided evenly by A. For 1 <4 < D —1, n(i) is given
by
A, ifl1<i<D-1;
n(i) = (4.49)
N-1-[%2], ifi=D.

127



With the path length distribution n(7), we can evaluate the average minimum

hop distance Qf a A-nearest Neighbors topology of size N, as stated in (4.17),

Hyin(N,A) = ]Tf—_lzm(i)

- (1 * o 1)) [NA_ 11 - 2(NA— ) G "2 ID?“'E’“)

e Case 2: N — 1 can be divided evenly by A. For 1 < ¢ < D, n(i) is given by

n(4) = A. (4.51)

The expressidﬁ for the average minimum hop distance takes the form, as state
in (4.18),

N-1

1

min

(4.52)

4.5.5 Proof of Theorem 3

In this section, we provide the substantiation that a A-nearest Neighbors topology
provides the upper bound on the average minimum hop distance among all regu-
lar topologies with the same network size N and node degree A, as summarized in
Theorem 3. ‘ _

To prove this, we. first show that A-nearest Neighbors topology has the maximum
diameter among all regular topologies with the same network size N and node degree
A. As in the derivation in Section 4.5.4, the diameter of a A-nearest Neighbor
topology is given as [(N — 1)/A}, which is exactly the maximum diameter for a A-
connected graph, according to a theorem in [37]. Note that the definition of regular
topologies in this thesis includes A-connectivity.

Next, we look at the n(i) for a A-nearest Neighbors topology. As shown in the
derivation in Section 4.5.4, we have n(i) = A (for 1 < ¢ < D — 1), which meets the
minimum requirement to maintain the A-connectivity. (Note that A-connectivity
requires that n(7) Z‘A, 1 <4< D -1, as defined in [37]).

By combining these two results and use the the definition of average minimum hop

distance, we can easily see that a A-nearest Neighbors topology has the maximum
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average minimum hop distance among all regular topologies with the same network

size N and node degree A.

4.5.6 Derivation of Average Minimum Hop Distance for Sym-

metric Hamilton Graph

In a Symmetric Hamilton Graph with degree A, each node connects to A other
nodes with even ”spacing” between nodes in a symmetric and cyclic fashion. Denote
an integer s as the spacing parameter, there are directed connections from each node
itonodes i+ 1|n, i +1+s|n, i +1+28|n, ..., i+ 14+ kS|, ..., i+ N = 1|y,
where k is an integer satisfying k < D — 1. The size of a Symmetric Hamilton Graph
is determined by s and A. That is, N = (A — 1)s + 2. To obtain the path length

distribution n(z), we need to consider the following two cases:

e Case 1: the spacing parameter s is odd. For an odd s, the network diameter D

is given by

(4.53)

From node 7, there are:

— A nodes that can be reached in 1 hop, i.e., n(1) = D;
— 2(A — 1) nodes that can be reached in 7 hops, i.e., n(i) = 2(A — 1), for

2<i<D.

By using the path length distribution n(%), the average minimum hop distance,

as a function of N, A, and s, can be expressed as

1 D
Huin(N,A,5) = +— ;in(i)
- NlTI {A+2(A- 1)217:1]
=2
_ —N—l_T [A+2(A _ 1)(922_17__2)] ) (4.54)
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With s = I—Z%f, Hoin can also be expressed as a function of N and A only, as

stated in

A (N—A-1)(N+5A-7)

Huin(N,8) = 5—7 + NG 1) (4.55)
Taking the second derivative of Hyy(N, A) in regard to A, we have
' 2Hoin(N, A —9)?
FHunN.8) _ (V-2 (4.56)
ONA? 2(N - 1)(A-1)3
For any N > 3 and D > 2, we have
0?Hyin(N, A)

Hpin(N, A) is strictly convex in A.

e Case 2: the spacing parameter s is even. For an even s, the network diameter

D is given by -

D= [”1]. (4.58)

From node %, there are:

— A nodes that can be reached in 1 hop, i.e., n(1) = D;

— 2(D — 1) nodes that can be reached in ¢ hops, i.e., n(i) = 2(D — 1), for
2<i<D-1;

— A — 1 nodes that can be reached in D hops, i.e., n(D) = A — 1.

By using the path length distribution n(¢), the average minimum hop distance,

as a function of N, A, and s, can be expressed as
Huin(N,A,5) = +— Zm(z)

= N A+2 —1)Zz+

- Tv——T[A + (A - 1)(D* - 2)). (4.59)
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With s = %, H,,;, can also be expressed as a function of N and A only, as

stated in
A (N=22+4(N-2)(A-1)-4(A-1)
Huin(N, &) = 57— + AN DB (4.60)
Taking the second derivative of Hy;, (N, A) in regard to A, we have
2Hmin(N, A N —2)?
6 ( ) ) — ( ) . (4-61)
ON2 2(N -1)(A—-1)3
For any N > 3 and D > 2, we have
O?Hpin(N, A)

Hyin(N, A) is strictly convex in A.

For Symmetric Hamilton graph, when N ~ N — 1, H,;;» can be approximated by
Ha

min°

which is also convex in A,
a 3
How =3+ A= (4.63)

When A < N, we have the asymptotic minimum hop distance as

N
Husm = 027 (4.64)

4.5.7 Proof for Theorem 4

We compare the average minimum hop distances of a Generalized Moore Graph
(with N nodes and degree Ap,.) and that of an irregular topology specified by
(N, Amaxs Amin, A) . Let Dy and Dg denote the network diameters for a Gener-
alized Moore Graph and an irregular topology, respectively. For a Generalized Moore
Graph, let ny (%) denote the number of nodes that are 7 hops away from every node;
for an irregular topology, let né(i) denote the number of nodes that are 7 hops away
from node j. This proof hinges on the following properties of a Generalized Moore
Graph:

Dy < Dg (4.65)
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and

ny(i) > nh(i), 1 <i< Dy —1,Vj € N.

(4.66)

In the following derivation, we drop the superscript in the notation of njc(z) for the

clarity of presentation. First, with a simple manipulation, we have

nm(l) = ng(l) + [nm(1) — na(1)]
< ng(l) + 2[nm(1) — ng(1)]

= ng(l) + 2An(1),

where An(1) = ny(1) — ng(1).

Next, we have

2nM(2) S 271@(2) + 3[nM(2) - ’n,(;(2)]

A

9Mna(2) + 3An(2) + An(1)
2[ng(2) — An(1)] + 3[An(2) + An(1)],

where An(2) = ny(2) — ng(2).
Similarly, for 2 < i < Dy — 1, we have

i-1 i
inw(§) < ilna()) — Y An(7)] + G+ 1)[Y_ An(j)],
=1 i=1
where An(i) = np () — ng(i). We also need this trivially held relation,

By adding both sides of equations (4.67) to (4.70), we have

Dum Dy~1 D¢
ZinM(i) < Z ing (%) + DM[E na(J))
i=1 i=1 i=Dyy

Dg
< Z ing(1).
i=1
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(4.70)
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Dividing (4.71) by N — 1, we have, as stated in Theorem 4,

Du inm(i)
HM (N, Apax) = M

min

IA
i
|
7
s

N Dg

1 v
NV -1) ;;’"G(’)

= Hmin(Na Amax, Amim A) (472)

IA

4.5.8 Proof for Theorem 5

We compare the average minimum hop distances of a A-nearest Neighbors topol-
ogy (with N nodes and degree An;,) and that of an irregular topology specified by
(N, Apax, Amins A). Let Dy and Dg denote the network diameters for a A-nearest
Neighbors topology and for an irregular topology, respectively. For a A-nearest Neigh-
bors topology, let ny(i) denote the number of nodes that are 7 hops away from every
node; for an irregular topology, let n{;(z) denote the number of nodes that are 3
hops away from node j. This proof hinges on the following properties of a A-nearest

Neighbors topology:
D¢ < Dy (4.73)
and
n (i) > nn(i),1 <i< Dy —1,Vj € N. ' (4.74)

In the following derivation, we drop the superscript in the notation of n’G(z) for the

clarity of presentation. First, with a simple manipulation, we have

na(l) = nn(l) +[ng(l) —nx(1)] -
< nn(1) +2[n6(1) — nn(1)]
= nn(l) +24a7(1), (4.75)
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where An'(1) = ng(1) — nn(1).
Similarly, for 2 < i < Dg — 1, we have

i—1

ing(i) < ifnn(i) — Y An'(G)] + i+ 1)[D_ An'(5)), (4.76)
J J
where An/(i) = ng (i) — nx(i). We also need this trivially held relation,
DGn(;(DG) < D(;’)'L(;(D(;). (477)

By adding both sides of equations (4.75) to (4.77), we have

) Dg Dg-1 Dn
Y ing(i) < Y inn(i) + Dl Y nn(h)]
i=1 =1 i=Dg
Dn
< Y in(i). (4.78)
i=1

Dividing (4.78) by N — 1, we have, as stated in Theorem 5,

. 1 D¢ 1 N DG
. N < nd (7
——N — 1 ;ZHG(Z) — N(N iR 1) ; ;’an(z)
= Hmin (N, Amax, Amim A)
< -l iny (i)
T & N-1
= HIJXID(N, Amin)' (479)
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Chapter 5

Parametric, First-Order, and

Homogeneous Network Cost Model

In this section, we set up network cost model in preparation for the analysis of op-
timal network architectures in the following chapters. In the process of establishing
the model, we seek a balance between the analytical tractability and a good repre-
sentation of today’s network. As such, the cost model is parametric, first-order, and
homogeneous.

We establish a parametric model, since cost estimates for some key network com-
ponents, such as for OXC ports, could vary by 50% — 200% according to different
market researches. With a parametric model the dependencies of network architec-
ture on the key design parameters can be easily analyzed when these parameters vary
over a realistic range of values. Our cost model is also first-order in the sense that the
parameters and metrics are estimated and represented by their first moments (e.g.,
the arithmetic mean) rather than by their distributions over time or space. In this
thesis, we mostly restrict our attention to regular fiber topology with nodal symmetry
and uniform all-to-all traffic. We thus dimension the network homogeneously. This
means that each fiber connection has the same cost and. the switches installed at
nodes are of the same type and size (port count).

In our model, the network cost consists of three parts: the transmitter/receiver

cost, the fiber connection cost, and the switching (optical cross-connect or OEO
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Figure 5-1: Three constituent parts of network cost — transmitter/receiver cost, fiber

connection cost, and switching cost.

switch) cost, as shown from a perspective near a node in Figure 5-1. They are

described in detail in the following.

5.1 Transmitter/Receiver Cost

To support a uniform traffic demand of a unit traffic (¢ = 1) , each node needs N —1
transmitters/receivers to send/receive traffic to/from every other N — 1 nodes in the
network. For a network of size N, we need N(N — 1) transmitters/receivers. Once
N is given, the cost associated with transmitters/receivers does not change with the
node degree A. Thus the transmitter/receiver cost can be considered as a constant

offset and will not be included in the following cost analysis.

5.2 Fiber Connection Cost

As mentioned in Chapter 4, by using fiber patch panels we can set up a fiber connec-

tion between two nodes that are not directly linked by a cable, as shown in Figure 5-2.
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In a metro environment, a fiber connection spans much shorter distance than that in
a wide-area network, thus amplifiers, which dominate the long haul fiber connection
costs, are not required in general. As such, we can assume that all fiber connections
have approximately the same cost. In other words, when modeling the fiber connec-
tion cost, the dependency of cost on distance can be suppressed. Let C; denote the
cost associated with fiber connections in the network, we have Ct as a linear function

of N and A,
Ci=aNA, (5.1)

where the proportional coefficient « is denoted as the marginal cost of a new fiber
connection. Note that depending on whether the cable plants pre-exist or not, we
assign the marginal cost of a fiber connection differently. For green-field scenarios,
network operators need to install the complete network by digging all the ducts and
laying all the cables. As a result, the cost for digging and laying is included in the
fiber cost usually by dividing this cost over all fibers installed in a single duct. On the
contrary, when the cable plants have already existed, the cost of digging the ducts and
laying the cable is usually not included in the fiber cost. Various technical researches
and market analyses provide references on the cost of fiber connection in the long haul
or metro environments [48]. For a MAN, the cost for a fiber connection is estimated
in the range of $2K-$25K/km. A typical fiber in MAN is 5 to 20km in length; o in
(5.1) is in the range of $10K -$500K /fiber.

5.3 Switching Cost

One of the key attributes of optical switches is the port count K, which depends on
the network traffic demand and the network physical topology, etc. In this chapter
and Chapter 6, we assume that the network traffic is uniform all-to-all, i.e., each
node sends exactly ¢ wavelengths of traffic to every other node, with each wavelength
modulated at a data rate of r (Gb/s). We first use this deterministic traffic model to

approximate the mean of the random traffic and to dimension the capacities of the
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Figure 5-2: By using fiber patch panels, a fiber connection can be established between

two nodes that are not directly linked by a cable.

fibers and nodes accordingly. We leave the analysis of network dimensioning under
random traffic in Chapter 8. For the time being, we also assume that dynamic switch-
ing handles all the pass-through and add-drop traffic. This assumption is realistic -

even static traffic requires active protection switching for network reliability .

5.3.1 Number of Ports and Size of an Optical Switch

The number of ports on an optical switch in a mesh network can be determined by
counting the number of ports that each lightpath occupies as it traverses through the
network, tallying the number of ports for all the demands, and then dividing the sum
by the number of cross-connects. In our analysis, an optical switch is placed at each
node of the network to manage transport bandwidth, thus the number of switches is

given by the number of nodes N.

1To be economical, low-cost switching cquipment, such as fiber-patched panels, can handle the
static or quasi-static portion of the traffic with fixed routing and quasi-static switching; while more
expensive dynamic switching equipment accommodate the fluctuating/stochastic portions. In Chap-

ter 10, we provide comments on the issue of “mixed” switching and lightpath dimensioning.
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Figure 5-3: Lightpaths and cross-connect ports. The figure serves as a guideline
to count the number of cross-connect ports occupied by a lightpath as it traverses
through the network. The relationship among the local add, drop, and pass-through
channels are also illustrated. Here, the number of add and drop traffic, N — 1 each,

corresponds to the all-to-all uniform traffic demand (¢t = 1).

Sizing the Pass-Through and Add/Drop Traffic

Lightpaths of more than one hop have to be switched at the intermediate nodes,
thus they generate pass-through traffic, as depicted in Figure 5-3. We first size up
the amount of the pass-through traffic (in terms of number of wavelengths) at each
node under uniform traffic, by looking at the case of ¢ = 1, i.e., each node sends 1
wavelength of traffic to every other node. Referring to Figure 5-3, a lightpath of 7 hops
is switched j — 1 times at the intermediate nodes, thus generating j — 1 wavelengths
of pass-through traffic. Let ¢; denote the pass-through traffic generated by the traffic

from node ¢. With minimum hop routing, g; satisfies
D
a=Y m(){-1), (5.2)
=1

where n;(j) denotes the number of nodes whose minimum hop path from node i
consists of j hops. Let ) denote the average pass-through traffic (in the number of
wavelengths) at each node of the network, we have

1 N D
Q=522 ml)i-1. (5.3)

i=1 j=1
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By exploiting the symmetry of a regular topology (n;(j) = n(j) ) and using (4.1), we

can further simplify @ as follows:

1 D
Q = N[Ngn(z‘)(i - 1)
= (Hupm — 1)(N = 1). (5.4)

Since Hpyin < D for a regular topology, we can have an upper bound on @,
Q< (D-1)(N-1). (5.5)

The add-drop traffic at each node, denoted as A, is N — 1 for uniform traffic. Thus
the ratio between the average pass-through and the add-drop traffic is given by

Q — (Hmin - 1)(N — 1)
A (N=1)

= Hypn — 1. (5.6)

Next we look at the general case of t > 1. With derivations similar to those for t = 1,

we have the average pass-through traffic at each node Q(t) as

1 D
QW) = [N n@)i-1)]
= (Hon — 1)(N = 1)1, (5.7)

Since the add-drop traffic also scales proportionally with ¢, the ratio between the
pass-through and the add-drop traffic stays the same as Hp, — 1.

The insight provided by (5.7) is revealing: the ratio between the pass-through and
the add-drop traffic under uniform traffic can be tied to a fundamental parameter of

the regular topology — the average minimum hop distance Hpy.

o When node degree A is fixed, Hy,, increases as the network size N grows,
according to previous results summarized in Table 4.1. Thus pass-through traffic

tends to dominate add-drop traffic for large network size N.

e When network size N is fixed, Hy, decreases, as node degree A increases, thus
there is less pass-through traffic at each node. For maximal A = N — 1, the

case of a fully connected network with each node reaching every other node in
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one hop, i.e., Hmin = 1. From (5.7) the pass-through traffic is eliminated. This
agrees with a simple fact that when the network’s connectivity allows each node
to reach every other node in one hop, then there is no pass-through traffic on

each node. This validates the correctness of (5.7).

To illustrate this trend, for N = 50, we plot in Figure 5-4 the ratio between pass-
through and add-drop traffic with respect to node degree A for three types of topolo-
gies: A-nearest Neighbors, Symmetric Hamilton Graphs, and Generalized Moore
Graphs. We can see that when the node degree is small, a A-nearest Neighbors
topology has the highest ratio of pass-through traffic vs. add-drop traffic; while a
Generalized Moore Graphs has the lowest. As A increases, the difference of the ratios
among the three topologies diminishes. Since more switch ports are needed to handle
more pass-through traffic, one can already see that Generalized Moore Graphs have
superior performances in terms of switch size, especially when the node degree A is

small.

The Size of an OXC Switch

On the first order, the capacity of an OXC is independent of the actual data rate r of
each wavelength. Referring to Figure 5-3, consider a directed demand that is added
to the network via the switch at the node on the left. Adding the demand requires
one input port. Eventually, this demand exits the network, by entering and exiting
the switch at the destination node, such as the node on the right. Thus dropping the
demand also requires one output port. Consequently, the size of a switch K, which
equals to the sum of the number of lightpaths that pass-through and add-drop at

each node, can be obtained as

Ko(N,A,t) = (N —1)t[Hpin(N,A) = 1] +2(N - 1)t
= (N = D)t[Hmin(N,A) +1]. (5.8)
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Figure 5-4: Pass-through vs. add-drop traffic ratio as a function of the node degree

A, N = 50.

142



The Size of an OEO Switch

From (5.8), we note that if a wavelength carries a r Gb/s data rate, the total traffic
switched at each node, in the unit of Gb/s, is t(N — 1)r[Hmin(N, A) + 1]. Compared
with that of an OXC switch, the port count of an OEO switch depends on the data
rate per wavelength . With the port (interface) rate R and the port utilization 7,
the number of OEO switching port K, is given by

(N — 1)r[Hmin(N, A) + 1]
Ry |

Ko(N,At,r,Rym) = (5.9)

5.3.2 Modeling the Cost of an OXC

In this section we model the cost of an OXC as a function of the number of switching
ports required. Since the traffic is all-to-all and the topologies are regular, we can
assume that the size of OXC at each node is the same. If there are K, lightpaths
to be switched, added, and dropped at a node, the OXC needs at least K, input
ports and K, output ports. For simplicity of analysis, we assume that OXCs have
strictly non-blocking switching fabrics. We also suppress the wavelength continuity

constraint by assuming that

e Either there are enough numbers of wavelengths available. This assumption is
realistic at least in the foreseeable future, given the abundance of wavelengths

in the metropolitan environment.

e Or the optical switches allow a full wavelength conversion, i.e., any wavelength
channel on an input port can be switched to any wavelength channel on an
output port. In general OXCs with wavelength conversions have higher cost
per port. As a result, WDM networks equipped with such OXCs have higher
optimal connectivity and higher network cost (as will be explained in detail in

Chapter 6 and Chapter 7).

With wavelength continuity constraint suppressed, K, ports are enough to switch

lightpaths without causing any blocking on the network. In this thesis work, we focus
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Table 5.1: Cost of OXC switching architecture as functions of the number of ports

K,.

Switching Architecture Cost Function
3-D Fi(K,) = BLKg*¢
Multi-stage Fy(K,) = B K1 Plog, K,
2-D F(K,) = B3 K20

on three most representative optical switching architectures: 3-D, multi-stage, and 2-
D OXC, as depicted in 5-5. As described in Section 2.1.7, 3-D architectures, shown in
5-5 (a), are built using two arrays of micro switching elements, each of which has two
degrees of freedom, allowing light to be directed from one input port to any output
port. Multi-stage architectures, shown in 5-5 (b), refer to rearrangeable architectures,
such as Clos or Banyan architectures. 2-D architectures, shown in 5-5 (c), consist of
two-dimensional arrays of micro switching elements that have one degree of freedom.
The cost of OXC scales differently for different types of switching architectures. Table
5.1 lists the first-order cost functions corresponding to these switching fabrics. In this
table, ( (0<(<1),0 (0<6<1),and § (0 < < 1) are coefficients associated with
reliability and yield issues in the manufacturing of 3-D, multi-stage, and 2-D OXC
switches, respectively. Notice that in modeling the cost of the multi-stage switching
architecture, we assume that the basic switching element is of the size 2 x 2.

As stated in (5.8), K, is a function of network s;ze N, node degree A, and wave-
lengths of traffic ¢ between node pairs. Let C2 denote the cost of OXC, C? is given
by

C? = NEF][K,(N,A,t)]
= NF[(N — Dt(Hpin + 1)],i € {1,2,3}, (5.10)
where ¢ indexes the switch type and therefore 31, B2, and (5 are scaling factors (cost

per port) for 3-D, multi-stage, and 2-D switching fabrics, respectively. The ratios

between (3. 32, and B3 can be evaluated by using a cost crossover point K, for
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different switching fabrics, based on the status of the current technologies. Suppose
the costs for 3-D, multi-stage, and 2-D switching fabrics are the same for a size of

K. x K, then the ratios between 8;, B3, and 3 are
By = B2log K. = B3K.. (5.11)

We estimate 5; at $10k/port for 8 x 8 OXC of 3-D fabrics; realistic o/ ratio can

be in the range from 1 to 50.

' 5.3.3 Modeling the Cost of an OEO Switch

We model the cost of an OEO switch as a linear function of the number of OEO
switching ports Ke:

Ce = ,BeKe(N,A,t,’I‘,’I])

= ﬂe&%)—r[l{minw, A)+1], (5.12)

where (3, is the per port cost of an OEO switch. We set (3, at $40k/port for a 2.5 Gb/s
interface and $80k/port for a 10 Gb/s interface, respectively, based on the estimate
in [14].

It is worthy to point out that the the cost model for switches is general enough to
include the static (patch panel) and dynamic switching. In other words, in addition

| to b1, B2, B3, and B., we assign [, as per port cost for patch panel switching.

5.4 Network Cost

For a network equipped with OXC, according to (5.1) and (5.10), the total network

.cost C is

C = Ci+C°
= N{aA+ FK(N, A8}, i€ {1,2,3). (5.13)

The total cost can be further normalized as cost per node — normalized network cost

Com % (ol + FK.(N, A 0]} i € {1,2,3}, (5.14)

146



and cost per node per unit traffic — normalized network cost per unit traffic

Ca _ {aA + F[K(N, A )]}
7 t

Coje = ,i€{1,2,3}. (5.15)

Similarly, for a network equipped with OEQ switches, according to (5.1) and (5.12),

the total network cost C is

C = Ci+C§
= N{aA + B.K(N,A,t,r,n)}. (5.16)

The corresponding normalized network cost is

C, = —]C\—] = alA + B K(N, A t,r, 1), (5.17)

and the normalized network cost per unit traffic is

Cu _ {oA+B.K(N,A t,r,m)}
t t '

Copt = (5.18)

We note that the normalized cost C, also depends on the type of regular topologies
through the expression of Hy,;,. For a given class of regular topologies, once we have
the Hnin as a function of network size and node degree, we can analyze the optimal

node degree A* that achieves the minimal cost.
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Chapter 6

Optimal Network Architecture
Under Deterministic Traffic

With models for network traffic, physical architectures, and cost set up in place,
we are to formulate and solve the joint optimization problem of physical topology,
dimensioning of network resources, and routing algorithms. By solving the joint
problems analytically, we can obtain fundamental cost bounds as benchmarks for
proposed architectures. More importantly, these results provide insights into what
constitutes scalable network architectures.

As a first step in approaching the joint optimization problem, we give a qualitative
appraisal of the key tradeoffs that influence the optimal network architectures. After
examining and discussing these push-pull effects from a qualitative point of view, we
rigorously set up the joint network optimization problem and quantitatively analyze
the dependencies of the optimal network architectures on key design parameters.

When the locations of nodes (Figure 6-1 (a)) are given, there can be different un-
derlying physical topologies to serve the same (deterministic) traffic demand, albeit
at very different costs. In this thesis work, we approach the finding of a cost-effective
physical topology by setting up a first-order network cost model and then analyz-
ing the tradeoffs among key network resources. As described in Chapter 5, in our
first-order cost model, the costs for fiber connections and switching resources vary

with network connectivity. We note that lightpaths of more than one hop have to
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Figure 6-1: (a) Locations of the nodes; (b) Ring topology (sparsely connected); (c)
Degree 3 topology; (d) Fully connected topology.
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Figure 6-2: Tradeoff between the cost of fiber and the cost of switching.

be switched at intermediate nodes, thus taking up a certain amount of switching
resources. A network with higher connectivity requires more fiber connections, but
the lightpath traverses on average fewer hops and intermediate nodes, requiring less
switching resources, albeit at the expense of more fiber costs. To better understand
the tradeoffs, we consider two extreme cases and their implications on optimal network
topologies: 1) if the cost of fiber plants dominates the cost of switches, the optimal
network topology should be as sparsely connected as possible (Figure 6-1(b)); 2) if
the cost of switches dominates the cost of fiber plants, the optimal network should be
as fully connected as possible (Figure 6-1(d)). Realistic cost ratios between the fiber
plants and the switching resources are in between these two extremes. Thus a tradeoff
between fiber and switching resources will lead to an optimal network connectivity
that is in between these two extreme cases, as shown conceptually in Figure 6-1(c).
Figure 6-2 illustrates how the choice of network connectivity (topology) drives the
fiber cost in one direction, and simultaneously, drives the switching cost in a counter-

acting direction. At an optimal connectivity or an optimal node degree, the minimal
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network cost is achieved, as the result of optimal tradeoff between fiber connection
cost and switching cost. Solving for the optimal node degree is the center of this

chapter.

6.1 Problem Formulation

Using the network cost model in Chapter 5, we are now ready to formulate the phys-
ical topology design problem as an optimization over the type of symmetric regular
topology (denoted as “tpl.” in the formulation), the routing algorithms (denoted as
“r.a.” in the formulation), and the network node degree A. The formulation has a

general form as follows:

min Cu(N, A, t)
{tpl.},{r.a.},A
s.t. 2<A<L<N-1;
AeZt

N and t are given. (6.1)

In this optimization formulation, the inputs are:
e The number of nodes ( network size) N;

o The traffic demand between a source-destination pair ¢ (note that we assume a

uniform all-to-all traffic);

e The type of optical switches and the corresponding parameters, as described in

Section 5.3:

— For OXC switching architecture, the inputs include the cost scaling func-
tion Fi(K,) , where K, is the number of OXC ports, and the corresponding
per port cost (cf. Table 5.1);

— For OEO switching architecture, the inputs include the port (interface)

rate R, data rate per wavelength r, port utilization 7, and per port cost

Be;
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e The cost per fiber connection a.

The objective is to minimize the normalized network cost over:
e The type of symmetric regular topology;
e The type of routing algorithm;

e The node degree of the symmetric regular topology.

In the formulation (6.1), the constraint A < N — 1 imposes an upper limit to the
possible values of the optimal node degree A* for a topology of N nodes; while the
constraint A > 2 ensures that the optimal topology meets the reliability requirement
of more than one connected. Since A represents the node degree, the optimal node
degree A* should be a positive integer.

Note that to maintain the tractability of the analysis and to shed light on the
key properties of optimal network architecture, in our formulation we temporarily

suppress some practical issues of network design:

o We take an “infinite capacity” approach in formulating the network optimization
problem by assuming that a fiber can support as many wavelengths as needed.
In other words, we don’t impose the upper limit on the number of wavelengths

that a fiber can carry.

e We consider a “capacity only” problem — we temporarily omit the details of
wavelength assignment. The reason is that in a long-term context, costs and
architecture efficiencies do not depend on the detailed channel assignment, as
long as suitable channel assignment is feasible under the capacity available [4].

The wavelengths assignment problem will be discussed in detail in Chapter 7.

e We dimension the network for working capacity only — the extra fiber connec-
tions and switching ports that are required for network survivability are not

included in our cost model and thus in the formulation (6.1).

In Chapter 10, we will extend the network optimization framework (6.1) to address

some of these issues.
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6.2 Optimal Routing Algorithm and Optimal Reg-
ular Topology

Though the optimization in (6.1) is carried out over all possible classes of routing
algorithms and regular topologies, an exhaustive enumeration approach would be dif-
ficult and unnecessary. A close examination of the cost model reveals that only the
switching costs depend on the routing algorithm and the type of the topology. In
regard to the routing algorithm, we note that shorter lightpaths pass through fewer
intermediate nodes, thus requiring fewer switching ports. Following this observation,
we can prove that minimum hop routing is optimal for any given regular network, as
long as the switch cost is a non-decreasing function of switch size (K, or K.). As for
the optimal class of topology, existing classes of graphs — Generalized Moore Graphs —
are known to achieve the lower bounds on the average minimum hop distance among
regular topologies with the same node number and node degree. By making connec-
tions between this important property and the switching cost model, we identify that
Generalized Moore Graphs yield cost lower bounds.

In this section, we show that for all classes of regular topologies and uniform traffic,
we can rigorously solve the problem jointly and optimally. To proceed the analysis,
we use a simple yet important concept — we refer to this as “dominated function”
technique, as summarized in the following lemma. Since this lemma trivially holds,

we omit the proof.

Lemma 1 Consider two bounded functions on a closed and bounded set X, fi(z) and

fao(z). Suppose for any z € X, fi(z) < fao(z), then we have min, fi(z) < min, fo(z).

6.2.1 Optimization Over Routing Algorithms

In regard to the optimal routing algorithm, we have the following result:

Theorem 7 Under uniform all-to-all traffic, minimum hop routing is optimal for

any given regular network with a non-decreasing switch cost function.
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To see why minimum hop routing is optimal, we compare the cost incurred by
a minimum hop routing algorithm with that by other (non minimum hop) routing
algorithms for a given regular network of size N and node degree A. For simplicity we
only consider networks equipped with OXC switches; yet the following substantiations
also hold for networks equipped with OEO switches. Denote the average minimum
hop distance of a regular topology as H.,;, and the average hop distance with another

routing algorithm for the same topology as H’'. By definition,
Hpin(N,A) < H'(N,A). (6.2)

For the minimum hop routing algorithm, according to (5.14), the incurred normalized

network cost, denoted by C?, is
CY = alA+ F(K,)
= aA+ F|(N - 1)(Hun(N,A) +1)], i € {1,2,3}. (6.3)

For any other routing algorithm, the normalized network cost, denoted by C,, is

obtained as
C. = aA+ F(K))
= alA+ FJ[(N - 1)(H'(N,A)+1)],i € {1,2,3}. (6.4)
Since the switch size K, and K] are linear in average minimum hop distance H;,
and average hop distance H’, respectively, and F;(K)is non-decreasing in K, for a

regular topology with size N and node degree A, the minimum hop routing achieves

the minimal cost. That is,
CY(N,A) < Ca(N, A), (6.5)

for any A (1 £ A < N —1). Using Lemma 1 (note that the set {A[2 < A <
N —1land A € Z+*} is closed and bounded), we have

min C7(N, A) < min Ca(N, A). (6.6)

Thus we conclude that minimum hop routing is optimal for any given regular network

with a non-decreasing switch cost function.
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6.2.2 Optimization Over Different Types of Topologies

In regard to the optimal type of physical topology, we have the following result:

Theorem 8 With minimum hop routing, among all classes of regular topologies,

Generalized Moore Graphs provide the lower bound on the network cost under uniform

traffic.

To see why the Generalized Moore Graphs are optimal, we compare the costs of
networks of the same size, but of different types of topologies. Here all the networks
use minimum hop routing. For simplicity we again only consider networks equipped
with OXC switches; yet the following substantiations also hold for networks equipped
with OEO switches. As discussed in Section 4.2, for any regular topology with size
N and node degree D, a Generalized Moore Graph achieves the lower bound on

the average minimum hop distance. Denote the average minimum hop distance of a

Generalized Moore Graph as HM  and that of a general regular topology as HS, , we

min?

have

HM (N,A) < HS, (N, A). (6.7)

min m

Following the same reasoning that leads to (6.5), for any regular topology of the same
size N and node degree A, Generalized Moore Graphs achieve the minimal cost. That

is,
CM(N,A) < CZ(N,A), (6.8)

for any A (1 < A < N — 1), where CM and C¢ are the normalize network cost of a
Generalized Moore Graph and a general regular topology, respectively.

Using the dominated function technique (Lemma 1) again, for a given N, we have
min CM(N,A) < min CE(N, A). (6.9)

Thus, with minimum hop routing, among all classes of regular topologies, General

Moore Graphs achieve the lower bound on the network cost under uniform traffic.
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6.2.3 Network Topologies that Provide Upper (Worst Case)

Bounds on Network Cost

As a natural extension, it is of interest to find a class of regular topologies that provides
upper (worst case) bounds on network cost. We have already shown in Chapter 4.3.1
that a A-nearest Neighbors topology, in which each node connects to its A closest
neighbors in a cyclic fashion, achieves upper bound on the average minimum hop
distance among all the regular topologies of the same node number N and node
degree A. By making connections between their properties of average minimum hop
distance and switching cost model, we identify that A-nearest Neighbors yield a cost
upper bounds. We summarize this result and provide a formal substantiation in the

following;:

Theorem 9 A A-nearest Neighbors topology provides an upper bound on the average
minimum hop distance among all reqular topologies with the same node number and
node degree. Moreover, A-nearest Neighbors topologies also achieve the upper bounds

on the network cost under uniform traffic.

As discussed in Section 4.3.1, for any regular topology with size N and node degree
A, a A-nearest Neighbors Graph achieves the upper bound on the average minimum
hop distance. Denote the average minimum hop distance of a A-nearest Neighbors

topology as HY,, and that of a general regular topology as HS, , we have

min?

HY. (N,A) > HS, (N, A). (6.10)

mi

Following the same reasoning that leads to (6.5), for any regular topology of the same
size¢ N and node degree A, a A-nearest Neighbors topology achieves the maximum

cost. That is,
CN(N,A) > CE(N, A), (6.11)

for any A (1 < A < N —1), where CY and CS are the normalized network costs of

a A-nearest Neighbors Graph and a general regular topology, respectively.
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Using the dominated function technique (Lemma 1) again, for a given N, we have
min CN(N,A) > min CS(N,A). (6.12)

Thus, with minimum hop routing, among all classes of regular topologies, A-nearest
Neighbors topologies achieve the upper bound on the network cost under uniform

traffic.

6.3 Minimal Cost and Optimal Node Degree for
Given Classes of Topologies

In this section, we obtain the optimal node degree A* and minimal normalized network
cost C? in the formulation (6.1) for several classes of candidate topologies, all using

minimum hop routing.

6.3.1 The Convexity of the Network Cost Functions

Before solving the optimization problem, we discuss the convexity of the network cost
functions. We first relax A as a continuous variable and later round the result back to
integer. In 6.4.1 we confirm that this approximation is very good. With a continuous
A, the normalized cost Cj is also continuous and differentiable over A, according to
(5.14). For a given N, the average minimum hop distance of the topologies studied
in this work is (or can be approximated as) a convex function of A (cf. (4.11),(4.18),
and (4.22)). Directly from (5.8) and (5.9), the number of OXC ports K, and the
number of OEO ports K. are given by

Ko(N,A,t) = (N — D)t(Hmin(N,A) + 1) (6.13)

and

t(N — Dr(Hpin(N,A) + 1)
Rn ’

respectively. Thus both K, and K, are also convex in A. Further more, any OXC cost

Ko(N,At,r, R,m) = (6.14)

function F;(K,) listed in Table 5.1 is convex and monotonically non-decreasing in Ko,
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therefore is convex in A, according to the theorem of convexity under composition
[49]. Similarly, an OEO cost function is linear with A, thus also convex in A. As
such, the normalized network cost C;, is convex in A and thus a local optimal A* is

also a global optimum, as illustrated in Figure 6-2.

6.3.2 Minimal Cost and Optimal Node Degree for a Given
Class of Topologies

In this subsection, we proceed to find the optimal node degree as a function of N for
three classes of topologies: A-nearest Neighbors, Symmetric Hamilton Graphs, and
Generalized Moore Graphs. For each class of topologies, we analyze their optimal
node degrees for three different types of OXC switching fabrics — 3-D, multi-stage,
and 2-D switching fabrics, as well as for OEO switching fabrics. The analytical and
asymptotic results are summarized in Table 6.1, Table 6.2, and Table 6.3. As an
example, here we provide the analysis of A-nearest Neighbors topology equipped
with 3-D OXC in the following. With some simplifications, the derivations for the
rest of the combinations of topologies and switching fabrics (both OXC and OEO)
are provided in Chapter Appendix 6.5.

From Section 4.3.1, the average minimum hop distance of the A-nearest Neighbors

topology is given by

A N-1 A N-1
HY =(1 - 2 :
if N can not be evenly divided by A; and
1 N-1
Hp = TN (6.16)

if N can be evenly divided by A. The average minimum hop distance can be approx-
imated using (6.16). This approximated average minimum hop distance is a convex
function of node degree A.

For 3-D OXC switching fabrics, we have F;(K,) = 51K, (for simplicity we let
¢ =0, cf. Table 5.1), then the normalized network cost (cf. (5.8) and (5.14)) is

ol + Bit(N — 1)(% + -NQZTl). (6.17)
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. We have the following optimization problem with two inequality constraints,
N — 1)

2A
s.t. g(A)=A-N+1<0;

. 3
min al + Git(N — 1)(—2— +

92(A)=-A+2<0. (6.18)

For an optimal A* and its associated Lagrange multipliers y} and 3, the Karush-

Kuhn-Tucker (KKT) necessary conditions [50] yield

N-1)?
a—ﬂlt(TA*—g)—‘i‘lh_ﬂz = 0
BTN+ = 0
po(—AT+2) = 0;

g1 > 0;p5 > 0. (6.19)
There are two possible cases:
e Case 1: the above constraints are inactive,
2<A*<N -1 (6.20)

For this case we have y} = 0 and pj = 0. Then, we obtain

A* = (%—f) (N —1). (6.21)

Note that the inactivity of the constraint requires the fiber-to-switching cost

ratio to satisfy

2 t\*
N1 < (g—;) <1 (6.22)
e Case 2: one constraint is active. We have either
A*=N-1, (6.23)
in which case p} = 1/2 — o and pj = 0; or

A* =2, (6.24)
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Table 6.1: Optimal node degree A* and minimal normalized network cost C; for

A-nearest Neighbors.

Switch Optimal Node Degree A* Minimal Normalized Cost C;:
Architecture
3D (8h)i(N -1) (VZaPit + 38t (N - 1)

Multi-stage Transcendental optimal equation

Numerical exact solution

Numerical exact solution

2D 3 (F’gx—”)%(N—n%{H[l ( )(N—l)]%}l

=1
3

aA® + B3 [t(N — 1) (§ + 352)]°

+ (& )%(N—l) {1+[1—(3%“)(N—1)]%} o (tN)?
occltﬁN% +czt§N§
OEO 3 (a;f,g) (N 1) (/2 + ) (N - 1)

in which case pf = 0 and p} = gl(N 1)2 — a. As in the [50], u} and w3 both
can be viewed as the rate of change of minimal cost when the level of constraints
changes. Since we are more interested in finding the optimal node degree A* as
a function of N for a given type of topology with certain type of OXC switching
fabrics, we focus on the Case 1, in which p} = u3 = 0. Substituting (6.21) into

(6.17), we have the minimal normalized network cost

o = ( 2ahi +3§1t> (N =1). (6.25)

6.4 Results and Discussions

Having obtained the analytical and asymptotic results in the previous section (as sum-

marized in Table 6.1, Table 6.2, and Table 6.3), in this section we plot the analytical

results or numerical solutions for various design examples to illustrate the effects of

various design parameters on the optimal WDM network architecture. From Section

6.4.1 to Section 6.4.4, we focus on the OXC-switched WDM networks. In Section
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Table 6.2: Optimal node degree A* and minimal normalized network cost C* for

Symmetric Hamilton Graph.

Minimal Normalized Cost Cy

Optimal Node Degree A*

Switch
type
Py
3D 1 (EQL) 3 ./_—‘(N— DV -2 +1 (VaBit + Lty /(IN- (N —2) +a
~1(8) w-n+ ~ (VaBit + I)(N -1 +a
multi Transcendental optimal equation Numerical exact solution
stage Numerical exact solution
5y L 1 2
2D L (égj—') S(Nn-—1} {4+ [2233 6- 73 (N 1)] ’} aA* +Bs [t(N N (g + Eg-—fl—))]
1
2y 2 5 1y73
14(@;‘—1)"(N—1)§{4+§[2233—6-73( at )(N )]2} +1 o (tN)?
o<c3t§N§ +eatinNg
OEO %(ﬁf‘,;) ,/(N—' DIN=2)+1 (,/9-£’=—”+ZM) N-D(N-2) +a
~ 3 (L) (N—1)+1 ~ (2B + LY (N-1) + o

Table 6.3: Optimal node degree A* and minimal
Generalized Moore Graphs.

normalized network cost C} for

Switch Optimal Node Degree A* Minimal Normalized Cost C},
type
5 1 ( put (N-1)InN * _ In N
3-D 4 ( o ) {W(@)}Z aA +,81t(N 1)(1115'* + 1)
tN 1
O(f}nN 0(tN(1+m)
multi Transcendental optimal equation Numerical exact solution
stage Numerical exact solution
2 _1)2 2 N 2
2D | % (8f) ——QEREN o GAT 4+ Gy [tV - 1) (245 +1)]
{w( () o] )]
2 N2
Nk o (tN)? [1 + W%TL
1 ( Bert _ InN * &T_ lnN
OEO | 4 (&) (¥ 1){W(m)}, al* + SN — 1)(2A + 1)
2
L rtN
o Lot octN (1+ )
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6.4.5, we turn our attention to the OEO-switched WDM networks. In Section 6.4.6

we provide a summary.

6.4.1 Dependencies of Optimal Network Connectivity on the
Type of Topology and the Type of OXC Switching Fab-
ric

In Section 6.3 and Chapter Appendix 6.5, we solve for the optimal node degrees and

the minimal costs of different types of topologies and switching fabrics. As presented

in Table 6.1 to Table 6.3, the optimal node degree depends on the network size, the
fiber-to-switching cost ratio, as well as the number of wavelengths of traffic between
each node pairs, etc. To illustrate these dependencies, we plot the normalized optimal
node degree as a function of network size N in Figure 6-3. Here, we define the
normalized optimal node degree as A*/(N — 1). For a fully connected network, the
normalized node degree is one. In Figure 6-3, the traffic demand between each node
pair is set at t = 1. We also let the cost crossover point equals to 32, thus the ratios
between (i, fBe, and (3 are B; = 532 = 323;. Based on the estimates of the realistic
cost ratio between fiber and switch in metropolitan area networks, we set 3, = 1,

a = 40, thus a/B; = 40. For comparison, we also plot the normalized node degrees

of rings and fully connected mesh networks. We have the following observations:

e For a metropolitan area network of moderate size (a few tens to a hundred
nodes), neither rings nor fully connected mesh networks is optimal physical
topologies. The optimal network connectivity is in the range of 0.03N to 0.1N
(the optimal node degrees are in the range of 0.03N to 0.1N for Generalized
Moore Graphs of 50 -100 nodes).

e When we compare the optimal connectivity among different topologies that use
the same type of OXC switching fabrics, we notice that a A-nearest Neighbors
topology generally has the highest optimal node degree, while a Generalized
Moore Graph has the lowest. When the network size N is fixed and the node
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degree A is variable or vice versa, among the three types of topologies stud-
ied, a A-nearest Neighbors topology always has the largest average minimum
hop distance, while a Generalized Moore Graph has the least. By correlating
the optimal connectivity with the average minimum hop distance, we conclude
that for the same network size, a topology with smaller average minimum hop

distance generally has lower optimal connectivity.

When we compare the optimal connectivity of a particular topology with differ-
ent types of OXC switching fabrics, we note that a network with 3-D switching
fabrics has the smallest optimal node degrees; while that with 2-D switching
fabrics has the largest optimal node degrees. For 2-D switching fabrics the opti-
mal node degree (as a solution of the optimality equation) grows approximately
as polynomials of N (for all three classes of the topologies studied, cf. Table
6.1 to Table 6.3). As such, the normalized optimal node degree (A*/(N — 1))
increases as N increases. With this trend, as N is large enough, the solutions of
the optimality equations will eventually surpass N — 1, violating the constraint
A < N —1. When this happens, the constraint A < N —1 becomes active — the
optimal node degree A* equals to N — 1. In other words, the optimal network
has to be fully connected so that the dominant switching cost can be minimized.
It is also worth noticing that for the A-nearest Neighbors and Symmetric Hamil-
ton Graph with 3-D switching fabrics, the normalized optimal node degrees are
asymptotically independent of network size. They are determined only by the

fiber-to-switching cost ratio a/f;.

In the process of finding the optimal node degree, A is relaxed as a positive real
number. As a result, A*, obtained by solving the optimality equation, may not
be an integer. We then round A* to an integer — we compare the network cost
at [A*] and |A*], and choose the one with lower network cost. To evaluate
the accuracy of the approximations, we compare the rounded analytical results
with the results of exhaustive searches — we look for the node degree (an integer)

for which the network achieves the minimal cost. In Figure 6-4, we plot both
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Figure 6-3: Normalized optimal node degree A*/(N —1) as a function of network size
N for A-nearest Neighbors, Symmetric Hamilton Graphs, and Generalized Moore
Graphs. The fiber and switching cost parameters are: (; = 1, a/f; = 40, and
B1 = 502 = 3203s.

analytical and exhaustive search results of normalized optimal node degree with
respect to network size for the A-nearest Neighbors topology. It shows that the
analytical solutions fit well with the exhaustive search results when the network
size N is larger than 20. The “ripple” effect shown in the exhaustive search
results reflects the discontinuity of the average minimum hop distance as a
function of integers N and A, especially for smaller N. After running tests of
this rounding algorithm, the results show that the maximum rounding error is
within 1 node degree. The agreement between the analytical results and the

exhaustive searches is also provided in Figures 6-5, 6-6, and 6-8.
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Figure 6-4: Normalized optimal node degree A*/(N — 1) as a function of network
size N for A-nearest Neighbors topology. The lines represent the analytical results;
while the points represent the results of extensive search. The fiber and switching

cost Vparameters are: 01 =1, a/f =40, and B = 56, = 320s.
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Figure 6-5: Normalized minimal network cost C; as a function of network size N
for A-nearest Neighbors topology. The lines represent the analytical results; while
the points represent the results of exhaustive search. The fiber and switching cost

parameters are: 51 = 1, a/f; = 40, and [, = 55; = 320s.

6.4.2 Minimal Cost as a Function of Topology and OXC
Switching Fabrics

Based on Table 6.1 to 6.3, we can demonstrate how well the minimal network cost
scales with different types of topologies and technologies. For this purpose, we plot
from Figure 6-5 to Figure 6-9 the minimal normalized cost and minimal normalized
cost per unit traffic, for different topologies and switching fabrics. Figure 6-5 compares
the minimal normalized network cost C; of A-nearest Neighbors topology for three
different types of switching fabrics. It is evident that, for small size networks (a few
up to 10 nodes), it is more economical to use 2-D or multi-stage switching fabrics.

As networks size increases, the differences in cost of various switching fabrics become
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Figure 6-6: Normalized minimal network cost per unit traffic C% /(N —1) as a function
of network size N for A-nearest Neighbors topology. The lines represent the analytical
results; while the points represent the results of exhaustive search. The fiber and

switching cost parameters are: §; = 1, a/f3; = 40, and 3; = 50, = 320s.

more evident, mostly due to the scaling of the OXC cost F;(K,) (i € {1,2,3}, cf.
Table 5.1). It is thus cost effective to use 3-D switching fabrics in a network of
moderate size (a few tens to a hundred nodes).

Under uniform all-to-all traffic, the add-drop traffic at each node grows linearly
with the network size. Figure 6-6 takes this factor into account. It plots the minimal
normalized cost per unit traffic C} /(N — 1) with respect to network size N for three
different types of switching fabrics. Both the plot and the analytical asymptote in
this figure indicate the cost effectiveness of using 3-D switching fabrics as the size
of the network increases: the minimal normalized cost per unit traffic stays constant
with respect to N for 3-D fabrics, while it grows as the polynomials of N for 2-D

fabrics.
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Figure 6-7: Minimal normalized network cost C} as a function of network size N. The
switching fabric is 3-D with Fj(K,) = 1 K,. Results of ShuffleNets and de Brujin
Graph are labeled as SN(A, k) and B(A, D), respectively. The fiber and switching
cost parameters are: 3 = 1, a/f3, = 40, and 3, = 53> = 3203s.

Figure 6-7 compares the minimal normalized network cost for different classes
of topologies all with 3-D OXC switching fabrics. The results for ShuffleNets and
de Brujin Graph are also presented. We note that some ShuffleNets and de Brujin
Graphs have costs that are close to that of Generalized Moore Graphs, thus from a
cost perspective they are potential candidates for physical topologies of networks of

certain sizes.

Figure 6-8 depicts the minimal normalized network cost per unit traffic with re-
spect to network size N, with both analytical asymptotes and exhaustive search
results. Both the plot and the analytical asymptote again show the cost effectiveness
of Generalized Moore Graphs as network physical topologies: the minimal normal-

ized cost per unit traffic decreases with respect to N for Generalized Moore Graphs;
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while it stays constant (with the asymptote of (20:8;)2 ) with respect to N for A-

nearest-neighbor topologies. The analytical asymptote for Moore Graphs is given by

(a=pB1/a):

Ga(N) B ln(NV)

4 a a In[ In 2(N-1)In(N 2
{3 (W — ) n(V)] - Inf} I§(N — 1) In(W)]] + ZEEECEEC

Biln N

+ (6.26)

n & (N—1)In(N) .
{% In[2 (N—1) In(V)]~In[2 In{2 (N—1) ln(N)]]+_ILj——lu[z N }

The trends depicted in the above figures are what we expected. From the view-
point of physical topology designs, Generalized Moore Graphs are very “efficient”,
in the sense that as their sizes increase, their diameter and average minimum hop
distance scale favorably as log, N, compared to A-nearest Neighbors or Symmet-
ric Hamilton Graphs, whose diameter and average minimum hop distance scale as
N/A. These efficiencies are further manifested when we consider the dimensioning of

switching resource as traffic per node increases.

To stress the importance in choosing both physical topologies and OXC architec-
tures that have good scalability, in Figure 6-9 we plot the minimal normalized network
cost per unit traffic with respect to network size N, for combinations of two different
classes of topologies (A-nearest Neighbors and Moore Graphs) and two types of OXCs
(3-D and 2-D architectures). As shown in Figure 6-9, even with Generalized Moore
Graphs as physical topology, which exhibit excellent scalability in average minimum
hop distance, if 2-D OXCs, instead of 3-D OXCs, are deployed, the per node cost to
support unit traffic still increases, as the network size increases. In other words, this
particular choice of architecture (physical topology and switching technology) does

not scale well.
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6.4.3 Optimal Network Connectivity and Minimal Cost as
Functions of Fiber-to-Switching Cost Ratio

Using A-nearest Neighbors and Generalized Moore Graphs as examples, Figure 6-10
and Figure 6-11 illustrate how the optimal network connectivity and minimal normal-
ized network cost vary as functions of fiber-to-switching cost ratio. For both figures,
the network size is set as N = 100 and the OXC type is 3-D, i.e., F1(K,) = 1 K,.
The fiber-to-switching cost ratio varies from 2 to 50, which are realistic estimates of
current technologies. The trends depicted in both figures confirm our intuitions: a low
a/ 3, ratio translates to a relatively small cost for a fiber connection, thus the optimal
networks tend to have higher normalized optimal node degree (a densely connected

network); a high «/f; ratio translates to a relatively large cost for a fiber connection,
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thus the optimal networks tend to be sparsely connected. We also note that per
node cost increases .monotonically with the ratio, as shown in Figure 6-11. To explain
this trend, we plot in Figure 6-12 how the optimal fiber cost and optimal switching
cost (both normalized to per node per unit traffic) change with ratio. Figure 6-12
shows that as per fiber connection cost o becomes more expensive relative to per port
switching cost i, the optimal connectivity tends to decrease — the optimal physical
topology uses less fibers. However, the actual fiber cost (the product of the optimal
node degree A* and the cost per fiber connection « ) still increases. Moreover, as
the result of a sparser network, a lightpath on average travels through more hops,

increasing the number of ports, thus the cost of switching.
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6.4.4 Network Scalability as Traffic Increase

Our analytical results in Table 6.1 to Table 6.3 show that the optimal network node
degree is also a function of wavelengths of traffic ¢t between node pairs. The normalized
optimal node degree A*/(N — 1) versus ¢ is shown in Figure 6-13 for combinations of
two classes of topologies and three types of OXC switching fabrics. The dependencies
for fully connected mesh networks and ring topologies are also plotted for reference.
It is shown in this figure that the Moore Graphs maintain smaller optimal connec-
tivity than the A-nearest Neighbors topologies do for every type of OXC switching
fabrics. In other words, Moore Graphs have better scalability. The impact of switch-
ing technologies is shown again in Figure 6-13 — networks with 3-D switching fabrics
have the best scalability, while networks with 2-D switching fabrics do not scale well,
in the sense that networks tend to be fully connected when the traffic between node
pairs exceeds a certain value. In Figure 6-14, we plot the corresponding minimal
normalized network cost per unit traffic with respect to t. The plot illustrates the
trend that as the traffic between node pair increases, the minimal normalized cost per
unit traffic actually decreases for networks using 3-D or multi-stage switching fabrics;

while it increases for that using 2-D switching fabrics.

6.4.5 Comparisons of OXC and OEO Switches

In this section we turn our attention to OEO-switched WDM networks. The focus is to
compare the relative cost benefits of deploying OXC or OEO switches in the network.
As stated in Section 5.3.3, the cost of an OEO switch depends also on the port rate
R and data rate per wavelength r; while the cost of an OXC switch can be considered
as rate independent. Based on Table 6.1 and Table 6.3, in Figure 6-15 we plot the
minimal normalized network cost C* as a function of data rate per wavelength for two
classes of network topologies (A-nearest Neighbors and Moore Graphs) in conjunction
with two types of switching fabrics (OEO switch and 3-D OXC). The network size,
fiber connection cost, OEO per port cost, and 3-D OXC per port cost are set as
N =50, a = 20, B. = 7.5, and B = 1, respectively. We also assume that there is one
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wavelength of traffic between each node pair, i.e., t = 1. Figure 6-15 shows that the
minimal normalized cost of a network with OXC switches does not depend on the data
rate carried by each wavelength; while the normalized minimal cost for a network with
OEO switches increases as the per wavelength data rate increase. At low data rate, it
is economical to use OEO switches; as the per wavelength data rate increases, using
3-D OXC becomes more favorable. Figure 6-16 plots the minimal normalized network
cost per unit traffic per data rate C}/r as a function of data rate per wavelength for
combinations of two classes of network topologies (A-nearest Neighbors and Moore
Graphs) and two types of switching fabrics (OEO switch and 3-D OXC). This plot
demonstrates that at high data rate (>10 Gb/s), networks with 3D-OXC exhibit
much better scalability in terms of minimal normalized network cost per data rate,
primarily due to the fact that the cost of OXC switches are intrinsically independent
of data rate. In Figures 6-17, we plot minimal normalized network cost per data rate
C% /(N —1)r] as a function of network size N, for the same combinations of two classes
of network topologies and two types of switching fabrics, with per wavelength data
rate set at 0.625 Gb/s (an OC-12 connection). In 6-18 we plot the same dependency
with per wavelength data rate of 2.5 Gb/s (an OC-48 connection). From these plots,
we again come to the conclusion that at a low data rate, it is economical to use OEO

switches; at a high data rate, it is more cost-advantageous to use OXC switches.

6.4.6 Section Summary

In this thesis, we adopt an analytical approach to find cost-effective physical topolo-
gies and to select scalable switching technologies. We have so far focus on regular
networks and static uniform traffic model. By setting up a first order cost model and
analyzing the tradeoff between fiber and switching resources, we have found that for
regular networks and uniform traffic, the joint design problems of physical topology,
dimensioning, and routing can be solved optimally and analytically. We prove that
with minimum hop routing, Generalized Moore Graphs achieve the lower bound on
network cost and are good reference topologies. We also show that topologies with

structures close to those of Generalized Moore Graphs can achieve near-optimal cost.
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With simple network cost structures, closed-form solutions of the optimal degree and
cost as functions of various network design parameters (such as network size and
wavelengths of traffic between node pairs) are obtained. These results show that for
a metropolitan area network of moderate size (a few tens to a few hundred nodes),
neither rings nor fully connected mesh networks are optimal topologies. The optimal
network connectivity is in the range of 0.03N to 0.1N. The advantages of analyti-
cal approaches are self-evident: they provide valuable references on how the optimal
network connectivity scales as the design parameters change. More importantly, the
results demonstrate that switching technologies have a tremendous impact on the
final topological architectures. The optimal topologies connecting the same set of
nodes can differ significantly when different switching fabrics are used, even when
these topologies are designed to serve the same traffic demand. Among all-optical
technologies currently available, for smaller networks (a few to a dozen nodes) and
light traffic, 2-D switching fabrics have cost advantage over the 3-D switching fabrics.
However, as the size of the networks and the traffic among node pairs increases, 3-D
switching fabrics have the best scalability. Thus, the cost benefit of deploying the
latter type of technology for the future becomes apparent. Moreover, a comparison
of the cost benefit between OXC and OEO switches shows that at a low data rate, it
is economical to use OEO switches; at a high data rate, it is more cost-advantageous

to use OXC switches.

The results presented in this section demonstrate the importance of making the
right choices on both physical topologies and switching technologies in the network
design process. At this stage, we shall also caution that the plots presented in this
chapter serve primarily to illustrate the trends and the scaling of optimal topologies
as functions of network parameters, traffic demands, and technologies, rather than to

make a definitive recommendation based on the exact values in the plots.
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6.5 Chapter Appendix

As shown in Section 6.3.1, the normalized network cost C, is convex in A for the
three classes of topologies: A-nearest Neighbors, Symmetric Hamilton Graphs, and
Moore Graphs. We now proceed to find the optimal node degree as a function of
N for these topologies in combination with different types of switching fabric: 3-D,

multi-stage, 2-D, and electronic (OEO).

6.5.1 A-Nearest Neighbors Topoloy

The average minimum hop distance can be approximated using (6.16). This approx-

imated average minimum hop distance is a convex function of node degree A.

3-D Switching Fabrics

The derivation of optimal node degree for A-nearest Neighbors networks with 3-D
OXC switching fabrics is already presented in Section 6.3.2 and is thereby omitted

here.

Multi-Stage Switching Fabrics

For multi-stage switching fabrics the OXC cost function has the form of F>(K,) =
B K1+ log, K,. In the following 6 is set to O for simplicity. The optimal node degree
A* shall satisfy

(V-1
2In2

3t(N —1) N t(N —1)? t(N -1

*2 — S
aA*? — Bt 5 Sae )~ Bat o =0 (627)

In|

This optimality condition is a transcendental equation that can be solved numerically
with given a, (B, and N.
2-D Switching Fabrics

For 2-D switching fabrics, the switch cost function has the form of F3(K,) = B3 K2+,

In the following J is set to O for simplicity. When the constraint is inactive, the
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optimality condition for A* is

(N - 1)

N-1)
QA3 — ﬂ3t23( > ) A* — 53t2__§_ =0. (6.28)

Solving for optimal node degree A*, we have the only real and positive solution

At = 2%(537"2)%(1\/-1)% {1+[1—(¥) (N—l)]%}

+ Zi%(ﬁ_;ﬁ)%w_ng{H[1-(2ﬂ;t2)w_1)]%}7. 629

In the case of 2-D switching fabrics, optimal node degree A* grows with the linear

1
3

combination of N polynomials,
A* x ct5 N3 + 5t 5 N3, (6.30)

where ¢; and ¢y are constants. When A* becomes larger than N — 1, the constraint
2 < A < N —1 becomes active. Hence, A* = N — 1, i.e., the optimal topology is

fully connected.

OEO Switching Fabrics

The derivation of optimal node degree for OEO switching fabrics is similar to that

for 3-D OXC. The optimality condition leads to

Betr (N — 1)2
_Ptr (N1 31
Rn 2A*2 0 (6.31)
Solving A* yields
1/ Butr\?
A= — N—1). 6.32
5 (an R) (N 1) (6.32)

6.5.2 Symmetric Hamilton Graph

As presented in Section 4.3.2, we can approximate the average minimum hop distance
of a Symmetric Hamilton Graph as

3 N -2
== 6.33

This approximated average minimum hop distance is convex in A.
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3-D Switching Fabrics

With 3-D switching fabrics, the optimality condition leads to

(N-1)(N-2) _
a—[ A —17 0. (6.34)
Solving for A* yields
* _ 1 ﬂlt % _ —
Ar=2 (7) V(N ~1)(N -2) + 1. (6.35)

Multi-Stage Switching Fabrics

For multi-stage switching fabrics, the optimal node degree A* satisfies:
(N-1)(N-2) In Tt¢(N - 1) + t(N-1)(N-2)
4In2 4 4(A* —-1)

(N-HW-2) _
4In2 '

alA*—1)2 - Bt

Bat

(6.36)

The optimality condition is a transcendental equation that can be solved numerically

with given a, (s, and N.

2-D Switching Fabrics

Similarly, for 2-D OXC switching fabrics we have the optimality equation

a(A* _ 1)3 _ ,83t27(N — 1)2(N — 2) (A* _ 1) (N — 1)2(N — 2)2

— Bat?
8 B 8

=0. (6.37)
For large N, solving for A* yields

ot

+ 14(ﬂit2) (N —1)3 {4+3[22-33 6- 73(ﬁ3t)(N )r} (3638)

The optimal node degree of a Symmetric Hamilton Graph is also a linear combination

D)=

of N polynomials,
2 4 4 5
A* o c3t3 N3 + c4t3 N3, (6.39)
where c3 and ¢4 are constants.
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OEO Switching Fabric

The derivation of optimal node degree for OEO switching fabric is similar to that for
3-D OXC. One can simply replace 5 with S.r/Rn, thus the optimal node degree A*

is

1 [ Betr 2
= -1 (N=-2)+1 .
& =3 (25) VIr-Dm -9 +1, (6.40)
which can be approximated as
. L[ Belr 2
A% r 5 (anR) (N-1)+1, (6.41)

when N is large.

6.5.3 Generalized Moore Graphs

The exact expression of average minimum hop distance for a Generalized Moore
Graph in (4.9) is not only cumbersome but also discontinuous due to the ceiling func-
tion in the expression. Our purpose here is to gain some insight into the asymptotic
behavior of optimal node degree for a Generalized Moore Graph. As derived in Sec-
tion 4.5.3, by assuming A ~ A —1 and N > A, we can approximate the average

minimum hop distance Hy,, for a Moore Graph of size N and degree A as

Hpin(N,A) =logp N. (6.42)

3-D Switching Fabrics

For 3-D OXC switching fabrics, the optimality condition leads to

Bit

A*(In A*)? = 7(N —1)InN. (6.43)
Solving for A* yields
A*(N) = % (%) (N —1) In : (6.44)

{W (,/(ﬁlt/a);zv—nmzv) }2
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where W (z) denotes the Lambert function. Lambert function is the inverse of the

function f(W)= We". When z > 3, W(z) can be well approximated as

In[ln z]

W(z) ~Inz — In[lnz] + (6.45)

nz
Let a = (it/a, for large N (e.g., N > 100 and a = 1/40), A* can be approximated

as
InN

a
4 In[L [ (N—1) In N} | 2 (6.46)
{$I(g(V — )10 V]~ Inf IV — 1) In V)] - HamiCeu
Multi-Stage Switching Fabrics
For Multi-stage switching fabric, the optimality condition leads to
(N—=1)InNIn[t(N -1)]
— 4
a = b A*(In A)2In2
_ 5 t(N —1)InNln(loga. N +1)
2 A*(In A*)2In 2
(N-1)lnN
Pl AP me ~ (6.47)

The optimality condition is a transcendental equation, which can be solved numeri-

cally with given «, 5, and N.

2-D Switching Fabrics

For 2-D switching fabrics, the optimality condition leads to
[In N2

o 2 R DV Sl R
[0 Qﬁgt (N 1) (11’1 A*)BA*

0. (6.48)

Solving for A* yields
o 2 (B (1n N)?
A'N) = o ( a ) (N 1)2{W (% [(%ﬁ) - 1)2(1nN)2F> }3,

where W (z) denotes the Lambert function. Let a = (3t2/a, for large N (e.g., N > 100

(6.49)

and a = 1/40), A* can be well approximated as

A*(N)~ 28 (N = 1)*(ln N)® . (6.50)

27 a a In[4 In[22(N—1) In N]] ) 3
{$mZ2(N - 1)In N] ~ In[ In[Z (N - 1) In V]| + [ ol
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OEO Switching Fabric

The derivation of optimal node degree for OEO switching fabric is similar to that for
3-D OXC. One can simply replace the 8; with fer/Rn, thus the optimal node degree
A* is

Gert In N

N-—-1 .
OZRU) ( ) {W <\/(,3ert/aRn)(N-1) lnN) }2

2

(6.51)

aw =g
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Chapter 7

Routing and Wavelength
Assignment (RWA) for Generalized
Moore Graphs

When we addressed the OXC cost in Chapter 5 and 6, we implicitly suppressed the
wavelength continuity constraints by assuming that either there are infinite number of
wavelengths or a full wavelength conversion is available. As such, K, ports are enough
to switch K, lightpaths, without causing wavelength blocking. The first assumption
is realistic, given the abundance of wavelengths in the metropolitan environment. The
second assumption is less realistic, given the fact that the current price of converters
is still high. This motivates us to expand the scope of this thesis by exploring whether
minimum hop routing algorithm, which minimizes the network switching cost, also
minimizes the number of wavelengths required to establish all-to-all uniform lightpath
connections for Moore Graphs, especially when wavelength conversion is not available.
Our approach is to construct upper and lower bounds on the minimal number of
wavelengths required: if the differences between the upper bound and lower bound are
small, then we can conclude that Moore Graphs exhibit good efficiency in wavelength

dimensioning.
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7.1 Definition and General Solving Approaches of
RWA Problems

We define the RWA problem as follows: given a network fiber topology and a set
of end-to-end lightpath requests, we are to determine routes and assign wavelengths
that require the minimal possible number of wavelengths. If the routing is already
provided, we only need to deal with the wavelength assignment (WA) problem. In
solving a WA problem, the following constraints, usually referred to as wavelength

continuity constraints, must be obeyed:

e Any two different lightpaths must be assigned with different wavelengths on a

given fiber.

e If wavelength conversion is not available, a lightpath must be assigned with the

same wavelength on all the fibers of its route.

There are in general two approaches to solve a WA problem for a set of lightpaths
and a given fiber topology. The first approach involves setting up the WA prob-
lem in the form of mathematical programming and solving it by using techniques
such as linear programming (LP) or nonlinear programming (NLP)[4][9]. The second
approach involves first constructing either a node equivalence graph or an edge equiv-
alence graph and then solving the related problems of node coloring or edge coloring.
In this thesis, we concentrate on the second approach, since this approach usually
allows us to exploit good properties that are intrinsic to certain lightpath patterns
(logical topologies) and fiber topologies. A comparison of node coloring and edge col-
oring approaches are summarized in Table 7.1. Next we provide detailed descriptions
of the “graph coloring” approach [33].

First, we consider node coloring approach — constructing a node equivalence graph
and solving the corresponding node coloring problem. For clarity, we again denote
a given fiber topology as G and a set of lightpaths as P. We construct a node
equivalence graph, denoted as Gy, as follows: each node in Gy corresponds to a

lightpath in P and two nodes in Gy are connected by an (undirected) edge, if the two
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Table 7.1: Comparison of node coloring and edge coloring approaches for solving

RWA problems

Node Coloring Edge Coloring

Limitation on the length No limitations < 2 hops
of a lightpath
Node of the Represents a lightpath | Represents an edge

equivalence graph

of the fiber topology

Edge of the

If two lightpaths share

If two edges are used

equivalence graph at least one node in one lightpath

Minimum number Node chromatic Edge chromatic

of wavelength required number number

corresponding lightpaths in P share a common fiber. Once Gy is constructed, solving
the WA problem is then equivalent to solving the classical node coloring problem in
Gpy. That is, we find an assignment of colors to nodes of Gy in such a way that
adjacent nodes have distinct colors and the minimal number of colors is used. The
minimal number of colors needed to color the nodes in this manner is called the node
chromatic number of the graph Gy, denoted as x(Gx). These colors correspond to
wavelengths used on G. Thus the minimal number of wavelengths required for the
WA problem equals to x(Gy). There is a known result that provides an upper bound
on the node chromatic number for a connected graph with maximal node degree [51],

as summarized in the following:

Theorem 10 Let Gy be a connected graph with mazximal degree Apyax. Suppose Gy

is neither a complete graph nor an odd cycle, then x(G) < Apax-

Next we consider the edge coloring approach — constructing an edge equivalent
graph and solving the associated edge coloring problem. Unlike the node coloring
approach, which has no limitation on the length (in the number of hops) of a lightpath

request, the edge coloring approach can only apply to special cases in which all
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Figure 7-1: (a) A line topology and a lightpath request of 3 hops; (b) The WA result
when edge coloring approach is used. This figure illustrates why the edge coloring
approach can only be applied to solve WA for lightpaths of no more than 2 hops.
In this example, it is trivial to see that one wavelength is enough to support this
lightpath of three hops. However, if we used the edge equivalence graph approach,
the constructed edge equivalence graph would be a 3-node ring, for which 3 colors
(wavelengths) are required to ensure that all edges incident on a node are shaded

with different colors.

lighpaths have at most two hops. The edge equivalent graph, denoted as G, is
constructed as follows: for every edge e € E of the original fiber topology, we introduce
a node v, in Gp. For a lightpath that uses both the edges e; and e, e; # ez, we add
an (undirected) edge that connects v, and v,,. Once Gy, is constructed, solving the
WA problem is then equivalent to solving the edge coloring problem of Gr. That is,
we are to find the edge chromatic number A.(Gr) of G — the minimal number of
colors to be assigned to the edges of Gp, such that all edges incident on a node in
G, have different colors. These colors correspond to wavelengths used in the original

fiber network G.

To illustrate why edge coloring approach can only be applied to solve RWA for
lightpaths of no more than two hops, we provide a simple example, as shown in

Figure 7-1. We set up a lightpath of 3 hops on a line topology. It is trivial to see
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Figure 7-2: (a) End-to-end lightpath requests on a star topology: 1 — 2,2 — 1,1 —
3,3—1,2— 3, and 3 — 2; (b) The node equivalence graph and the corresponding

node coloring; (c) The edge equivalence graph and the corresponding edge coloring.

that 1 wavelength is enough to support this lightpath. However, if we used the edge
equivalence graph approach, the constructed edge equivalence graph would be a 3-
node ring, for which 3 colors are required to ensure that all edges incident on a node
have different colors. In other words, an edge chromatic number of 3 would indicate
that 3 wavelengths are required for setting up the lightpath. Obviously this is not
true.

There is also a known result that provides an upper bound on the edge chromatic
number for a connected graph with maximal node degree Ax[52][53], as summarized

in the following:

Theorem 11 For a connected graph G with a mazimal node degree Anmax, the edge

chromatic number Ae(GL) is either Apax 07 Apax + 1.

To show how we can use both node equivalence graph and edge equivalence graph
approaches to solve RWA problems, we provide a simple example. As shown in
Figure 7-2 (a), we setup all-to-all uniform lightpath requests on a star network of

4 nodes. Figure 7-2 (b) and (c) show the constructed node and edge equivalence
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graphs, respectively. Note that since there is a unique minimum path between any
pair of nodes in a star topology, both the node-equivalence and the edge-equivalence
graphs are unique. It is straightforward to show that both node chromatic and edge
chromatic numbers are 2. We thus reach the conclusion that two wavelengths are

required to support the uniform lightpath requests.

7.2 Solving RWA Problems for Moore Graphs

In this section, we study whether minimum hop routing algorithm, which minimizes
the network cost, also minimizes the number of wavelengths required to establish
all-to-all uniform lightpath connections for Moore Graphs. In Theorem 2 of Chapter
4, we showed that, for Moore Graphs, with minimum hop routing, the total network
load generated by uniform all-to-all traffic can be evenly distributed on every fiber. In
this section, we rely on this property to solve the RWA problem for a Moore Graph.

For clarity, we again summarize the result of balanced load distribution.

Theorem 12 (Theorem 2) For a Moore Graph of degree A and diameter D, balanced
load distribution can be achieved for the static uniform all-to-all traffic, with each edge
having a load of 32, i(A — 1)1,

We first consider the case when wavelength conversion is available, then the WDM
network is logically identical to the traditional circuit-switched networks. With wave-
length conversion, the joint RWA problem is simplified to a routing problem with the
objective of minimizing the maximum load on each fiber. A direct application of bal-
anced load distribution result (Theorem 12) leads to a conclusion that the minimum
hop routing does minimize the number of wavelengths for uniform traffic. In other
words, any other routing algorithms require at least the same number of wavelengths
to support the same traffic demand.

We next consider the case when wavelength conversion is not available. For this
case, RWA becomes rather complicated because of the wavelength continuity con-

straints. Since no two lightpaths that share a common fiber can use the same wave-

length, the balanced load result (Theorem 12) can only be used to construct a lower
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Table 7.2: RWA results for Moore Graphs

Graph Node number Min. no. of wavelengths | Min. no. of wavlengths
Node degree, with conversion without conversion
and diameter

Fully connected A=N-1 1 1
graphs D=1
Rings (with odd N is odd N 28_1 N 28_1
no. of nodes) A=2
Petersen N=10,A =3, 5 5
Graph and D =2
Hoffman-Singleton N=50,A=7 13 <u4
Graph and D =2
Possible N = 3250 N = 3250 113 <114
A=57,and D=2 | A=57,and D=2

bound on the number of wavelengths required. As such, we first solve the RWA
problem for each instance of Moore Graphs and later extrapolate the solutions to a
general result. RWA results for all the instances of Moore Graphs are summarized in
Table 7.2.

We start with a fully connected (complete) graph, which can be treated as a
(trivial) Moore Graph. In a complete graph, each node reaches every other node in
exactly one hop. It is trivial that such a graph requires exactly one wavelength with
or without wavelength conversion.

We next consider ring topologies (with odd number of nodes). A known result
[33] shows that it requires the same (minimal) number of wavelengths, indifferent
to the wavelength conversion capabilities of the network. The minimal number of
wavelength required is (N2 — 1)/8.

The rest instances of the existing Moore Graphs all have diameters of 2, that

is, the longest lightpath has 2 hops. Using this property, we can transform a RWA
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Figure 7-3: (a) Petersen Graph; (b) Part of the edge equivalence graph G, and the
edge coloring of the Petersen Graph.

problem into an edge coloring problem of an equivalence graph G and obtain a
tight upper bound on the minimal number of wavelengths. In other words, for a
Moore Graph (of diameter 2), finding the minimal number of wavelengths to support
a given set of lightpath requests is the same as finding the edge chromatic number
of the corresponding Gr. An example of constructing edge equivalence graph of the

Petersen Graph is shown in Figure 7-3.

For solving a RWA, lightpaths using only a single fiber (edge) can always be
assigned a wavelength independently from other lightpaths (using more than one
fiber). Thus we only need to consider lightpaths of two hops. As shown in the proof
for Theorem 12 (cf. Section 4.5.2), for a Moore Graph under uniform all-to-all traffic,
each fiber is used as a first hop (of a two-hop path) for 327" (A — 1) times (D = 2);
each fiber is used as a second hop (of a two-hop path) for (A — 1)P~1 times (D = 2).
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In other words, the equivalence graph is regular with a node degree

A(GL) = (A-1*"+ i(A _ 1)

D=2

= Y ia-1t -1 (7.1)

i=1
According to Theorem 11, the minimal number of wavelengths to support all the
lightpaths of two hops is at most

D=2
A(GL)+1=> i(A—1)" (7.2)

i=1
Adding one additional wavelength that is used for the lightpath of one hop, we can
have an upper bound on the minimal number of wavelength Wy as

D=2
Wa <1+ ) i(A-1)"" (7.3)

i=1

In summary, Theorem 12 provides a lower bound on the minimal number of wave-
lengths required for a Moore Graph. For complete graphs and rings, it requires the
same (minimal) number of wavelengths with or without wavelength conversions. An
upper bound on the minimal number of wavelengths is given in (7.3). By combin-
ing these results, we extrapolate to the following general conclusion on the minimal

number of wavelengths used to support all-to-all uniform traffic:

Theorem 13 For a Moore Graph of degree A and diameter D, o minimal number of
wavelengths required to support all-to-all uniform traffic with or without wavelength
conversions satisfies

D

D HA-1) T < Wy <14 i(A-1) (7.4)

i=1 i=1

Note that the difference of the upper and lower bound is 1. In other words, for
a Moore Graph, at most one additional wavelength is required in the absence of
wavelength conversion. As for the Petersen Graph, using minimum hop routing and
a simple wavelength assignment heuristic, a minimal 5 wavelengths are required to

support the all-to-all uniform traffic. The heuristic is a combination of “First-fit” and
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“Last-fit” RWA algorithm {10]. The details of the heuristic and the assignment result
are provided in the Appendix 7.4. Theorem 13 shows that Moore Graphs are also
efficient in regard to the wavelength usage, in the sense that wavelength conversions

do not provide significant advantages.

7.3 Solving RWA Problems for Generalized Moore

Graphs

The balanced load distribution property of a Moore Graph arises from its symmetric
construction — each of its nodes has a fully populated routing spanning tree. For a
Generalized Moore Graph, multiple minimum hop paths may exist for some source-
destination pairs. As a result, the minimum hop routing may or may not balance
the load or minimize the congestion even under uniform traffic. To illustrate this,
we first use an example of a (undirected) Generalized Moore Graph with N = 7
and A = 3, as shown in Figure 7-4 (a). In this example, with the minimum hop
routing illustrated in Figure 7-4 (b), a load of 2 can be evenly distributed on each
edge. We further show that 2 wavelengths are enough to support uniform all-to-all
traffic without any wavelength conversion. We next consider another example — a
Symmetric Hamilton Graph of 6 nodes and degree 3, shown in Figure 7-5 (a). This
Symmetric Hamilton Graph can be also considered as a complete K3 3 bipartite graph
(a set of graph vertices can be decomposed into two disjoint sets, such that there are
no two vertices within the same set are adjacent, but every pair of vertices in the
two sets are adjacent). For the clarity of discussion, we redraw the same Symmetric
Hamilton Graph in the bipartite K33 form in Figure 7-5 (b). For this graph, the
minimum hop routing algorithm is not unique. Table 7.3 lists two different minimum
hop routing algorithms. We note that neither of the algorithms can distribute the
load evenly over each fiber. Routing algorithm 1 incurs a maximum load of 4; while
routing algorithm 2 minimizes the maximum load to 3. It is also straightforward

to show that using routing algorithm 2, a minimum of 3 wavelengths are enough to
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(a) (b)

Figure 7-4: (a) A Generalized Moore Graph with N =7 and A = 4; (b) A routing

spanning tree from node 1.

support a uniform demand (¢ = 1), even in the absence of wavelength conversion.
Using node coloring approaches, we investigate the wavelength assignments for
Generalized Moore Graphs with A = 3, 4 and D = 2, 3. The results are listed
in Table 4. It is seen that the wavelength conversion does not reduce the minimal
number of wavelengths required. We thus conclude that the wavelengths can also be

efficiently provisioned for these Generalized Moore Graphs.

7.4 Chapter Appendix

In this appendix, we present the wavelength assignment algorithm and the result for
the Petersen Graph. The following summarizes a RWA heuristic for the Petersen

Graph. Table 5 summarizes RWA results for the Petersen Graph.
1. Number the 5 wavelengths from 1 to 5.

2. Start the assignment first for the two-hop paths, in the order: from source A to

destination B, ..., J; from source B to destination C, ..., J; ..., from source |
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Figure 7-5: (a) A Symmetric Hamilton Graph with N =6 and A = 3; (b) The same

graph is redrawn as a K33 complete bipartite graph.

Table 7.3: The minimum hop routing algorithms for a Symmetric Hamilton Graph

with N =6 and A = 3.

Routing Algorithm 1 Algorithm 2
algorithm

Nodei | |ile — i+ 16, lile — |i + 16 — |t +2]6 | |él6 — |i + 16, |El6 — | + 3|6 — |i + 2l6
|i|6 - ‘l + 3|6, |’L|6 — }’L + 3|6 — |l +4|6 |1,|6 — IZ + 3|6, |'LI6 — |Z + 3]6 — |Z + 4|6
[ile — [+ 5[6 lile — |i + 5l6

Max load 4 3

202



Table 7.4: RWA results for Generalized Moore Graphs with A =3, 4 and D =2, 3.

Generalized Min. no. of wavelengths | Min. no. of wavelengths
Moore Graphs with conversions without conversions
N=6,A=3,D=2 3 3
N=8 A=3D=2 4 4
N=14,A=3, D=3 10 10
N=6,A=4D=2 2 2
N=7A=4,D=2 2 2
N=8 A=4D=2 3 3
N=9,A=4D=2 3 3
N=10,A=4,D=2 4 4
N=11,A=4 D=2 4 4
N=12,A=4,D=2 5 5
N=13,A=4D=2 5 5

Table 7.5: RWA result for the Petersen Graph.

AIB|C|D|E(F|G|H]|I|J
A|l-|5 11452122
B{1|-]4]2|3]4|5|3[1]3
C|5|1|-|5|1|1|4]|5]|3]2
D|5|3|2|-{4]1|2[4|5]|3
E|1]|4(5|2|-[3|1|4]4]|5
F113[5|5|5|-{1[2]|4|3
G|2|1|5|4|5|5]-]1|2]|2
Hl4]|2|1[414]2|5]-]3]|1
F (213|113 |2]3|5|4|-|4
J1214|3[3|1|5(2]|2|3]-
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to destination J.

. Assign to each two-hop path the lowest numbered wavelength that is previously

unused by both fibers of the path.

. Assign the wavelength for the two-hop path, in the order from source B to
destination A; from source C to destination B, A; . . ., from source J to destination

... A

. Assign to each two-hop path the highest numbered wavelength that is previously

unused.

. Assign the unused wavelengths to all the one-hop paths.

204



Chapter 8

Network Dimensioning Under

Demand Uncertainty

In this chapter, we address the issues of dimensioning WDM networks under random
traffic demand. We still focus on the small-scale networks that support both WDM
and OXC-based or OEO-based lightpath switching, such as next generation MAN
and SAN. As already discussed in Chapter 6, in a green field design scenario, when
the locations of nodes are known, a designer needs to determine the network physical
topology (e.g., the fiber connections among network nodes), dimension the necessary
switching resources (e.g., the size of optical switch at each node), and design routing
algorithms. In Chapter 5, 6, and 7, the joint optimization over topology, switching
resource dimensioning, and RWA is carried out based on a static traffic model, i.e., the
traffic demand between a node pair is given as a fixed quantity (e.g., the average or
the maximum possible traffic). This approach is effective when the traffic patterns are
reasonably well known in advance, but it is insufficient in today’s metro environment,
where, as traffic demands among end users become more volatile [56], the uncertainties
of the traffic forecast increase. As such, it is more difficult to choose an appropriate
network topology and to provision the resources so that the actual demand can be
closely matched. On one hand, insufficient provisioning causes a loss of revenue and
a penalty cost for unsatisfied service level agreements (SLA); on the other hand,

over-provisioning will result in under-utilized network resources, hence a delay in
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the recovery of capital investment. Thus designing networks that are robust with
respect to demand uncertainties poses a key challenge, especially in today’s telecom

environment where low cost and scalable solutions must be sought.

To achieve good performance, the design of the physical topology, as in the case
for static traffic, should be carried out jointly with the dimensioning of network re-
sources and the design of associated routing algorithm. Most prior works on network
planning under demand uncertainties [23]- [27] have been undertaken in the context
that network physical topologies are given (thus only dimensioning and routing sub-
problems remain to be solved). These works assess and quantify the effects of traffic
uncertainties on the network cost either via simulations or via stochastic program-
ming techniques. As discussed in Chapters 1,4, and 6, network physical topology is
a crucial design element that has significant influence on the network cost. Thus the
physical topology design should be addressed simultaneously with network resource
dimensioning and routing algorithm design. The works presented in this chapter rep-
resent an attempt to gain analytical insight into the impact of demand variability on

this joint (topology, dimensioning, and routing algorithm) design for WDM networks.

This chapter is organized as follows: in Section 8.1, we review the random traf-
fic model, which was introduced in Chapter 3. In Section 8.2, we introduce two
approaches to include the traffic variability in the network optimization model and
then formulate the network topology design problems with random traffic demand.
In Section 8.3, we first show that with a minimum hop routing algorithm, networks
with physical architectures of Generalized Moore Graphs exhibit the best robustness
(in cost) to demand uncertainties. We then give closed-form solutions of optimal
degree, traffic provisioned, and effective system cost as functions of various network
design parameters. In Section 8.4, we use results from various design examples to
understand the fundamental behaviors of networks under demand uncertainties and

to provide guidelines on designing optical networks in such dynamic environments.
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Figure 8-1: In random traffic model, traffic between a node pair is treated as a random

variable.

8.1 Modelling the Uncertain Demand

As discussed in Chapter 3, the random demand between a node pair is characterized
by a random variable z, specified by its probability density function (PDF) f(z), as
shown in Figure 8-1 (same as Figure 3-3). In this thesis work, we focus on using various
known theoretical distributions to appraise the impact of the demand uncertainties
on optimal network architecture. For fair comparisons, the PDF's are expressed with
independently adjustable mean Z and standard deviation o — the mean Z represents
the magnitude of the expected demand; while the standard deviation o measures the
level of volatility of the forecast. The theoretical distributions used in this thesis are
listed in Table 3.1 and are plotted in Figure 8-2. To maintain the tractability of the
analysis, we further assume that traffic demands between node pairs are all-to-all

uniform and i.i.d.
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Figure 8-2: Distributions of random demand with Z = 3 and o = /3.

8.2 Optimization Models for Network Design Un-

der Demand Uncertainty

As mentioned previously, we assume that the network designer has a reasonable
knowledge of the traffic demand, albeit with some uncertainties, and the demand
between a node pair is characterized by a random variable. Thus, compared with the
deterministic network design problems, for which traffic demand between a node pair
is given as a fixed quantity, here we need to consider further how much bandwidth
t to be provisioned. To include traffic variability in the optimization models, we use
two approaches. The first approach is based on the bi-objective optimization tech-
nique; while the second one —service level requirement approach— is based on the idea

of setting a service level requirement as a constraint in the optimization model.
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8.2.1 Bi-Objective Optimization Approach

For bi-objective optimization, there are two objective functions, Y; and Y,. A solution
is said to be optimal if any further improvement in one objective necessarily results
in a degradation of the other objective [49]. Such an optimal solution is call Pareto-
optimal [49].

To use the method of bi-objective optimization, we first introduce a penalty cost
associated with the unserved demand, which represents opportunity loss and also
quantifies the risk of a competitor entering the market. In our model, we assume
the penalty cost varies linearly with the expected unsatisfied demand. That is, when
the real demand z exceeds the provisioned bandwidth ¢, a penalty of v(z —t) will be
incurred. Here 7 is a coefficient representing per unit cost for unsatisfied traffic. Since
the traffic demands between node pairs are all-to-all uniform and i.i.d., the expected

penalty cost per node takes the form

ECy(a,t)) = (V =1y [ (@ - )f(w)ds, (8.1)

where E|-] denotes the expectation function.

With the penalty cost for unserved traffic introduced, we note that there are clearly
two conflicting objectives to be optimized — network installation cost and penalty cost.
Under-provisioning the network saves on installation cost, but incurs more penalty
cost; over-provisioning the network can reduce penalty cost for unsatisfied traffic, but
increases the installation cost.

One common way to solve a bi-objective optimization problem is to form a weighted
sum of two counteracting objectives. We define such a weighted sum of normalized
network cost and expected penalty cost as the effective system cost, which is denoted

as Ceg(N, A,t). That is we have

Cet(N,A,t) = Ca(N, A, ) + E,[Cy(z,2)]
Ca(N, A, t) +v(N — 1) / " (@ = ) f(z)ds. (8.2)

In (8.2), v can be interpreted as the relative weight of the objective of minimizing

the under-provisioning penalty cost, compared to the objective of minimizing the
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network installation cost. It is worth pointing out that besides presenting the revenue
loss for per unit of unsatisfied traffic, v can also be interpreted as a risk index reflecting
levels of risk aversion. A high « value indicates the network designer’s willingness to
increase network installation cost to avoid the risk of provisioning shortage. More
importantly, only when 7 is larger than a threshold, it is economical (feasible) to
dimension any capacity. More precisely, only when < is larger than the marginal
network cost (at bandwidth t), it is feasible to provide ¢ units of capacity. We defer
the rigorous substantiation of this claim to Appendix 8.5.1.

The Pareto-optimal solution can be obtained by minimizing the effective system
cost, with a given per unit cost for unsatisfied traffic 4. That is

Ca(N, A1) + E4[Cy(a, )]

min
{tpl.},{r.a.},A\t
s.t. 2<A<N-1, (8.3)

A,te Z1, N is given.
In this optimization formulation, the inputs are:
e The number of nodes (network size) N;

e The PDF f(z) that models the traffic demand between a source-destination

pair (note that we assume that the demands are uniform all-to-all and i.i.d);
o The type of optical switches and the corresponding parameters (cf. Section 5.3):

— For OXC switching architecture, the inputs include the cost scaling func-
tion F;(K,), where K, is the number of OXC ports, and the corresponding
per port cost 3; (cf. Table 5.1);

— For OEO switching architecture, the inputs include the port (interface

rate) R, per wavelength data rate r, port utilization 7, and per port cost

Be;

e The cost per fiber connection a;

e The per unit cost for unsatisfied traffic .
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The objective is to minimize the effective system cost over:

The type of symmetric regular topology, denoted as “tpl.” in (8.3);

The type of routing algorithm, denoted as “r.a.” in (8.3);

The node degree of the symmetric regular topology A;

The bandwidth to be provisioned ¢. For the convenience of analysis, we write
t as t = T + qo, with g being a constant to be determined. In this thesis, q is

called the margin.

In (8.3), the constraint A < N —1 imposes an upper limit to the possible values of the
optimal node degree A* for a topology of N nodes; the constraint A > 2 ensures that

the optimal topology meets the reliability requirement of more than one connected.

8.2.2 Service Level Requirement Approach

In our second approach, instead of assigning a monetary penalty for the provisioning
shortage, we use a fixed service level requirement as a constraint in the optimization
model and then minimizing the network cost of meeting it. This approach is well
suited for the situations, in which costs of shortage are difficult to quantify and are
probably not simply proportional to the magnitude of the shortage. Under these
scenarios identifying appropriate forms for the penalty functions and reasonable val-
ues for their parameters would be quite a challenge. In general, as the service level
requirement (such as the probability that a demand is unsatisfied due to bandwidth
shortage) becomes more stringent, more bandwidth needs to be provided — the net-
work cost will increase as a consequence.

As discussed in Chapter 3, for a practical network provisioning under random
traffic, it is often not necessary (or impossible) to achieve totally non-blocking oper-
ation - it suffices if the blocking is considerably low. For a random demand z and
its associated probability density function f(z), in Section 3.2 we have defined an

overflow probability (or fraction of unserved traffic) p. If ¢ unites of bandwidth are
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provisioned, then p is define by (3.3),

/too f(z)dz = p. (8.4)

By including service level requirement (8.4), we have the second formulation as fol-

lows:

min Ca(N,A,t)
{tpl.},{r.a},At
oo
s.t. / f(z)dz < p, (8.5)
t
2<ALKN-1,

A,t € ZT, N is given.
In this optimization formulation, the inputs are:
e The number of nodes (network size) N;

e The PDF f(z) that models the traffic demand between a source-destination

pair (note that we assume demands are uniform all-to-all and i.i.d);
e The type of optical switches and the corresponding parameters (cf. Section 5.3):

— For OXC switching architecture, the inputs include the cost scaling func-
tion F;(K,), where K, is the number of OXC ports, and the corresponding
per port cost 3; (cf. Table 5.1);

— For OEQ switching architecture, the inputs include the port (interface

rate) R, per wavelength data rate r, port utilization 7, and per port cost

Be;
e The cost per fiber connection «;
e The fraction of unserved traffic (overflow probability) p.
The objective is to minimize the normalized effective system cost over:

o The type of symmetric regular topology, denoted as “tpl.” in (8.5);
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e The type of routing algorithm, denoted as “r.a.” in (8.5);
e The node degree of the symmetric regular topology A;

e The bandwidth to be provisioned ¢. For the convenience of analysis, we write
t as t = Z + go, with ¢ being a constant to be determined. In this thesis, g is

called the margin.

In (8.5), we further assume that the network serves the same type of customers, thus

they have the same requirement on shortage probability.

8.3 Solving the Optimization Problems

8.3.1 Optimal Topology and Routing Algorithm

As a first step to solve (8.3) and (8.5), we need to identify the optimal topology
and the optimal routing algorithm. We have shown in Chapter 6 that, under all-to-
all uniform deterministic traffic (where ¢ is a fixed given value), with minimum hop
routing algorithm, Generalized Moore Graphs achieve the lower bound on network
cost and are good reference topologies. In this section, we show that this result can
be extended to the random traffic case — with minimum hop routing, Generalized
Moore Graphs still provide the fundamental limit on the effective system (network
and penalty) cost. To prove this claim we again rely on the ”"dominated function”
technique, albeit we now compare functions of two variables (note that the optimiza-
tion is in regard to both A and t). Equations (8.3) and (8.5) imply that for a given
network size N and provisioned bandwidth ¢, the expected penalty cost is indepen-
dent of the type of topology and the routing algorithm. Thus for finding the optimal
topology and routing algorithm we can focus only on the network cost and show that
Generalized Moore Graphs achieve the lower bound (on the network cost) via mini-
mum hop routing. The rest of the proof follows the same line of development as that

in Chapter 6, and is omitted here.
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8.3.2 Optimal Bandwidth Provisioned, Node Degree, and Ef-
fective System Cost Obtained by Solving (8.3)

In this section, we solve the optimization problem (8.3) using the A-nearest Neigh-
bors topology under uniform traffic distribution as an example. For the A-nearest
Neighbors, 3-D switching fabrics (cf. Table 5.1 and set { = 0), and uniform traffic

distributions (with given mean Z and o), the optimization problem has the following

form:
3 N-1 N-—1 [F+V3e
: N — A S _
min al + Bit( 1) (2 + 5A ) + 72\/§0 : (z —t)dz
st. 2<A<N-1, (8.6)

At e Z*, N is given.

By relaxing A and ¢ as continuous variables, using Karush-Kuhn-Tucker (KKT)
condition, and considering the case when constraints are inactive, we have the follow-

ing first-order conditions:

N —1)?
a — 61t*L2A'T) = 0, (87)
3 N-1 YN —1)(z+ V30 —t*) _
B (5 + oA ) - 73 = 0. (8.8)

Note that we also need the condition under which the effective system cost in (8.6)
is jointly convex in A and ¢. The derivation of the convecity condition is provided
in Appendix 8.5.2. Solving for optimal provisioned bandwidth ¢* and optimal node
degree A*, we have

. 3
= {2—63—3037—3 [—3\/§(aﬁ1)%+(243%B%—33aﬁ)%] (8.9)
1

+
[\]

12 1 . 342
i3-t08y3B [-3¢§(aﬁ1)a + (243%13% —3Joz,6)%} ),

7 1 1 :1’-
)2 (N - 1){2—%3-%37—% [—Wﬁ(aﬂl)f + (243%Bf7 - 33aﬁ)%} (8.10)
' 1 1 -3
+ 283 %03473B [~3\/§(aﬂ1)5 + (24373-:- - 33aﬁ)%] }

where B = 3—‘} — 1(%/‘-3/?7—) to simplify the appearance of the expression.

214



The expression in (8.9) for the optimal bandwidth provisioned can be expressed
in ¢* viat* =z + g%,

1
3

¢ = 0_1{2_%3‘%057_% [—3\/5(0151)% + (243%35 - 330/3)%] (8.11)

2
} —o 1z,

g* is called the optimal margin, which gives the designer a reference on the extra

o=

+ 2%3“%0’%7_§B [—3\/§(aﬁl)% + (243%‘3% B 330"6)%]

margin to be provisioned.

When Z > o, we can simplify (8.9) to

Wi

2
2.35% + 2 (—32310 + v/3'Bio? - 3. 2%3) ’
= T—— (8.12)
23t (-32Bio + /3 Blo? -3 27

where B; = /6af;/y. When v > o, we have t* — Z.
For a uniform distribution (of non-negative random variables) with a mean Z, the
maximum possible variance is 0 = Z/v/3 (this corresponds to the case of £, = 0, as

shown in equation (3.2)). Under this condition, the expression for t* is

2
2-33Byo + 240t (~32By + /3B — 3 ?Bl)’
=

, (8.13)

1
233303 (—32B1 +/3B7—3- 22330) ’

where By = v/3(36;/7 — 2).

In the process of solving for A* and t*, we also note that as v — oo, we have
t* = tmax and A* — \/Bitmax/20(N — 1), and the minimal effective system cost is
given by

off = ( 2081 tmax + %;‘“—“) (N -1). (8.14)

This means, when the penalty for unsatisfied demand is extremely large, the design
problem (8.6) reduces to an optimization for deterministic traffic for the maximum
traffic. This result can be generalized to any demand PDF with a finite support. On
the other hand, when v — 0, the constraint ¢ > 0 is active, and we have t* — 0. This

means, it is economical not to provision any bandwidth in this situation.
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Next we investigate the impact of the mean Z and the variance o of a uniform
distribution to the minimal effective system cost. For a given mean Z and variance

o, the minimal effective system cost Ci4(Z, o), as a function of Z and o, is given by

e(Z,0) = IIAli? Cn(N, At) + E,[Cp(z, )] (8.15)

s.t. 2<A<N-1,t>0.

Using the sensitivity analysis [49], we have

0Cu(z,0) _ O{Cn(N, A1) + E,[Cp(z, 1)}

oo B0 At (8.16)
_ [(z+ V3o) —t*] [t* — (2 — V30)]
o2
tma.x —t*)(t* — tmin
- o =0 )

when t* > t,;,. Thus as the uncertainty of the traffic demand increases, the optimal
effective system cost increases too. following the same line of development, we have

also
BCeﬁ(f, o )
oz

That is, as the mean of the random traffic demand increases, the minimal effective

> 0. (8.17)

system cost also increases. This is obvious.
For other types of topologies and traffic demand distribution, closed form solutions
do not exist when solving (8.3). We will provide numerical solutions for these cases

in Section 8.4.

8.3.3 Optimum Bandwidth Provisioned, Node Degree, and
Network Cost Obtained by Solving (8.5)

In this section, we solve the optimization problem (8.5) using A-nearest Neighbors
topology and uniform traffic distribution as an example. We also discuss the implica-
tions of some design parameters, such as fraction of unserved traffic p, to the optimal
solutions. With A-nearest Neighbors, 3-D switching fabrics (cf. Table 5.1 and set

n = 0), and uniform traffic distributions (for simplicity we assume that {ppn, =0 and
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tmax = 2V/30), the optimization problem (8.5) takes into the following form:

. 3 N-1
min oA+ fit(N —1) (§+—2A_)

1 2\/50
s.t. —_— dx <p, 8.18
S / <p (8.18)

2<A<L<N-1,
A,t € Z*, N is given.
To solve this problem, we first relax A and ¢ as continuous variables. The fraction

of unserved traffic constraint indicates that the feasible ¢ would be in the range of

t € (t°,2+/30), where ° satisfies

1 2v/30 t°
dr = (1 — ——) = p. 8.19
T / o~ (157 =p (8.19)

We note that the objective function is linear and monotonically non-decreasing with

t. Therefore to be optimal, the fraction of unserved traffic constraint must be active:
t*(p) = t° = 2v/30(1 — p). (8.20)

After the optimal bandwidth provisioned t* is solved, the problem (8.18) can be

simplified to a convex optimization of node degree A only,

. " 3 N-1
mAlIl alA+ Git*(N —1) (5 + —2A_>
s.t. 2<A<N-1, (8.21)

N and t*are given.

Solving for optimal node degree, we have

. (Bt 1/2

A* = <2a (N-1) (8.22)
1/2
_ (\/ﬁﬁlo(l—p)) N-1).
a
Thus the minimal normalized network cost is given by

36t

c: = ( Safit + P )(N—l) (8.23)

= {\/4\/504&0(1 —p) +3V360(1 — p)] (N —-1).
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Table 8.1: Optimal margin ¢* as a function of p for different PDF's of random demand.

Distribution () =@t (p) —x)/c p—0 p—1
Uniform V3(1 — 2p) ¢ — V3 ¢ — —V/3
Exponential -[lnp + 1] g — oo g — -1

Half Normal | 1/27/(7 — 2)erf }(1—p) | ¢* = 00 | ¢* = —/2/(7 — 2)
N =)

Upper Bound 1—;2 q* — © q

Table 8.2: Optimal node degree A* and minimal normalized network cost C; as

functions of p for different topologies.

Topology Optimal Node Degree A* Minimal Normalized Network Cost Cy
- P «
A — nearest Neighbors 715 (BI—LOI‘(L)) *(N-1) (\/ 2ap1t*(p) + m (N-1)
%(ﬁu*(p)) (N-1)In N 5 A* + Bt (p)(N — 1) ( InN +1)
a VB B /N D s N alA* * - =
Moore Graphs {W( A p)/7) = N)} v 1 e
~ L@ N ~t*(p)N [1+ m—m]

In the process of solving for A* and t*, we also note that as p — 0, we have

t* — tmax = 2V/30 and A* — 4/B1v30/a(N — 1), then the minimal normalized

network cost is given by

I

C: ( 20B1 b + 3 13‘“) (N=1) (8.24)

(\/ 4v/3ap0 + 3\/5[310—) (N —1),

which is the same as (6.25). This means, when the requirement of the fraction of

It

unserved traffic is extremely stringent, the design problem (8.18) reduces to an opti-
mization of deterministic traffic for the maximum or minimum possible traffic. This
result can be generalized to any demand PDF with a finite support. On the other
hand, when p — 1, we have t* — 0. This means that it is economical not to provision
any bandwidth in this situation.

Following the same procedure, we can solve (8.5) for various types of topologies

(such as Generalized Moore Graphs) and traffic distributions (cf. Table 3.1). The
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results are summarized in Table 8.1 and 8.2 and are discussed in Section 8.4.

As mentioned in Section 3.2, in solving (8.4), among all PDFs with the same mean
z and standard deviation o, the “Upper Bound” distribution (3.4) requires the maxi-
mum (worst case) margin. Since network cost increases with the amount of bandwidth
provisioned, the ” Upper Bound” distribution can also be used to size the worst case
network cost. The theoretical substantiation for “Upper Bound” distribution is left

in Appendix 8.5.3.

8.4 Results and Discussion

As discussed previously, the optimal network architecture depends on network size,
fiber-OXC cost ratio, PDF of the random demand, as well as network designer’s
risk aversion. Based on the models set up in Section 8.2 and the solutions obtained
in Section 8.3, this section provides results to illustrate and interpret these depen-
dencies. As examples, we consider a green field design of a network with 50-node
(N = 50), which resembles typical size of metropolitan access networks. According
to the estimation <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>