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Abstract

In this thesis the state-space formulation is used for the analysis of structural dynam-
ics. This formulation, being more general, does not present any restrictions on the
characteristics of the damping. The problem is that for the state-space formulation
the system matrix is nonsymmetric and therefore its eigenvalues and eigenvectors
are complex which require further understanding of complex formulation. For that
purpose the complex state-space formulation is expanded.

Also, we look at the computational efficiency of the formulation. The main compu-
tational burden in the analysis of large structures is the solution of the eigenproblem
which for the nonsymmetric case is slightly altered. The eigenproblem solution for
the nonsymmetric matrix is studied.

The state-space formulation is implemented in the analysis of active structural
control. It is used for the study of various issues related to structural control. One
issue is the discretization of the formulation for the application of digital control.
Another is the effect of the time delay on the active control. Other topics are pa-
rameter sensitivity, optimization algorithms and nonlinear behavior. The simplicity
of the state-space formulation provides a good framework for the investigation of all
of these aspects.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

In many areas of engineering and applied science, differential equations are used for

the analysis of the behavior of dynamical systems. Each discipline tends to formulate

these equations in a way that best suits the problems of interest within that discipline

and satisfies certain objectives such as ease of computation and transparency of the

formulation. For the case of structural dynamics in civil engineering, the equations

of motion are usually presented in the form of second order differential equations.

Solving these second order equations is not difficult. However, one is not tak-

ing advantage of the solution algorithms developed for first order equations. These

algorithms are applicable to a broader range of equations and also are more easily

implemented.

Converting the governing differential equations to a set of first order equations

is the standard approach for most disciplines. These equations are referred to as

the state space formulation. This study is concerned with computational aspects of

the state-space formulation for structural systems. Of particular interest are how

one can deal with arbitrary damping and the nonsymmetric eigenproblem and how

computational time increases with the size of the system. Also, it focuses on the

implementation of this formulation in the structural control problem.



1.1 The second order equation

In the field of structural engineering, the dynamic behavior of a structure is described

by the following equation of motion:

mii + cfl + ku = f (1.1)

where m is the mass matrix, c is the damping matrix, k is the stiffness matrix and the

vector u contains the displacements for the system and f defines the external excita-

tion. This equation represents a system of second order linear differential equations.

This equation has been studied extensively and the solution is well known. There

are different ways to obtain it, and understanding the equation and solution is simple.

Simplicity is the main quality of this equation and approach; it is very physical and

the solution is easy to interpret.

The solution for the case of a one degree of freedom linear system can be obtained

in close form when there is no external excitation, that is, for free vibration. It

involves an oscillatory factor and another term which, in all structural applications,

decays exponentially. This solution is easy to derive and has the following form:

u(t) = e-Wt (vO + ýw u sinUWdt + U cOs Wdt) (1.2)
Wd/

The solution for a linear system subjected to an exciting force f(t) involves the use

of Duhamel's integral. Conceptually, it sums the exponentially decaying responses

due to a series of impulses determined by discretizing f(t),

1 ot
u(t) = e-I f f (7) sinWd(t - T)dw (1.3)

mwTd o

Establishing the analytical solution is possible only for simple force-time relationships.

Generally, it is necessary to use numerical integration for complex load-time histories.

On the other hand, it is always possible to obtain directly a numerical solution to

the second order differential equations. There are various sophisticated schemes such

as Newmark, Wilson or Constant Acceleration method.



This equation has also been solved by changing from the time domain to the

frequency domain. This solution method for the single degree of freedom case decom-

poses the excitation into periodic excitations and obtains the solution to each of this

periodic loads. The solution for the displacement due to a single periodic load is very

simple and can be obtained algebraically. Then the solution for the general loading

is obtained by combining the individual responses for each frequency. This method

has been effectively applied in the design of structures. Since each input periodic

load can be characterized by an amplification factor, the effect on the structure of a

particular periodic loading can be readily established.

For the case of multiple degrees of freedom, one can use a coordinate transforma-

tion to convert the coupled system of equations to a set of uncoupled equations for

the generalized coordinates. This makes the solution of the problem much easier for

different reasons. Firstly, because we can solve each second order equation individ-

ually and then assemble the response. Secondly, because in structural engineering,

we deal with a large number of degrees of freedom of which only a few are really

significant. The use of only a few of the generalized coordinates allow us to obtain a

good idea of the response of the system with much less computational cost.

The way to perform the transformation is by using the eigenvectors of the system

matrix. This means that we have to solve for the eigenvalues of a second order

eigenvalue problem. In the case of second order equations one way to solve this

complicated problem is by ignoring the damping term when finding the eigenvalues

and eigenvectors. The damping matrix is then assumed to be proportional to the

stiffness and damping matrices so that when the transformation is performed the

equations uncouple completely.

1.2 State-space formulation

In the state-space formulation the unknown variables are those quantities that are

necessary to completely describe the state of the system at any time. For a structural

system, the state variables are the displacements and velocities. Instead of working



with n equations of motion for the n degrees of freedom, we break the second order

equations into 2n first order equations. The equation for the case of multiple degree

of freedom is,

X= AX + BF (1.4)

where the vector X contains the displacements and velocities, A contains the system

parameters, F contains the external excitation and B is called the locator matrix.

Even though we are changing the form of the differential equation, obviously the

solution has to be the same. However, since the form is different, the solution process

changes. Also, conceptually, this formulation is different, more general although less

physical than the second order equation.

In the case of the state space formulation, since the equation is of first order, the

eigenvalue problem does not have to be truncated and all the characteristics of the

system are embedded in the system matrix A. The damping matrix can be arbitrarily

chosen and does not have to be proportional to mass or stiffness. This flexibility in

representing the damping is convenient for damping based control devices.

For the multiple degree of freedom case, the eigenproblem has to be solved with

the computational burden that the system matrix is 2n by 2n. Then, one changes

to the state-space generalized coordinates. Although these coordinates are complex

and have less physical meaning than the generalized coordinates for the proportional

damping case, it is still necessary to change to generalized coordinates in order to

reduce the computational effort without significantly affecting the accuracy.

The state space formulation system matrix is not symmetric and that is why the

eigenvalues and eigenvectors occur in complex conjugate pairs. Since the solution is

real, the different complex solutions to the state-space equation need to be combined

on a certain way to produce the "real" solution.



1.3 Advantages of the state-space formulation

Next we discuss some issues which suggest the need for the state-space formulation

as an alternative to the second order equation.

1.3.1 A more general formulation; arbitrary damping

One advantage of the state space formulation is that it allows one to specify an

arbitrary damping matrix. The corresponding disadvantage is that an arbitrary choice

leads to a nonsymmetric eigenproblem. This is an additional computational cost that

has to be considered.

It has been argued that since the size of the system matrix is generally very

large for structural systems, the computational efficiency of the solution becomes an

issue and shifting to the state space formulation as opposed to proportional damping

becomes too expensive in computer time and not worth the advantages it might

offer. However, the validity of that judgement is subject to change with the passage

of time. Computers are evolving faster than they can be commercialized. By the

time that a new computer is adopted, a new faster one is already being introduced.

Nowadays, one can perform computations in a few seconds that would have taken

minutes ten years ago or hours twenty years ago. The change of factors like this

one make us consider again mathematical procedures that we had avoided earlier for

different reasons.

Still, we are forced to minimize the number of operations and to optimize the

use of the computational power. Later, the methods developed for computation are

studied for the case of the state space formulation.

If there are complications that may arise, for this formulation there are also some

reasons that push us to investigate and study it carefully. The main reason mentioned

earlier was the ability to define an arbitrary damping matrix, although there are other

issues to take into consideration.



1.3.2 A more general formulation; conceptual level

Conceptually, this formulation provides a more general although less physical per-

spective of the dynamics problem. For the most basic dynamical system, the state

is just proportional to the rate of change of this state. Something as important as

the state of the structural system is defined uniquely only by its position and by its

velocity, and contains all the information about the distribution of the energy within

the system. The strain, representing the potential energy in the system and the mo-

mentum for the actual energy in the system. The characteristics of the first order

dynamical system are embedded on a single system matrix which in itself contains

all the information about the particular system.

1.3.3 A more general formulation; interdisciplinary

The energy approach to problems in dynamics is always the most general. Being more

general, this approach converges easier to other areas of engineering. For instance, it

does not require particular interpretations from structural engineering related to the

damping of the system. One more advantage is derived from the generality of the

state-space formulation. That is, the model that we work with is shared among more

disciplines as opposed to a very particular formulation which would isolate the work

performed within the discipline. By working at a common mathematical level with

other disciplines of engineering, coherence between disciplines is achieved.

For instance, it is the formulation that will allow us to implement in the best way

control theory to structures which in the future may be important for applications.

We will concentrate on this characteristic of the state-space formulation later. It will

be used for the study of the structural control problem.

1.3.4 A more general formulation; numerical implementa-

tion

There are also practical aspects in which the state space formulation can be very

interesting. One of these is for the numerical analysis in the time domain for which



we need to use numerical integration. In this formulation we are using a first order

differential equation which is much easier to integrate in time using simple methods

such as Euler or Runge-Kutta.

1.3.5 Advantages to structural engineering

In summary, we separate three levels at which the formulation could be interesting.

One is the academic, other is the research and, finally, the commercial analysis level.

At the academic level, it is extremely convenient for students since it is concep-

tually interesting and applies to a much larger kind of systems than just structural

systems. The workings of dynamical systems should be mastered by any engineer

from any discipline even if he or she is going to be working at a very particular level

in an engineering system. All systems have a first order rate of change and modifica-

tions deriving from this concept one can get to particular formulations that may be

of interest to any civil engineering students.

At the level of research, it is certainly useful when working in areas that specifically

implement this approach. In structural control research, it present many advantages

and possibly in areas related to energy absorption and dissipation. Definitely, it is

interesting to work on it and investigate it with greater detail before discarding it.

Then, we can explain why we do not use it. Maybe, if it is not efficient or interesting

today we can refer back to it in the future when time might have made it a more

convenient approach.

At an industrial level, it is more questionable if it is the best formulation. The main

objective at the level of some practical applications is functionality and effectivity. If

this is the case, we should compare this formulation to other that are used currently.

The main obstacle are the computations that need to be carried out to obtain a few

eignvectors and eigenvalues from the system matrix.



1.4 State-space formulation implementation for

control

One of the qualities that we mentioned of the state-space formulation is that it is

interdisciplinary. One of those disciplines which implements state-space formulation

is control. Control applies to any dynamical process in which men actuate and in all

natural processes in which men do not. A controller modifies the characteristics of

the system in order to make it perform better when trying to achieve some objectives.

These objectives are usually the optimization of some variable, may it be the most

effective use of water resources or the least deformations in a structure.

It is noticeable how even though traditionally all the areas mentioned have faced

analytical problems that where solved by methods and notations particular to each,

in the area of control all these disciplines seem to converge into one formulation

very similar since the control problem although applying to all of them is essentially

independent of the area which it models.

It is the field of electrical engineering the one that has investigated the most the

problem of control with the state-space formulation. Also, it has been successfully

applied to areas such as mechanical engineering for robotics and other applications,

in airports for traffic control, in aerospace for aircraft and spacecraft control or in

operations research for control of processes. One of those processes can be considered

the construction process of large projects. Also, the theory is used for transportation

engineering to control the traffic flows. In the management of water resources we

also try to control flows of water to optimize its use. The theory is also implemented

in financial models for the control of the economy. It is even used in some scientific

areas traditionally less analytical like the Social Sciences.

Extensive literature has been produced using this formulation applied to control

in many areas of engineering and some exposure to it or familiarity with it would

be very beneficial to any field of engineering that deals with system dynamics, which

are basically all the fields and structural engineering in particular. This theory, con-

trol theory, has not been investigated much within the area of structural engineering



though. Traditionally a building was designed with some given characteristics of

stiffness, mass and damping and it was left to take as an input the random external

excitation of stochastic excitations such as earthquakes. The structural system were

designed to be passive and not active. Consequently, structural engineering is prob-

ably one of the few engineering disciplines that has little or no presence of control

theory within its curricula. However, the problem of system control applies to all

dynamical systems so it should be a requirement in the education of an engineer and

it would add much value to the understanding of engineering in general.

In the case of an actively controlled structure the state-space formulation has an

additional term. This is the term that represents the control input. It has a similar

form to the external excitation but the value of the input is determined through opti-

mization instead of being stochastic. In the following equation the input is assumed

to be in the form of accelerations,

X = AX + Bgag + BfF (1.5)

If the control input F is zero then we are left with the traditional dynamic equation

of motion for the passive structure. From this we deduce that the control problem is

analytically a more general problem. With the addition of the control action a broad

range of new issues are raised that need to be well understood before this theory can

be used in actual structural control.

The first problem raised with the introduction of control to the model is the

selection of the mentioned control. To find the control force we will have to solve an

optimization problem. There will be different versions to the optimization depending

on what basis we use for the choice. We can be more or less strict with the deformation

or be able to use more or less energy for control.

The are more issues that require our attention on the structural control problem

such as the effect of control on stability or the potential problems that arise when

the applied control is not working exactly at with the timing we wanted it to work.

There are still other questions that are addressed in this thesis.



1.5 Control application to structures

It is important to incorporate the control theory to the analytical tools of the struc-

tural engineering. This is most evident when we consider the application of actual

control to real civil engineering structures.

That possibility has had considerable impact in structural engineering in recent

years. The interesting and challenging idea of controlling a structural system in order

to reduce the effects of external excitations may turn into a reality in the beginning of

the next century. This excitations are produced by nature in a rather random way in

the form of earthquakes, strong winds or even water pressures for the case of off-shore

structures. The effects of these phenomena are well known to be destructive. The

cost is very large and in many cases the losses are human lives. In the last decades

many have been the places that have suffered earthquakes. China, Japan, Mexico,

Guatemala and The United States to name just a few examples.

The effects of this earthquakes are especially destructive for larger structures or

buildings which usually contain more people and more value. The technological ad-

vances in construction technology and the growth of overpopulated metropolitan areas

all over the world will probably increase very much the amount of buildings and there-

fore increase the amount of human lives and value exposed to the destructive effects

of earthquakes. This means that efforts should be directed to the protection of these

structures against these agents and control offers a very good solution to the problem.

The idea of active control is to apply controlling forces that will tend to counteract

the effect of external excitation on structures.

The control can be of two main classes. These are passive and active control. In

the case of passive control, the controlling device is set within the system to reduce

deformations in the structure for any external excitation. The action of the device is

not dependant on the excitation. Active control, will work on the structures depend-

ing on the excitation. If the actuators act on the building based on the deformation

or the actual position of the system it is closed loop control. If the action is taken

based only on the excitation that is coming to the structure then it is called open



loop.

Some theoretical aspects of active control are going to be the topic of other chap-

ters so we will wait to expand the concepts. The problem of how to apply active

control is a more complicated one and it is still a question how to efficiently generate

the forces to control large structures. The theory of active control has already been

implemented succesfully in some small to mid size buildings in Japan as well as in

models in laboratories. Japan is one of the countries pioneering the implementation

of active control. A country which has been struck many times by earthquakes. In

addition, the spacial constrains on its cities force construction industry to grow the

building structures vertically, increasing their exposure to earthquakes.

1.6 General outline

In later chapters, we will offer a detailed expansion of some of the operations we need

to perform on the state space formulation in order to apply it to structural analysis.

Also, we will look at the solution of the particular eigenproblem posed by the state

space formulation when producing a nonsymmetric system matrix. We will use the

characteristics of this formulation to obtain information regarding the behavior of

the system when subjected to the control action. In particular information related

to stability. We will also use the formulation to present some simulation schemes of

actual control to observe the influence of some real control problems. Some of these

are the discrete model, optimization and time delay.



Chapter 2

State Space Formulation

This chapter presents the state-space formulation for the dynamic analysis of struc-

tures as opposed to the second order differential equation. This formulation is devel-

oped and verified for the structural analysis problem. This will help us understand

the possibilities of this formulation and its advantages in the analysis of the many

aspects of the dynamic behavior of structures.

First, we will outline the steps that uncouple the multiple degree of freedom system

of equations using the proportional damping. Then, we uncouple the equations for the

state-space formulation. This formulation, through the use of generalized coordinates,

leads to complex eigenvalues as well as eigenvectors. By applying another change of

coordinates, we produce a real system of equations. The solution of the eigenproblem

is expanded for the single degree of freedom case. We present the general expansion

of the real solution for the state-space equation.

2.1 Proportional damping

There are many procedures to set up the equations of motion for a dynamical system.

It is possible to use the equation of Newton, or D'alambert's principle. We can apply

the Lagrangian equations of motion or even Hamilton's equation. All these equations

are based on the same basic principles but the way to solve them is not exactly

the same. Which equations to use depends on the characteristics of the particular



problem.

The equation of motion for a single degree of freedom structural system undergoing

free vibration has the form:

miu + cit + ku = 0 (2.1)

To solve this problem we assume a solution of the form,

u = ae't (2.2)

Substituting these back we get the arbitrary constants a from the initial conditions.

As shown, for a single equation that is easily solved in the time domain with the use

of the exponential notation. Euler's equation is then used to arrive to a real solution

even though the frequency of the system may be complex.

The problem is more complicated for the case of multiple degrees of freedom. In

this case we need to solve an eigenproblem in order to obtain the eigenvalues and

the eigenvectors that uncouple the equations. For the general damped case, we have

a quadratic eigenproblem which leads to complex eigenvectors. However, to avoid

dealing with complex operations, this problem has traditionally been solved for the

undamped case which gives real eigenvectors. Then, damping is introduced in the

particular equations in various ways, some of which are very effective. That is the

case for the proportional damping.

For a typical structural system, the number of nodes is relatively large and the

number of degrees of freedom may be a few thousands. The matrix describing the

characteristics of such a system is therefore very large. Given the constraints on

the computer capabilities, we are forced to reduce the amount of computation to a

minimum without a considerable loss of information. This is done by transforming

the system of equations to the generalized coordinates. We decompose the displace-

ments of the structure into orthogonal modes, and concentrate on the behavior of the

dominant ones.

This transformation is performed for different reasons. On one hand, some modes



are excited more than others by a given excitation. Also the magnitude of displace-

ment for only a few modes accounts for a very large percentage of the displacement

of a structure. Finally, the less dominant modes are usually harder to find and since

they are less accurate therefore do not really add useful information.

To solve the eigenproblem using proportional damping, we diagonalize the problem

for the mass and stiffness matrices ignoring the damping. This eigenproblem comes

from,

MX + KX = 0 (2.3)

which is the same as,

(M- 1 K - IA)X = 0 (2.4)

where A is the square of the frequency and the eigenvalues of the eigenproblem. The

capital letters represent vectors or matrices. By ignoring the damping matrix we are

left with the general eigenproblem. This problem is simple for two reasons. It is only

an n by n matrix and it is symmetric thus producing real eigenvectors.

With the solution of this eigenproblem we are able to diagonalize the mass and

stiffness matrices. Then the damping matrix is selected proportional to the stiffness

and mass matrices, which are diagonalized by the transformation. This way the

damping matrix is also diagonalized when we perform the change of coordinates.

One specifies the damping for two of the modes only, the rest of the modal dampings

are dependant on these two. The selection of the modal damping presents a different

problem than the selection of damping for an individual member.

2.2 State-space formulation

In the state-space formulation, the unknowns define the state of the system. For a

system with n degrees of freedom, these unknowns are the velocity and displacement

for each degree of freedom, a total of 2n variables. From the second order differential

equations of motion, we can obtain n equations involving velocity and position. The



other n equation come from a very simple relation.

du
d = (2.5)d~t

When we put together these 2n equations, we have a system of first order differ-

ential equations. The equation, including a term for the control action and another

for the external excitation is the following:

X= AX + BfF + Bgag (2.6)

As explained before, the vector X is a vector of size 2n containing the displacement

and velocities at the nodes of the structure. It completely defines the state of the

system at any time.

U
X 4- (2.7)

.U
The vector X represents the first order change of the state of the system. The

matrix A contains the characteristics of the system,

0 IA1C 1  (2.8)A = _M-1K -M-1C (2.8)

The matrix F contains the control forces, and Bf is a locator matrix for the control

forces of the following form:

0
B = M-1 Ef (2.9)

The matrix Bg is another locator for the acceleration of the excitation.

0
Bf = (2.10)

-E



The E and Ef matrices contain just ones on the places where the accelerations or

the forces respectively are located and simply zeros where there are no accelerations

or forces. Finally, the vector ag contains the input accelerations.

2.2.1 Eigenproblem for the nonsymmetric matrix

By reducing the system from n second order equations to 2n first order equations, we

are producing a system matrix which is not symmetric. Eventually, this will present

a nonsymmetric eigenproblem which is a drawback of this formulation.

The solution for this eigenproblem can be obtained using different iterative meth-

ods. It is necessary to study these methods. This will give us an idea of how much

more computational time is required to solve the nonsymmetric eigenproblem for the

state space formulation as compared to the method of proportional damping.

Our next step will be to expand the solution to the state-space equation and to

the nonsymmetric eigenproblem to gain more understanding of the formulation.

The eigenproblem is found by plugging the solution to the equation back into the

original equation. For the case of free vibration, one has the following equation:

X = AX (2.11)

For the first order matrix differential equation we can assume the following solu-

tion:

X = Cie/t (2.12)

In this case the vector Ci represents the vector with the arbitrary constants to be

determined from the initial conditions. And, Ai shall be determined by plugging the

solution back into the state-space equation for the homogeneous case.

AX = AX (2.13)

then,

(A - AI)X = 0 (2.14)



This is the standard eigenvalue problem with the feature that the A matrix is not

symmetric.

The solution of the eigenvalue problem posed by the state space equation should

give us the 2n complex eigenvalues and eigenvectors of the A matrix. This set of

2n eigenvectors is composed of n eigenvectors and their n conjugates, that is, the

complex eigenvalues and their corresponding eigenvectors occur in conjugate pairs.

By diagonalizing the A matrix, one uncouples the equations and solve for the

individual variables. First, one must obtain the vectors that diagonalize the matrix.

We know that,

AVj = A•Vj (2.15)

WrA = A*W (2.16)

Every Vj satisfies

(A - A3jI)Vj = 0 (2.17)

and every Wj satisfies

Wr(A;I - A) = 0 (2.18)

It is simple to prove that the eigenvectors of A, and the left eigenvectors of A

have the same eigenvalues. Premultiplying the two eigenproblems by WY and VT

respectively we get,

WTAV. = AjWrVj (2.19).1 3 J J

VAW j = A .V WJ (2.20)

Since,

(VTA TWJ) = WfAV (2.21)
WTAV- = A*W. V (2.22)

Follows that,

* = A• (2.23)



Now we show that the left eigenvectors of A are also the eigenvectors of AT.

ATW i = AiWi (2.24)

And transposing,

WYA = AjrW (2.25)

and then,

Wjr[AI - A] = 0 (2.26)

left eigenvectors of A are also the eigenvectors of AT. Since,

ATW i = AiW i  (2.27)

And transposing,

WYA = AjWY (2.28)

and then,

WT[AjI- A] = 0 (2.29)

Once we proved that the eigenvalues for A and AT are the same, we must prove

another important point. In order to uncouple the equations we need 2n orthogonal

eigenvectors. This means that the set of eigenvectors of A and AT must be orthogonal

to each other. To prove orthogonality premultiply again by Wr and by V T to get,

WTAVj = AjW Vj (2.30)

VAT•w = A•V •W (2.31)

Transposing the second equation we get,

WTAVj= AjWTVj (2.32)



and substracting the two equation leads to,

0 = (A - Ai)Wrvj (2.33)

It follows that,

W Vj = 0 for j not equal to i (2.34)

There is a comment to make regarding the eigenvectors Wi and Vi. If we define

the V matrix such that,

V = [V1 V2 V3...Vn] (2.35)

the matrix V- 1 has the vectors W , , normalized, for rows. This follows directly from,

W Vj = 0 for j not equal to i (2.36)

WyVj = 1 for j = i after normalizing (2.37)

The right and left eigenvectors of A diagonalize the matrix, but the magnitude of

the diagonal entries depends on the constants used when solving for the eigenvectors.

This is because the eigenvectors have specified direction but not magnitude. If we

obtain V - 1 from the left eigenvectors we must go through normalization. This is

done by first finding the product,

WjVi =cii (2.38)

The normalized vectors are,

W nVi,n = (2.39)i~n Cii

where the subscript n means 'normalized'.

This equation, however, does not specify how cii is divided between Wi and Vi.

Although the vectors will be normalized anyway, it is convenient to apply some judge-

ment later on, at this point. We should set a standard of normalization which may

save complications. One standard is to set the first entry of Vi equal to one.



2.3 Change of coordinates

2.3.1 Transformation to generalized coodinates

We have an orthogonal and normalized basis. We now change the coordinates in the

state space equation from natural coordinates to generalized coordinates

As we stated before, the eigenvectors and eigenvalues from the A matrix occur in

conjugate pairs. Therefore, if we represent the conjugate of any vector V by V we

can express any vector X as a combination of its eigenvectors as follows,

X = Vq + Vj (2.40)

The factors that multiply the eigenvectors are the generalized coordinates which occur

also in conjugate pairs and are represented by q and 4. In order to perform this modal

decomposition, we combine the conjugate terms in global matrices represented with

a g subscript,

Vg=[V V (2.41)

qg = (2.42)

[wT
WT T (2.43)

We have the tools to transform the state space equation from natural coordinates

to generalized coordinates. Starting with

X= AX + BF (2.44)

substituting for X = Vgqg,

Vg(qg = AVgqg + BF (2.45)



and expanding

V

leads to

Also,

V + Vý- = AVq + AVq + BF

AVg = VgAg

The matrix Ag can be decomposed into its conjugate eigenvalues as we did before

with the conjugate eigenvectors,

Ag 1
Ag =

oA
(2.49)

The matrices A and Ai are diagonal matrices containing the eigenvalues and con-

jugate eigenvalues respectively.

Then, the next step is to use the matrix V 1 to obtain the state space equation

in the uncoupled form. By premultiplying all the state space equation by,

V = WWTg (2.50)

we finally obtain the uncoupled equation.

AO 0

o
+ WT BFg (2.51)

or the two following equations,

S= Aq + WTBF

q = AI + WTBF

(n equations)

(n equations)

(2.52)
(2.53)

At this point there are a set of 2n uncoupled equations on the 2n state-space modal

V +BF
q1
4iJ

(2.46)

(2.47)

(2.48)



coordinates. One has to face the problem that this equations involve complex factors.

Still, we know that the solution to the problem, the positions and the velocities in

X, has to be real (there is not such a thing as an imaginary position in space...yet).

For this we will perform a second transformation by decomposing the complex terms

into imaginary and real parts, and use these as variables. Then, we just solve the

equations.

2.3.2 Transformation to real modal coordinates qR and q,

The transformation that we will apply is, for a one degree of freedom system,

q = qR + iqj (2.54)

= qR - iq1  (2.55)

which means,

q, q qR (2.56)
q 1 --i qI

Defining Q and T as

Q qR (2.57)
qI

l i
T = (2.58)

1 -i

the transformation is expressed by

qg TQ (2.59)

We will also use the inverse of the transformation matrix T so that it does not

appear on the transformed equation. This matrix has this form



T-1 2 2
2 2

So when applying the transformation to the modal state space equations we get,

TQ(= AgTQ + WT BF (2.61)

Next we premultiply by T - 1 which together with T transforms the Ag matrix.

The resulting matrix which we will call A* will be a skew symmetric matrix. Defining,

AR

AI
(2.62)

-AR

AR

where AR and A, are diagonal matrices containing the real and imaginary parts

of the eigenvalues respectively.

Also define,

B* = T-1WTBg (2.63)

Finally, the real modal state space equation once transformed is,

Q( = A*Q + B*F (2.64)

This transformation is easily expanded to the case of multiple degrees of freedom

where the T would be,

iI
-ilI (2.65)

where I is an n by n identity matrix.

2.3.3 Overall transformation

Since overall we are performing a change of coordinates, one can find what matrix

(2.60)

I

T= I



performs both transformations in one step. Since,

X = Vgqg

and,

it follows that

X = VgTQ

We will call the overall transformation Z, such that,

where

We can carry out the multiplication to obtain one matrix. Defining for each vector,

Vj = VRj + iVI,j

then,

V

that results in,

where,

VR = [ VR,1

and similarly for V I .

(2.66)

qg = TQ (2.67)

(2.68)

X = ZQ (2.69)

Z = VgT (2.70)

(2.71)

[ I
I

2~]
Z = 2

(2.72)

VR -vI ] (2.73)

VR,2 ... VR,n ] (2.74)



To sum up, one goes from

u
X = (2.75)

to,

Q Q 1= (2.76)

using the transformation,

Z = 2 VR -VI (2.77)

After we solve the transformed equation for Q, one obtains the solution in natural

coordinates using,

X = VRqR + VIqI (2.78)

2.4 The one degree of freedom case

Although the state space formulation is just an alternate way of representing the

traditional formulation, its useful to go through some of the steps in the solution for

the one degree of freedom case. This process will demonstrate that both formulations

lead to the same solution as expected. Also, it gives a better understanding of the

problem by following some of the unknowns through the operations. Finally, it shall

be possible to compare the similarities between both procedures.

For the one degree of freedom case, where w is the natural frequency, Wd is the

damped frequency and ý is the damping, the system matrix in state-space is the

following:

0 1 0 1
A 0 =] w (2.79)k c _ 9 2  - 2 ( w

which can easily be derived from the second order differential equation of motion.

The eigenvalues of this matrix are,

A1,2 = -- ± iWA1 A2 R ± iAI (2.80)



The solution has the form,

x = ceAt (2.81)

Differentiating with respect to time,

x = Acext (2.82)

and assembling the state vector leads to

X x ] ceAt (2.83)

Then, the eigenvectors have the form

V1 and V2 (2.84)Ai A A2 A

The left eigenvectors from AT are,

A T [ 0 -- 2

AT= 0 w2 (2.85)
1 -2(w

Clearly the eigenvalues are the same, and the eigenvectors can also be found to

be proportional to,

2 _ 2 _ 2 92
W1 and W2 (2.86)

Before we use the eigenvectors, they must be normalized. This is done, as we

explained earlier, by multiplying the vectors by themselves to get a scalar and then

dividing the vectors by that scalar. We already proved that they were orthogonal.

Let us verify that the eigenvectors that we obtained before are orthogonal.



[-w2 A1i =-w2 + AA= 0  (2.87)

Now, we normalize,

-w2 A =-2w2(1 _ý2+ 2i -2) -2w 2s (2.88)A

That is the normalizing factor to use for the one degree of freedom case. One has

to decide how to split the factor among the two eigenvectors. This will not make a

difference to the results but it is convenient to make a good choice to obtain simpler

arithmetic. The choice here will be to include a one in the first entry of the eigen-

vectors from A. This way we obtain a normalized V that will be represented with a

subscript of n. This matrix of eigenvectors with a first entry of one is known as the

Vandermonde matrix. For this case,

11Vn = (2.89)

Since we started with this vectors, we will divide WT by the scalar we obtained

to get the normalized vectors for this case. For the undamped case,1[ 111
Wn (2.90)2 ii

Next we multiply WTAVn to get the complex eigenvalues for the undamped case

which are,

WT giW 0
W AVn = [(2.91)

0 -iw

Now we can perform the second transformation using the T matrix which gives

the A* matrix for the one degree of freedom case,



A* -W -Wd (2.92)

The overall transformation for this case is done by,

1 0
Z = (2.93)

for the single degree of freedom case.

2.4.1 From diagonal state space to second order equation.

Now that we have transformed the state-space formulation we can relate the trans-

formed qR and q1 to the original x and ± for the one degree of freedom and homoge-

neous case. The transformed state-space equation is,

=R ARqR - AjqI (2.94)

I - AIqR + ARqI (2.95)

Now we solve for qr and differentiate.

qRt AR
q = -+ qR (2.96)A, A,

qR AR
qI -= + - q R  (2.97)

A, A

and substituting in Eq.(2.92) yields

q' - 2ARq' + (A2 + A2 )qR = 0 (2.98)

This equation reduces to

q' - 2wq+R + w 2qR = 0 (2.99)



Solving for qR is equivalent to solving for x.

2.5 Real expansion of the state-space solution.

Next we prove that the expansion of the complex solution of x gives a real solution.

If we try to expand the solution vector X into its complex eigenvectors we will get

the following expression:

X = VCeAt + VCeAt (2.100)

where

q = [cieAt] (2.101)

If we use the transformation to convert the matrices in the equation to real coor-

dinates with the T matrix, we can say,

V = VR + iVI (2.102)

(2.103)-= VR- iVI

C = CR + iCI (2.104)

(2.105)-= CR - iCI

Also, one splits the exponentials using the following expression:

eAt = eARteiA t (2.106)

We can do the this expansion for each degree of freedom so that by using the



mentioned transformations together with,

eiAlt + e- i t - 2 cos Alt (2.107)

we can rewrite the expression for the single degree of freedom case.

x = e ARt {cos A•I•t(CRVR - CIVI) + sin AIt(-CRVI - CIVR)} (2.108)

which is the complete real solution for both the displacement and velocity.

When we substitute the for the normalized eigenvectors for the one degree of

freedom case we get,

VR = V*

[AR]

0VI = V*
where the V* is just a constant used for normalization. What looks like this:

(2.109)

(2.110)

X - e ARt{co s Ait V* + sin Alt
CRAR - CIAI

-cI V*}
-CRAI - CIAR

Although this was shown for a one degree of freedom system it can be easily

extended for the multidegree of freedom case by summing over all the modes. The

general form is

X = E Cjex-atVj + Cje~itVj (2.112)

For the one degree of freedom we can find for t = 0 the initial conditions. If we

(2.111)



assume,

X(O) =EU(0)]

this leads to,

For it(0) equal to zero,

When u(0) = 0,

For the case of no damping we have

Ai = 0

V*-= 1

2.5.1 Relationship between constants in the solution

We will try to relate the generalized coordinates to the constants CR and CI. The

real solution for the displacement and velocity was expressed earlier in terms of the

generalized coordinates q and 4 in the following form:

X = Vq +'q (2.122)

Also,

X = VCeAt + VCeAt

(2.113)

V*CR = u(0)

V*CRAR - V*C1Ai = it(0)

(2.114)

(2.115)

u = eIRt cos Artu(0)

CRV* = u(O)

(2.116)

(2.117)

CR=O 0

-- u(0)C, = VV*/\,

(2.118)

(2.119)

(2.120)

(2.121)

(2.123)



Therefore with this equation and the expansion we just used, we should be able

to get a relationship between the coordinates qR and q1 and the CR and CI for one

degree of freedom.

We have

q = (CR + iCi)e(AR+iAI)t (2.124)

= (C - iCI)e(AR-iA)t (2.125)

Now,

q + q = 2 qR (2.126)

-iq + i = 2q, (2.127)

Then,

CeAt + Ce' t =2qR (2.128)

-iCeAt + iCet = 2q, (2.129)

now expanding the way we did before,

qR = eARt{CR(ei I t + e- i x•It) + iCi(eiAlt - e-ixAIt)} (2.130)

qR = eARt{CR(cos Alt) - C1 (sin At)} (2.131)

By doing the same derivation with the equation about q1 we get similarly,

q, = eARt {CI(cos At) + CR(sin Alt)} (2.132)

so the equations can be put in matrix form:

qR eRt CR CI cosAt (2.133)Sqj CI CR sin At



This equation give us a good idea about what is the relation between one system

of coordinates and the other. Of course time had to be included in the relation since

q is time dependant and C simply reflect the initial conditions. Also, we observe that

at t = 0 the variables are just equal to each other.



Chapter 3

Overview of eigenproblem for the

nonsymmetric matrix

There is an important aspect of the formulation that we have to consider. The state

space formulation has to be computationally feasible or at least not very inefficient

in comparison to another formulations or procedures if we intend to implement it.

The analysis in structural engineering has to deal generally with a larger number

of equations and therefore with larger matrices than other fields such as electrical

engineering. It is necessary then to change the system from natural coordinates

to the generalized coordinates, which allows us to reduce the number of variables.

This is possible because in this coordinate system some coordinates are significantly

larger than others. These correspond to the principal modes of the system. In order

to change the coordinates we are forced to solve for the eigenvalues of the system

matrix. This is, in general, computationally the most expensive step in the analysis,

especially when we are dealing with hundreds or even thousands of degrees of freedom.

There are different methods to solve for the eigenvalues and eigenvectors of a

matrix. This topic has been exhaustively studied in the field of civil engineering for

the reason mentioned above. The efficiency of the solver for the eigenproblem can

decide whether the solution of a problem is reasonable or if the amount of computation

makes it prohibitive.

We have to establish how much more expensive the transformation to modal coor-



dinates is for the state space formulation in comparison to the classical formulation.

This is difficult because there are many ways to solve the eigenproblem, and each par-

ticular problem or system matrix requires a method adjusted to its characteristics.

Next, we will overview the alternative solution methods for the eigenproblem when

the matrix is symmetric. This is the most typical eigenproblem and the one that

has been studied the most in structural engineering. Then, in order to compare the

algorithms, we present an iterative solution method for the non symmetric eigenvalue.

It proves that there is also a simple iterative solution for this problem even though

the eigenvectors are complex.

3.1 Eigenproblem solution with proportional damp-

ing

The equation for the damped free-vibration problem for the multi degree of freedom

system has the form,

MU + CUJ + KU = 0 (3.1)

The solution to this equation was given before:

U = etq (3.2)

Substituting this solution into the original equation results in

(A2M + AC + K)q = 0 (3.3)

This equation defines the quadratic eigenvalue problem which has a difficult solu-

tion. One way to solve it is to set the determinant of the matrix to zero and solving

for the roots of the polynomial. This procedure is very difficult to implement for

larger systems.

The quadratic eigenvalue problem has been avoided by ignoring the term repre-

senting the damping, and solving the standard eigenvalue problem.



(M -1 K + A21I)q

The eigenvalues turn out to be pure imaginary as expected since we considered no

damping. The problem that we deal with in this case is a standard eigenvalue problem

of size n by n. One advantage of this problem is that the size of the matrix is just the

number of degrees of freedom while the number of variables is actually 2n. However,

it is also very important that the mass and the stiffness matrix are symmetric and

then the eigenproblem is symmetric too.

The eigenvalues, which are pure imaginary, are conveniently turned into sin and

cos in the expanded solution. This allows for a simpler interpretation of it for analysts

less familiar with the exponential formulation which, on the other hand, if understood

can provide an easier and more representative formulation.

By using proportional damping we have simplified the formulation but we have

lost generality and possibly valuable information regarding the variables that we left

out of the eigenproblem, namely the velocities.

An exhaustive research of the many different solution techniques for the eigenvalue

problem would fill volumes with information that go beyond the scope of this thesis.

Some of these become very intricate and with the increasing computational speed

of computers and the increase in their availability these methods may become less

important.

The methods used generally for the solution of the symmetric eigenproblem are

of three different types: transformation , vector iteration, polynomial methods.

3.1.1 Transformation methods

The idea of the transformation methods is to apply successive rotations to the sys-

tem matrix in order to diagonalize it without actually changing the eigenvalues of

the system. This method diagonalizes the system matrix so that we obtain all the

eigenvalues at the same time. As we said before in the case of reduction of the order

of the size of a problem we do not need all the eigenvalues but only a small percentage

(3.4)



of them. The methods are appropriate for rather small matrices. It is not convenient

for sparse matrices since the transformation do not use this advantage in the solution,

in fact some rotation that tend to diagonalize the matrix may place a non zero entry

where there was already a zero.

3.1.2 Vector iteration methods

The second type of solution algorithms are knows as the iteration methods. The

iteration methods are specially suited for large eigenproblem where only a few eigen-

values are being studied since they are found one by one and we can even specify

what range of eigenvalues we are looking for.

The vector iteration methods allow for the succesive calculation of the interesting

eigenvalues starting by the largest, smallest or for a range of values. This method

will be explained in more detail since it will be the method most appropriate for

our kind of problems in which we aim only for some important and most significant

eigenvalues. Also it is applicable for the nonsymmetric eigenvalue problem. This will

be shown later using the basic procedures that immediately follow.

The basic principle of the vector iteration methods also called the power methods

is the following. Suppose we define the eigenvalues of a matrix such that,

IAu1 < IA2 1 < IA3 1 < ... < IA,, (3.5)

Also since the eigenvectors of an n by n matrix form an orthogonal basis for

the N-dimensional space, we know that an arbitrary vector u on that space can be

represented as a linear combination of these eigenvectors such that,

u = clql+ c2q2 + ... + CNqN (3.6)

if we premultiply this arbitrary vector by the system matrix on both sides we get,

Au = cAq1 + c2 Aq 2 + ... + CNAqN (3.7)



Au = clAlql + c2 A2 q 2 + ... + CNANqN

if we repeat the multiplication iteratively k times we get,

Aku = c1Akql + c2Akq 2 + ... + CNAkNqN (3.9)

after many iterations we realize that most of the terms will vanish except for the term

Uk - Aku = cNAkNqN (3.10)

so that it is the value that we will converge to after enough iterations.

We can get information about the convergence characteristics if we put the equa-

tion in the following form,

k
qi+ C2

A
q2 + ... + CN-1

(AN)k
qN-1 + CNqN

(3.11)

The value of an eigenvalue can be then estimated from the expression,

T

Uk+1Uk+
Uk+lUk

(3.12)

In order to keep the entries of the eigenvectors with small size we should perform

a simple normalization of the vectors every iteration, or few iterations, using a simple

expression such as,

(3.13)uk+1 =-T

Uk+1Uk+1

Here is a list of the steps for the typical vector iteration algorithm:,

Uik+1 = AUk (3.14)

(3.15)
T

Uk+lUk+l1
Pk+1 = T

Uk+lUk

Aku = AN
, k

C 1 ( A N)

(3.8)

.Lýk-_1



Uil,1
Uk+1 = (3.16)

uk+l k+l

There is a method that presents a slight variation from the algorithm presented

and it is the inverse vector iteration method. It presents some characteristics that

make it more interesting for us. It will converge to the lowest eigenvalue that is to

the dominant frequency in the case of structural analysis. The general eigenvalue

problem is,

K'Mq = q (3.17)

which is the same as,

Dq = -yq (3.18)

where the eigenvalues are
1

S= 2 (3.19)

The algorithm presented above will converge to the lowest eigenvalue and to the

corresponding eigenvector. In order to get other eigenvectors and eigenvalues we must

make the next trial vector orthogonal to the vector that we already found, so that

no matter how many times we multiply it by the system matrix it never converges

to it. Because it is orthogonal, the coefficient that multiplies the eigenvector already

found is zero and the algorithm converges to the second eigenvalue. This procedure

is called the Gram-Schmidt orthogonalization. We apply it by selecting the new trial

vector such that

fi = u - c1ql (3.20)

Since for the symmetric case
qru

ci = (3.21)
qj qj

then the trial vector should be

qTMu
fi = u 1 qj (3.22)

q Mqi



We can rewrite

u = I q q) u (3.23)

We can perform this same task in the form of a sweeping matrix that sweeps the

old system matrix D from the mode that we already removed. This is performed by

multiplying the system matrix by

qqqTM
S 1 = I q- Mql q (3.24)

1qTMql

To find an eigenvalue which is neither the largest nor the smallest we have to

apply a shift to aim for any range of eigenvalues. This procedure is briefly explained

later.

3.1.3 Polynomial Iteration Techniques

The other type of method of solution for the eigenproblem apply polynomial iteration

techniques. This method is based on the condition that the determinant of the ma-

trix must vanish when we substract the eigenvalues from the diagonal entries. This

condition is expressed by,

p(A(i)) = 0 (3.25)

When we expand the determinant we get a polynomial. If we can solve explicitly

for the eigenvalues embedded in the polynomial which is for very small systems, then

the method is very simple. However for the systems that we are dealing with, we are

forced to use numerical methods to find the roots of the polynomial or the eigenvalues

of the matrix. Iterative methods allow us to find these roots. With these methods

we can also find as many eigenvalues as we need.

3.1.4 Solution Tools

There are important tools that may improve the solution algorithms for the eigen-

problem. Before we look at more complex methods for solving the eigenproblem which

implement these tools, we introduce them. They speed up and insure the convergence



process.

-Shifts. If we perform a shift to the eigenvalues, the new eigenproblem will have the

eigenvalues of the old problem plus the amount of the shift and the same eigenvectors.

If we apply the shift,

A= ± + 6 (3.26)

The new eigenproblem will be,

(K - p/M)q = JMq (3.27)

so that,

Dq = ýq (3.28)

The change to the new problem can be very convenient for different reasons. It

can help us avoid the problem of a rigid body mode for which the eigenvalue is zero

by shifting its value. It can also help us when combined with the iteration methods.

As we saw after k iterations of an arbitrary vector some items in the expanded

vector vanished. When we divided and multiplied all the expression by the largest

eigenvalue the equation became:

Aku = Ak Cl k ql + C2 k q2 + ... + CN-1 q N-1 + CNqN

(3.29)
Therefore after enough iterations all the terms would vanish except for the one

containing the largest eigenvalue. By applying shifts to the axis of the eigenvalues we

can force the largest eigenvalue to be within any range we want. Therefore we will

converge to any eigenvalue we want if it becomes the largest when the shift is applied.

-Sturms Sequence check. When we apply an arbitrary shift [ to the eigenvalues

in our system matrix we get a new system matrix A - IA. In the Sturms sequence

check, which is not presented here, when we perform the LDLT factorization of the

matrix the number of negative elements in D indicates us how many eigenvalues there

are for the matrix less than p. This is a very useful check for some iterative methods



in which we search one eigenvalue at a time without knowing some times if we might

have skipped one. The check will tell us if when we performed a shift to speed up the

process we left an eigenvalue behind.

3.2 Combined methods

We presented the basic methods and properties that we use for the solution of the

eigenproblem. However, there are cases in which we combine the use of different

methods to make the most efficient use of them. Two of these methods are subspace

iteration and the determinant search method.

3.2.1 Subspace Iteration

The subspace iteration uses transformation and iterative techniques. It can also

implement some of the tools to expedite the solution process.

For the subspace iteration method we are trying to solve for the p lowest eigen-

vectors and eigenvalues. The subspace iteration method is ideal when we are dealing

with large systems in which we are interested in only a few really significant eigen-

vectors. In order to find these eigenvectors we first use a method similar to vector

iteration but in which we iterate p eigenvectors at the same time in the following way,

KXk+l = MXk (3.30)

for the case of proportional damping solution, and

Xk+1 = AXk (3.31)

for the solution of the state space formulation which is already in the form of the

standard eigenvalue problem.

With this iteration the vectors will converge to the eigenvectors. However, this

does not insure that this vectors will approach different eigenvectors. In other words,



we should make sure that this eigenvectors span the subspace in which we will work.

This is achieved by solving an eigenproblem in the subspace. In order to solve this

problem in the subspace we need to find the projection of the system matrix or

matrices onto the reduced space. For the case of general eigenvalue problem we solve,

-T

Kk+1 = Xk+KXk+l (3.32)

Once we have the reduced matrix we are able to solve for the new improved set

of p eigenvectors from this smaller eigenproblem,

Kk+lQk+1 = Mk+lQk+lAk+1 (3.33)

The vectors that we get from here are ready for a new iteration which will apply

again the two steps. Namely, forcing the vectors to approach the eigenvectors and

then solving the eigenproblem in the subspace so that they tend to span the subspace.

In summary, this is the algorithm,

Kik+l = MXk (3.34)

-T

Kk+1 = Xk+1i k+l (3.35)

TMk+1 = Xk+lMXk+l (3.36)

Kk+lQk+l = Mk+lQk+lAk+l (3.37)

At this point, it is necessary to introduce an equation to normalize the vectors.

Xk+1 = Xk+lQk+1 (3.38)

There are still some issues to address regarding how to improve the method to

make it more efficient. There is an eigenvalue problem to be solved several times. In

this eigenproblem we are searching for all eigenvectors and the size of the problem is

small. For this reasons the method to use could be a transformation method such as



Jacobi.

Also, the starting set of eigenvectors have to be chosen carefully because the

number of iterations required to get to the solution depends very much on these. For

the procedure and characteristics of this method we can see that it is well suited for

our problem which deals with large matrices finding a few eigenvalues in an efficient

manner.

3.2.2 Determinant search

This method is based on the iteration of the characteristic polynomial. It has some

variations which make it more efficient. Like the polynomial iteration it is best

for problems with small bandwidth and it can be used to search only for a few

eigenvalues. In the procedure, we use polynomial iteration techniques to search for

the zeros. We also use deflation to find roots other than the first one. To make sure

that we are finding the right roots we apply the Sturm sequence check with the LDLT

factorization.

In addition, we also use shifts to make it even more efficient. We first use polyno-

mial iterations to find an appropriate shift that will approximate as close as possible

the next eigenvalue on its axis. Once we are close enough to the eigenvalue, vector

iteration can be very effective finding the eigenvector exactly.

3.3 Eigenproblem for the state-space equation

From the brief introduction made above to eigensolvers we can see what methods

are available. From the kind of problems that we work with we can deduce which

method are best for us and what kind of operations are needed. The problem is

that although this method have been used very effectively solving the general and

standard eigenvalue problem they have not been designed specifically to deal with

the eigenproblem that the state-space formulation presents.

The solution to the large dynamical problem in the state space formulation goes



through the solution of the eigenproblem for the non symmetric matrix. The problem

is standard, which is better, although it still requires the inversion of the mass matrix

to create the system matrix with the operational costs that it involves and also the

risks of ill conditioning. The eigenvectors and eigenvalues are complex. This loss

of symmetry and added complexity will not allow us to use some methods, which

however were not suited for our problem anyway, and will force some variation on

other methods. The solution is still possible and not much more complicated than

it was for the symmetric case. One application of the vector iteration method is

presented by Humar and is developed in this section.

The names we will use for the variables and its real and imaginary parts will be

the same that we used earlier such that,

A = AR + iAI (3.39)

Vj = VRj + iVIj (3.40)

If we start with some initial trial vector which could be real,

Vo = VR,o + iV 1 ,o (3.41)

and perform the first iteration multiplying by the system matrix such that,

D (VR,k + iVI,k) = (AR ± iAI)(VR,k + iVI,k) (3.42)

then we can equate real and imaginary parts which gives,

DVR,k = ARVR,k - AIVI,k (3.43)

DVR,k = VR,k+l1 (3.44)

DVI,k = ARVI,k - AIVR,k (3.45)

DVR,k = VI,k+1 (3.46)



what we do is to eliminate the imaginary part VI and leave VR,k as a function of

VR,k+1 and VR,k+2 so that we can perform iterations on the real parts. If we perform

the next iteration these should be,

VR,k+2 - 2 ARVR,k+1 + (A2 + A2)VR,k (3.47)

VR,k+3 - 2ARVR,k+2 + (A2 + A2)VR,k+l (3.48)

Using this two equations we can get an expression for the real part of the eigen-

value, which is given next,

1 VR,kVR,k+3 - VR,k+1VR,k+2 (349)
2R = VR,kVR,k+2 - VR,k+•VR,k+1

Also the real part of the eigenvector will converge. Then we use the following expres-

sions to get the imaginary parts of both eigenvectors and eigenvalues,

A + A~ = VR,k+±1VR,k+3 - VR,k+2VR,k+2 (3.50)VR,kVR,k+2 - VR,k+1VR,k+l1

VIk = VR,k - -VR,k+ 1  (3.51)
VK-A, A,

Then we must select a new trial vector for iteration on the second eigenvector. The

selection of the new trial vector has to have some constrains that insure orthogonality

with respect to the eigenvector that we already found. This is done with an analogous

procedure to the Gram-Schmidt orthogonalization.

3.4 Conclusions

This brief introduction help us consider to what extent it is more complicated to

include the damping matrix in the state space formulation as opposed to the use of

proportional damping. However, the detailed analysis of the computational cost of

each method is not developed here but is left as a further step on the analysis of the

formulation. Still, we should look at this problem with the new perspective provided



by the rapidly evolving computing machines.

There are some considerations that can be made to guide further investigation of

the algorithms.

For instance there may be improvements to the methods derived from the partic-

ular form of the system matrix in the state-space formulation. It has one quarter of

the matrix filled with zeroes and another taken by an identity matrix. That kind of

sparsity requires special attention for it may provide advantages.

Also, we must consider wether the size of the system matrix, 2n, really affects

the computational time considerably. We only search for p eigenvalues. For a system

twice the size we should need twice the number of modes to describe its shape with the

same accuracy. However, if for the state-space matrix we search for 2p eigenvectors,

they still occur in conjugate pairs, such that we only really need to search for p

eigenvectors and the other p vectors we automatically know. With the tools described

above it would be possible to avoid the computational cost that those eigenvectors

would require.

Furthermore, from the second chapter we deduced that the lower entries of the

eigenvector were just the upper entries times the eigenvalue that corresponds to that

eigenvector. That is another peculiarity of the eigenproblem for this particular non-

symmetric system matrix that should be considered to improve further the solution

algorithms.



Chapter 4

Formulation For Control

The state-space formulation can be employed in the structural control problem. The

formulation represents an appropriate analytical tool for both the continuous and

discrete time control. Since the application of control to structures is at an initial

stage and the cost of the implementation is very high, an exhaustive study of the

possible problems that may be encountered is required. All deviations from the

original model have to be studied thoroughly by means of simulation and sensitivity

analysis. In the following sections some of those alterations to the initial model are

examined.

Continuous control is discussed first. Then, we model the problem of discrete

control, which although conceptually analogous to the continuous time control, it is

different and also more realistic. We also incorporate the effect of time delay in the

formulation.

Finally, we investigate other important issues such as parameter sensitivity, that

need to be taken into account.

4.1 Continuous-time control

The state space formulation presented earlier is specialized for control by incorporat-

ing a control force, F, in the equilibrium equation. This leads to



X = AX + BfF + Bgag (4.1)

Where X is of size 2n and contains the displacement and velocity of the nodes for

the structure,

U
X = (4.2)

X represents the first order change of the state of the system, A contains the char-

acteristics of the system,

0 I
A -M-K -M-1C (4.3)

F contains the control forces, and Bf is a locator matrix for the control forces of the

form,

0
Bf = M-'Ef (4.4)

and Bg is another locator matrix for the acceleration of the excitation

0Bf = (4.5)
-E

The E and Ef matrices contain just ones on the places where the accelerations or the

forces respectively are located and simply zeros where there are no accelerations or

forces. Finally the vector ag contains the input accelerations. In what follows, the

nature of the control force F is discussed.

Continuous negative linear feedback control

The control forces in the type of systems that we will investigate will be chosen

depending on the state of the system at a given time. The measuring devices will

read the state of the system and based on it, an action will be taken, that is, a control

force will be applied. The selection of the appropriate force will be made with an



algorithm which optimizes a performance index. This kind of control is called closed

loop control and uses the concept of feedback in the sense that it uses the output to

generate a new input.

For our analysis we consider linear feedback, i.e. the case where the feedback force

is linearly proportional to the system state vector. The control force is expressed as

F = -KfX (4.6)

where X represents the state of the system at that time, and Kf is a gain matrix

calculated through an optimization process. Since the state vector of the system con-

tains both velocities and displacements, the terms velocity feedback and displacement

feedback are used to differentiate the two contributions. The partitioned form is

F =-Kd K, .(4.7)

where d and v refer to the displacement and velocity contributions.

Later, we will discuss how K is established.

4.1.1 Continuous feedback control with time delay

There is an important factor to take into account when redefining our model. It is

called time delay which is represented with the symbol T. It represents the effect of

the interval between the time the sensors are read to the time the action is taken.

It consists of the time intervals involved in sending the signal to the computer from

the sensors, computing the action to be taken and sending the signal to the actuator

for it to apply the action. This time delay cannot be avoided and it is present on

any control device. Its effect on the performance of the system may be significant

and therefore it should be studied carefully. Mathematically, this delay is easy to

represent and conceptually easy to understand. However, the improved model is

much more complicated to solve analytically. In later sections, we will examine how

much information we can draw from the model through analysis and also present



some models for simulation.

In the state-space formulation the delay has the effect that a force obtained from

the state at a time (t - -F) will act at a time t, therefore the state space equation

becomes,

X(t) = AX(t) + BfF(t - -) + Bgag(t) (4.8)

This formulation for the continuous case, which gives interesting information re-

garding the behavior of the delayed system, will be revised later for the discrete

formulation.

4.2 Discrete time control

The main adjustment to make to the state-space formulation is the discretization of

the control action. Since the readings and control forces are established at discrete

times, the control algorithm need to be expressed in terms of quantities evaluated at

these discrete times.

The solution of the differential equation for the time interval of size At from

kAt to kAt + At is given by the sum of the decaying initial position at time kAt

plus Duhamel's integral over the interval for the control input in that interval. The

analytical solution over the interval is,

X(kAt + At) = eAAtXk+t k+At+At eA(kAt4At- T)BfF(T)dT (4.9)

+ J k t+At eA(kAt+At-T)Bgag(T)dT

We will have to redefine the system matrices for this discrete case in order to have

a formulation similar to the formulation for the continuous case. For simplicity, we

will assume constant control action over the interval, that is a zero order hold. Our

objective is to reduce the formulation to:

X(j + 1) = AX(j) + BfF(j) + Bgag(j) (4.10)

We will forget for now about the term for the external excitation since for the up-



coming stability analysis we will not need it. By defining the following:

A=eAAt (4.11)

and,

3Bf = ABf (4.12)

where,

A = A-' [eAAt] (4.13)

The equation will be in the state-space form for the discrete time case.

Discrete linear feedback control

The reason why we introduce a discrete state-space formulation for the control prob-

lem is that the control force is actually updated at discrete points in time, when

readings are taken from the current state of the system. This does not change the

characteristics of the control vector from the ones mentioned for the continuous case.

We still use negative linear feedback control, although the vector Fj is calculated only

for those times for which we have a reading.

4.2.1 Discrete control with time delay

The discrete formulation has to be modified further if it is going to take into account

also the time delay. The modification is analogous to that for the continuous case.

Simply, the control action will be applied a few intervals after it is computed. In terms

of the formulation, this case is represented by the following state-space equation:

X(j + 1) = A&X(j) + BfF(j - v) + B3gag(j) (4.14)

where v is just the ratio of the time delay over the time interval.



4.3 The optimization model

The study and implementation of structural control introduces a new aspect to con-

ventional structural analysis. In control we have to select a force to apply to the

structure. As in other selection problems, the choice depends on what are the goals

that we try to achieve with the control force and what are the constraint. Basically,

since we usually cannot apply the force that achieves all of our goals precisely, we

have to try to get as close as possible, that is, we search for an optimum solution.

The methodology we apply, incorporates into one functional a series of factors

such as the square of the energy that the control forces require or the square of

the difference between the desired deformation and the actual deformation. We find

the force by minimizing this functional. For the design of linear control systems,

quadratic performance indices are used, and the problem reduces to a linear quadratic

optimization problem.

The control optimization problem involves searching for an admissible control force

f and trajectory in the state space x*, such that the performance index J defined as

J = s(x(tf), tf) + g(x(t), f(t), t)dt (4.15)/ to

is minimized.

The regulator problem is concerned with finding the control input such that the

system is driven from an initial state to a constant, presumably zero, final state. It

is linear regulator in the case in which the control is a linear function of the state as

mentioned earlier.

In the structural control problem the functions are vectors since we discretized

our system. In this case the quadratic performance index is the following,
1 1 tf +

J 1 XT(tf)SX(tf) + t [XT(t)Q(t)X T (+ F(t)R(t)F(t)j dt (4.16)2 2 to

where S and Q are real symmetric positive semidefinite matrices and R is real

symmetric positive definite. The matrices Q and R are used to penalize the size



of different state variables or control forces respectively. For simplicity, it is best to

make them diagonal. This way the penalties are uncoupled which should be the case.

From the derivative of the functional we obtain a system of differential equations

on the state variables X and the costate variables P plus some boundary conditions.

From this, we can solve for the optimal control vector as a function of the costate

variable,

F = -R-I(t)BT(t)P(t) (4.17)

We have a linear relationship between the state and costate variable P.

P = H(t)X (4.18)

Then,

F = -R - 1 (t)BT (t)H(t)X (4.19)

The system of equations can be satisfied for all t when H satisfies,

H(t) = -Q(t) - AT(t)H(t) - H(t)A(t) + H(t)B(t)R-I(t)B T (t)H(t) (4.20)

This equation is known as the Riccati equation and H is the Riccati matrix.

If the system is controllable, and matrices A, Bf, Q and R are constant which

is our case, the matrix H approaches a constant value as the final time approaches

infinity. Then, a limiting form of the Riccati equation is

- Q - ATH - HA + HBfR-1 BTH = 0 (4.21)

This equation is known as the algebraic Riccati equation. Assuming H is constant,

i.e. taking the solution of the algebraic Riccati equation is reasonable. It is a valid

solution, that is, the assumption that the Riccati matrix is constant is good.

In summary, the selection of the optimal control force requires the following series

of steps. First, we must select the matrices Q and R according to our priorities. Then,



we solve the algebraic Riccati equation (ARE). Various programs such as MATLAB

contain routines for this computation. The solution yields the Riccati matrix H.

From this we can get the control forces using,

F = -R- 1BT HX = -KfX (4.22)

Finally, we include this term in the state space equations for control,

X = AX- BfKfX + Bgag (4.23)

4.3.1 The optimization model for discrete control

The process of optimization described above has to be modified for discrete control.

There are different approaches. Connor and Klink present a procedure in which the

cost functional J is developed for one time interval. Optimization of this functional

leads to the following expression

F = -Ky, 3 Xj + Gag,., (4.24)

where

Kf,3 = LeAj At (4.25)

G 3 = L3AJ3B 9,3 (4.26)

L [R + {B ATQ3AýJBf,j 1 [B 3 ATQJ] (4.27)L3=jR  +  ff3j3BQ,1

"0 A k(At) 
k

S= At I + E +) (4.28)
1 k=1 A+)

This algorithm allows for updating the system matrices and the time interval at each

discrete time.

There is another procedure which gives essentially the same results when similar

cases are treated. In this procedure, the performance index is discretized and summed

over the total time. This procedure does not allow for updating of the system matrices.



The optimization of the functional results in a recursive equation. It is actually the

discrete algebraic Riccati equation.

To solve for the gain matrix, it is necessary to assume a final point to start iterating

backwards. If the value is chosen large enough, the iteration will lead to an initial

value for the gain. We also can assume that the gain is constant, like in the continuous

case, and use the initial value as a constant gain. The recursive equation is

Hk= AT[Hk+l - Hk+1B(R + BTHk+1B)-'B THk+1] + Q (4.29)

Once we get H the gain is calculated with

K = (R + BTHB) -BTHA (4.30)

If the matrices and time interval are constants and the initial value for the iteration

is large, both procedures result in the same gain.

4.4 Other issues

In this section we identify other issues that need to be considered carefully prior to

implementation of structural control. They represent problems that may arise when

implementing the control on real structural systems.

4.4.1 Parameter sensitivity

In the algorithms for structural control we are being as precise as possible but we

must not forget the limits of that precision. If we would obtain extremely accurate

calculations on the simulation of the structural behavior when subjected to control

forces we could get a very good estimate on the time dependant variables present

in the differential equations. But these variables are not the only factors in the

equations. There are also parameters that depend on the system being considered.

Slight changes in those parameters can sometimes make our solutions and therefore



our conclusions completely wrong. Furthermore, in this case certain parameters are

known to be very difficult to asses. For example, the estimate of the stiffness of a

large structure can vary by fifty percent from the actual value. This variability in

the parameters has to be studied and dealt with thoroughly in the analysis. Large

structures have an additional complication; the size of the systems does not allow for

inexpensive and simple testing or experimentation. Also, since it is a new area of

research, there is only limited data on real applications.

All of these considerations reinforce the need for parameter sensitivity analysis.

That is, how much does the information drawn from the model, such as deformations

and conditions for stability, change when we make small and some time large changes

in the system parameters, the mass, the damping and the stiffness. These sensitivity

can be assessed with analytical tools, although they can get extremely complicated

for real cases.

Sensitivity theory can give us useful information regarding the stability of the

system when subjected to changes in the parameters. We are mainly concerned

with the determination of the sensitivity of the eigenvalues and the eigenvectors of

A to changes in the system parameters, that is, to changes in A itself. We asses

the sensitivity of the eigenvalues and eigenvectors only. They alone describe the

sensitivity of the system.

There are two main approaches to this problem. The first approach observes the

changes in the eigenvectors and eigenvalues as each element in the system matrix

A changes using the first derivative of those values with respect to each of these

elements.

The other approach uses perturbation theory. Basically, we perturb the system

matrix in some way and observe how this perturbation carries to the eigenvalues and

eigenvectors.

4.4.2 Controllability and observability

This section refers to other two variations that our real system will present when

compared to the initial ideal model. The first refers to the fact that for a large



system we will not be able to put control forces at every degree of freedom. The

second addresses the problem that for the same large system we cannot put measuring

devices at every degree of freedom. This means that the vector space of the control

force vector and output vector are smaller than the vector space of the deformations

and forces in the system.

This is always going to be a problem for obvious reasons. It is simply impossi-

ble economically to control and to measure all the structure. For this reason, this

problems has to be properly addressed.

Basically, we will be concerned mainly with modes that are not controllable or

observable rather than with actual degrees of freedom. This makes sense since we

are approaching the control problem from the modal point of view for we noted that

it is only a few modes that are going to do most of the damage in the system. The

complete control formulation for either natural or modal coordinates is,

= AX + BfF + Bgag (4.31)

Y=CX+DU (4.32)

The matrix B is going to locate the forces and therefore it contains the information

on how many control forces are we applying and where. The matrix C on the other

hand determines which state variables we are reading to get the output vector Y.

Therefore, in this matrix our ability to read the different deformations is described.

In a real system the optimization process for the selection of a control force is not

carried out with the state variables X but with the available output from the system

in the vector Y. That is limited as we see in the formulas by the C matrix.

For the problem of controllability it is conceptually simple to understand how

can we determine wether a mode is going to be controllable or not. It is a matter

of orthogonality. If the multiplication WjYBf is null, clearly our control forces are

orthogonal to that particular mode. Therefore, we will have no effect on that mode.

In the same way as for the so called participation factors for the case of an external

excitation, the larger this product is the more effect and control that we have over



that mode.

For the observability, conceptually we have the same situation . In this case we

multiply the matrix C by the eigenvectors and check that the main modes are not

orthogonal to the output matrix C. It is from this modes that we need the information

since we need to apply control based on their feedback.

4.4.3 Model reduction in modal analysis

Another issue to consider is the model reduction. The key steps in the analysis is the

transformation to modal coordinates and the discarding of those modes which have

little contribution to the global response.

It is necessary in an actual structural system to test different possible inputs to

the system. This way, we are able to asses the magnitude of the various modal

participation factors and verify our assumption as to the modes which are released.

The actual number of modes depends on the size of the building and the excitation

and is generally less than 10.

4.4.4 Nonlinearities

A common assumption in structural engineering is that systems behave linearly, which

is never true although some times it is very close to it. Close enough, so that we can

assume it is linear with no loss of accuracy. However, in dynamics it is convenient to

take into account the effect of nonlinear behavior in the system.

This is most important in the case of control where the excitation is an earthquake.

This is so, because in those circumstances the nonlinear behavior may become signif-

icant.

The nonlinear behavior can come from the excessive deformations, which increase

second order effects. It can also be due to nonlinear behavior of the material. Due

to the excesive deformations, the level of stress in the members reaches yielding and

the material starts to show plastic behavior.

Both of this effect should be analyzed carefully and the state space formulation is



an excellent tool for this kind of analysis. It provides direct access to the equations

for displacement and velocity in the time domain, and it is in the form of a first order

differential equation as opposed to second order equation.

This problem presents a very important area of research in structural control.

Application of the concepts presented in this thesis must be preceded either by studies

which show that the levels of deformation and stress do not lead to nonlinear behavior

or a thorough study of nonlinear structural control.



Chapter 5

Stability Analysis and Simulation

We have introduced the use of state-space formulation in structural control and con-

trol in general as a problem that deserves our attention as civil engineers. We have

already presented the formulation needed for the modelling and analysis of the struc-

tural control problem, that is, the differential equations in the state-space form for

the continuous and discrete time cases. Now we are ready to use this model for the

analysis and study of systems.

The first option will be to obtain analytical expressions describing the structural

behavior. To get an analytical expression for the response of the system to arbitrary

inputs is difficult and therefore this possibility is not considered. However , there

are important characteristics of the system that can be obtained explicitly from the

system matrix. The state space formulation has the advantage that all the information

about the system is contained in one single matrix. The stability of the system is the

most important piece of information that we can draw from this matrix.

The other alternative is generating the response numerically for a range of system

parameters and loadings and identifying instability through numerical implementa-

tion. This approach is employed when it is too difficult to obtain an explicit analytical

solution.



5.1 Analysis

In what follows, we present the analysis for continuous and discrete control in that

order. The main purpose will be to obtain the system matrix for each of the systems.

From the system matrix, we obtain the conditions for stability.

5.1.1 The continuous case

The continuous case without control

The analytical solution for this equation can be expressed as a convolution integral.

If we define,

X(O) =X (5.1)

then,

X(t) = eAtXo + j eA(t-)Bgag(r)dT (5.2)

We showed that for the case of no external excitation the free vibration response

for any initial perturbation uncouples when we transform to generalized coordinates.

The solution can be expressed as a combination of the eigenvectors,

X - E•eA••Vj
3=1

(5.3)

where v, represent arbitrary complex constants determined from the initial conditions

such that,

V = WfXo (5.4)

Noting this equation, the homogeneous solution expands to

2n
X E WT Xoe Ait Vj

j=This solution is real even though the eigenvectors are complex.
This solution is real even though the eigenvectors are complex.

(5.5)



For stability analysis, we look at the free vibration response

2n

X - WT XoeA it Vj (5.6)
3=1

The eigenvalues occur in complex conjugate pairs. The imaginary part of each ex-

ponential is then transformed into periodic functions and these are multiplied by the

exponential of the real part which is,

CARt =_WL (5.7)

Therefore, for the solution to be bounded, the frequency and the damping have to be

positive. This is the only condition for stability in the continuous linear case. Since

this is always the case we conclude that this case is unconditionally stable.

The continuous case with feedback control

Ideally, the feedback to the system should occur instantaneously and continuously.

However, it is neither one or the other. In this section we will explain what the behav-

ior of the system would be if this was the case. It should give a better understanding

since it is possible to get an analytical solution for the conditions for stability in this

case.

We investigate what may be the effect of feedback control on the stability of

the system. The stability of the system for the case of no control depended on the

eigenvalues of the system matrix. That is also the case when we apply the linear

negative feedback control, but in this case the system matrix is altered by the control

gain. Let us look at the controlled system matrix for the case of no external excitation.

X= AX + BfF (5.8)

where F the control force is,

F = -KfX (5.9)



then we can write,

X = (A - BfKf)X (5.10)

To asses the stability we will look at the eigenvalues of the single degree of freedom

system matrix with control, A,

0 1A -- kc(5.11)ck c k
?L M 1 rn

For the single degree of freedom case, the eigenvalues of this matrix are,

A = AR + A, (5.12)

where,

AR c + k, (513)AR = 2m(5.13)
2m

A [k= kd] c-H (5.14)mn 2m
We can draw important conclusions about the effect of the control on stability.

First, we see that the system is stable for any velocity feedback, assuming kv is always

positive for negative feedback. The displacement feedback has no effect on the real

part and therefore no effect on stability.

The continuous case with control and time delay

Before we proceed to the simulation model, we first extend the analytical solution for

the continuous time model for the case of time delay. The state-space equation with

time delay in the feedback is,

X(t) = AX(t) + BfF(t- 7) + Bgag(t) (5.15)

In order to study the stability, we look at the eigenvalues of the system matrix.

The system matrix for the delayed system is determined by assuming the solution to



have the following form

X = CeAtV (5.16)

where the row vector C contains the constants with information regarding initial

conditions, the matrix A is diagonal with eigenvalues in these entries, and the matrix

V contains the eigenvectors. The response is a superposition of 2n initially disturbed,

oscillating and decaying mode shapes. If we plug in this solution for free vibration

we get the system matrix,

X= (A - BfKfe-Ar)X (5.17)

Conceptually, this is the same control force as before, only that since the system has

linear feedback control the magnitude of the force is extrapolated backwards with a

negative exponential factor with frequency A for a time 7, which is the delay time.

As before, we can solve for the single degree of freedom case in order to study the

effect of control and delay simultaneously. The system matrix for this case would be,

0 1Ac = k eA k (5.18)
MY 7Yn "tf 7/

The requirement for stability is that the real part of the eigenvalues be negative.

However, to obtain an analytical solution for this problem is very difficult. Connor

and Klink use two different approximations. One is a first order estimate of the

exponential, the other uses Pade approximation. The solution is still complicated

because the effect of displacement feedback and velocity feedback is not the same. In

this case, we have to study the effect of each with the time delay, where the effects

of these are coupled.

From the approximations used by Connor and Klink we can draw conclusions.

For pure displacement feedback and no delay the system is unstable. The poles in

this case go in the positive direction of the real axis in the complex plane. For pure

velocity feedback and delay the system is stable for the smaller values of feedback

and for some margin of delay. The more time delay, obviously the closer we are to



the unstable side of the complex plane with our poles.

Connor and Klink provide an analytical solution for the largest time delay that

the system can take before it becomes unstable. This solution is available for a single

degree of freedom system. For the case in which the system has many degrees of

freedom, the equations have to be uncoupled. Then, the maximum time delay can be

found for each degree of freedom independently. We can uncouple the system matrix

using modal coordinates, however we have to uncouple also the control forces to be

able to analyze each equation alone.

Since it is not guaranteed that the control forces are going to uncouple, we will

use simulation to get more information on the behavior of the multidegree of freedom

systems when there is time delay in the control.

5.1.2 The discrete model, analytical solution

The discrete time case without control

Earlier, we presented the analytical solution for the continuous time case with dis-

crete control. Now we can try to use this model to draw conclusions regarding the

conditions for stability in this case. We assume the discrete time model,

Xk(j + 1) = AX(j) + BfF(j) + tBgag(j) (5.19)

For the free vibration case with we have,

X(j + 1) = AX(j) (5.20)

Each solution can be obtained by multiplying the previous one by A. So after j

iteration we will have raised A to the power of j . This means that the solution

is stable if A3 is stable for any number j, and from the nature of A we know that

this is true if its eigenvalues have modulus less than one. This is equivalent for the

continuous case to requiring the real part to be negative.



For the equation,

X(j + 1) = AX(j) (5.21)

We can assume a solution of the form,

Xj= -V (5.22)

where p contains the eigenvalues of the controlled matrix and V contains the eigen-

vectors of A.

The discrete time case with control

Again, we need the system matrix for the study of stability. Since this is a discrete

control problem we will have a system matrix made of exponential terms like before.

Therefore in order to be sure that the system is stable, all the eigenvalues of this

matrix must have a modulus less than one. The state equation for free vibration is,

X(j + 1) = AX(j) + BfF(j) (5.23)

That means that, similarly to the continuous case, the controlled system matrix is,

Ak = A- BfKf (5.24)

The solution again has the form,

Xj = pV (5.25)

where p contains the eigenvalues of the controlled matrix and V contains the

eigenvectors of A.

Discrete control with delay, analytical solution

In this case the state-space equation is,

Xi(j + 1) = AX(j) + frF(j - v) (5.26)



Here, v is the ratio of time delay over discrete time step. The controlled system

matrix is more complicated because the delay, analogous to the continuous time case,

introduces an exponential term in the eigenproblem which is extrapolating backward

in time to get the control force proportional to the earlier time. Plugging in the

solution,

Xj = pV (5.27)

we have the eigenvalue problem

[A - pl - p-"IfKf] V = 0 (5.28)

Connor and Klink have developed analytical solutions for the case of a single

degree of freedom to determine the value of the ratio v for which the poles of the

system are in the imaginary axis, that is, the system becomes unstable. Like in the

continuous time case, the solution is available for the maximum values of the time

delay and time step for which the system becomes unstable.

For the case of multiple degrees of freedom, if the damping matrix is made pro-

portional, the control forces uncouple and it is possible to obtain the limiting values

of time delay and time step for which the system is stable. However, if the state-

space formulation is used, the equations do not uncouple and it becomes much more

convenient to use simulation.

5.2 Simulation

Next we present the models which help us find the conditions for stability by using

simulation instead of analysis.

5.2.1 The discretization of the structural response

In the first place, we will study the model of the procedure used to solve the equation

numerically. The stability of this model does not have anything to do with the

stability of the actual system. With this difference equations we are trying to obtain



a solution close to the response of the real system. If the discrete solution is far from

the real one, for having the steps in time too long for example, the numerical solution

may be unstable while the actual response of the system does not. Needless to say

we do not want that to happen.

There are different schemes available for the iterative solution of this kind of prob-

lem and two of those methods are the famous Euler and Runge-Kutta methods. For

simplicity we started modelling with a first degree Euler method. It is the simplest

version but for thie purpose of this paper it is appropriate. From this we can under-

stand much of how the system works. For this model we can integrate very fast so

we can use a small step in time, this way we do not influence the results with the

integration scheme and we are able to focus on other aspects of the system behavior.

One of the conveniences of the state-space formulation is that it presents a first

order differential equation. That means that if we know the state of the system at

any given time, simply by multiplying it by the system matrix we can get the slope or

rate of change at that time. This way, in order to find the position at a close time we

only have to use a small step in order to keep our result accurate enough and stable.

For the case of no external input and no time delay our state equation is,

X= AX (5.29)

We will use X(1) to represent X(t1 ) and similarly for to, such that our time step

is defined as,

t- to = At (5.30)

therefore for an initial disturbance X(0), in order to get a good estimate of X(1) we

use the simplest estimate.

X(1) = X(0) + AtAX(0) (5.31)

In this case to incorporate the external excitation, in the form of an earthquake,

and the control forces should be very easy. In fact, the ground acceleration just



produces accelerations in the nodes, which are first order changes on some of the

state variables. Same applies to the control forces, so the iterative equation becomes,

X(1) = X(0) + At(AX(O) + Bgag(0) + BfF(0)) (5.32)

The earthquake record must be available at each time step or interpolated if not

available. If we want our analysis to be satisfactory we will concentrate on minimizing

the At mentioned above.

5.2.2 Simulation of discrete readings

Once we have found an iterative method to model the behavior of the actual structure

we are ready to simulate the control action with iterative procedures. We must

incorporate effects such as discrete readings and time delay in the simulation model.

In order to incorporate the fact that readings are taken at discrete times and

actions are taken at those times only we will make a loop such that the state used

to calculate the control forces to act at any time remains the same for a few of the

following iterations on the integration scheme, presented earlier. This means that if

we want our loop to work we have to make the time interval in the discrete readings

a multiple of tihe integration step At. If we want to be precise in the intervals for

the discrete readings we can either reduce more and more At or to calculate the ratio

of the two intervals and use the closest integer as the number of iterations that the

control force should remain constant. We will call the reading intervals with the letter

p.

The algorithm has to start with a reading of a deformed structure, calculate the

optimum control action and apply it constantly until a new reading is received which

allow us to calculate a new force. Until we get the new reading, the control force is

held constant for the following intervals. The iterative procedure is just the Euler

method prcscnted above in which the control force is changed only every few intervals.

In the simulation program, a test has to be made before thie new state is calculated.

In this test we check if the number of the interval is a multiple of the ratio of the
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Figure 5-1: Response for initial displacement for different values of time interval

integration step and p.

There is the possibility that new readings are available at shorter intervals than

new forces can be applied. In that case, the speed of the load generator controls over

the speed of the readings, but this case is not considered.

We apply control with this model to a one degree of freedom system. Consider

the simple case where m = 1, c = 0.1 and k = 1. In this case the state-space system

matrix is simply

0 1
A = (5.33)

-1 -0.1

We simulate the behavior of the system when subjected to an initial disturbance of

Xo = (5.34)
0

that is an initial displacement of 1. The matrices Q and R are simply identity

matrices. We use an integration step of 0.01 for 10 seconds and then try different

time steps in the discrete control to observe the changes in the behavior.



From the figure we observe that when the time interval is small the control is very

effective. However, the control is less when the interval is larger. Finally, we have no

control for very large intervals. In that case, the response is almost free vibration.

We can observe that from the magnitude of thile gain matrix. When the time

interval is 0.1 the gain matrix is

kd kv = 7.793 9.582 (5.35)

and when the interval is 5 we get

[ kd kv = -0.2710 -0.6816 (5.36)

As the time interval becomes larger, the control becomes smaller. We observe, that

the system does not become unstable for larger time intervals, the system is still

unconditionally stable.

5.2.3 Simulation of the discrete model with time delay

Next, we just update the algorithm mentioned above for the discrete control for the

simulation of time delay. We want the force that should start acting on the system

at a given point in time to start to act a few intervals later. The number of intervals

is simply calculated dividing the delay time by the integration step.

The implementation of the algorithm for simulation presents similar problems to

the ones presented above for the case of discrete readings. We have to choose the

time delay such that it is a multiple of the integration step. Alternatively, we can do

like for the discrete case, use the closest integer to the ratio of time delay to step. If

we are very interested in a precise time delay we can improve the integration scheme

for the dyanmic behavior.

That is the complete simulation scheme in which we are, in some way, running

a discrete model on top of another. The underlying discrete model represents the

continuous behavior of the structure and the one on top the actual discrete behavior
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Figure 5-2: Response to initial displacement for different values of the time delay

of the digital control tools.

We try an example in which the increment in the time delay has a large effect

oil the performance of control system. In this case, ani excessive time delay leads to

instability. We use the same system as before with a time interval of 0.2 and with

different values for thile delay.

For a small time delay, the system is controlled very effectively. Around the value

of 0.9 for the time delay, the system is unstable. For larger values we can see the

effect of the time delay is very exagerated.

5.2.4 More simulation

Variations in the weighting matrix R

By changing the values in the R matrix we affect directly the optimization process.

The larger the entries in the matrix, the more expensive it is to apply forces, and the

smaller these are so that we have less control of the system.

In this case we vary the parameter R and observe the changes in the response
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Figure 5-3: Response for initial displacement for different values of matrix R

and the changes in the magnitude of the control force. The values

a time interval of 0.2 are 0.001, 0.1, 1,100.

In the first figure we see that as expected the control is less as

increascd.

In the plot of the control force, we see the large reduction in the

control forces as the cost increases.

that we tried, for

the value of R is

magnitude of the

Modal control

We change to modal coordinates and apply

system matrix that we used earlier

0
A=

-1

the control to these coordinates. The

2.~1 (5.37)
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Figure 5-4: Control forces applied for different values for R

has the eigenvalues given in the diagonal entries of A.

A -0.0500 + 0.9987i 0 (5.38)A = 5-8
[ 0 -0.0500 - 0.9987i

therefore, when we change the coordinates, the system matrix is

A* -0.0500 -0.9987 (539)
S 0.9987 -0.0500

Also, the matrix Bf becomes

0.0500
Bn = 0 8 (5.40)

-0.9987

We solve numerically the control problem for these new system equation and obtain

the response in the figure. For a single degree of freedom we know that the response

of the first mode is simply the response of the system. So if we plot the response of



I

Figure 5-5: Response of the first mode for initial displacement in a single degree of
freedom system

the first coordinate of the transformed state-space vector we get the same result than

when we plot the response of the displacement in natural coordinates.
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