
A Wireless Link to a Six Degree of Freedom

Inertial Tracker

by

John J. Rodkin

Submitted to the Department of Electrical Engineering

and Computer Science

in Partial Fulfillment of the Requirements for the

Degree of

Master of Engineering in Electrical Engineering and

Computer Science

at the Massachusetts Institute of Technology

January 26, 1996

Copyright 1996 John J. Rodkin. All rights reserved.

The author hereby grants to MIT permission to reproduce
and distribute publicly paper and electronic copies of this

thesis and to grant others the right to do so.

Author

Department

Certified by

of Electrical Engineering and Computer Science
January 26, 1996

-\ (1 A
Accepted by

Nathaniel Durlach
Thesis Supervisor

F.R. Morgenthaler
on Graduate Theses

OFJUN 111996HNOGJUN 1 1 1996

LIBRARIES

A Wireless Link to a Six Degree of Freedom
Inertial Tracker

by
John J. Rodkin

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering in
Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology.

January 26, 1996

Abstract

The purpose of this thesis is to begin extending the MIT
inertial tracker for wireless operation. Many applications
exist for a wireless, sourceless tracker, and as head
mounted displays and other synthetic environment systems go
wireless, more applications for wireless trackers will
arise. The importance of the work is discussed in detail,
and the design and implementation of two possible serial
links to the MIT inertial tracker is described. These links
were implemented and analyzed, and the test results are
discussed. These results focus on bandwidth concerns
because the serial link will soon utilize a standard
wireless serial transceiver pair to make MIT's inertial
tracker an excellent choice for applications requiring a
high-performance, wireless, sourceless tracker in a small,
lightweight package.

Thesis Supervisor: Nathaniel Durlach
Title: Senior Research Scientist

Acknowledgments

I never could have accomplished this work or my thesis on my

own, so credit should be given where it is due.

I would like to thank my apartment-mate for creating an

atmosphere that encouraged me to work late and enabled me to

enjoy my time in the lab much more than I should have. My

neighbors Jodi Goldstein and Carolyn Waldman helped me

maintain sanity throughout. The brothers at Sigma Chi gave

me a place to work, a bed in which to rest, and lifelong

friendships for which I am truly grateful. Nat Durlach, my

thesis supervisor, allowed and encouraged my independence

throughout the project.

I would like to thank Eric Foxlin, my mentor, coworker,

and friend, most of all. He was always there to guide me,

both technically and personally, and most of this work

should bear his name instead of mine.

Contents

Introduction

1.1 An Introduction to Virtual Reality

1.2 An Introduction To Tracking Technologies

1.2.1 Mechanical Tracking

1.2.2 Magnetic Tracking

1.2.3 Acoustic Tracking

1.2.4 Optical Tracking

1.3 Inertial Tracking

1.3.1 The MIT Inertial Tracker

1.4 Improving the MIT Inertial Tracker: Adding a

Wireless Link

1.4.1 Thesis Scope

7

.7

10

19

20

Potential Applications 22

2.1 Potential Applications for the MIT Inertial

Tracker ... 22

2.1 Applications for a Sourceless Tracker 23

2.1.1 Head Tracking in Virtual Environments 23

2.1.2 Telerobots 24

2.2 Applications for a Wireless, Sourceless

Tracker ... 24

2.2.1 Remotely Piloted Vehicles 25

2.2.3 Surveying 26

The Design and Implementation of a Wireless

Tracker 28

3.1 The System 28

3.1.1 System Design Goals 32

3.1.2 Design Constraints 33

3.2 The Hardware 34

3.2.1 An Overview 34

3.2.2 Hardware in the Sensor Block 35

3.2.3 The Microprocessor and its Interface 36

3.2.4 Hardware Interface to the Data Fusion and

Processing Unit 42

5

3.3 The Software

3.3.1 Microprocessor Software ...

3.3.2 Other Software

Data Analysis and Conclusions

4.1 Results

4.2 Analysis

4.3 Summary

4.4 Suggestions for Further Work

SmartCore Schematics

Microprocessor Code

B.1 Control Code for Figure 3-4

B.2 Control Code for Figure 3-5

B.3 Improved Control Code for Figure

Driver Code

C.1 Zworld.c

.... 42

..................... 43

..................... 44

................. 45

..................... 45

..................... 48

..................... 50

.................... 51

................. 53

58

..3-5
3-5 ..

.......... 58

.......... 65

.......... 71

........ 77

.......... 77

Chapter 1

Introduction

1.1 An Introduction to Virtual Reality

The Committee on Virtual Reality Research and Development

was established in 1992 by the Federal government to

"recommend a national research and development agenda in the

area of virtual reality." At that time, media and

scientific speculation on the future of virtual reality

systems was rampant and that speculation has continued:

"between 1992 and 1994, roughly 12 new books have been

published, 4 new journals or magazines have been started,

and 100 new articles have been published on the topic of

virtual reality" (Durlach and Mayor, p. 14). It is clear

that virtual reality systems have captured the interest of

scientists and the imagination of the media worldwide.

Why has virtual reality become such a trend? To answer

this question, we must strain to see the scientific

foundation that supports all of the "hype" and

misinformation that daily circulates through the press. We

must cast aside artists' sketches of the "shopping mall of

the 21st century" and writers' accounts of adventures that

we can take from the comfort of our own living rooms. It is

wonderful to dream, to imagine interactive "virtumalls" and

to contemplate "traveling" to faraway planets, but such

fantasies do not fuel the research and development of new

technologies so distant. Incremental progress can and is

being made toward these futuristic dreams, and these

advances have helped make many virtual reality systems

useful today.

Before mentioning these useful applications, some

terminology should be clarified. The media generally uses

"virtual reality" to describe the set of systems in which a

"human operator is transported into a new interactive

environment by means of devices that display signals to the

operator's sense organs and devices that sense various

actions of the operator" (Durlach and Mavor, p. 13). The

Committee on Virtual Reality Research and Development uses a

slightly different terminology, however, and this document

will hereafter conform to the Committee vocabulary.

"Synthetic environments" is the inclusive term synonymous

with the media's use of "virtual reality". Synthetic

environments include two types of systems: virtual reality

or virtual environment systems that allow a human user to

interact with a computer-generated virtual world, and

teleoperator systems in which a human user's interaction

with the physical world is mediated by some set of

electromechanical sensors and actuators (Durlach and Mavor).

A virtual reality system is commonly associated with video

games and entertainment while a teleoperator system is more

useful as a means of performing hazardous tasks or of remote

exploration. Hybrids of these two synthetic environment

types exist and are referred to commonly as "augmented

reality" systems.

These hybrids and both types of pure synthetic

environments find many applications today with many more

uses visible on the horizon. Applications in design,

manufacturing, marketing, medicine, training, handling of

hazardous materials, education, telecommunications, and

entertainment are discussed in Chapter 12 of Durlach and

Mavor, and the reader is referred there for a detailed

examination of synthetic environment applications that are

driving today's research and development efforts. It is

likely that the most prevalent short-term commercial efforts

in virtual environments will be made for entertainment

purposes with commercial applications in other virtual

environment systems realizable only in the long-term time

frame (Durlach and Mayor, p. 381). Teleoperation, however,

is already applied widely, but its lack of demonstrated

commercial value has limited its funding for further

research and development (Durlach and Mavor, p. 381). Many

scientific and economic hurdles stand between the

applications of synthetic environments in the near future

and the "virtumalls" and "teletravel centers" of the media,

but these obstacles can be overcome and synthetic

environments can eventually have a significant impact on our

daily lives.

1.2 An Introduction To Tracking Technologies

It is clear at this point that all synthetic

environments require a set of sensors to report action in a

synthetic environment. These sensors enable a

computer-generated virtual environment to respond to the

actions of a human user and allow a teleoperator system to

10

correctly report information about the telerobot's

interaction with the real environment. In either case, the

sensors play an important role in the system, and the

accuracy and resolution of those sensors could be a

significant limiting factor in performance.

Consider a virtual environment video game that is

unable to accurately sense a player's motion on the

battlefield; such a deficiency could defeat the purpose of a

virtual reality game altogether. Likewise, consider a

system that can accurately sense the player's motion only in

sizable discrete steps. The poor resolution of this system

could cause motion sickness and confusion quite quickly.

Now imagine a teleoperator system that fails to report

movement accurately or that lacks sufficient resolution.

Such a system may be useful for remote exploration or for

lifting heavy objects, but it would certainly fail during

surgery.

It is important to mention that the accuracy and

resolution of a sensor are not the only parameters in the

accuracy and resolution of an entire tracking system. A

sensor simply relays raw information to some processor that

then calculates movement from that data. Small inaccuracies

and low resolution in the raw data can be improved by data

conditioning - that is, the data can be averaged or operated

11

on in some more clever way to achieve tracking system

performance better than the performance of an individual

sensor. It is clear, though, that sensor performance can be

a limiting factor in overall tracker performance.

Sensor performance, then, can be a tradeoff parameter

in a tracking system. It may be desirable to use a lower

grade sensor with very complex data conditioning algorithms

to achieve the desired system performance, or it may be

preferable to use an excellent sensor with little or no

operation on the raw data. Whatever the tradeoff,

performance of a tracker as a whole significantly impacts

the performance of the entire synthetic environment system.

Sensor performance is closely linked to the tracker

methodology. Five methodologies - mechanical, magnetic,

acoustic, optical, and inertial - are commonly used today,

and each is discussed below.

1.2.1 Mechanical Tracking

Mechanical tracking is the most straightforward tracking

method, involving a direct physical connection between the

tracked point and a reference point. The displacement

between the two points can then be calculated using the

displacement of joints within the physical connection.

Mechanical tracking is fast, accurate, and cheap, but the

12

direct physical connection imposes many limitations. The

most notable limitations include severely limited range and

a cumbersome mechanical setup that can interfere with action

in a synthetic environment. For applications that require

cheap, accurate tracking in a small volume, mechanical

tracking is an acceptable choice.

1.2.2 Magnetic Tracking

Magnetic trackers are composed of a sensor containing three

orthogonal coils and an emitter that generates three

orthogonal magnetic fields. Position and orientation can

then be calculated using the nine induced currents (a

current is induced in each coil by each field). For a

discussion of the mathematics see Raab, Blood, Steiner, and

Jones, 1979.

Magnetic trackers have several advantages. These

include a small, lightweight sensor, good accuracy and

resolution when the sensor is near the emitter, and

relatively low cost for the performance achieved. The

magnetic method, though, also contains inherent limitations.

Nearby ferromagnetic objects distort the orthogonal magnetic

fields and degrade performance. Performance also degrades

as the sensor is moved farther from the magnetic field

emitter. Despite these limitations, magnetic trackers

continue to be the most common trackers used in today's

virtual reality applications.

1.2.3 Acoustic Tracking

Acoustic tracking systems utilize acoustic emitters and

sensors to determine either the time of flight or the phase

shift of an acoustic wave traveling from a fixed reference

to an unknown point. From these data, an acoustic system

calculates distances and uses triangulation to compute

position. An acoustic system can not measure orientation

directly. Instead, the position of two or more unknown

points (held fixed in relation to each other) must be

tracked so that orientations can be determined using

position measurements.

Acoustic trackers overcome some of the inherent

limitations of magnetic trackers, but impose restrictions of

their own. Obviously, ferromagnetic objects do not

interfere with acoustic trackers, but any object placed in

the line of sight between emitters and receivers will

adversely affect system performance. Distance does not

degrade accuracy or resolution for an acoustic tracker

(provided the distances remain within the range of the

system), but increased distance does slow the data rate for

time of flight systems. Acoustic phase systems track only

relative change in position and are, therefore, hampered by

errors that accumulate between zeroings. In addition,

sources that produce acoustic waves in the frequency used by

an acoustic tracker will cause the tracker to confuse its

acoustic emissions and the offending source, and gross

position errors will result.

1.2.4 Optical Tracking

Optical tracking encompasses a wide range of methods that

use light to track objects. Optical trackers can use light

emitters and sensors that measure angles for triangulation,

or an optical tracker can involve pattern recognition,

rangefinding with lasers, or analysis of digitized video and

still photography. In general, optical trackers are very

accurate and fast, but also expensive. Because of the

expense, optical tracking technology has been less widely

used than any of the previously mentioned methods. These

optical trackers may develop into cost-effective high

performance systems as imaging systems continue to become

cheaper and more powerful.

1.3 Inertial Tracking

Inertial tracking requires sensing acceleration and

angular rate and then integrating that data to derive

position and orientation. This method has been used

effectively in aircraft navigation systems for quite some

time, but the size and cost of the required sensors have

made inertial tracking unattractive for synthetic

environment applications. However, "the use of

accelerometers or of angular rate sensors for motion

tracking is becoming increasingly attractive because of

advances in sensor design" (Durlach and Mavor, p. 200). As

inertial sensors decrease in size and cost and increase in

accuracy and resolution, they become more useful for

synthetic environment systems.

A major advantage of inertial tracking systems is their

inherent sourceless operation. All of the previously

mentioned tracking methods (except mechanical tracking)

require both a source (to produce magnetic fields, acoustic

waves, or light) and a sensor. Systems that require a

source suffer from inherent range limitations and often from

line of sight limitations as well. Although magnetic

trackers overcome the line of sight difficulty, they do have

difficulty with a propinquity of ferromagnetic objects. A

sourceless inertial tracker overcomes all of these problems

-- no line of sight restrictions, no inherent range

16

limitations, and no problems with nearby objects of any

material.

1.3.1 The MIT Inertial Tracker

Unfortunately, stand-alone inertial tracking systems

drift, unable to accurately derive absolute position and

orientation. To compensate for this drift, "either an

inertial package must periodically be returned to some home

position for offset correction, or it must be used in

conjunction with some other (possibly coarse) position

sensor and an appropriate method of data fusion" (Durlach

and Mayor, pp. 200-201).

Using this alternate sensor method, "an inertial

orientation tracker has been built at MIT using triaxial

angular rate sensors with gravimetric tilt sensors and a

fluxgate compass for drift compensation (Foxlin and Durlach,

1994)" (Durlach and Mayor, p. 201). This tracker has

recently been hybridized with an acoustic tracker to track

translation as well as orientation. With three degrees of

freedom for orientation and three more degrees of freedom

for translation, the tracker has achieved six degree of

freedom tracking using a sensor block whose volume is

approximately one cubic inch.

This sensor block is connected via cable to a processor

that integrates the data received by the sensor and that

sends necessary commands to the sensor. Unfortunately, the

cabling imposes some limitations on the system. The obvious

limitation concerns the range of the tracker, with the range

limited to the length of the cable. Tangling and knotting

of the cable also slightly restrict the motion of the user.

Eliminating these frustrating limitations imposed by the

cable would make an already attractive six degree of freedom

tracker even more desirable.

The following block diagram illustrates the MIT hybrid

system. The dashed box includes the acoustic tracker that

is included for six degree of freedom operation -- for

applications that track orientation but not translation, the

dashed box is excluded. The bold lines indicate the

limiting cables in the system; because the acoustic system

tracks a wireless emitter with cabled receivers, the wired

connections are fixed and do not impose limitations. In

addition, the host computer is not part of the hybrid

system. Instead, the host computer is usually a large

virtual reality engine that controls the entire system.

Figure 1-1: A block diagram of the MIT inertial tracker.

1.4 Improving the MIT Inertial Tracker: Adding a

Wireless Link

It is clear that a wireless link between the sensor

block and the processing block would make the aforementioned

six degree of freedom tracker more desirable. Increased

range would make the system more attractive to teleoperator

systems and to augmented reality systems (less so for pure

virtual reality systems) and the elimination of logistic

"R%

problems created by the cable would increase tracker

desirability in all synthetic environment systems.

This link could be established using either infrared or

radio frequency (RF) technology. The method used is less

important than the design parameters imposed by a

potentially commercial system. That is, the system must be

small, lightweight, safe, and inexpensive to compete in the

marketplace. The end user desires a high level of

performance and a transparent link - the proposed wireless

link should solve the problems created by the cable in the

current system without creating any new difficulties in the

system.

1.4.1 Thesis Scope

The goal of the present project is simple: design the cable

out of the MIT inertial tracking system. Designing a custom

set of transceivers is one possible method of reaching this

goal. Such a method may not be the most far-sighted,

however, because the system continues to evolve and evolving

the transceivers in parallel could be an arduous task.

Another avenue from which to approach the goal is to

reengineer the existing interfaces to the system so that any

of several standard transceivers can solve the wireless link

problem. Such reengineering is the focus of this thesis.

Additions for the existing system were designed so that they

would not only allow standard transceivers to make the

wireless link but also seamlessly overlay the existing

high-performance inertial tracker. Chapter 3 discusses the

design and implementation of the new interfaces, and Chapter

4 provides analysis of test results and suggests the next

steps that should be taken. Before undertaking the project,

though, it is necessary to understand some of the benefits

of a successful design, so Chapter 2 discusses some

important potential applications of the wireless, sourceless

MIT inertial tracker.

Chapter 2

Potential Applications

2.1 Potential Applications for the MIT Inertial

Tracker

The following potential applications are outlined to show

the usefulness of the sourceless and wireless MIT inertial

tracker. The list of applications is by no means exhaustive

and is not meant to guide further development efforts.

Instead, the list of potential applications should serve as

a highlight of the tracker's capabilities and the broad

22

range of industries in which those capabilities could be

utilized.

2.1 Applications for a Sourceless Tracker

The MIT sourceless inertial tracker does not suffer from

line of sight limitations and has no range restrictions when

sensing orientation only (the acoustic-inertial hybrid that

senses orientation and translation has moderate line of

sight and range restrictions imposed by the acoustic portion

of the system). Remarkably, the inertial system overcomes

the limitations of other systems without a degradation in

performance. So, applications that require high

performance, long range, and possibly occluded operation are

ideal for the sourceless MIT inertial tracker.

2.1.1 Head Tracking in Virtual Environments

Today's primary application for the MIT inertial tracker is

head tracking for virtual reality systems. For applications

that require orientation but not translation (i.e. most

video games and simulators) the MIT inertial tracker offers

high performance, virtually unlimited range, and no

degradation near noise sources or ferromagnetic objects.

When translational data is required, the MIT hybrid system

offers the same high performance and immunity to

23

ferromagnetic objects, but is limited to a range of

approximately five meters (as opposed to 1-2 meters for

popular magnetic trackers), is degraded by noise sources in

the acoustic frequencies used by the tracker, and suffers

from the line of sight difficulties of the acoustic tracker.

Despite these limitations, the MIT acoustic-inertial hybrid

can be effectively applied to head-tracking applications.

2.1.2 Telerobots

Telerobot applications require the tracking system to report

the orientation and position of some remote robot to a human

controller. The benefits of the MIT inertial tracker and

the MIT acoustic-inertial hybrid mentioned in the previous

section apply to telerobot applications as well. The long

range of the MIT system should be emphasized because it is

likely that the telerobot will operate in a sizable

environment. In addition, immunity to ferromagnetic objects

is obviously important for telerobot applications that use

metallic materials to construct the telerobots.

2.2 Applications for a Wireless, Sourceless

Tracker

Two specific potential applications for a wireless,

sourceless tracker are discussed in this section, but

24

certainly many more exist. Any application that requires

high performance orientation tracking over extremely long

ranges can utilize the MIT inertial tracker. Applications

that need this performance from a small, inexpensive tracker

are ideal for the MIT system.

2.2.1 Remotely Piloted Vehicles

Remotely piloted vehicles can be grouped with telerobots.

The distinction made here uses remotely piloted vehicles to

imply much longer range than a telerobot.

One can imagine the need for monitoring the orientation

of the turret of a remotely piloted tank during combat. In

addition, a remotely piloted aircraft would also need

orientation monitoring. A Global Positioning System (GPS)

receiver could be integrated with the inertial tracking

system to provide a fairly accurate inertial navigation

system (INS). Because multiple inertial trackers can be

operated in a closed space without interfering with each

other (all other tracking methods do self-interfere), it can

be imagined that a remotely piloted helicopter could utilize

an integrated GPS INS and then multiple inertial trackers to

aim weapons. It should be emphasized that the MIT inertial

tracker is useful for this application when a small size and

low cost are desirable; bulkier and much more expensive

25

inertial navigation systems are currently available that

offer superior performance.

Remotely piloted commercial vehicles can benefit from

the MIT inertial tracker as well. One can imagine using an

inertial orientation sensor coupled with a camera or set of

cameras on a remotely piloted vehicle to develop panoramic

views of terrain. These panoramas could be used for search

and rescue operations, exploration, and entertainment.

Certainly many more applications exist; any task that

requires human operation of a remote machine is a prime

candidate for a sourceless, wireless tracker.

2.2.3 Surveying

Surveying is another potential application of a sourceless,

wireless tracker. Consider a system composed of a laser

rangefinder on a tripod with a reflector placed some

distance away. A survey team outfitted with the MIT

inertial tracker could quickly setup their laser and

reflector and take several measurements, rather than

leveling the tripod and measuring the angles between the

laser and reflector precisely for each measurement. All of

the angle measurement would be performed by the tracker, and

compensation could be made for an unlevel tripod. In some

cases, the laser rangefinder could be aimed at a known point

26

(:L.e. a nearby building) and the inertial tracker could

instantly measure all of the angles necessary to fix the

point of the tripod. A surveyor equipped with a wireless,

sourceless tracker could quickly move his tripod from point

to point and aim his rangefinder at a fixed point while the

tracker measured all angles necessary and downloaded them to

the surveyor's nearby van.

Chapter 3

The Design and Implementation
of a Wireless Tracker

3.1 The System

A wireless tracker must contain only a wireless data and

control link and a sensor or block of sensors that produce

measurements from which position and orientation can be

computed. The sensor fusion and processing can be performed

o()n a distinct processor after the raw data have been

received from the sensors (figure 3-1), or the orientation

and position can be computed between the sensor block and

data transmitter (figure 3.2). This tradeoff is discussed

in more detail in Section 4.4. For now it is sufficient to

recognize that a wireless tracking system can be represented

by three functions in a block diagram - data collection (the

sensor block), data transmission (the wireless link), and

computation.

Figure 3-1: The wireless link before computation.

29

Inertial Tracker

Data

Data
Inertial Fusion

Sensors Co l andSensors Control Processing

Wireless
Link

Data

Control

Wired

Link

Host

Computer

Inertial Tracker

Data Data

Data
Inertial Fusion
Sensors Control Processing Control.• Processing 4-

Host

Computer

Wired Wireless
Link Link

'11

Figure 3-2: The wireless link after computation.

The sensor block in a wireless tracker should be

similar to the sensor block of a wired tracker using the

same tracking technology. It is the data from this block

that is used to calculate position and orientation, and it

is assumed tthat the performance of a wireless tracker should

approach the performance of a wired tracker as closely as

possible. Therefore, the technology versus cost trades that

are made for a wired tracker should have the same outcomes

for a wireless version. Perhaps we are willing to accept

higher cost or lower performance in a wireless tracker, but

we would certainly prefer to maintain the standards we hold

for wired trackers. For the proposed design, the sensor

block in the wireless version is identical to the wired

sensor block.

It is assumed that the data transmission block is a

likely bottleneck for a wireless tracking system. Certainly

if cost is a factor in the system, the wireless link must be

the bottleneck. Otherwise, we can purchase an extremely low

cost, low baud rate wireless link to use for the system. In

the limit, we have no wireless transmission link and no

cost, but we are then forced to collocate the host computer,

data fusion and processing functionality, and the sensor

block. In another limit, we can buy an extremely expensive

wireless link that achieves baud rates as high as we like

over arbitrary transmission distances with low bit error

rates. This system is very expensive, and it is

uninteresting. In the proposed system, it is assumed that

both low cost and high bandwidth are similarly desirable, so

the wireless transmission link is an important and

constraining block.

Computation in a wireless tracker should be similar to

the computation in a wired tracker, assuming similar

precision and accuracy versus speed tradeoffs. Because the

computation block is basically the same in both wired and

wireless trackers, its contents are less interesting for the

current project than its placement. If most computation can

be performed before the wireless transmission link, then we

can reduce bandwidth and cost. However, we assume that fast

computation power is more available and much cheaper at the

host computer than it is at the sensor side of the

transmission link. Otherwise, we would move the entire host

computer and data fusion and processing functionality to the

sensor block and we would eliminate the need for a wireless

Link at all. The placement of this computation block is

discussed in more detail in Chapter 4.

The overall sourceless, wireless system is based on the

MIT inertial tracker developed by Eric Foxlin. Though the

remainder of the discussion focuses specifically on this

tracking system, the concepts can be generalized to include

other inertial tracking systems and other tracking

methodologies as well.

3.1.1 System Design Goals

As mentioned in Section 3.1, the primary goal of a wireless

tracking system is to approach the same performance and

functionality of a wired tracking system using similar

tracking technology. In addition, the cost of the system

should not be prohibitive, and the size should be

manageable. It is also hoped that the transmission link

will not introduce a bottleneck that severely hampers the

performance of the MIT inertial tracker. Moreover, the

whole system should operate on a battery for an acceptable

length of time. Please see Table 3-1 for a complete list of

design goals.

Characteristic Current System Proposed Goal for

Wireless System

Range length of cable for 30 feet without

orientation only; line of sight.

15 ft. for orientation

plus position

Battery Life Not Applicable 2 hours

Update Rate 500 Hz / Total number 100 Hz / total

of sensor blocks number of sensor

blocks

Price $9,200 $10,000

Size of 1.25 in. x 1 in. x 2.5 in x 2.5 in x

wearable .91 in. 1 in.

components

Table 3-1: Design goals.

3.1.2 Design Constraints

Constraints for this design come largely from the need to

integrate the new system with the existing MIT inertial

tracking system. The proposed hardware and software must

overlay the existing hardware and software platforms

seamlessly. In addition, the proposed system must operate

through an available RS-232 serial port, allowing a maximum

of 115 Kbaud transmission rate.

This choice to use an existing serial port was made to

reduce cost and complexity. Higher bandwidths (and

therefore, higher performance) could be obtained by

combining a high bandwidth transmission link with a custom

card that plugs into the bus of the data fusion and

processing unit. This method increases complexity and cost

and was not investigated.

3.2 The Hardware

3.2.1 An Overview

The following Figure 3-3 illustrates a block diagram of the

hardware for a wireless link to the MIT inertial tracker.

The blocks are discussed in the remainder of Chapter 3.

A variety of digital hardware was utilized to overlay the

proposed wireless tracker onto the existing system. This

hardware included an RS-232 interface between the data

processing unit and the microprocessor that controls the

sensor block and an interface between the microprocessor and

the sensor block. In addition, further interface circuitry

may be necessary to utilize an off-the-shelf wireless serial

link. This circuitry should not involve much more than a

wired connector and socket because most wireless serial

links are designed to plug easily into existing wired serial

connections.

Figure 3-3: A block diagram of the serial link.

3.2.2 Hardware in the Sensor Block

For the present project, the only relevant hardware in

sensor block of MIT's inertial tracker is an analog to

digital converter (ADC). The converter reads an eight

the

bit

35

serial control word that specifies channel and output format

during the first eight clock cycles of its twelve cycle

output. The ADC has a 10 microsecond conversion time and

runs on a 4 MHz clock, so the total cycle time is 13

microseconds, allowing a maximum conversion rate of

approximately 77,000 channels per second (the current MIT

system uses the converter to convert approximately 4000

analog values per second). In the proposed system, the

converter is selected and driven directly by the

microprocessor and interface hardware.

3.2.3 The Microprocessor and its Interface

The proposed system utilizes a Zilog Z180 microprocessor

running at 18.432 MHz on a Zworld SmartCore board. The

SmartCore provides 512K of read only memory (ROM), a

watchdog timer to recover from system lock-ups, and a 40 pin

interface to help reduce the layout complexity of nearby

interface circuitry. See Appendix A for the schematics of

the Zworld SmartCore.

Zworld's suggested interface to an analog to digital

converter (ADC) is shown in Figure 3-4. This interface uses

an 8-bit addressable latch (74HC259) to decode the least

significant three address bits into separate data, chip

select, and clock lines. In addition, an octal buffer /

line driver (74LS244) is used to gate the ADC data output

stream onto the three-state data bus. See Appendix B.1 for

the microprocessor software used to drive the interface in

Figure 3-4.

AO
Al
A2

WR

00

1CS4

iRESET

,RD

LI IVuI

Figure 3-4: Zworld's suggested interface.

The suggested interface was constructed and evaluated,

and it was found to have severe limitations. Because the

microprocessor directly drives the clock for the ADC, each

bit of output data requires at least two output commands

from the microprocessor to toggle the clock. For a twelve

bit output word, at least 24 microprocessor output commands

are required. In addition, the sample interface only uses

the least significant bit of the data bus, thereby requiring

the microprocessor to internally shift the received data to

make room for incoming bits. These limitations greatly

impede the cycle time of the ADC - allowing approximately

400 conversions per second with a 115 Kbaud serial

connection. (It takes three serial words of 10 bits each to

transmit two 12 bit conversion results with overhead. A 400

channel per second conversion rate implies 6000 bits per

second transmitted across the serial line, for a utilization

of 5%. A 115 Kbaud channel perfectly utilized can

theoretically support 7680 conversions per second with no

data compression.)

An interface circuit that overcomes these limitations

was designed and constructed and is shown in Figure 3-5.

The 74LS259 now has its data input wired to a logic high, so

any line of the multiplexer that is selected by the three

least significant address bits is asserted to a logic high.

Logic lows are set on all lines of the multiplexer by

forcing the third chip select line on the microprocessor to

a logic low. The 74HC259 is used to select modes for the

8-bit shift / storage registers (74LS299) and to provide the

clock pulse necessary to load the resgisters with the 8 bit

value present on the data bus.

A 4 MHz crystal oscillator is used to eliminate the

need of the microprocessor to directly drive the ADC clock.

Because we need bursts of twelve clock pulses separated by

enough time to read the data from the ADC and set up for the

next conversion, a presettable 4-bit binary up / down

counter (74LS193) is used with additional logic gates to

provide a 12 count framing pulse that is used to regulate

the clock input to the ADC. In addition, the 74LS299's

enable the microprocessor to read 8-bits of each conversion

result with one read operation, reducing the internal

shifting necessary to form a 12 bit result. Please see

Appendix B.2 for the driver software of the circuit in

Figure 3-5.

With this configuration, a single microprocessor and

interface hardware circuit can drive up to four sensor

blocks (this limitation is imposed by the number of

available chip select lines on the microprocessor) with a

maximum three quarters degradation in performance. The

performance is degraded most when the microprocessor

independently controls each sensor block. The degradation

can be minimized with additional shift registers -- if each

sensor block has its own set of shift registers then the

analog to digital conversions can occur in parallel. In

addition, if each sensor block operates on the same channel

at any given time, the control words can be written

simultaneously to reduce the number of required commands on

the microprocessor.

39

Data Out CS3

TLCCLK I _I

Figure 3-5: An improved interface circuit.

D n~

Data

1 I

AO Al A2

As we can see, many of the limitations of the suggested

circuit are eliminated. The microprocessor now requires six

output commands and two input commands to program and read

each conversion instead of the 51 commands required

previously to toggle the clock and read bits individually.

The ADC is now operated at its maximum allowable clock

frequency of 4 MHz. The system can now perform

approximately 2800 analog to digital conversions per second,

a sevenfold improvement over the first revision. Including

the overhead start and stop bits, the 115 Kbaud serial

connection is now 36% utilized.

Why is the serial connection only 36% utilized? It is

certainly preferable to utilize all of the available

bandwidth. In the present setup, though, the microprocessor

must read the data bus twice for each conversion before

loading the bus with the next channel to be converted.

During these read operations and the subsequent write to

prepare the system for the next conversion, the serial

connection is idle. In addition, when the microprocessor

scans a block of channels, it stores all of the conversion

results until it is ready to send all of the data back to

the host computer and the serial link is idle during this

pause. This storage allows the microprocessor to format the

data efficiently and reduce the overall bandwidth

requirements for a given number of conversions.

3.2.4 Hardware Interface to the Data Fusion and

Processing Unit

The data fusion and processing unit must have an available

serial port (when computation is performed before

transmission, the host computer must have an available

port), but no additional hardware is required. The current

MIT inertial tracker uses a custom card that connects the

sensor block to the data processor's 8-bit Industry Standard

Architecture (ISA) data bus. This custom card allows

extremely fast operation of the ADC within the sensor block,

but the speed is unnecessary when limited by a 115 Kbaud

serial connection.

The current MIT system already uses both serial ports

available on the existing controller card. The first port

is used to connect to the VSCOPE ultrasonic positioning

system, and the second is a data connection to a host

computer. A second controller card must be added and

configured to allow the operation of three serial ports.

3.3 The Software

Software for the proposed system has two distinct parts -

the code burned on the EPROM that controls the

microprocessor, and the code inserted into the existing data

fusion and processing unit. The implementation of both of

these parts is discussed below, and the complete listing of

the code is given in Appendices B and C.

3.3.1 Microprocessor Software

The code on the microprocessor receives a single control

byte from the data fusion and processing unit. At the time

of this writing, only two control commands have been

implemented -- a channel scan command and a single

conversion command. To scan a block of channels, the

microprocessor must receive a byte that contains four

leading zeros and then the channel up to which to scan. A

single conversion command byte contains four leading ones

and then the channel to be converted.

Please see Appendix B for the complete code implemented

on the microprocessor. Each function is described in detail

in the appendix.

Some additions should be made to the microprocessor

code to allow better control of the system. A function that

remaps the channels should be implemented, as should another

function that changes the data rate of the serial port on

43

the SmartCore. In addition, functions must be implemented

to control lines for the sensor block that are not tied to

the ADC.

3.3.2 Other Software

In addition to the software implemented on the

microprocessor, the software running on the data fusion and

processing unit was modified. Please see Appendix C for the

modifications.

It is clear that some software is needed to send

commands to the microprocessor and receive data from the

microprocessor. The software in Appendix C serves this

purpose, and it accomplishes other tasks for the inertial

tracker that are unrelated to the present discussion.

Chapter 4

Data Analysis and Conclusions

4.1 Results

It is important to recall that the present serial system has

been designed for use with existing wireless serial

connections. Most of the wireless serial links presently

available for a reasonable cost operate at baud rates of

38,400 or less. Performance requiring more than the easily

available bandwidth would be degraded when operated with a

less expensive wireless link. It is important, then, to

improve the cycle time of conversions without increasing the

bandwidth required to transmit the results to the host

computer. It may also be desirable to accept a small

performance degradation if the bandwidth requirements are

greatly reduced by the change.

The following Table 4-1 and Figures 4-1 and 4-2

summarize useful data that help suggest an optimal bandwidth

for the present system. For 8000 conversions, the total

data sent by the ADC is 120,000 bits with 10,000 bits

required to control the microprocessor.

Baud Rate Seconds per Percentage of

8000 utilized

conversions bandwidth

(microprocessor

code C.2)

2,400 54.8 98.8

9,600 14.8 91.2

19,200 8 84.6

38,400 4.6 73.6

57,600 3.5 64.4

76,800 2.7 62.7

96,000 2.6 52.1

115,200 2.6 43.4

Bandwidth utilization.Table 4-1:

N

N

*1
-J

LJ. ---... L. J
20 25 30 3S 40

Figure 4-1: Diminishing returns for increased

bandwidth.

v 10
4

0 2 4 b u lu 12
Baud Rate x 1n0

Figure 4-2: Bits per second through serial link.

312

I.)

;ii

C:

Nc

Baud Rate (in 2400 baud increments)

C
0
C/3

2

4% IV

4.2 Analysis

It is clear from Table 4-1 and Figure 4-1 that there is a

diminishing return on bandwidth in the serial connection.

Why are there diminishing returns? Recall the discussion in

Section 3.2.3. While the microprocessor is reading and

formatting data, the data fusion and processing unit is idle

and no data flows through the serial connection.

As the baud rate is increased, the idle time remains

fixed, but transmission time decreases, so the percentage of

idle time rises (the percentage of idle time is inversely

proportional to the bandwidth utilization). Once the system

reaches a 76 Kbaud transmission rate, the transmission time

is negligible compared to the processor time on the

microprocessor, and the system becomes limited by the speed

of the microprocessor instead of by the serial bandwidth.

How can these bottlenecks be overcome? It must be

emphasized that the bottleneck at low baud rates is the

serial bandwidth, while at high baud rates the limiting

factor is microprocessor speed. This distinction implies

that the same method will not overcome both problems. At

low baud rates, the processing time on the microprocessor

(idle time in the system) is less significant than

transmission time. Data compression, then, seems to be a

workable solution to the problem. A complex compression

algorithm (especially one that involves floating point

numbers) could substantially increase processor time and

degrade system performance. Instead, a simple compression

algorithm should be used. One possible simple compression

scheme could send a single bit of overhead that would

signify if the forthcoming conversion result contained 10 or

12 bits. Ten bit data would be sent when the conversion

result was within 1024 counts of a fixed value (that would

be added to the 10 bit result after data transmission), and

12 bit data would be sent otherwise. This compression

scheme would probably not achieve more than 10% compression,

but it would be easy to implement, and it could avoid

slowing down the microprocessor too much.

For high baud rates, compression would actually degrade

overall system performance. Instead, the data fusion and

processing unit should be active while the microprocessor is

working. To accomplish this, we could change the current

scheme of requesting ADC channel scans at the beginning of

each computation loop. Instead, we could request scans

during the loop. Then, the microprocessor would be

preparing another set of data while the central processor

continued to merge the sensor data from the previous

request. The system idle time would be greatly reduced with

the new method, and performance would improve at all baud

rates, but higher baud rates (that are not themselves

bottlenecks) would see more improvement than low baud rates.

How fast can the system get? The maximum conversion

rate is approximately 5,800 channels per second (when the

microprocessor is put in continuous mode), and the system

currently converts about 3,100 channels per second with a

1L15 Kbaud serial connection. The current system speed is

only 53% of the empirical limit.

4.3 Summary

A serial connection to the MIT inertial tracker has been

designed and implemented. The intention is to make this

connection wireless using a standard transceiver pair, so

system performance was tested using different baud rates.

Higher baud rates are obviously preferred, but the returns

do diminish as baud rate is increased. Cost and desired

performance must be factored into any transceiver choice --

if allowed cost and desired performance are both low, then a

low baud rate link will meet the requirements. If high

performance is preferred and cost is less of an issue, a

high baud rate link is desired. Recall, however, that no

gain is made in the present system for baud rates above 76

Kbaud.

4.4 Suggestions for Further Work

The software modifications mentioned in Section 4.2 are a

good beginning to further work on this project. If we

refuse to increase hardware complexity further, the largest

performance gains must be made with software enhancements.

Another interesting area involves changing the data

representation in the system. Currently, the ADC reports 12

bit values to the microprocessor that then sends the entire

12 bit result to the central processor. The microprocessor

could instead send the differential between results (rather

than the entire result each time) to save bandwidth.

Differential results cause errors to accumulate in the

filtering algorithm, but the filter eventually overcomes the

errors. To a head mounted display user, bit errors under

the differential scheme would cause their view to drift, and

then ease back to where it should be. With bit errors in

the current system, the field of view would shift more

dramatically, but recovery would take only a single update

(assuming the next conversion result is received without

errors). It is unclear which system is preferable to the

user. It is also unclear if these preferences are dependent

upon the tracker's application.

Another interesting topic concerns the placement of the

data fusion and processing block within the system (as

mentioned in Section 3.1). If the block is placed before

the transmitter, the required bandwidth is greatly reduced.

To collocate the sensor fusion with the microprocessor,

however, implies a reduction in computing power and,

therefore, a degradation in the system's update rate. The

system would also be much cheaper, though. It is unclear if

the cost reduction would make the performance degradation

worthwhile.

The first step toward a wireless, sourceless tracker

has been made. Many applications already exist for MIT's

wireless inertial tracker, and as wireless HMD's come on

line, the MIT inertial tracker will become a critical

component in the emergent virtual reality industry.

Appendix

SmartCore Schematics

A

00oo0 00

L.TT Ti L T 3

--- 1

-C

U- e

4-:IiC C,C

0'

00

0

C-)

Co

3

6)

0

C)

0
E

tn

iab291b2.sch-1 - Tue Jul 11 14:08:40 1995

iab291 b2.sch-2 - Tue Jul 11 14:08:42 1995

-ft

r-i;jji;j-4'
2II!LJ

Appendix B

Microprocessor Code

B.1 Control Code for Figure 3-4

*** ***************************** ******************e

12-bit ADC sample code for the Smart Core and the TLC2543
***/

#define TBUFSIZE 384
#define RBUFSIZE 384
#define CS4 Ox40CO
#define REPEATS 1

// size of transmit buffer
// size of receive buffer

// # of scan repetitions

unsigned int read_2543(int channel);
void channelscan (int n, unsigned int * values, int * map);
void senddata(unsigned int * values);
unsigned int single_channel(int channel);
void initializemap (int * map);

/*************** set clock ***********************
set clock sets the clock on the TLC2543. (Actually this

sets QO on the 74LS259, but that line is connected to CLK on
the TLC2543 (see hardware schematics for more info).

Protocol:
void set clock(int state)

Inputs:
(int state) is the value to which the clock is being
set.

********W•**************W********************WW•W*WWWW/

void set clock(int state)
{

outport (CS4, state);
}

/*********************** read 2543 *********************
read 2543 reads a specified channel on the ADC. This
function should be called from within channel scan or
single channel. (Channel scan and single channel order the
data array properly.)

Protocol:
unsigned int read_2543 (int channel)

Inputs:
(int channel) is the channel that will be converted.
[It's serial data will be output the next time a
channel is converted.

Outputs:
The unsigned int that is returned is the result of the
digital conversion of the analog channel requested by
the PREVIOUS call to read 2543 (The PREVIOUS result is
shifted out because data is stored by the TLC2543 until
the next time a channel is shifted into its register).

Changes to arrays:
None.

****WWWW**/

unsigned int read_2543(int channel)
{
int j,control;
unsigned int value;
control = channel<<8; // The channel is shifted by 8

// bits instead of the required
// 4 bits because the bottom four
// bits of the control word are
// dummy bits.

value=0; outport(CS4,0); // Set the clock low before
// asserting CS.

outport(CS4+1,0); // assert the CS on the 2543

for (j=11;j>=0;j--)
{

hitwd();
outport(CS4,0);// The first time through

// this loop, this is NOT
// a falling edge of I/O Clock
// because I/O clock is set low
// before entering this loop.

value=(value<<l) + (inport(CS4)&l);

outport(CS4+2,(control>>j)&l);
outport(CS4,1); // Set the clock high
}

outport(CS4+1,l); // clear the CS for the 2543
return value;
}
*********************** channel scan *********************

channel scan reads a block of the first n channels from the
channel map and puts their returned values into an array.

Protocol:
void channelscan(int n, unsigned int * values)

Inputs:
(int n) is the number of channels to scan.
(unsigned int * values) is a pointer to the data array.
(int * map) is a pointer to the map array. This array
should contain the integer values of the channels in
the order in which a scan is desired. That is, if we'd
like to scan channels 3, 4, 2 in that order, then map
should be an array that begins with {3,4,2} and ends
with the remaining channels in the desired order. This
order should remain the same (we don't want to change
map every time we do a channel scan);

Outputs:
None.

Changes to Arrays:
The values array is loaded with the conversion results.
In addition, values[11] is loaded with the number of
valid results in the values array.

** /
void channelscan(int n,unsigned int * values, int * map)
{
int i;

for (i=0;i<n;i++)
{
values[i] = read_2543(map[i]);
}

values[11]=i; // This stores the number of valid
// entries in the data array.

return;
}
/************** send data ***************************
send data sends data serially to the master computer.
12-bit results are combined to form 3 8-bit ASCII characters
that are sent through an RS232 connection. The most
significant 8 bits of the earlier result (the result that
has a lower array index value) specify the first character
sent. The least significant 4 bits of the earlier result
specify the most significant 4 bits of the next character.
The most significant 4 bits of the later result specify the
least significant 4 bits of the second character, and the
least significant 8 bits of the later result specify the
last of the three characters for each pair of results.
(Obviously these characters must be decoded at the master
computer).

Protocol:
void send data(unsigned int * values)

Inputs:
(unsigned int * values) is a pointer to the data array.

Outputs:
None.

Changes to arrays:
values[l] is reduced to zero in this function.

**/

void senddata(unsigned int * values)
{
int i;
long combined;

i=0;
for(values[ll];values[ll]>=2;values[ll]-=2)

// This loop is active
// when two or more
// valid results are

// left in the data array.
(So this loop sends
out 3 bytes).

combined=((long)values[i]<<12)+(long)values[i+1];

Dwrite z01ch(
Dwrite z01ch(
Dwrite z01ch(

(combined>>16) &255);
(combined>>8)&255);
(combined&255));

if (values[11])//
// This part of the function is

active when only one valid
// result remains in the data

array. Only 2 bytes are
// sent. The master computer
// needs to keep track of this.

combined=((long)values[i]<<12);

Dwrite z01ch((combined>>16)&255);
Dwrite z01ch((combined>>8)&255);
}

/**************** ******** initialize map ***************
initializem:nap sets the mapped channel values. That is,
assigns the proper channel number to each analog input.

Protocol:
void initializemap(void)

Inputs::
None.

Outputs:
None.

Changes to Arrays:

The map array is loaded with channel mappings.
ý * **** ** **** * **** ** /
void initializemap

map[0] =8;
map [1] =7;
map [2] =6;

(int * map)

// x gyro
// y gyro
// z gyro

map[3]=4; // x accel
map[4]=5; // y accel
map[5]=3; // z accel
map[6]=2; // x compass
map[7]=1; // y compass
map[8]=9; // temp sensor
map[9]=10;// unused
map[10]=11;// unused
}

/********************** single channel ******************
single_channel loads the specified channel into the control
register of the TLC2543 and returns the result of the
PREVIOUS conversion. (Therefore, to get an arbitrary
channel converted on demand, this function must be called
twice.)

Protocol:
unsigned int singlechannel (int channel)

Inputs:
(int channel) is the channel that will be converted.
[It's serial data will be output the next time a
channel is converted.

Outputs:
The unsigned int that is returned is the result of the
digital conversion of the analog channel requested by
the PREVIOUS call to read_2543 (The PREVIOUS result is
shifted out because data is stored by the TLC2543 until
the next time a channel is shifted into its register).

Changes to Arrays:
None.

unsigned int singlechannel(int channel)
{
return(read 2543(channel));
}

main(){
int i,k;
unsigned int values[12];
int map[ll];
char data;
int cursor, value;

int ledonoff;
int beeponoff;
int changebaud;
char tbuf[TBUFSIZE];
char rbuf[RBUFSIZE] ;
char buf[RBUFSIZE + 1];

// transmit buffer
// receive buffer
// dummy buffer for receiving a
// complete command

// use reload vec(..) instead of #INT VEC SERO VEC
// portO is also the Dynamic C programming Port

#if ROM==0
reload vec(14,
#endi f
Dinit z0(rbuf,
0, 0);
z0binaryset();

hitwd ();
cursor =

Dz0 circ int);

tbuf, RBUFSIZE, TBUFSIZE,

// interrupt routine will
// characters

20, 38400 / 1200,

receive all

ledonoff = 1;
beeponoff = 0;
changebaud = 0;

initialize_map (map);

while(!Dwrite z01ch('^'));
for (;;) // endless loop constantly monitoring

// new character
{

hitwd();

for

Dread z01ch(&data))

switch (data&240)
{
case 128:

if(ledonoff) ledonoff =
else ledonoff = 1;
outport(CS1, ledonoff);
outport(CS1+l,
outport(CS1+2,
outport(CS1+3,
break;

case 64:
up_beep(1000);
break;

ledonoff);
ledonoff);
ledonoff);

// beep for 1 second

// Run the channel scan

if

if
{

case 0-: routine

channel_scan((data&15),values,map);
hitwd();
senddata(values);
break;

default:
upbeep(250); // beep for 250 ms if

// non functional key is pressed.
while(!Dwrite z01ch(' ^ ')) ;
break;
}

}
}

B.2 Control Code for Figure 3-5
/**

12-bit ADC sample code for the Smart Core and the TLC2543
***************W.***********************************/

#include <stdlib.h>
#define TBUFSIZE 384 // size of transmit buffer
#define RBUFSIZE 384 // size of receive buffer
#define CS3 0x4080
#define CS4 Ox40CO
#define CS5 0x4100
#define CS6 0x4140

void read 2543(int channel, char * bytes, int index);
void channel scan(int n,char * bytes, int * map);
void senddata(char * bytes);
unsigned int single_channel(int channel);
void initialize map (int * map);

/ ********************* read 2543**************************
read_2543 reads a specified channel on the ADC. This
function should be called from within channel scan or
singlechannel. (Channel scan and single channel order the
data array properly.)

Protocol:
void read_2543 (int channel, char * bytes, int index)

Inputs:

(int channel) is the channel that will be converted.
[It's serial data will be output the next time a
channel is converted.]
(char * bytes) is a pointer to the transmitted bytes
array.
(int * map) is a pointer to the array of channel
mappings.

Outputs:
None.

Changes to Arrays:

The bytes array is loaded with 2*n bytes of data from
the converter. These bytes are ordered and sent in
send data. Bytes[22] stores the number of valid
entries in the array.

No change is made to the map array.
**/

void read_2543(int channel, char * bytes, int index)
{
int j,control;

control = channel<<4;// The channel is shifted by 4
// bits and written into the shift
// registers. When the data is
// shifted into the A/D, only
// the first 8 input bits are
// used by the TLC2543.

outport(CS3,0); // Clear the addressable latch
// and put the registers in parallel
// load mode.

outport(CS4+2,control); // Clock Parallel Load
outport(CS3,control);

ocutport(CS4+3,control); // Put registers into shift mode

// and assert the CS on TLC2543

outport(CS4,control); // Trigger the conversion cycle

hitwd(); // Make sure that this hitwd()
// call stays in this position.
// That way we can't try to read
// conversion results too quickly.

bytes[index]=inport(CS6);

66

bytes[index+l]=inport(CS5);

return;
}
/********************** channel scan *******************
channel scan reads a block of the first n channels from the
channel map and puts their returned values into an array.

Protocol:
void channelscan(int n, char * bytes, int map)

Inputs:
(int n) is the number of channels to scan.
(char * bytes) is a pointer to the transmitted bytes
array.
(int * map) is a pointer to the map array. This array
should contain the integer values of the channels in
the order in which a scan is desired. That is, if we'd
like to scan channels 3, 4, 2 in that order, then map
should be an array that begins with {3,4,2} and ends
with the remaining channels in the desired order. This
order should remain the same (we don't want to change
map every time we do a channel scan);

Outputs:
None.

Changes to arrays:
The bytes array is loaded with 2*n bytes of data from
the converter. These bytes are ordered and sent in
senddata. Bytes[22] stores the number of valid
entries in the array.

No change is made to the map array.
*9*******************************9******9*9*9************/

void channelscan(int n,char * bytes, int * map)
{
int i;

for (i=0;i<n;i++)
{
read_2543(map[i],bytes,i*2);
}

bytes[22]=i*2; // This stores the number of valid
// entries in the data array.

return;
}

/*********************** send data ***********************
senddata sends data serially to the master computer.
12-bit results are combined to form 3 8-bit ASCII characters
that are sent through an RS232 connection. The most
significant 8 bits of the earlier result (the result that
has a lower array index value) specify the second character
sent. The least significant 4 bits of the earlier result
specify the most significant 4 bits of the first character.
The most significant 4 bits of the later result specify the
least significant 4 bits of the first character, and the
least significant 8 bits of the later result specify the
last of the three characters for each pair of results. When
only one valid result is left in the array, the least
significant four bits of the first character sent are the
four most significant bits of the result, and the second
character sent is the least significant eight bits of the
result. (Obviously these characters must be decoded at the
master computer).

Protocol:
void send data(char * bytes)

Inputs:
(unsigned int * values) is a pointer to the data array.

Outputs:
None.

Changes to arrays:
Bytes[22] (the valid bytes index) is reduced to zero
within this function.

************ ** /

void senddata(char * bytes)
{
int i;
unsigned int values[2];

i=0;
for(bytes[22];bytes[22]>=4;bytes[22]-=4)

// This loop is active
// when four or more
// valid bytes are
// left in the bytes array.
// (4 valid bytes implies
// two valid conversion
// results -> 3 bytes
// of transmitted data).

Dwrite z01lch((((long)bytes[il&15)<<4)+(bytes[i+2]&15));
Dwrite z01ch(bytes[i+1]);
Dwrite z01ch(bytes[i+3]);

}

if (bytes[22])
{

Dwrite z01ch(bytes
Dwrite -z01ch(bytes
}

// This part of the function is
// active when only two valid
// bytes remains in the byte
// array. Only 2 bytes are
// sent. The master computer
// needs to keep track of this.

[i]&15);
[i+1]);

/********************** initializemap ***************
initializemap sets the mapped channel values. That is,
assigns the proper channel number to each analog input.

Protocol:
void initialize map(void)

Inputs:
None.

Outputs:
None.

Changes to Arrays:

The map array is loaded with channel mappings.

void initializemap

map
map
map
map
map
map
map
map
map
map

01=8;
1]=7;
2] =6;
31=4;
4] =5;
5] =3;
61=2;
7] =1;
8 1]=9;
9] =1 0;

(int * map)

x gyro
y gyro
z gyro
x accel
y accel
z accel
x compass
y compass
temp sensor
unused

map[10]=11;// unused

*** /

main()

int i,k;
unsigned int values[12];
int map[11];
char data;
char bytes[23];
int cursor, value;
int changebaud;
char tbuf[TBUFSIZE];
char rbuf[RBUFSIZE];
char buf[RBUFSIZE + 1];

use reload vec(..)
portO is also the Dy

// transmit buffer
// receive buffer
// dummy buffer for receiving
// complete command

instead
of #INT VEC SERO VEC

namic C programming Port

#if ROM==0
reload vec(14, Dz0 circ int);
#endif
Dinit z0(rbuf, tbuf, RBUFSIZE, TBUFSIZE,
0, 0);
z0binaryset (); interrupt routine will

characters

20, 115200 /

receive all

1200,

hitwd();
changebaud = 0;

initialize_map(map);

while(!Dwrite z01ch('^'));
for (;;) // endless loop constantly monitoring for

// new character
{

runwatch();
hitwd();

if(Dreadz01ch(&data))

switch(data&240)

case 128: // Convert

read 2543((data&15)1,,
send data(bytes);

Single Channel

bytes, map);

70

break;

case 0: // Scan Channels
read 2543(0, (data&15),bytes,map);
senddata(bytes);
break;

default:
while(!Dwrite z01ch('^'));
break;
}

}
}

}

B.3 Improved Control Code for Figure 3-5
This code is faster than the code in B.2, but the speed is
achieved by sacrificing modularity. With an overhead of
approximately 30 instructions per function call, the program
speed was significantly increased by reducing function
calls.

/**************************9*9**********************

12-bit ADC sample code for the Smart Core and the TLC2543
************e***************************************/

#include <stdlib.h>
#define TBUFSIZE 384 // size of transmit buffer
#define RBUFSIZE 384 // size of receive buffer
#define CS3 0x4080
#define CS4 Ox40CO
#define CS5 0x4100
#define CS6 0x4140

void read 2543(int channel, int n, char * bytes, int * map);
void send data(char * bytes);
void initializemap (int * map);

/********************* read 2543 ***************
read 2543 reads a specified channel on the ADC. This
function replaces channel scan and single channel from
earlier versions.
Protocol:

void read_2543 (int channel, int n, char * bytes, int *
map)

Inputs:

(int channel) is first mapped channel to be converted.
[It's serial data will be output the next time a
channel is converted.]
(int n) is the number of mapped channels to scan.
(char * bytes) is a pointer to the transmitted bytes
array.
(int * map) is a pointer to the array of channel
mappings.

Outputs:

None.

Changes to Arrays:

The bytes array is loaded with 2*n bytes of data from
the converter. These bytes are ordered and sent in
senddata. Bytes[22] stores the number of valid
entries in the array.

No change is made to the map array.
**/

void read_2543(int channel, int n, char * bytes, int * map){
int control, i, index;

for (i=channel;i<n;i++)
{
control = map[i]<<4;// The channel is shifted by 4

// bits and written into the shift
// registers. When the data is
// shifted into the A/D, only
// the first 8 input bits are
// used by the TLC2543.

outport(CS3,0); // Clear the addressable latch
// and put the registers in
// parallel load mode.

outport(CS4+2,control); // Clock Parallel Load
outport(CS3,control);

outport(CS4+3,control); // Put registers into shift
// mode and assert the CS on
// TLC2543

outport(CS4,control);// Trigger the conversion cycle

hitwd(); // Make sure that this hitwd()
// call stays in this position.
// That way we can't try to read
// conversion results too quickly.

index = i*2;

bytes [index]=inport (CS6);
bytes[index+1]=inport(CS5);
}

bytes[22]=i*2; // This stores the number of valid
// entries in the data array.

return;
}

/*********************** send data ***********************
send data sends data serially to the master computer.
12-bit results are combined to form 3 8-bit ASCII characters
that are sent through an RS232 connection. The most
significant 8 bits of the earlier result (the result that
has a lower array index value) specify the second character
sent. The least significant 4 bits of the earlier result
specify the most significant 4 bits of the first character.
The most significant 4 bits of the later result specify the
least significant 4 bits of the first character, and the
least significant 8 bits of the later result specify the
last of the three characters for each pair of results. When
only one valid result is left in the array, the least
significant four bits of the first character sent are the
four most significant bits of the result, and the second
character sent is the least significant eight bits of the
result. (Obviously these characters must be decoded at the
master computer).

Protocol:
void send data(char * bytes)

Inputs:
(unsigned int * values) is a pointer to the data array.

Outputs:
None.

Changes to arrays:
Bytes[22] (the valid bytes index) is reduced to zero
within this function.

**/

void send_data(char * bytes)
{
int i;
unsigned int values[2];

i=0;
for(bytes [22];bytes[22]>=4;bytes[22]-=4)

// This loop is active
// when four or more
// valid bytes are
// left in the bytes array.
// (4 valid bytes implies
// two valid conversion
// results -> 3 bytes
// of transmitted data).

Dwrite z01ch
Dwrite z01ch
Dwrite z01ch

((((long)bytes[i]&15)<<4)
(bytes[i+1]);
(bytes[i+3]);

+(bytes[i+2]&15));

(bytes [22])

Dwrite z01ch(bytes
Dwrite z01ch(bytes
}

1/
I-
/1
//
1/
1/

[i] &l~
[i+1])

This part of the function is
active when only two valid
bytes remains in the byte
array. Only 2 bytes are
sent. The master computer
needs to keep track of this.
5);

;

********************** initialize map ***************
initializemap sets the mapped channel values. That is, it
assigns the proper channel number to each analog input.

Protocol:
void initializemap(void)

Inputs:
None.

Outputs:
None.

Changes to Arrays:

74

The map array is loaded with channel mappings.
,oid initia*Lize****map***** (in********* ************************************* map)
void initialize map (int * map)

map
map
map
map
map
map
map
map
map
map
map

[0]=8; // x gyro
[1i=7; // y gyro
[2]=6; // z gyro
[31=4; // x accel
[4]=5; // y accel
[5]=3; // z accel
[61=2; // x compass
[7]=1; // y compass
[81=9; // temp sensor
[9]=10;// unused
[101=11;// unused

main ()

int
unsi
int
char
char
int
int
char
char
char

//
//

i,k;
gned int values[12];
map [11]
data;
bytes ["23] ;
cursor, value;
changebaud;
tbuf[TBUFSIZE]; // transmit buffer
rbuf[RBUFSIZE]; // receive buffer
buf[RBUFSIZE + 1]; // dummy buffer for receiving

// complete command
use reload vec(..) instead of #INT VEC SERO VEC if
portO is also the Dynamic C programming Port

a

#if ROM==0
reload vec(14, Dz0 circ int);
#endif
Dinit z0(rbuf, tbuf, RBUFSIZE, TBUFSIZE, 20, 115200 / 1200,
C, 0);
z0binaryset(); // interrupt routine will receive all

// characters

hitwd();
changebaud = 0;

initializemap(map);

while(!Dwrite z01ch(' ^ '));
for (;;) // endless loop constantly monitoring for

// new character

runwatch ()
hiLtwd (;

Dread zOlch(&data))

switch(data&240)
{
case 128: // Convert Single Channel

read_2543((data&15),1,
senddata(bytes);
break;

case 0:
read_2543
senddata
break;

default:
while (!Dwrite
break;
}

bytes, map);

// Scan Channels
(0, (data&15),bytes,map);
(bytes);

z01Och('^'));

if{

Appendix C

Driver Code

C.1 Zworld.c
/* ZWORLD.C -- This program communicates with the Zworld
Z180 processor thru a serial port. The processor then
operates the A/D inside the sensor block, thus making a
serial link from INTRACK to the sensors. This link can then
be made wireless with an off the shelf wireless serial
connection. Uses the C Communications Toolkit from Magna
Carta Software to achieve fast RS-232 communications up to
115 Kbaud.

AUTHOR: John Rodkin
DATE: January, 1996
Based on RS232.C by Eric Foxlin, October, 1993*/

#include <stdlib.h>
#include <conio.h>
#include <ctype.h>
#include <dos.h>
#include <graphics.h>
#include <stdio.h>

#include
#include
#include
#include
#include
#include

<math.h>
<sys\timeb.h>
<comm.h>
"globls.h"
"rs232.h"
"mccmds.h"

#define ADBASE 0x260 // ISA interface card base address
#define SELECTO ADBASE
#define SELECT1 ADBASE+4
#define SELECT2 ADBASE+8
#define SELECT3 ADBASE+12
#define SELECT7 ADBASE+28

void goodbye(void);

/* local function prototypes */

void set channel(int); /* S
// m
// c
// m
// c
// c// c
// a
//w

void set channel(int channel)
{
int error;

ET CHANNEL: Loads the
ultiplexer with the specified
hannel and updates the variable
uxchan to reflect this. This
all has to actually trigger a
onversion to get the new
hannel loaded in, so it takes
bout 32 microseconds; use only
hen needed! */

unsigned char inputs[3];

zworld send char(128+channel);

error = zworldwaitforbytes(l);

zworld get bytes(inputs,2);
return;
}

/* AD CONVERT: Convert any particular A/D input channel on
demand */

unsigned int adconvert(int channel)
{
int tlcchan, result, error;
unsigned char inputs[3];

switch(channel){

case 0: // x gyro
tlcchan = 8;
break;

case 1: // y gyro
tlcchan = 7;
break;

case 2: // z gyro
tlcchan = 6;
break;

case 3: // x accel
tlcchan = 4;
break;

case 4: // y accel
t1cchan = 5;
break;

case 5: // z accel
tlcchan = 3;
break;

case 6: // x compass
tlcchan = 2;
break;

case 7: // y compass
tlcchan = 1;
break;

case 8: // temp sensor
tlcchan = 9;
break;

default:
tlcchan = 0;
break;

}
zworld send char(128+tlcchan);
error = zworldwaitforbytes(1);

zworldgetbytes(inputs,2);

return(((inputs[0] &15)<<8)+inputs [1])<<4;
}

/* MEASURE VALUES: scans first n a/d channels and saves into
values []*/

void measure values(int n, unsigned int *vvalues)
{
unsigned int datahigh, datalow;
int channel;
int i;
unsigned char inputs[3];
int error;

79

zworld send char(n);
error = zworld wait for bytes(n);

for(i=0;i<n-1;i+=2) We're in this
or more channe
(2 channels ->

loop if two
ls remain
3 bytes)

zworldget bytes(inputs,3);

vvalues[i]=(((inputs[0]&240)<<4)+inputs[1])<<4;
vvalues[i+1]=(((inputs[0] &15)<<8)+inputs[2])<<4;
}

if(i<n) // We're in this loop if only one
// channel remains (1 channels -> 2 bytes)

zworldget bytes(inputs,2);
vvalues[i]=(((inputs[0]&15)<<8)+inputs[1])<<4;

/* MEASURE BIASES: Average 100 measurements of each
channel while the sensor assembly is in reference
position. */
void measure biases(unsigned int *bbiases)
{
int i,channel;
int numtrials = 1000;
int trial;
unsigned int vvvalues[NUMCHANS];
unsigned long accum[NUMCHANS];

for(channel=0; channel<NUMCHANS; channel++)
{
accum[channel] = 0;
}
for(trial=0; trial<numtrials; trial++)

A/D

measure values(NUMCHANS, vvvalues);
for(channel=0; channel<NUMCHANS;
{

channel++)

accum[channel] += vvvalues[channel];

for(channel=0; channel<NUMCHANS; channel++)
{
biases[channel] = (unsigned int) (accum[channel]/

numtrials);
}

80

void init8255(void)
{
/* Setup for 8255. Write a 145 control word to the control
register (which requires AO and Al to be high, so write to
SELECT7+3). */

outp((SELECT7+3),145);
led both();l}

int read baud (void)

/* This function reads the first four bits of Port C, where
the baud select lines are connected. Created 8/6/95. */

return(inp(SELECT7+2));
// SELECT7+2 denotes Port C of the 8255
}

int read button (void)
{
if(((readbaud())&0x08)!=0)

return(0);
else

return(1);
}

void led 3d(void)
{
int read8255;
// Port B is configured as an output but the latches may be
/ read.

read8255 = inp(SELECT7+1);

// turn off the 6d led on PB1:
read8255 = read8255&253;

// turn on the 3d led on PB2:
read8255 = read825514;

outp(SELECT7+1, read8255);
}

void led 6d(void)

int read8255;
// Port B is configured as an output but the latches may be
// read.

read8255 = inp(SELECT7+1);

// turn off the 3d led on PB2:
read8255 = read8255&251;

// turn on the 6d led on PB1:
read8255 = read825512;
outp (SELECT 7+1, read8255);

void led both(void)

outp (SELECT7+ 1, 1);

void led neither (void)
{
)outp(SELECT7+1i, 7);
}

Bibliography

Durlach, N. I., and A. S. Mavor, eds. (1995). Virtual
Reality. Scientific and Technological Changes.
Washington, D. C. : National Academy Press.

Foxlin, E. (1993) Inertial Head Tracking. Electrical
Engineering and Computer Science,
Massachusetts Institute of Technology.

Foxlin, E., and N. Durlach. (1994). An inertial
head-orientation tracker with automatic drift
compensation for use in HMDs. Paper submitted to VRST
'94: The ACM Symposium on Virtual Reality
Systems and Technology.

Foxlin, E., and N. Durlach. (1995). Development of Improved
6-DOF Head-Tracking Technology for HMD Applications
Based on Inertial Sensors.

Meyer, K., Applewhite, H., and Biocca, F. (1992). A Survey
of Position Trackers. Presence, Volume 1, Number 2.
173 - 189.

Raab, F., Blood, E., Steiner, O., and Jones, H. (1979).
Magnetic Position and Orientation Tracking System.
IEEE Transactions on Aerospace and Electronic Systems,
AES-15 #5, 709 - 717.

Zworld Engineering. (1995). Smartcore: C Programming Core
Module. Technical Reference Manual. Version 1.0.

