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Abstract— This paper studies the problem of multi-period
pricing for perishable products in a competitive (oligopolistic)
market. We study non cooperative Nash equilibrium policies for
sellers. At the beginning of the time horizon, the total inventories
are given and additional production is not an available option.
The analysis for periodic production-review models, where pro-
duction decisions can be made at the end of each period at some
production cost after incurring holding or backorder costs, does
not extend to this model. Using results from game theory and
variational inequalities we study the existence and uniqueness of
equilibrium policies. We also study convergence results for an
algorithm that computes the equilibrium policies. The model in
this paper can be used in a number of application areas including
the airline, service and retail industries. We illustrate our results
through some numerical examples.

I. INTRODUCTION

The aim of this paper is to propose and analyze a model
of competitive non-collusive oligopoly for sellers competing
to sell given inventories of a perishable product over a finite
multi-period time horizon. We start by describing the termi-
nology used and giving example of practical situations where
such a model would be more applicable than other proposed
models in the existing literature.

A perishable product is defined as a product that has a
finite life, or equivalently, loses its value if not sold before a
preset deadline. A market is an oligopoly if there are more
than one participating seller competing with each other. Each
of the participating sellers affects but does not control the
market. The competition is non-collusive if the sellers do not
(or, by law, are not allowed to) enter collusive agreements
with each other, but instead compete to capture demand.
A multi-period time horizon implies that the sellers have a
fixed timetable for changing their prices and we characterize
the behavior of demand within these discrete intervals. The
following examples help explain these concepts.

Consider the problem of pricing advance reservations for
Hotel StayHere in Atlanta for a particular weekend in October.
For simplicity, assume that there is only one type of room
offered by the hotel. The hotel starts making reservations
for this weekend three months in advance but is unsure
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of the actual demand that will materialize. Apart from the
demand uncertainty, another reason behind this uncertainty is
the presence of competing hotels in the same area offering
similar rooms. In this paper we will focus on the latter and will
assume that the demand is deterministic. The hotel competes
with other hotels on the basis of price and offers incentives
for early reservations for purposes of customer differentiation
(revenue management). While it wants to make sure that it
does not end up with too many vacancies, it also also wants
to prevent selling too many rooms at low rates early on. There
are several settings which have similar characteristics to the
one described above. For example, those involving competing
airlines selling airfares for their own flights leaving within
a small time window with the same origin and destination,
are very similar to the one described above. Instead of hotel
reservations or airline fares, problems with the same structure
could involve shipping containers, broadband communication
links or any capacity constrained industry product.

Several models have been proposed for monopolistic ver-
sions of this problem. McGill and van Ryzin [31] and the
references therein also provide a thorough review of revenue
management and pricing models. Bitran and Caldentey [6]
provide an overview of pricing models for the monopolistic
version of the revenue management problem in which a
perishable and non-renewable set of resources satisfy stochas-
tic price-sensitive demand processes over a finite period of
time. They survey results on deterministic as well as non-
deterministic, single as well as multi-product, and static as
well as dynamic pricing cases. Elmaghraby and Keskinocak
[20] review the literature and current practices in dynamic
pricing in industries where capacity or inventory is fixed in the
short run and perishable. They classify monopolistic models
on the basis of whether inventory can be replenished or not,
whether demand is dependent over time or not, and whether
customers are myopic or strategic optimizers. Yano and Gilbert
[41] review models for joint pricing and production under a
monopolistic setup.

On the competitive side, Vives [40] discusses the develop-
ment of oligopoly pricing models. A survey by Chan et al
[10] summarizes research on joint pricing, inventory control
and production decisions in a supply chain. They also survey
literature on price and quantity competition in supply chain
settings. Cachon and Netessine [8] also survey the problem of
competition from a supply chain perspective where the prob-
lem is characteristically a periodic production-review model.
They discuss both non-cooperative and cooperative games in



static and dynamic settings.
Our model differs from the competitive supply chain models

since we have rigid inventory constraints over the entire
horizon and the flexibility to replenish inventory between
periods through production is not an available option. Under
these modelling restrictions, we lose the convenient structure
of the problem which would otherwise allow us to analyze
equilibrium with standard techniques. In this paper we take and
alternate approach using ideas from variational inequalities. To
the best of our knowledge, no general results which could be
used to analyze such a model have been presented. A more
detailed discussion of this follows in Section II.

The paper is organized as follows. In Section II we review
some of the relevant literature in the field and discuss how the
results in this paper could not be achieved under the framework
of other papers. In Section III we describe the model for
the problem and the notation used. Sections III-A and III-
B describe the best-response policy problem and the market
equilibrium problem respectively. In Section IV we give some
theoretical results for these two problems and the conditions
under which those results hold. In Section V we analyze
an algorithm that can be used to compute the equilibrium
policies and provide sufficient conditions for convergence. In
Section VI we illustrate these results through some numerical
examples.

II. LITERATURE REVIEW

Cournot and Bertrand established the foundations for the
analysis of oligopolistic competition between sellers with their
quantity and price competition models. Cournot [11] proposed
a solution concept for oligopolistic interaction, stability of the
resulting solutions, phenomena of collusion, and compared
perfect competition with oligopolies. These models were based
on quantity competition: The competing sellers controlled their
individual production and the prevailing market clearing price
was determined by the net production. Bertrand [3] proposed
an alternate price competition model where the competing
sellers controlled prices while quantities for each seller were
determined by the prevailing prices. In Bertrand’s model, each
seller was assumed to supply the entire quantity demanded at
their set price, at an increasing production cost. Edgeworth
[17] proposed a price competition model where no seller is
required to supply all the forthcoming demand at the set price.
In such a case, the residual demand is split amongst all sellers
on some rational rule.

We refer the reader to the surveys mentioned in Section
I for a comprehensive overview of literature in the area, but
we would like to bring special attention to some particularly
relevant papers. Rosen [38] proves existence and uniqueness
results for general oligopolistic games. The paper shows
existence under concavity of the payoff to a seller with respect
to it’s own strategy space and convexity of the joint strategy
space and uniqueness under strict diagonal dominance of the
payoff function. Murphy et al [32] analyze equilibrium in a
single-period quantity competition model using mathematical
programming results. Harker [27] analyze the same model
using variational inequalities. Eliashberg and Jeuland [19]

model a two stage problem. The market in the first stage is
a monopoly and becomes a duopoly in the second stage with
the entry of a second seller. The sellers dynamically price
their product. The paper analyzes the pricing behavior under
the cases that the incumbent seller foresees or does not foresee
the entrant.

Pricing models in traditional revenue management research
can be classified into two broad categories: static and dy-
namic. Static pricing models are based on aggregated demand
distributions and can be seen as a special case of the multi-
product newsvendor problem with fixed production costs and
perishable product with no salvage. The extension of the
newsvendor problem with price as a decision variable was
studied by Zabel [43], Young [42], Dada and Petruzzi [14],
etc. Other relevant research includes Zabel [44], Thomas [39],
Dada and Petruzzi [13] and Federgruen and Heching [22] who
study the single-product, multi-period combined pricing and
inventory control problem that is typically solved by dynamic
programming.

Dynamic pricing models represent demand as a controllable
stochastic point process with price dependent intensity. Gal-
lego and van Ryzin [24] and Zhao and Zheng [45] consider
the problem of optimally pricing a given inventory of a single
product over a finite planning period before it perishes or is
sold at salvage value. There is no reordering. Gallego and van
Ryzin [25] and Paschalidis and Tsitsiklis [35] extend this type
of model to the dynamic pricing of multiple products whose
production draws from a shared supply of resources. Kleywegt
[30] gives an optimal control formulation of the multi-period
dynamic pricing problem. Kachani and Perakis [28] propose
a deterministic fluid model for dynamic pricing and inventory
management for non-perishable products in capacitated and
competitive make-to-stock manufacturing systems.

Some work has been done recently that explicitly considers
the presence of competition within the pricing framework.
Dockner and Jørgensen [16] provide a treatment of the optimal
pricing strategies for oligopolistic markets from a marketing
perspective but not a computational perspective. Bernstein
and Federgruen [2] develop a stochastic general equilibrium
inventory model for supply chains in an oligopoly environment
where the policies involve prices, service level targets and
inventory control with linear models of demand. Bertsimas
and Perakis [4] propose an optimization approach for jointly
learning the demand as a function of price and the competi-
tor response by dynamically setting prices of products in a
duopoly environment.

Previously published results prove existence and uniqueness
for equilibrium strategies for pricing games under various
conditions. We found that none of these conditions hold for our
model, hence requiring a new approach for analysis. Results
for games with supermodular payoff functions and lattice
strategy spaces are well known (See Vives [40]). The problem
in this paper does not fulfill the latter requirement. Other
results require the payoff function to be concave over a convex
strategy space. The problem discussed in this paper can be
reformulated so that the strategy space is a lattice and nicely
convex but the resulting objective function to be maximized
is neither concave nor supermodular. Alternatively, it can be



formulated to have a concave objective function, but then the
resulting strategy space is no longer convex. We study the
uniqueness of equilibrium prices using variational inequalities
since this analysis does not require the payoff functions to be
concave. To the best of our knowledge, no such analysis for
multi-period price competition models for perishable products
has been done before.

III. MODEL FORMULATION

Consider a market of a single product with a set of compet-
ing sellers. Each seller has a given inventory of the product.
The time horizon over which each seller wants to sell her
inventory of product is divided into discrete intervals. We make
the following assumptions regarding the model and policies.

1) Perfect Information: We assume that each seller has
perfect information about the structure of demand, im-
pact of their prices on their competitors demand and the
starting inventory levels of each of her competitors.

2) Consumer Choice: We assume that the demand for each
seller is a function only of the current period prices
(the seller’s and her competitors’) and that is the only
distinguishing factor between products from different
sellers.

3) Demand: We assume that the demand that each seller
will see is a deterministic function of the prices set by
all sellers in that period.

4) Product: We assume that there is only a single product
and the inventory that is saleable over all time periods
is perishable at the end of the time horizon.

5) Objectives: We assume that the sellers are objectively
maximizing their respective revenue over the time hori-
zon of the problem and practices like short-squeezing
competitors out of the market by short-term price-
cutting, introductory discount pricing to capture market
share, etc. are absent.

The notation we use is as follows. A single seller is denoted
by � � �, where � is the set of all sellers. For ease of notation,
we denote the set of all competitors of � by ��. The inventory
of products belonging to seller � is denoted by � �. A time
interval is denoted by � � �. A price is set by seller � in
every period � and is denoted by ���. Thus, we denote a pricing
policy for seller � by �� � ���� � �

�
� � � � � � �

�
� � and a set of pricing

policies for all sellers by � � ������� � � � ��� �. In period �,
the resulting number of buyers who wish to purchase from
seller � is denoted by ��

���
�� (observed demand) and is a

function of the price levels set by all sellers in that period. We
assume that the current demand is not affected by the previous
history of prices. The demand that seller � realizes (i.e the
sale made) in period � is denoted by ��� . Note the implication
that ��� � �����

�� since the sale made (realized demand)
cannot be greater than the demand (observed demand). The
relation is not an equality since the seller might be restricted
by the actual inventory level available. We use the notation
�� � ���� � �

�
� � � � � � �

�
� � and � � ������� � � � ���� to denote

the realized demand. We denote the strategy of the sellers by
the prices set, together with the maximum realized demand
using �� � ������� and � � ���� ��� � � � � ���. As before,

we use the notation ����� � ���� ��
��� � � � � ��� ��

� �� and
���� � ������� � � � �������. Given the inventory information
� � ���� � � � � ���, the total payoff to seller �, over the entire
time horizon as a function of the sellers’ policies �, is denoted
by 	����. The corresponding payoff in any single period � is
given by 
�

� .
We denote the best response policy that maximizes the

payoff of seller � over the entire time horizon given that her
competitors have adopted policies ��� by ��������. This will
be obtained by solving the best response multi-period pricing
problem. We define this problem in section III-A and formulate
it as an optimization problem. We denote the resulting best
response policy �������� for seller � by ���. In the special
case where the pricing policies are at equilibrium, we denote
them by �� � ������

�

���. In what follows, we define the
concept of Nash equilibrium policies:

Definition 3.1: The pricing policies for each seller are Nash
equilibrium pricing policies if no single seller can increase her
payoff by unilaterally changing her policy.

This definition implies that each seller sets her equilibrium
pricing policy as the best response to the equilibrium pricing
policies of her competitors. This set of policies would then,
by definition, be a Nash equilibrium set of policies. See Nash
[34] for further details on the notion of a Nash equilibrium in
non-cooperative games.

A. Best Response Policy

The best response pricing policy for seller � is the policy that
maximizes seller �’s payoff in response to all others sellers’
pricing policies. We first define the multi-period pricing prob-
lem followed by the formulation of the best response problem
for this problem.

Definition 3.2: Multi-period Pricing Problem Consider a
set of sellers � with inventories � and time horizon �. The
strategy of each seller consists of setting her price levels ��

optimally, i.e. as best response prices arising from formulation
(1) below. The demand observed by seller � in any period is
equal to the number of buyers who are willing to buy from
her given the price levels for all sellers. Seller � will realize
that demand if she has enough inventory.

The best response policy ��� of seller �, given all her
competitors’ policies ���� is the solution of the following
optimization problem:

argmax�����

��

��� �
�
��

�
� (1)

such that ��� � �����
�
� � ��

�
��� �� � ���

��� �
�
� � ��

��min � ��� � ��max �� � �

��� � � �� � ��

In compact notation, the above can be rewritten as:

���
����������

	����� �
�
��

�

�	��

such that �� � ������ �����


 � �� � ��

�min � �� � �max
�� � ��



where 	 �

�
� 	
	 �

�
, 	 denotes a square identity matrix of

suitable dimension.
Note that in this optimization problem, given a ����,

seller � selects that ��� that maximizes the objective function
	�������� �

��

��� �
�
��

�
� within the feasible space 
������� �

�������� � �
�
� � �����

�
�� ��

�
����

��

��� �
�
� � ��� �

�

min � ��� �

��max� �
�
� � �� �� � �.

In Section IV-A we show that the solution � �� to the best
response problem for seller �, given ����, will also satisfy the
following variational inequality problem:

��	���
�

�� � ��� � ���� � � ��� � 
������� (2)

B. Market Equilibrium Model

The definition of a Nash equilibrium (Definition 3.1) implies
that, at equilibrium, each seller would select a pricing policy
that optimally solves her own best response problem. Notice
that all competitors solve their best response problems simul-
taneously. Therefore each of them solve variational inequality
(2) given their competitors policy ���.

Given a potential candidate for an equilibrium set of pricing
policies for her competitors, ���, seller � sets her equilibrium
pricing policy by solving variational inequality problem (2).
Thus the equilibrium set of policies will solve the following
set of variational inequality problems:

��	���
�

� � � ��� � ��� � � � ��� � 
���
�

��� � � � (3)

The next result shows how this set of variational inequality
problems can be combined into a single variational inequality
problem. This new problem solves the best response problem
for each seller simultaneously, hence determining a set of
equilibrium pricing policies.

Proposition 3.1: The equilibrium set of prices satisfies the
following variational inequality formulation:

� ���� � ��� ��� � � �� � 
� (4)

where ����
�� � ��	���

�

� �, �� � � and


 � �� � ���� ��� � � � � ������ � 
�������� � � �

Proof: See Perakis and Sood [36]. �

In the remainder of the paper, we refer to variational inequality
(4) as the market equilibrium model.

IV. ANALYSIS OF EQUILIBRIUM

In this section we examine the analytical properties of the
best response model (2) and the market equilibrium model (4).
These properties hold under certain conditions. We state these
conditions and try to provide some intuition on when these
conditions hold.

First we impose a condition that ensures that the space of
allowed prices is bounded. One way to achieve this bounded-
ness property would be to constrain the prices between some
allowable upper and lower limits. Under this condition, we
can eliminate strategies involving infinitely high price levels.
Note that the lower limit could be the zero price level and

the higher limit could be the price level at which the demand
function vanishes.

Condition 4.1: There exists a minimum and maximum al-
lowable price level. We denote this by �min and �max for
each period respectively.

The next condition ensures that the demand for a seller is
concave in the seller’s price for each period. This condition
ensures that the strategy space in the best response problem is
convex. The linear demand model trivially satisfies this con-
dition. From a demand elasticity point of view, this condition
holds for demand functions which have an increasing price
elasticity as price increases. This holds for products where
demand decreases faster as price increases.

Condition 4.2: The demand function � �
���

�
�� ��

�
��� is a con-

cave function of ��� over the set of feasible prices for all
� � �� � � � for a fixed ���

��.
We also require that the demand is strictly monotonic in

price in order to ensure that the best response policy is
uniquely defined. For a linear demand case, this implies that
the demand function is downward sloping with respect to price
as is true for normal goods.

Condition 4.3: For any period �, for any fixed �� �
��, the

function �����
�
�� ��

�
��� is strictly decreasing with respect to ���

over the set of feasible prices. Mathematically,

�
�����	�

�
�� ��

�
��� 
 ������

�
�� ��

�
���

�
� �	��� � ����� � �

��	���� ��
�
�� , 	��� �� ���� , � � ��

The next condition ensures that the market equilibrium
model has a unique solution by requiring strict monotonicity
on the demand function as a whole. For a two seller linear
demand case this is equivalent to saying that the sensitivity of
seller �’s demand to seller �’s price is higher than the sensitivity
of seller ��’s demand to seller �’s price and the sensitivity of
seller �’s demand to seller ��’s price. This makes intuitive
sense since we expect the decrease in demand seen by seller �
when she raises prices to be more than the resulting increase
in demand seen by her competitor. This can be interpreted as
saying that upon seeing an increase in seller �’s price, some
of her customers will prefer to switch to her competitor and
some will prefer not to buy at all.

Condition 4.4: The function ����� is strictly monotone
with respect to �, over the set of feasible pricing policies 
.
That is,

�������� 
 ���� � ���� ��� � � ���� � � 
 , �� �� ��

Note that Condition 4.3 refers to the strict monotonicity of
����� with respect to only ��, while Condition 4.4 refers to
the strict monotonicity of ���� with respect to � and is thus
a stronger condition. The following lemmas are consequences
of these conditions:

Lemma 4.1: Under Condition 4.2, the constraints

��� � �����
�
�� ��

�
��� �� � �� � � �

define a convex set for any given ���
��.

Lemma 4.2: Under Condition 4.3, for any fixed ����, the
function ������� ����� is strictly monotone with respect to ��,



over the set of feasible pricing policies 
�������. That is,

��������� ����� 
 ������ ����� � ���� � ��� � �

����� �� � 
������� , ��� �� �� , � � ��
Lemma 4.3: Under Condition 4.4, the function �� ����� is

strictly monotone with respect to ��, over the set of feasible
pricing policies. That is,�

�������� 
 ������
�
� ���� � ��� � �

������ ��� , ��� �� �� , � � ��

A. Best Response Problem

We start with an intuitive result that characterizes a solution
to the best response problem. We use this result while proving
the uniqueness of the solution to the best response.

Lemma 4.4: Given a competitor strategy ������ �����, the
solution ��� � ������

�

�� to variational inequality problem (5)
satisfies the following relation:

�
��
� � �����

��
� � ��

�
���� �� �

��
� � ��

If �
��
� � � then there exists ���� that also solves variational

inequality problem (5) and satisfies the above relation.

Proof: See Perakis and Sood [36]. �

1) Existence and Uniqueness of Solution to the Best Re-
sponse Problem: To show that the variational inequality (5)
has a solution we first show that a best response strategy which
solves model (1) exists. We then show that it satisfies the
variational inequality.

Proposition 4.1: For any fixed ����, there exists a solution
��� � ������

�

�� to the Best Response optimization model (1).

Proof: It is easy to show that the feasible space is non-
empty and compact and the objective function is continuous.
Under these conditions the result follows from the well known
Weierstrass theorem (See Bazaraa, Sherali and Shetty [1]). �

Proposition 4.2: Let ��� � ������
�

�� be a solution to Best
Response optimization model (1). Condition 4.2 implies that
��� also solves the following variational inequality problem:

��	���
�

�� � ��� � ���� � � ��� � 
������� (5)

Proof: See Perakis and Sood [36]. �

Theorem 4.1: Under Condition 4.3, for fixed ����, there
exists a unique solution to best response problem (1).

Proof: See Perakis and Sood [36]. �

B. Market Equilibrium Prices

1) Existence and Uniqueness of Equilibrium Prices:
Theorem 4.2: Condition 4.2 implies that there exists at least

one solution to variational inequality (4).

Proof: The result follows from Kinderlehrer and Stampacchia
(1980) since the feasible set is compact (closed and bounded)
and (under Condition 4.2) convex, and function ��	 ���� is
continuous over the feasible set. �

Theorem 4.3: Under Conditions 4.2 and 4.3, there exists a
unique solution to the Market Equilibrium Model (3).

Proof: See Perakis and Sood [36]. �

V. COMPUTATION OF MARKET EQUILIBRIUM PRICES

A. Iterative Learning Algorithm

In this section we study an algorithm for computing the
market equilibrium prices arising from variational inequality
(4). A number of algorithms proposed for solving variational
inequalities exist in literature. The algorithm we study is
based on a simple intuitive process inspired by the concept
of fictitious play, first introduced by Brown [7] and Robinson
[37]. The tatônnement process described in Vives [40] is very
similar in nature and is shown to converge (tatônnement sta-
bility) for supermodular games. We give sufficient conditions
for convergence of the algorithm for the multi-period pricing
game discussed in this paper and discuss how these conditions
can be interpreted for the linear demand case.

Consider the market we described in Section III, consisting
of several sellers pricing a product in a multi-period setting.
Assume that the process is repeated under the same conditions
of initial inventory and period-wise demand. The sellers do
not start with the equilibrium policies but rather follow a
naive myopic optimization approach: They price using the
best response policy given all competitors’ prices from the
previous instance of the process. The key question is that if
this process is repeated sufficiently many times, under what
conditions will the sellers’ prices converge to the equilibrium
prices, irrespective of the assumed starting policies?

The outline of the general algorithm is as follows. Start
by considering an initial estimate for the solution denoted by
�� � 
 and set  � �. Compute �� by solving the following
set of separable variational inequality subproblems for each
� � �:

����
�
� � � ��� � ��� � � � ��� � 
���

���
�� �� (6)

For our problem, this iteration step corresponds to each seller
setting the best response policy to her competitors’ strategies
from the last iteration. We discuss the details of this computa-
tion step in Perakis and Sood [36]. We check for convergence
(if the policies from two successive iterations are the same or
�-close to each other) and stop; otherwise we repeat with an
incremented value for . This algorithm is formally presented
in Algorithm 1 below.

B. Convergence of the Iterative Learning Algorithm

In this section we study the convergence of Algorithm 1.
We prove that the following set of conditions are sufficient for
convergence.

Condition 5.1: For any given ���, ����������� is Lipschitz
continuous with respect to ��� with parameter �.

�������� ������ ������� ����� � � ����� � ����
Condition 5.2: For any given ����, ������� ����� is strongly

monotone with respect to �� with parameter �.

��������� ����� 
 ������ ������ � ���� � ��� � � ���� � ���
�

Condition 5.3: � � � where � and � are defined as above.
For the two seller, linear demand case, the above conditions
hold when for all � � �, the minimum sensitivity of seller �’s
demand to seller �’s price over all periods, is greater than the



Algorithm 1
1: for � � � � � �� do
2: ���� � ��initial
3: end for
4: for � � � � � �� do
5: ��� � ����

�����
6: end for
7:  � �
8: while ��� ��

����� do
9: for � � � � � �� do

10: ����� � ����
�����

11: end for
12:  �  
 �
13: end while
14: �� � ��

15: RETURN ��

maximum sensitivity of her demand to her competitor’s price
over all periods. In particular, if the demand for a two seller
market is given by

�����
�
�� �

�
��� � ��

base� � ��
��

�
� 
 ��

��
�
��

then � � ������
�
� � and � � ������

�
��.

In order to formally prove the convergence of Algorithm 1,
we introduce the following reformulation of the best response
problem. We aim to move the constraint involving observed
demand and realized demand into the objective function.
We first define the relaxed strategy space: �
� � ��� �
������� �

��

��� �
�
� � ��� �

�

min � ��� � ��max� �
�
� � �� �� �

�, and

�
 � �� � ���� ��� � � � � ��� � �� � �
� �� � ��

Note that these spaces are different from 
 in that the
constraint involving ��� � �����

�� is missing. To move the
constraint into the objective function, we introduce a dummy
variable � in addition to the price � and allocation vari-
ables �, where � � ������� � � � ���� � �

��� and �� �
���� � �

�
� � � � � � �

�
� � � �

� . The complete variable space is thus
defined in terms of � � ������� � � � ���� where �� �
������� � �
� � �

� . The feasible strategy space in terms of
this variable is


� �
�
� � ������� � �
�� � ����

	
�

The variational inequality problem can then be stated as:

����� � �� ���� � � �� � 
�� (7)

where

����� � �����	�������� � ����� �����

� ��	����� � ����� ������

The function ���� in variational inequality problem (7) is
non-separable (ie. depending on the seller’s and her com-
petitors’ strategies) making the problem difficult to solve.
Algorithm 1 considers an approximation of (7) which modifies
the problem into a separable variational inequality problem
which is easier to solve. This separable problem is actually

nothing but the best-response problem for an individual seller.
We apply Algorithm 1 by solving this separable version at
each step for each individual seller. For a given ��, solve

����� ��� � �� ���� � � �� � 
� (8)

where

������ ��� � �����	�������� � �����������

� ��	����� � ������������

This variational inequality problem can be separated into
smaller sub-problems (is separable) and for each � � �, we
find ��

� satisfying

����
�

�� ��� � ��� ���

�� � �� ��� � 
��
� (9)

The following lemma and proposition prove that the varia-
tional inequality in � and the variational inequality in � are
equivalent.

Lemma 5.1: Any �� that solves variational inequality (8)
satisfies

�
��
� � �����

��
� � ��

�
��� �� � �� � � �

Proof: The result follows from the fact that � �� � �, �� � �� � �
�. �

Remark: From Proposition 5.1 it follows that if vector �� �
������� solves variational inequality (8), �� can be any vector
in ���� . Without loss of generality, we select �� � � in our
solution.

Proposition 5.1: The Best Response Problem (6) and vari-
ational inequality problem (8) are equivalent.

Proof: It is easy to see that any solution to the Best Response
Problem (6) is also a solution to the formulation (8). To show
the converse, we use Lemma 5.1. �

The next theorem proves that Conditions 5.1, 5.2 and 5.3 are
sufficient conditions for convergence.

Theorem 5.1: Under Conditions 5.1, 5.2 and 5.3, Algorithm
1 converges to an equilibrium pricing policy.

Proof: See Perakis and Sood [36]. �

VI. NUMERICAL EXAMPLES

In this section, we examine the results presented in this
paper numerically. Note that the results presented hold for
general demand functions though in this section we use the
linear demand case for illustration. We study the nature of
the resulting equilibrium pricing policies when the initial
inventories ���� �� and price sensitivities are varied. The
general trends observed are as expected:

1) The higher the inventory that any seller has available
for sale over the entire horizon, the lower the prices that
she sets. The revenue earned, however, is higher even
though the prices set are lower.

2) Correspondingly, an increase in the inventory of a com-
petitor results in lower revenues for the seller since the
competitor reduces prices.

3) Prices are higher in periods with lower price sensitivities.

We also examine the convergence behavior of Algorithm 1
numerically as the relative ratio of price sensitivities is varied



and also as the initial estimate of prices used in the algorithm
is varied. In general, numerical experience led us to the
following conclusions regarding the practical convergence of
the algorithm:

1) The algorithm converges to the equilibrium policies
rapidly in practice.

2) The numerical results verify the theoretical analysis
regarding convergence of the algorithm to the unique
equilibrium pricing policies when starting from different
starting points.

3) The number of iterations taken to converge were depen-
dent on the starting point. Convergence was tested by
initializing the algorithms with different initial prices. In
general, numerical experience led us to conclude that the
number of iterations required to converge were smallest
for cases where the starting prices were taken close to
the equilibrium prices for all sellers. However, the rate
of convergence did not depend on the starting point.

4) Changing the relative ratio of demand sensitivities to
price affected the rate of convergence in accordance to
Theorem 5.1. The prices converged to the equilibrium
prices at a geometric rate roughly proportional to the
theoretically predicted rate.

For illustration purposes, we consider a two-seller multi-
period, symmetric linear demand example. For this example,
� � ��� � and � � ��� �� � � � � ��. The demand is linear in
prices and symmetric with respect to both sellers and varies
with time: �� � �, the demand function ��

� � ��

base �
����� 
 ����

��. We assume the symmetry of demand for the
sake of convenience. Note that the results hold in general for
asymmetric demand. We consider markets where customers
with lower price sensitivities typically arrive in later periods.
As a result the sensitivity of the demand to the seller’s price
(and also to her competitor’s price) in the examples decreases
towards the end of the time horizon.

In Table I we study the trend in pricing policies with varying
inventory balances. We consider three cases with different
inventories for each of the two sellers. In the first case both
players are over-inventoried with ���� �� � ������ ����
and the optimal equilibrium policy results in neither of them
selling their entire inventory. This case is effectively equal
to the uncapacitated case. Figure 1 shows the evolution of
the pricing policies as the algorithm iterates, the resulting
equilibrium prices, the remaining inventory over the time
horizon under the equilibrium prices, and the cumulative
revenue from those sales. In the second case, only one of
them is over-inventoried (���� �� � ������ ���). Figure
2 shows the results from this case. Note that the seller with
less inventory sets prices higher than the seller with higher
inventory. Even though the average price is lower for the latter,
her total revenues are higher. The prices in general are also
higher than in the previous case. Finally, in the third case,
neither has sufficient inventory (���� �� � ������ ���) so
the demand supply imbalance results in a general price hike
(Figure 3).

In Table II we study the movement of pricing policies as
Algorithm 1 iterates with varying initial estimates for starting
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Fig. 1. Both sellers have excess inventory. ���� ��� � ������ �����

2 4 6 8 10
0

50

100

150

200

250

300
Iterations: Evolution of pricing strategy

Time period

P
ric

e 
le

ve
l

2 4 6 8 10
0

50

100

150

200

250

300
Equilibrium pricing policies: Seller 1 & 2

Time period

P
ric

e 
le

ve
l

2 4 6 8 10
0

500

1000

1500

2000

2500

3000
Inventory: Initial level & Level at end of period

Time period

In
ve

nt
or

y 
le

ve
l

2 4 6 8 10
0

5

10

15
x 10

4 Cumulative Revenues

Time period

C
um

ul
at

iv
e 

R
ev

en
ue

Fig. 2. One seller has excess inventory. ���� ��� � ������ ����
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Fig. 4. Actual trend of pricing policies over successive iterations of Algorithm
1 when starting with different initial prices.
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prices. Figure 4 shows how Algorithm 1 converges to the
equilibrium pricing policy when starting from four different
starting points. We consider prices which are constant over
all time periods as our initial estimates. We find that the
convergence occurs fastest when the starting point is close to
the equilibrium price. In Table IV we look at the same issue
by measuring the 2-norm distance between the price policy
vector from successive iterations.

In Table III we study the practical convergence behavior of
Algorithm 1 with varying relative price sensitivities. Figure
5 shows the 2-norm distance between the price vectors � in
the current iteration and the previous iteration of Algorithm
1. The four cases correspond to the choice of different ratios
of the sensitivity of seller’s demand to her own price and her
competitor’s price. The steepest line occurs for the smallest
ratio and vice versa.

In Table IV we study the practical convergence behavior
of Algorithm 1 with varying initial estimates for starting
prices. Figure 6 shows the 2-norm distance between the price
vectors � in the current iteration and the previous iteration
of Algorithm 1. The four cases correspond to the choice of
different initial estimates of the �. We observe that the slope
of the line is the same and the different cases just result in
parallel displaced lines.

TABLE I

TREND IN PRICING POLICIES WITH VARYING INVENTORY BALANCES.

Model parameters held constant
�base � ����� ���� ���� ���� ��� ��� ���� ���� ��� 	��

� � ����� ���� ���� ���� ���� ���� ��
� ��	� ���� ����
� � ����� ���� ���� ���� ���� ��
� ���� ���� ���� ����

Model parameters varied
���� ��� � ������ ������

������ �����
������ ����

TABLE II

MOVEMENT OF PRICING POLICIES IN ITERATIONS OF ALGORITHM 1 WITH

VARYING INITIAL ESTIMATES FOR STARTING PRICES.

Model parameters held constant
�base � ����� ���� ���� ���� ��� ��� ���� ���� ��� 	��

� � ����� ���� ���� ���� ���� ���� ��
� ��	� ���� ����
� � ����� ���� ���� ���� ���� ��
� ���� ���� ���� ����

���� ��� � ������ ����
Model parameters varied
Starting estimate of prices

�� � � and � � �

	�
�
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TABLE III

PRACTICAL CONVERGENCE BEHAVIOR OF ALGORITHM 1 WITH VARYING

RELATIVE PRICE SENSITIVITIES.

Model parameters held constant
�base � ����� ���� ���� ��� ��� ��� ��� 
�� 
�� ���

� � ����� ����� ���� ����� �� ���� ��� ���� ��� ��
��
���� ��� � ������ ����

Model parameters varied
� � 
�

where, 
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Fig. 6. Convergence behavior starting with different initial prices.

TABLE IV

PRACTICAL CONVERGENCE BEHAVIOR OF ALGORITHM 1 WITH VARYING

INITIAL ESTIMATES FOR STARTING PRICES.

Model parameters held constant
�base � ����� ���� ���� ��� ��� ��� ��� 
�� 
�� ���

� � ����� ����� ���� ����� �� ���� ��� ���� ��� ��
��
� �

��

��
�

���� ��� � ������ ����
Model parameters varied
Starting estimate of prices

�� � � and � � �
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