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Abstract

The action of the total cohomology space H*(M) of an almost-Kahler manifold M
on its Floer cohomology, introduced originally by Floer, gives a new ring structure on
the cohomology of the manifold. In this thesis we prove that the total cohomology
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ring of the complex grassmanians conjectured by Vafa and Witten.
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Chapter 1

Introduction
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Floer cohomology HF*(M) of the free loop-space of the symplectic manifold M

is under extensive study by both mathematicians and physicists.

Originally the machinery of Floer cohomology was developed in [Fl] in order to

prove the classical Arnold's Conjecture giving a lower bound on the number of fixed

points of a symplectomorphism in terms of Morse theory. Floer cohomology appeared

also in "topological sigma-models" of string theory [Wil],[BS].



Quantum cohomology rings of Kahler (or more generally, almost-Kahler)

manifolds were introduced by Witten [Wi2] and Vafa [Val], [LVW] using moduli

spaces of holomorphic curves [CKM],[Gr],[McD1],[Ru2].

It is difficult to give a rigorous and self-consistent mathematical definition of

quantum cohomology rings because the moduli spaces of holomorphic curves are

non-compact and may have singularities, facts often ignored by physicists.

Recently Ruan and Tian [RT1] by adjusting Witten's degeneration argument,

proved that these rings are associative. The proof of associativity for the quantum

cohomology ring uses a definition of multiplication that involves the moduli spaces of

solutions of inhomogeneous Cauchy-Riemann equations [Rul].

Quantum cohomology rings have been computed for:

a) complex projective spaces [Wi2]

b) complex Grassmanians (the formula was conjectured by Vafa [Val], proved in

the present paper, and also independently in [AS] and [ST])

c) toric varieties [Ba]

d) flag varieties [GK],[GFP]

e) more general hermitian symmetric spaces [AS]

Quantum cohomology rings of Calabi-Yau 3-folds, important in physics, have been

"computed" in several examples by "mirror symmetry" [COGP]. These computations

are not considered rigorous. To justify these "computations" is a very interesting

problem for algebraic geometers.

The linear map mF : H*(M) - End(HF*(M)) or, equivalently, the action of the

classical cohomology of the manifold M on its Floer cohomology, was defined by Floer

himself. He computed this action for the case M = CP n and noticed the following

fact:

For any two cohomology classes A and B in H*(CP n ) the product mF(A)mF(B)

of the linear operators mF(A) and mF(B) acting on Floer cohomology HF*(CP n )

has the form mF(C) for some cohomology class C in H*(CPn). This gives us a



new ring structure on H*(CPn), which is known to be different from the classical

cup-product. We will call this new multiplication law Floer multiplication.

Floer conjectured that the same phenomenon might be true for all symplectic (or

at least Kahler) manifolds with a technical condition of being "positive", thus pro-

viding a new ring structure on the total cohomology H*(M) of a symplectic manifold

M.

Using path-integral arguments, V.Sadov [S] "proved" that when M is a "positive"

or "semi-positive" symplectic manifold (see chapter 2 for the definition), then:

1) "The operator algebra should close", i.e., for any two cohomology classes A

and B in H*(M) the product mF(A)mF(B) always has the form mF(C) for some

cohomology class C in H*(M).

and

2) Floer multiplication coincides with quantum multiplication.

There exists a "pair of pants" cup-product in Floer cohomology which is (for-

mally) different from the cup-product introduced by Floer himself and discusssed

here. However, [Ful], [CJS], [GK], [McD S] conjectured and [PSS], [RT2] and [Liu]

announced a proof that this other "pair of pants cup-product" in Floer cohomology

also coincides with the quantum cup-product.

The purpose of this paper is to give a rigorous proof of Sadov's statements. We

prove

The Main Theorem. For a semi-positive symplectic manifold M, the ring structure

on H*(M) inherited from its action mF on the Floer cohomology coincides with the

the quantum multiplication on H*(M) defined as in [RT1].



Chapter 2

Moduli spaces of J-holomorphic

spheres and their

compactification.

2.1 Definitions

Definition. The manifold M is called an almost-Kahler manifold if it admits an

almost-complex structure J and a symplectic form w such that for any two tangent

vectors x and y to M, w(x; y) = w(J(x); J(y)) and for any non-zero tangent vector x

to M the following inequality holds:

w(x; J(x)) > 0 (2.1)

Definition. An almost-complex structure J and a closed 2-form w on M are called

compatible if (2.1) holds.

Let M be a compact almost-Kahler manifold of dimension 2n which we assume

(for simplicity) to be simply-connected. Let us fix an almost-complex structure Jo

on M and let us consider the space k of all Jo-compatible symplectic forms and its

image K in the cohomology H2 (M, R).



If it will not lead to confusion, we will denote the closed J 0-compatible two-form

and the corresponding cohomology class by the same symbol.

It follows directly from the definitions that if M is an almost-Kahler manifold

(which is equivalent to the fact that kis non-empty), then:

1) K is an open convex cone in the space of all closed 2-forms on M. The set

k does not contain any nontrivial linear subspace (otherwise w and -w would be

simultaneously J0-compatible which is impossible).

2) K is an open convex cone in H 2 (M, R) which does not contain any nontrivial

linear subspace.

To prove openness, let us consider the functional w(x; J(x)) defined on the product

of the space 2'(M) of Cl-smooth 2-forms times the space S(TM) of the unit sphere

bundle in the tangent space to M. This functional is continuous and bounded from

below by a positive constant, if restricted to {w} x S(TM). Then any small pertur-

bation of w preserves this property, and leaves the resulting 2-form non-degenerate,

which proves openness of K.

Since a symplectic form compatible with J0 (and in fact any symplectic form) on

a compact oriented manifold M cannot be cohomologically trivial, then K cannot

contain a nontrivial linear subspace in H 2 (M, R).

Let us consider symplectic forms {wl, ..., w,} such that:

1) they lie inside K.

2) their cohomology classes form a basis in H 2 (M, R).

3) the elements of this basis are represented by integral cohomology classes

4) {w1, ... , w} generate H 2 (M, Z) as an abelian group.

We can always find such a collection of symplectic forms since any open convex

cone in H 2(M, R) contains such a collection.

In the case when M is a Kahler manifold, it sometimes appears to be useful to

perturb the complex structure on M (or on CP1 x M) and to work with non-integrable

almost-complex structures. It is easier to prove transversality results if we are allowed



to work in this larger category.

Let us consider the complex projective line CP' with its standard complex struc-

ture i and Fubiny-Study Kahler form Q. Let us take the product CP1 x M in the

almost-Kahler category. Let J be the space of all Cl'o-smooth almost-complex struc-

tures on CP 1 x M such that the projection on the first factor CP' x M -+ CP' is

holomorphic. Let us equip this space with the Clo'-norm topology.

Comment. The space of almost-complex structures on CP 1 x M lies inside the space

of (1,1)-tensors on CP' x M and thus, we can talk about almost-complex structures

of class C lOn.

Let Jo be a neighborhood of i x Jo in J consisting of almost-complex structures

compatible with symplectic forms {1 ® w, ... , 1 ® w,} and 9 ® 1. Since the notion of

compatibility with a 2-form is an open condition in J, such a neighborhood always

exists.

Let us consider the vector bundle over the product CP 1 x M consisting of

i x J0-antilinear maps from T(CP1 ) to TM. "i x J0 -antilinear" means that for any

g E g we have Jog = -gi. Let g be the space consisting of all Clon-0 1 -sections of

the above-defined vector bundle. Equivalently, g can be thought as a space of all

(0, 1)-forms on CP 1 with the coefficients in the tangent bundle to M.

If g is any such (0, 1)-form, we can construct an almost-complex structure Jg on

CP 1 x M which is written in coordinates as follows:

J= -g (2.2)
(0 AJo

Here we wrote the matrix of Jg acting on T(CP1 ) e TM.

Thus, we have an embedding G C J. Let go be the intersection of g and J0 .

We will assume both Jo and Go to be contractible.

Presumably, the introduction of almost-complex structures can be avoided [K3].

We use them to modify the proofs of some analytic lemmas. What we really needed is



one fixed almost-complex structure Jo on M (which in all examples will be an actual

complex structure) and perturbations of the product (almost)-complex structure on

CP1 x M of the form (2.2). We decided to use more complicated notations in order

to simplify the proofs.

Let J E Jo be an almost-complex structure on CP' x M.

Definition (Gromov). A J-holomorphic sphere in M is any almost-complex sub-

manifold in CP' x M of real dimension two (or "complex dimension one") which

projects isomorphically onto the first factor CP'.

Equivalently, a J-holomorphic sphere in M can be defined as a pseudo-holomorphic

section of the the (pseudo-holomorphic) bundle M x CP' over CPI where the almost-

complex structure J on M x CP1 is a perturbation of the product almost-complex

structure. Topologically this is the trivial bundle over CP 1 with the fiber M but

(pseudo)-holomorphically it is not trivial.

Any J-holomorphic sphere is the graph of a map V from CP' to M which satisfies

a non-linear PDE

9j~ = 0 (2.3)

If our almost-complex structure Jg has the form (2.2) than the equation of a

Jg-holomorphic sphere W can be rewritten as

1Joý = g (2.4)

Here aj o is the usual 9-operator on M associated with our original (almost)-

complex structure Jo

Let C C H 2(M, R) be the closure of the convex cone generated by the images of

homology classes of J-holomorphic spheres (for all J E Jo). Then C will lie in the

closure of the convex dual of the cone K C H 2(M, R).

Following [Rul], we will call a non-zero homology class A •e H2 (M, Z)

an effective class if A lies inside the closed cone C.



Let q, ..., q8 be the dual to wl, ..., w8 basis in H2 (M). We will write the elements

of H 2(M) = H2 (M, Z) in multiplicative notation. The monomial q = q~ ...qd, is by

definition the sum Z- 1 diqi E H2 (M). Here d is a vector of integers (dj, ..., ds) and

q = (qi, ...,q8) is a multi-index. Then the group ring Z[H2 (M)] is a commutative

ring generated (as an abelian group) by monomials of the form qd = qd ...qd.

The group ring Z[H2 (M)] which is isomorphic to the ring Z[q:1 .... • I of Laurent poly-

nomials, has an important subring Z[e]. The fact that symplectic forms {wl, ... , w}

have positive integrals over all J-holomorphic curves implies that

Z[c] C Z[ql,...,qJ C Zq:1.q ... ']

i.e., that monomials ql'...qda may appear in Z[c] only if all (dj, ..., ds) are non-

negative.

The ring Z[c] has a natural augmentation I : Zfc) -+ Z which sends all non-

constant monomials in {qi} to zero. Thus, we can consider its completion Z<c> with

respect to the I-adic topology. This completion lies naturally in the ring Z<q,...q,>

of formal power series in {q }.

Following Novikov [No], let us introduce the following subring A, in

Z<qi,... ,q,> OZ[qj,....,,] Z[H 2 (M)] as a subring consisting of formal Laurent power series of

the form Ed cdqd such that:

1) There exists a number N such that all {ca} are zero if (w; qd) < -N ;

2) For any number M there exists only finitely many non-zero {Cd}

such that (w; qd) < M

The ring A, is called the Novikov ring which appeared in Novikov's study of

Morse theory of multivalued functions [No]. Novikov's refinement of Morse theory is

exactly the kind of Morse theory we need in our study of of Floer homology (see also

[HS]).

Let us consider the abelian group H*(M, Z) ® A,. It has an obvious structure of

a Z-graded ring inherited from the usual grading in cohomology, provided that all-



the elements of the augmentation ideal I(A,) have degree zero.

The same abelian group H*(M) 0 A~, has another Z-graded ring structure

which can be constructed as a q-deformation of the classical cohomology ring H*(M)

with non-trivial grading of the "deformation parameters" {qi}. To be more concrete,

let us define a Z-grading on H*(M) 0 A, as follows: any element A from

H*(M) 0 A, can be obtained as a (possibly infinite) sum of "bihomogenous pieces"

A = m,d Amd ® qd where Am,d E H m (M, Z). Then let us define

deg[Am,d ® qd] = m + 2 < cl (TM); qd > (2.5)

where the last term means evaluation of the 2-cocycle cl(TM)

on the 2-cycle qd

The previous formula can be rewritten in more elegant way:

S

deg[Amd ® qd] = m + 2 di < ci (TM); qi >
i=1

Definition. For each multi-index d = (dl, ..., d,) let Mapd be the space of all

W',P-Sobolev maps from CP 1 to M of a given homotopy type specified by "the

generalized degree" d = (dl, ... , ds).

W1',p-"Sobolev" means that the derivative of the map W E Mapd should lie in the

space LP. (The first derivative of the map p from CP 1 to M is a one-form on CP 1

with the values in p*(TM)). We will fix oncer and for all the value of p Z 2.

"Homotopy type specified by the generalized degree" d = (di, ..., d,) means that

fw(cp1) wi = di for each V E Mapd and for each i = 1, ..., s.

The space Mapd thus has a natural structure of a (connected) Banach manifold

which is homotopically equivalent to the space of all smooth (or all continuous)

maps from CP1 to M of a given homotopy type. This space is a connected

component of the larger space Map = Ud Mapd of all Sobolev maps from CP 1

to M (regardless of homotopy type) which is also a Banach manifold.



Let us introduce an infinite-dimensional Banach bundle 7 over Map x Jo. The

fiber W j,, of the bundle 7W over the "point" (9, J) E Map x Jo will be the space of all

(0, 1)-forms of the type LP on CP 1 with the values in the complex n-dimensional

vector bundle p*(TM). The almost-complex structure J on M provides the

tangent bundle TM with the structure of the complex n-dimensional vector bun-

dle.

The bundle W is provided with a section 0 , given by the formula

(V, J) -+ y9(1) (2.6)

The above-defined section 0 is actually a nonlinear 0-operator

Proposition 2.1. The zero set 0-1(0) consists of the pairs (V, J) where p is a

J-holomorphic map.

Definition. For each multi-index d let MJy,d C Mapd be the space of all solutions

of (2.4)- of homotopy type specified by d. Let us and call MJ,d the moduli space

of J-holomorphic maps from CP 1 to M of "the generalized degree" d.

The above defined Banach bundle 7W over Mapx Jo can be (trivially) extended

to a Banach bundle over the product of Map x Jo and g0. It can also be trivially

extended to a Banach bundle over the product of Map x Jo and g0 x go x [0; 1].

We will denote these three Banach bundles by the same symbol 7. We will

also denote by 7W the restriction of these Banach bundles to connected components

Mapd x [auxilliary space] of their bases.

Since go is an open subset in the vector space ! which has has a base-point

(zero), it makes sense to speak about extension of smooth sections of 7W from

Map x Jo to the larger spaces Map x J0o x go and Map x Jo x go x go x [0; 1]

We assume that Map x Jo is embedded as Map x Jo x {0} into the product

with the auxiliary spaces.

We have an obvious

Proposition 2.2. If restricted to the subspace Map x go in Map x Jo the zero



set '-1(0) consists of the pairs (p, g) where p is a solution of the inhomogenous

Cauchy-Riemann equation (2.4).

Definition. A section D of the Banach bundle W over some base Banach manifold

B is called regular if its derivative D4 at each point in the zero-locus 4-1(0)

is a surjective linear map from the tangent space to B to the tangent space to the

fiber of X.

The section 0 is regular since its derivative in Jo-directions is already surjective

linear map from TG0 C TJ 0 to TWT.

Thus, '- 1(0) is a smooth Banach manifold and by an infinite-dimensional version

of Sard Theorem, we have that for "generic" g E •o'(TM) the space of solutions

of the inhomogenous Cauchy-Riemann equation (2.4) is a smooth finite-dimensional

manifold.

By the same reason, for "generic" almost-complex structure J E J0 the moduli

space MJ,d of J-holomorphic spheres of "degree d" is a smooth finite-dimensional

manifold.

We now note that the dimension of this manifold is given by the index of the

Fredholm linear operator DO which acts from T(Mapd) to TW. The operator

DO is defined as a derivative of the section 0 in Mapd-directions.

"Generic" here means "is a Baire second category set".

Proposition 2.3 ( Gromov). For the "generic" choice of J the moduli space MJ,d

will be a smooth manifold of dimension

8

dimMj,d = dimM + di deg[qi] (2.7)

Ruan [Rul] and McDuff and Salamon [McD S] proved that the moduli space MJ,d

carries a canonical orientation coming from determinant line bundle of Do .

The idea of the proof of (2.7) is as follows. The operator DO is actually a

(twisted) 0-operator on CP1. Then the Atiyah-Singer index theorem, applied to



any of our " 0-operators", gives us the r.h.s. of (2.7).

To prove that the actual dimension of the moduli space .MJ,d is equal to its

"virtual dimension" given by the index calculation in the r.h.s. of (2.7), we need

several analytic lemmas. These lemmas were first proved by Freed and Uhlenbeck

[FU]. We are referring to the book [DK] which is better adjusted for our purposes.

Proposition 4.3.11 of [DK]. Let B and S be Banach manifolds;9i be a Banach

bundle over B x S, D is the regular section of W, which is Fredholm in B-directions

(when we restrict it to B x {g}; g E S). Then for "generic" values of the parameter

g in S, the zero-set of 4 restricted to B x- {g} will be a smooth submanifold

of dimension equal to "the virtual dimension".

By applying this proposition to our case when B = Mapd , S = is some "auxiliary

space" we obtain

Lemma 2.4. If D is the regular section of the Banach bundle W over Mapd x S.

Then for "generic" values of the parameter g in the auxiliary space S, the zero-set

of D restricted to Mapd x {g} will be a smooth submanifold of dimension equal

to "the virtual dimension".

Here "the virtual dimension" means the index of the derivative of the section D

in Mapd-directions (these operators are always Fredholm).

In the terminology of [DK] let ir : B x S -+ S be the "projection operator" onto

"the auxiliary space" S.

Proposition 4.3.10 of [DK]. If r : P -+ S is a Fredholm map between paracompact

Banach manifolds, and h : R --+ S is a smooth map from a finite-dimensional manifold

R, there exists a map h' : R -+ S, arbitrary close to h in the topology of C"-

convergence on the compact sets and transverse to ir. If h is already transverse to 7r

on a closed subset G C R we can take h' = h on G.

By applying this proposition to our case when P = D-1(0) C B x S , 7r is a

projection operator to S, we obtain

Lemma 2.5. Any finite-dimensional pseudo-manifold of parameters in S can be



perturbed to be made transversal to the projection operator 7r.

Here the projection operator projects '- (0) C Mapd x S to the second factor (the

auxilliary space S).

The particular case of this lemma is

Lemma 2.6. For the pair g' and g2 of "the regular values" of parameters in the

auxilliary space any path 7 joining them can be perturbed to be made transversal to

the projection operator.

Lemma 2.6 implies that the inverse image of this "transversal path"y

gives us a smooth cobordism between -- (0) n Mapd x {g' }
and '-1(0)o fMapd X {g 2}.

Using Lemmas 2.4 and 2.6 we have that there exists a smooth cobordism Mt

inside Mapd x J0 between the modulispaces MJj,d and MJ,2,d constructed

using different "regular" almost-complex structures JO and Jg2.

2.2 Semi-Positivity -

Let E be a two-dimensional Kahler manifold (in most applications, E is

2-sphere, cylinder or half-cylinder) and let us fix an almost-complex structure J on

E x M compatible with w. Then we have a fibration E x M --+ E such that each fiber

(a copy of M) is equipped with a Riemannian metric g(x, y) = w(x; Jy) where x, y

are tangent vectors to M.

Definition. Let us define the energy of the smooth map E • -+ M to be the

L 2-norm of the 1-form do E QI(¢*TM):

E(q) = | dI 2dA

with respect to the metric defined above (this metric depends on J only). Here dA

is the Kahler area of E .



Lemma 4.1.2 of [McD S].

E (0) -: 0*(W) (2.8)
with the equality if and only if E is J-holomorphic.

Let K be a positive real number.

Definition. An almost-complex structure J E 3J on CP 1 x M is called K-semi-

positive if every J-holomorphic sphere q in M with the energy E(O) <_ K has non-

negative Chern number (f * (c (TM)) > 0.) An almost-complex structure J E J on

CP 1 x M is called semi-positive if it is K-semi-positive for every K.

Lemma 5.1.2 of [McD S]. For all K > 0 the space 3J+(M, w, K) of K-semi-positive

almost-complex structures is an open subspace in J.

Definition. An almost-Kahler manifold M is called semi-positive if the space 3J+(M, w, K)

is non-empty for every K.

From now on we will always assume M to be semi-positive. The semi-positivity

is required in order to have a good compactification and a well-defined intersection

theory on the moduli spaces of J-holomorphic spheres.

We will also always assume that for any "generalized degree" d = (di, ..., d,) we

are considering only the almost-complex.structures from 3J (M, w, K) where

K > E= =1 di < w; qi > and are chosing "generic" ones (to prove transversal-

ity results) only from that range. The range of allowed almost-complex structures

changes when we change the degree d of the map (but still remains opened according

to Lemma 5.1.2 of [McD S]).

The moduli spaces MJ,d of J-holomorphic spheres are not compact. There are

two (closely related) sources of non-compactness of these moduli spaces:

1) The sequence of unparametrized J-holomorphic spheres may "split" into two

J-holomorphic spheres by contracting of some loop on CP'. The resulting "split

J-holomorphic sphere" is (formally) not in our space which means that the above



sequence diverges. This "degeneration" may occur only if both spheres which ap-

pear after this "splitting process" have non-trivial homotopy type (and cannot be

contracted to a point).

2) The sequence of parametrized J-holomorphic spheres in Md may diverge by

"splitting off" a J 0-holomorphic sphere of lower (or the same) degree at some point

on CP'. This means that the curvature of our sequence of maps "blows up" at some

point on CP'. This phenomenon is so-called "bubbling off" phenomenon (which takes

place for the moduli space of solutions of any conformally-invariant elliptic PDE. This

phenomenon was first observed in [SU] ).

The bubbling off may be possible even when the classical splitting is impossible.

For example, let us consider the simplest case when M = CP' with the standard

complex structure and d = 1. Then the sequence of holomorphic degree-one maps

from CP 1 to itself may diverge by "bubbling off" any any point on CP'. This will

compactify the non-compact space M 1,1 (which is diffeomorphic to PSL(2, C)

in this example) to a compact space CP 3 .

2.3 Compactification of Moduli Spaces

In order to compactify the moduli space M4jg,d in the sense of Gromov, we should,

roughly speaking, add to it the spaces of J-holomorphic maps of the connected sum

of several copies of CP1 to M of total degree d.

In other words, the space of "non-degenerate" J-holomorphic spheres in M

is non-compact but it will be compact if we add to it "degenerate J-holomorphic

spheres".

Ruan [Rul] gave an explicit description how to stratify the compactified moduli

spaces MJg,d.

Definition (Ruan). Let us call degeneration pattern the following set of data

DP1) - DP3):

DP1) The class do E C, the set {d'; ...; dk } C C C H2 (M) of non-zero



effective classes , and the set {ai; ...; ak } of positive integers, such that the following

identity holds: d = do + Zk aid&

DP2) The set {I1; ...; It} of subsets in the set {do; d'; ...; dk}. We do not allow

one of {Ii; ...; It} to be the proper subset of another.

Using the set of data {do; d'; ...; dk; I1; ... ; It}, we can construct a graph T

with k + 1 + t vertices {do; d'; ...; dk'; I1; ...; It} as follows:

If the class d' lies in the set Ij then we join the vertices d' and Ij by an

edge.

DP3) The graph T obtained by above prescription is a tree.

Definition. We will call a Jo-holomorphic sphere Ci EM Jo,di simple if Ci cannot

be obtairted as a branched cover of any other Jo-holomorphic sphere.

Definition. If the Jo-holomorphic sphere Ci is not simple then we will call it

multiple-covered.

We will denote M*o,di the space of all simple Jo-holomorphic spheres of

"degree d" in M. According to the theorem of McDuff [McD1] if the almost-

complex structure Jo on M is "generic" then M*od is a smooth manifold of

dimension given by the formula (2.7)

Let Dd = { {d0 ; d'; ...; d; {ai; ... ; ak ; ... It}; T } be some degenera-

tion pattern. Then let us define .AfJ,,Dd as a topological subspace in

Mjg,dO x H__1 [fMo ,d, / PSL(2, C)] as follows:

An element p in .Af,Dd consists of one parametrized Jg-holomorphic sphere

Co E MJ,•do and k unparametrized Jo-holomorphic spheres

{Ci E [MJo,d,/PSL(2, C)] }. We require that for any subset

Ij = {dil;...;d3~ij} from {Ii; ... ; t} the spheres {Cj; ... ;Cjnj} have acom-

mon intersection point. We do not allow this intersection point to lie on any other

sphere C. C M in our collection'

,If Ci, f ... f Ci,. , n $ 0 then our "degenerate J-holomorphic sphere" would lie in the other



Comment 1. We can think about parametrized spheres in M as about unparametrized

spheres in Mx CP' which have degree one in CP'-directions.

Comment 2. Degeneration of parametrized Jg-holomorphic sphere of degree d in

M can be translated in this language as splitting of unparametrized Jg-holomorphic

sphere of degree d+[CP'] in M xCP1 in connected sum of several unparametrized

Jg-holomorphic spheres of total degree d + [CP 1].

One of these spheres has degree one in CPl-directions (and should lie in Myj,do).

All the other spheres have degree zero in CP'-directions. Each of these spheres

maps to a point under projection M x CP 1 -4 M and thus, it should lie in

MJo,aidi/PSL(2, C).

Comment 3. The energy E(Ci) of the "pieces" {C2 } is strictly positive and

Ei aiE(Ci) <_ E(0) < K which allows us to choose the same range of allowed almost-

complex structures for all degeneration patterns.

Comment 4. The numbers {ai } respect the fact that the some of Jo-holomorphic

spheres which appear in "the degeneration process" are {ai}-fold branched covers of

other Jo-holomorphic spheres {Ci E M*Jo,d,/PSL(2, C) }.

The topological space ANJg,D, is not a smooth manifold. However, it admits a

smooth desingularization M 4 ,,D constructed as follows [Rul]:

For each point z E CP' let evz be the evaluation at the point z map from

Map to M defined as follows: evz(V) = p(z)

We also have a more general evaluation map from Map x (CP')m to Mm•

ev(, z1, ..., zm) = {P(Z),...,P(Zm)}

Here the symbol x means taking the product and then moding out by the action

of PSL(2, C). The group element ge PSL(2, C) acts on Map x (CP1)m by the

formula:

stratum governed by another "degeneration pattern".



g ( , zi, ..., z = ( -g- , g *z, ..., g - zm)
To construct the desired desingularization, we also need "the product evaluation

map" , which we will also define by ev. This "product map"

ev: Map x (CP')mO x MapX(Cp1)ml x ... x Mapx (CPL)mk -4

SMm o+.. + m' x (CPl1)r o (2.9)

acts as identity from the factor (CP)mon in the 1.h.s. of (2.9) to the factor

(CPI)mo in the r.h.s. of (2.9).

For any degeneration pattern Dd let us consider the evaluation map

ev: U . ,, x (CPA)m x M*o,a F<(Cp1)m̀  x ... x M*Jok (CP1) -+

gEgo

--+ M mo+ +m k x (CP1) MO x g0  (2.10)

Here mi is the valency of the vertex di of the "degeneration graph" T of

our degeneration pattern (how many other components the given component C,

intersects )

Let us observe that the factors of M in the r.h.s. of (2.10) are in one-to-one

correspondence with the edges of the "degeneration graph" T . The set of these

edges can be divided in the union of groups in two different ways:

The first way is to consider two edges lying in the same group iff they have the

common vertex of the type {do; di'; ...; dk} This corresponds to the grouping the

factors of M as in the r.h.s. of (2.10) .

The second way is to consider two edges lying in the same group iff they have

the common vertex of the type {II; ...; It} . Using this way of grouping the edges,

we can regroup the factors of M in Mmo+. ' '+mk x (Cpl)mO and rewrite the r.h.s. of



(2.10) as

Mmo+...+mk x (Cp1)mo Xg0 = Mno+.+nt x (CP• )mo X g0  (2.11)

For each index j = 1,..., t let us take the diagonal Aj = MC Mn" and

take the product A = II-0 A, C M mo+ .+m k of these diagonals

Let 7r be the projection from

Mg,,dO x (CP1)mo X o,d, x(CPl)mi x ... x .Jo,dk( k

to MJg,,o x M•o,d1 x ... x M*o,dk

It follows directly from the definition of AJ•,D that 7r-'(AfJg,D) lies inside

ev-'l[A x (CP')m o x {g}] (both topological spaces lie inside the manifold

MJ,,dO x (Cp1)mo x Mo,dAx(CP1)m1 x ... x M* o,dk X(Cp) ).

Moreover, dimension-counting [Rul] implies that the map r restricted to

ev- [Ax (CP1 )mo x {g}] is a branched covering. Let us denote the topological space

ev-1[A x (CP')mno x {g}] by MJ,,D,

The proposition 6.3.3 of [McD S] states that the image of the evaluation map ev

is transversal to the product of diagonal5 A .

McDuff and Salamon stated this proposition in slightly different terms without

working with inhomogenous Cauchy-Riemann equations and without including an

additional factor of (CPI)mo. However, the transversality result stated here reduces

to their result by replacing M by M x CP'.

It follows from the lemma 2.4 that for generic value of g E Go the space MJg,D

is a smooth manifold which gives the desired smooth desingularization of KjNg,D

At this point we make a



2.4 List of analytic lemmas about the compact-

ification

Let M be a semi-positive almost-Kahler manifild; d = (d, ..., d,) be a vector of

integers.

Lemma 2.7. For the "generic" choice of g E go fl J+(M, w, K) the moduli space

M jg,d can be compactified as a stratified space MJg,d such that each stratum is

a smooth manifold.

Lemma 2.8. The strata of MkJg,d are labelled by degeneration patterns {Dd}

and are diffeomorphic to the manifolds {MJg,Dd}

The stratum MJg,DO lies inside the closure of another stratum MJg,D- if the

degeneration pattern D' is a subdivision of the degeneration pattern DC.

Definition. A degeneration pattern

DO= { {(do)"; (d')"; ...; (dk"); I,; ... J# T O I

is called a subdivision of a degeneration pattern

D" = { {(do)*; (d')a; ... ; (dk•*) I; ... ; I T }

if there is a system of maps

Od : J(d°)'; (dl)'; ... ; (d'o)I } -- J(d°)'; (dl)*; ... ; (dk")* }

,: {I;...;I } 1 -+ {I I; ...;Ig} and

T : Ts -a T i

which are consistent in an obvious sense and satisfy an additional property



Z i ad"' = id'(iO Od' dick) i

Lemma 2.9. -(c (TM); Ci) > 0 for all i and (c,(TM); qd) Ei (ct (TM); Ci)

where the sum is taken over bubbled-off J-holomorphic spheres {Ci} in our degener-

ation pattern.

Lemma 2.10. The codimension of the stratum MJg,Dd is always greater or equal

to 2k where {do; d'; ...; dk} is from the degeneration pattern Dd

Lemma 2.11. For any two generic g, and 92 in Go0 fj+(M, w, K) there exists

a smooth path -y : [0; 1] -+ go nf +(M, w, K) joining them, such that for any

degeneration pattern Dd the manifold Ug., MJ,,Dd gives a smooth cobordism

between MJg,,Dd and MJg2 ,Dd. This cobordism has dimension at least one smaller

than the moduli space MJg,d istelf.

We are not proving lemmas 2.7 - 2.11 in our paper, although the results of these

lemmas are necessary to justify our considerations.

The proof of Lemmas 2.7 - 2.11 can be found either in [RT] or in [McD S].

Remark. The choice of the compactification of the moduli space MJg,d of J-

holomorphic curves which we use following [Rul] is not the only possible one. Kont-

sevich [Ko2] introduced "the moduli space of stable maps" which

1) Maps to the compactification we choose,

2) Has all the desired properties (i.e., lemmas 2.7 - 2.11 still hold for "the moduli

space of stable maps" as well).



Chapter 3

Quantum Cup-Products

The total cohomology group H*(M) has a natural bilinear form given by Poincare

duality. We will denote this bilinear form by <; > i.e., qAB = <A; B >

where A E Hm (M) ; B E H2n-m(M).

In order to determine the structure constants (Qc)q of the quantum

cohomology ring it is sufficient to define "quantum tri-linear pairings" < A; B; C >q

and then put

(QC)q BD < A; B;C >q (3.1)

where we use Einstein notation and sum over the repeated index B.

Definition A (Witten).

Let A, B, Ce H*(M, Z) ® Z<c> Then

<A; B; C >w= E qdJ ev* (A) A ev* (B) A ev*(C) (3.2)
d MJ,d

Strictly speaking, the r.h.s. does not make sense because the moduli space MJ,d is

non-compact and the notion of its top-dimensional homology class is not well-defined.

In order to make it well-defined, the integral in the r.h.s. of (3.2) should be

considered as an integral over the compactified moduli space.

Since the evaluation maps evo, ev1 and evoo do not extend to the compactifi-



cation divisor, in order to define the integral in the r.h.s. of (3.2), we should make

some choices of differential forms on M representing cohomology classes A, B

and C.

In addition we need evo(A), ev~*,(B) and ev*(C) to be differential forms on MJ,d

which should extend (at least as continious differential forms) to the compactification

divisor.

In order to show that the integral (3.2) over the compactified moduli space is

well-defined, one must prove that it converges and is independent of the choice of

differential form representatives of cohomology classes A, B and C and on the

choice of J, assuming the latter to be "generic".

This analytic problem has not been solved. It is likely that the analogous con-

struction of Taubes in gauge theory [Ta2] can be adjusted to this situation.

In order to handle analytic problems related to the non-compactness of the moduli

spaces MJ,d, it is more convenient to work with cycles on M and and their

intersections instead of forms on M and their wedge product (if we choose our

cycles to be "generic").

The two approaches are related by Poincare duality A -+ A

where A E H m (M) , A E H 2n-m(M).

Let M be a smooth compact 2n-dimensional manifold. A d-dimensional pseudo-

cycle of M is a smooth map

f:V-+M

where V = V1U...UVd is a disjoint union of oriented a-compact manifolds without

boundary' such that

d-2

f (Vd) - f (Vd) CU f(Vj), dim V = j, Vd-1 0
j=0

Every d-dimensional singular homology class a can be represented by a pseudo-

'A finite dimensional manifold V is called a-compact if it is a countable union of compact sets.



cycle f : V -+ M. To see this represent it by a map f : P -+ M defined on a

d-dimensional finite oriented simplicial complex P without boundary. This condition

means that the oriented faces of its top-dimensional simplices cancel each other out

in pairs.2

Thus P carries a fundamental homology class [P] of dimension d and a is by

definition the class a = f.[P]. Now approximate f by a map which is smooth on each

simplex. Finally, consider the union of the d and (d - 1)-dimensional faces of P as

a smooth d-dimensional manifold V and approximate f by a map which is smooth

across the (d - 1)-dimensional simplices.

Pseudo-cycles of M form an abelian group with addition given by disjoint union.

The neutral element is the empty map defined on the empty manifold V = 0. The

inverse of f : V -+ M is given by reversing the orientation of V. A d-dimensional

pseudo-cycle f : V -+ M is called cobordant to the empty set if there exists a

(d + 1)-dimensional

pseudo-cycle with boundary F: W -+ M with W = UjW such that

JWj+l = Vj, FI, =.f Jy

for j = 0, ... , d. Two d-dimensional pseudo-cycles f : V -+ M and f' : V' -+ M are

called cobordant if f U f' : (-V) U V' -+ M is cobordant to the empty set.

Two pseudo-cycles e : U -+ M and f : V -+ M are called transverse if

ei : Ui -+ M is transverse to fj : Vj -+ M for all i and j.

Lemma 3.1 (McDuff and Salamon). Let e: U -+ M be an (m - d)-dimensional

singular submanifold and f : V -+ M be a d-dimensional pseudo-cycle.

If e is transverse to f then the set {(u, x) E U x VI e(u) = f(x)} is finite. In this

2To avoid some technicalities with jiggling (i.e. making maps transverse) caused by the fact that
P is not a manifold, one could equally well work with elements in the rational homology H.(M, Q).
Because rational homology is isomorphic to rational bordism fl.(M)@ Q, there is a basis of H. (M, Q)
consisting of elements which are represented by smooth manifolds. Thus we may suppose that P is
a smooth manifold, if we wish.



case define

e -f = E v(u,x)
uEU. zEV
e(u)=f( )

where v(u, x) is the intersection number of em-d(Um-d) and fd(Vd) at the point

em-d(u) = fd(x).

The intersection number e - f depends only on the cobordism classes of e and f.

Every (2n - d)-dimensional pseudo-cycle e : W -+ M determines a homomorphism

%e : Hd(M, Z) -+ Z

as follows. Represent the class a E Hd(M, Z) by a pseudo-cycle f : V -+ M . Any

two such representations are cobordant and hence, by Lemma 2.5. ,the intersection

number

Pe(a) = e -f

is independent of the choice of f representing a. The next assertion also follows from

Lemma 2.5.

Lemma 3.2 (Lemma 7.1.3 of [McD S]). The homomorphism 4e depends only

on the cobordism class of e.

Using this isomorphism, "q-deformed tri-linear pairings" < A; B; C >,q can be

defined as follows:

Definition B (Vafa,Ruan).

<A;B;C > = yq d -1 (3.3)
d ['PEMJg,d flev;-(A) fleJ B) le~(

Here the sum in the r.h.s. of (3.3) is over those values of d that

dimA + dimB + dimC = dimMJ ,d and over components of the intersection

MJ,d Nev' 1(A) n ev(-) n ev- 1 () (all these components are zero-dimensional)

The sign ±1 is taken according to the orientation of intersection

M J,d n evo 1 (A) n ev- (B) f evf 1(C). This intersection index is unambigously de-



fined since the moduli space MJ,d is provided with its canonical orientation using the

determinant line bundle of the a-operator [Rul],[McD S].

The above definition requires several comments:

1) The almost-complex structure J involved in the definition of MJd in the r.h.s.

of (3.3) may depend on d. For each particular d the range of allowed almost-complex

structures is an open dense set in J+ (M, w, K) where the value of K depends on d.

The intersection of the allowed ranges for different d may be empty.

2) We should make some "clever choice of cycles" representing the homology

classes A, B, C in order the r.h.s. of (3.3) to be defined (i.e., the intersection of

the cycles to be transverse)

3) We should prove that the r.h.s. of (3.3) is independent of this choice

4) We should prove that the r.h.s. of (3.3) is independent of the choice of J as

long as J is "regular" and varies in the allowed range J+(M, w, K).

"Regular" means that J is a regular value of the projection map 7r from -1(0) e

Mapd x J+(M,w,K) to J+(M,w, K).

5) We should prove that the r.h.s. of (3.3) lies in the Novikov ring Aw.

"The clever choice of cycles" means that these cycles should be realized by "pseudo-

manifolds".

The proof of "independence of the choices" is given in [RT]. This proof uses

cobordism arguments and relies on the Lemmas 2.7 - 2.11 about compactification.

Lemma 3.3. The r.h.s. of (3.3) lies in the Novikov ring A,.

To prove the lemma, it is sufficient to prove that

Z<c> C Z,,...,q8 C Aw (3.4)

The first inclusion in (3.4) was proved in section two. To prove the second in-

clusion, it is sufficient to show that < w, qi >= ai > 0 for all i = 1, ... , s which is

equivalent to the fact that we can choose the basis of symplectic forms {wi} E k such

that w = Ei aiwi with all {ai} > 0.



To construct such a collection {wi} E K, let us introduce an inner product in

H 2(M, R), orthogonal complement to w with respect to this inner product and take

a s - 1-dimensional simplex in this orthogonal complement with vertices {E, ... , ES}

of norm less than sufficiently small number e.We will assume that this is a regular

simplex with center zero.Then we claim that the cohomology classes {w+ El, ... , w+ ES }

will do the job (since w will be ain a convex hull of {wl, ... ,w,}. We can adjust {Je}

such that {w + ei} are rational cohomology classes and multiply them by a common

factor to make them integer cohomology classes. The lemma is proved.

The formula (3.3) for the "q-deformed tri-linear pairings" was first written by Vafa

[Val].

But in [Val] only "unperturbed" holomorphic maps were considered. This makes

the formula (3.3) incorrect when the dimension formula (2.7) does not hold for some

components of the moduli space MJ,d.

Lemma 3.4. There exist choices of smooth differential form representatives of co-

homology classes A, B and C such that

< A B; C >VR=<A;B;C > wi>q =
If we take differential forms with supports near A, B, C respectively then the

integral in the r.h.s. of (3.2) is well-defined.

If A and C E H*(M, Z) ® Z<c> be Z<c>-valued cohomology classes of M

and let A * B be their quantum cup-pruduct. Then we have:

deg(C * A) = deg(C) + deg(A) (3.5)

Thus, we have a new Z-graded ring structure on H*(M, Z) ® Z<c>. We will

call this new ring the quantum cohomology ring of M and we will denote it

HQ*(M).

Let us define the homomorphism 1* : HQ*(M) -+ H*(M) as tensor multipli-

cation on the ring Z over the ring Z<c> which is induced by the augmentation

I: Z<c> -+ Z.



Lemma 3.5. l* is a ring homomorphism which preserves the grading.

Before going to the Floer cohomology ring and proving that it is isomorphic to

the quantum cohomology ring let me say once more.

Only Definition B of the quantum cup-product has well-defined math-

ematical objects on its r.h.s.

In Floer theory which will be discussed in the next section there is a linear map

mF : H*(M) -+ End(H*(M) ® A,) (Floer multiplication).

To formulate the main result of our paper, that the quantum and Floer cohomology

have the same ring structure, we should define an analog of this Floer's map mF in

quantum cohomology: namely, an operation mq(C) of quantum multiplication (from

the left) on the cohomology class C E H*(M) 0 A,. This operation acts as

mQ(C) : H*(M) ® Aw, --+ H*(M) 0 A,

If we fix some (homogenous) basis {A, B, ...} in H*(M, Z) then the matrix ele-

ments < BImQ(C)IA > of the operator mQ(C) in this basis can be written as:

< BlmQ(C)|A >=< A; q(B); C >q (3.6)

Here 77: H m (M) - Hm(M) is a duality isomorphism determined by the choice of a

basis.



Chapter 4

Review of Symplectic Floer

Cohomology

Let CM be the free loop-space of our (compact, simply-connected semi-positive)

almost-Kahler manifold M and let £CM be its universal cover. The points in LM can

be described as pairs (7; z) where 7 : S1 -+ M be a free-loop in M and z : D - M

be a smooth map from 2-disc D2 which coincides with 7 at the boundary of the disc

aD 2 = S'. The two maps z1 and z2 of the disc are considered to be equivalent if they

are homotopic to each other and the corresponding homotopy leaves their common

boundary loop 7 fixed.

Following Floer [F1-F8] we can define "the symplectic action functional"

S, : £CM -+ R as follows:

S.(7; z) = JD2 z*(w) (4.1)

where w is the symplectic form on M and z*(w) is its pull-back

to the 2-disc D2

The tangent vectors to the free loop-space at the point 7 E CM can be described

as C"-'-smooth vector fields {(, ,, ...} on M along the loop 7. The free loop-space

CM (and its universal cover) has a natural structure of (infinite-dimensional) almost-



Kahler Banach manifold described as follows:

Let g and w be the Riemannian metric and the symplectic form on M. Then

we can define the Riemannian metric § and the symplectic form & on the loop-

space CM by the formulas:

g(' 7) = s1 g(ý(-y(8)); q(-y(O))dO (4.2A)

and

&(', q) = s1 w(ý((9()); (-Qy(0))d (4.2B)

where 0 is the natural length parameter on the circle S' defined modulo 2r

The Riemannian metric § and the symplectic form & on the loop-space CM are

related through the almost-complex structure operator J. Action of this almost-

complex structure operator i on the tangent vector C to the loop y (which is the

vector field restricted to the loop -y) is defined as the action of the almost-complex

structure operator J on the base manifold M on our vector field C.

Lemma 4.1. (Givental). The following statements hold:

A) S, is a Morse-Bott function on £M

B) All the critical submanifolds of the "symplectic action" S, on the universal

cover of LM are obtained from each other by the action of the group 7r(CM) =

r2 (M) = H2 (M) of covering transformations. The image of (any of) these critical

submanifolds under the universal covering map 7r : £M --+ M is the submanifold

M c CM of constant loops.

If we consider LM as a symplectic manifold with the symplectic form & given by

(3.2B) then:

C) The hamiltonian flow of the functional S, generates the circle action on

CM and

D) This circle action is just rotation of the loop y(G) --+ y(9 + 90)

Let us choose (once and for all) one particular critical submanifold M C £M of



the symplectic action S,. Then any other critical submanifold of S, has the form

qdM which means that it is obtained from M by the action of the element qd

of the group H2(M) of covering transformations.

Lemma 4.2. The gradient flow of the symplectic action functional S, on the univer-

sal cover of the loop-space (which is provided with its canonical Riemannian metric

S) depends only on the almost-complex structure J and does not depend on the

symplectic form w.

We assume that the metric g and the symplectic form w are related in the standard

way through the almost-complex structure J.

Let -(O) be unit the tangent vector field to the loop 7 E CM (this tangent vector

coincides with the generator of the circle action rotating the loop). Then we have

Lemma 4.3.

grad S,(7(O)) = J(/(O))

Let {Ho} : M -+ R be some (smooth) family of functions on M parametrized

by 0 E S'. This family of functions on M is usually called "periodic time-dependent

Hamiltinian" where 9 is "time". The fact that 9 e S' reflects the fact that the

time-dependence of our Hamiltonian is periodic. Let Sw,H : £M -+ R be a functional

on £M defined as follows:

S,H,(7; z) = Sw,(7; z) - He(7 (9))dO (4.3)

Theorem 4.4 (Floer). For "generic" choice of H and J the functional Sw,H is a

Morse functional on £M (wchich is usually called "the symplectic action functional

perturbed by a Hamiltonian term")

"Generic" here means that the statement is true for the Baire second category

set in the product of the space of all C7"-functions on M x S1 and the space of all

CO0o-almost-complex structures on M.

The idea of the proof is as follows: The critical points of the functional Sw,H are



in one-to-one correspondence with the 27r-periodic trajectories of the 9-dependent

Hamiltonian flow on M

dx(9)
dO = grad,,(H(0, x)) (4.4)dO

If we denote 2H the operator of shift for the time 27r along the trajectories of the

vector field (4.4) then the critical points of S,,H on CM are in one-to-one correspon-

dence with the fixed-points of the diffeomorphism 02H : M -+ M. By varying the

"Hamiltonian" H, we can arrange these fixed-points to be isolated and non-degenerate.

The gradient flow trajectory of "the perturbed symplectic action functional" on

the universal cover of the loop-space can be defined as a solution of the following

PDE:

&YT(0) - _(9)Y,() j -() - grad He (4.5)aOr 190

where r is the parameter on the gradient flow line, varying from minus infinity to

plus infinity, and 0 be the parameter on the loop.

We will consider only those solutions of (4.5) which have bounded energy, i.e.

satisfy the estimate

=1 f d %(O) 112 + ig%(0) 2 (46)

E((0)) = dr dol 9r 2 + (90 - grad Holl < (46)

The L2 -boundedness condition (4.6) implies that

,(0) -4 7-(0) r -oo (4.7A)

and

y(0) -+ 7+(O) r -+ +oo (4.7B)

where y_ (0) and y+(9) are some "critical loops" or, in another words, critical



points of the perturbed symplectic action functional on the universal cover of the

loop-space.

It follows from (4.6) that

E(Q,(0)) _ Sw,H(7+) - SW,H(7-Y) (4.8)

with the equality if and only if y,(0) is a solution to the gradient flow equation (4.5).

We can identify S' x R with C* by the map

(O(mod2ir); -'r) --> exp(-r + iO) (4.9)

which allows us to study 0-operators on the cylinder S' x R..

Let -y7+, -y E £M be two such critical points of Sw,H.

Let us define MJ, H((7y-,7+) as the space of all L2-bounded trajectories of the

gradient flow of S,,H, joining the critical point 7-y and the critical point 7-Y+

In more down-to earth terms, the space MJ,H(77-, 7+) can be defined as the space

of all solutions of (4.5) , 2r-periodic in 0 with the assymptotics given by

(4.7A) and (4.7B)

The space MJ,H(7, 7+) admits an obvious free R-action (translation in --direction).

Let us denote the quotient by M J, H(7_, 7-+).

The space MJ,H(7-, 7+) can be thought as union of all loops lying on the gradient

flow trajectories, and thus, as a topological subspace in 1£M

Definition. A simply-connected symplectic manifold M is called weakly monotone

if for any homology class A E H 2(M) the two conditions w(A) > 0 and

ci(TM)(A) > 3 - n implies cl(TM)(A) > 0.

Lemma 5.1.3 of [McD S]. Let M be weakly monotone compact simply-connected

symplectic manifolfd. Then the set J+(M,w) = nK J+(M, w,K) contains a path-

connected dense subset. The set J+(M, w, K) is open, dense and path-connected for.

every K.



From now on we will assume M to be weakly monotone.

Theorem 4.6 (Floer, Hofer,Salamon). For the any "generic" choice of the func-

tion H on S 1 x M and for any pair {y+, -y- } of the critical points of S,,H in CM and

for any "generic" choice of J E J+ (M, w, K) the following statements hold:

A) The space M J,H(7-, -+) is a smooth submanifold in £CM

B) The dimension of this submanifold is equal to the spectral flow of the family

{Dn = -J % + grad(Ho)} (-oo < - < 0o) of the operators

acting from the space W',(S', '/y(TM) to the space W5  _- (S , 7(TM)

C) For any element q e 7r2 (M) we have

dim(MJ,, 7(-y_,qdy+)) = dim(MJ,H(-(_,y+)) + 2 < ci(TM);qd> (4.10)

(this formula follows from the computation of the spectral flow)

We will reprove this theorem (in a more general setting adjusted for our purposes)

in the next section.

Since the Hessian of S,,H at any of its critical points has infinitely many positive

and infinitely many negative eigenvalues, the usual Morse index of the critical point

is not well-defined.

But the relative Morse index of the pair -y_ and -y+ of the critical points is well-

defined as vdim(M(7_,"y+))

Here by vdim(M(^_, -+)) we denote "the virtual dimension" of the manifold

M (-y_, 1+) which is defined as a spectral flow of the family of operators

{D,}(-oo < 7 < +oo)

In the case when J and H are "generic" (or "regular" in the sence specified below),

this virtual dimension vdim is equal to actual dimension dim(M J,H(7-, -y+)) of

this manifold.

Floer and Hofer [FH] and also McDuff and Salamon [McD S] proved that the



moduli space M(7-, 7+) of gradient flow trajectories carries a canonical orientation

coming from determinant line bundle of a-operator {D, = 0 - grad(He)}

This operator acts from the tangent space to Map(-y_, -+) of all maps from the

cylinder to M which are locally (on compact sets in S' x R ) lie in W1',P-Sobolev

space and which tend to y± in WlP-Sobolev norm as r -+ ±oo to the space of all

LI-integrable (0,1)-forms on S1 x R with the coefficients in -y*(TM).

Remark. The above choice of "boundary conditions" at r -+ ±00 automatically

implies exponential decay at r -+ ±oo and the boundary conditions in the sense of

Atiyah-Patodi-Singer (This was proved already in [APS]).

But for some choices of H (like H = 0) the virtual dimension of MJH(-, 7+)

might not be equal to the actual dimension. In these cases MJ,H (-_, -Y+) is usually

not smooth. Different components of MJ,H(-(, 7+) are allowed to have different

dimensions and to meet each other nontransversally.

Lemma 4.7. Let 1i, 72,7 3 be three "critical loops" in £M Then

vdim(M(M( 1, f3)) = vdim(M(y1 , 72)) + vdim(M (y 2, y73)) (4.11)

This formula follows from the spectral flow calculations and from the fact that we

are working on the simply-connected space CM.

It is worth mentioning that the formula (4.11) is not true if we do not go from CM

to its universal cover CM. Without going to the universal cover the formula (4.11)

is only true modulo 21 where IF is the least common multiple of the numbers

{ < cl (TM); q, >}

Lemma 4.8.

M;j,(qd'y_, qd"y+) = q[MJH(-, +

Although the Morse index of the critical points {7i} of S,,H is not defined in the

usual sense, the formulas (4.10) and (4.11) allow us to define it by hands.



Let us fix some "basic critical point" -yo E £M

For any other critical point y E 1M we can always find qd E H2(M) such that

either the manifold MJ,H(YO, qdy) or the manifold MJ,H(y, qdy 0) is non-empty. Then

we can define

deg[-y] = deg[yo] + vdim(MJ,H (o, qd-)) - deg[qd] (4.12A)

deg[7] = deg[yo] - vdim(M.,a(y, qd70)) + deg[qd] (4.12B)

Here deg[qd] is defined by (2.4)

The formulas (4.12A) and (4.12B) for different {d} are consistent with each

other.

So, our grading on the set of critical points of S,,,H is defined uniquely up to an

additive constant deg['yo]

The manifolds {MJ,H(-_, '+)} of the gradient flow trajectories are non-compact.

There are two basic reasons of their non-compactness:

A) The gradient flow trajectory may go through the intermediate critical point,

i.e., it may "split" into the union of two trajectories

B) The sequence of the gradient flow trajectories in MJ,H(7-Y, Y+) may diverge

by "bubbling off" a J-holomorphic sphere of degree d. The formal limit of this

diverging sequence will be a union of a gradient flow trajectory from M(qd Y_, y+)

(which can be thought as a pseudo-holomorphic cylinder in M in the sence which will

be explained in the next section) and a J-holomorphic sphere of degree d attached to

this cylinder at some point.

In order to have a good intersection theory on manifolds of gradient flow trajec-

tories (which is the main ingredient in the definition of cup-product in Floer coho-

mology) we should compactify them.

The compactification of the manifold M (-y_, y+) includes:



A) The loops lying inside the union

M (7-/, 71) U M (71, 72) U ... U•M (k•-1, Iik) U M N, 7+)

B) Those trajectories in M(qd-y_, -+) which can be obtained by bubbling off

from some trajectories in M(7_-y, 7+).

If we considercompactification of the space A ((7y-, -y7+) (which has one real di-

mension lower) then the part A) of the compactification will consist of

U X4(O-, 71) x M('1,-72) x ... x :(7k- 1, yk) XM(7k, 7+)
71. ,--,7k

Here the union is taken over all intermediate critical points.

The part A) of the compactification is easy to handle. We just add this part to

M(-y, 7•) to obtain a smooth manifold with corners.

The above constructed manifold with corners is desingularized by a canonical

Morse-theoretic procedure of "gluing trajectories" (see [CJS1],[AuBr] for a precise

construction) to obtain a smooth manifold with boundary. The boundary of this

"desingularized" manifold consists of the gradient flow trajectories going through the

intermediate critical points together with "the gluing data" which corresponds to

"blowing up" the corners.

The part B) of the compactification is much more complicated object to work

with. It was proved by Floer using dimension-counting argument (4.10) that if

we bubble off the sphere of degree d such that < c, (TM); qd > > 0 then the

corresponding part of the compactification has codimension at least two.

Hofer and Salamon [HS] showed that in the case when M is weakly monotone and

the almost-complex structure Jo on M is "generic"then the spheres of degrees

d such that < c (TM); qd > < 0 cannot be bubbled off. If we bubble off the

sphere of degree d such that < c, (TM); qd > = 0 then for "generic" almost-

complex structure Jo on M the corresponding part of the compactification has



codimension at least four.

Let us consider the free abelian group CF.(M, H) genetated by the critical points

of the functional S,,H on £CM. This abelian group has a structure of ZfH2(M)]-module

since the group H2 (M) of the covering transformations acts on the set of critical

points.

Since the action of the group of covering transformations is free, the module

CF. (M, H) is a free module, generated by the finite set of the critical points of the

multivalued functional SW,H on the loop-space CM (before going to the universal

cover)

Let us take a completion of this abelian group CF.(M, H) by allowing certain

infinite linear combinations of the critical points of Sw,H to occur in CF.(M, H).

More precisely, let us tensor our Z[H2(M)]-module CF.(M) on the Novikov ring A,

over the ring Z[H2(M)]. We will denote this extended abelian group by the same symbol

CF, (M, H) (which is actually an A,-module) and call it a Floer chain complex

corresponding to "perturbed symplectic action" Sw,H.

A Floer chain complex CF.(M, H) has a natural Z-grading deg induced from the

above-defined grading of the critical points

Let {x y, y, ...} be some set of critical points of S,,,H on £CM. We assume that this

set maps isomorphically onto the set of all critical points of S,,,,H on £M. In other

words, we choose one point in the fiber of the universal cover over each critical point.

Now we are ready to define a boundary operator 6 CF.(M, H) -+ CF.(M, H)

which will:

A) commute with A,-action (i.e. 6 will be A,-module homomorphism);

B) decrease the Z-grading deg by one.



Let us define

6x= < 6x; qy > q'y (4.13)
Y d

where the sum in the r.h.s. of (3.13) is taken only over such values of y and of

d that the critical points x and qdy have relative Morse index one.

Let < 6x; qdy > be the number of connected components of MJ,H(X, qdy) (all

of them are one-dimensional) counted with ± 1-signs depending on orientations of

these components relative to their ends x and qd y

Lemma 4.9. The boundary operator 6 is defined over the Novikov ring A,

Let us prove that for any index i = 1, ..., s there exists an integer Ni such that

only those values of (di, ..., d,) could contribute to the r.h.s. of (4.13) that di > -Ni

for all i.

Proof.

By definition of the gradient flow, if the manifold MJH(X, qdy) is non-empty, then

S•,H(x) > Sw,H(qdy) for any Jo-compatible symplectic form w (and in partic-

ular for our basic forms {wI, ..., wS} ) This means that for any positive real number

t and for any trajectory 0(T, 9) E MHJ,H(X, qdy) we have

Swi,H(x) - S,,(qdy) =

= sXR *(wO + fs Heo(y(0))dO - fs Ho(x(0))dO > 0 (4.14)

Since the values of the integrals fs5 Ho(y(O))d9 and fs, Ho(x(9))dO are inde-

pendent of the symplectic form, and fs xRy*(wi) is a homotopy invariant which

depends only on the limit values of 7y as 7 -+ ±oo, then we can conclude that in

our case fs xRa 'Y (wi) is a homotopy invariant and depends only on the value of d.

It follows directly from the fact that {w1 , ..., w,} form a basis dual to



{qi, ..., q, } that if the value of di decreases by one then the value of the integral

fs X 'R (wi) also decreases by one.

This observation implies that in order the inequality (4.14) to hold the lower bound

- Ni on the value of di should exist. Since w = Eimiwi where the coefficients

{mi} are positive, the existence of lower bounds {-Ni} imply the statement of the

Lemma 4.9.

Theorem 4.10 (Floer, Hofer-Salamon). 62= 0.

The proof of this statement is highly non-trivial and relies heavily on the way

how we compactify the manifolds {M (x, y)} of the gradient flow trajectories. This

allows one to prove that the contributions to 62 "from the boundary" of the appro-

priate manifold of the gradient flow trajectories will cancel each other.

Lemma 4.11. Homology HF.(M) of the Floer chain complex inherit both the N-

module structure and the Z-grading deg from CF, (M, H).

Theorem 4.12 (Floer). HF.(M) = H,(M) ® A,

The idea of the proof of this theorem is the following:

First, Floer proved that the graded module HF. (M) is well-defined and indepen-

dent of the choice of "hamiltonian perturbation" H involved in its definition.

He constructed an explicit chain homotopy between Floer chain complexes CF. (M, H1 )

and CF. (M, H2) constructed from two different hamiltonians H1 and H 2 (which

are functions from S' x M to R )

Second, if we consider "O-independent Hamiltonian" H : M -+ R which is small

in C2 -norm, then all the critical points of "perturbed symplectic action functional"

Sw,H on CM can be obtained from the critical points of H on M by covering

transformations. Here M is embedded in £M as a submanifold of constant loops as

specified above.

Saying the same thing in another words, only constant loops can be critical points

of S,,H . These "critical loops"can take values in the critical points of H on the

manifold M and only in those points.



The gradient flow trajectories joining these critical points can be of two types:

A) Lying inside submanifold M C £M of constant loops

B) Not lying inside any submanifold of constant loops

The trajectories of type B) cannot be isolated due to non-triviality of

S'-action (which rotates the loop) on the space of those trajectories.

Thus, only trajectories of type A) can contribute to the Floer boundary operator 6.

But the chain complex generated by these trajectories is exactly the Morse complex

of M.

Thus, the homology of the Floer complex will be the same as homology of M

(tensored by the appropriate coefficient ring due to the action of the group of covering

transformations)

Before starting to explain cup-product structure, let us define Floer cohomology

HF*(M) and Floer cochain complex CF*(M, H) for both perturbed and unper-

turbed symplectic action. To define those objects we define:

A) Floer cochain complex CF*(M, H) = HomA, (CF.(M, H), A)

B) Coboundary operator 6* in the Floer cochain complex as a conjugate to the

biundary operator 6 in CF.(M, H)

C) Floer cohomology HF*(M) as homology of the complex (CF*(M, H); 6*)

Remark 1. The Floer cochain complex (CF*(M, H); 6*), defined above, is a Morse

complex for the same perturbed symplectic action functional Sw,H but with

reversed time

Lemma 4.13. The following statements hold:

A) HF*(M) = HomAe (HF,(M), AJ)

B) HF*(M) = H*(M) ®A = H*(MA,.) i.e. Floer cohomology are isomorphic

to ordinary cohomology with the appropriate coefficient ring.

Remark 2. The Floer cochain complex of the "perturbed symplectic action func- -

tional" Sw,H has a canonical basis corresponding to the critical points {qd'x, qd2 y, ...}



of Sw,H. This basis is dual to the basis of the critical points {q d'x, q d 2 y, ..} in the

Floer chain complex CF. (M, H). In this basis the "Floer coboundary oberator" 3*

(defined as a conjugate operator to the "Floer boundary operator" J) is exactly the

boundary operator in Morse complex for the functional S, with reverse time.

Proceeding as above, we can develop the Morse-Bott-Witten theory for the Morse-

Bott functional S, on the universal cover of the loop-space LM in the same way as

Floer developed his theory for Morse functional S,,H on the same space.

The main ingredient of such a theory is a Floer chain complex corresponding to

the "unperturbed symplectic action" S, . Algebraically this chain complex is defined

as H*(M) 0 Aw.

Geometrically, this Floer chain complex is generated (as an abelian group) by

the pseudo-cycles inside the critical submanifolds {qdM} of the symplectic action

functional.

Here, as above, we allow certail infinite linear combinations to occur. The occur-

rence of these infinite linear combinations stands for the fact that we are working over

the Novikov ring A,.

This new Floer chain complex (we will denote it CF.(M, 0) ) also has a

A,-module structure and the Z-grading.deg. The latter is defined as follows:

S

deg[qd A] = deg[A] - di deg[qi] (4.15)
i--1

where A be some homology class of degree deg[A].

Here, as in chapter 3, A -+ A stands for Poincare duality isomorphism between

cohomology class A E H2n-deg[A](M) and homology class A E Hdeg[-](M)

Let us fix some (homogenous) basis {A 1 , A 2, ...} in the cohomology of M , let

{J7(A 1), 7(A 2), ...} be the dual to {i7(Al), 7(A2),...} basis in homology of M and let

{A 1, A2, ...} be the corresponding Poincare dual basis in homology of M . We will

always assume that each element in our bases {A 1 ,A 2 ,...} and {J7(A1), 2(A 2),...} is



represented by some pseudo-cycle in M (which we will denote by the same symbol).

Let qd A and qd2 • be two (bihomogenous) elements of the Floer chain complex

CF. (M, 0) (represented by pseudo-cycles).

Proceeding as above, we can define:

A) The topological space M(qdlA, qd2 71(B)) of L2-bounded gradient flow tra-

jectories of S, which flow from the cycle qdl A in qd M as T -+ -oo to

the cycle qqd (B) in qd2 M as T -+ +oo . This topological space should not

necessarily be a manifold.

We compactify this space by the gradient flow trajectories passing through the

intermediate critical submanifolds and by trajectories in M(qd1 +dA, qd 2 r7(B)) ob-

tained by bubbling off.

(Here B -+ rq(B) stands for Poincare duality in homology of M which makes sence

once we have chosen a basis in H*(M)).

B) Relative Morse index of qd ' and qd2 B as the virtual dimension of M(qd'A, qd27(B))

defined as deg[qd2 B] - deg[qd' A]

C) Z-grading deg on the Floer chain complex CF. (M) (defined by the formula

(4.15)) such that the relative Morse index of qdIA and qd2 B is equal to the

difference of their degrees

D) Floer boundary operator 6 : CF.(M, 0) -+ CF,(M, 0) which commutes with

A,-action and decreases the Z-grading deg by one.

This Floer boundary operator is defined as

JA = • < tif; qdB > qd (4.16)
Bd

Here the first sum E- in (4.16) is taken over our (fixed) set of pseudo-cycles

representing the basis in H.(M), and < iA; qd > counts the number (weighted

with ±l-signs depending on orientation) of isolated gradient flow trajectoties inside

the manifold Md(A, r7(B)) defined as



Md(A, n(B)) = M (A,qdr9(B)) (4.17)

Here the r.h.s. of (4.17) gives the definition to its 1.h.s.

Lemma 4.14 (Givental). The Floer boundary operator is identically zero in this

case.

The proof of this lemma relies on the fact that any Morse-Bott function which is

a hamiltonian of an S1-action has this property.

Thus, we have

Lemma 4.15. Floer homology HF. (M) coincides as an abelian group with the Floer

chain coVnplex CF, (M, 0) of the unperturbrd symplectic action functional.

Let us define Floer cochain complex CF*(M, 0) as dual to the Floer chain

complex CF. (M, 0).

The Floer cochain complex CF*(M, 0) also has a canonical basis

{qd'At, q A 2, ...} This basis is dual to the basis {q-d', q-d2 (A2), ...} in the

Floer chain complex CF.(M, 0).

Later on we will use these two bases in these two Floer cochain complexes when

we will work with Floer cohomology instead of Floer homology.



Chapter 5

Cup-Products in Floer

Cohomology

Original Floer's motivation for introducing the object which is now known as "sym-

plectic Floer cohomology" was to give an interpretation of fixed points of the sym-

plectomorphism of M in terms of Morse theory.

SIn order to have such an interpretation, one has to develop some Morse theory on

the loop space CM instead of the usual Morse theory on M . By identifying the

fixed points of our symplectomorphism (constructed canonically from "the periodic

time-dependent Hamiltonian" H0 : S1 x M -+ R) with the critical points of Floer's

"perturbed symplectic action functional" on the loop-space, we have such a Morse-

theoretic interpretation.

If we assume all the fixed points of our symplectomorphism to be non-degenerate

(which is the case only if "the Hamiltonian" H is "generic" in the sense of Lemma 4.4),

and use the fact that homology of our Morse-Floer complex CF.(M) are isomorphic

to the classical homology of M , then the lower bound on the number of the fixed

points of our symplectomorphism will be given by usual Morse inequalities. This was

one part of the Arnold's Conjecture which Floer proved.

The other part of Arnold's Conjecture was: what if we drop the non-degeneracy

assumption on the Jacobian at the fixed points? Classical Morse theory gives us the



lower bound on the number of (not necessarily non-degenerate) critical points of the

function H on the compact manifold M in terms of the so-called cohomological

length of M.

Definition. The cohomological length of the topological space M is an integer

k e Z+ such that:

A) There exist k - 1 cohomology classes ca, ..., ak-1 on M of positive

degrees such that a& A ... A _k-1 # 0 in H*(M) and

B) There are no k cohomology classes on M with this property.

Thus we see that in order to try to prove this part of the Arnold's Conjecture in

the framework of Floer's Morse theory, one needs to invent some multiplicative

structure in Floer cohomology. A kind of such a multiplicative structure was also

constructed by Floer [Fl] and successfully applied to this part of Arnold's Conjecture

in another Floer's paper [F2].

However, Hofer [Ho2] have found a proof of this part of Arnold's Conjecture

without using Floer homology.

Using the (nontrivial) fact that Floer cohomology HF*(M) are canonically iso-

morphic (as A,-module) tp the ordinary cohomology H*(M) ® A, the following five

statements are equivalent:

A) we have a multiplication in Floer cohomology

HF*(M) ® HF*(M) -+ HF*(M) (5.1A)

which is A,-module homomorphism and which preserves the Z-grading;

B) we have an action

HF*(M) -+ End(HF*(M)) (5.1B)

of Floer cohomology on itself (by left multiplication) which is A,-module homo-

morphism and which preserves the Z-grading;



C) we have an action

H*(M) -4 End(HF*(M)) (5.1C)

of classical cohomology of the manifold M on its Floer cohomology which preserves

the Z-grading;

D) we have an action

H,(M) -+ End(HF*(M)) (5.1D)

of classical homology of the manifold M (related by Poincare duality with the coho-

mology of M) on its Floer cohomology which preserves the Z-grading;

E) we have an action

G,(M) -+ End(CF*(M, H)) (5.1E)

of the space of singular chains in M which can be realized by pseudo-cycles on the

Floer cochain complex of M. This action commutes with the boundary operator and

preserves the Z-grading.

F) we have an action

£,(M) -+ Hom(CF*(M, H) ® CF,(M, H), Z) (5.1F)

Later on we will denote all these four maps (5.1A) - (5.1F) by the same symbol

mF and call them the Floer multiplication.

Remark 1. End(CF*(M, H)) is isomopphic to Hom(CF*(M, H) 9 CF,(M, H), Z)

Remark 2. The identity map from CF*(M, H) to CF.(M, H), which maps each

critical point of S,,H to itself, gives a canonical isomorphism between CF'(M, H)

CF2n-I(M, H) for every integer 1. This map is not a chain map in the sense of

homological algebra.



In order to define the Floer multiplication mF in the form (5.1E) (or in the

equivalent form (5.1F)) it is enough to define its matrix elements < y ImF(C) Ix >

where

x e CFm (M, H),y e CF1 (M, H) = CF2,_1 (M, H) , E Q2n-k(M) and then put

mF()(x) = < qdymF(C)X > qy (5.2)
y,d

where the sum in the r.h.s. of (5.2) is taken over the basis in the A,-module

CF*(M, H) and only over those terms y, d such that deg[qdy] - deg[x] = k.

Let x, y be two "basic" critical points of the functional S,,,H on £"M, and let qdi x

and qd2y be the corresponding elements of the Floer cochain complex CF*(M) with

the index difference 1 - m = k. Then let us put

< qd2Y mF(J)qdx> = X[MJ,H(q d y;qd' x)•ev 1(0)] (5.3)

Here- x is Euler characteristic of the (zero-dimensional) oriented manifold; edv

S1 x CM -+ M is the standard "evaluation map" where the circle S1 is assumed to

be embedded as a unit circle Izi = 1 in the complex plane C. The map er1 means

evaluation of the loop at the point z = 1

Theorem 5.1. The following two statements hold:

A) The action mF of f*(M) on CF*(M, H) defined by (5.2) and (5.3)

descends to the action mF of H,(M) on HF*(M) ;

B) The induced action mF : H(M) - End(HF*(M)) does not depend on the

choice of "the Hamiltonian" H assuming that this Hamiltonian is "generic" in the

sense of Lemma 4.4.

For the case when M is a positive almost-Kahler manifold the Theorem 5.1 was

proved by Floer [Fl].

We will reproduce this proof (with the appropriate modifications) for the general

semi-positive case. In the next section the techniques which is used in this proof will

be applied to prove equivalence of Floer's and quantum multiplication.



The main idea behind this proof is to consider "r-dependent Hamiltonian pertur-

bation" of the equation (4.5). More precisely, let H be some smooth function on

R x S1 x M. Here, as above, the real line R is equipped with the parameter T ,

varying from mrinus infinity to plus infinity, and the circle S' is equipped with the

arclength parameter 0.

Let us restrict ourselves to the Clon-l-smooth functions on R x S' x M which

are r-independent in the region -o00 < T < -1 and in the region 1 < - < +oo.

This condition means that there exist two functions H_ and H+ on S' x M such that

H(r; 9) = H_ (0) if T < -1 (5.4A)

H(T; 8) = H+(0) if 7 > 1 (5.4B)

Let us denote the space of all such functions gH_,H+

We would like to stress that the Banach manifold gH ,H+ is defined for any choice

of "boundary value" Hamiltonians H+ and H_ (not necessarily "generic"). In the

next section we will be interested in situation when either H+, or H_, or both, are

identically zero.

Then we can study the space of solutions of the following PDE

1'YT (0) - &YT(O)

SJ grad H(r, 0) (5.5)

which are L2-bounded in the sense of (4.6)

For any L-bounded solution of (5.5) there exist a critical point x of Sw,H+ and a

critical point qdy of Sw,H_ such that

7,(O) -+ x(8) r --+ +00 (5.6A)

and



, (0) --+ qdy(9) i -- oo

The proof reduces to to r-independent case by cutting the cylinder into pieces.

Following the logic of the section 4, we can define the space MH(qdy, x) of

L2-bounded solutions of (5.5) which we will call "the moduli space of --dependent

gradient flow trajectories".

The "virtual dimension" of MH(qdy, x) is again given by the spectral flow of the

appropriate family of operators on the circle and coincides with the actual dimension

for "generic" J and H. The moduli space "MH(qdy, x) again carries a natural

orientation (following the logic of [FH]).

The moduli spaces {MH(qdy, x)} of finite-energy- solutions of (5.5) are com-

pactified by adding gradient flow trajectories obtained by "splitting" and by "bubbling

off". The compactified moduli spaces {MH(x, qdy)} have the structure of stratified

spaces such as:

A) The strata are labelled by "degeneration patterns" labelled by almost the same

data (labelled trees) as "degeneration patterns" of J-holomorphic spheres, described

in the section 2. To avoid confusion, we will spell it out explicitely.

B) Each stratum (including the top stratum) is a smooth manifold

with boundary.

Definition. Degeneration patern for the gradient flow trajectory in {.M (qdy, x)}

is following set of data:

DP1) The class do e H 2(M), the set {d'; ...; dk} CCC H 2(M) of non-zero

effective classes, and the set {al; ...; ak } of positive integers, such that the following

identity holds: d = do + ~ =1a id'

DP2) The set {II; ...; It} of subsets in the set {do; d'; ...; dk}. We do not allow

one of {II; ...; It} to be the proper subset of another.

Using the set of data {do; dI; ...; dk; I1; ...; It}, we can construct a graph T

with k + 1 + t vertices {do; d'; ...; dk; I1; ...; It} as follows:

(5.6B)



If the class d' lies in the set Ij then we join the vertices d' and I1 by an

edge.

DP3) The graph T obtained by above prescription is a tree.

Let Dd = { {do;dl;...;dk} 1; {al;...;ak}; I; ... ; It}; T } be some degenera-

tion pattern. Then let us define M d (qdy, x) as a topological subspace in

MH(q y, x) X r,& [MJio,di / PSL(2, C)] as follows:

An element ,o in MDd (qdy, x) consists of one gradient trajectory Co of S,,H

which flows from x as 7 -+ +oo to q dOy as r -+ -oo and k unparametrized

Jo-holomorphic spheres {Ci e [M*0o,di/PSL(2, C)] }. We require that for any subset

I = {dil; ...;d'"i} from {II; ...; It} the curves {Cjl; ...;Cj-.j} have a common

intersection point. We do not allow this intersection point to lie on any other curve

Ci C M in our collection'

Remark 3. Co will be a cylinder and { Ci } for i > 0 will be spheres.

Lemma 5.2. "The compactification divisor" MH (qdy, x) - MH (qdy, x) has codi-

mension at least two.

Proof. K-semi-positivity implies that (c,(TM); Ci) > 0, i.e., only spheres with non-

negative first Chern number can bubble off. If at least one J-holomorphic sphere with

positive Chern number bubbles off than codimension of the corresponding component

of the compactification divisoris at least twice the Chern number of that sphere (which

follows from explicit description of the corresponding component and the formula for

its dimension). If only J-holomorphic spheres with Chern number zero bubble off then

the last formula in section 2 of [HS] states that each such "bubbling off" decreases

the dimension by four. This proves the lemma.

Remark 4. The proof given above is essentially contained in [HS].

1if Ci, n ... n C " f Ci n 0 then our "degenerate trajectory" would lie in the other stratum

governed by another "degeneration pattern".



Remark 5. Each stratum (including the top stratum) is a smooth manifold with

boundary (and the boundary has codimension one in the corresponding stratum).

Remark 6. The boundary of the stratum M g d (qdy, x) Consists of a union of two

components M d(qdy, 6*x) and MDd(qd6y, x)

Remark 5. Since all the spaces we are considering are topological subspaces in 1CM

(or, saying it in another way, wee are working with the image of the universal cover

of the space Map(S' x R, M) in £M then the boundary of the stratum MH(qdy, x)

does not contain pieces Uz M H(qdy, z) U MH(Z, x) where z runs over critical points of

index difference greater than one. This holds since the pieces of the form of "broken

trajectories" come as "unions of trajectories" and not as "products of trajectories"

(as would be the case if we mod out MH(X, qdy) by R-action).

For the case of positive symplectic manifold the statement of the lemma 5.2. was

proved in [Fl]. In the semi-positive case the proof was given in [HS] when H was

T-independent. The general case was worked out in [PSS] and [RT2].

The formulas (4.9) - (4.11) have their analogues for the moduli spaces of r-

dependent gradient flow trajectories. This implies that we can fix the additive con-

stant ambiguities in the gradings of the critical points of {S,,H}

for all Hamiltonians simultaneously such that

vdim MH(qdy, x) = degCF*(M,H+)(q dy) - degcF*(M,H_)(X) (5.7)

Theorem 5.3. For any two "r-dependent Hamiltonians" H (O) and HM) lying in

the space GH_,H+ the manifolds of trajectories M4H(o)(qdy, x) and MH(O) (qdy,x)

are cobordant to each other as stratified spaces with boundary.

More precisely, there exists a path {H(t)} (0 < t < 1) in gH_,H+ joining

H (o) and H(1) such that Uo<t<1 MH(t)(qdy, x) gives us the desired cobordism.

Proof. Let K be a positive number greater than S,H+ (x) - S,,H_ (qdy),

J+ (M, w, K) and Map(x, qdy) defined as above ( recall that this is the space of all



W1 ' -Sobolev maps from S' x R to M which tend to x and qd in W',p-norm as

r --+ ±00oo).

As was mentioned in section 4, the above choice of boundary conditions at

7- -+ ±00 guarantees exponential decay [APS].

Let us consider the infinite-dimensional Banach bundle W over

Map(x, qdy) x J+(M, w, K). The fiber of the bundle W over the point (7; J) in

Map(x, qdy) x j+(M,w, K) will be the space of all locally LP-integrable (0, 1)-forms

on R x S' = C* with the coefficients in 'y*(TM) which exponentially tend to zero

as r -+ ±oo .

Let us consider the pull-back of this Banach bundle to

Map(qdy, x) x J+(M, w, K) x 9H_,H+ and construct a (canonical) section (I as

follows:

(7) '= - J- - grad H(r, 0) d2 (5.8)

Here d2 is a canonical (0, 1)-form on R x S' = C*. The identification between

Rx SI and C* is given by the map (4.8).

The arguments of McDuff [McD] show that if the function H does not admit any

holomorphic symmetries with respect to parameters on R x S' then the section ( is

regular over Map(x, qdy) x JM X {H}.

Since the space of functions {H} with this property is open and dense in

GH_,H+ this means that the section 4) is regular over the dense open set in

Map((qdy, x) x M X gH_,H+. Since the zero-set of the section (P over

Map(qdy, x) x {J} x {H} is our friend MJ,j(qdy, x) then we can apply Lemmas

2.4 and 2.6 to prove existence of the above cobordism.

Since the Floer coboundary operator 3* acts (in general) nontrivially on x

and the Floer boundary operator 6 acts nontrivially on y then the manifolds

{jMH(t)(qdy, x)} are manifolds with boundary and the cobordism Uo<t<l MHt (qdy, x)

will have two extra boundary components



Uo<t<i MHM (qd6y,x) and Uo<t<i MHt (qdy, 6*x)

These extra components appear due to the presence of intermediate critical points

of S,,H_ and S,,H+ -

Lemma 2.6 implies that such a path {H(t)} (0 < t < 1) in GH ,H+ joining H(o)

and H (1) exists. The extension of Lemma 5.2. implies that the corresponding smooth

cobordism can be compactified as a stratified space and "the compactification divisor"

(defined as U,,ivial Uo0<t<l M ) (qdy, x)) will have codimension at least two inside

this stratified space.

This fact together with a standard transversality argument of [McD S] implies

that the intersection of "the compactification divisor" with (any of) four "boundaty

components" of the total space of our cobordism will have codimension at least two

in this "boundary component" (considered as a stratified space).

The theorem 5.3. is proved.

Now let us temporarily return to the case when "the Hamiltonian" H is r-

independent and let us remember that the manifolds {MH(q d2y; qdIx)} of gradient

flow trajectories can be thought either as submanifolds in the loop-space or as sub-

manifolds in the space Map(qd2 y; qdix) of maps from the cylinder R x S' to M

with the fixed "boundary values" at r -+ ±oo

Thus, we have a commutative diagram

MH(q dy; qdlx) e.. LM

Map(R x S1; M) e- M

Having this commutative diagram in mind, we can rewrite the definition (5.3) for

the matrix element of the Floer multiplication as:

< q yd2 mFYM(C)iq dX > X[ MH(q d2y;qdlx)) ev( 1 )()] (5.9)

Here evo,1 is the "evaluation at the point (0;1)" map from Map(R x S; M) to M,



and ev,=o is the "evaluation at the point 0 in r-direction" map from

Map(R x S1; M) to LM.

The formula (5.9) for the matrix element < qd2 yImf(C) qd'x > of the Floer

multiplication admits the following generalization:

Let H+, H_, x, y and H be defined as above. Then let us put

qd2 y mYF(C)lqd'x > X[= [4H(qd2y;q ' x) ev-1)()] (5.10)

where the r.h.s., as usual, means the Euler characteristic of the (zero-dimensional)

intersection, or the intersection index.

Any cycle x in the Floer Chain complex CF*(M; H+) can be written as a

sum Ek nkXk where xk are (possibly coinciding) critical points of Sw,H_ and

nk= ±1. The same is true for the cycle y = E2 mjyj in CF,(M; H_).

We can consider the manifolds

MH(qd2y; qd1x) = U nkml MH(qd2yj; qd'xk)
k,l

Here the factor nkml = +1 in front means that the component

M.(qd2 y1 ; qd'Xk) should be taken with the appropriate orientation.

Lemma 5.4. If we glue all the components of MH(qd2y; qdx) together, we will

obtain a smooth deg(qd2y) - deg(qd1 x)-dimensiona 1 pseudo-manifold

without boundary (or pseudo-cycle).

Proof. Since by remarks 4 and 5 for each index k and I we have

6MHY(qd 2y; qdX) = MH(qd26Y; qdixk) U M4H(qd2yj; qdl3*Xk)

then by definition of 5Ma(qd2y; qd x) we have:

6MH(qd2y; qdx) = Unkml 6MH(qd2y; qd' xk) =
k,l



= Uml[ URkMH(q d 2 yl;qdl *Xk)] U Unk[ Um•MH(qd 26 1Y;qd Xk)] (5.11)
1 k k I

Now let us look at this formula more closely. Since x is a cycle in CF*(M, H+)

and y is a cycle in CF,(M, H_) we have

Uk nkP Xk = 0 (if a point in CF*(M, H+) enters Uk nk* Xk , it enters it twice: once

with a positive orientation and once with a negative orientation)

and

U. mJyj = 0 (if a point in CF,(M, H_) enters U, mzy , it enters it twice: once with

a positive orientation and once with a negative orientation)

This implies that for each I

U fkMH(q d yl;q dj* Xk) = 0 (5.12)
k

and for each k

U m1 ,M (q d y; qd'xk) 0 (5.13)1
(each component will enter twice: once with a positive orientation and once with a

negative orientation)

The equations (5.11)-(5.13) combined imply that

JMH(q yd2 y;qdlx) =Umi U Unk
I k

from which the lemma 5.4. follows.

Theorem 5.5. For any two --dependent Hamiltonians H(o) and H(1) from gHHQ;

for any cycle x = Ek nkXk in CF*(M; H+) ; for any pseudo-cycle C E Qm(M)

and for any cycle y = • mly1 in CF (M; H-_) such that the relative index of x

and y is equal to m we have



X[MH(o) (q 2 y;qd'x) ev 1 = X[M4 H() (q 2 y; qd x) fev(0 1) (C)]

Proof. The Theorem 5.3 provides us with a cobordism Mt between

MH(o)(q y;qd'x) and MH(1)(qd y;qd x). The fact that both x and y are cycles

in the Floer complexes CF*(M, H+) and CF.(M, H-) respectively, means that the

cobordism Mt between them does not have other boundary components. (All

the "extra boundary components" of cobordisms {Uo<t<l MH() (qd2 Y; qd' x k)} for

different k and 1 will cancel each other out in pairs after we glue them together ).

The theorem 2.1 of [McD S] which claims that the map ev(o;1) from

M H(t)(qd' y; qd Xk) X JM X H ,H+ to M is surjective, allows us to apply the

Lemma 2.5. to the evaluation map ev(o;o) taken as a "projection operator." By

applying this lemma we have that the cobordism Mt intersects transversally with

ev(O;•)(C) and the corresponding intersection gives us a smooth one-dimensional

submanifold (with boundary).

This submanifold does not intersect the "compactification divisor" f4t - M t since

by Lemma 5.2. the latter has codimension > 2 and we have the freedom of putting

everything "in general position".

Thus, Mt•l ev•, (C) gives us the desired compact one-dimensional cobordism be-

tween MH (o) (qd2 y; qd x) n ev,•() and M(W) (qd21y; qdx) l ev, (C) The statement

of Theorem 5.5. follows.

The same cobordism and transversality arguments together with the crucial ana-

lytic Lemma 5.2. prove the following

Lemma 5.6. If Co and C1 be two pseudo-cycles in M homologous to each other

(which implies that they are actually cobordant to each other in the category of

pseudo-manifolds); if y is a cycle in CF.(M; H-) and x is a cycle in CF*(M; H+);

and if (ro, Go) and (r1, 01) are any two points on the cylinder R x S' then

(5.14)



X[Mfo d _d(qdyd) 2l o y (1)(d ;d ) )] ( 5q
X[./[~o(qy;qdx) n ev o,0o(C0)] = X[.MH(M(q Y dx e~ls C)

Up to this point we were working with cycles (x and y) in Floer (co)-chain com-

plexes and not with their homology classes. So, we will have to prove that the

above-defined matrix elements of Floer multiplication will not change if we change

the Floer cycles (x and y) on homologous Floer cycles (in appropriate complexes).

For this we will need the following two lemmas:

Lemma 5.7. Let x = Uk nkXk and x' = Uk n'zx be homologous elements in CF*(M, H+).

Then

< qd2 ym(C)qdl> = <q ' d2 ymF(C)lqd' X, > (5.16)

Proof. The fact that x and x' are homologous in CF* (M, H+) means that there

exists an element z = U, nz, E CF*-I1 (M, H+) = CF2n+ 1_.(M, H+) such that

6*z = X - X'

z is a union (taken with appropriate signs) of a critical points of SW,,H_ of index one

higher than the index of x

Then we can consider a space of trajectories

MH(q d2 y, d' z) = ns.MH(q d y;q dZ)
8

by Remark 6 earlier in this chapter

6MH(q d2 y; qd1z)= MH(qd2 y; qd'x) U -M- (qd 2y; qdx,) (5.17)

here the minus sign in front of MH(qd2 y; qdx') means that this component is taken

with the negative orientation.

Now (5.17) implies that

(5.15)



< q'2 YJM1()qx> d2 x >=

= X[MH(o) (qd2 y; qd' x) n ev- 1 ()] - [ ()(qd 2  d) d 1)

= x[6[MH(to) (q d2y; qd z) N ev-1 ()]] (5.18)

Since the expression in (5.18) is algebraic number of points in the boundary of a

one-dimensional manifold (in this case, MH (qd2 y; qdlz) nev1 )(C) ) which is alwars

zero. This proves the lemma.

Lemma 5.8. Let y = U, mzy, and y' = U, mjyj be homologous elements in CF.(M, H_).

Then

< q mYF(C)lqdi > = <qd2y'mF(C)lqd' > (5.19)

Proof (almost identical to the proof of the Lemma 5.7). The fact that y and

y' are homologous in CF. (M, H_) means that there exists an element

z = Up mpzp E CF.-,1 (M, H+) such that 6z = y - y,

z is a union (taken with appropriate signs) of a critical points of Sw,H_ of index one

lower than the index of y

Then we can consider a space of trajectories

MH(qd2z; q d' x) = U mpM (qd2 zp; qdlx)
p

by Remark 6 earlier in this chapter

6MH(q d2 z; qd'x) = (qd d'X) U-MH (qd 2Y;qdx) (5.20)

here the minus sign in front of MH(qd2y,; qd'x) means that this component is taken



with the negative orientation.

Now (5.20) implies that

d
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< qd Y MF(C)jIq dl x> - <q d yjMF(O)Iq d'X >

X[.M,4 (qd2 y; q d')O , )( ) - ax) n ev-1 d2C)di

= x[M y(qdy; qdx) Aev) (C)] - X[MH(qdy; q dx) Aev-(O 1) (C)

= X[6[MH(qdz; qd' x) n ev-( 1) (C)] (5.21)

Since the expression in (5.21) is algebraic number of points in the boundary of a

one-dimensional manifold (in this case, MH(qd2z; qd x) n ev 1 )(C) ) which is always

zero. This proves the lemma.

Now we are ready to prove the Theorem 5.1. In order to prove it, we should

(following Floer):

A) Construct a chain homotopy hH : CF*(M, H_) -+ CF*(M, H+) (which

depends on the choice of the function H E gH,H+-

B) Prove that the chain homotopy hH gives a well-defined homomorphism

hH_,H+ : HF*(M, H_) -+ HF*(M, H+) on the level of homology, and this homomor-

phism is independent of the choice of H.

C) Prove that hHi,H. = hH2,H3 hH1,H2 for any triple of Hamiltonians H 1, H2 , H3

defined as functions from S1 x M to R

D) Prove that for any singular homology class C in M

hH.,H+ (mH - ()) = mFH+ (C)h. ,H+ (5.22)

as operators acting from HF*(M, H_) to HF*+de9g(c)(M, H+) Here mFH - and mF +

are operators of the action of H.(M) on the Floer cohomology HF*(M,H_) and

HF*(M, H+) respectively.



Let {x, x2 ,...} and {yi, Y2,...} be the bases (over ZH2(M)) of critical points of

S,,H+ and Sw,,H_ respectively. Let x = •k nkXk be a cycle in CF*(M; H+)

and y = EZ mlyi be a cycle in CF.(M; H_).

Then the matrix element < qd2yhff qd'x > of the desired chain homotopy

hH is by definition the number of zero-dimensional components of

MH (qd2 y; d'x) taken with appropriate orientation. This number is non-zero

only if deg(q dx) = deg(qd2y). By our convention, the difference

deg(qd2 y) - deg(q d'x) is given by the spectral flow.

Theorem 5.5 and Lemma 5.6 imply that hH defined above on the chain level

is well-defined and independent of the choice of H E gH,H+ such that the statement

A) holds.

Lemma 5,7 and Lemma 5.8 imply that above defined hH is well-defined on the

homology level such that the statements B) holds.

The statement D) above is equivalent to the fact that

X[MH~qd2 y; di id2 d

X[MH(qdy; qd'x) A ev;O) ()] = X[MH(q dy; qdx) n ev_12;o)()] (5.23)

The 1.h.s. of (5.23) coincides with the matrix element < qd2y mH+ (C)hH._,H, qd'x >

of the 1.h.s. of (5.22) because of H(2, 9) = H+(O). The r.h.s. of (5.23) coincides

with the matrix element <qd2yHH+(mH- (C))qdx > of the r.h.s. of (5.22)

because H(-2, 9) = H_(O). Thus, we have reduced the statement D) to the special

case of the Lemma 5.6.

Actually, since the operators mH+ (C) and mH- (C) are given only through their

matrix elements, completely careful proof of the statement D) would require "gluing

theorem C)" which we will prove later. We will repeat this argument in more details

in section six.

Statement C) above is a consequence of the procedure of "gluing trajectories".

A finite-dimensional Morse-theoretic version of this procedure (where there is no



"bubbling-off" phenomenon) is due to Austin and Braam [AuBr]. The analysis of

the effects of "bubbling-off" in the infinite-dimensional J-holomorphic curve version

(relevant for our purposes) was worked out in [HS] following earlier work [Fl] and

[McD].

Namely, let us glue two half-cylinders S' x (-oo; T] and S 1 x [-T; +oo) along

their boundaries, i.e., we glue the circle T = T on the first half-cylinder with the circle

r = -T on the second half-cylinder. Since we have a "r-dependent Hamiltonian" H12

on the first half-cylinder and a "'-dependent Hamiltonian" H23 on the second half-

cylinder such that

H 12 (r; 0) = HI(0) if r < -1 H12(r; 0) = H2 () if T> +1

H23(r; 6) = H2(0) if 7 < -1 H23 (7"; 0) = H3(O)ifau > +1

we can glue them together to obtain a new r-dependent Hamiltonian H T which is

defined as

H (r; 9) = H12(r + T; 0) if r < 0

HlT(r; 6) = H23(7 - T; 9) if 7 > 0

If x, and x 3 are any two cycles in CF.(M, HI) and in CF*(M, H3) respectively of

relative Morse index zero then Lemma 5.6. implies that

< xlIhHi,H3 X3 > = X(MHT (X1;X3)) (5.24)

for any finite value of the gluing parameter T. Here x means the Euler characteristic

of the zero-dimensional oriented manifold.



Gluing Lemma 5.9. For sufficiently large value ofT the moduli space MHT13 (x1, x 3 )

is diffeomorphic to Uy MH 12 (xl, y) x MA4H 12 (y, x 3) where the union is taken over all

critical points {y } of H 2.

This theorem was essentially proved by Austin-Braam and by Taubes (in a slightly

more general setting of Morse theory on Banach manifolds).

The proof of this Gluing lemma (in a more general setting) will be given in the

next section.

This observation implies that C) holds which proves the Theorem 5.1.

Thus, we have a well-defined map

mF : H*(M) ® HF*(M) - HF*(M)

Since the Floer cohomology HF*(M) is isomorphic to the classical cohomology

H*(M) ® Aw, this "Floer multiplication" gives us some bilinear operation

m : H*(M) ® H*(M) -+ H*(M) ® A,

in classical cohomology.

In order to calculate this bilinear operation and prove that it coincides with the

quantum cup-product, we should examine more closely how the isomorphism between

HF*(M) and H*(M) 0 A, is constructed. In the next section we will construct

another isomorphism between HF*(M) and H*(M) 0 A, which will be used to prove

our main theorem.



Chapter 6

The Proof of the Main Theorem

For each cohomology class C E H*(M) two linear operators

mQ(C) : H*(M) -+ End(H*(M)) 0 Aw

and

mF(C) : H*(M) -+ End(H*(M)) 0 A, (6.2)

were defined in the previous three sections. The map mQ(C) was called quantum

multiplication (from the left) on the cohomology class C . The map mF(C) was

called Floer multiplication (from the left) on the cohomology class C.

The Main Theorem 6.1. Quantum multiplication coincides with Floer multiplica-

tion.

To prove that the homomorphisms (6.1) and (6.2) are in fact equal, it is

sufficient to prove that all their (A,-valued) matrix elements

< BImQ(C)IA > = qd < qdB mQ(C)jA > (6.3)
d

and

< BImF(C)IA > = (6.4)E qd <qdB MF(C)| A >
d

(6.1)



are the same. (Here A and B run over our once chosen homogenous basis in the total

cohomology of M) .

Let H be a C1O"- function on SI x R x M vanishing in the region I171T > 1

(which means that H E Go,o ). We assume that H is "generic", i.e., not invariant

under any holomorphic automorphism of S' x R (which is identified with C* by

the map (4.9)).

Following the logic of the previous section, let us consider the space of

L2-bounded trajectories MH(A; qdr(B)) and compactify it as a stratified space.

(Here, as in the previous section, we fix pseudo-cycle representatives of A and q(B)).

Theorem 6.2.

H(A;qdd(B )) = Jg,,rdHdi,d fev-'() Nev1(7(B)) (6.5)

Let -y = 7(Tr, 9) be any L2-bounded solution of (5.5) with H = 0 in the

region Ir I I > 1. Then '7 (considered as a map from the cylinder S' x R to M)

can be continiously extended from the cylinder S 1 x R to the 2-sphere S2 since

the limit value of -y at r -+ ±00 should be constant loops. By Theorem 3.6. of

Parker and Wolfson [PW] ( removable singularity theorem for J-holomorphic maps),

this extension is smooth and JgradHd2-holomorphic.

Now the statement of the Theorem 6.2. follows directly from the definitions of

the 1.h.s. and the r.h.s. of (6.5).

The fact that (6.5) is an isomorphism at the level of compactifications (as

stratified spaces) can be observed by comparing the explicit description of these com-

pactifications that we have.

To justify our considerations, we need the following lemma:

Lemma 6.3. "The compactification divisor" AMH(A; qdr7(B)) - MH(A; qd71(B.))

has codimension at least two.

Remark. Since the Floer coboundary operator in CF*(M, 0) is identically zero,



there is no "codimension-one-boundary" (unlike in the case when the Hamiltonian H

is "generic").

Proof. The inequalities in the lemma 2.9 impliey that "the compactification divisor"

in M g•radHd,,d has codimension at least two. Then our Lemma 6.3. will follow from

the following transversality result:

Lemma 6.4. Da The map evo x evoo : UHE9GO,o MJgradHd,Dd -+ M x M is surjective

for any "degeneration pattern" Dd

A stronger statement about surjectivity of p-fold evaluation map (of which our

lemma 6.4 is a special case for p = 2) was proved in [McD S]. It follows from theorems

5.3.1, 5.4.1 and 6.1.1 of [McD S].

The Theorem 6.2. means that the matrix element of quantum multiplication can

be written as

< BImQ(C)IA > = dq X[MH(A; q dq(B)) nevoJ(6)] (6.6)
d

where the number in the r.h.s., as usual, is-understood as intersection index.

Remark. The r.h.s. of (6.6) can be thought as a definition of Floer multiplication

operation using the Floer cochain complex CF*(M, 0) (which by Lemma 4.14. has

identically zero coboundary operator).

This remark implies that in order to prove the Main Theorem, it is enough to

generalize the program implemented in the previous section as follows:

A) To construct the chain homotopies {hHo}(i = 1; 2 , Hio0 E H,,0) from {CF*(M, Hi)}

to CF*(M, 0) and to construct the chain homotopies {hH•o, } : CF*(M, 0) -+

CF*(M, Hi) (H0oi E 0o,H) going in the opposite direction.

B) To generalize to the case H = 0 the points B),C) and D) of the program,

accomplished in the previous section for H "generic". To do this, we need to prove

several lemmas:

Let {x, 4, ...} (i = 1; 2) be the bases (over ZH, (M)) in the Floer cochain com-



plexes {CF*(M, Hi)} corresponding to critical points of the Morse functionals Sw,H,

(here the hamiltonians {Hi} are taken to be "generic",

and let {A 1 , A2 , ...} be our fixed homogenous basis in the cohomology of M

(which is also a basis (over ZH2 (M)) in the Floer cochain complex CF*(M, 0) ) with

zero hamiltonian and with zero coboundary operator).

Then the matrix element < q d 2 AlhHio 1 qdlXi > of the desired chain homotopy

hH is by definition the number of zero-dimensional components of.M H•, (qd' xi; qd2 A)

taken with appropriate orientation. This number is non-zero only if deg(qd xi) =

deg(qd2 A). By our convention, the difference

deg(qd2A) - deg(qdlxi) is given by the spectral flow.

Lemma 6.5. For any two "generic" r-dependent Hamiltonians Ho) and H( ) from

GH1 ,O the manifolds of trajectories MH(o)(xi, A) and MH•()(xi, A) arecobordant
iO iO

to each other as stratified spaces with boundary. Also, for any two -r-dependent

Hamiltonians H( ) and H9 from Gox, the manifolds of trajectories MHo(o) (A, xi)

and M.H(•)(A, xi) are cobordant to each other as stratified spaces with boundary.
Oi

More precisely, there exists a path {H )} (0 < t < 1) in GHto,o joining H ° ) and

HI( ) such that Uo<t<i MH<t (xi, A) gives us the desired cobordism. (The same

statement is also true if we interchange the indices i and 0).

Proof. (We are going to prove existence only one of the two cobordisms. The other

one is constructed the same way).

A ~1,
Let us consider the space Map(xi, A) of all W1 P-Sobolev maps from R x S'

to M which tend (inCl-norm) to the map x, : S' -+ M asr -+-oo and to

the constant loops lying in the pseudo-cycle A as 7- -+ +oo Let us also consider the

infinite-dimensional Banach bundle W over

Map(xi, A) x J+(M, w, K) where K is sufficiently large. The fiber of the bundle

?i over the point (7; J) in Map(x, A2) x J+(M, w, K) will be the space of all

L!-integrable (0, 1)-forms on RxS1 U +oo = C* Uoo with the coefficients in y*(TM)

which exponentially tend to zero as T -+ -oo (this condition will be automatically

satisfied [APS]) and which are tangent to A as r -4 +oo. The last condition means



that if we consider an evaluation map ev. 7: (7) -+ TM(7y(oo)) then ev,(7y) should

lie in TA(7(oc)).

Let us consider the pull-back of this Banach bundle to

Map(xi, A) x J+(M, w, K) XgH,,0 and construct a (canonical) section I as follows:

D(7)= - J -- grad H(r, 9) d2 (6.7)

Here d2 is a canonical (0, 1)-form on R x S 1 = C*. The identification between

Rx S 1 and C* is given by the map (4.8).

The arguments of McDuff [McD] show that if the function H does not admit any

holomorphic symmetries with respect to parameters on R x S 1 U +00 then the -section

4I is regular over Map(xi, A) x J+(M,w,K) x {H}.

Since the space of the functions {H} with this property is open and dense in GHi,0

this means that the section 4 is regular over the dense open set in Map(xi, A) x

J+(M,w, K)xgH g,o. Since the zero-set of the section C, over Map(x, A2)x {J} x {H}

is our friend MH(Xi, A) then we can apply Lemmas 2.4 and 2.6 to prove existence

of the above cobordism.

Since Floer boundary operator 6 acts (in general) nontrivially on xi then the

manifolds {MH(t) (xi, A)} are the manifolds with boundary and the cobordism

Uo<t< Ma t)( xi, A) will have an extra boundary component Uo<t<l MH) (xi, A)

This extra component appear due to the presence of intermediate critical points

of Sw,H ,.

The lemma 2.6 implies that such a path {H(t)} (0 < t < 1) in 9Hi,0 joining H0(
0 )

and Hf) exists. The extension of the Lemma 6.2. implies that the corresponding

smooth cobordism(which has three boundary components) can be compactified as a

stratified space and "the compactification divisor" will have a codimension of at least

two inside this stratified space.

This fact together with a transversality argument of sections 6.3. and 6.5. of

the book [McD S] implies that the intersection of "the compactification divisor" with



(any of) three "boundary components" of the total space of our cobordism will have

codimension at least two in this "boundary component" (considered as a stratified

space).

The lemma 6.5. is proved.

Lemma 6.6. For any two "generic" --dependent Hamiltonians H( ) and H( ) from

gH,,O; for any two "generic" T--dependent Hamiltonians HMI and H( from g0,H, ; for

any cycle xi = ,k nkXi in CF.(M; Hi) ; for any pseudo-cycle A E CF*(M; 0)

and for any pseudo-cycle C E 12.(M) we have

M,•o) (qdx; qd' A) lev 1l() () = ) ;qd Ad ) f evdA -) (C) (6.8)

di d ' " d2x )  -

MH(o) (q'; qd2 xi) ev;)() = MHO() (q A; qd2 x') f ev(o;,) (0) (6.9)

Proof. (Again, we are going to prove only the formula (6.8). The proof of the other

formula (6.9) goes exactly the same way).

The lemma 6.5. provides us with a cobordism Mt between

MHi(o)(qd' x; qd2A) and M •()(qdlx; qd2 A). The fact that x is a cycle in the Floer
iO iO

complex CF*(M, Hi) means that the cobordism Mt does not have other boundary

components. (All the "extra boundary components" of cobordisms

{Uo0<t<l MH(t)(qdlxk; qd2 A)} for different k will cancel each other out in pairs after

we glue them together ).

Comment. The proof of "cancellation of codimension-one peaces" duplicates the

proof of Lemma 5.4.

The theorem 2.1 of [McD S] which claims that the map ev(o,1) from

MH(t)(qd Xk; qd2 AA) x J+(M, w, K) x GH,0 to M is surjective, allows us to apply

the Lemma 2.5. to the evaluation map ev(o;1) taken as "projection operator". By



applying this lemma we have that the cobordism M t intersects transversally with

ev-( 1) (C) and the corresponding intersection gives us smooth one-dimensional sub-

manifold (with boundary).

This submanifold does not intersect the "compactification divisor" M' - M't since

by the Lemma 6.3. the latter has codimension > 2 and we have in our hands the

freedom of putting everything "in general position".

Thus, MAt f ev, (C) gives us the desired compact one-dimensional cobordism be-

tween .MH(o) (q(x; qd ) ev() and MH(1) qd• ) f ev (C) The statement

of the lemma 6.6. follows.

The same cobordism and transversality arguments prove the following:

Lemma 6.7. If Co and C1 be two pseudo-cycles in M homologous to each other

(which implies that they are actually cobordant to each other in the category of

pseudo-manifolds); if x is a cycle in CF.(M; Hi) ; A is a cycle in CF*(M; 0);

and (ro, 0o) and (rl, 01) be any two points on the cylinder R x S1 then

MHi(o) (qd'x; qd2 A) fevol, 00 (o) = .Hi)(qdx; qdA) fev, ( 1) (6.10)
iO

.AH(o)(qdl A; qd2x) fevl, 9 o(CO) = M.H(1) (q A; qd'x) fev.-l,(3k) (6.11)

The proof of these formulas goes in three steps:

Step 1 is to change H while keeping (r, 9) and C fixed. This was Lemma 6.6.

Step 2 is to change C while keeping H and (-, 9) fixed. We have to construct a

pseudo-cycle Ct(0 < t < 1) which gives a cobordism between C0 and CI. Then we

have to consider the one-dimensional cobordism MH(qd IA; qd2 x) f ev (Ct)

between MH(qd A; qd2x) l ev~( 0 ) and MH(qdA; qd2x) ev C1 )

Step 3 is to change (r, 9) while keeping C and H fixed. We have to choose a path

(-t, Ot) in S 1 x R joining (r0, Oo) and (7i, 01) and then consider the one-dimensional



d d2 11- 2 1cobordism MH(qdA; qd2x) nev- (C) between MH (qd'A; qd2x) f evo,(C) and
M H(qd' A; qd2x) ev-0, 1 ()

Combining these three steps, we get our lemma.

If we put (ro, Oo) = (-2; 0) and (r 1, 01) = (2; 0) in the above lemma 6.7., we will

obtain the following

Lemma 6.8.

qdA H0 omH -()qd2 x

< qdlx20 >< qd xho~a 0 mo )I d2 >

< M o hH,0 qd2x >

= < qdxlnmH i() o ho,Hi . qd2A >

i.e., the above-constructed chain homotopies intertwine the Floer multiplication

operation.

Remark. We will reformulate the statement that "chain homotopies intertwine the

Floer multiplication" at the end of this section (formulas (6.37) - (6.42)).

Now, the proof of our Main Theorem 6.1. essentially reduces to the following

Theorem 6.9.

For any pair of Hamiltonians H1 and H 2 considered as functions on

we have

hH1,Oo 0 ho,H = IdcF*(M,o)

and functoriality property

hH1 ,H2 = ho,H2 0 hH (1,o

and

(6.12)

(6.13)

S' x A!

(6.14)

(6.15)



Proof of (6.14).

Lemma 6.10. If we choose "the -dependent Hamiltonian" H E g0o,o to be indepen-

dent of the loop variable 0 then

x(M H(A; r(Aj)))= Ai •lr(Aj)) (6.16)

Proof of the lemma. (6.16) is a statement of the finite-dimensional Morse-Bott

theory on M, which proves the lemma.

Lemma 6.11. For any two pseudo-cycles Ai and Aj of the same dimension, the

number x(MH(Ai; r(Aj))) is independent of "the -dependent Hamiltonian" H E o0,0

The proof uses exactly the same transversality and cobordism argument as the

proof of lemma 6.4. Namely, there exists a one-dimensional cobordism

Uo<t<1 MH(t) (A; (Aj)) between MH(o)(Ai; r(Aj)) and MH(1)(Ai; 7(Aj)) . This

cobordism has no "extra boundary components" because the Floer chain complex

CF* (M, 0) has zero boundary operator. The existence of this cobordism proves the

lemma.

Following the strategy of the previous section, let us glue two half-cylinders

S 1 x (-oc; T] and S 1 x [-T; +oo) along their boundaries, namely, we glue the

circle r = T on the first half-cylinder with the circle r = -T on the second half-

cylinder. Since we have a "i--dependent Hamiltonian" H 10 on the first half-cylinder

and a "i-dependent Hamiltonian" Ho01 on the second half-cylinder such that

H1o(r; 9)=0 if r < -1 Hio(r;0)=Hl(0) if r> +1

Hol(r;O9) = H(O) if r<-1 Hol(r;O)=O0 if 7r>+1

then we can glue them together to obtain a new r-dependent Hamiltonian HoTo which



is defined as

Hoo(-r; O) = Hio(T+T;9) if r <O 0

HT('; 0) = Ho (r - T; 0) if r > 0

If {AI, A2 , ...} be our (once-chosen) basis of pseudo-cycles in M, then the lemmas

6.10 ana 6.11 imply

< AjIhHoAi > = 6i3 (6.17)

Since (6.17) obviously holds if dimensions of pseudo-cycles Ai and 4j are different,

and

< AjlhHT A > = x(MHo(Ai; 77(Aj)))= Ji3  (6.18)

for any finite value of the gluing parameter T (here x means the Euler characteristics

of the zero-dimensional oriented manifold) then (6.14) reduces to:

X (MHo 2(Ai; (Aj))) = x(MH (A ; rq(A ))) (6.19)

here MHc (Ai; r7(Aj)) is, by definition, a moduli space which parametrizes pairs of

gradient flow trajectories in Uy MHlo(Ai; y) x MHo (y; ,q(Aj)) with a uniform bound

on total energy. A priory, the set of "intermediate points" y may be arbitrary points

in £LM, but L2-boundedness condition ensures that y runs only through critical points

of S,,H. -

Now, we are going to to prove (6.19) (more precisely, we will prove the stronger

result which will imply it), namely,

Gluing Theorem 6.12. MHao (Ai; 7(Aj)) is diffeomorphic to MHOT (Ai; iq(Aj)) for

T finite but sufficiently large.

Remark. For the application to the proof of (6.14) we can assume that both spaces



are zero-dimensional. But we will not make this assumption here since later we will

need the general case of this gluing theorem.

Proof of the Gluing Theorem.

The proof uses several facts from Morse theory on Banach manifolds:

Let B be a Banach manifold, H0 be a Morse or Morse-Bott function on B, H1 be

a Morse function on B, H be a function on B x R which interpolates between the

two:

H(y,T) = Ho(7y) if r < -1 (6.20)

H(, r) = HI(-) if•r > 1 (6.21)

here y is a point on B , -r is the parameter on R.

For any critical point x of H0 and y of H1 we will consider submanifolds U(x) and

S(x) of gradient flow trajectories of H, going "from" x and "to" x respectively, and

submanifolds U(y) and S(y) of "unstable" (resp. "stable" gradient flow trajectories

of HI, going from (resp. to) y. Let MH(X, y) be the moduli space of gradient flow

trajectories of H flowing from x to y. We assume that we are in Floer-type situation,

i.e., the relative indices of critical points are well-defined and all the moduli spaces

MH(X, y) are finite-dimensional. We also assume that the total number of critcal

points (resp. submanifolds) is finite.

Theorem (Smale [Sm]). The intersection of U(x) with the neighborhood of y is

locally isomorphic to U(y) x MH(x, y).

The above-formulated theorem of Smale has its "dual" version which can be obtain

from the original one by "time-reversal."

More presisely, let H0 and H1 are as above, x is the the critical point of H0 ,

y is the the critical point of H1, H is a real-valued function on B x R such that



H(y, ) =- HI(-y) if r < -1

H(-',r) = Ho('y) if r > 1 (6.23)

and the manifolds U(x) and S(x) gradient flow trajectories of H1, flowing from

(resp. to) x. A "dual" version of the Smale's Theorem will be

Proposition. The intersection of S(x) with the neighborhood of y is locally

isomorphic to S(y) x MH (y,x).

Besides these Smale's result which we will not priove here, we will state another

result due to Austin and Braam [AuBr] and Taubes [Ta2] and include a proof for

completeness.

For any critical point y of a Morse function H1 on B there exists its neighborhood

which product of a ball of radius E in U(y) times a a ball of radius E in S(y). Let us

denote S, and S, the spheres of radius e bounding these balls. and let p E S,, q e Su

Theorem ([AuBr],[Ta]). For E sufficiently small, p E S, q e Su and real numbers

T1 < r < T2 there is a unique solution 'y(r) of

=d gradH(,y(r), •r) (6.24)

such that

7rS(y(T1)) = P 7ru(7(T2)) = q JIIx(r) <_ 2E

The solution depends smoothly on the parameters p,q, T1 and T2 and will be

denoted x(r, p, q, TI1, T2 )

Here 7r' and ir are projection operators onto "stable" (resp. "unstable") part of our

neighborhood.

The proof (in this special case) is rather easy. We can express

(6.22)



Y7(r) = 0(7, Ti)p + 0(7, T2)q (6.25)

where ¢(T, T1 ) is operator of the gradient flow from time T1 to time r and ¢(r, T2 ) is

an operator of the gradient flow from the time T2 to the time r7 (backwards).

Any solution of the ODE (6.24) can be expressed in the form (6.25) since this

ODE in the neighborhood of y splits as a product of ODE in B, and an ODE in B"

and the operators 0(7, T1) and 0(7, T2 ) are contracting. This implies existence and

uniqueness of solution of (6.24).

Now we will proceed with the proof of the gluing theorem (6.12) as follows: we will

construct a map 'T from MHg (Ai; 1(Aj)) to MHT (A; ij(Aj) which will be proved
00

to be a diffeomorphism for T sufficiently large.

Let E Ma•o (Ai; i(Aj) which means that there exist:

A) a critical point y of the "perturbed symplectic action functional" Sw,H, on LM,

B) functions Ho01 and Ho10 on M x S' x R (r-dependent Hamiltonials) which "connect"

0 and H, respectively. More presisely,

Hio(r; 9) = 0 if r < -1 Hio(r; 9) = H1 (0) if r > +1

HoI(r;09)=H(0) if r<-1 Ho(G;0)=O0 if 'r>+1

C) a pair (0_ E MHol (Ai; y) ; + E MHo(y; r(Aj))

Comment. MHg (Ai; (Aj) = Uy MHo, (Ai; y) x MH.o(y; 7(Aj)) where the union is

taken over all critical points {y} of S,,Hl on £M such that the virtual dimensions of

both MHo (Ai; y) and MH1 o(y; 7(Aj)) are non-negative.

By the theorem of Smale for E sufficiently small for any p E S. fl MH(x, y), q e S'

there exist a unique solution to the ODE _ = gradH(q(r), r) such that y(TI) =d1"

p + q/2 for T1 large enough (and specified by e).

By the dual version of the theorem of Smale, for c sufficiently small for any p E S',



q e S, MH(Y, x i ) there exist a unique solution to the ODE 4 = gradH(y7(r), r)d~r

such that -y(-T 2) = p/2 + q for T2 large enough (and specified by E).

By the theorem of Austin-Braam and Taubes, there exists a unique solution y(T) to

the gradient flow equation (6.24) uch that 7r(y(Ti -T)) = q/2 and 7r,(7(T2 -T) = p/2

On the other hand, by our choice of T1 and T2, 7rs(y(T 1 - T)) = p and

7ru (7y (T2 - T) = q

This implies that by "gluing" the solution from three pieces: the solution of (6.24)

in the interval r < (T1 - T) , the solution of (6.24) in the interval

(T1 - T) < T < (T2 - T), and the solution of (6.24) in the interval 7 > (T2 - T) we

obtain a smooth solution to (6.24) which is uniquely specified by the pair (p, q) and

hence, uniquely specified by a pair (u, v) E M Hm (X, X) This completes the proof of

the Gluing Theorem 6.12., and also proves the gluing lemma 5.9 from the previous

section and proves (6.14).

Proof of (6.15). The Theorem 5.5. implies that for any pair of cycles x = Ek nkXk

in CF. (M; Hi) and y = E, mjyj in CF*(M; H2) the number

< qd2y hHqd'x > = X(= MH (qdlx;qd2y))

is independent of the choice of H e gH1,H2

Following the pattern of the proof of.(6.14), we can glue two half-cylinders

S1 x (-oo; T] and S1 x [-T; +oo) along their boundaries. Since we have a "r-

dependent Hamiltonian" Ho01 on the first half-cylinder and a "r-dependent Hamilto-

nian" H20 on the second half-cylinder such that

Hio(r; 9) = H1 (9) if 7 < --1 H 1io(r; 0) = 0 if r> +1

Ho2 (r; 9) = 0 if 7r < -1 Ho2 (r; 0) =H 2 () if r > +1



then we can glue them together to obtain a new r-dependent Hamiltonian H T

which is defined as

HT (r; 0) = Hio(r + T; 9) if r < 0O

HT (T; 0) = Ho2 (T - T; 0) if 7 > 0

If we choose a one-parameter family {H T } of r-dependent Hamiltonians defined

above and then take the limit T --+ +oo (in the sence specified below) then we claim

Theorem 6.13.

< q d2 y hH1 2 l qd1X > = <qd2ylHo202 r(Ai) >< AIhHo qdlx > (6.26)
i

which is equivalent to (6.15) and implies the Main Theorem.

Before proving (6.26) let us introduce some notation:

Let Mcyl,Hjo(qdlxk) be a moduli space of JHol d2-holomorphic maps from

S1 x RU+oo = CP 1 - {0} to M which tend to Xk as r -+ -oo, and let

Mcyl,Hlo(q d' k ( nkMcyl,Ho(q dXk)

Let McYt,HO2 (qd2 y1) be a moduli space of JHo2df-holomorphic maps from

S1 x RU-ao = C to M which tend to qd2 y as r - +oo, and let

Mcyl,Ho2(qd2y) = U, m1 4Mcy,Ho(qd2y1 )

Let us define evaluation maps

evoo ,: Mcy1 ,Ho(qd x) -+ M and evo: MIYI,Ho2(qd2y) + M

by evaluation at z = o0 and z = 0 respectively, and the product map

ev = evoo x evo : Mcy1 ,Ho(qd x) x MCY,,o 2 (qdly) _+ M x M

Then let us define



MHO W(qdX qd 2 y) = ev'(Mdiag) C Mcyl,Ho(qdx) X Mcyl,Ho 2 (q 2y)

Lemma 6.14.

x(.M 1(qdx,qd
2 y)) = < q 2 yhHo0 2j7(Ai) >< Ajhuo qd' x > (6.27)

Proof. Take D C M x M x [0; 1] to be a pseudo-manifold with boundary, such

that the boundary OD consists of two components: Mdiag = D n[M x {0}] and

Uj Ai x i(A,) = Df[M x {1}].

Then ev-'(D) C M 1cyt,Ho(qd X) X MCY,HO2 (qd2y) X [0; 1] gives us one-dimensional

cobordism between MH= (q x, d2y) and Ui MH1 o (qdx, Ai) x MHo2(7?(Ai), qd2y).

Since both x and y are cycles in the relevant Floer complexes, the above-constructed

cobordism "does not have extra boundary components" which implies the equality

of Euler characteristics of its 1.h.s. and r.h.s., which is exactly (6.27). The lemma is

proved.

The lemma 6.14 reduces the statement of the Theorem 6.12 (and the statement

of our Main Theorem 6.1) to the following statement:

X(M HO (q d'x, qd2 y)) = X(1HT(qdlx, qd2y)) (6.28)

for sufficiently large (but finite) T.

To prove (6.28), we use a deep analytic result of McDuff and Salamon:

Let MHO,K (qd x, qd2 y) be open subset in MHo (qd x,qd2 y) consisting of pairs of

maps u, v with the Co-bound Idul < K, Idv < K on the first derivative.



Theorem A.5.2 of [McD S].

For arbitrary large K the space MHo,Ko(qdl, qd2y) is orientation-preserving-12 1

diffeomorphic to the open set in the space •HT (qd x, qd2 y) for sufficiently large (but

finite) T. In the case when these spaces are zero-dimensional, the spaces themselves

(and not just their open subsets) are orientation-preserving-diffeomorphic.

The diffeomorphism between the two open subsets was explicitely constructed in

[McD S], Appendix A.

This theorem of [McD S] implies equality of Euler characteristics, the formula

(6.28) and the formula (6.15).

For convenience of the reader, we reproduce a proof of the

Theorem A.5.2 of [McD S].

The proof of these formulas goes in three steps:

Step 1 - to construct a gluing map gT which sends each pair

u E Ma, 0o(77(Ai);qd' x) and v E MHo2 (Ai);qd2y) "an approximate H/o-gradient flow

trajectory" WT which is union of the piece of u when r < T , the piece of v when

7 > -T and some extra piece (which "smooths" the ends).

Step 2 - to prove the elliptic estimates for these "approximate Hoo-gradient flow

trajectories" to be able to apply an implicit function theorem in Banach spaces in

the following form:

Let B be a Banach manifold, E -+ B be a Banach vector bundle over B,

4 be a regular Fredholm section of E, M be a zero-set of 4 (the moduli space in

question), D : T(B) -+ E be a differential of the section 1. We assume that the

operator field D has a right inverse Q which has a norm uniformly bounded by a

constant c. Then there exists a small number e such that the preimage under D of

the radius-E-ball-bundle D, in the total space of E will lie in M x Bc, where Bc, is

a ball in the normal bundle in B to M of radius cE. Moreover, there exists a unique

well-defined projection 7r from P-'(D,) to M

Step 3. By taking the composition of 7r and gT above to obtain a desired map

from MfAHoo to MfHTr.



Step 4. Prove that this map is a local diffeomorphism.

Step 5. Prove that this map is an actual diffeomorphism provided that MHoo and

MHT are zero-dimensional.

To make our notation consistent with notation of [McD S], let us make a change

of variables z = exp(-r + iO) and put R = exp(T). Using this notation, given any pair

(u, v) E M •g (qd x, qd2 y) C Mcyl,Ho (qdlx) X cylo2 d2

(considered as a pair of maps: v from CP' - {o} to M and u from C to M such that

u(0) = v(oo)), the step 1 is to construct "approximate solution" WR = URV : C* -+ M

to the gradient flow equation which satisfies

i 2R'{ (R2z), ±iIz
WR(z) = u(0) = v(oo), if ' < IzI < 1

U(z), if IzI > .
J R

To define the map wR on the rest of the annulus -L < Iz< -- we fix a cutoff2R 6R

function p : C -+ [0; 1] such that

p(z) = 1, if IzI > 2

0. if IzI < 1

Let us use the exponential map in the neighborhood of the intersection point

p = u(0) = v(oo). Let (u(z) E Tp,(M) for IzI < e and ý,(z) E Tp(M) for Izi > be

the vector fields such that u(z) = expp((u(z)) and v(z) = expp(&v(z)). Define

WR(z) = expp(p(JRz)(&(z) + p(6R/z)ýv(R 2 z))

for < IzI < -L. This is well-defined if R > 2/6e and consistent with the
2R 6R

above expressions for < • z _ I - . Moreover, the number e > 0 depends on

LI-bound on du and dv. The map wR is not JgradHdi-holomorphic. However, WR

weakly converges to the pair (u, v) and, by the lemma A.3.2 of [McD S], it converges

also in Wt,P-norm.



Moreover, W",P-convergence implies that for any p > 2 and K > 0 there exist

constants Ro > 0 and and c > 0 such that

IJJdwRIIo,p,R _ c (6.29)

for R > Ro and (u, v) E .MH,K (qd x, qd2 y)

Here II- I0,p,R means the L/-norm on C weighted with the function (OR(z)) -Y 2 where

OR(Z) R-2 + R•2 •ZI2, if IzI < 1/R
Oa(z) =(R2+R1+ z1l2, if I•l > 1/R

The purpose of introducing this norm is to make the formulas symmetric w.r.t.

change of u and v.

For our future convenience let us introduce maps

={RZ wR(z), if IzI 1/R z wR(z/R 2), if IzI 5 R

Su(0), if Izi 1/R v(oo), if IzI _ R

The estimate (6.29), proved in [McD S], plays an important role in applying

implicit function theorem, as discussed above (for the gluing theorem in the case

of "generic" HI1 ) and will be discurred below ( for the gluing theorem for Hi = 0).

The second ingredient necessary to apply an implicit function theorem, which

we use to obtain a true (and not approximate) gradient flow trajectory, is to prove

existence of a uniform bound on the rigrt inverse of the 8-type operator DW, (we

will denote this right inverse by QWR). Using the estimate (6.31) below, [McD S]

Constructed a linear operator QR : WI wR -+ W',P(w*(TM)) which satisfies the bound

IJDw, R0 QR - 111 < 1/2 (6.30)

Unlike (6.29), this is a hard part of [McD S] proof. To obtain this uniform bound,

they use several steps:

As an auxiliary tool, a special cut-off function f#(z) : C -+ R, which is identically



equal to 1 if jzj 5 6 and is given by the formula f(z) = ,2z if 0 < J < 1logb I

The cut-off functions 3 (dependent on the real parameter 6 introduced above)

have two properties crucial to prove the desired bound for QWR:

1) If 6 -+ 0 then the sequence of O's tends to zero in W",2-norm but not in

L*-norm.

2) If we put 3A(z) = 3(Az) then

IIV1 "3 -OLP <_ e6Owl.,P (6.31)

where e and 6 are related as 6 = exp(-27r/E)

The formula (6.31) is a lemma A.1.2 in [McD S] and was carefully proven on p.167

of that book.

Now we will reproduce the proof of (6.30) and will derive the Gluing Theorem

from (6.29) and (6.30).

Following notation of [McD S], let us define the Banach spaces

Wl = {(6u,7) E WI',P(u*(TM) x Wl'P(v*(TM)ju(0) = v(oo)}

and

LP = LP(Ao,'T*CPl @9 u*(TM)

And analogously, for LP.

In our previous notations, W P = T(Map(x, y))I(,,,,v), LP = W1 L, L =WI.

To prove (6.30), we are going to prove that the 0-operator

D,, : W' P -+ LP4 x LP has a uniformly bounded right inverse

QU,V : 14 x LP -+ Wf such that I|Qu,,vI < co and the constant co depend only on

Lm-boumd K on u and v and does not depend on the particular choice of u and v

satisfying these bounds. Since the space MHfK (x, y) is compact (if the map lies in

the "compactification divisor", its derivative "blows up" at some point), it is sufficient

to prove the estimate I IQu,v1 _5 co and the estimate (6.30) locally in the neighborhood



of (u, v) in MfHi K (x, y). If we do this, we will obtain a uniform bound on the norm

of Qw,, = QR(DWR o QR) - 1

Following [Sa2] and [McD S], let us reproduce the proof of the uniform bound

on |IIQu,v,. Since the space MHH.K (xy) is compact, it is sufficient to prove that

|Qu,,,1 < co locally in the neighborhood of the point (u, v) E IIQu,V 1. By assumption

of regularity of almost-complex structure J, the operator Du,, is onto.

First, let us consider the case when the index of Du,, is zero. Then the oper-

ator Du,, is invertible and by inverse function theorem its inverse Q,,, is bounded.

Moreover, the operators {Du,.} depend continuously on (u, v) in the norm topology.

To be precise, the domains and ranges of operators Du,, and Du,,,1 for the nearby

pairs (u, v) and (u,, vi) are different. To make the notion of contonuous dependence

precise, we have to identify Wi ', and W '; P
1 as well as Lx 4L and L/ x LP by the

operator 9D = exp(u,,,)(D,,, () of parallel transport along the geodesics - -+ -r which

joins (u, v) and (ul, vi) (here ( is a vector field on (u, v) whose exponential exp(U,,v)()

gives (ul, vi) ) .

Since the map (u, v) -+ Du,, is continuous, and the map D,,, --+ QU,, is also

continuous (since the operators {Du,,} for all {(u,v)} are invertible, then the map

(u, v) -+ Q,,, is also continuous, which proves the existence of the required bound in

the index-zero case.

To handle the case of positive index, let us first consider the case when Ind(Du,,) =

2nl, i.e., index is divisible by 2n. Then let us fix 1 points zl,... , zz on u and cut down

subspace Wul(zi,... , z) in W l P by imposing 1 conditions ((zi) = ... = (z) =

0 where ( E W i 'f. Then the rerstriction of the operator Du,, on the subspace

Wf(zi,...7,zt) has index zero and we can repeat the above arguments for the index-

zero case to prove the uniform bound on the norm of Quv.

So, we are left with the case when the index of D,,, = 2nl + k where 0 < k < 2n.

Then, let us fix one more point z0 e u and consider the evaluation map ev = evzo x

evz, x ... ev, : MHK(qd x, (qd2 y) _ M1+1. Since we have chosen our almost-

complex structure J to be "regular", and dim(MHK d'X, (qd2 y)) = 2nl + k, the



ve can choose the points zo, zi, ... , z 2 to be "generic" such that the "evaluation map"

evzo x evzl x ... evz1 is injective. Let N be a subbundle of T(Mn+l) ev(MH. )((qdl x,(qd 2y))

of dimension 2n - k, normal to the tangent bundle to ev(MH ((qdlx, (qd 2 y))

Then let us cut down the subspace W,P(N) in Wl,P of codimension 2nl + k by

imposing conditions (C(Zo), (Zl), ...,~(zj)) E N. Then the restriction of D,,, on the

subspace WIP(N) has index zero and we can repeat the above arguments for the

index-zero case to prove the uniform bound on the norm of Q,,v. This proves the

required uniform bound in the remaining case.

We will construct the desired operator QRa as follows: outside the annulus

1/R < Izj _ R we put QR = Q,,. Inside the annulus 1/R < jzj !5 R we will define

Q a in terms of cut-off function 0.

More precisely, let us define QR by means of a commutative diagram

LPWR 4 WWR
QR 1'P

wi, V
WR : WR,

It is convenient to modify the diagram slightly and replace u and v by the

cylindrical-end-curves UR and VR defined above. Then uR converges to u in

W 1,P-norm and similiarly for yR. Hence the operators DuR,VR still have uniformly

bounded right inverses QUR,VR

The following commutative diagram should give a better explanation of definition

of QR.

The left vertical map is given by cut-off n E L'R along the circle Izi = 1/R:



) J R(z), if Jz Ž 1/R, R - 2 RR(R- 2z), if lzi • 1/R,
o0 if Jzl 1/R ,07 if lz > 1/R

(The discontinuities in r7 and 7, do not cause problems because only their LI-norms

enter the estimates).

The lower horizontal map is given as (u, &,) = QUR,VR (r7u, I?)

In particular,

(0) = ,(oo) = ( o e T,(M)

The right vertical map is given in terms of cut-off function / as follows:

G,(z), if IzI 6R,

Cu(z) + (1 - 0(1/Rz))(Cv(R 2z) - Co), if _ < IZI •
C(z) = I

C( (R z) + (1 - f3(Rz))(•u(z) - CO), if L < Ijz < 1

C (R2 z) , if z < 6 < R

So, we defined C = QR(r1). Now let us make a few remarks to clarify this definition.

Remark 1. In the annulus 6/R < jz 5 1/R the maps UR, VR, WR take the constant

value p and the vector C(z) E TP(M) is simply sum of the vectors

((1 - 3(Rz))((C,(z) - ýo) and (1 - 3(1/Rz))(,,(R 2z) - Co).

Remark 2. In the first term of the sum in the previous remark, the cutoff function

1 - 3(Rz) is non-zero only in the region Izi 5 1/R where , = DuRu 0. Similiarly,

for the second term of the above sum, the cut-off function

1 - 3(1/Rz) is non-zero only in the region Izi _ 1/R where , = DvR,", -= 0

Remark 3. The formula for C is invariant with respect to the symmetry

u(z) -+ v(1/z), v(z) - u(1/z), wR(z) -+ wR(1/R 2z), &s(z) -+ Cv(1/z),

(G(z) -+ Ws(1/z), V(z) -+ W(1/z)

Proof of (6.30). We have to prove that



1
IIDwR - I1 o,p,R 5 1 11•0•o,p,R (6.32)2

Using the fact that D,,,R(z) = r7(z) outside tha annulus 1 < zzj -, and using

the symmetry of the remark 3, it is sufficient to make the estimate of the 1.h.s. of

(6.32) only in the annulus

6 1- < Iz <RR- -R

In this region, UR = vR = wR is a constant map. Therefore, over this annulus

DUR = DR = DWR = 0. Furthermore, in the fact that Izj 1/R implies that

DwRv(R 2z) = q(z). Hence, with the notation R(z) = O(Rz),

DwR( - 7 = D, ((1 - 3R)(Cu - Co)) = (1 - 3R)DuR (Cu - ~o) + O3R ® (u - 'o) =

= (OR - 1)DUR(~o) + O0/3R ® (G - 'o) (6.33)

Here we have used the crucial fact that DuRu = 0 in the region IzI < 1/R. Now

he have to estimate the norm of the 1-form DwR, - 7 w.r.t. R-dependent metric. The

next crucial point is to observe that the weighting function for 1-forms is OR(z) p - 2 .

Since p > 2 and OR(z) < O9(z) < 2 in the region Izi 5 1/R, it follows that (O,p, R)-

norm of our 1-form is smaller that twice the ordinary LP-norm. Hence we obtain the

inequality

DIDwR - 71II0,p,Bl/R •5 211DWRC - 71IILP(Bl/R) <

The first term in last inequality in (6.34) follows from the fact that the term D34)

The first term in last inequality in (6.34) follows from the fact that the term DURCo



can be pointwise estimated by I~0o (since I0ol is a constant vector) and LI-norm is

taken over an area at most r/R 2 . The second term in the last inequality in (6.34)

follows from the fact that we can choose f0 such that (6.31) holds.

By choosing E and 1/R to be as small as we want, we can make (6.34) less than

arbitrary small constant (in particular, 1/2), which proves the required estimate.

Now let us summarize which estimates were proved so far and how to derive the

Gluing Theorem A.5.2. of [McD S] from these estimates.

We constructed an embedding gR M HO (X, y) -+ Map(x, y),

(u, v) -+ WR, R = exp(T) ( "approximate J-holomorphic curve") such that the image

MHf (x, y) of gR satisfies the following properties:

1) O(WR) < cR-2/p if R > R6 . The constants c and R6 depend only on the pointwise

bound K on du and dv. This property was stated as Lemma A.4.3 of [McD S] and

proved there.

2) The operator DW,,,R = &(WR) has a right inverse QR,, = QR(D,,,R o QR)-1 with

the norm bounded by 211 QRI < 2c, (since the above-constructed operator QR is

uniformly (in the image of gR) bounded by the constant cl and (6.30) implies that

II(DWR o QR)- 1 I <• 2

Having the properties 1) and 2) of the map gR we can apply implicit function

theorem to the Banach bundle map D : T(Map(x, y)) -+ Wi we obtain that for R

sufficiently large image of gR lies inside the disc bundle MH• x B 2 C1 CR-2/p (which isd1 2

an open neighborhood of MHH~(qd x, qd2y) in (Map(q x, qd 2y))). Thus, by taking
d1

the projection ir from MHT • B2c1CR-2/p to MHT (q x, q y) we obtain a desired map

7r 0 g9R from M. •(q dx, qd2 y) to M~T(q dx, qd2 y). TO prove that this map is locally

an injection and has degree one

(from which it will follow that it is a local orientation-preserving diffeomorphism

since the dimensions are the same) we need another result of [McD S]

Lemma 3.3.4 of [McD S].

The map r is given by a limit of a Newton-type iteration 6 -- (- Qwf(ý) where



the map F: W'P(w*(TM)) -+ /LP(AoI(C*) 0j w*(TM)) is defined by

F(() = ¢d(OJ(expR(())) (6.35)

where

( expwR(t) -+ WR

denotes the parallel transport along the geodesic r -4+ expwR (rC). The proof

of convergence of Newton-type iteration follows from implicit function theorem in

Banach spaces.

To prove injectivity of the limit of the above Newton-type iteration, we need

Proposition 3.3.5 of [McD S]. Let p > 2 and 1/p + 1/q = 1. For every constant

co > 0 there exists a constant 6 > 0 such that the following holds.

Let WR : E - M be a W",P-map and QR,, be a right inverse of DwR such that

jQwI ,j co, IWRIILP •5 co with respect to the metric on E such that

Vol(E) _ co. If vo = expWR (Co) and v, = expwR (l) are J-holomorphic curves such

that o, 1 E W1,'P(w*(TM)) satisfy Co IIwi,p 6 ,11o0w, < co,

and 1161- COIIL- < 6, 1- o E ImQWR

Then vo = vl.

Proof [McD S]: Choose = DwD E LP(AO°T*E ®j wRTM) so that

C = 6 - CO= QWR'?

and note that DRC = ?I. Let C -4 F() be the map defined by (6.35).

Then F(ýo) = Y(C1) = 0.

Since by Taylor formula the function Y satisfies a quadratic estimate

II F(, + C) - Y(C) - dF(C)CIILP, < c1j1111,~I•ll|w1., (6.36)

we can obtain



l•IlwP = IIQwnrTlIwl,p < COllIIllP = coIIDDwRýILP = coIldF((O)ILp =

= colIF(Ci) - '(Co) - dY(0)ý ILp <

< co I1I• + C) - '() - dF(~o)oIL, + coIlI(dYF(Co) - dF(0))CIILp _

<cocI ICC1IIICI IW1.P + C26I ICIW1,p !C3A II IW1,p

To get the second inequality, we are using (6.35) to estimate the first term, and the

estimate on the norm of Co to estimate the second term. To get the last inequality

we are using the estimate on IL• Il-norm of C.

Here the constant C3 depends only on the uniform bounds on dwR and QWR. By

choosing J such that c 36 < 1 we will come to contradiction to the assumption that

:A 0. This proves the proposition 3.5. of [McD S] and proves that the kernel of DWR

gives a good local coordinate on the region of MHT (qdl X, qd2 y).

This finishes the proof of the first part of the Gluing Theorem of [McD S] (local

orientation-preserving diffeomorphism).

To prove (6.28) in the case MH (qd ix, qd2y) and MH1 (qd x, qd2y) are zero-dimensional,

we need to prove that the above-constructed map fT = r o gT is an actual orientation-

preserving diffeomorphism.

Moreover, we need to prove that if the spaces MH (q dx, qd2y) and MH~ (q dx, qd2 y)

are of positive dimension k but their subspaces (we will denote them MHTr and MHO)

are cut down from MHT(qd x, qd2 y) and MHmd(q x, qd2y) by the maps

evzl (Ci) x - x evz, (C) where total codimension of the pseudo-cycles {IC1, .} is k

then the zero-dimensional oriented manifolds MHT and M HO are diffeomorphic.

These two cases can be considered at once, since the above reproduced proof of

the Gluing Theorem A.5.2 of [McD S] is "local" and depends only on the data in the

"annulus" 6 < Jz R < .



Since both manifilds MHT and MHOO are compact (and finite) by transversality

argument, the part of Gluing theorem A.5.2 of [McD S] that we proved already,

implies, that for each point (u, v) E Mfoo there exists a unique point fT(u, v) in

M Hr . We have to prove that for T large enough every point in MTr has to be of

the form fT(u, v) for some (u, v) E MHOO .

The proof of the proposition 3.3.5 of [McD S], reproduced here, implies that for

any point (u, v) E MHoo (all these points are isolated and there is finite number

of them) there exists only one element in MHT in sufficiently small e-neighborhood

of (u, v) in Co-norm for sufficiently small e (this element is precisely fT(u, v) and is

obtained from (u, v) by above-constructed Newton-type iteration.

To prove the desired diffeomorphism, we have to prove that there are no elements

in MHT outside this e-neighborhood of (u, v) in Co-norm for T sufficiently large.

Let us assume the opposite and then come to the contradiction.

Let us choose K large enough such that all members of MfHO have energy less

than K/2.

Suppose there exists a sequence {Tm -+ oo} and a sequence {WT,. E MHTm, K}

(m --+ o) such that every member of this sequence lies outside e-neighborhood of

MHoo,K in C0-norm for E sufficiently small. Since the energy of the maps {WT, }
is uniformly bounded by K then, by a version of Gromov compactness theorem,

which we are not proving here (see [HS] or [RT1] for the proof in the setting we

are using) there exists a subsequence {T1, -+ oo} such that the subsequence {WT, E

MHTJr,K} (v --+ o) is weakly convergent. The weak limit of this subsequence might

be either a "trajectory with bubbled-off J-holomorphic sphere" (which is excluded by

"codimension-two versus dimension-one argument") or a "splitted trajectory" (or an

element in MHIO,K).

In section 6 of [RT1] one can find a proof that weak convergence in the sence

of Gromov implies convergence in the norms used here for the gluing theorem. The

diffeomorphism follows from this.

This finishes the proof of the Gluing Theorem of [McD S].



Now let us sumarize what we have proved already and what is left to prove the

Main Theorem 6.1.

We proved that for any pair of "generic" hamiltonians {HJ} : S1 x M - R and

for any integer m there exist isomorphisms

hmH : HFm (M, 0) -+ HFm (M, Hi)

H,, HF m (M, H2) -4 HFm (M, 0)

hH2 : HFm (M, H1) -+ HFm (M, H 2 )

such that

hm,H 2 =H hm h ,o : HFm (M, H1) -+ HFm (M, H2)

IdHFm(M,O) = h 2 ,0 o hi : HFm (M, 0) -+ HFm (M, 0)

We also proved that for any cohomology class C E Hk(M) the Floer multiplication

operators

mH(C) : HFm (M, H) -+ HFm+k(M, H)

mQ(C) = m°(C) : HFm(M, 0) - HFm+k(M, 0)

are defined such that the following diagrams are commutative:

HFm (M, 0)

HF m (M, H)

mq4 c)

m c)

HFm+k(M, 0)

Shm+ k(

HFm+k (M, H)

(6.37)



HFm (M,H) m~c) HFm+k(M,H)

h h• + k  (6.38)

HFm (M, 0) mQc) HFm+k(M, 0)

(The commutative diagrams (6.37); (6.38) are the same as the formulas (6.13); (6.12)

respectively).

Also, we have established an isomorphism between

HFm (M, 0) and a piece in H*(M) 0 A, homogenous of degree m. If it will not lead

to a confusion, we will denote HFm (M, 0) by H m (M, A,)

What we have to prove is

mq(C) = h'k 0 mH(C) o h (6.39)

MF (C) =hOk o mQ(C) oh (6.40)

i.e., that the following two diagrams are commutative

H m (M,AW) m. •c) Hm+k(M, A,,)
4..h " H th,+k (6.41)

O,H HO

HFm (M, H) mc) HFm+k(M, H)

MH)
HFm (M,H) F7C) HFm+k(M, H)

hm om k (6.42)H,O Ohm~

H m (M,A,.) m9 .c) Hm+k(M,A,)

In order to prove equality of operators, we have to prove equality of their matrix

elements in the bases chosen. To prove (6.39) let us do the following manipulations

(using (6.13) and the Gluing theorems):

< BImQ(C)IA >=< BImq(C) o hHo o hOHIA >=



= < BImQ(C) o hHoIx >< x hOHIA >=
x

= < BjhHo o mQ(C)Ix >< xlh 0iHA >=

by the Morse-theory-Gluing theorem 6.12 for generic H

= <BjhHoY >< yImH(C)Ix >< xhoHIA>

Which gives the r.h.s. of (6.39).

By similiar manipulations (using (6.12) and the Gluing Theorem:

- < Hm(C) X >=< ymOHo hHO o m(C) I >=

= < ylhoHIB >< 7(B)|hno o HJ"(C)jx >=
B

= < yIhoHIB >< 7(B)ImQ(C) o hH,oIx >
B

by Gluing theorem A.5.2. of [McD S]

= E < ylhoHIB >< rj(B)Imq(C)A >< rq(A)jhH,o x >
A,B

which gives the r.h.s. of (6.40)

Remark. In the manipulations above we used the formulas (6.12) and (6.13) respec-

tively.

So, we have proved the formulas (6.39) and (6.40) which are equivalent to our

Main Theorem 6.1. The Main Theorem is proved. Before going to computation in

example, let us give one more equivalent formulation of our Main Theorem:



Main Theorem. For any "generic" Hamiltonian H : S' x M -+ R we constructed

canonical isomorhpisms

hH : Hm (M, A,) -+ HF m (M, Hi)

hM,,o : HFm (M, hi) -4 H m (M, A,)

This pair of isomorphisms intertwines operator of quantum multiplication on any

comomology class C E H*(M) with the operator of Floer multiplication on the same

cohomology class, i,e, (6.39) - (6.42) hold.



Chapter 7

Floer Cohomology of complex

Grassmanians

As an example of applications of our Main theorem, let us give a rigorous proof of the

formula for Floer cohomology ring of the complex Grassmanian G(k, N) ov k-planes

in complex N-dimensional vector space V. The formula for the quantum cohomology

ring HQ*(G(k, N)) was conjectured long ago by Vafa [Val]. More detailed analysis of

quantum cohomology of Grassmanians was worked out by Intrilligator [I] and recently

by Witten [Wi5] in relation with the Verlinde algebra. Witten also mentioned that

Floer cohomology ring of the Grassmanian should be given by the same formula.

Now we need to discuss the cohomology of G(k, N). We begin with the classical

cohomology. Over G(k, N) there is a "tautological" k-plane bundle E (whose fiber

over x E G(k, N) is the k-plane in V labeled by x) and a complementary bundle F

of rank N- k:

0 --+ E -+ V* = C N --+ F -+ 0

Obvious cohomology classes of G(k, N) come from Chern classes. We set

xi = ci(E*)



where * denotes the dual. (It is conventional to use E* rather than E, because the

line bundle det(E*) is ample.) This is practically where Chern classes come from, as

G(k, N) for N --+ oc is the classifying space of the group U(k). It is known that the

xi generate H*(G(k, N)) with certain relations. The relations come naturally from

the existence of the complementary bundle F in Let yj = cj(F*), and let

ct(') = 1 + ±tc(_) + t2c2() +.... Then H*(G(k, N)) is generated by the {zxi, Yj} with

relations

ct(E*)ct(F*) = 1 (7.1)

Since the left hand side of (7.1) is a priori a polynomial in t of degree N) the clas-

sical relations are of degree 2, 4,..., 2N. The first N - k of these relations (uniquely)

express the {yj } in terms of the {xi} . This means that the classical cohomology

ring of H*(G(k, N)) is generated by the k generators {xi} with k relations of degree

2N- 2k + 2,2N- 2k + 4,...,2N.

Let us now work out the quantum cohomology ring HQ*(G(k, N)) of the Grass-

mannian. We can consider a subring in HQ*(G(k, N)) generated by {xi, yj}

Conjecture (Vafa). quantum cohomology ring HQ*(G(k, N)) of the Grassmannian

is generated by {xi, y, } with "deformed relations"

ct(E*)ct(F*) = 1 + q(-1)N-ktN (7.2)

where q is (the unique) Kahler class in H 2(G(k, N), Z).

To prove this Vafa's conjecture it is sufficient to prove that

A) {xi} generate the whole quantum cohomology ring

B) {y3 } are expressed in terms of the {xi } by the same formulas as in the classical

cohomology ring

C) The relations on {xi} in our quantum cohomology ring form an ideal

D) This ideal of relations is generated by k relations of degrees
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2N-2k + 2, 2N-2k+4,..., 2N coming from expansion of the 1.h.s. of (7.2) in powers

of t and taking coefficients of degrees 2N - 2k + 2, 2N - 2k + 4,..., 2N without any

extra relations

The fact that {y } are expressed in terms of the {xi} by the same formulas as in

the classical cohomology ring and the fact that these k Vafa's relations indeed take

place was proved (rigorously) by Witten [Wi5] by examining the fact that

A) The classical relations of degree 2, 4,..., 2N - 2 cannot deform since

deg[q] = 2N , and

B) There is a "quantum correction" to the the "top" relation

ck(E*)cN-k(F*) = 0 of degree 2N

C) The relations on {xi} in our quantum cohomology ring form an ideal

D) This ideal of relations is generated by k relations of degrees

2N - 2k + 2, 2N - 2k + 4,...,2N coming from expansion of the 1.h.s. of (7.2)

in powers of t and taking coefficients of degrees 2N - 2k + 2, 2N - 2k + 4,..., 2N

without any extra relations

ck(E*)cN-k(F*) = 0 of degree 2N in the classical cohomology. This "deformed

relation" has the form ck(E*)cN-k(F*) = a for some number a which can be computed

by examining degree-one rational curves in the Grassmannian. The value of this

unknown number a was (rigorously) computed by Witten and was shown to be equal

to (-1)N- k .

The statement C) that the relations on {xi} in our quantum cohomology ring form

an ideal will follow from the associativity of the quantum cohomology ring (which was

proved rigorously after [Wi5] was finished).

Thus, the only things we need to prove after Witten are:

A) {xi} generate the whole quantum cohomology ring,

and

D) that there are no extra relations (in degree hihger than 2N) on these generators.
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The statement A) can be proved inductively by the degree deg. Let us assume

that all the elements in HQ*(G(k, N)) of degree less than m can be expressed as poly-

nomials in {xi}. Let us prove that this also holds for all the elements in HQ*(G(k, N))

of derree m.

Let A E H m (G(k, N), Z) C HQ*(G(k, N)) be some homogenous element of

degree m. Then we know that in the classical cohomology ring we have

A = Pm(xi, ... , Xk)

for some polynomial Pm of degree m. The fact that deg[q] = 2N is positive means

that in the quantum cohomology ring we have

A = Pm(xl, ..., Xk) + E q dAd
d

for some (unknown) cohomology classes Ad E Hm- 2Nd(G(k, N), Z) of degree m- Nd.

But by our induction hypothesis we know that all {Ad} can be expressed as some

polynomials in {xi}. This simple observation proves the statement A).

To prove the last remaining statement D) let us note that the rank (over the

ring Z<q>) of the quantum cohomology of the Grassmanian HQ*(G(k, N)) should be

equal to the rank (over Z) of the classical cohomology H*(G(k, N)).

If there were some extra relations among the generators {xi} this would mean

that the rank (over the ring Z<q>) of the free polynomial ring in {xi} moded out by

the ideal generated by the coefficients of the 1.h.s. of (6.2) would be strictly greater

than the rank of H*(G(k, N)).

But we know that any two Z-graded rings generated by k homogenous generators

{xl, ..., Xk} of degrees {2, 4, ..., 2k} with k homogenous relations of degrees 2N- 2k +

2, 2N - 2k + 4, ... , 2N should have the same rank.

This proves the statement D) and the Vafa's conjecture.
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The arguments presented here together with the results of Ruan and Tian [RT]

who proved "the handle-gluing formula" of Witten [Will give a complete proof to a

more refined formula of Intrilligator [I] for the certain intersection numbers (known

as Gromov-Witten invariants) on the moduli space of holomorphic maps of higher

genus curves to the Grassmanian. The proof of this formula was previously known

only for the special case (G(2, N)) of the Grassmanians of 2-planes and is due to

Bertram,Daskaloupulos and Wentworth [BDW],[Be]. Our arguments prove this for-

mula in the full generality.
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Chapter 8

Discussion

The Main Theorem 6.1, proved in the present paper can be thought as mathematical

implementation of the program of Vafa [Va] of understanding quantum cohomology

through geometry of the loop space. The notion of "BRST-quantization on the loop

space" considered by string theorists (see [Wil] for the best treatment), can be put

in the mathematically rigorous framework of symplectic Floer cohomology.

If we are studying geometry of Kahler manifold M from the point of view of

the string propagating on it, we can extract more algebrogeometrical information on

M than is contained in its quantum cohomology ring HQ*(M)

The String Theory on M also provides us with:

A) Deformation of the classical cohomology ring H*(M) with respect to all (and

not just two-dimensional) cohomology classes,

B) Some explicitely constructed cohomology classes of the moduli spaces of punc-

tured curves known as Gromov-Witten classes.

Kontsevich and Manin [KM], [Ko2] formulated the theory of "Gromov-Witten

classes" (in this broader sense) algebraically and applied these new invariants to

some classical problems in algebraic geometry. [KM] formulated the list of formal

properties these "Gromov-Witten classes" should satisfy. It is still an open problem

to prove these "formal properties" of [KM].

104



During the preparation of the present paper there has been some new develop-

ments in Floer homology.

Fukaya [Ful],[Fu2] constructed analogues of the classical Massey products in Floer

homology of Lagrangian intersections. In order to construct these "quantized Massey

products", Fukaya used the loop space generalization of a finite-dimensional Morse-

theoretic construction, which was not known before. Results of [Ful],[Fu2] together

with the work of Cohen-Jones-Segal [CJS2] and Betz-Cohen [BK] give a hope to un-

derstand what is "quantum homotopy type" and "Floer homotopy type" of a semi-

positive almost-Kahler manifold. (See also [RT2] and [BR] for the further develope-

ments).

There is (formally) another cup-product structure in Floer cohomology, defined

in [CJS] using "pair of pants". It was conjectured in [CJS],[McD S] anf [Ful] that

this cup-product structure in Floer cohomology is also equivalent to quantum cup-

product. The proof of this conjecture is announced in [PSS] and in [RT2].

If our Kahler manifold M is the moduli space of flat SU(2)- or SO(3)-connections

on a two-dimensional surface (which is only a stratified space and not a manifold for

the SU(2)-case), symplectic Floer homology of this "'manifold" is conjectured [A] to

be isomorphic to instanton Floer homology of a circle bundle over this surface with

even (resp. odd) first Chern class. See [DS],[Y],[Li] for the proof of this conjecture

and [Don],[Ta2],[KrM] for further developements.

The multiplicative structure in symplectic Floer homology coresponds under this

isomorphism to relative Donaldson invariants of some 4-dimensional manifolds with

boundary. Thinking about these relative Donaldson invariants as some matrix el-

ements of quantum multiplication on the moduli space of flat connections we can

interpret gluing formulas [BrD] and recursion relations [KrM] for Donaldson invari-

ants as recursion relations coming from associativity of quantum multiplication.

M.Callahan [Cal] was able to to prove using this gauge theory techniques and

cup-products in Floer cohomology that there exists a symplectomorphism 0 which

is isotopic to the identity, but not symplectically is isotopic to the identity. In the
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example of [Call M is the moduli space of fiat SO(3)-connections on a genus-two-

surface, 0 is symplectomorphism of M induced by the Dehn twist around the loop

separating the two handles. The way Callahan proves that q not symplectically is

isotopic to the identity is that he shows that algtough Floer homology of the identity

and Floer homology of 0 are isomorphic as modules modules over the Novikov ring,

the H*(M)-module structure on these two Floer homologies is different. This gives

the first application of our results.
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