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Abstract

The new method of acoustic source depth discrimination in a shallow water environment is investigated.
The investigation is concentrated mainly in 500Hz and 1kHz sources in the range-independent and
range-dependent environments. Efficiency and robustness of the method is studied and suggestions for the
method’s optimization are provided.

The results of many simulation cases are presented and discussed. The results suggest that for the sources
of 500Hz and 1kHz the depth discrimination method can provide an accurate estimate of the target’s type:
surface or submerged. The method can be useful for applications for which exact depth location is
unnecessary and a target’s category estimate is sufficient. The method is based on the fact that the modal
energy distribution changes in accordance with a source depth category. Guidelines to achieve correct
results are developed and presented. Method stability and robustness are examined.

The range-independent case results suggest existence of ’shadow’ areas where the standard method may
provide a misleading depth estimate. Alternative methods are suggested to overcome the problem.

The range-dependent case results suggest relatively poor performances of the method for a downslope
environment. However, the upslope case results show superior performances than even in the
range-independent case.

Thesis Supervisor: Professor Henrik Schmidt

Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

This research has been motivated by a need for a robust classification method of acoustic sources. Robust
classification clues can reduce false alarms. This is particularly critical in autonoumos systems, where is a
succesful target classification will prevent unnecessary execution cycles.

Acoustic source localization in the ocean waveguide is a subject that has been discussed widely by
the acoustic community. Different methods and approaches to the source location estimation have been
suggested[1, 2, 3, 4]. The methods can be generally split in two main categories.

The first category has been based on the modal decomposition or the mode filtering of the pressure field
at the receiver location[1, 2]. By using a normal mode theory expression for the pressure field which includes
source location information and relies on normal modes’ orthogonality, a source position could be retrieved
from the received pressure field. All this based on the assumption that normal modes functions could be
calculated.

The second category of methods has been based on Matched Field Processing theory[3, 4]. By using var-
ious propagation models a theoretical pressure field estimate for different source locations can be calculated.
The best match (maximum correlation) between the received and the calculated pressure will indicate the
source location. In both cases the precise waveguide geometry and the environmental data estimate such as
a sound speed profile are necessary to make an accurate estimate of the source location.

Although complete information about a source location such as bearing, range and depth are of major
interest in many applications, there are some areas in which the first degree estimate is needed. So it will
be possible to categorize sources into submerged or surface targets. One of these areas is AUV applications
for which target legitimacy recognition as a submerged or surface source could be extremely useful.For these
AUV operational scenarios a fast estimation method is required as a substitute to the classic depth estimate
approach. The requirement of the source depth allocation is exchanged by the requirement to categorize the
target as a submerged or surface source.

In the current chapter the main idea behind the discrete depth estimation technique will be introduced.
The research goals and the thesis structure will also be presented.

1.1 Background

As was already mentioned before, a relatively fast technique for the source discrete depth estimation is
required. Although the classic approach of modal decomposition or MFP (Matched Field Processing) could
be used for this purpose as well, there is no need in the exact depth location estimation. Therefore to apply
these classic techniques to the problem in some sense could be described as an overuse of computational
resources.

The basic idea for the discrete depth estimation is based on the assumption that a submerged source
in a shallow water environment will excite more low modes than the surface source. This assumption will
be shown as true in the next chapters by presenting simulation results of pressure field analysis based on
a KRAKEN propagation model [5]. If the assumption is true, the relationship between the energy which
concentrated in the low order and high order modes could be an indicator of the source location. Therefore
by calculating this relationship which will be defined as a submergence index (SI) we can evaluate if the

9
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source is submerged or not. Although the idea of SI can be very useful for our discussion it is incomplete
as long as there is a need to make modal decomposition of the total pressure field as a part of the decision
making about source depth. Therefore a different approach to analyze received pressure field is required.

Every normal mode function can be represented as a pair of quasi-plane waves propagating with some
specific grazing angle (to the horizontal plane of propagation). The propagation angle is directly related to
a mode number[6]. H.V. Chouchan used the same property to filter out unnecessary modes by steering the
nulls of the array to their direction[7]. A plane wave representation of each mode can be very useful for SI
calculations and can allow us to avoid the mode filtering process. Instead of a modal analysis of the pressure
field, propagation angles distribution will be used as a base for SI calculations.

For applications of the current thesis interest a towed horizontal array will be the preferred choice for
the target (acoustic source) detection and estimation. Under assumptions of equally spaced hydrophones
of approximately half wavelength distance to satisfy appropriate spatial spacing requirements and assuming
source location close to the array end-fire, the general procedure for SI calculation will be as follows:

• make pressure field measurements at specific array depth

• apply relatively smooth window function to suppress steep grazing angles contribution to the total field

• apply relatively smooth window function to suppress shallow grazing angles contribution to the total
field

• calculate averaged ratio of two post-windowing results (pre-averaged SI result)

• repeat the steps for different array depth (sample the water-column in pre-defined depth values)

• calculate final submergence index (SI) value by the averaging all pre-averaged SI results

• categorize target depth based on the SI value.

Although the suggested above algorithm is relatively simple, many issues should be resolved to make it
applicable. One of these issues is the averaging requirement. The optimal number of stratifying levels should
be defined to give the correct result on one hand and to minimize processing time on the other. The surface
target depth should be defined as a function of the wavelength so it will be a frequency dependent parameter.
The criteria for the splitting angle space should be found in order to assure appropriate separation between
a submerged and surface target. The influence of different windowing functions should be checked. It is
also crucial to check the robustness of the algorithm for a variety of frequencies. As a number of modes in
a water-column will increase with higher frequencies some effects of constructive/ destructive interference
could be expected. Range dependent environment cases, specially wave propagation along a downslope/
upslope bottom, could be interesting study cases assuming mode coupling in the wedge environment[8, 9].

These issues will be discussed in the next chapters.

1.2 Thesis outline.

In chapter 2 of the thesis mathematical derivation of the modal theory will be summarized and other concepts
such as array steering, modal energy conversion or mode coupling will be introduced. The main physical
aspects of shallow water acoustics will be discussed.

In chapter 3 the numerical simulations results will be presented. The results will support the main
assumption concerning dependence of modal energy distribution and depth location in the water-column.
Parameter settings that were used to stabilize previously introduced algorithm will be described. The
simulation results which will be extensively presented will indicate that the algorithm is robust enough for
various geometry arrangements and for diverse environmental parameters. Source frequency influence on the
results of calculations and some specific scenarios will be discussed in depth, including analysis based on the
normal mode theory.

In chapter 4 range dependent shallow water environment cases will be discussed in the presence of the
wedge-shaped bottom. Specific parts of the chapter will be dedicated to the mode coupling effect on SI
calculations. Criteria for geometric limitations on the slope angles will be defined based on the simulation
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results. Cases of slope angles will be presented and will be compared to a perfectly horizontal ocean bottom.
The differences would be studied and explored using mode coupling theory.

In chapter 5 summary and conclusions of the research will be presented and applications will be discussed.



Chapter 2

Shallow water wave propagation, normal

modes.

In the current chapter we will summarize the concepts of shallow water acoustics by using method of the
normal modes as a mathematical representation of the pressure field in a water-column. We will describe

two common models of the shallow water environment: the hard bottom case and Pekeris waveguide.
The Lloyd mirror effect will be discussed briefly.

2.1 Normal modes for perfectly reflecting (hard) bottom case

We could start the normal mode method derivation by using mathematical approach which is based on
a solution of the two dimensional Helmholtz equation for the radial symmetry case. But it will be more
appropriate to start with a more intuitive physical approach. Brekhovskikh and Lysanov[6], and Officer[10]
have shown the physical aspects of the problem in their books. We will use Brekhovskikh and Lysanov
approach in our discussion.

We begin from a case of an omnidirectional point source emitting a spherical wave which is propagat-
ing into a halfspace (no bottom boundary) and can be represented in a simplified form (time dependence
suppressed) as a superposition of plane waves

p =
1

r
exp(ikr) =

i

2π

∫ ∫ ∞

−∞

1

kz
exp [i (kxx+ kyy + kzz)]dkxdky (2.1)

where r =
√

(x2 + y2 + z2) and kx, ky, kzare wavenumber components in the direction of axis x, y, z
respectively. The expression 2.1 is true if the source located at the origin.

Now we will change the geometry and add a bottom boundary at z = h, where is an h is a water-column
depth. The source will be relocated from the origin to the depth z0and z0 > z, so the source location is deeper
than the receiver . This will change the general expression for the propagating wave to the receiver directly to
the exp [i (kxx+ kyy + kz(z0 − z))].But the bottom boundary will be a reflection surface for the propagation
wave and the expression for a bottom single-interacted wave will be R exp [i (kxx+ kyy + kz(2h− z0 − z))],
where R is a reflection coefficient with the bottom boundary and it’s a function of the incidence angle, the
bottom and the water properties. We will assume a top boundary to be a pressure release surface which is
a good approximation for the air-water interface. Based on this assumption the R = −1 (phase change of
π), so the top reflected way is − exp [i (kxx+ kyy + kz(z0 + z))]. Finally the bottom and the top reflected
wave will be −R exp [i (kxx+ kyy + kz(2h− z0 + z))]

Since there is an infinite number of top-bottom reflections we can represent it geometrically using the
method of images. We are looking at the wavepath projection in z direction as a function of the boundary
interaction’s number. We can generalize that an additional top-bottom reflection will add 2hkz factor to the
phase. Each of the waves (direct and multi-reflected) will contribute to the total pressure at the receiver, so

12
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the pressure field expression will be

p(r, z) =
i

2π

∫ ∫ ∞

−∞

1

kz
exp [i (kxx+ kyy)] ∗

∗ {exp [ikz (z0 − z)] +R exp [ikz (2h− z0 − z)] − exp [ikz (z0 + z)] −R exp [ikz (2h− z0 + z)]} ∗

∗
∞
∑

l=0

(−R)
l
exp (ikz2hl)dkxdky (2.2)

The expression 2.2 can be simplified by using a trigonometric expansion property of exponential functions
and a formula of infinite trigonometric series

p(r, z) =
1

π

∫ ∫ ∞

−∞

1

kz

exp [i (kxx+ kyy)] sin kzz {exp (ikzz0) +R exp [ikz (2h− z0)]}
1 +R exp (2ikzh)

dkxdky (2.3)

Next we substitute parameters (polar coordinates transform) into the 2.3 :

ξ ≡
√

k2
x + k2

y , kx = ξ cosϕ , ky = ξ sinϕ , α ≡ kz =
√

k2 − ξ2,

where ϕis an angle of the propagation (90o to the wavefront) and x = r cosψ , y = r sinψ
we will get:

p(r, z) =
1

π

∫ 2π

0

∫ ∞

0

1

α

exp [iξr cos (ϕ− ψ)] sinαz {exp (iαz0) +R exp [iα (2h− z0)]}
1 +R exp (2iαh)

ξdξdϕ (2.4)

We will use an integral representation of the zero order Bessel function from Abramowitz[11]:
J0(x) = 1

π

∫ π

0
cos (z ∗ sin θ) dθ to simplify the 2.4 to a singe integral form

p(r, z) =

∫ ∞

0

2J0 (ξr)
1

α

sinαz {exp (iαz0) +R exp [iα (2h− z0)]}
1 +R exp (2iαh)

ξdξ (2.5)

By using relationship between Bessel and Hankel functions J0 (ξr) = 1
2

(

H
(1)
0 (ξr) +H

(1)
0 (ξr)

)

for 2.5 and

by rearranging it for a more uniform representation, we are finally getting an integral form expression for
the pressure field in a layered water-column:

p(r, z) =

∫ ∞

−∞

H0 (ξr)
1

α

sinαz {exp [−iα (h− z0)] +R exp [iα (h− z0)]}
exp (−iαh) [1 +R exp (2iαh)]

ξdξ (2.6)

We have to remember that 2.6 has been derived based on the assumption that a source is deeper than a
receiver. For an opposite case we just need to replace z with z0 and vice verse.

Our assumption at the beginning of this chapter was that the bottom is perfectly reflecting surface, so
R = 1. Therefore the expression 2.6 can be simplified to the

p(r, z) =

∫ ∞

−∞

H0 (ξr)
sinαz ∗ cos [α (h− z0)]

α cos (αh)
ξdξ (2.7)

We will use Cauchy residues theorem[12] to simplify an expression 2.7 to a summation form. We are
looking for poles of the equation

cos (αh) = 0

αn =
π

h

(

n− 1

2

)

, n = 1, 2, 3...

by using a previously defined relation between α and ξ we will get the roots
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ξn = ±

√

√

√

√k2 −
(

π2

h2

(

n− 1

2

)2
)

(2.8)

Let’s assume that a wavenumber k has a small positive imaginary part, so a small attenuation exists.
This assumption will move the roots of the equation, ξn, from a real positive and negative axis to a first and
third quadrant respectively. We will integrate in the upper half plane. By using Cauchy residues theorem
we can simplify 2.7 to a sum of residues.

p(r, z) =
2πi

h

∞
∑

m=1

sin (αnz) sin (αnz0)H
(1)
0 (ξnr) (2.9)

The expression 2.9 represents a total pressure field as a sum of normal modes for a hard bottom and a
soft top case. Usually we are interested in knowing a pressure field expression far away (relatively to the
wavelength) from a source location, ξnr ≫ 1. For these cases we can use a first term only of a Hankel

function expansion (asymptotic form): H
(1)
0 (ξr) ≈

√

2
πξr exp

[

i
(

ξr − π
4

)]

[

1 + 1
8iξr + ...

]

. An asymptotic

form of the 2.9 will be:

p(r, z) ≈ 2i

h

∞
∑

n=1

√

2π

ξnr
sin (αnz) sin (αnz0) exp

[

i
(

ξnr −
π

4

)]

(2.10)

We can learn from the 2.10 that a total pressure field is a function of a source depth ∼ sin (αnz0) (exciting

function), a receiver depth and a range to the receiver ∼
√

1
πξnr sin (αnz) exp

[

i
(

ξnr − π
4

)]

(normal mode).

A normal mode function can be decomposed to a standing wave at z direction and a propagating at range.
Using an exponential form representation for sin function will bring us to a plane wave representation with
a propagating angle of χn = arcsin

(

αn

k

)

relatively to a horizontal direction:

pn ∼
√

1

r
{exp [i (ξnr + αnz)] − exp [i (ξnr − αnz)]} (2.11)

A normal mode representation as a plane wave propagating with specific angle will be very useful for our
future discussion.

From 2.11 a normal modes’ amplitude will decay with 1√
r

through a range. We also can conclude that

as long as a wavenumber is positive no attenuation in the media is expected, therefore from 2.11 aroused
that π

kh

(

n− 1
2

)

≥ 1will be a condition for a non-attenuated mode propagation. By substitute k = ω
c in the

previous expression we can define a frequency criteria (“cutoff”) for a non-attenuated mode propagation:

fcutoffn
=

c

2h

(

n− 1

2

)

(2.12)

After deriving a normal modes expression for a hard bottom case through a intuitive physical approach
and exploring some of it’s properties, we will discuss in the next section more general form of a normal modes
representation by looking for a solution to the wave equation.

2.2 Pekeris waveguide model

A formal derivation of a normal mode representation could be found in many literature sources. We will
use a Frisk’s [13] derivation form to the wave equation solution. We will assume symmetry in a azimuthal
direction and stratified media in a z (vertical) direction. It is natural, under the given conditions, to choose
cylindrical coordinates.
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2.2.1 Wave equation as Sturm-Liouville problem

We are starting by writing an inhomogeneous wave equation with a source location at r = 0, θ = 0, z = z0:

ρ (z) ▽ ·
[

1

ρ(z)
▽ p (r, θ, z)

]

+ k2 (z) p (r, θ, z) = −4π
δ(r)

r
δ(θ)δ(z − z0) (2.13)

which can be simplified to:

1

r

∂

∂r

[

r
∂p(r, z)

∂r

]

+
∂2p(r, z)

∂z2
+ ρ(z)

∂

∂z

[

1

ρ(z)

]

∂p(r, z)

∂z
+ k2(z)p(r, z) = −4π

δ(r)

r
δ(θ)δ(z − z0)

by using a symmetry property to get rid of ∂
∂θ term and finally by integrating it, we will get

∫ 2π

0

{

1

r

∂

∂r

[

r
∂p(r, z)

∂r

]

+
∂2p(r, z)

∂z2
+ ρ(z)

∂

∂z

[

1

ρ(z)

]

∂p(r, z)

∂z
+ k2(z)p(r, z)

}

=

=

∫ 2π

0

{

−4π
δ(r)

r
δ(θ)δ(z − z0)

}

1

r

∂

∂r

[

r
∂p(r, z)

∂r

]

+
∂2p(r, z)

∂z2
+ ρ(z)

∂

∂z

[

1

ρ(z)

]

∂p(r, z)

∂z
+ k2(z)p(r, z) = −2

δ(r)

r
δ(z − z0)

We will not try to be mysterious about the next steps...We are looking for some way to represent 2.13 in
the Sturm-Liouville problem form which defined in [14] as:

Lu(x) + λw(x)u(x) = 0 (2.14)

, where L is a linear second order differential operator defined by Lu(x) = s0(x)uxx + s1(x)ux + s2(x)u, and
s0/1/2are functions of x.

The most known way to show that the 2.13 fits the 2.14 form is by using separation of variables. The
technique is well described in Arfken[14]. We are switching to a homogeneous form of the equation:

1

r

∂

∂r

[

r
∂p(r, z)

∂r

]

+
∂2p(r, z)

∂z2
+ ρ(z)

∂

∂z

[

1

ρ(z)

]

∂p(r, z)

∂z
+ k2(z)p(r, z) = 0 (2.15)

The solution to the 2.15 is assumed to be of the form p(r, z) = Φ(r)Ψ(z), so if we substitute the last to
the 2.15 we will get:

Ψ

r

d

dr

[

r
dΦ

dr

]

+ Φ
d2Ψ

dz2
+ ρΦ

d

dz

[

1

ρ(z)

]

dΨ

dz
+ k2ΦΨ = 0

All partial derivatives became full derivatives. Dividing by ΦΨwill give us:

1

Φr

d

dr

[

r
dΦ

dr

]

+
1

Ψ

d2Ψ

dz2
+ ρ

1

Ψ

d

dz

[

1

ρ(z)

]

dΨ

dz
+ k2 = 0

1

Ψ

d2Ψ

dz2
+ ρ

1

Ψ

d

dz

[

1

ρ(z)

]

dΨ

dz
+ k2 = − 1

Φr

d

dr

[

r
dΦ

dr

]

The last expression is defined by Arfken[14] as a “paradox”, because we have on the LHS a f(z) that
equal to a f(r) on the RHS. The only way that the equality can be satisfied if both sides are equal to a
constant value, so we are getting a separable solution with a separation constant k2

n.

1

Ψ

d2Ψ

dz2
+ ρ

1

Ψ

d

dz

[

1

ρ

]

dΨ

dz
+ k2 = k2

rn

1

ρ

d2Ψ

dz2
+

d

dz

[

1

ρ

]

dΨ

dz
+

1

ρ
Ψk2 − 1

ρ
Ψk2

rn = 0
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Let’s define a relation k2
zn = k2 − k2

rn that will rearrange the solution to the Sturm-Liouville form with
eigenfunction Ψ(z)

1

ρ(z)

d2Ψ

dz2
+

d

dz

[

1

ρ(z)

]

dΨ

dz
+

ω2

c2(z)ρ(z)
Ψ − k2

rn

ρ(z)
Ψ = 0 (2.16)

where an operator L is

L =
1

ρ(z)
+

d

dz

[

1

ρ(z)

]

+
ω2

c2(z)ρ(z)
(2.17)

a weighting function is

w(z) =
1

ρ(z)
(2.18)

and a eigenvalue

λ = k2
rn (2.19)

We should also notice from the 2.17 expression that s1(z) = ds0

dz , so a condition for L to be a self-adjoint
operator is satisfied.

Now we can use all the known properties of the Sturm-Liouville problem. Two facts to keep in mind
that there is an infinite number of solutions Ψn(z) which are described as normal modes (eigenfunctions)
and eigenvaluesk2

rnare positive. For the m mode within watercolumn 0 < z < h will be m zero crossings of
eigenfunction Ψn(z).

The modes are orthonormal to each other:

∫ h

0

w(z)Ψm(z)Ψn(z)dz =

∫ h

0

1

ρ(z)
Ψm(z)Ψn(z)dz = δnm =

{

1, m = n
0, m 6= n

(2.20)

Modes create complete set of solutions:

p(r, z) =
∞
∑

n=1

Φn(r)Ψn(z) (2.21)

Modes satisfy closure relationship:

∞
∑

n=1

w(z0)Ψn(z0)Ψn(z) = δ(z − z0) (2.22)

We will substitute a 2.21 relationship back into the inhomogeneous form of a 2.13 and we will use the
properties of Sturm-Liouville problem as a 2.20 and a 2.22 to get

1

r

d

dr

[

r
dΦn(r)

dr

]

+ k2
rnΦn(r) = −2

δ(r)Ψn(z0)

rρ(z0)
(2.23)

The equation 2.23 has a standard solution Φn(r) = iπ
2ρ(z0)Ψn(z0)H

(1)
0 (krnr), where H

(1)
0 (krnr) is the

Hankel function that was already described in the previous section. The final form will be

p(r, z) =
iπ

2ρ(z0)

∞
∑

n=1

Ψn(z0)Ψn(z)H
(1)
0 (krnr) (2.24)

in which Ψn(z) is a normal mode expression and Ψn(z0) is a modal exciting function. We got the same
expression as it was already derived before using an integral representation of the field.

The asymptotic form of Hankel function will give us expression for a far away (by the means of the
wavelength) from a source case

p(r, z) ∼
√

2π exp
(

iπ
4

)

ρ(z0)

∞
∑

n=1

Ψn(z0)Ψn(z)
exp(ikrnr)√

krnr
(2.25)
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2.2.2 Boundary conditions

We will adopt now a Pekeris waveguide model into our discussion. The model includes a top pressure-release
surface, a water-column and a higher velocity/density (ρ1 > ρ, c1 > c) half-space bottom. Top boundary
conditions are the same as it was in 2.1. Bottom boundary conditions are different, therefore we can’t use
R = 1 as a reflection coefficient. R value in the current case will be a function of a wave incident angle θ.

The whole angle space will be split by a value of the critical angle θc = arcsin
(

c
c1

)

. The angle space above

the critical angle (closer to a normal incident) will be defined as continuous and below the critical angle as
discrete. Although the final representation of the pressure field includes contribution from each of the two
subspaces, we are mainly interested in the discrete spectrum of so called trapped modes only. The reason
for this is a high decaying rate of the continuum modes due high energy losses into a halfspace. Relied on
the final applicability considerations we will discuss here only a trapped modes case.

For the modes with propagating grazing angles below the critical angle a reflection coefficient |R| = 1. A

phase of an R is equal to ϕ = −2 arctan

[

√

sin2 θ− c2

c1
ρ1

ρ

]

. These modes are trapped inside a water-column as

in a waveguide. With each interaction of a trapped wave with a bottom the phase will be changed by the ϕ.
We can recall that for n modes in the hard bottom case a phase term gave us equality of

kznh− π

2
= (n− 1)π, n = 1, 2, 3...

A phase change due interaction with a higher velocity bottom requires modification in a phase part of
the expression, so for the trapped modes of a Pekeris model the expression will be

kznh− π

2
+
ϕ

2
= (n− 1)π, n = 1, 2, 3...

and the vertical wavenumber component will be

kzn =
1

h
(n− 1

2
)π − ϕ

2
, n = 1, 2, 3... (2.26)

As a next step we are looking for a pressure expression contributed by the trapped modes that will satisfy
the wave equation. We are defining eigenfunctions in a water-column and into a bottom half-space as

Ψn(z) =

{

An sin (kznz) , 0 ≤ z ≤ h
Bn exp (−k1znz) , z ≥ h

(2.27)

where k1zn =
√

k2
rn − k2

1and krn =
√

k2 − k2
zn, so k1znis the vertical wavenumber in the bottom halfspace.

A pressure continuity at the boundaries is required, therefore for a bottom boundary

An sin (kznh) = Bn exp (−k1znz) (2.28)

Bn = An sin (kznh) exp (−k1znh)

We will find the orthonormal property very useful for eigenfunctions of a Sturm-Liouville problem for a
next step. Let’s recall an expression 2.20:

∫ h

0

1

ρ(z)
Ψm(z)Ψn(z)dz = δnm =

{

1, m = n
0, m 6= n

In the current case will be two regions of integration, the first through a water-column and the second
into a bottom halfspace. By using an orthonormality and a pressure continuity as a boundary condition
expressed by 2.28 we can find an amplitudeAn
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∫ h

0

1

ρ
A2

n sin2 (kznz)dz +

∫ ∞

h

1

ρ
B2

n exp (−2k1znz)dz = 1

A2
n

ρ

∫ h

0

sin2 (kznz) dz +
A2

n sin2 (kznh)

ρ exp (2k1znh)

∫ ∞

h

exp (−2k1znz)dz = 1

An =

√

2

[

1

ρ

(

h− sin 2kznh

2kzn

)

+
1

ρ1

sin2kznh

k1zn

]

Now we can define a pressure field pt contributed by modes trapped into the water-column. Using already
developed expression for a Sturm-Liouville problem we can write:

pt(r, z) =

{

iπ
ρ

∑nmax

n=1 A2
n sin (kznz0) sin (kznz)H

(1)
0 (knrr) , 0 ≤ z ≤ h

iπ
ρ

∑nmax

n=1 A2
n sin (kznz0) sin (kznh) exp (k1znh− k1znz)H

(1)
0 (knrr) , z ≥ h

(2.29)

The nmaxterm in upper limit of a summation is equal to a highest mode number that will propagate with
a grazing angle less than the critical (modes with a steeper angle than the critical are defined as “leaking”
modes and they are out of our scope of interest in the current discussion).

Pressure field contributed by the trapped modes 2.29 gives us a relatively good approximation for the
pressure value in different ranges, though it was already mentioned before that we are interested in cases
where krnr ≫ 1. Therefore an asymptotic form of the 2.29 will be more useful:

p(r, z) ∼







√
2π exp( iπ

4 )
ρ

∑nmax

n=1 A2
n sin (kznz0) sin (kznz)

exp(ikrnr)
√

krnr
, 0 ≤ z ≤ h

√
2π exp( iπ

4 )
ρ

∑nmax

n=1 A2
n sin (kznz0) sin (kznh) exp (k1znh− k1znz)

exp(ikrnr)
√

krnr
, z ≥ h

(2.30)

Before we will continue our discussion about main properties of the pressure field it could noticed that
the field has an exponentially decaying behavior into the bottom half-space.

Let’s go through some of the main properties of the Pekeris waveguide briefly by analyzing recently
derived equations.

• Zero crossing locations of the eigenfunctions (nodes) will be more dense in the top boundary area
comparing to the hard bottom case and will be defined as

zzero−cross =
mπh

[(

n− 1
2

)

π − ϕ
2

] , m = 0, 1, 2.., zzero−cross < h (2.31)

A nodes location is quite important for our future discussion. A source location in the node area
will produce highly attenuated pressure field. It is also immediately seen from the 2.31 that as a
propagating angle is approaching to the 00the nodes location is getting closer to the hard bottom case.

• The number of the propagating modes will be a function of the critical angle and it can be derived
using an eigenvalue equation 2.26:

nmax =
2h

λ

√

1 − c2

c21
+

1

2
(2.32)

• The cut-off frequency for mode propagation can be derived easily from the 2.32 using known relation-
ships λ = 2π

k and f = ck
2π :

fncut−off
=

c

2h

(

n− 1
2

)

√

1 − c2

c2

1

(2.33)

Below the frequency defined by a 2.33 a mode will not propagate and it’s value is higher than for the
hard bottom case.
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2.3 Near-Surface Sources

Our next discussion will deal with a special case of an acoustic source location. It will be very useful for
our future surface/submerged distinction criteria development to study pressure field properties for a source
location near the surface.

We will start with a more intuitive way to explain phenomena described in the literature [13, 10] as a
Lloyd Mirror Effect. Lets assume that our source is very close to the surface z0 ≪ r . In this case a wave
that has been reflected by an air-water boundary could arrive to the receiver approximately at the same
time as a direct wave. A reflected wave phase as was already discussed before will be shifted by π, so the
destructive interference should be expected at the receiver. The pressure field that will be measured at the
receiver for this case will have a different range dependence (non ∼ 1

r ) from a free space propagation case.
Now we will redefine our assumption in mathematical form. The subject is well explained in both Frisk

and Officer, the last one is using a velocity potential expression for a subject of the discussion . We will use
a pressure notation as in Frisk’s book in order to keep previous conventions.

We are starting with a old trick which is called a method of images. Let’s put an image source above a
water-air interface (into the air) at (0,−z0). In the case of a point source a total field will be a superposition
of the source and the image, and we can define it as:

p(r, z) =
1

R0
exp(ikR0) +

1

R1
exp(ikR1) (2.34)

where R0, R1are distances between a receiver and the source / the image respectively. If we adopt
cylindrical coordinates for our case we can define these distances as:

R0,1 =
√

r2 + (z2 ∓ z2
0) = r

√

1 +
z2 ∓ z2

0

r2
(2.35)

where is a minus sign states for the source case (a shorter distance). By using our initial assumption z0 ≪ r
we will simplify the 2.35 by bringing it to a form of r

z expansion. Let’s use a binomial expansion for this
purpose (also known as a application of Taylor and Maclaurin expansion[14]):

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 + ...+ remainder

for m non integer or/and negative. By using the first two terms of the expansion we will get approximation
for the ranges as follows:

R0,1 ≈ r

[

1 +
1

2

(

z2 ∓ z2
0

r2

)]

≈ r +
z2

2r

Let’s rewrite the 2.34 using derived from above relations 1
R1

≈ 1
R2

≈ 1
r , R1 −R0 ≈ 2zz0

r , R1 +R0 ≈ 2r

p(r, z) ≈ exp
(

ikR0+R1

2

)

r

[

exp

(

−ikR1 +R0

2

)

− exp

(

ik
R1 −R0

2

)]

≈ −2i sin

(

kzz0
r

exp(ikr)

r

)

By using a linear approximation of a sinus function for small angles we are getting a 1
r2 dependence of

the pressure field:

p(r, z) ≈ −2i
kzz0 exp(ikr)

r2
(2.36)

As was expected intuitively, the pressure field for a source located very close to a surface (it is important
to add at this point that we are assuming a plane interface with no roughness at all, otherwise we should
discuss other mechanisms that stayed out of our current discussion) will decay with a much higher rate than
∼ 1

r . The decay rate will be ∼ 1
r2 as we can see it from the 2.36.

Our discussion will not be complete without a definition of a Lloyd mirror effect area by means of a
wavelength. It can be derived by comparing a power radiated by a source located in the Lloyd mirror effect
area and in free space. We will show here the final expression from the [13]:

P

P0
= 1 − sin 2kz0

2kz0
(2.37)
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We are interested in finding a source depth below which the Lloyd mirror effect could be neglected. To
accomplish this goal we need to look for a case of P

P0
= 1. The power value for two cases will be the same as

long as sin 2kz0

2kz0

= 0, so 2kz0 = π or z0 = λ
4 . Therefore as long as we are staying below the depth of a quarter

wavelength the Lloyd mirror effect can be neglected. We found this criteria very useful for a surface target
definition.



Chapter 3

SI for Range-Independent Environments

In the current chapter we will discuss simulation results of a range-independent waveguide. We will show
through the numerical results a connection between a source depth and SI (Submergence index) values. An
SI algorithm will be presented and an extensive discussion on it’s stabilization will be provided.

3.1 Normal modes dependence on the source location

Although we already mentioned in Section 1.1 a connection between surface/submerged location and a
high/low modes relation, it has to be shown by numerical results.

To show existence of the connection we investigated some scenarios of different source frequencies. We
used ’Kraken’[5] for pressure field calculations. A contribution of each of the normal modes to a total field
has been extracted using an orthogonality property. The low and higher modes has been split by a factor of
1
3 and rounded up to a nearest integer value. For the case of total 10 modes for example, modes 1 ÷ 4 will
be defined as low modes and modes 5÷ 10 as high modes. By averaging the amplitude values in each of two
modal groups and comparing them we can get a indication on an energy distribution between low and high
modes.

For the simulation we used an approximate Monterrey Bay summer sound-speed profile for a 100m depth
water-channel. The sound-speed profile was defined by stratifying a channel in 8 levels (see Table 3.1) . A
water density was ρw = 1020 kg

m3 . The bottom modeling was based on a fast sediment with a density of

ρb = 1800 kg
m3 and a sound-speed of cb = 1612m

s , the bottom assumed to be a loss media with an attenuation

of αb = 0.4 dB
λ

A graphical description of the environmental model and the applied model are shown on the Fig. 3.1
and the 3.2 respectively.

A receiver array was simulated by 128 vertical equally spaced hydrophones with separation distance of
d = 0.75m from each other to satisfy d ≤ λ

2 , i.e. f < 1kHz . Therefore the chosen spacial sampling rate will
be good enough up to a source frequency of f0 ≈ 1kHz. The total array length of L = 127× 0.75 = 95.25m

z[m] c[m/s]

0 1497
10 1495
15 1492
30 1491
35 1489
45 1488
55 1487
100 1486

Table 3.1: Sound-speed stratification fro simulation

21
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Figure 3.1: Environmental model graph, MB summer

Figure 3.2: Environmental data used for simulation
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Figure 3.3: Low modes vs high modes power contribution [dB] for surface target of 100Hz

assures an angular resolution of

θ = arcsin

(

λ

L

)

(3.1)

for a plane-wave [21]. Therefore for 100Hz source the angular resolution will be ∼ 90and it will be improved
up to∼ 0.90 value for 1kHz source. The source location was chosen to satisfy criteria of a depth just below λ

4
(Lloyd Mirror criteria, see 2.37 ) for a surface target simulation case and at least 10m deeper for a submerged
case. Because there is a frequency dependence in a surface target criteria expression, we defined two regimes
for a surface depth location, the first is z0 = 2m depth and it will satisfy targets with a frequency up to
f0 = 500Hz and the second is z0 = 1m for 500Hz < f0 ≤ 1kHz.

Our goal at this point to analyze a pressure field as close as possible to a source location so it will allow us
to exclude propagation effects from our analysis. A range to the receiver for all cases was constant and equal
to r = 10m. Geometry has been assumed to be completely plane with no roughness for top and bottom
interfaces.

We started simulation for a source with a frequency f0 = 100Hz located at z0 = 2m depth. It is clearly
a surface target case and low modes contribution to a total field is relatively small or in the other words
the low modes are less excited. In the current case 5 modes were excited. The results of the simulation are
shown in Fig. 3.3.

The separation between an averaged value of the first two modes (low modes-red line) and the three
higher modes (high modes-black line) can be noticed through the water-column. Although the results are
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Figure 3.4: Low modes vs high modes power contribution [dB] for submerged at 12m target at f=100Hz

supporting our assumption that for a surface target low modes will be less excited, the results will not be
complete without comparing it to a submerged target scenario. So this time we are using a submerged target
at depth z0 = 12m with the same simulation parameters as before. This specific depth was chosen based on
the minimum 10m separation step between surface and submerged sources. The simulation results shown in
Fig.3.4.

By comparing the results shown in Fig.3.3 and Fig.3.4, we can see that the separation between high
and low modes is decreasing as a target depth is increasing. To show the tendency we proceed with the
simulation and increased the source depth by 10m for each next simulation running (see Fig.3.5).

The results show clearly a dependence of low modes excitement on a source depth for 100Hz source. We
will proceed with the simulation for source frequencies at 200Hz, 500Hz and 1kHz. From the results in Fig.
3.63.73.8 we can conclude that the relation between a source location (surface/submerged) and a low modes
excitement as was found for 100Hz source exists for source frequencies of 200Hz, 500Hz and 1KHz.

It will be reasonable to assume that we will find the same dependence for other source frequencies in the
band of 100Hz and 1kHz , so the results of the simulation are not occasional. The assumption based on the
numerical results for a 1kHz frequency case with total number of 51 modes which can be very difficult to
analyze with pure analytic tools.

After we checked the correctness of our theory on some numerical examples we can proceed to a stage of
SI calculations.
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(a) source depth 12m (b) source depth 22m (c) source depth 32m

(d) source depth 42m (e) source depth 52 (f) source depth 62m

(g) source depth 72m (h) source depth 82m (i) source depth 92m

Figure 3.5: Low modes vs high modes [dB] for submerged targets between 12m and 92m at f=100Hz
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(a) source depth 2m (b) source depth 12 m

(c) source depth 22m (d) source depth 32m

(e) source depth 42m (f) source depth 52m

(g) source depth 62m (h) source depth 72m

(i) source depth 82m (j) source depth 92m

Figure 3.6: Low modes vs high modes for submerged targets between 2m and 92m at f=200Hz
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(a) source depth 2m (b) source depth 12m

(c) source depth 22m (d) source depth 32m

(e) source depth 42m (f) source depth 52

(g) source depth 62m (h) source depth 72m

(i) source depth 82m (j) source depth 92m

Figure 3.7: Low modes vs high modes for submerged targets between 12m and 92m at f=500Hz
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(a) source depth 1m (b) source depth 11m

(c) source depth 21m (d) source depth 31m

(e) source depth 41m (f) source depth 51m

(g) source depth 61m (h) source depth 71m

(i) source depth 81m (j) source depth 91m

Figure 3.8: Low modes vs high modes for submerged targets between 12m and 92m at f=1kHz
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z0[m] c[m
s ]

0 1500
20 1498
30 1485
100 1480

Table 3.2: Water-column sound-speed profile

3.2 SI calculation for range independent environment

At the current section we will describe shortly an algorithm for a Submergence Index (SI) calculation.
Examples of SI calculations will be presented and discussed.

3.2.1 SI algorithm description.

For SI properties and it’s robustness study we initially used an algorithm that was developed by Prof. Henrik
Schmidt. The algorithm is using an OASES[15] simulation package as a propagation model. The main idea
behind the algorithm is to run an OASES simulation for specific source-receiver depth values. OASES is
producing plane wave replicas in the MCM (Multiple-Constraints beamforming)[16] mode. For each source-
receiver position an SI can be calculated by an appropriate shallow-steep angles separation of the received
pressure field (calculated by the OASES). For a fixed source position the final averaged SI value is calculated
by taking an average of SI’s for different receiver depth values. A balance between a calculation time and
accurate final SI results should be established as a output of the current study. The algorithm is repeating
for incremental values of the source depth, so an SI dependence on the source location can be studied and
SI’s for surface or submerged targets can be compared. An algorithm flowchart description can be found in
Fig. 3.9.

3.2.2 Simulation parameters description and analysis of the simulation results

Although the algorithm is quite straightforward, it can be useful to describe shortly some of main setting
parameters. One of the first parameters that has direct impact on the calculation time will be a number of
discrete depth levels. As was already mentioned before, by increasing a number of stratifying levels we can
improve a calculation’s resolution and make an averaging process through receiver depth levels more robust
but a trade-off will be a non-linear increase in calculation time. For example, in the case of 5 levels we will
need to calculate the pressure field for a total of 52 = 25 source-receiver locations, meaning 25 iterations
of OASES calculations. But even by increasing stratification level’s number by 1 we have to add to the
calculation period a duration of 11 iterations (62 = 36). As an initial value we chose 10 as a number of
discrete depth levels. The environmental parameters were defined as described in Table 3.2.

A frequency of f = 300Hz has been studied at first. For this purpose a horizontal 32 hydrophones array
with a spacing of 2.5m was chosen to satisfy the space sampling criteria (λ

2 ≈ 2.5m). The Hanning window
function[18, 17] was chosen for an angle space splitting with a ratio of 1

4 , meaning that a ratio of the energy
located in the first 25% of a total angles space below a critical angle θc to the energy concentrated in a
remaining part of the angle space will be defined as Submergence Index. The source is located in an array’s
end-fire direction. For example, if a critical angle is 240 the first quarter of the an angle space will include
subspace between 00and 60. There is no special reason for choosing a Hanning window function and some
other window functions were studied also. The splitting ratio (or window width) was chosen based on the
results of modal excitation study (see 3.1) , yet the ratio is, in some sense, a random value, so it should be
also studied as a one of the parameters for SI algorithm improvement.

Other simulation parameters were set to:

• source-receiver separation - 10km,

• bearing - 00(end-fire direction),

• source level -120dB,
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Figure 3.9: SI algorithm flowchart diagram
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z0[m] 2 12 22 32 42 52 62 72 82

cb = 1575m
s -0.3542 1.4423 1.3245 2.1421 2.2227 2.1672 2.2050 2.4699 2.5602

cb = 1600m
s -0.9550 0.7386 1.1374 2.3634 2.1564 2.0889 2.0575 2.2207 2.5909

cb = 1625m
s -1.2335 0.7991 1.0315 2.0279 1.8101 2.2316 1.9148 2.0809 2.4645

Table 3.3: Averaged receiver depth SI values in dB

• bottom sound-speed - cb = 1575m
s ,

• noise level - 50dB.

The results of a simulation are shown in Fig. 3.10. Fig. 3.10(c) describes graphically an SI calculation
output. We can notice a separation of ∼1.75dB in an SI value between the surface (z0 = 2m) and the
submerged (z0 = 12m) targets, therefore in the current case SI will be a good indicator to categorize the
target. The Fig. 3.10(a) upper part shows a beamformer output for one of simulation transient states for
which the source and the receiver are both located at 82m depth, a critical angle is ∼ 180(vertical line). The
down part of the figure shows results of Hanning windowing. An averaged ratio of shallow to steep angles
( red and green colors respectively in Fig. 3.10(a)) for the particular geometry case shown in Fig. 3.10(b)
and it is actually pre-averaged description of SI. Fig. 3.10(d) shows a receiver depth averaged beamformer
output and can be a very good indicator of the energy distribution between shallow and steep angles. We
can see visually the differences between a surface and a submerged target in the current case, therefore the
SI final results shouldn’t surprise us.

Although our first study case fitted very well to the theoretical assumptions about SI, it will be not
satisfying to make final conclusions at this point, the results could be very random and we should definitely
to look at some different cases.

3.2.3 Bottom sound-speed vs SI results.

We will next investigate, the influence of small bottom sound-speed changes on the SI value. From a modal
theory point of view we can recall that for a Pekeris waveguide a faster bottom means more trapped modes
are expected. Therefore we can expect that a shallow angles relative part will increase, meaning in a modal
domain that more modes will be defined as low modes, but steep angles relative part should also increase
so it is hard to conclude that a separation between a surface and a submerged target in an SI value will
increase. We have to use a numerical solution to make conclusions concerning connection between bottom
velocity deviations and an SI value.

We ran the simulation for two different values of bottom sound-speed: cb = 1600/1625m
s ,leaving other

parameters without changes. The results are shown in Fig. 3.11 and Fig. 3.12 respectively.
From the graphical representation of SI values unclear if there is any separation improvement between

surface and submerged sources, especially among cb = 1575m
s and cb = 1600m

s cases. So we have to
compare the averaged numerical SI results, shown in Table 3.3. Based on the numerical results, the only
dependence that immediately can be noticed is that SI for a surface target is getting smaller as a bottom
speed value is growing. Other SI values are fluctuating and there is no obvious dependence can be pointed
on. Although there is no surface/submerged separation improvement between cb = 1575m

s and cb = 1600m
s ,

we are assuming that the tendency of slow SI decreasing will continue and a separation improvement will
continue as a gradient between velocity at the bottom of a water-column and a sound-speed velocity into
the bottom layer will grow. A more general conclusion arises from the presented results - small oscillations
in the bottom velocity will degrade separation capability of SI.

3.2.4 Changes in bearing vs SI results

We have been interested as a part of our study to learn a bearing angle influence on SI capabilities to
distinguish between targets. We used the SI algorithm for different bearing angles between 50 − 550, a
bottom sound-speed was set to cb = 1612m

s to create more realistic profile. We didn’t make any changes
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.10: SI algorithm output for 300Hz source,cb = 1575m
s , bearing 00.
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.11: SI algorithm output for 300Hz source,cb = 1600m
s , bearing 00
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.12: SI algorithm output for 300Hz source,cb = 1625m
s , bearing 00
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.13: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 50
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.14: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 100
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.15: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 150



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 38

(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.16: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 200
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.17: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 250
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.18: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 350
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.19: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 550
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Table 3.4: SI values [dB] for bearing angles 50 − 550

Figure 3.20: Averaged SI values for bearing angles 50 − 550

in other parameters at this stage under an assumption that for a current study it will be unnecessary. The
results are shown in Fig. 3.13-3.19 corresponding to bearing angles of 50 − 550respectively.

We can conclude from the simulation results that as a bearing angle is growing above ∼ 220 the SI
capabilities to distinguish between 2m and 12m targets are degrading. But for a relatively small bearing
angles the SI dependence can’t be seen immediately. We need to make additional analysis beside the graphical
results as it was done in 3.2.3. The SI values for the current case can be found in Table 3.4.

We chose to display the values graphically at the same configuration as the simulation output where SI
for 2 m target defined as a reference zero value.The results are given in Fig. 3.20using a same axis system
for all the cases. From the shown results we can’t conclude that there is any dependence between the SI and
bearing angles of 50 − 200, yet we can state that for relatively small bearing angles the separation value is
stable and it is around 2dB. Therefore SI can be useful for surface and submerged targets classification not
only in zero bearing (end-fire) case but also for small bearing angles values (less than critical angle value).



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 43

3.2.5 SI dependence on a source-receiver range separation

Despite the fact that we are dealing with a range independent waveguide case, SI is expected to change
through the range. The most obvious reason for this is decaying of the pressure field with a range increasing
and for a long distance case a source level will be eventually same or even below a noise level, and for
these ranges SI will not be useful anymore. Beside a range-decaying process regions of constructive and
destructive inter-modal interference can be found at different ranges from the source. Therefore we should
expect fluctuations in SI values for different ranges. We used the same parameters for the simulation as
before for ranges of 1,5,10 and 15km. The results are shown in Fig. 3.21-3.24.

Although SI values are changing with a range, we got satisfying results for ranges of 5 and 10 km. For
the two cases a ∆ of ∼1.5-2 dB in SI values helps to distinguish between targets. For 1 km range the
separation is relatively small and ∆SI between 2 m and 12m targets is less than 1dB. We can study from the
current results that areas of ’shadow’ by means of an SI capability to distinguish between the targets should
be expected. We will get back to the SI range dependence issue and study it more carefully with realistic
sound-speed profile. Not less important to study 15km results. Generally it can be noticed from Fig.3.24(d)
that for a ’far away’ from a source case a signal level will be below a noise level. In addition to the range
decaying effect we can see that the SI separation capabilities had been degraded. It can be explained by a
more significant attenuation in higher modes up to the point in the range where is only one dominant mode
(first mode) exists.

Our conclusions concerning a range influence on SI are preliminary at this stage and will be explored
extensively in Section 3.2.7

3.2.6 Windowing functions for SI calculations, numerical results.

We already mentioned before (3.2.2) that we chose to use a Hanning window function to split an angle
space (or a modal space). Now we will describe and compare results of SI calculations to other standard
window functions. We used for this purpose three additional window functions: Blackman-Harris[19], Nutall’s
Blackman-Harris[20], and triangular[17, 18] function. We are interested to know if there is any improvement
in SI ability to separate lower from higher modes in case of using a slightly different window function. The
final performances of SI are most interesting in the current case, therefore averaged SI values only will be
presented and compared.

By comparing the shown in Fig. 3.25,3.26,3.27 for ranges of 1, 5 and 10km it is hard to make a definite
conclusion concerning advantages of a specific windowing technique. We can see a high correlation between
all the techniques in ranges of 1 and 5 km, especially in a separation between 2m and 12m targets which
is our main concern. At the range of 10km more differences can be noticed, yet the differences are not
significant enough to make conclusions and to prefer specific window function among the others. We will
continue to use a Hanning window from communality reasons only.

3.2.7 SI and source-receiver range. Extensive view.

At this part we will investigate the reasons for the early discovered (Fig. 3.21) SI mismatch for a 1km range
case. We found that at some ranges SI results can mislead us about a target location. We will use a pressure
field modal analysis to investigate the reasons for this. Finally, a solution which will improve SI algorithm
robustness will be suggested and tested.

To make our study more realistic we changed a water-column sound-speed profile according to Table
3.1. Our intentions were to study 500Hz and 1kHz frequency cases, so we defined an array of 133 horizontal
equally spaced hydrophones separated by a d = 0.75m. For 1kHz frequency case a surface target was defined
as a source at 1m depth based on a Llyod-Mirror effect (see 2.37). Random range values for a simulation
were chosen to fulfill requirement for SI algorithm stability and to find if there is some areas of ’shadow’
where SI results will bring us to a wrong conclusion concerning a target category. We will present firstly
results for 1kHz frequency source.

From the results presented in Fig. 3.28,3.29,3.30,3.31,3.32,3.33,3.34 it can be immediately noticed that
an SI supplies robust indication of the source category for a relatively wide spectrum of range values. As
promising the results may be looks there is still an unsolved issue of a ’shadow’ area that must be studied.
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.21: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 00, range 1km
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.22: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 00, range 5km
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.23: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 00, range 10km
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(a) Beamformer output for source/receiver at 82m depth (b) SI for all depth/ receiver depth combinations

(c) Averaged receiver depth SI (d) Averaged receiver depth beamformer output

Figure 3.24: SI algorithm output for 300Hz source,cb = 1612m
s , bearing 00, range 15km
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(a) Hanning window results (b) Blackman-Harris window results

(c) Nutall’s window results (d) Tringle window results

Figure 3.25: Averaged SI using different windows techniques for 300Hz source,cb = 1612m
s , bearing 00, range

1km
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(a) Hanning window results (b) Blackman-Harris window results

(c) Nutall’s window results (d) Triangle window results

Figure 3.26: Averaged SI using different windows techniques for 300Hz source,cb = 1612m
s , bearing 00, range

5km
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(a) Hanning window results (b) Blackman-Harris window results

(c) Nutall’s window results (d) Triangle window results

Figure 3.27: Averaged SI using different windows techniques for 300Hz source,cb = 1612m
s , bearing 00, range

10km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.28: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 5km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.29: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 5.2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.30: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 6km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.31: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 7.4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.32: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 11km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.33: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 12.3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.34: SI algorithm output for 1kHz source,cb = 1612m
s , bearing 00, range 14km
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We tried to run a simulation for more range values but for all cases results were satisfying from an SI stability
and a correct indication point of view.

Our next goal was to repeat the same procedure for 500Hz source. Simulation parameters were set as
before, beside that a surface target was defined at 2m depth. Simulation results can be found in Fig. 3.35,
3.36, 3.37, 3.38, 3.39, 3.40, 3.41, 3.42.

The most interesting result is the one in Fig. 3.36. It is easy to notice that for a receiver which is
separated from a target at 6km range it will be impossible to distinguish between a target at 2m depth and
at 72m depth based on the averaged SI results. Both targets will look same if we will rely on SI analysis
tools. This is an extreme version of the previously observed effect for a 300Hz target (Fig. 3.21). It can be
seen also that the ’shadow’ area is relatively short, the problem completely disappears for ranges of 5.9km
and 6.1km, therefore we can assume existence of other ’shadow’ areas that just hadn’t been discovered yet.
Our next step was to determine the extend of this area. From simulation results shown in Fig. 3.43, 3.44,
3.45 we found that boundaries of the area are 5.96km and 6.01km. So the total ’shadow’ area is less than
50m long, therefore it can’t be easily located.

Now we have to find what was a cause for misleading SI results almost exclusively in range of 6km and
to suggest a robust solution. To understand the physics of the process we have to get back to a pressure
field modal analysis. Total pressure field for 2m depth omnidirectional source and the same environmental
parameters was derived using a KRAKEN simulation[5] and presented in Fig.3.46. Some pressure field value
drops can be noticed around 6km range. To look at more detailed view of this area we are using close-up
results displayed in Fig. 3.47 and Fig. 3.48. Now it seems even more definite that at the range of 6km the
pressure field is non-consistent with other ranges. Some destructive inter-modal interference pattern could
be assumed for the specific range or by using a ray terminology we can assume that a defocusing effect is
observed.

Figure 3.46: Total pressure field, 2m depth target, 500Hz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.35: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 5.9km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.36: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 6km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.37: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 6.1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.38: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 6.25km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.39: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 8.3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.40: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 9km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.41: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 12km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.42: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 12.8km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.43: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 5.96km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.44: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 5.99km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.45: SI algorithm output for 500Hz source,cb = 1612m
s , bearing 00, range 6.01km
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Figure 3.47: Pressure field,range 5-7km, 2m depth target, 500Hz

Figure 3.48: Pressure field,range 5.6-6.4km, 2m depth target, 500Hz

More accurate analysis is still required before further conclusions can be made regarding the robustness of
SI. We need to look into the relative contribution to the total field of the low and high order modes. A Matlab
code was written for this purpose. The total pressure field was decomposed to modes contribution functions
using the orthogonality property. An absolute value of the averaged low to high modes ratio was calculated
and displayed in Fig. 3.49. The same definition for high and low modes as in Sec. 3.1 was used. The results
are very interesting. At range of 5.9-6.0 km a peak value of the ratio can be immediately examined, meaning
strong attenuation of the high modes at the range of 5.9-6.0 km. Peak duration is relatively short at range,
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Figure 3.49: Averaged ratio low
high modes [dB] ,range 5.6-6.4km, 2m depth target, 500Hz

∼ 40m, and it explains the reason for very short area of misleading SI results in the current case. A strong
suppression of higher modes at this range explains also a pressure field value drop mentioned earlier.

To support our conclusions we can look at numerical results of an averaged beamformer output calculated
by OASES for ranges surrounding 6km that are displayed in Table 3.5.

For every range case displayed values represent averaged beamformer output for each of target depth
from 2m depth to 82m as a function of a steering angle between −100 ÷ +100. By looking at the values in
an area of 00steering angle significant differences of ∼ 10dB can be noticed for surface (2m depth) target
located in 5900m and 5980-6100m. The results are leading to the same conclusion. Non-consistent increasing
of energy is concentrated in the lower modes relatively to the higher modes in range of 6km.

It is necessary to find a solution that will help to overcome the problem. As was already mentioned
above (Fig. 3.9) the target evaluation relies on an SI averaging process of discrete receiver locations. We
can try to improve our evaluation results in ’shadow’ areas by increasing number of depth samplings in a
water-column. We will divide a water-column into 20 stratified layers instead of 10 as it was until now. The
trade-off will be obviously expressed by a calculation time growing.

The results of averaging through 20 layers for ranges 5.98/ 5.99/ 6.00 km are shown in Fig. 3.50, 3.51,
3.52.

The results show a separation of at least 1dB in SI values between a surface and a submerged target (a
submerged target in this case will be defined as 7m source, following a decreasing of a depth sampling step
value). Therefore a stratification to 20 layers will satisfy our requirements for SI separation capabilities even
in the ’shadow’ areas.

3.2.8 Receiver Depth-Range Averaging Process.

Until now we assumed that a submerging process is a vertical submerging with no changes in a range
separation between an array and a source. In this section we will show results obtained by a more realistic
scenario, in which AUV or any other submerged vehicle arrives to a pre-defined depth by a diving with
some angle. This diving process will change not only a depth of the array but a range to the target as well.
By taking into account changes in a range to the target we can estimate SI values based on depth-range
averaging.

We already mentioned that the algorithm could be sensitive to a range changes. An increasing of the



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 72

Table 3.5: Receiver depth averaged beamformer values [dB] for steering angle −100 ÷ +100
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.50: SI algorithm output for 500Hz source, 20 layers averaging, range 5.98km



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 74

(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.51: SI algorithm output for 500Hz source, 20 layers averaging, range 5.99km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver depth SI

(c) Averaged receiver depth beamformer output

Figure 3.52: SI algorithm output for 500Hz source, 20 layers averaging, range 6.0km
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depth sampling points had been suggested as a solution to a range instability with the price of a significant
increase in calculation time. A number of propagation model iterations during an SI calculation is n2, where
n is the number of stratified layers, so in our case a multiplication of the number of layers by 2 requires
additional 300 iterations. The price is relatively high, so we will try to solve the problem by adding an
averaging process through range to the algorithm.

An initial range had been defined for a receiver in surface location (first depth level). For each next
receiver depth level a range to the target had been decreased by a factor of ∆r = ∆d

tan α + comp, where
∆d, α, comp are: changes in the depth, a diving angle, and a constant compensation factor respectively. The
compensation factor is added as a consideration of a ’tail’ (towed array) length. It had been set to 50m.

The depth averaged SI results of a 6km initial range for a 500Hz target were most interesting. Depth-
range averaged SI results for the same initial parameters are shown in Fig. 3.53 for 450diving angle case. An
initial range to the the target was 6km and a final range for 82m depth was 5.451km. Let’s compare results in
Fig. 3.53 to results of a depth averaging in Fig. 3.36. It’s arises immediately that the depth-range averaging
improved SI results with no need for any additional calculations.Therefore it is reasonable to assume that
a range sensitivity problem of the algorithm can be solved by range averaging without trade-off, on the
contrary there is a benefit - the process makes simulation condition more realistic. We will explore this
subject more by investigating some other scenarios as a preliminary step to final conclusions.
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.53: SI algorithm output for 500Hz source, depth-range averaging, range 6km,α = 450
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In Fig. 3.54 and 3.55 a range of 6km with α = 600 and α = 750cases are shown.



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 79

(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.54: SI algorithm output for 500Hz source, depth-range averaging, range 6km,α = 600
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.55: SI algorithm output for 500Hz source, depth-range averaging, range 6km,α = 750
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The SI results are very satisfying in both α = 600 and α = 750 cases. An SI for a surface target can be
easily distinguished among other cases and differences between represented diving angles are insignificant.
The last can be explained by relatively small differences in a total averaging range area. The final range
to the target is changing from 5.451km to 5.496km and to 5.523km for all three cases respectively. A ’tail’
compensation factor part in range changes is more significant, therefore an influence of diving angle changes
is less significant for final results. Nevertheless a diving angle can be very useful as a parameter of AUV
behavior to submit the optimal SI results when the ’tail’ length stays fixed and it is a function of an array
angle resolution3.1.

We used 450as a diving angle for some other ranges (ranges of previously described cases of a depth
averaging were used). The results can be found in Fig. 3.56, 3.57, 3.58 for 8.3km, 9km, 12km ranges
respectively.
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.56: SI algorithm output for 500Hz source, depth-range averaging, range 8.3km,α = 450
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.57: SI algorithm output for 500Hz source, depth-range averaging, range 9.0km,α = 450
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.58: SI algorithm output for 500Hz source, depth-range averaging, range 12km,α = 450
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The most interesting result is the last one (12km range) (Fig.3.58). As we can see a 42m deep target
looks the same as a surface target. The SI results are misleading as was in a depth averaging case for 6 km
range. We tried this time to solve the issue by a different approach. Instead of adding depth sampling points
we decided to increase a total area of range averaging. This can accomplished by diving angle decreasing,
a trade-off is a AUV maneuvering time and therefore a total SI calculation time. A diving angle was set
to α = 150, meaning that averaging area was extended by ∼ 250m. Results are shown in Fig.3.59 and an
improvement can be noticed.
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.59: SI algorithm output for 500Hz source, depth-range averaging, range 12km,α = 150



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 87

In the next step, the range-depth averaging approach had been applied to 1kHz source. Different range
to the target cases had been tested. Results are shown in Fig. 3.60, 3.61, 3.62 for 5km, 7.4km and 12.3km
respectively. For a 12.3km range the SI results are misleading as was in case of a 12km range and a 500Hz
source.
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.60: SI algorithm output for 1kHz source, depth-range averaging, range 5km,α = 450
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.61: SI algorithm output for 1kHz source, depth-range averaging, range 7.4km,α = 450



CHAPTER 3. SI FOR RANGE-INDEPENDENT ENVIRONMENTS 90

(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.62: SI algorithm output for 1kHz source, depth-range averaging, range 12.3km,α = 450
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We will adopt here the same approach as before of an averaging area increasing. Decreasing of diving
angle to 150will give us satisfying results shown in Fig. 3.63. Therefore a diving angle of 150 looks as optimal
angle from SI optimization point of view.
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(a) SI for all depth/ receiver depth combinations

(b) Averaged receiver range-depth SI

(c) Averaged receiver range-depth beamformer output

Figure 3.63: SI algorithm output for 1kHz source, depth-range averaging, range 12.3km,α = 150
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The range averaging addition to the SI algorithm had been checked on some other scenarios and for all
the cases the SI separation capabilities between surface and submerged sources were stable.

3.2.9 SI behavior in range-independent environment - summary.

We can generalize based on the results presented in 3.2 that SI algorithm is robust enough to distinguish
between surface and submerged targets. The algorithm is indifferent to a windowing technique process. The
algorithm can provide accurate results for a source frequency range between 100Hz and 1kHz in environmental
conditions of Monterrey Bay and for bearing angles up to ∼ 200. Although the algorithm relies generally
on averaging through 10 stratifying layers for most of the ranges, to get more accurate results 20 layers
stratification and averaging is recommended.

Range-depth averaging approach has some advantages over regular depth averaging approach. The range-
depth averaging allows more accurate simulation of a depth changing process in most cases (except the static
diving case, which is irrelevant in the current discussion) and improves substantially SI algorithm stability
for various target-receiver range separation cases. From the studied cases arises that a diving angle of 150will
be optimal to maintain SI capabilities.



Chapter 4

SI Calculation for Range-Dependent

Case

In this chapter SI results for a range-dependent environment will be presented. Range-dependent environ-
ment will be simulated by an upslope/ downslope bottom. Simulation results will be discussed and applicable
conclusions will be made to ensure an SI algorithm stability for coastal areas with range-dependent charac-
teristics. A brief theoretical explanation of a wave propagation mechanism in a wedge-shaped ocean will be
also provided.

4.1 Essence of upslope/ downslope sound propagation.

Our current discussion can’t be complete without a study of a SI behavior in a range-dependent environment.
Our particular interest is to investigate an impact of a wedge-shaped coastal area on an SI capability to
recognize surface and submerged targets. It will be useful, for our further discussion about SI simulation
results, to summarize main effects of a shallow water sound propagation in presence of the downslope/
upslope geometry.

The subject has been studied extensively, and a wide selection of publications covering the area can
be found[8, 9, 22, 23, 24, 25, 26]. Special attention of authors usually has been given to modeling issues,
and relatively simple cases of few modes has been discussed to provide a good understanding of a modal
energy conversion (mode coupling) mechanism. We will try to re-catch the most essential ideas of the sound
propagation in the wedge-shaped environment for further analysis of SI simulation results.

Our recent discussion 3 about SI simulation results for a range-independent environment was based on
the dependence of a pressure field modal distribution on the source location (see 3.1). We can rely on the
same effect for the current environment. For either downslope or upslope cases the modal distribution of
the energy at the source location will be a depth dependent, yet the SI results at the receiver location are
expected to be different as long as the receiver is distant from the source.

An intuitive explanation for this is obvious. The SI algorithm is based on calculations of a ratio between
energy concentrated in shallow and steep propagating angles. In range-independent environment the modal
angle doesn’t change it’s value due to bottom interaction so the modal angle ratio generally keeps it’s value
through the range. It easier to think about it using ray theory concepts. For a range-independent case each
mode can be represented by a particular family of rays with equal grazing angles. In the presence of the
bottom slope the situation is completely different. By simple geometry consideration it can be easily seen
that every interaction with a slope will reduce a ray propagation angle for a downslope case and increase
the angle for an upslope case. Therefore we can’t be sure anymore that the angle ratio (SI) will be a true
indicator of the source location. We can simplify a downslope/ upslope effect’s explanation from SI point of
view by thinking that the energy is shifting to the shallow/ steep angles subspace directions respectively as
the sound propagates to the receiver.

Although the subject of a mode coupling is obviously more complicated than the current presentation and
it is incomplete without a modal analysis and coupling criterias’ examination (could be found in [9, 8, 23]),

94
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it will be satisfying for a purpose of our study to understand that the previously presented results cannot
be sustained in a wedge-shaped ocean. It is hard to make some definite conclusions based on the analytical
analysis about how constructive or destructive a slope presence can be for SI capabilities, mainly because of
a relatively high number of modes that will be excited at the frequencies of a interest (500Hz and 1kHz). Yet
we can assume that for a surface target with relatively low energy concentration in a shallow angles subspace,
which is a main property for recognizing it among other targets, the downslope will have destructive influence.
The upslope on other hand can be constructive element for SI capabilities. These assumptions are preliminary
and based on intuition only, therefore we need to test their correctness through SI simulations.

4.2 SI simulations range-dependent environments

For a range-dependent case we had to change a propagation model from a previously used OASES to a
RAM (Parabolic equation) algorithm. Therefore an SI calculation procedure had been changed slightly too.
The AcTUP (Acoustic Toolbox)[27] was used as an interface to the RAM algorithm. By using AcTUP we
were able to calculate propagating pressure field in the watercolumn with resolution of 0.75m in range and
10m in depth. Instead of recalling an OASES algorithm for each particular geometry combination for source
and receiver locations as it was for a range-independent case, we implemented a routine which multiplies a
steering vector with pressure field values pre-calculated by RAM. Beside these changes the main structure
for the SI calculations remained the same.

Frequencies of 500Hz and 1kHz have been studied for a range-dependent environment for ranges up to 10
km. Both downslope and upslope cases have been simulated for shallow slope angles up to 2 degrees. The
slope has been defined by changing a watercolumn depth in every 1250 m segment of the range so the total
number of eight areas with different watercolumns had been ’stitched’ together. Exact soundspeed profiles
for each of simulation cases and the simulation results will be presented in next sections. Bottom parameters
remained the same as for a range-independent case, though a bottom attenuation influence has been studied
too for a downslope environment, and for this purpose the bottom attenuation value was increased.

Although the SI algorithm was based on the depth averaging exclusively, small fluctuations in range
values have been assumed due to limits to reallocate AUV to some fixed point in the watercolumn as a part
of a maneuver between pre-defined sampling depth levels. Therefore area of 17m was defined to simulate
these fluctuations. The depth averaging process had been based on a sampling process of a pressure field
between 1m and 90m depth without consideration of a watercolumn’s total depth at array location. For
practical reasons it is highly time-consuming process to sample pressure at depth levels that are uniformly
distributed through the watercolumn, specially if the watercolumn has been rapidly increased.

4.3 SI results for a downslope environment

The first case of range-dependent part of our study was for a 0.5 degree downslope bottom environment.
The slope is extremely mild and could be found in various reference articles as a weak coupling case. We set
an initial watercolumn’s depth to 100m (same as for a range-independent case) at a source location and a
final watercolumn at a range of 8750m was set to 187.5m. The soundspeed profile is shown in Fig. 4.1. A
bottom soundspeed was set to cb = 1612m

s with attenuation of α = 0.4 dB
λ .

The SI results were tested for source frequencies of 500Hz and 1kHz. Pressure field excited by a surface
500 Hz source was calculated by the RAM and the results are shown in Fig. 4.2
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Figure 4.1: Downslope half degree watercolumn soundspeed profile

Figure 4.2: Total pressure field, downslope 0.50, 2m depth target, 500Hz

The SI simulation results (pre-averaged and final) for a frequency of f0 = 500Hz are presented in Fig.4.3-
4.7 for a range separation from 1km to 5km.
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.3: SI ,500Hz source, downslope 0.50, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.4: SI ,500Hz source, downslope 0.50, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.5: SI ,500Hz source, downslope 0.50, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.6: SI ,500Hz source, downslope 0.50, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.7: SI ,500Hz source, downslope 0.50, range 5km

From the results we can conclude that SI behavior can be expected to be very unstable if a receiver is
moving farther away from a source and a slope interaction effect is getting more significant. Although the
simulation results are supporting our previously made assumptions about a destructive impact of a downslope
presence on SI capabilities, it is surprising that even for a mild slope of a half degree this destructive pattern
can be immediately seen.

We will test the SI results in the same environment but for 1kHz source. The pressure field for a surface
1kHz target case is shown in Fig.4.8 and SI results are in Fig.4.9-4.13 for the same ranges as in the 500Hz
case.
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Figure 4.8: Total pressure field, downslope 0.50, 1m depth target, 1kHz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.9: SI ,1kHz source, downslope 0.50, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.10: SI ,1kHz source, downslope 0.50, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.11: SI ,1kHz source, downslope 0.50, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.12: SI ,1kHz source, downslope 0.50, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.13: SI ,1kHz source, downslope 0.50, range 5km

From the results it appears that the SI capabilities to recognize a 1kHz surface target are degrading
relatively to 500Hz source in the same environment. Therefore it can be summarized that a downslope
presence will reduce SI capabilities for 500Hz and 1kHz sources even to the level of a complete incapability
for some ranges. We will check if our preliminary conclusions are correct by examining 1 degree downslope
simulation results. We should expect at this point that a downslope angle growing will cause additional
degrading of SI capabilities.

The soundspeed profile described by Fig.4.14 was defined according to the same protocol as for the half
degree. The final watercolumn depth at range of 8.5km from the target was set to 275m.

Pressure field and SI results for a 500Hz source are shown in Fig.4.15-4.20. It can be noticed from the
results that the destructive impact of the downslope angle on the SI capabilities became stronger as a slope
angle grew.
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Figure 4.14: Downslope 1 degree watercolumn soundspeed profile

Figure 4.15: Total pressure field, downslope 10, 2m depth target, 500Hz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.16: SI ,500Hz source, downslope 10, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.17: SI ,500Hz source, downslope 10, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.18: SI ,500Hz source, downslope 10, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.19: SI ,500Hz source, downslope 10, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.20: SI ,500Hz source, downslope 10, range 5km

The results for 1kHz source (Fig.4.21-4.26) also support our assumptions. The results justified our initial
intuitive assumptions concerning the downslope impact. However, an upslope environment examination is
required before the final conclusions about a range-dependent case can be made.
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Figure 4.21: Total pressure field, downslope 10, 1m depth target, 1kHz



CHAPTER 4. SI CALCULATION FOR RANGE-DEPENDENT CASE 115

(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.22: SI ,1kHz source, downslope 10, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.23: SI ,1kHz source, downslope 10, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.24: SI ,1kHz source, downslope 10, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.25: SI ,1kHz source, downslope 10, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.26: SI ,1kHz source, downslope 10, range 5km

4.4 SI results for a upslope environment

We started an upslope environment analysis by setting an upslope angle to 1 degree. This case is a ’mirror’
case of 1 degree downslope case. A watercolumn depth at a source location has been set to 275m and at
range of 8570m the depth has been set to 100m.

The environmental settings are shown in Fig.4.27.
We tested SI results for the same frequencies and ranges as for the downslope cases in order to allow

us to compare between the two environmental scenarios. The 500Hz simulation results are shown in Fig.
4.28-4.33.
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Figure 4.27: Upslope 1 degree, soundspeed profile

Figure 4.28: Total pressure field, upslope 10, 2m depth target, 500Hz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.29: SI ,500Hz source, upslope 10, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.30: SI ,500Hz source, upslope 10, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.31: SI ,500Hz source, upslope 10, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.32: SI ,500Hz source, upslope 10, range 4km



CHAPTER 4. SI CALCULATION FOR RANGE-DEPENDENT CASE 125

(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.33: SI ,500Hz source, upslope 10, range 5km

The results are indicating tremendous improvement of SI capabilities in mild upslope environment. We
continued to test the results for farther than 5km’s from the source and for all of them up to 9km we found
that the SI separation value is 2dB at least between surface and submerged targets. However, we can’t
disregard from misleading SI results at range of 2km (Fig.4.30). To explain this anomaly we have to analyze
a pressure field at this range (Fig.4.28) as we did in the range-independent case. The pressure field’s value
drops at 2km range. Therefore this specific range belongs to a category of the ’shadow’ area and we already
learned that these areas can lead to errors in the SI estimation of a target location. The first study case
outcome is definitely supporting our previous assumptions, yet additional scenario’s examination is required.

We will investigate now 1kHz source under the same environmental conditions. The results are shown in
Fig.4.35-4.39. The high level of correlation between SI values of the two frequencies can be noticed. Although
it is possible to make the final conclusions even at this stage, to strengthen them we will test a 2 degrees
upslope case.
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Figure 4.34: Total pressure field, upslope 10, 1m depth target, 1kHz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.35: SI ,1kHz source, upslope 10, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.36: SI ,1kHz source, upslope 10, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.37: SI ,1kHz source, upslope 10, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.38: SI ,1kHz source, upslope 10, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.39: SI ,1kHz source, upslope 10, range 5km

The environmental settings for the 2 degrees upslope are shown in Fig.4.40 and the simulation results
for 500Hz and 1kHz case up to 5km ranges are in Fig.4.41-4.52. We can learn from the results that a higher
slope elevation will deliver reasonable SI capabilities, though for some ranges (1km and 3km) a downgrade
of performances can be expected. The reason for the problematic ranges is hidden in the phenomena of a
destructive interference of normal modes that can cause a creation of the ’shadow’ areas in these ranges. An
examination of ranges above 5km limit supplied satisfying results with averaged separation values of 2dB at
least.
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Figure 4.40: Upslope 2 degrees, soundspeed profile

Figure 4.41: Total pressure field, upslope 20, 2m depth target, 500Hz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.42: SI ,500Hz source, upslope 20, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.43: SI ,500Hz source, upslope 20, range 2km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.44: SI ,500Hz source, upslope 20, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.45: SI ,500Hz source, upslope 20, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.46: SI ,500Hz source, upslope 20, range 5km
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Figure 4.47: Total pressure field, upslope 20, 1m depth target, 1kHz
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.48: SI ,1kHz source, upslope 20, range 1km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.49: SI ,1kHz source, upslope 20, range 2km



CHAPTER 4. SI CALCULATION FOR RANGE-DEPENDENT CASE 141

(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.50: SI ,1kHz source, upslope 20, range 3km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.51: SI ,1kHz source, upslope 20, range 4km
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(a) SI for all depth/ receiver depth combinations

(b) Averaged SI results

Figure 4.52: SI ,1kHz source, upslope 20, range 5km

We can summarize at this point that the upslope environment has a constructive influence on SI perfor-
mances and this fact can be very useful for future applications. This conclusion also supports our preliminary
assumptions about the impact of a wedge on SI calculations.

4.5 Bottom attenuation

We next to explore the SI dependency on bottom attenuation. It is reasonable to assume that a losy bottom
could cause to some changes in modal energy distribution, and as a result, the SI performance could be
questionable. We tried to examine this assumption for both downslope and upslope cases by increasing a
bottom attenuation value twice, up to 0.8 dB

λ . By comparing our new results to the previously presented
results we hardly found any differences as long in SI performance, in particular for ranges up to 5 km. The
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Figure 4.53: SI separation capabilities for range-dependent/independent cases, 500Hz source

quantitative comparison of the results will be presented in the next section.

4.6 Quantitative comparison of range-dependent results.

Although many cases were presented, it’s still hard to decide what will be an optimal range for a target
recognition just by looking at separate cases. Some criterias for comparing results are required. We decided
to identify in each case the worst separation value result. For example, if any non-surface target in the
specific scenario produced an SI value of 0.1dB relatively to a surface target, the worst separation value for
this scenario will be equal to 0.1dB. By creating this parameter we can compare all the cases and to define
a general behavior pattern.

Results for a 500Hz source are collected in Fig.4.53. It is clear from the results that for a 500Hz target
the depth discrimination will be more effective for upslope geometry and allocation of a receiver between 3.5
and 7.0 km at range.

The pattern repeats itself for 1kHz source (Fig. 4.54). Here again the upslope presence has a positive
impact on SI separation performance.

It is interesting to notice that the slope presence creates some oscillating pattern in the SI values. The
same oscillating pattern has been noticed by S.T. McDaniel [24] during an investigation of mode coupling
and modal energy distribution. One of McDaniel results are shown in Fig.4.55. The results in Fig. 4.55
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Figure 4.54: SI separation capabilities for range-dependent/independent cases, 1kHz source



CHAPTER 4. SI CALCULATION FOR RANGE-DEPENDENT CASE 146

Figure 4.55: Results are taken from [24]

represent a energy relation in modes 2 and 3 relatively to energy in the first mode. We can recall that the
SI is based on an averaged ratio between the energy in higher and lower modes, for example, in the case of
only 3 excited modes SI is equal to averaged value of the Mcdaniel result (Fig.4.55). The average of two
oscilating outputs will be oscillating too.

We investigated here more complicated cases with a relatively large number of modes, yet the principle
of SI as a ratio between energy in higher and lower modes remains the same, therefore McDaniel results are
relevant and provide an additional support for the results in Fig.4.53, 4.54.

We compared also different attenuation cases. We found that the bottom attenuation values will have a
negligible effect on SI performances (4.5). The results are shown in Fig.4.56.

Presented above results supply additional quantitative support for our previous assumptions and con-
clusions and they are very useful in defining optimal conditions for the depth discrimination process. We
can state that for an efficient use of the SI method in the range-dependent environment a receiver/ source
geometry has to satisfy upslope conditions so the watercolumn depth value at the receiver location will
be higher than at the source location. Range separation of 3.5-7.0 km between the two will provide more
accurate estimate concerning a category of the target (surface/ submerged).
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Figure 4.56: SI separation capabilities,high to low bottom attenuation comparison, 500Hz source



Chapter 5

Summary and Conclusions

In this work we examined a specific approach to the classification of sources. It is based on the angle
distribution of the energy excited by a source in a shallow water environment. We were interested mainly to
establish a method of a depth discrimination for sources with frequencies up to 1kHz for a typical summer
soundspeed profile (Monterey Bay) . The method was applied for an array towable by an AUV . Two
environmental cases were studied. The first was a range-independent case for which the OASES (wavenumber
integration) propagation model was used. The second, range-dependent case, was examined using the RAM
(PE) propagation model.

By modal decomposition of the pressure field we found a strong dependence of lower mode energy on
a source location. Simulation results identified a relatively small contribution of low modes in the pressure
field excited by a surface source. Based on this connection a general method of a depth discrimination has
been suggested[28]. The method relies on a relation between normal modes and plane wave representation
of the field, so the low modes can be described as plane waves with shallow propagation angles. The new
concept of Submergence Index (SI) is defined as a ratio between the energy in the low and high propagation
angles and uses it to classify a source as a surface or a submerged target.

We learned that SI value can be used as an indicator for a target’s depth location. Although we found
that the initial SI method is generally stable and robust enough for a target depth discrimination process,
some additional considerations are required. From a range-independent case analysis we found that a low
angle’s subspace should be defined by modal energy concentrated in the first 30% of a trapped modes’ total
energy for optimum depth discrimination performances. A target should be located at end-fire of the array
to provide the most accurate estimation. However, bearing angles of up to 20 degrees can be considered as
relevant cases to apply the SI method.

Probably the most surprising outcome of the range-independent case study was a discovery of ’shadow’
areas. Array allocation at such areas can’t assure success of the standard SI procedure and actually can
provide misleading results. To overcome this obstacle we suggested two alternatives to improve robustness
of the SI procedure. We showed that by increasing a watercolumn sampling resolution in depth, the SI
procedure will be improved even in the ’shadow’ areas. The second approach can be even more efficient
from a time and computational resources optimization point of view. We found that by sampling not only
different depth levels at a fixed range but also by slightly changing range’s value for each sampling, and by
averaging the samplings, SI capabilities can be fully restored. We also explored a mechanism of a ’shadow’
areas creation by using pressure field modal analysis for these areas. As a result of a destructive inter-
modal interference, areas of pressure characterized by sufficiently depressed high modes can be found in the
watercolumn. This mechanism can unbalance a modal energy distribution and cause an SI method to fail.

The range-dependent case was the most interesting and important part of the research. We found good
correlation with our preliminary assumptions concerning a slope presence impact on SI capabilities. We
concentrated our efforts in two source frequencies: 500Hz and 1kHz. We showed that for a downslope case
is extremely difficult to find an array position that produce reliable SI results. Even for a mild downslope
of a half degree the SI simulation results were unstable. However, the upslope scenario presented sufficient
stability. Therefore from a practical point of view, a presence of the slope demands array allocation in deeper
areas of the ocean than a receiver. This finding should guide the development of concepts for autonomous
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distributed systems.
Although a preference of an upslope environment is obvious, methods for improvement of SI capabilities

in downslope environment can be considered as a future goals of the research.The performance in these cases
may be improved by an increase in depth sampling resolution, as was the case in the range-independent case.
It can be also useful to compare efficiency of every suggested SI modification for a range-independent case
in combination with AUV hydrodynamic behavior simulation. This will allow us to estimate the efficiency
in light of overall system performances.
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