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ABSTRACT

The first section of this thesis describes the Wiener theory
of nonlinear system characterization and discusses some of its important
concepts. Following the lines of this theory a theory is developed for the
experimental determination of optimum time-invariant nonlinear systems.
The.gystems are optunum in a weighted mean square sense in which the
weighting function is at our disposal.

- The design of nonlinear systems is regarded as the problem
of mapping the function space of the past of the input onto a line that
corréspondg:to the a.mphtude of the filter output. By choosing a series
expansion for this mapping operation that partitions-the function space
into: non-overlappmg cells, an orthogonal repreésentation for nonlinear
systems is obtained that leads to convenient apparatus for the determina-
tion-of optimum systems. General methods are described for applymg
this theory to determine systems having a performance that is superior
to that of given linear or nonlinear systems. A criterion is established
relative to which two systems are defined as nnea.rly equivalent? and the
approxmation of nonlinear systems by linear and simple nonlinear ones
is discussed. The theory is extended to -include the problem of multiple
nonlinear prediction and apparatus for the determination of optimum

predictors is indicated.
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Introduction

A physically realizable nonlinear system, like a linear one, is a
system whose present output is a function of the past of its input. We
may regard the system as a computer that operates on the past of one
time function to yield the present value of another time function. Math-
ematically we say that the system performs a transformation on the past
of its input to yield its present output. When this transformation is linear
(the case of linear systems) we can take advantage of the familiar con-
volution integral to obtain the present output from the past of the input
and the s&stem is said to be charact‘erized by its response to an impulse.
That is, the response of a linear system to an impulse is sufficient to
determine its'response to any input. When the transformation is non-
linear we no longer have a simple relation like the convolution integral
relating the output to the past of the input and the system can no longer
be characterized by its response to an impulse since superposition does
not apply. Wiener has shown, however, that we ean characterize a
nonlinear system by a set of coefficients and that these coefficients
can be determined from a knowledge of the response of the system
to shot noise excitation. Thus, shot noise occupies the same position
as a probe for investigating nonlinear systems that the impulse occupies
as a probe for investigating linear sjstems. The first section of this
thesis is devoted to the Wiener theory of nonlinear system characterization.
Emphasis is placed on iniportant concepts of this theory that afe used in
succeeding chapters to develop a theory for determining optimum nonlinear

systems.



I. The Wiener Theory of Nonlinear System
Characterization and Synthesis

1.1 General Remarks

The objectives of Wiener's method are: to obtain a set of coefficien_ts
which characterize a time-invariant nonlinear system, and to present a
procedure for synthesizing the system from a‘knowledge of its charac-
terizing coefficients. An opérator relating the ouiput to the past of the
input of a nonlinear system is defined in such a way that the characterizing
coefficients can be evaluated experimentally.

The method is confined to those nonlinear systems whose present
behavior depends less and less upon the remote past of the input as we
push this past back in time. More precisely, attention is restricted to
those systems whose pr.elsent output is influenced to an arbitrarily small
extent by that portion of the past of the input beyond some arbitrarily large
but finite time. Further, we shall restrict our attention to those nonlinear
systems that operate on continuous time functions to yield continuous time
functions. This is clearly no physical restriction since physical. time
functions, though they may change very rapidly, are continuous. The
reasons for these restrictions will become apparent in the development
of the theory that follows.

According to Wiener the most general probe for the investigation.of
nonlinear systems is gaussian noise with a flat power density spectrum
because there is a finite probability that this noise will, at some time,
approximate any given time function arbitrarily closely over any finite
time interval. Gaussian noise with a flat power density spectrum can

be approximated by the output of a shot noise generator. Hence, if two



systems have the same response to shot noise they will have the same
response forany input and we say that the systems are equivalent. The
Wiener theory of nonlinear system classification is based on this property
of the shot noise probe. A given system is characterized by exciting it
with shot noise and measuring certain averages of products of its output
with functions of the shot noise input which can be generated in the laboratory.
The measured quantities are numerically equal to the coefficients in the
Wiener nonlinear operator. Once these coeffieients are determined a
system can be synthesized that yields the same response to shot noise as
does the given system. Hence the two systems are equivalent.
Recognizing that the present output of a nonlinear system is a function
of the past of its input, Wiener formulated his ;mnlinear operator by first
characterizing the past of the time function on which it operates by a set
of coefficients and then expressing the result of the operation (the system
output) as an expansion of these coeffi'cients.1 In the development which
follows we shall treat these problems separately; first the problem of
characterizing the past of a time function by a set of coefficients and

then the problem of expressing a nonlinear function of these coefficients.

1.2 Definitions

To simplify the description of the method, it is convenient at this

point to define certain quantities and relations.

A. The nth Laguerre polynomial is defined as’

n=12,...



B. The normalized Laguerre functions hn(x) are defined as

e'x/ 2 Ln(x) x>0
hn(x) = (1)
0 x<0

The following orthogonality relation exists for these functions:

o0 1 ifm=n
f h_ (x) hn(x)dx={ (2)
0 0 ifm+#n *

C. The nth Hermite polynomial is defined as>

(n-1) 2

2
Fn(x) = (-1)‘“‘1) e* (-ad-x—) X n=1,2,3,...

D. The normalized Hermite polynomials 'qn(x) are defined as

F (x) ,
“n(X) = [z(ﬁ"l)(n_l)! (")1/2]1/2 ( )
E. The normalized Hermite functions are defined
-—xz/ 2
¢ (x)=e™ /% (x) (4)

These functions form a normal orthogonal set over the interval —w to .

Consequently we have the relation

 po 2 1 m=n
f N, () 7 (x) e dx ={ (5)

00 0 m# n

1.3 Characterizing the Past of a Time Funection

Given a time function x(t) our object is to determine a set of coefficients

which characterize its past. The coefficients are said to characterize the



past of x(t) if we can construct this past from a knowledge of them.
. Liet us here confine our attention to real time functions x(t) having

the property

o0
f x2(t) dt < o .
—~00

The past of such time functions can be expanded in a complete set
of orthogonal functions. Further, from a knowledge of the coefficients
of this expansion we can construct the time function almost everywhere.4
Because of their realization as the impulse response of rather simple
networks Wiener chose to expand the past of x(t) in terms of Laguerre
functions. These functions form a complete set over the interval 0 to «

and have the orthogonality property indicated in Eq. (2). The expansion

of the past of x(t) in terms of the Laguerre functions is

o0
x(~t) = Z u_ b (t) t>0 . (6)
n=l
where the present time is t = 0 and the u are the Laguerre coefficients
of the past of x(t). Taking advantage of the orthogonality property of

Eq. (2) we obtain the following expressioun for the u n

u = f | x(-t) hn(t) dt (7)
0

These Laguerre coefficients are readily generated in practice as the
outputs of a rather simple network whose input is x(t). This network,
shown in Fig. 1, is called a Laguerre network. It is a constant impedance

lossless ladder structure terminated in its characteristic impedance and
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preceded by a series inductance, For a detailed description of Laguerre
ne{WOrks, thei;‘rjanalysig,md Byﬁﬂieais, see reference 2. For our Purpbﬂye,s:';r
it is sufficient to know that the impulse response of the Laguerre netw@gy,g{
the nth output terminal pair on open circuit is h _(t) forn=1,2,3,... . Wé b

must now show that if x(t) is applied to the input of this network the output -
at the nth tai‘min‘al pair at time t= 0 is the nth Lnguerre coefficient u, ot,t,hn? o
past of x(t) up to the time t = 0. To this end we consider the block dhgram‘
of the Laguerre network shown in Fig. 2. For simplicity only the nth wtput
terminal is shown. The network input is x(t). Its output r (t) is gtvm by |
the convolution of x(t) with h_(t). That is,

Y
rn(t) » j x(t-v) hn('r) dv
0

At time t = 0 the output is

o«
rn(o) = ./; x{~7) hn(a') dv ' | - {8)

But the right side of this equation is seen to be equivalent to the mum
for u, given in Eq. (7). Hence we see that if t(t),u.applhd to the input of
a Laguerre network the output of the nth terminal pair at time ts0is oqutl
to the nth Laguerre coefficient of the past of x(t} up to the time t - 0. In
general, the output of the nth temin:lfp.lr'ot’th‘e Laguerre nctﬂdrk at
any time t is equal to the nth Laguerre coefficient of the past of the input
up to the time t. | | o

1.4 Properties of the Laguerre Coeificients of a Shot Noise Process

Since the probe for the investigation of nonlinear systems in the Wiener

theory is shot noise it will be nééessary in our development of this theory

7 .
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to make use of several properties of the Laguerre coefficients of a shot
noise process.

When the input to a Laguerre network is shot noise the outputs (the
Laguerre coefficients of the past of the shot noise input) have the following

three properties of interest:

1. They are gaussianly distributed.
2. They are statistically independent.

3. They all have the same variance.

The first property follows from the well-known result that the response
of avline\lar system to a gaussian input is gaussian5 (recall that shot noise
is a gaussian tirne function with a flat power density spectrum).

The second property is proved as follows: Consider the Laguerre
functions hm(t) and hn(t). Let Hm(w) and Hn(w) be the Fourier transforms
of hm(t) and hn(t) respectively. Hm(w) and Hn(w):';re then the transfer
functions from the input of the Laguerre network to the mth and nth
output -terminal pairs. The cross power density spectrum Qnm(w) of

the mth and nth output time functions can be expressed as
A
2, m (@) = H (o) H () 2;;(w) (9)

where Qﬁ(w) is the input power density spectrum and the asterisk denotes
the complex conjugate of Hn(m).6 The cross correlation funciion ¢nm( 1)

of these output time functions is given by the Fourier transform of §nm(m)

as follows:

o0

¢nm(-r) = fn(t) fm(t+1') = f §nm(w) 39T 4o (10)

00

in which the bar indicates averaging with respect to time. Using Eq. (9),



Eq. (10):bécomes

¢, (0) = __-fifh(t)"fm.('t‘) = f H_(w) H:(m) 8, () do (11)
00
for r= 0.

If i-ii(-m) is a constant, then Eq. (11) can be written

o0
—_—— *
¢nm(0) =f n.(t) fm(t) = iﬁ(m) f Hm(w) Hn(w) dw (12)
g0
We now make use of the Parseval theorem to express the integral in
Eq. (12) as follows:

o0 o0
*
s | H_ () H (0} du= f h_(t) b_(t) dt (13)
=00 0
Using the orthogonality property of the Laguerre functions (Eq. 2) in

(13) and (12) we have the result

21’r‘§ﬁ(w) m=n
1,0 1,,(0) = (14)
0 m¥n
when §ii(m) is a constant. Note that if iii(m) is a constant it can have no
impulse at the origin and thus the input and output time functions of the
Laguerre network must have zero means. Hence we have shown that
the oufputs of the Laguerre network are linearly independent when the
power density spectrum of the input is flat. (Note that this is true
whether or not the input time function is gaussian and that it also
holds for any orthogonal set of networks, not only the Laguerre

network.)

10




In the case of shot noise input the Laguerre coefficients are gaussian
time functions (property 1 abuve) and linear independence implies statis-
tical independence, proving property 2.

Property 3 can be proved by solving for the variance of the nth Laguerre
coefficient in terms of the power density spectrum of the nth output of the
network. However it can be seen very simply by recalling that the Laguerre
network, except for its first series inductance, is a constant resistance
lossless structure terminated in its characteriétic resistance. If in Fig. 1
we look to the right at any of the output terminal pairs n-n we see the
characteristic resistance of the network. Since the structure is lossless
the same power flows through each section and since the impedance at
each section is resistive and the same for each section the mean square
value of every Laguerre coefficient is the same. For shot noise input the
mean value of each coefficient is zero. Hence the variance rrlzl = ;5:-)- -ﬁ:(ﬂ
is the same for all Laguerre coefficients. In particular if the level of the
shot noise input to the network of Fig. 1 is properly adjusted all the Laguerre
coefficients will have ot = 1. In the development of the Wiener theory which
follows we shall assume this to be the case.

In section 1.3 we restricted our attention to time functions that are
squared integrable over the interval —w to w. Then in the present section
we speak of applying shot noise to the input of the Laguerre network. This
is justified by the fact that the past of any physical time function that we
can generate as an input to our Laguerre network is squared integrable
since it starts at some time in the finite past.

Any practical application of the Wiener theory must of course use only
a finite number of Laguerre coefficients to characterize the past of the

system input. Since all the Laguerre functions decay exponentially (Eq. 1),

11



for any finite number of these functions there exists some time in the
finite past such that the present outputs of the Laguerre network are
influenced to an arbitrarily small extent by the behavior of the input
prior to this time. That is, for all practical purposes the outputs of
the La:gu’e;re-net'work are not cognizant of the past of the input beyond
some finite time. Hence, as mentioned in section 1. 1 the application
of the Wiener theory is restricted to systems whose present output is
influenced {0 an arbitrarily small extent by that portion of the past of

the input beyond some arbitrarily large but finite time.

1.5 The Wiener Nonlinear Operator

Since the Liaguerre coefficients characterize the past of a time
function, any quantity dependent only on the past of this time function
can be expressed as a function of these coefficients. Thus for the

nonlinear system with input x(t) and output y(t) we can write
y(t) = F[u_l,uz,...,us,...] (15)

in which the u's are the Laguerre coefficients of xéf) at time t.

To put Eq. (15) in a more useful form we must choose an expaﬁsion
for the function F of the Laguerre coefficients. These coefficients can
take on any real value from -w to w. The Hermite functions are chosen
for the expansion because they form a complete orthonormal set over the
interval ~w to o and, as we shall see, are particularly adapted to a
gaussian distribution. The expansion of Eq. (15) in terms of normalized

Hermite functions which are defined in Eq. (4) reads

o0 00
' .y(t)=-§_i__r.'§:° ; Z .

)
' Z 3 5,...,0 M) nu) o mlu)e
s R i)

12



This equation expresses the amplitude of the time function y(t) as a function
of the Laguerre coefficients of the past of the time function x(t). It.can be
simplified by letting V(a) represent the product of polynomials @n'i(ul)- nj(uz). ..

nh(us) and Aa represent the corresponding coefficient a, Then

i, j,...,h"
Eq. (16) becomes

y) =lim § A, V(a)e (17)

See00
The behavior of any system of the class of systems considered in the
Wiener theory can be expressed in the form of Eq. 17. The coefficients
A are said to characterize the system because the complete expression
relating the output of the system y(t) to the past of its input x(t), for any
input time function, is known when the Aa's are known.

We now comé to the problem of characterizing a given nonlinear system,
that is, the problem of evaluating the Aa's corresponding to a given nonlinear
system. The object is to obtain an expression for the A, 's suitable for
experimental eva;luation. To obtain such an expression Wiener multiplies
both sides of (17) by V(B) and then makes use of the gaussian distribution
of the Laguerre coefficients of a shot noise process to obtain equation (26)
for the A 's. However, we shall take a different approach to arrive at
Eq. (26) that will give us a better physical understanding of the Wiener
method.

| In the practical case we will always use a finite number of Laguerre
coefficients and Hermite functions. Then the sum on the right side of
(17) does not yield y(t) exactly but only approximates it. We can regard

the finite sum

13



2 2

u
Z A Via)e 2 (18)

as representing the output of a nonlinear system in terms of s Laguerre
coefficients of its input and a finite number of Hermite functions. We
want to choose the A 's so that this sum best approximates the output
y(t) of the given system with respect to some error criterion when both

systems have the same input. Since, according to section 1.1 the most

general time function:. is shot noise we shall let it be the common input.

We define
2
2 2 2 2
| T Upte..tug Uy
E=lim = [ e 2 [y(t)— > A, Ve 2 ] at (19)
T~ T "

as the error between the outputs of the two systems. The justification of
the choice of this weighted mean square error is that it leads to convenient
independent exptessions for the Aa's as we shall see. We now minimize

8 with respect to the A, 's. In particular, for the coefficient Ap' we have

uz+. .- +uz

£ g [ | Z I at (20
BA, T 2T | P V) |yt) - ) A V(a)e (20)
=00 _T .

For the error to be a minimum with respect to Ap we must set Eq. (20)

to zero. This gives Eq. (21).

T o -u%%-. .. Hug
lim ﬁq | y&) v(p) dt = ’}’im fl,f f v(g) Z A Vie)e 2 dt
oJ-T ~® ~T a

(21)

14



We hdve seen-(section 1.4) that the Laguerre coefficienis of the past
of ‘@ shot-noise process are statistically:independent, normalized,
gaussian variables. Thus the joint distribution of the Laguerre coef-
ficients is

u§+. ..tu
-s/2 e'_'T—"'

2
8

P'(ul, ce ,us) = (2n) (22)

Our knowledge of this distribution is helpful in evaluating the integral on
the right side of Eq. (21). Taking advantage of the ergodic theorem we
can replace the time average of the right side of Eq. (21) by the corres-

ponding ensemble average with the result

Bl
*
lim 37 t) V() d \'4 A, Ve
T-ooZT yc) (8) dt = f f (p)z (e Z
X P(ul, .. .,us) dul. . .duB (23)

After using (22):in (23) and interchanging the order of integration and

summation we obtain

00 L) ' 2 2
(2w V) = ZAa f f V(a) V(B) e (gt - ) du, ... du

a =00 ==00

(24)

in which the bar above y(t)V(g) indicates the time average of this quantity.
Since V(e) and V(B) are products of Hermite polynomials of the Laguerre
coefficients we can separate Eq. (24) into a product of integrals each of

which involves only one Laguerre coefficient as in Eq. (25)

15



(2m)®/% SOV )

© _uZ u?
= z Aaf 'qi(ul) ni,(ul) e ld“l .. f nﬁ(us) nh,(us) e ‘s dug (25):
a -0 -0

In this equation the unprimed subscript indicies belong to those Hermite
polynomisls that make up V(a) while the primed indicies belong to those
Hermite polynomials that make up V(8). Recalling the orthogonality
property of the Hermite functions (Eq. 5) it is clear that unless all the
primed indicies i', j', ..., h' in Eq. (25) are equal to the corresponding
unprimed indicies i, j, ..., h, in other words unless p equals «, at least
one of the integrals will be zero. By the same token, if p = a then all the
integrals have the value unity. Hence Eq. (25) reduces to

(en)®/? SEVE) = Ay (26)

which provides the basis for the experimental determination of the charac-
terizing coefficients Aa. The reason for the choice of Hermite functions
to expand the right side of Eq. (15) now becomes apparent. The joint
gaussian pfobability density of the Laguerre coefficients of the shot noise
input (Eq. 22) supplies the necessary exponential weighting factor in Eq. (23)
to enable us to take advantage of the orthogonality of the Hermite functions
in evaluating the coefficients A a

This approach to the Wiener theory clearly points out that, for any given
number of Laguerre coefficients and Hermite functions, this theory deter-
mines that system whose output best approximates (in the weighted mean
square sense of Eq. 19) the output of the given system for shot noise input
to both systems. As the number of Laguerre coefficients and Hermite

. functions is increased, the output (for shot noise input) of any system

16



of the Wiener class can be approximated with vanishing error. And,
from the discussion of section 1.1 if two systems have the same response
to shot noise then they have the same response to any common input and

can be considered to be equivalent.

1.6 The Experimental Apparatus for Characterizing and Synthesizing
Nonlinear Systems

Equation (26) provides the basis for the expe‘rimental determination
of the characterizing coefficients Aa. The apparatus for the determination
of the coefficients Aa. is shown in Fig. 3. The output of a shot noise gen-
erator is fed simultaneously into the given nonlinear system and into the
Laguerre network. The output of the given nonlinear system is y(t). The
outputs of the Laguerre network are fed into a device involving multipliers
and adders. This"d'e'vice generates products of Hermite polynomials (the
V's) whose arguments are the Laguerre coefficients. Each output of this
Hermite polynomial generator, when multiplied by y(t) and averaged,
yields, by Eq. (26), one of the characterizing coefficients of the given
nonlinear system. A

Having described the method for determining the characterizing
coefficients of a nonlinear system we now turn our attention to the
Wiener method of synthesis of nonlinear systems from their charac-
terizing coefficients. The general representation of a nonlinear system
is given by Equ (17) which is the guide for the synthesis problem. This
equation tells us that, for each a, we must generate V(a) and multiply
it by A a and the exponential exp -(u? +... ¢+ uif)/Z. Then each product
must be added to give the system output y(t). In practice, the

number of multipliers is reduced if we first form the sum of the

17
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exponent1a1 ﬁmctmn

+ u )/Z can be obtamed

enerators whose mputs are

ahzable among other ways, in the form

,,sp,gc;._igl;ztanget. to generate the exp (-u’/2)

; forthesirnthe51s procedure1sshown

17EXamp1e B

(27)

5 .t'hes1s procedures descnbed

8 to mtroduce dependence of the E
- The nonlmearity is brought about
“ 'For the sunple example under
the past and thus we can bypass'_'i;};

tal procedure, the fact that this
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given nonlinear system has no storage could be determined from the results
of a priori tests made on the system.

We notice that as a result of bypassing the Laguerre network the
variables u; through ug (Fig. 3) are replaced by the single variable x(t)

as shown in Fig. 5. Equation (16) then becomes:

2
y(t) = Z a; n,(x) ex /2 (28)
i
and Eq. (26) becomes

a, = (Zw)l/ 25® n, (x) _ (29)

Let us make use of the ergodic theorem to evaluate this time average as

an ensemble average. Using Eq. (27) we can write
® 2
a, = (2m1/2 f nyx) e7* /2 p(x) dax (30)
V —00

But since, in the test setup (Fig. 5), x(t) is the output of an ideal shot-

effect generator, the probability density of x is

. 2

P(x) = (Zw)—l/z e /2 (31)
Thus

a, = nyx) e dx (32)

—00
Referring to Eq. (3) and the definition of the Hermite polynomial, it is
seen that
-1/4
nyfe) = w1/ (33)

21
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With this-result Eq. (32) can’be written

- 2
4 ‘. -
a, = "1/ f n’i(x)v'ql(x-) eX dx (34)
As a consequence of the orthogonality of the Hermite functions (Eq. 5)

we have the result
a, =1’(1/ 4 (35)

ai=0 i#£1

These coefficients serve to characterize the simple nonlinear system of
this example.

Now let us synthesize the system from these coefficients. The guide
for the synthesis is Eq. (2-85 which corresponds to Eq. (17) for the more
complicated case involving storage. Since, from Eq. (35) only one coef-
ficient is different from zero, the sum in Eq. (28) has only one term and

can be written
' 2
y(t) = a; n,(x) e™ /2 (36)

The synthesis of the system amounts to generating nl_(x) and e"xz/ 2 and
forming the product indicated in Eq. (36). The formal synthesis of the
system according to the block diagram of Fig. 4 is shown in Fig. 6(a).
Since nl(x) is just a constant, independent of x, the system is seen to
be equivalent to that of Fig. 6(b). We see that for the simple example
considered the synthesized system consists solely of the "function
generator," a component which in the more complicated case will

form only a part of the synthesized system.
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1.8 ‘Observations and Comments
It can be seen from Eq. (16) that if we choose to represent the past
of the system -input by s Laguerre coefficients and if, furthermore, we
decide to let the Hermite polynomial indicies, i, j, ..., h (Eq. 16), range
from 1 to n we have n° coefficients A to evaluate. Without a doubt this
number can become quite large in many cases of practical interest. How-
ever, with the freedom that exists in nonlinear systems we can hardly
expect to apply such a general 'approach without a great deal of effort.
At present, the large number of multipliers that are required for the
generation of the Hermite polynomials and their products is the principal
deterrent to the practical application of the Wiener method of characterization
and synthesis. It is safe to say that, at present, the Wiener theory is of
greater theoretical than practical interest.
One of the most significant contributions of the Wiener theory is that
it shows us that any nonlinear system, of the broad class of systems
considered by this theory, can be synthesized as a linear network with
multiple outputs cascaded with a nonlinear circuit that has no memory
of the past (Fig. 4). The linear network (the Laguerre network) serves
to characterize the past of the input and the nonlinear rio-storage cirouit
performs a nonlinear operation on the present outputs-:of the linear network
to yield the system output. Thus, regardless lof how the linear and nonlinear
operations occur in any giveri circuit the same over-all operation can be
achieved by a linear operation followed by a nonlinear one as shown in Fig. 4.
Another important contribution of the Wiener theory is the concept of
the shot noise probe for a nonlinear system. Just as the response of a linear

system to an impulse is sufficient to characterize the system so Wiener has
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shown that the response of a nonlinear system to shot noise is sufficient
to characterize it.

In the Wiener theory two parameters remain-free; the time scale
factor of the Laguerre functions and the scale factor in the argument
of the Hermite functions. For convenience both have been taken as
unity in the preceding development. We may choose these as we desire
in order to reduce the apparatus necessary to perforrﬁ a given operation.
Unfortunately we have no simple procedure for determining the optimum
values of these scale factors to enable us to do the best job with a given
number of Laguerre coefficients and Hermite functions. We shall see a
possible approach to this problem when we discuss a similar but somewhat
simpler problem that arises in connection with the determination of optimum
filters by the theory developed in the following sections.

Since linear systems form suc;il an important class of systems in
engineering it is proper that we ask of any nonlinear theory, "How con-
veniently does this theory handle linear and nearly linear systems? "
Although the Wiener theory includes within its scope linear as well as
nonlinear systems it is not particularly suited for application to the
former. The reason for this can be seen by observing the form of the
general Wiener system (Fig. 4). We note that the exponential function
generator bypasses the Herrhite polynomial generator. In order for the
system of Fig. 4 to represent a linear system the operation from the
output of the Laguerre network to the output of the system must be
linear. This means that the gain coefficients A , must.-have values
which cause cancellation of the output of the exponential function
generator and give the desired linear operation on the Laguerre

coefficients. To achieve this cancellation effect will in general
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require a very large number of Hermite functions and even then we
have the unfavorable situation of obtaining a desired output:that may
be the small difference of two large quantities. The nonlinear theory
that is developéd in the following sections does not suffer from this
difficulty and, as we shall see, can be readily applied to linear and

nearly linear systems as well as to general nonlinear systems.
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II. The Filter Problem

2.1 Objectives and Assumptions

In part I we have seen how we can synthesize general nonlinear
systems from a knowledge of their characterizing coefficients. We
now turn our attention to the problem of determining optimum nonlinear
systems or filters.

We shall deal with time-invariant ,ponlineaf' systems that operate on
statistically stationary time functions. The filter problem as considered
here is one of determining that system, of a class of systems, that
operates on the past of a given input time function x(t) to yield an output
y(t) that best approximates a given desired output z(t) with respect to
some error criterion. When the optimum filter is chosen from the
class of linear systems and when the mean square error criterion is
adopted Wiener has shown that this optimum filter is determined by
the autocorrelation function of the input time function and the cross-
correlation fusnction of the input with the desired ou1:put.7 Since these
correlation functions determine the optimum mean-square linear filter,
the same linear filter is optimum for all time functions having these
same correlation functions in spite of the fact that other statistical
parameters of these time functions may be very different. It is in
the search for better filters that we turn to nonlinear filters which
make use of more statistical data than just first order correlation
functions.

As pointed out by Zadehs there have been two distinct modes of
approach to the optimum nonlinear filter problem. One approach

parallels the approach of Wiener to linear systems by choosing the
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form or class of filters and then finding the optimum member of this
class by minimizing the mean square error between the desired output
and the actual system output. The other approach formulates an appro-
priate statistical criterion and then determines the optimum filter for this
criterion with little or no restrictions placed upon the form of the filter.
Both these approaches yield equations for optimum filters in terms of
higher order statistics (higher order distribution functions or correlation
functions) of the input and desired output. In applying these approaches
we are in general faced with two problems. First we must obtain the
necessary statistical data about the input and desired output and then
we must solve the design equations, which usually are quite complex,
for the optimum filter in terms of this data. In nonlinear filter problems
we find that theliall':nount of statistical data we require in the design of the
filter usually far exceeds that which is available to us and we find it
necessary to make certain simplifying assumptions or models of the
signal and noise processes in order to calculate the required distributions.
Instead of assuming a statistical knowledge of the filter input and
desired outputthe approach to the nonlinear filter problem developed
in this work assumes that we have at our disposal an ensemble member
of the filter input time function x(t) and the corresponding ensemble
member of the desired filter output z(t). By recording or making direct
use of a portion of the given filter input time function, we obtain the
ensemble member of x(t). The ensemble member of z(t) can be deter- .
mined in different ways depending upon the ;Sroblem. For pure prediction
problems z(t) is obtained directly from x(t) by a time shift. For filter
problems involving the separation of signal from noise at the reciever

in a communication link we can, in the program for the design of the
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filter, record a portion of the desired signal z(t) at the transmitter and

the corresponding portion of x(t) at the receiver. For radar type problems,
in the program for the design of the filter z(t) can be generated corres-
ponding to signals x(t) received from known typical targets.

Since the ensembles of x(t) and z(t) contain all the statistical information
concerning the filter input and desired output and since we shall make direct
use of these time functions in our filter determination it is not necessary to
make any assumptions about the distributions of x(t) and z(t). Thus, for
example, in the problem of designing a filter to separate signal from noise
we need make no assumptions about the statistics of the signal or noise or
about how the two are mixed.

We note that in most practical cases our assumption of having a portion
of x(t) and z(t) does not restrict us any more than the usual assumptivns of
knowing the higher order probability densities of the input and desired output
do; for at present, except in very simple cases, the only practical way of
obtaining these statistics is td measure them from ensembles of x(t) and
z(t) when these ensembles are available. When they are available, the
present approach makes measurements on them that directly yield
optimum filters instead of first measuring the distributions and then

solving design equations in terms of these measured values.

2.2 Relation to the Characterization Problem

The Wiener theory of nonlinear system characterization and synthesis
provides us with a physically realizable operator on the past of a time
function that includes within its scope a very large class of nonlinear
systems. Hence it is of interest to investigate the possibility of deter-

mining the optimum nonlinear filter (for a given task and a particular
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‘error. cr1ter1on) from the class of systems of the' Wlener theory.

Fxgure 3 shows the expermenta.l procedure for obtammg the charac-
"_jterlzmg coeffic1ents for a g1ven nonlmear system (the system labeled
"Nonlmear System Under Test") Not1ce that the A g are completely
determmed from a knowledge of the response of the glven system to a
‘shot noise input. In fact, the presence o,f--.thrs,system is not necessary
' in'the:eip'erimental ’proé:edur’e of“Fig | 3‘ 1f -we“haueﬂre‘cor'dings of an

ensemble member of the shot n01se mput x(t) and the correspondmg

output vy(t) By feedmg the recordmg of x(t) mto the Laguerre network and L :.'_‘;

" the recordmg of y(t) mto the product averagmg device. in place of the output l'

of the given system we obtam the A 's that correspond to the glven system; - :
that is, we obtam the A 's that correspond to the system wh1ch operates
on the shot noise x(t) to y1eld y(t) This arouses our cur1081ty concermng
the possxbihty of determmmg the A- 's for the optunum filter problem
'-d1rectly from a knowledge of an’ ensemble momber of 1ts mput and 1ts:
des1red output time functmns w1thout actually havmg the f11ter at our |
'dxsposal To th1s end let us cons1der the optunum fxlter problem and.
-see how it dit‘fex_-s.‘.frozn_-, the' characterl_zatlon. problem vd_;scussed above.
Uhilike fthe ﬂ'chara'cte‘riza‘t‘idn 'problém, ’ﬁi the det'ei-minati'on‘- of ;m
_optunum filter we do not have at. our dlsposal the system labeled
'_"Nonlinear System Under Test" in F1g 3 In the f11ter problem th1s
system would be the opti.mum fllter, exactly what we. are searchmg
for. Cons1der the followmg problem Suppose that we wa.nt to fmd
a nonlmear fﬂter whose mput is a whxte gaussmn time functzon x(t)
-and- whose deslred output 1s the stationary random tune functxon z(t)

Suppose also that we have at our disposal an ensemble member of




: the correspondmg ensemble member of z(t) We excite the _
guerre network of Fig 3. W1th x(t) and feed z(t) into the product averagmg":
;_ emee.m p1ac_:e_-of;_.:y(t_);_as'shqwn in Fig. 7. From the d1__scussmn;above_ it _15 |
: clearthat 'if"the'»=deeired filter, which operates 6n'x(t)'to yield z(t), is a

| member of the class of systems considered in the Wiener theory, the

' ""'[,i_'_test procedure of Fig. 7 will yield the A 's corresponding to this system.

: _Weﬁ c ;____then synthesxze it in the general form of F1g 4. However it will

= usually_ happen that the desxred system-is not even physically realizable,
one:-a member of the: Wlener class of nonlinear systems. In this

L '-‘.'case the. der1vat1on of sectmn L. 5 shows: that the procedure of Fig. 7

i :'.eld that system of the W1ener class (havmg as many Laguerre
e 'i"coefflcxents and’ Herm1te funct1ons as used in the test apparatus) whose
e {ﬁoutput best approxlmates 2(t) in a weighted mean square sense. Thus'

‘for the spec1a1 case: of whxte gaussmn filter: input we can adapt the Wiener

;method'of characterlzatmn to the experimental determination of optimum

pnl;near- filters.

. 2.3 The Need for a General Orthogonal Representation
| ' 'Wh'e'n-""the given":filte‘r input is ‘not shot noise we ‘can no -longer -apply
'_the method described above to determine the optimum filter. Recall
e :_that the orthogonahty relations which led to Eq. (26) for the A's
o ‘fdepe_nde_d _upon the ‘fact.that the Laguerre coefficients were gaussianly

' distributed and statistically independent, and this fact, in turn, depended

s --i'-éf':‘_"'"5ﬁg_tﬁé§f§¢“{f.tﬁat‘-'the'-’-ihput to the Laguerre network was shot noise. When
o :x(t) 1s not shot no1se we no longer obtain independent relations (Eq. 26)

vfor the A s and the procedure for determmmg them shown in Fig. 7'is
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no longer valid. Thus we appreciate the need of an expression for a
nonlinear operator in which the terms in its series representation are
orthogonal in time, irrespective of the nature of the input time function.

The development and application of such an operator is the subject of

the following sections.
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III. Optimum Nonlinear Filters

3.1 Object

The object of the work in this section is to develop an orthogonal
represehtation for nonlinear systems that enables the convenient
determination of optimum nonlinear filters. The development is best
described if, before proceeding to the general filter, we first examine

the class of no-storage nonlinear filters.

3.2 The No-Storage Nonlinear Filter

By a no-storage system we mean one whose output, at any instant,
is a unique function of the value of its input at the same instant. We
call the input-output characteristic of this system the transfer charac-
teristic.

Let x(t) and z(t) be the given filter input and desired filter output
time functions, respectively. We assume that x(t) and z(t) are bounded,
continuous time functions. This is clearly no restriction in the practical
case and it enables us to confine our attention to approximating desired
filter transfer characteristics that are bounded and continuous. Since
x(t) is bounded, there exists an a and b such that a <x(t) <b for all t.
Now consider a set of n functions ¢j(x) (G =1,...,n)over the interval

(a,b). These functions are defined as follows

w w .
1 for xj --§-<x<xj- tz, §= (1,...,n=~1)

¢J(x) = and xj —E'$x £b, j=n n (37)

= Ry
0 for all other x xj =atw(- Z)

A plot of the jth function of this set of functions is shown
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in Fig. 8. (A separate definition is given for qan(x) in order to include
the point b. In practical application of these functions we simply gen-
erate n gate functions of equal width that cover the interval (a,b).)
Clearly this set of functions is normal and orthogonal over the interval
(a,b). We shall refer to these functions as "gate functions." Let us

define y as a gate function expansion of x as follows

y= ) a;¢:ix) (38)

It is clear that by taking n sufficiently large y can be made to approximate
any single-valued continuous function of x arbitrarily closely everywhere
on the interval (a,b).

When x is a function of time it is convenient to write Eq. (38) as

n

yit) = ) 2y ¢yfx)] (39)

j=1
As a consequence of the non-overlapping property of the gate functions
along the x axis the ¢j[x(t)] will, for any single valued time function
x(t), form an orthogonal set in time as well as an orthonormal set in x.
Further this time domain orthogonality holds for any bounded weighting
function G(t). That is
0 j#k

G(t) ¢j-[x(t)] & [x(t)] ={ (40)
Glt) ()]  i=k

Relation (39) specifies the form of an equation that defines a no-storage
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nonlinear system. The determination of an optimum no-storage filter
for a given error criterion consists of choosing the aj"s in such-a manner
that, for a given x(t), the error between y(t) and the desired output z(t)
is a minimum. We adopt a weighted mean square error criterion in
which G(t) is, as we shall discuss later, a non-negative weighting

function at our disposal. More specifically we minimize the error

T n 2
. 1 :
£ - lim 55 f G(t) {zu) - Zaj ¢j[x(t)]} dt (41)
- 00 .

-T j=1

with respect t6 the n coefficients aj. Differentiating with respect to

ay, and setting the result to zero we obtain

aé *

T —T
(42)

Denoting the operation of time averaging by a bar above the averaged

variable Eq. (42) can be written

n
Glt) 4 [x(t)] ) 3, &[x()] = 2(t) G o [x(8)] (43)
j1

Making use of the time domain orthogonality of the gate functions
(Eq. 40), Eq. (43) reduces to

a, G(t) 62[x(t)] = 2{t) G{E) 4 [x(t)] (44)

It follows from the definition of the ¢j(x) given in Eq. (37) that q:;[x(t)] =
¢]._[x(’t).] 8o that Eq. (44) is equivalent to the equation

38

n
¥ = lm s | - 2G() ¢ [x(®)] {z(t) - jzlaj ¢j[x(t‘)']}dt =0 k=(1,..

.,n)
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2y, GIO) $, x(®)] = 2(t) G(t) @y [x(0)] (45)

This equation provides a convenient experimental means of determining
the desired coefficients a,. The experimental procedure for the evaluation
of these coefficients is shown in Fig. 9. An ensemble member of x(t) is
fed into a lew;el selector circuit and the corresponding ensemble member
of z(t) is fed into the product averaging device. The output of the level
selector circuit is unity whenever the ampl-itud"e of x(t) falls within the
interval of the kth gate function and zero at all other times. This output
is used to gate the weighting function G(t). The output of the gate circuit
is then averaged and also multiplied by z(t) and averaged to yield the two
quantities necessary to determine a,_in Eq. (45).

From a knowledge of the a, we can directly construct a stepwise
approximation, like that of Fig. 10, to the desired optimum transfer
characteristic (see ‘Eq. 38). The synthesis of the filter can be carried
out formally according to Eq. (38) by using level selector circuits and an
adder as show;x in Fig. 11, or we can synthesize the optimum characteristic
by any of the other available techniques such as piecewise linear approxi~:
mations or function generators.

In order to become more familiar with the operation and terminoclogy
of this method let us consider a very simple example. In this example
we shall do analytically what, in practice, the experimental procedure
of Fig. 9 does for us. Suppose we are given an ensemble member of
x(t) and the corresponding ensemble member of z(t). Further suppose
that the desired filter output z(t) is equal to f[x(t)] where f is a continuous
real function of x. We desire to verify that the filter determined by the
procedure of Fig. 9.is actually a stepwise approximation to the transfer
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-_»ch acter1st1c f(x) For smp11c1ty let us assume that .n has been chosen
sufﬁczently large so that the funct1on f(x) is’ approxunately constant over _
.g'.the w1dth of: the gate functmns and let us choose G(t) equal to a constant |
.' so that the conventxonal mean Square error cr1ter1on results For these
_-_condxtlons Whenever ¢k[x(t)] has a non-zero value X must he m the 1nterva1
- of W1dth w. about xk and z(t) 1s approxmately equal to f(xk) Equat1on (':45)‘

_';becomes : - PR e
R e AR ) B

vfz%d'mﬂ_wméhiwé obtamtherelatmn o \ .‘ o _'
ang(xk-)' o - '(4.7):_'

_for the ak wh1ch shows (see Eq 38) that they determme a fxlter that is- a
-.;stepw1se appro:umatmn to the demred transfer character1st1c f(x) (A close'
,exammatlon of th18 example shows that the same results are obtamed for
-any’ we1ghtmg functxon G(t) Th.lS 1s because for tms example the des1red
'f11ter 1s a member of the class of no storage fﬂters and hence as n ~00 |
‘the. error 6 in Eq (4 1) can be made zero for any G(t). ) | |

In addition to knowmg that as n-—o the gate functmn expansmn (Eq 38)
can approxxmate any contmuous transfer funct1on arb1trar1ly closely, 1t is
of pract1ca1 mterest to mvest1gate how the expansmn converges for small
n as n 1s mcreased when the coeffic1ents are chosen to mmirmze the mean
"square error Th1s is most easﬂy done wzth the aJ.d of an example Let |
‘rthe transfer charactemst;c of F1g 12 be the one that we deszre to approxnna:

' The szmplest gate functxon expansmn is that for whlch n= 1 The best mean,

| square approxmat1on clearly occurs for a 2 (y1 + yz)/z For n.= v 2 the best
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»-gppﬁpiii@éiibﬂ»}i;s ‘séer’i'_{{o' occurfora; = yland a, = y,- This apbroximat_i_én_.
'i'ls'_...CQnsidéz"'ably --bettef_tﬁén'=that"-f6r-n = 1. Now consider n = 3. The best
mean square.approximation‘is, by inspection a 1S 3, = (yl + yzi)/lz
andfa_s = y,. Butthis is seen to be a worse approximation than that for
n=2"! Forn=4weclearly'must do at least as well as for n = 2 since

a, =a, =y, anda, = a, =y, constitute a possible solution. Again, for
this-example, the approximation for n = 5 is inferior to that forn = 2 or 4
but better than the n = 3 approximation. A mon;’ent's*r'eflet:tion-r:eveals
that the reason for this peculiar convergence is that the function f(x)
changes appreciably in an interval that is small compared to the width

of the gate functions and hence the position of the gate functions along

the x axis is critical. For this example when n is even one gate ,functki}on
ends:at x = (a+b)/2 and another begins; thus providing a nice fit to f(x).
For n odd one -g’ate*'-functiori straddles the point x. = (a+b)/2 and because.of-
symmetry it will have a coefficient equal to ;('y.1 + y._z-)/z. As we increase
n beyond the point where the width (w = (b-a)/n) of‘the gate functions
becomes less tha.n 6, the position of the gate functions becomes less

and less critical, the oscillatory behavior disappears and the expansion
converges to f(x) everywhere.

From this simple example we can draw some. general conclusions
regarding the convergence of the gate function expansion to continuous
functions. When the desired function changes appreciably in an interval
of x comparable to or smaller than w it may-happen that an increase in
n will result in a poorer approximation. HOwever,--ifﬂn':is"incifeaae'd by
an integral facior the approximation will always be at least as; good as
that before the increase. Further, if.n istaken large enoughsothat e

the function is essentially constant over any interval of width w then




| vany :?mcrease in 'n will yield: at least as good an approxunatlon as. ‘before

: the ggrease. Thus in the practmal applica.tmn of tlus theory if we increase
n and get.v an inferior filter we should not be‘-‘alarnied. It is merely an
ihd?ié;fﬁtidn that the desired filter characteristic has a large slope over
goie interval. By further increasing n the desired characteristic will
be obtained.

In the discussion above it was assumed for convenience that each gate
function had the-same width w. This is nota ne::essa'ry restriction however.
Tt-is-sufficient to choose them. so that they cover ‘the interval (a,b) and do
not overlap. Thus if we have some a priori knowledge about the optimum
transfer characteristic we may be able to save time and work in determining
it by judiciously choosing the widths of the ¢j'(x)'s. In fact, after evaluating
any number m of the a,'s we are free to alter-the widths of the remaining
.fl'mct'i'o’ns ¢j(x) (G >m)-as wé proceed. This flexibility is permissible
because in taking advantage of it we do not disturb the time domain

orthogonality of the gate functions.

3.3 Linear and Nonlinear Systems from the Function Space Point of View

In-'section 1.3 we saw how we can characterize the past of-a time function |
by the coefficients of a complete set-of orthogonal functions such as the
Laguerre functions. Let us now think.of a function space‘which has as a
basis the Laguerre functions. Just--'as:--in-va'fv'ectOr ‘space a 'giv’en-vedor _
can be:represented as a lmear combmatmn of the bas:ls vectors so. in " _
function gpace a given: function’ (satisfying appropnate regularity conditions) S
can: be represented asa linear combinatmn of the functmns that form the _
"‘basis: of the: space, We can think of the Laguerre coefﬁcignta of a functioﬁ
-"_f-‘x(t) as being the aealar componenta of x(t) along the respeetive baaia |




B f’-__'fguerre coefficients of the past of x(t)

We have also: dmcussed that any function of: the past of x(t) can be
-'expreqsed- asa .function_ of the:Laguerre coefficients of ‘this past. In
terms of the function'space then, a finction of the past of x{t) can be
‘expregsed:as az-’-iﬁf‘jﬂjjiictien:xof position in this'space. We say that we gen-
‘erate the desired function:of -the past of x(t) by ;.'i'tranSfOfmation that maps -

the function -’s_pa,,ce"*ontd"a’? line — the line corresponds to the amplitude of

the desiredfunction This concept provides a powerful tool in the study
of linear and nonlinear systems. To better understand it let us consider
the Wiener th‘eofy in this light. The output of the general Wiener nonlinear
system is expressed (Eq. 17) as a Hermite function expansion of the '.Laguerr_g".» '
coefficients of the past of '_tﬁ_e‘» input time functiqn. The Laguerre functions
form the basis of the function:space of the past of the input and the Hermite
function expansion maps this space onto a line — the amplitude of the system =
output. i

Several important concepts follow immediately from this viewpoint.
The first, as was made evident by the. Wiener theory, is that any system
(of the broad class considered:in the Wiener theory) can be -represehfed'
by the cascade of d linear system followed by a no""-_mejiﬁ;‘_)ry nonlmear |
system. The ‘outputs-of the linear system- characterize -‘the past ‘I_o_'t_‘;:'-"the '
‘:'m'but ‘a8 as'--pmxitidn-éfuﬁction:.-spaeez: -‘atid-tﬁe no-memorynonlinear :g,'-afem.- -
:-maps th1s ‘gpace: onto a line. Secondly we. see that in principle (we |
-assume that the;nomplete set of Laguerre functious is used) the difference j :

' ‘between any two ayatems is accouuted tor by a difference in the _no-memory

- part that per:rorms the mapping For example. it the mapping 1s linear



(we shal], discuss this ¢ase in a later _s‘ection-)'. then a hnear sysfem is

- represented, if it is not then a nonlinear system is represented. Since
the différence between two systems is just in {his apping, the problem

of determining an optimum system for a desired performance and given
error critérion becomes that of determining the optimum no-memory
system which maps the function space onto the output.

Finally we see that this function space point of view provides the key
for finding a general orthogonal expansion for the output of a nonlinear
system. For reasons that will become evident in the next section, we
desire to obtain a series:expansion for the output of a nonlinear system
in which the terms are mutually orthogonal in time. Furthermore, we
require that this orthogonality be independent of the input time function.
Clearly this is achieved by choosing a mapping that partitions the function
space into non-overlapping cells and by letting each term in the series
expansion represent the system output for a particular cell in the function
space. Since at any instant the past of the input is represented by only
one point in the function space, only one term in the series expansion.
will be non-zero at any instant: thus all the terms are mutually
orthogonal in time. The gate function expansion for the no-storage filter
(Eq. 39) is recognized to be an application of this approach in the simple
case for which the input space is just a line. "I‘-he-,n_e)f:tf section-applies
this approach tothe more general case of a finite dimensional space.
(Note: Although the function space of which we have spoken is infinite
dimensibnalfw.e» shall continue'to use'the term even when 'we speak of

a finite number of Laguerre functions.)
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‘3.4 The GeneralNonlmearFﬂter Involving St"aragé i

The class of nonlinear systems considered in this section is the
‘same as’'that of the Wiener thebry; Without introducing any physical
restriction we shall, for convenience, assume that the given filter
input x(t) is bounded. As in the Wiener theory we characterize the
past of x(t) by its Laguerre coefficients. It is easily shown, as
follows, that these coefficients are bounded if 'x!t). is bounded. Recall
that the Laguerre coefficients of x(t) are given by the convolution of

x(t) with the Laguerre functions. That is
o0
u(h) = f x(t-7) b (7) dv (48)
0

where b is defined in Eq. (1).
It follows that

.00
lun(t)l < f I'x(t-r)l'l'hﬁ(T)l d~r (49)
J0

Assume »|'x‘(,t-)|5 ‘<M forall t. Then

s, st |n (7] ar (50)
0 :

But from Eq. (1) we see that the Laguerre functions are polynomials
multipliéd by decaying exponentials -and.a-.h'exice..t_hey‘j”ar_e-v:-absz)1;§te‘1y
integrable. Thus the Laguerre coefficients are bounded if x(t) is
bounded. |

‘Now consider the function space formed by ‘& ‘Laguerre coefficients



;"We d1v1de ‘the bounded regmn over ‘which.each Laguerre coetfxcxent
-ranges 1nto n intervals and defme a set of gate functlons as’ m Eq (37)
for each coefficient. (It is’ only for convenience in no_tat'lon_thatiwe choose
the same number of gate functions for each Laguerre coeffiéi_éﬁt.) “In the
preceding section we saw that if we choose an expansion of these coef-
ficients that partitions this function space into non-overlapping cells and
is such that each term in the expansion represents the system output for
one cell in the function space, an orthogonal expansion is obtained. To

this end consider the expansion

n n n
y(t) = Z Z Z a5 i) eyl L by (a) (51)
i= h=1

1 j=1

in which the ¢'s are the gate functions defined in Eq. (37). Letus examine

a typical term in this expansion. The term

3 4,...,n %) $5(uy) - dyluy) (52)

is non-zero only when the amplitude of u, is in the interval for which

$; (u ) is unity and the amplitude of u, is in the interval for which ¢, (uz)

is unity, and so on for each Laguerre coefficient. The collection of these
‘int’ervals defines a cell in the function space and thus the term in Eq. (52)
is non-zero only when this cell is occupied. Hence the expansion (Eq. 51)
divides the function space‘into non-overlapping cells and each term
represents y when the corresponding cell in the function space of the

input is occupied. Thus the terms are mutuaﬂy"ozifthOgonai-fin't_i_m'e_‘ for
-'any_x(t). It is cl&ar"tha‘tvas. the width of the‘_gafe »tmétioné ié'-dedréased»

by increasing n, _the cens become smaller and y can be """ de to approxi- '

mate. any continuous function of the u's everywhere with vaniahing &rror



If !(a) represents the fﬂnetzon 4' (‘11) ¢ (!12) - ) a B

the. correSponding coefﬁczent ai . h' Eq, (51) fakes the Slmphﬁed farmv:..":"-'
¥lt) = Z,.Ad #(c) (53)
a

This equation is the desired orthogonal representation for nonlinear
systems involving storage. We now proceed to determine the A 's for
the optimum filter problem. As in the case of the no-storage filter (Eq. 41)

we adopt a weighted mean square error criterion and minimize the error
o T 2
8 = é‘n'n 3T f G(t){z(t) - Z Aa, §(a)} dt (54)
) T _
- a
with respect to the coefficients Aa. For the coefficient Ap- we have

T
S U =Y A, s@)b
lim f 2G(t) #(p) {zm ZJA_Q ( )}dt (55)

-T

S

For the error to be a minimum with respect to AB' we set this equation

to zero. The resulf is

Gt &(8) > A, #(a) = 20t Glt) #(p) (56)
Taking advantage of the time domain orthogonality of the &'s this equation
reduces to

Ag Git) 8°(8) = 2{t) G(t) #(p) (57)

Smce the #'s are products of gate functions they. can only take on the values -
~ z€ro or unity, hence By, (57) is equivalent to



4, GO EF

which forms the basis‘for the experimental procedure for determnnng '
the optimum filter coefficients.

The apparatus for the determination of the optimum filter coefficients
is shown in Fig. 13. An ensémble member of x(t) is fed into the Laguerre
network and the corresponding ensemble member of z(t) is fed into the
product averaging device. The outputs of the Laguerre network are fed
into a no-memory nonlinear circuit consisting of level selectors and gate
or coincidence circuits. This circuit generat:s the &'s. Since the &'s
are either zero or unity they can be multiplied by G(t) in a -simple gate
circuit. The output of this gate circuit is averaged and also multiplied
by z(t) and averaged toyiel‘d the two quantities necessary to find the
optimum coefficients according to Eq. (58).

Having determined the optimum coefficients, the nonlinear system
can be synthesized formally according to Eq. (53) as'indicated in Fig. 14.
In Fig. 14 we note that the operation from the outputs of the Laguerre
network to the system output y(t) is a no-memory operation. That is
y is an instantaneous function of the Laguerre coefficients. Omuce the
A's are known this function is directly specified and any other method
of synthesizing no-storage systems for a prescribed operation can be
used. One such method is described in reference 9.

In the procedure described above for determining and -sy_nthe__si_z‘iﬁg
optimum nonlinear filters the use of gate fu_t’xé’tio"xig_ in the expé;hsidfx'of'
Eq. (51) is of central importance. Letus examme some ofthe con-
sequences of this:

1. The use of gate functions provides us with a series representation =
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“for the output of the filter in which the time domain orthogonality of the

termSOfthe series is independent of the filter input. This enables us
to obtain .-"_c'he' optimum filter coefficients for arbitrary filter inputs without
lving »simﬁi‘t‘aﬁeous -equations.
Lo, Smce the gate functions are orthogonal with respect to any weighting
‘.'.v::.féétof, ‘we can determine optimum filters for weighted mean square error
o éﬁ-_iter'ia'.
‘3. In most series representations of a funciion we encounter-the
'-I_-‘diffﬁculty’that‘ over some region of the independent variable small dif-
o ’_fér?eﬁce_s- of two or more large terms are necessary to represent the
:desired function. In .vthej;g_a‘ite___fynction:..-expansibn (Eq. 53) only one term
‘has-a non-zero value at anyonemstant of time; so this difficulty does
" not arise.
4, In-general, expansions’that represent nonlinear functions involve
i theuse ‘of multipliers in the i;é;;perimentals;setup. (For example, if a
g ‘"Eg:'I"-;a_ylor:'seri'e'_'s»‘_o'r':_He‘rﬁmité“‘fugction"c expansion is used:) The use of gate
fﬁhcfibns-fc"repléé_es:the-muliipiiers' by simpler level selectors and coin-

- cidence circuits.

:_3-.' 5 The Error Criterion

An error weighting function G(t) appears in the error expressions

Eqw (41) and.Eq. (54) for the no-storage and the general filter respectively.
The choice of this weighting function will, of course, depend ‘upon the

: 1'3'p5r£i_"c1}1'ar problem. It may be chosen as a function of the past, present,
é;d/dr"future- of x(t) and z(t) and can be generated in the laboratory from

' the recorded ensemble members of x(t) and z(t). H G(t) is a constant
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then the mean-square error criterion results. Other choices for G(t)
enable us to design filters for different error criteria and to introduce
a priori information into the filter design. In this section a few choices
of G(t) are discussed. We restrict G{t) to be non-negative since the
concept of negative error is not meaningful.

One choice of G(t) is illustrated by the following example. Let the
signal component z(t) of the filter input x(t) consist of amplitude modu-
lated pulses occurring periodically. x(t) is z(tj corrupted in some way
by noise as shown in Fig. 15. We assume that we know when the signal
pulses occur. Our object is to determine their amplitude. The optimum
mean-square filter, of a given class of filters, for recovering z(t) from
x(t) is the one for which the time average of [z(t) - y(t)]z is a minimum
for all filters of the class. (In this expression y(t) is the filter output.)
However, we are actually interested in minimizing the error between
z(t) and y(t) only during the time when signal pulses are present. By
choosing a G(t) that is a constant during the time intervals when signal
pulses occur and zero at all other times (Fig. 15) we can design just
such a filter. In general, if both these filters have the same degree
of freedom (i.e., the same number of Laguerre coefficients and gate
functions) the performance of the one designed with the weighting
function mentioned above will be superior to that of the mean-square
filter since all the freedom of the former is used to minimize the
error over the time intervals of interest. Thus through G(t) we have
introduced a priori information (about the periodic occurrence of the
signal pulses) into the filter design to obtain a better filter.

In other problems it may be desirable to choose G(t) to be a function

of the magnitude of the difference between the present values of x(t) and
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X(1)= FILTER INPUT

Z(t)= DESIRED FILTER OUTPUT

G(1)> ERROR WEIGHTING TIME FUNCTION

Fig. 15. An example of the use of the error weighting time function.
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z(t) so that the freedom of the filter is used to do a better job, on the
average, when I'x(t) - z(-t)l lies in certain ranges, at the expense of

its performance when this difference lies in other ranges. For example,
we might desire that the filter output be as close as possible to the

desired output, on the average, when the difference between the input

and desired output is small and, when this difference is large, we

might choose to attach less significance to the filter output. In such a case
we could let G(t) be Ix(t) - z(t)l B For large n this G(t) weights small
errors between x(t) and z(t) much more heavily than large errors.

The choices of G(t) are limited only by the ingenuity of the designer
to best make use of the data at his disposal. By precisely defining the
object of the particular filter problem and carefully studying the nature
of the problem he may often be able to choose a G(t) that yields a far

better filter than the mean-square filter.

3.6 Minimum Error Determination

Paralleling" the Wiener approach to linear filters we shall find an
expression for the minimum error of nonlinear filters that can be eval-
uated from a knowledge of the input and desired output time functions.
The general expression for the error between the desired output and
the actual nonlinear system output is given by Eq. (54) which is repeated

below for convenience.

- lim 7y f G{t) {z(t)— > A ep(a)} dt (54)

We have seen (Eq. 55) that for this error to be a minimum with respect

to the A 's we must have
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T ' _
.i,l_r.nw?l'-f ] G(t) 3(B) '[:z(t) - Z Aa §(a)] dt=0 for all B (59)
and hence

T
é‘im -ZLT- f Z A'3 3(B) G(t) [z(t) - ZAG §(a)] dt=0 (60)
~ -T B a

-

Now Eq. (54) can be written as follows:

6’ = G(t) z(t) [z(t) - ZA“ §(a)] - Z: Ag 3(B) G(t) [z(t) - Z A, §(a)]

(61)

But from Eq. (60) we see that the term on the right side of Eq. (61) is zero
for the optimum filter. Using this fact and inserting the expression for the
optimum filter coefficients (Eq. 58) into Eq. (61) we obtain the desired

expression for the minimum error.

2, Z(t) G@) 3(a)”
. = G(t) - : ; 6
Emm z"(t) G{t) Z Gl 3(0) (62)

a

This equation expresses the error of the optimum system, having a given
number of Laguerre coefficients and gate functions, in terms of the filter
input and desired output time functions. If, in Eq. (62), ¥(e) is changed
to -tbj-(x) and the summation is taken over j then we have the minimum
error expression for no-storage filters.

With the -a‘ddition of a squaring device at the output of the product
averaging circuit in Fig. 13 the quantities necessary to determine £m1n
can be evaluated and Em can thus be found without first const‘rueﬁng
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the optimum filter. Similar apparatus could be built to automatically

evaluate upon application of x(t) and z(t). For those filters having

~min
a sufficiently small number of Ag-z's (for example, no-storage filters and
simple filters involving one or t-}vo Laguerre coefficients) all the terms
in the sum (Eq. 62) could be evéluated simultaneously and added. This
would give a rapid way of find; g €mm When the number of coefficients
becomes very large then, to save equipment aii the expense of time, the
terms in the sum could be evajuated sequentially. This apparatus would
be useful in deciding a priori the complexity of the nonlinear filter to use
for a particular problem. It would also enable us to decide whether or
not it is worthwhile to construct a complicated nonlinear filter to replace
a simple linear or nonlinear one. Since such apparatus would make use
of the same measurements that determine the Aa's, if after measuring
its error we decided to build the filter we could construct it without

further measurements.

3.7 The Statistical Approach

We can shed additional light on the filter theory that was developed
in the previous sections by formulating the same problem on a statistical
basis. As before, we shall characterize the past of the filter input by s
Laguerre coefficients u j through u s and determine the optimum nonlinear
operator that relates these coefficients to the system output for a weighted
mean square error criterion.

Consider an ensemble of the Laguerre coefficients tl(t), ' s(t) and
corresponding ensembles of the system output y(t), the desired output z(t),
and the weighting function G(t). We shall regard Uy, ..U, ¥, 2, and G

as random variables. We want to find the y, as a function of the u's, that
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minimizes the error

£=fff f G(z-y)zP(z,G,ul,...,us)dul...dusdzdG
G oz Yu, ug |

(63)

This expression is seen to correspond to the weighted mean square
criterion of Eq. (54). The y that minimizes this expression is found
by direct application of the c'alcul\ns of variations. Setting the variation

of 6 to zero we obtain

5(€)=fff-..f -ZG(z-y):\P(z,G,ul,...,us)6(y)dul...dusdsz=-=‘0
G oz u, ug

(64)

or the equivalent expression

6(6)=fff f —ZG(z—y)P(z,GIul,...,us)dszﬁ(y)P(ul,...,us)
G Yz ul' u,

X du;...du =0 (65)

which must be true for all §(y) where §(y) is the variation in y. Egquation (65)

will hold for all 6(y) if we set

f f G(z-y) P(z, G’“y ce ,us) dzdG =0 (66)
G dz

From this equation we obtain the equation

yffGP(z,G]ul,...,us)dsz=ffGzP(z.G[ul,....us)dsz
G vz GYz

(67)
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Performing the integration with respect to z in the'left side of this

equation we obtain the result

G z P(z,Glu,,...,u_ ) dz dG
LS Gluy. ..

f' GP(G]u], ...,us) dG
G

y= (68)

This equation, though it is cerfainly not very suggestive of a filter
design, is the desired relation between the optimum filter output and the
8 Laguerre coefficients of the past of the filter input. It should be noted
that in deriving Eq. (68) no restrictions have been made on the relation-
ship between y and the s Laguerre coefficients and hence this equation
yields the optimum y in terms of these coefficients. Equation (68) takes

on the more familiar form

y =f z P(zlul‘., cee,u) dz (69)
z

when G is a constant, corresponding to the mean square error criterion.
In this case we have the result that the optimum output for a given past
of the input is just the conditional mean of the desired output given this
past of the input. |

Let us now investigate the relation between the result of the statistical
approach (Eq. 68) and that of the so-called time domain approach (Eq. 58).

For convenience this latter equation is repeated below

A G(t) 3(a) = G(t) z(t) 8(a) (58)

We shall express both these time averages as ensemble averages and then

compare the result to Eq. (68). The average on the left side of Eq. (58)
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is equal to

G(t)i(a):ff f G #(a) P(Glu,, ..., u)Plu,, ..., u )dGdu,. . .du,
VG vu u

1 2
(70)
For the present let us assume that the width of the gate functions is so
small that the u's are essentially constant over each cell in the function space.

Then Eq. (70) can be written

G(t) i':i(d)zP(uL,...,us )(Aul,...,Aus)‘].C;‘rP((:‘rlul_,...,us ) dG
i h G ] h

(71)
in which the factor multiplying the integral is just the probability that the
ath cell in the function space is occupied.

By a similar procedure we have for the average on the right side of

Eq. (58)

G(t) 2(t) 8(a) ~ Plu, . ... ug )ouy, ..., suy) f f GzP(Glu, ,...u, )dGdz
J G vz J o

(72)

Using Eqs. (71) and (72) in Eq. (58) we obtain the resuit

LerP(zGlul,...,u ) dG dz

A = dz i 5h

¢ fGP(GIu
G

s...u. ) dG
1j ’ 8h
Recall that A is just the system output when the cth cell in the function

(73)

space is occupied. Thus as the cells become smaller the system deter-

mined by Eq. (58) approaches the optimum system of Eq. (68).
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Let us now remove the restriction on the size of the cells. For
simplicity in interpreting the results we shall let G = 1, corresponding

to the mean square error criterion. Egquation {(58) becomes

A, %(a) = z(t) &(a) (74)

Expressing the time averages as ensemble averages we have for #(a)

SGS:.[ ...‘/‘§(a)P(u1,...,u,s)dul...clus (75)
b | Ug

But this is just the probability that the ath cell is occupied. That is

#(a) = P(ath cell) (76)

For the time average on the right side of Eq. (74) we have

z(t) &(a) = f f e f z &(a) P(ul, - ,uslz) P(z) dz du,...dug
z Ju, u

(77)
Integrating over the u's we obtain
z(t) 3(a) =f z P(ath celllz) P(z) d=z (78)
z

in which P(ath cell|z) dz is the probability that the ath cell is occupied
given that z is in the interval dz about z. It is convenient to rewrite

Eq. (78) in the form

z(t) #(ez) = P{ath cell)f z P(zlath cell) dz (79)
z



Using Eqs. (79) and (76) in Eq. (74) we obtain the result

a

A = f z P(zlath cell) dz (80)
z

In words, A is equal to the conditional mean of the desired output given
that the ath cell in the input function space is occupied. Hence the result
of the filter theory developed in the previous sections can be interpreted
(for G(t) = 1) as a procedure that quantizes the" function space of the input
and assigns an output to each cell equal to the conditional mean of the
desired output given that this cell is occupied.

It is interesting to note that although we can interpret this filter
theory either in tle time domain or on a statistical basis, the former
leads directly to associated equipment for the filter determination and
synthesis while the latter just expresses a mathematical relationship
between the quantities involved in the problem. For example, in the
simple case in which G(t) = 1 Eq. (80) might suggest that we evaluate
P(z |ath cell) t:or all cells and for all z and then perform the indicated
integration. However, the time domain approach directly shows us that
the convenient quantities to measure are those of Eqs. (75) and (79) which
look quite formidable from the statistical point of view. Further when
we introduce G(t) the problem appears considerably more complicated
from the statistical point of view but as we have seen from the time
domain approach it only involves the addition of a single gate circuit

in the experimental apparatus (Fig. 13).

3.8 Optimum Nonlinear Filters for a Maximum Probability Criterion

In this section we discuss a method for determining a nonlinear filter
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o whose output 1s the most probable value of he
-past of the mput It 1s shown that such a ﬁlt, ‘
a snnple modlﬁcatmn of the apparatus (F1g 13) used to determme

opt1mum f).lters for-a welghted mean squa.re cr1te' ‘on. -_ B

As in the case of the welghted mean square cntenou“we let t e"
form of the nonlinear operator be tha.t of Eq. (53) At any m.stan. the
system output is equal to the coeff1c1ent of the term that corre' 0!
to the occupied.cell in the function space of the past?':iof the :mp_ it
for the max:mumprobahnlty cmterlon we must choose each coeff1c1ent
A to.be equal to the. most probable value of the des1red output &
that the ath cell is occupied.. ' '

An experimental proc edure_ _fo’z'- determmmgma.xunum proh bil
is shown in Fig. 16. ' z(t) red into a level &

circuit. If the amphtude of z(t) 1s m the amphtude mterval.»,co

unity. Otherw:Lse this. output is zero. The outputs of the level

is occupied. It is zero at-all- other tunes The tune average of

events. ‘We shall write this probab111ty as P(z ath cen) B_ut :

P(z ath cell) = P(z |ath cell) P(ath cell)
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course assumes:that m is large enough so that the amplitude interval
associated with zj is very small compared to the maximum amplitude

of z(t).) Hence the optimum A_ for the maximum piro

ability: criterion
is equal to Zy -

For convenience in rapidly determining which output of the averaging
circuits is largest, the outputs can be displayed on an oscilloscope as
.indicated in Fig. 16. Once the A's are determined the filter can be

synthesized in the standard form shown in Fig. 14.

3.9 Improving the Performance of a Given Filter

As we increase the complexity of the filter (i.e., we use more |
Laguerre coeificients to characterize the past and more gate functions
for each coefficient) the number of Aa's necessary to specify the filter
grows very rapidly. In particular, if we use s Laguerre coefficients
and n gate functions for each coefficient we have n® Aa's to evaluate.
After evaluating a large number of Aa's we should like to have some
guarantee that our filter would perform at least as well as, say, a
linear filter or a simple nonlinear filter that can be designed with less
effort. Methods of obtaining this guarantee will now be described.

Let us first of all prove the existance of a property of our class
of filters which will be used in one of the methods. We want to show
that the class of filters employing s Laguerre coefficients includes the
class of filters that only uses any one of the s Laguerre coefficients.
Since we can always renumber the Laguerre coefficients it is sufficient
to prove that the s-coefficient class includes the class that uses only

the first Laguerre coefficient u). The series representation for the
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general system of this one coefficient class is

n

0 =) a o)) (82)
i=1

We now make use of the fact that the sum of the n gate functions-of any

one coefficient is unity in order to express the series representation (82)

in the form

-

n n n n
=Y a 4’1‘“1)[2 ¢j(uz)]{}: ¢k(u3)] [Z %‘%’] (83)
=1

i=1 k=1 h=1

which is recognized to be a special case of the expansion (Eq. 51) for the
general s-coefficient system. In a similar way it can be shown that the
class of filters using s Laguerre coefficients includes all classes having
less than s coefficients. Note that this property is independent of the
nature of the ’u"s; they may be Laguerre coefficients of the past of x(t)
or they may be obtained from x(t) by any linear or nonlinear operation.
We now maice use of this property to determine a filter whose per-
formance is equal or superior, with respect to a weighted mean square
criterion, to a given filter ¥. F may be linear or nonlinear. We
augment the Laguerre coefficients with the output, u, of the given filter
F, as shown in Fig. 17. Then, by the property demonstrated above, the

filter whose output is expressible as

n

¥) = ) a; 4y(u,) (84)
i=1

is a member of the class of filters which has s Laguerre caefficients
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augmented by u . If the number n of gate functions associated with
the variable u_ is sufficiently large, then to anydegree of approximation
Eq. (84) represents the class of filters shown in Fig. 18, consisting of
F cascaded with a no-storage filter. Since the transfer characteristic
of the no-storage system can be linear, the latter class certainly contains
the filter F. Hence the filter determined by the procedure indicated in
Fig. 17, for any s, performs at least as well as the given filter F and,
in fact, at least as well as ¥ cascaded with any no-storage filter.

Having determined the Aa's of the desired filter as indicated in Fig. 17
the filter synthesis is accomplished as shown in Fig. 19.

We now turn to another method of determining filters to improve the
performance of given filters. Let the output of the given filter F be
u o(t) when its input is x(t). Our object is to improve (with respect to
a weighted mean square criterion) the performance of F by paralleling
it with a filter which will be determined. The A 's of the desired filter

are those that gninimize the error

T

- '}-I-I.I:o Tﬁ » G(t) z(t)-[ (t) + ZA i(a)]} (85)

This expression is seen to be equivalent to

T 2
1 r-
= lim >k f G(t){[z(t) -u,0]- ) A, §(¢)} dt (86)
Tee 00 T _
- a.
Comparing Eq. (86) with Eq. (54) we see that the optimum A '8 are
determined by an experimental procedure like that of Fig. 13 with z(t)

replaced by z(t) ~u o(t). The latter quantity is easily obtained by applying
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x(t) to the given: filter F and subtracting the output of F from z(t), as

shown in Fig. 20. The parallel combination of F and the filter deter-

mined as we have just described will always perform at least as well as

F, since that filter which has no transmission from input to .output is a

member of the class of filters considered in our theory. In other words,

the solution in which all the Aa's are equal to zero is a possible solution

of Eqs. (84) and (85). .
The second method described for improving the performance of given

filters offers the advantage of not having gate functions associated with

the output time function of the given filter; therefore improvements can

be made on the performance of F by very simple systems involving as

little as one Laguerre coefficient aridhence having a relatively small

number of A 's to evaluate. The first method does require a gate function

expansion of the output of the given filter F' but it has the advantage of

ensuring that the performance of the resultant filter will always be at

least as godd as the performance of F cascaded with any no-storage

system. In either method, the resultant over-all filter approaches the

most general filter (of the class considered in this theory) as the number

of Laguerre coefficients and gate functions is increased.

" Still another design procedure involves the determination of that filter -
which when cascaded with F (with F as the first member of the combination)
yields an over-all filter having a performance superior to that of F alone.

In order to ensure that the resultant over-all filter performs at least as
well as F we could augment the Laguerre coefficients of the cascaded
filter by a variable u, that is equal to the input of the Laguerre network.

While this procedure gives a filter that is at least as good as F we have
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no assurance that as the number of Laguerre coefficients and Hermite
functionsis increased the over-all filter will approach the most general

filter.

3. 10 Multiple Nonlinear Prediction

The problem of multiple prediction is that of predicting a time series

from a knowledge of related time series. An example, cited by Wiener,
is the prediction of weather at one location from a knowledge of the past
of the weather at that and other surrounding locations.

The filter theory developed in the preceding sections is easily extended
to the problem of multiple prediction. Let z(t+a) be the function that we
desire to predict and let xl(t) through xp(t) be the input functions on whose
past we operate to form our prediction. The set of functions xl(t-) through
xp(t) may, indeed, include z(t). We éhall characterize the past of each

input by a set of Laguerre coefficients. Let u,,4,,...,u, be the Laguerre

8
coefficients of xj(t). Now let us think of a funci?ion space t‘hg,t encompasses
the past of all p of the input time functions. That is, the basis of this
space is formed by the Laguerre functions associated with each input.

A point in this space then represents the past of all the inputs and hence
the multiple prediction problem is just the problem of mapping this space
onto a line (corresponding to the amplitude of the system output) in a
manner that is optimum with respect to some error criterion. But this
is the same problem encountered in the single input filter problem and
we recognize that the only difference between the single and multiple

input problem is in the number of dimensions of the function space.

The solution of the multiple prediction problem directly parallels that
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of the filter problem given in section 3. 4.
We let y(t) be a gate function expansion of the Laguerre coefficients
of all the. inputs»fx-_lv(t-) through xﬁ(t'). The expansion is

y(t) = ZZZ ZZZ ail’jl""’hl""’
B L By

»

Condo
»
.
L]
-

=2

L i

X by ) 8y () - by (gy) 0y () 0y () oy G

(87)

If we associate a @{a) with each product of ¢'s in Eq. (87) and let A be

the corresponding coefficient ail’jl’ o ’hl' cevinfse..,h? Eq. (87)
PP P
takes the simplified form
)= ) A, o) (88)
a

Just as in the filter problem (section 3. 4) we adopt a weighted mean square

error criterion and minimize the error

Tesc0

T 2
€ =lm 5= G(t){z(ﬁa) - ZAa Q(a)} at (89)
-T a

This equation is seen to have the same form as Eq. (54) for the filter
problem. The solution for the optimum A's proceeds exactly as in

section 3. 4 with result

A_G(t) ala) = z(t+a) Gt) 2(a) (90)

The apparatus for experimentally determining the A's according to this
equation is shown in Fig. 21. Having determined the coefficients, the

predictor can be synthesized in accordance with Eq. (88) as shown in Fig. 22.
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IV. Linear and Simple Nonlinear Systems

4.1 A Test for the Coefficients

Once the coefficients for an optimum filter have been determined,
the filter can, as we have seen, be synthesized formally as shown in
Fig. 14. Much simpler synthesis procedures (apparatus wise) exist
however if the filter is linear or i)elongs to a particular sub-class of
nonlinear gystems. Hence it is desirable to have a means of detecting
linear and simple nonlinear systems directly from a knowledge of their
characterizing coefficients. In this section a simple procedure for testing
the coefficients (Aa's) is developed that detects such systems and directly
yields a convenient synthesis of them.

The class of simple nonlinear sysiems that we shall consider is shown
in Fig. 23. It consists of a Laguerre network and no-storage nonlinear
two-poles (no-storage nonlinear systems with one input and one output
terminal). Each output of the Laguerre network is fed into one no-storage
two-pole circuit and the outputs of these circuits are added to form the
system output y(t). In this class of systems the nonlinear circuits introduce
no crose-talk among the Laguerre coefficients (i.e., there are no cross
products of Laguerre coefficients intr;:duced). This class of systems is
clearly a sub-class of the general class considered in Section III. When
the transfer characteristics of all the two-poles are straight lines the
system is linear. In particular, it is an-sth order Laguerre network in
which the gain factors associated with the Laguerre network outputa are
equal to the slopes of the respective lineartwo-poletransfer characteristics.

The synthesis of nonlinear systems belonging to this sub-class is
' relatively simple, apparatus wise. The nonlinear two-poles may be
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synthesized by piecewise linear appr’c;ximations using diodes and resistors.
If the system is linear the synthesis takes the form of a Laguerre network
whose outputs are properly amplified or attenuated before being added to
form the system:output. In this linear case it may be desirable to measure
the transfer function of the optimum system and then use available synthesis
techniques to obtain alternate realizations of this transfer function using
linear passive circuits. .

We now investigate how we can determine, ffom the characterizing
coefficients Aa of a nonlinear system, if the system belongs to the class
shown in Fig. 23 and, if it does, how we can determine the transfer
characteristics of the nonlinear two-poles.

From the function space point of view the sub-class of nonlinear
systems shown in Fig. 23 consists of all those systems for which the
system output corresponding to each cell in function space is equal to the
sum of the outputs corresponding to fhe coordinates (the Laguerre coef-
ficients) of the cell. That is, since there is no cross-talk, each coordinate
contributes to th;a output an amount that is independent of the other coor-
dinates and hence the system output corresponding to any cell is the sum
of the outputs corresponding to the coordinates of the cell. (We speak here
of cells rather than points in function space because we represent our non-
linear system by a gate function expansion which quantizes the function space.
In this connection we should also realize that we obtain a stepwise approximation
to the two-pole characteristics of Fig. 23 rather than the continuous curves.)
Hence Eq. (51), which represents a general gate function expansion of the

Laguerre coefficients, takes on the form
n n ‘n
¥t = ) by dylu) ¥ ) B dlup) b+ ) By dlu)  (91)
i=1 =1 h=1
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for the sub-class of systems of Fig. 23. Each sum in the equation yields
the transfer characteristic of the nonlinear two-pole that is associated with
the Laguerre coefficient indicated in that sum. For convenience in comparing

this expansion with that of Eq. (51) the latter is repeated below.

n n n
Y= > Y Ay nf) b)) (51)
i=1 j:l h=1

In the experimental procedure described in Section III for finding optimum
filters (Fig. 13) we determine the A or equivalently the 3 5,....h of the
filter. If and: only if these a's are such that Eq. (51) can be expressed in
the form of Eq. (91), the system can be synthesized according to Eq. (91)
in the form shown in Fig. 23. Let us see how the a's must be related to
the b's if these two equations are to be equivalent. By the two equations

being equivalent we mean that they yield the same value for every cell

in function space; hence we must have

a, . h_=bil+bj2+"'+bh

1,1 for alli,j,...,h (92)

This relation represents a set of n® simultaneous equations that thev a's
must satisfy. We shall now develop a simple way of finding whether, for
any given set of a's, this set of equations is satisfied.

It is convenient to establish an order for the evaluation of the a's
(and thus the A a's). It is assumed henceforth that these coefficients are
evaluated as.follows. The first coefficient we evaluate is that for which
i=j=...=h=1The next n ~ 1 coefficients are obtained by letting h
run from 2 to n while holding all other indicies equal to unity. To obtain
the (n+1)th coefficient we set the index preceding h to 2 and let all the

other indices be unity. The following n -~ 1 coefficients are obtained by
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again-letting h range from 2 to n. We continue this procedure until the |
index i has gone through all its n values, at which point all the a's will
have been evaluated. This order of evaluating the coefficients is best

illustrated by a simple example. Consider the coefficients (a's) of a

nonlinear system having three Laguerre coefficients and two gate functions:

for each coefficient. That is, s = 3 andn = 2. There are n® = 8 coeffic”ient'“éﬂ.;‘

a; ik to evaluate. According to the above procedure these coefficients are . e

evaluated in the following order:

Looapgy > 35
2. a2 6. ayo
3. 2y 7. 3y,
4. a2, 8. a5y,

A study of the order in this simple example is sufficient to establish the
order of evaluating the a's for any s and n.

Now think of the coefficients a; § .
evaluation, as components of a vector A and the corresponding coefficients

b arranged in the order of

b b?;l-’ ce ’bnl’bIZ’ byos e ’an’ cen ’bls’bZS' oo ’bns’ arranged as

11’
shown, as components of a vector B. Then the set of equations represented

by Eq. (92) can be written in matrix form as follows

A] = [M] B] (93)
where [M] is the matrix that operates on the vector B to give the vector A.
Let us determine the form of the matrix [M] In order to illustrate the
form of this matrix we shall consider a nonlinear system for whichs =n =3
and for which Eq. (92) is assumed to hold. From: the results of this example

the form of [M] can be visualized for any s and n. The equations:indicated



in Eq. (92) are written, for this example, in Table 1. The b's are
written at the top of the columns so that the form of the matrix’ [M]

is evident. The actual equations are obtained by dropping the b's
down beside the unity coefficients. (All the blank spaces in the matrix

represent zero matrix coefficients.) Thus the first equation reads
3311 =Py + by + by (94)

We see that the matrix’r[M] is composed entirely of zeros and ones.
We also note the very regular pattern of the unity coefficients. A study
of this pattern will enable the reader to visualize its form for any s and
n.

We now state a test for the a's that enables us to directly find if the
set of equations (92) or equivalently Eq. (93) is satisfied. The test was
developed from a study of [M] and the reader can check its validity (for
s = n = 3) by analyzing it in terms of the matrix of Table 1.

1. Starting with 3 L., plot the a's (consecutively in the order
in which they are evaluated) in groups of n at unit intervals along a linear
scale. That is, form a set of n(s"l) graphs, each of which contains n
a's plotted at equal intervals along a line. We call this set of graphs
set 1.

2. Take the first "a" of each graph above, starting with a ...,
and plot these consecutively in groups of n at unit intervals on a linear
scale. Call this set of graphs set 2.

3. Repeat the procedure of step 2 until s sets of graphs are obtained.
The sth set will consist of only one graph.

From a study of the general form of [M] it can be seenthat if for a given
set of a's there exists a set of b's such that Eq. (93) is satisfied then all
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2112
313
121
3122
4123
3131
4132
3133
2211
212
3213
221
8222
4223
4333
4232
2233
4311
4312
2313
3321
4322
2323
4331
4332
4333

31
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the graphs of these a's within each set of graphs will be identical except
for a possible vertical translation. Further, the converse holds; that is,
if all the graphs of the a's within each set of graphs are identical, within
a -w}ertical-translation, then there exists a set of b's such that Eq. (93) is
satisfied.

Hence, if there exists a system governed by Eq. (91) that is equivalent
to a system governed by Eq. (51) for a given set of a's, then all the graphs
of the a's, within each set of graphs, must be the same except for a possible
vertical translation. And, conversely, if we apply the above test to the a's
of a system and find that all the graphs within each set are the same within
vertical translation we know that the system having these a's can be syn-

thesized in the form shown in Fig. 23.

4.2 Synthesis Procedure

In this section we assume that the a's have been tested as described
above and that they correspond to a system of the type shown in Fig. 23.
We are now cor;c'ern'e'd with the synthesis of this system. In particular,
we want to find the transfer characteristics of the no-storage two poles.
One way to do this is to solve Eq. (93) for the b's, which, by Eq. (91),
directly determine the no-storage transfer characteristics. As a
consequence of the special form of [M] this solution is readily accom-
plisheci. However, a simpler method of synthesizing the desired system
makes direct use of the graphs that are drawn when the a's are tested.
Referring to the previous section let us examine, relative to the a's in
Table 1, the sets of graphs defined in the test procedure. From inspection
of Table 1 it is readily seen that all the graphs of gset 1 are identical to
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(except for a possible vertical translation) the graph that would be
obtained if b, 4, b,;, and by, were plotted, in this order, at unit
intervals on the same linear scale. Similarly it is seen that the
graphs of set 2 are the same (within a vertical translation) as the
b

graph that would be obtained by plotting b » and by, . And

12> 722
finally the graphs of set 3 correspond, in a similar manner, to the

graph that would be obtained by plotting b 11° bZl’ and b31. But notice
(Eq. 91 forn=s = 3) that b5, b,;, andby, are just the heights of the
steps in the stepwise approximation to the two-pole characteristic
associated with u;. Similarly by, by,, and bs, determine the trans-
fer characteristic of the nonlinear two-pole whose input is u,. And
finally b1 1’ b21, and b31 determine the two-pole characteristic associ-
ated with u 1 Hence the graphs that are made when the a's are tested
directly determine the desired two-pole transfer characteristics, within
a vertical translation. In the synthesized:nonlinear system (Fig. 23) the
vertical displacement of the two-pole transfer characteristics affects only
the dc level of ’th'e output. When this level is of interest it can be
re-established by a series battery at the system output as will be shown
in examples that follow.

From the above discussion we can readily generalize to the case of
arbitrary s and n as follows: Except for a vertical translation, the
graph of set 1 determines the transfer characteristic of the two-pole
associated with u. The graph of set 2 determines the transfer charac-
teristic of the two-pole associated with us g and so on down to the graph
of set 8 which determines the transfer characteristic of the two-pole

associated with u,
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Exaimple 4. 1
Suppose that we have determined:the coefficients of an optimum

filter of the class 8 = n = 3 and that they have the values given below.

aypp =1 311 =0 a3y = 2
3112 =4 8512 =3 a3y =5
aj3=3 3513 = 2 a3j3=4
3121°2 321 =1 (8321 =3
3122 =3 8322 = 4 a322 =6
3123 =4 3523 =3 833 =5
aj31 =5 3531 = 4 a33; = 6
313, =8 ay3p = 7 a332 =9
ay33=7 ay33 =6 ajz33 =8

We shall test these coefficients to see if the corresponding system can
be synthesized in the form shown in Fig. 23. The coefficients, plotted
according to the test procedure described in section 4. 1, are shown in
Fig. 24, In order to make the form of each graph stand out, consecutive
points corresponding to the a's have been joined by straight lines. We
see that all the graphs within each set of graphs are identical within a
vertical translation. Hence the system can be synthesized in the form
shown in Fig. 23.

The synthesized system is shown in Fig. 25. The transfer charac-
teristic of the no-storage two-poles are obtained directly from the graphs
of Fig. 24. The graph of set 3 is the transfer characteristic of the two-
pole-associated with u. That is, 8,4, 18 the coefficient of the first gate
function ¢1--(u1), a,,) is the coefficient of ¢z-{(ul) and a4, ; is the coefficient
of ¢3(u1). Similarly, any graph in set 2 can be taken as the transfer
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o ce11 1 1; l 'and' choose the battery so that this ontput is equal to that

are assumed here to be 1n volts) But the: system output for: th1s cell

'fer charactenstlc assoclated mth u - As dzscussed 3 7:'-

glven ,'i‘the a' s .-That 1s for cell 1,1, 1 the system output: (Fig. 25)

w1thout'?‘the battery is: 2 volts (the scales for the transfer character1st1cs

%lr'volt smce al11 = 1 Hence we msert a one volt

g batte v ,",jiwith th ..proper polanty, in series w1th the output of the system "-:,v

‘ -:':-5:3:_ in- F1g 25 Note"'hat in: any system of the: form shown in Flg 23 or Fi 1g 25

expansion ylelds a step\use approximation to the transfer characterxstlc :
_ in which the hexght of each step is equal to the correspondmg coeffic1ent B
| m the expansion -This step curve is shown by dotted lines in Fig. 25 R

Example 4 2

Again we consider afilter-of the class s = n = 3, Let the' coefficients
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11 °

24127

213

2121

"
W W

2422

(8]

312.3 =
3131 %

5
a;3,=6
ay33=7

2311 =9

a12=1
213 =2
3321 = 2
822 =3
3323 F

ay3; =4
8532 =3
a,33=6

a3y = -1
23520
a313=1
a3z =1
a3z = 2
a3p3 =3
Tagzp =3
a33p =4
3333 =5

These coefficients, plotted according to the test procedure described

in section 4. 1, are shown in Fig. 26. We see that all the graphs within

each set of graphs are identical within a vertical translation, and further,

we see that they are all linear. Hence the system can be synthesized as

shown in Fig. 27. The transfer characteristics of the no-storage two-

poles are found directly from the graphs of Fig. 26.as discussed in

Example 4.1. The solid lines in the transfer characteristics of Fig. 27

indicate a linear interpolation between the coefficients that specify these

characteristics.

Since these solid line transfer characteristics are all

linear they may be replaced by ampliers whose gains are equal to the

slope of the lines.

4.3 Approximating Filters by Linear and Simple Nonlinear Filters

We have seen that if the graphs of the characterizing coefficients
(the a's) of a system satisfy certain conditions the aystem can be
sy~thegized in the relatively simple form shown in Fig. 23-and that
under certain additional conditions the system is linear and the
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synthesis even simpler. In practical problems it is unlikely that the
system coefficients will exactly satisfy these conditions. However,
the relative simplicity of the systems of Fig. 23 makes it worthwhile
for us to determine when a more complicated system can be approxi-
mated by one having this simple form.

The concept of approximating one system by another is meaningful
only when we specify a criterion for the approximation and specify the
degree of approximation relative to this criterion. In this section we
consider the approximation of one system by another from the point
of view of two different error criteria.

We first consider the weighted mean square error criterion defined
by Eq. (54). Relative to this criterion we ask how much error is intro-
duced if we change the coefficients of the system from their optimum
values A to the values A:z.

According to Eq. (54), the error for a system whose coefficients are

A"I is given by

T
£ = 1im -QJT—I G(t){z(t)- Z Al é(a)} dt (95)

Teeco

Expanding this equation we have

£=22W G - 260 () ) AL sle)+Gl) ) AL Aps(a) 3(p)
a a B

(96)

Taking advantage of the time domain orthogonality of the &(ec), Eq. (96)

can he written
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£ = z*() alt) - 2 Z A! G(t)z(t) 8(a) + Z A;Z G(t) #(a) (97)

in which §2(a) has been replaced by its equivalent, &(a).
For the optimum filter coefficients A , & takes on its minimum value

E min’ given by Eq. (62) as follows

‘ 2
., = zt G(t) - G(t) z(t) 3(a) . 62
Eomin =0 S0 - ) (62)

Using Eq. (58) for the optimum filter coefficients, Eq. (62) can be written

£ min == ©) GO = ) A, Gl =(0) 3(a) (98)

From Eqs. (97) and (98) we obtain the relation

E- Epm= ) (8, -28)GE) 2 2(a) + » AL% GD) a(a) (99)
Again using Eq. (58), we can write Eq. (99) as follows
E-F .- Z (A2 - 2a_a! + A'%) G(t) 8(a) (100)

which is equivalent to

€- - Z (8, - AL)° G 3(a) (101)

This equation is the desired expression for the error that is introduced

when the system coefficients are changed from their optimum values Aa
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to the values A’.

There are several interesting points to notice about Eq. (101) and
the equations that lead to it. First, we notice that 6‘ - gmm is always-
positive since G(t) and #(z) are non-negative functions. Thus, Eq. (101)
shows that the optimum coefficients (the A ) determined by Eq. (58)
actually render the error a minimum. Next, we notice that as a con-
sequence of the time domain orthogonality of the &(ec) each cell contributes
independently to the expression for the system error (BEq. 97). This very
convenient property of the gate function representation of a nonlinear
system enables us to directly and independently relate changes in any
system coefficient to changes in the error E . From Eq. (101) we see

that the increase in error due to a change in the pth coefficient from its

optimum value A‘p to A'p is just

E- Emin = (g - Ap)” Glt) 2(a) (102)

But recall (Fig. 13) that G(t) #(z) is a quantity that we must evaluate in
determining the optimum system. Hence, if any coefficient is changed
from its optimum value (as it may be for purposes of approximating a
system by a:simpler system as we shall see) we can immediately write
down the corresponding increase in error. Finally we notice the interesting
fact that for G(t) = 1 (i. e., the mean square error criterion) the increase

in error introduced by a given change in a coefficient is proportional to

the probability that the corresponding cell in function space is occupied

" (recall that 3(a) is equal to the probability that the ath cell is occupied).

We now introduce another error criterion and relative to it we

examine the effect of changing the system coefficients. As the criterion
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we specify an amplitude tolerance band T for a system output and regard
two systems as approximately equivalent if their outputs (for any input

that is common to both systems) coincide within this tolerance band.

T can be chosen to have a constant width for all amplitudes of the

system output or its width can be chosen as a function of the amplitude

of the system output (examples of these choices are illustrated later).

Now recall that in the gate function representat‘ion of a nonlinear system
the output of the system at any instant is equal t;o the value of the coefficient
A(z that corresponds to the occupied cell in the function space. Hence, if
we change the pth coefficient from A  to A} , then the system output will

B P
change from A, to A! when the Bth cell is occupied. At all other times

4 p
(i.e., when the Bth cell is not occupied) the system output will be the
same as that before the change was made. Notice that this result holds
regardless of the system input. As a consequence of this simple relation
between changes in the coefficients and changes in the amplitude of the
system output we can directly transfer the tolerance band on the system
output to the coefficients. That is, for example, if we choose a two volt
wide tolerance band about the output waveform then we can alter any and
all of the coefficients by as much as 11 volt amplitude and the system
output will remain within this tolerance band.

In the optimum filter problem (for the case G(t) = 1) if we alter any
coefficient from its optimum value Ap to A'p, in addition to knowing that
the system output will change from A‘5 to A'p when the fth cell is occupied,
we know the probability of the occurrence of this error. This probability

is just #(B) which was measured in the process of determining Aﬂ‘

In summary, when any filter coefficient is changed from its optimum
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value: .Ap-. to A'p ‘we can immediately determine the following quantities:

1. The chahge in the weighted mean square error.

2. The tolerance bard relating the optimum and the altered systems..

3. (For the case G(t) = 1) The probability that the output of the altered
system will differ from that of the original optimum system.

Converéel‘y, if we specify upper limits on any of these quantities we
can find the permissible variation in the Aa's. In this respect it is most
convenient to specify a tolerance band, for, as‘we have seen, the same
tolerance band can be applied to the system coefficients, thus directly
determining their maximum permissible variation. Furthermore, of
the three quantities listed above, the tolerance band is the only one whose
specification deterininesthe permissible range of the Aa's independent of
the system input. Hence, this criterion is truly characteristic of the system
itself. (More precisely, it is characteristic of the gate function represen-
tation of the system.) Henceforth when we speak of two systems as being
nearly equivalent it is understood that this "equivalence” holds with respect
to some -suitai:ly chosen tolerance band. To illustrate these concepts we

consider an example of a nearly linear system.

Example 4.3

Let the. coefficients of an optimum mean square filter be the same as
those of Example 4. 2 with the one difference that 2,5, = 3.5 instead of 3. 0.
The graphs of these coefficients are shown in Fig. 28. It is recognized that |
these graphs do not satisfy the conditions (section 4. 1) for synthesis in the
simple form of Fig. 23. However, let us establish a tolerance band of
0.5 volts about the system output and ask if there is a linear system that
is nearly equivalent to this system. In Fig. 28 the dashed lines in each
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V. ‘Notes on the Application of the Theory
5.1 Reducing the Complexity of SystemsbyExtractmgs]mp]_esystems o
In section 4.3 we considered the approximation of '=ngn]jn¢4r:':fi1térs'
by linear and simple nonlinear filters. The object of this approximation
is to reduce the complexity of the filter. In many cases we may find that,
for a given tolerance band, there exists no system of the form shown in
Fig. 23 that approximates a given system. It may, however, still be
possible to simplify the synthesis of this system by dividing it into two
or more parts, each of which can be synthesized in a relatively simple-
form. The basis for the division of the system into separate parts is
provided by the gate function representation of nonlinear systems given
in Eq. (53). This representation lends itself conveniently to the‘deéom-
position of systems into parallel connected component systems. For any
cell of the given system, the coefficient A is just the sum of the coef-
ficients of the'corresponding cell in each of the parallel connected
component systems. Hence we can extract a simple system from a
given system by subtracting the coefficients of the simple system from
the corresponding coefficients of the given system. If the extraction
simplifies the original system then we have succeeded -in'.bre‘}akingl_'_one
complex system into two less complex parts. To ﬂlixStrate-'thisf_letctis' '
consider Example 4.3. Instead of approximating the system of this _
example by a linear one let us syithesize it as the parallel é&mbihéti@n -
of two simple sy’ste’mé We note (Fig. 28) that, except for the coefficient
4.2, 2 all the graphs of the coetficients satisfy the conditions tor a linearf"' T
system. Let us. subtract the aet of coemcients correﬂponding to this |




_ linéar sysfem from the coefﬁcmnts glven in’ Fig 28 The result 18

that all the coefﬁclents of the remammg system are: zero except the

one correspondmg to'the 2,2,2 cell which is’ 0.5. The coeff1c1ents of |
the. extrac_ted»>1mear. system are those o_frExar_nple 4.2. Hence,_ :v»t_he.non—
linear system »f Example 4.3 can be synthesized as the parallel com-
bination of the lineéar system of Fig. 27 and a very simple nonlinear
system having only one coefficient, a; 2.2° 0.5. This approach of
extracting simple systems to reduce the complexity of a system is
effective only when, as in this example, the extraction ¢auses many

of the coefficients of the remaining system to be zero, thereby simpli-

fying its synthesis.

5.2 Optimization of the Laguerre Function Scale Factor

It has been assumed throughout that the scale factor associated with
the argument of the Laguerre functions is unity. By substituting kx for
x in. Eq: (1) we obtain the Laguerre functions having the scale factor k.
Unfortunately, we have no convenient analytical method for determining
thés optimum v_élu’eof k in the filter problem. Recall that the impulse
response at the nth output terminal of the Laguerre network is h.n(t) s
or ,hﬁ(kt) with the scale factor k. We see that k effects a time scahng
of the impulse response of the Laguerre network and hence a ffe_,qu,er;cy’_
scaling of the transfer function of this network. ‘In 'determi’ningi -dptimum-
f11ters by the methods ‘described we can make use of our knowledge of
the: frequency band of x(t) to judiciously choose k. It would be convenient
however to have a method for obtaining the optimum k rather than just
a good guesa for it. An experimental procednre Ior accomplishing thie



fresult is: now descnbed

Consider the effect of changmg the time: sca.le of x(t) and z(t) in
the experMental;procedure for de_.term:m.ng;opt_mmm 'ﬁlters. That |
is, consider that these time functions are replaced by x(t/k) and
z(t/k) respéctively. In'the laboratery this could be achieved by
recording the ensemble members of x(t) and z(t) and then playing
the recording back at a speed of 1/k times the recording speed.
First, consider the effect of this time scaling on the determination
of no-storage filters according to Fig. 9. It is clear that since the
apparatus for determining the "filt‘ers"has no memory, its operation
is ‘independent of-the time scaling indicated above. That is, the
same filter will be determined regardless of the value of k. Now
consider the procedure (Fig. 13) for determining optimum filters
involving memory. We notice that the only portion of the apparatus
that involves memory is the Laguerre network. As a consequence if
we replace x(t) and z(t) by x(t/k) and z(t/k) respectively, we obtain
the same filter as if we had used x(t) and z(t) but changed the scale
factor of the Laguerre network from unity to k. Now recall (section 3. 6)
that apparatus’can be constructed which indicates the minimum: error for
the optimum filter (cfithe class of filters having a given Laguerre network -
and & generator). This apparatus, like that of Fig. 13, consists ofané-
memory circuits and a Laguerre network. By varying the speed of the
-recbrdings ‘of .x-(t)- and z(t) that are fed into. this a'ppa;ra'tus a'nd-fObs:ervin’g
its output (6 foin of BEq. 62) we. can directly determine the optimum k
In practice we would build the Lag'uerre network in the minimum error
detectmg appnratus to have a acale factor corrcaponding to. our jud:lcious :
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_guess "; ':”f th" optimum k Then we could vary the speeds of the reeordmgs

,,of x(t. ' er to explore scale factors 1n the?s elg_'f or _ df--of'our

'guess :Wefi.-:zg'should note: that 1n general the amphtude of the s:gnals at the
outputs of'the Laguerre network will change: w1th the change in speed of the
recordings of x(t). The maximum amplitude of these signals mu_st be_-;kept-- _
at vat'c’diiﬁtént-"IéVel;-»C’orfresponding to the range a-b (Eq. 37) over. which the
gate functions are defined. If desired, circuitry can be constructed to

accomplish this adjustment automatically.

5.3 Choosing the Functions that Characterize the Past;of the Filter Input

For the theoretical discussions of the preceding sections it was con-
venient to characterize the ’past of the filter input by Laguerre functions
since they form a complete set of functions on this past. In practice,
however, we will only use a small number of Laguerre functions and
hence the fact that they form a complete set is no longer of prime
importance to us. The important question in the practical case is,
"How well can we do with a small number of functions of the past? "

In many filter problems involving the separation of signals from
noise ‘the immediate past of the filter input containg more information

-about the present valie of the desired signal 'than*does the more remote
past. . Since the Laguerre functions decay exponentxally (Eq. 1) they
weight the immediate past of the: input considerably more than the more
‘remotecpas_tv-and-hence we. expect that they will form a convenient;s:et- of
functions for-use: m ma.ny fﬂter problems.
For gome. applicstionn it may ‘be. eonvenient to derive the mnetions '-.

of the: past from taps on: a dehy line rather than l’rom a Laguerre netwark




'with mess; es- ini.-whmh consecuhve symbols are coded in a. sequence of
| jpulses :of 1fferent amphtudes.. Then it would be approprlate to replace
the Laguerre network by a delay line with taps 80 spaced that consecutlve
‘pulses app_earvat -ad;ac,ent.taps. Then at- any.ms__tant the s outputs of the =
delay line w_ouldv-speCify the amplitudes of the s preceding pulses. Anofher'
example for which it is appropriate to replace the Laguerre network ilv)y_ a
delay line is the problem of detecting the presence of a train of pulses that
are equally spaced in.time. If the delay between the taps is-equal to the
time interval between the pulses then when the train of pulses is present.
it will affect all outputs of the delay'-'line simﬁltaneouSly; These are
examples in which it is desirable to give equal weight to different poﬁiOns'
of ‘a finite interval of the past and hence a delay line is more appropriate
than a Laguerre network.

It is clear that there are many choices we can make for the functions
that characterize the past of the filter input. Each choice implies a
restrictionto a class of filters from which the experimental procedure,
similar to that of Fig. 13, will pick the optimum for the particular problem.
‘We can make use of the apparatus that determines: the m:lmmum error for
. a given class of filters (mentioned in sections 3. 6 and 5. 2)- in: order to
‘decide whether to use a Laguerre network or a delay line etc. ina: g'iven
problem. We ingert the different networks into: this appnratus in place
of the.»Lagu-erre-networkaand choose that one wmeh.yields;.ethe.‘mmeet.;-

error.
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5.4 Choosing the Number of Gate Functions

By increasing the nﬁmber of gate functions 'as'socv;iatedwith.eachy
Laguerre coefficient'Wé'quantize the function sbabe of the input into
smaller cells. While in general this is desirable from the point of
view of reducing the filtering error, it leads to a \}ery large number
of coefficients to evaluate. In application of the theory we should, when
possible, make use of any information about the particular filter problem
that will enable us to reduce the number of gate functions. For example,
consider the problem of pure (noiseless) prediction of a stationary time
function consisting of equally spaced pulses having amplitudes of zero or
unity with a certain probability distribution. As discussed in the previous
section it is appropriate, for a problem of this type, to replace the Laguerre
network by a delay line. The output from each tap on the delay line will
then take on only the values zero and unity. Hence we need only two gate
functions for each output of the delay line.

In the previous section we have also mentioned that in many filter
problems the immediate past of the input contains more information
about the present value of the desired output than does the more remote
past. A study of the Laguerre functions shows that the higher ord‘ex} func -
tions weight the remote past more strongly than do the lower order functions.
Hence, we expect that, for purposes of filtering, it might not be as imp‘ortant‘
to distinguish small changes in:the amplitude of the higher order Laguerre
coefficients as in the lower order ones (or, in the case of delay lines it
might not be as important to distinguish small-ché.ngés in those outputs
that represent samples bf, the more remote past). Thus we might choésye f

a smaller number of gate functions for the higher ordervmgﬁerre"éoefficientsf' ’, |
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than for the lower order ones

&

procedure si lar to that of Fig. 13 determines vthe".optml_nnzfﬂter.
We should use any information about the particular filter problem
that 'will enable us to judiciously choose the class of filters so that
the number of coefficients is reasonable in the light of the task that

the filter is to perform.
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