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ABSTRACT

The first section of this thesis- describes the Wiener theory
of nonlinear system: characterization and discusses some of its important
concepts. Following the lines of this theory a theory is developed,-for the
expe'rimental:determination of optimum time-invariant nonlinear systems.
Thie systems ;are-optimum in a weighted mean square sense in which the

, weighting function is at our disposal.

The design of nonlinear systems is regarded as the problem
,.• of mapping the function space of the past of the input onto a line that
( correspondi tothe amplitude of the filter output. By choosing a series

expansion for this mapping operation that partitions the function space
.. into non-over!apping cells, an orthogonal, representation for nonlinear
_• systems is obtained that leads to convenient apparatus for the determina-

( tion :of optimum, systems. General methods are described for applying
this tiheory t•o determine systems having a performance that is superior

.r- t to hat of given linear or nonlinear systems. A criterion is .established
.• relative to Which two systems are defined as 1nearly .equivalent!; and :the

approxim• tion of nonlinear systems by linear and simple nonlinear ones
' is discussed. The theory is: extended to include the problem of multiple

-nolinear prediction :and apparatus for the determination of dptimum
predictors is indicated.

Thesis Supervisor: Y. W. Lee
Title: Associate Professor of Electrical Engineering
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Introduction

A physically realizable nonlinear system, like a linear one, is a

system whose present output is a function of the past of its input. We

may regard the system as a computer that operates on the past of one

time function to yield the present value of another time function. Math-

ematically we say that the system performs a transformation on the past

of its input to yield its present output. When this transformation is linear

(the case of linear systems) we can take advantage of the familiar con-

volution integral to obtain the present output from the past of the input

and the system is said to be characterized by its response to an impulse.

That is, the response of a linear system to an impulse is sufficient to

determine its response to any input. When the transformation is non-

linear we no longer have a simple relation like the convolution integral

relating the output to the past of the input and the system can no longer

be characterized by its response to an impulse since superposition does

not apply. Wiener has shown, however, that we can characterize a

nonlinear system by a set of coefficients and that these coefficients

can be determined from a knowledge of the response of the system

to shot noise excitation. Thus, shot noise occupies the same position

as a probe for investigating nonlinear systems that the impulse occupies

as a probe for investigating linear systems. The first section of this

thesis is devoted to the Wiener theory of nonlinear system characterization.

Emphasis is placed on important concepts of this theory that are used in

succeeding chapters to develop a theory for determining optimum nonlinear

systems.



;-~jB I. The Wiener Theory of Nonlinrear System

Characterization and Synthesis

1. 1 General Remarks

The objectives of Wiener's method are: to obtain a set of coefficients

which characterize a time -invariant nonlinear system, and to present a

procedure for synthesizing the system from a knowledge of its charac -

~II:Iterizing coefficients. An operator relating the output to the past of the

input of a nonlinear system is defined in such ·a way that the characterizing

coefficients can be evaluated experimentally.

The method is confined to those nonlinear systems whose present

behavior depends less and less upon the remote past of the input as we

1 push this past back in time. More precisely, attention is restricted to

:II those systems whose present output is influenced to an arbitrarily small

extent by that portion of the past of the input beyond some arbitrarily large

but finite time. Further, we shall restrict our attention to those nonlinear

systems that operate on continuous time functions to yield continuous time

functions. This is clearly no physical restriction since physic~al. time

functions, though they may change very rapidly, are continuous. The

reasons for these restrictions will become apparent in the development

of the theory that follows.

According to Wiener the most general probe for the investigation of

~la nonlinear systems is gaussian noise with a flat power density spectrum

because there is a finite probability that this noise will, at some time,

approximate any given time function arbitrarily closely over any finite

time interval. Gaussian noise with a flat power density spectrum can

j~BI-be approximated by the output of a shot noise generator. Hence, if two



systems hiave the :same response to shot noise they will have the same :•,•-•

response fcbranyinput and we say 1lhat the systems are equivalent. The

Wiener theory of nonlinear system classification is based on this property

of the shot noise probe. A given system is characterized by exciting it

with shot noise and measuring certain averages of products of its output

with functions of the shot noise input which can be generated in the laboratory. ""'"

The measured quantities are numerically equal to the coefficients in the

Wiener nonlinear operator. Once these coeffieients are determined a

system can be synthesized that yields the same response to shot noise as

does the given system. Hence the two systems are equivalent.

Recognizing that the present output of a nonlinear system is a function

of the past of its input, Wiener formulated his nonlinear operator by first :I',

B ~~characterizing the past of the time function on which it operates by a set '-I

of coefficients and then expressing the result of the operation (the system

output) as an expansion of these coefficients. In the development which ;:

follows we shall treat these problems separately; first the problem of

characterizing the past of a time function by a set of coefficients and '.`v

then the problem of expressing a nonlinear function of these coefficients.

.-,• : ,:,•:;

1. 2 Definitions

To simplify the description of the method, it is convenient .at this

point to define certain quantities and relations.

A. The nth Laguerre polynomial is defined as2

::.::

S1 e x d(n-l) (x n-l1e -x  n = 1,2....
Ln(x)= : e .c~(r 1 (r

3 I
.... •!



B. The normalized Laguerre functions hn(x) are defined as

e -x L n(x) x w0
hn(x) = (1)

0 x< 0

The following orthogonality relation exists for these functions:

co I ifm = n

0 hm(x) hn(X) dx = { (2)

3C. The nth Hermite polynomial is defined as

(n-)n- 1) ( 2-
Fn(x) = (-1) e x  e n = 1, 2, 3,...

D. The normalized Hermite polynomials rln(x) are defined as

Fn(x)
,n(X ) = [2(4-1)(n-1)l (7)1/211/2 (3)

E. The normalized Hermite functions are defined

n(x) = e - x /2 rn(x) (4)

These functions form a normal orthogonal set over the interval -co to co.

Consequently we have the relation

rm(X) In(x) e-x dx = (5)

1. 3 Characterizing the Past of a Time Function

Given a time function x(t) our object is to determine a set of coefficients

which characterize its past. The coefficients are said to characterize the



past of x(t) if we can construct this past from a knowledge of them.

Let us here confine our attention to real time functions x(t) having I
the property

fm x2(t) dt <•• *

The past of such time functions can be expanded in a complete set

of orthogonal functions. Further, from a knowcledge ofthe coefficients

of this expansion we can construct the time function almost everywhere..

Because of their realization as the impulse response of rather simple i:ii

networks Wiener chose to expand the past of x(t) in terms of Laguerre :"

functions. These functions form a complete set over the interval 0 to c:

and have the orthogonality property indicated in Eq. (2). The expansion

of the past of x(t) in terms of the Laguerre functions is .. •.

un h(t) t 0 (6)Znnl
where the present time is t = 0 and the un are the Laguerre coefficients

of the past of x(t). Taking advantage of the orthogonality property of

Eq. (2) we obtain the following expressiun for the un.

un = x(-t) h(t) dt (7)

These Laguerre coefficients are readily generated in practice as the

outputs of a rather simple network whose input is x(t). This network,

shown in Fig. i, is called a Laguerre network. It is a constant impedance

lossless ladder structure terminated .in its -characteristic impedance and
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prcede$d by ns eries I inductane. :For a detailed description of Laguerre

networks 5 their analysi and synthiesis, see reference 2. For our purposes

it is stuf~ficient to know that the -impulse response of the LagCuerre :network at~

the nth output ;terrmina pair on open circuit is h (t) for n 1r i 2, ;3 i... We:

must now show that if x(t) isapplied to the input of this network the output

at the -nth: terminalt pai at tie t= i~s the ntb LIaguerre coefficient un of the

past of :X(t) up to 'ther tim t = . To this end wet consideir the bloci diara

ofP the Lagurret network shwn in Fig. 2. Pojb simplicity only the uth outputl

te~-rminl s hon. The- ntokInpurt is ~t). Its output rn(t) is giVenl by

the convolu~tion of xt). wihh That is,

I r,(tr) f I(tm') h(rdr Ir

Buxt th righ side ofl thi ls euaio Is ee to b eqatwslent~ to the erxpressio

for ~ gi~venr in Eq. (7). Hesnce we se thatf ~)- As apprLIed to the inpu of

a Laguerre network the outpu :ofth ni terminal pair at time :t £ 0 isl equa

to the nth Lagurre coefficietote pas r!of x~t) yto the time t * 0. in

general, the oupu o -the nth trmna pi of ltheQ Lurre netwrkt at

anry time tI.f equa to :the nh Lqagurr cfiienct o the past of the. Inpu

up to the' time t.

1.4 :Properties of the ·Laguerre Coefficients of a Shot: Noise Process

Since the probe for the investigation of nonlinear systems in the WVliener

theory, is shot noise 'it will be necessary in: our development of -this theory:
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.to make use of several properties of the Laguerre coefficients of a shot

rnoise process.

When the input to a Laguerre network is shot noise the outputs (the

Laguer~re coefficients of the past of the shot noise input) have the following

three properties of interest:

1. They are gaussianly distribu~cd.

2. They are statistically independent.

3. They all have the same variance.

The first property follows from the well-known result that the response

of a linear system to a gaussian input is gaussian 5 (recall that shot noise

i~s a gaussian time function with a flat power density spectrum).

The second property is proved as follows: Consider the Laguerre

functions h,(t) and hn(t)* Let Hm(w) and H,(o) be the Fourier transforms

of hm(t) and hn(t) respectively. Hm(ca) and Hn(w) ;are then the transfer

functiolns from the input of the Laguerre network to the mth and nth

i output terminal pairs. The cross power density spectrum I (ca) of

the mth and nth output time functions can be expressed as ;

where i. .(o) is the input power density spectrum and the asterisk denotes
11 · ·i

Sthe complex onjugate o Hni(w)* The cross coreaio"ln""" functio

I~of these output time functions is given by the Fourier transform of Qnm(w)

as follows: '

· is;cnm(T) = fn(t) fm(t+T) =f 1~w) eJwT dw (10)

;Iin w~hic:h the bar indicates averaging with respect to time. Using Eq. (9),

ji 9



Eq. (1O)?becomes

~nm(O) = fn(t)~ fm(t) = fd Hn(w) H*(w) ifl(w) dw (ii)

for T = 0.

If 1ii(w) is a constant, then Eq. (11) can be written

4~nm(O) = fn(t) fm(t) = Qii(w)) Hd (12):100 :!:::: !:!i

We now make use of the Parseval theorem to express the integral in

Eq. (12) as follows:

-Hml) H(CO).d = f hn(t) hm(t) dt (13) ...:.,

Using the.orthogonality property of the Laguerre functions (Eq. 2) in

(13) and (12) we have the result

ZBiiH o•). m = n

fn(t) fmr(t) = T (14) :·i4
L0 m *n..

when .ii((o) is a constant. Note that if lii(o) is a constant it can have no i

impulse at the origin .and thus th' input and output time functions of the

Laguerre network must have zero means. Hence we have shown that

the outputs of the Laguerre network are linearly independent when the

power density spectrum of the input is flat. (Note that this is true

whether or not the input time function is gaussian and that it also

holds for any orthogonal set of networks, not only the Laguerre,,

network.) .



In the case of shot noise input the Laguerre coefficients are gaussian

time functions (property 1 abtve) and linear independence implies statis-

tical independence, proving property 2.

Property 3 can be proved by solving for the variance of the nth Laguerre

coefficient in terms of the power density spectrum of the nth output of the

network. However it can be seen very simply by recalling that the Laguerre

network, except for its first series inductance, is a constant resistance

lossless structure terminated in its characteristic resistance. If in Fig. 1

we look to the right at any of the output terminal pairs n-n we see the

characteristic resistance of the network. Since the structure is lossless

the same power flows through each section and since the impedance at

each section is resistive and the same for each section the mean square

value of every Laguerre coefficient is the same. For shot noise input the

mean value of each coefficient is zero. Hence the variance n- un(t) -u

is the same for all Laguerre coefficients. In particular if the level of the

shot noise input to the network of Fig. 1 is properly adjusted all the Laguerre

coefficients will have a- = 1. In the development of the Wiener theory which ..

follows we shall assume this to be the case.

In section 1. 3 we restricted our attention to time functions that are

squared integrable over the interval -oc to co. Then in the present section

we speak of applying shot noise to the input of the Laguerre network. This

is justified by the fact that the past of any physical time function that we

can generate as an input to our Laguerre network is squared integrable

since it starts at some time in the finite past.

Any practical application of the Wiener theory must of course use only j•

a finite number of Laguerre coefficients to characterize the past of the

system input. Since all the Laguerre functions decay exponentially (Eq. i),



for .any finiit-e number:,e of these functions there exists rsome time in the

finite: past ~such that the p~resent outputs of the Laguerre network are

influened toa · ar sb~itrarily small extent by the behavior of the input

prior to this time. That is, for all practical purposes the outputs' of

the Laguerre network are not cognizant of the past of the input beyond

somle finite ltime. Hence, as mentioned in section 1. 1 the application

of the Wiener theory is restricted to systems whose present output is

influenc~ed to an arbitrarilyr small extent by that portion of the past of

the input beyond some arbitrarily large but finite time.

1. 5 The Wiener Nonlinear Operator

Since the Laguerre coefficients characterize the past of a time

function, any quantity dependent only on the past of this time function

can be expressed as a function of these coefficients. Thus for the

nonlinear system with input x(t) and output y(t) we can write

y~t)- F~tr~u""'"""](15)

in which the u's are the Laguerre coefficients of x~t) at time t.

To ·put Eq. (iS5) in a more useful form we must choose an expansion

for the function F of the Laguerre coefficients. These coefficients can

take on any real value from -co to ao. The Hermite functions are chosen

for the expansion becauise they form a complete ortho'normal set over the

interval -oo to co and, as we shall see, are particularly adapted to a

gaussian distribution. The expansion of Eq. (15) in terms of normalized

Hermite functions which are defined in Eq. (4) reads

Co Co co lu .+u +.tU;'

(16)



* This equation expresses the amplitude of the time function y(t) as a function

of the Laguerre coefficients of the past of the time function x(t). It can be

simplified by letting V(a) represent the product of polynomials ?i~(Ui) vj(U2)...

?h's and Aa represent the corresponding coefficient ai~~~~~~. ....

Eq. (16) becomes

S22 2
U +U + . .a

y(t) =lims Z Va) e- 2 (17)

The behavior of any system of the class of systems considered in the

Wiene-r theory can be expressed in the form of Eq. 17. The coefficients

Aa are said to characterize the system because the complete expression

~:8 relating the output of the system y(t) to the past of its input x(t). for any

* input time function, is known when the A 's are known.

We now come to the problem of characterizing a given nonlinear system,

that is, the problem of evaluating the A 's corresponding to a given nonlinear

system. The object is to obtain an expression for the A 's suitable for

experimental evailuation. To obtain such an expression Wiener multiplies

,il· both Bides of (17) by V(p) and then makes use of the ·gaussian distribution

of the Laguerre coefficients of a shot noise process to obtain equation (26)

for the A 's. However, we shaUl takre a different approach to arrive at

Eq. (26) that will give us a better physical understanding of the Wiener

Smethod.
In the practical case we will always use a finite number of Laguerree

~Icoefficients and Hermite functions. Then the sum on the right side of

~I(17) does not yield y(t) exactly but only approximates it. We can regard

the finite sum

13

ii



2 2u1 +... +11

Z AV~a)e
a

(18)

as representing the output of a nonlinear system in terms of s Laguerre

coefficienrts of its input· and a finite number of Hermite functions. We

want to choose the Al':s so that this sum best approximates the output

y(t) of the given system with respect to some error criterion when both

sysatems have the same input. Since, according to section 1. 1 the most

general time function.~ is shot noise we shall let it be the common input.

We define

£=lim 2
T-..oo

2 afTu 1+. ..+U
eyt) Z2Va~

as the error between the outputs of the two systems. The justification of

the choice of this weighted mean square error is that it leads to convenient

independent expi~essions for the A t's as we shall see. We now minimize

E with respect to the Aa'5* In particular, for the coefficient Ag we have

fTIX-e= limo -T I -zv(p)P Gt- C V(a) e~a

2 2

a1"U Jdt

IFor the error to be a minimum writh respect to AB we must set Eq. (20)I-to zero. This gives Eq. (21).

T
Urn !qS I-T

2 2

u1 ..
y(t) v~p) nt = Tloo iT v(p) Zn~aV(aee 2

Tlcaa

(21)

dt (19)

(20)



Welhave seen-(section 1.4).:that-the Laguerre coefficients of the past

of..:a sshot:noise processIare statistically .independent, normalized,

gaussian variables. Thus ithe joint distribution of the Laguerre coef-

ficients is

2 2
u 1+...+uI a

P(u, ... u) = (2w)- s/2 e Z(22)

Our knowledge of this distribution is helpful in evaluating the integral on

the right side of Eq. (21). Taking advantage of the ergodic theorem we

can replace the time average of the right side of Eq. (21) by the corres-

ponding ensemble average with the result

2 2
aT ccU 1 +t... +U

_lim - y(t) V(p) dt =P V) A a V(a) e 2
T- 2T J .. j.o'T ac a

XP(u, .... Jus) dU 1 *.. dus  (23)

After using (22),:in (23) and interchanging the order of integration and

summation we obtain

_-(u2+...+u)
(Air)2 yt)V() = 2Aa ... J V(a) V(P) e du1 ... dua

(24)

in which the bar above y(t)V(P) indicates the time average of this quantity.

Since V(a) and V(P) are products of Hermite polynomials of the Laguerre

coefficients we can separate Eq. (24) into a product of integrals each of

which involves only one Laguerre coefficient as in Eq. (25)



yz~/ J(t)V(p)

laOO 2 2

In this equation the unprim-ed ·subscript andlicies belong to those Hermite

polynomials that make up V(a) while the primed indicies belong to those

Hermite polynomials that make up V(p). Recalling the orthogonality

property of the Hermite functions (Eq. 5) it is cle~ar that unless all the

primed indicies P., J', .... , h' in Eq. (25) are equal to the corresponding

unprimned ·indicies i. j. .. ,, h, in other words unless B equals a, at least

one of the integrals will be zero. By the same token, if B =- a then all the

integrals have the vali~e unity. Hence Eq. (25) reduces to

yft)V(p) = Ag (26)

which provides- the basis for the experimental determination of the charac-

terizing coefficients A . The reason for the choice of Hermite functions

to expand the right side of Eq. (15) now becomes apparent. The joint

gaussian probability density of the Laguerre coefficients of the shot noise

input (Eq. 22) surpplies the necessary exponential weighting factor in Eq. (23)

to enable us to take advantage of the orthogfonality of the Herinite functions

in evaluating the coefficients AQ

This approach to the Wiener theory clearly points out that, for any given

number of Laguerre coefficients and Hermite functions, this theory deter-

mrines that system whose output best approximates (in the weighted mean

square sense of Eq. 19) the output of the given system for shot noise input

to both systems. As the number of Laguerre coefficients and Hermite

functions is increased, the output (for shot- noise input) of any sysitem



of the Wiener class can be approximated with vanishing error. And,

from the~ discussion of section 1. 1 if two systems· have the same response

to srhot noise then they have the same response to any common ·input and

can be considered to be equivalent.

1. 6 The Experimental Apparatus for Characterizing and Synthesizing

Nonlinear Systems

Equation (26) provides the basis for the experimental. determination

of the characterizinng coefficients A . The apparatus for the determination

of the coefficients A is shown in Fig. 3. The output of a shot noise geni-

erator is fed simultaneously into the given nonlinear system and into the

Laguerre network. The output of the given nonlinear system is y(t). The

outputs of the Laguerre network are fed into a device involving· multipliers

and adders. This device generates products of Hermite polynomials (the

V's) whose arguments are the Laguerre coefficients. Each ouitput ef this

Hermite· polynomial generator, when multiplied by y(t) and averaged,

yields, by Eq. (26), one of the characterizing coefficients of the given

nonlinear system.

Having described the method for determining the chraracterizing

coefficienits of a ·nonlinear system we now turn our attention to the

Wiener method of synthesis of nonlinlear systems from their charac -

terizing coefficients. The general representation of a nonlinear system

is given by Eqs. (17) which is the guide for the synthesis problem. This

equation tells us that, for each at, we must generate V(ar) and multiply

it by A4 and the exponential extp -(u t + ... + u B)/2. Then each product

must be added to give the system output y(t). In practice, the

number of multipliers is· reduced if we first fiorm the sum of the
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products A V(a) and then multiply by the exponential function.
The exponential function, exp -(u + ... + )/2, can be obtained

as the product of s exponential function generators whose inputs are,:.

2
respectivelyu 1 through U8 . Such generators give an output of exp : (-u /z)
when the input is u. They are realizable aong ther ways, in the form

of a small cathode-ray tube with a special target to generate the exp (-u 2 /Z)

function.

iThe blc diagr of the iapprats for the synthesis procedure is shown

in Fig 4

1.7 Example

In aoder to •fixideas, :let us consider. a simple ,example which is par-

ticularly suited to characterization and synthesis by the Wiener method.

It should be emphasized that the Wiener method is an experimental method

and that1 for the purpose of illustrating mathematically how the method

wor:ks• only the simplet of examples can be handled analytically Let

the example be a nonlinear system that contains no storage elements.

Further let its .output-inpt characteristic (transfer characteristic) be

gvehi by th eeqation.

y(t) = e (27)

DIn both ihe, c.iiracterizationi and. synthesis procedures: described ,

Sfunctioofthe grre netrk is tintroduce dependence o the

system' outpu o past of itsiinpit. The no:nlinearity is brought about

by the e'•rmite polynmial generator. For the simple example under

consi ideritiin there is: 'no ependence upo the past and thus we can bypass

the L re netf r )I the exproiretprocedure the fact that this
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given nonlinear system has no storage could be determined from the results

of a priori tests made on the system.

We notice that as a result of bypassing the Laguerre network the

variables ul through us (Fig. 3) are replaced by the single variable x(t)

as shown in Fig. 5. Equation (16) then becomes:

(28)y(t) = ai i (x) e-x/2

i

and Eq. (26) becomes

ai = (Z.) 1 / 2 y(t) ni(x) (29)

Let us make use of the ergodic theorem to evaluate this time average as

an ensemble average. Using Eq. (27) we can write

= (lr)1/2f ni(x) e - x / 2 P(x) dx

But since, in the. test setup (Fig. 5), x(t) is the output of an ideal shot-

effect generator, the probability density of x is

P(x) = (27) "1/Z e - x 2/2 (31)

Thus

· 00
ai f

a W
9r(x)

2
e - x a (32)

Referring to Eq. (3)

seen that

and the definition of the Hermite polynomial, it is

-1/4 (33)-l(X) = W

(30)
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Withi thi~s resuilt Eq. (32) can be wr~itten

ajll/fljxii ~ ae x (341)

ACs a consequlence· of the orthogonality of the Hermite functions (Eq. 5)

we have the resu~lt

a -nl/4 (35)

These coefficients serve to characterize the simple nonlinear system of

this example.

Now let us synthesize the system from these coefficients. The guide

for the synthesis is Eq. (28) which corresponds to Eq. (17) for the more

complicated case involving storage. Since, from Eq. (35) only one coef-

ficient is different from zero, the sum in Eq. (28) has only one term and

can be written

y(t) = a1 'i1(X) J/ (36)

The synthesis of the system amounts to generating "i1(x) and eX/an

forming the product indicated in Eq. (36). The formal synthesis of the

system according to the block diagram of Fig. 4 is shown in Fig. 6(a).

Since rl1(x) is just a constant, independent of x, the system is seen to

be equivalent to that of Fig. 6(b). We see that for the simple example

considered the synthesized system consists solely of the "function

generator,"r a component which in the more complicated case will

form only a part of the synthesized system.
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1.8 Observations and Comments

It: can be seen from.Eq. (16) that if we choose to represent the past 1i

of the system input by s Laguerre coefficients: and if, furthermore, we

decide to let the Hermite polynomial indicies, i, j, ... , h (Eq. 16), range ..

from 1 to n we have n s coefficients A to evaluate. Without a doubt this

number can become quite large in many cases of practical interest. How-

ever, with the freedom that exists in nonlinear systems we can: hardly

expect to apply such a general approach without a great deal of effort. ;.

At present, the large number of multipliers that are required for the

generation of the Hermite polynomials and their products is the principal

deterrent to the practical application of the Wiener method of characterization j·i

and. synthesis. It is safe to say that, at present, the Wiener theory is of

greater theoretical than practical interest. ,:•:•

One of the most significant contributions of the Wiener theory is that

it shows us that any nonlinear system, of the broad class of systems

considered by this theory, can be synthesized as a linear network with

multiple outputs cascaded with a nonlinear circuit that :has no memory

of the past (Fig. 4). The linear network (the Laguerre network) serves

to characterize the past of the input and the nonlinear ro-storage circuit

performs a nonlinear operation on the present outputs of the linear network

to yield the system output. Thus, regardless of how the linear andnonlinear .

operations occur in any given circuit the same over-all operation can be

achieved by a linear operation followed by a nonlinear one as shown in Fig. 4. ,

Another important contribution of the Wiener theory is the concept of

the•shot noise probe for a nonlinear system. Just as the response of a linear

system to an impulse is sufficient to characterize the system so Wiener has

25,• ..



shown that the response of a nonlinear system to shot noise is sufficient

to characterize it.

In the Wiener theory two parameters remain free; :the time scale

factor of the Laguerre functions and the scale factor in the argument

of the Hermite functions. For convenience both have been taken as

unity in the preceding development. We may choose these as we desire

in order to reduce the apparatus necessary to perform a given operation.

Unfortunately we have no simple procedure for determining the optimum

values of these scale factors to enable us to do the best job with a given

number of Laguerre coefficients and Hermite functions. We shall see a

possible approach to this problem when we discuss a similar but somewhat

simpler problem that arises in connection with the determination of optimum

filters by the theory developed in the following sections.

Since linear systems form such an important class of systems in

engineering it is proper that we ask of any nonlinear theory, "How con-

veniently does this theory handle linear and nearly linear systems? "

Although the Wiener theory includes within its scope linear as well as

nonlinear systems it is not particularly suited for application to the

former. The reason for this can be seen by observing the form of the

general Wiener system (Fig. 4). We note that the exponential function

generator bypasses the Hermite polynomial generator. In order for the

system of Fig. 4 to represent a linear system the operation from the

output of the Laguerre network to the output of the system must be

linear. This means that the gain coefficients A. must have values

which cause cancellation of the output of the exponential function

generator and give the desired linear operation on the Laguerre

coefficients. To achieve this cancellation effect will in general



require a very large number of Hermite functions and even then we

have the unfavorable situation of obtaining a desired output that may

be the small difference of two large quantities. The nonlinear theory

that is developed in the following sections does not suffer from this

difficulty and, as we shall see, can be readily applied to linear and

nearly linear systems as well as to general nonlinear systems.



II. The Filter Problem

Z. 1 Objectives and Assumptions

In part I we have seen how we can synthesize general nonlinear

systems from a knowledge of their characterizing coefficients. We

now turn our attention to the problem of determining optimum nonlinear

systems or filters.

We shaUl deal with time-invariant nonlinear system.s that operate on

statistically stationary time functions. The filter problem as considered

here is one of determining that system, of a class of systems, that

operates on the past of a given input time function x(t) to yield an output

y(t) that best approximates a given desired output z(t) with respect to

some error criterion. When the optimum filter is chosen from the

class of linear systems and when the mean square error criterion is

adopted Wiener has shown that this optimum filter is determined by

the autocorrelation function of the input time function and the cross -

correlation function of the input with the desired output.7 Since these

correlation functions determine the optimum mean-square linear filter,

the same linear filter is optimum for all time functions having these

same correlation functions in spite of the fact that other statistical

parameters of these time functions may be very different. It is in

the search for better filters that we turn to nonlinear filters which

make use of more statistical data than just first order correlation

functions .

As pointed out by Zadeh8 there have been two distinct modes of

approach to the optimum nonlinear filter problem. One approach

parallels the approach of WJi~ener to linear systems by choosing the



form or class of filters and then finding the optimum member of this

class by minimizing the mean square error between the desired output

and the actual system output. The other approach formulates an appro-

priate statistical criterion and then determines the optimum filter for this

criterion with little or no restrictions placed upon the form of the filter.

Both these approaches yield equations for optimum filters in terms of

higher order statistics (higher order distribution functions or correlation

functions) of the input and desired output. In applying these approaches

we are in general faced with two problems. First we must obtain the

necessary statistical data about the input and desired output and then

we must solve the design equations, which usually are quite complex,

for the optimum filter in terms of this data. In nonlinear filter problems

we find that the amount of statistical data we require in the design of the

filter usually far exceeds that which is available to us and we find it

necessary to make certain simplifying assumptions or models of the

signal and noise processes in order to calculate the required distributions.

Instead of assuming a statistical knowledge of the filter input and

desired outputthe approach to the nonlinear filter problem developed

in this work assumes that we have at our disposal an ensemble member

of the filter input time function x(t) and the corresponding ensemble

member of the desired filter output z(t). By recording or making direct

use of a portion of the given filter input time function, we obtain the

ensemble member of x(t). The ensemble member of z(t) can.be deter-

mined in different ways depending upon the problem. For pure pr'ediction

problems z(t) is obtained directly from x(t) by a time shift. For filter

problems involving the separation of signal from noise at the reciever

in a communication link we can, in the program for the design of the



filter, record a portion of the desired signal z(t) at the transmitter and

the corresponding portion of x(t) at the receiver. For radar type problems,

in the program for the design of the filter z(t) can be generated corres-

ponding to signals x(t) received from known typical targets.

Since the ensembles of x(t) and z(t) contain all the statistical information

concerning the filter input and desired output and since we shall make direct

use of these time functions in our filter determination it is not necessary to

make any assumptions about the distributions of x(t) and z(t). Thus, for

example, in the problem of designing a filter to separate signal from noise

we need make no assumptions about the statistics of the signal or noise or

about how the two are mixed.

We note that in most practical cases our assumption of having a portion

of x(t) and z(t) does not restrict us any more than the usual assumptiuns of

knowing the higher order probability densities of the input and desired output

do; for at present, except in very simple cases, the only practical way of

obtaining these statistics is to measure them from ensembles of x(t) and

z(t) when these ensembles are available. When they are available, the

present approach makes measurements on them that directly yield

optimum filters instead of first measuring the distributions and then

solving design equations in terms of these measured values.

2. 2 Relation to the Characterization Problem

The Wiener theory of nonlinear system characterization and synthesis

provides us with a physically realizable operator on the past of a time

function that includes within its scope a very large class of nonlinear

systems. Hence it is of interest to investigate the possibility of deter-

mining the optimum nonlinear filter (for a given task and a particular



error criterion) from the class of systems of the Wiener theory.

Figure 3 shows the experimental procedure for obtaining the charac-

terizing coefficients for a given nonlinear system (the system labeled

"Nonlinear System Under Test"). Notice that the A 's are completely

determined from: a knowledge of the response of the given system to a

shot noise input. In fact, the presence of this system is not necessary

in the experimental procedure of Fig. 3 if we .lave recordings of an

ensemble member of the shot noise input x(t) and the corresponding

output y(t). ::By feeding the recording of x(t) into the Laguerre network and

the recording of y(t) into the product averaging device in place of the output

of the given system we obtainthe Aa's that correspond to the given system;

that is, we obtain the Aa's that correspond to the system which operates

on the shot: noise x(t) to. yield y(t). This arouses our curiosity concerning

the possibility of determining the A 's for the optimum filter problem

directly from a knowledge of an ensemble member of its input and its

desired output time functions without actually having the filter at our

disposal. To this end let us consider the optimum filter problem and

see how it differs from the characterization problem discussed above.

Uilike the characterization problem, in the determination of an

optimum filter we do not have at our disposal the system labeled.

"Nonlinear System Under Test" in Fig, 3. In the filter problem this

system would be :the optimum filter; exactly What we are searching

for. Consider the:following problem. Suppose that we want to find

a nonlinear filter whose input is a whiteý gaussian time function x(t)

and whose desired output is the stationary random time function z(t).

Suppose also that we have atour disposal an ensemble member of



x:t) and thei correspondingensemble• member of z(t).. We excite the

! Lag-u.er r e •..network. ofFig.: 3 .with Ix(t)and."feed z(t) into the product averaging

e:n :: 'e- placace of y(t) as shown inFig. 7. From the discussion above it is

'clear that if the:desired filter, which:operates onx(t)to yield z(t), is a

.:membler:. of the class of systems considered in the Wiener theory, the

S: test rocedureof Fig. 7 will yield, the A 's corresponding to this system.

:":.W: .Wecan then synthesize it .in the general:form of Fig. 4. However it will

!!: •.:iusuallyhappen that.:the '.desiredsystem :is not even physically realizable,

;_•iji•ii.~: l; .i:::.iet a•n•e:'a member of the Wiener: class of.nonlinear systems. In this

case the derivation: of :section 1. 5 shows-.that the procedure of Fig. 7

!:i will: w yield that'system :of.the'Wiener class (ihaving as many .Laguerre

. coefficients. and'Hermite functions as used in the test apparatus) whose

i i output best approximates z(t) in a weighted mean square sense. Thus

-..-••-._ ; .. for the special case .of white gaussian filter. input we can adapt the Wiener

m. 'i;etod of characterization to the experimental determination of optimum
!iii' ... i .inonliear-. filters.

. ." The Need for a General Orthogonal Representation.

•::-:- ' " When the given filter input-is not shot noise we can no longer apply

• the -method described above to determine the optimum filter. Recall

t:hat: the orthogonality relations which led to Eq .(26) for the A .'s

- .depended upon the fact .that the"Laguerre coefficients were gaussianly

didstributed' and statistically. independent, and' this fact, in turn, depended

o' n ;thke fact that the input to the Laguerre network was shot noise. When

" :x(t) is not :shot:noise we no longer obtain independent relations (Eq. 26)

1i~:"for the"A 's and. the procedure for determining therm shown in Fig. 7: is• .• . . ." . • . ... ..
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no longer valid. Thus we appreciate the need of an expression for a

nonlinear operator in which the terms in its series representation are

orthogonal in time, irrespective of the nature of the input time function.

The development and application of such an operator is the subject of

the following sections.



III. Optimum Nonlinear Filters

3. 1 Object

The object of the work in this section is to develop an orthogonal

representation for nonlinear systems that enables the convenient

determination of optimum nonlinear filters. The development is best

described if, before proceeding to the general filter, we first examine

the class of no-storage nonlinear filters.

3. 2 The No-Storage Nonlinear Filter

By a no-storage system we mean one whose output, at any instant,

is a unique function of the value of its input at the same instant. We

call the input-output characteristic of this system the transfer charac-

teristic.

Let x(t) and z(t) be the given filter input and desired filter output

time functions; respectively. We assume that x(t) and z(t) are bounded,

continuous time functions. This is clearly no restriction in the practical

case and it enables us to confine our attention to approximating desired

filter transfer characteristics that are bounded and continuous. Since

x(t) is bounded, there exists -an a and b such that a < x(t) < b for all t.

Now consider a set of n functions j.(x) (j = 1, ... n) over the interval

(a, b). These functions are defined as follows

Sfor xj - <x < xj + j ... n-) -

w n
=(x) = and x - x 4b, j =n (37)

0 for all other x x = a + wj -t)

A plot of the jth function of this set of functions is shown



in Fig. 8. (A separate definition is given for +n(x) in order to include

the point b. In practical application of these functions we simply gen-

erate n gate functions of equal width that cover the interval (a, b). )

Clearly this set of functions is normal and orthogonal over the interval

(a, b). We shall refer to these functions as "gate functions." Let us

define y as a gate function expansion of x as follows

n

y= a 413(x) (38)
J=l

It is clear that by taking n sufficiently large y can be made to approximate

any single-valued continuous function of x arbitrarily closely everywhere

on the interval (a, b).

When x is a function of time it is convenient to write Eq. (38) as

n

y(t) = a j(x(t)] (39)
j=I

As a consequence of the non-overlapping property of the gate functions

along the x axis the 4 [x(t)] will, for any single valued time function

x(t), form an orthogonal set in time as well as an orthonormal set in x.

Further this time domain orthogonality holds for any bounded weighting

function G(t). That is

0 j #k
G(t) *3[x(t)] k[x(t)] = G(t) [(t)] = k (40)
Relation (39) pecifies (t) form of an equa[xt)] kthat defines a no-storage

Relation (39) specifies the form of an equation that defines a no-storage
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nonlinear system. The determination of an optimum no-storage filter

for a given error criterion consists of choosing the a.'s in such amanner

that, for a given x(t), the error between y(t) and the desired output z(t)

is a minimum. We adopt a weighted mean square error criterion in

which G(t) is, as we shall discuss later, a non-negative weighting

function at our disposal. More specifically we minimize the error

T-sloo T Gjt) jZIt) - a. ~~Ii x(t) dt(41)

with respect to the n coefficients a.. Differentiating with respect to

a~e 1

-mR +llfTl {1E~ *i x~t)dt 0 k = (i,

(42)

Denoting the operation of time averaging by a bar above the averaged

variable Eq. (42) can be written

GRt) 4a[xat) : at ~[xRt)I =~ zot Gt) 4~jxet] (43)
j=l

Making use of the time domain orthogona~lity of the gate functions

(Eq. 40), Eq. (43) reduces to

ak G(t) 4k[x(t)] = z(t) G(t) 4Ljx(t)] (44)

It follows from the definition ofthe 4jIz) givenin Eq. (37) that ~[xft)]

[xt]so that Eq. (44)ii equivalent to the equation
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ak G(t) 4~j(t)I = z(t) G~t) k(x(t)I (45)

This equation provides a convenient experimental means of determining

the desired coefficients ak. The experimental procedure for the evaluation

of these coefficients is shown in Fig. 9. An ensemble member of x(t) is

fed into a level selector circuit :and the corresponding ensemble member

of z(t) is fed into the product averaging device. The- output of the level

selector circuit is unity whenever the amplitude of x(t) falls ivthin the

interval of the kth. gate function and zero at all other times. This output

is. used to gate the weighting function G(t). The output of the gate circuit

is then averaged and also multiplied by z(t) and averaged to yield the two

quantities necessary to determine a, in Eq. (45).

From a knowledge of the ak we can directly construct a stepwise

approximation, like that of Fig. 10, to the desired optimum transfer

characteristic (see -Eq. 38). The synthesis of the filter can be carried

out formally according to Eq. (38) by using level selector circuits and an

adder as shown in Fig. 11, or we can synthesize the optimum characteristic

by any of the other available techniques such as piecewise linear approxi-:

mations or function generators.

In order to become more familiar with the operation and terminology

of this method let us consider a very simple example. In this example

we shall do analytically what, in practice, the experimental procedure

of Fig. 9 does for us. Suppose we are given an ensemble member of

x(t) and the corresponding ensemble member of z(t). Further suppose

that the desired filter output z(t) is equal to. f[rx(t)] where f is- a continuous

real function of x. We desire to verify that.the filter determined ..by.the "

procedure of Fig. 9 .is actually a stepwise approximation to the transfer
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. .

characteristic f(x) :For isimplicity let us.assume that n hasbeen chosen':.-

suf..:"ficiently large so that the. function f(x) is approximately constantover"

:the width, of the gate functions and let us .choose G(t) equal to a constant: '.·. ":.i.

so that.the conventional.mean s.quare error criterion results. For. these

• conditions whenever .. jx(t)] .hasa non-zero value..x. must lie in the interval-- :i!.:

; of width w •about xk and z(t) is approximately eqal to f(xk). Equation (45)

becomes

a 4[x•t)] f:xk) [x(tI (46)

from: which we obtain the '.relation . "

,,  • f(xk , (47)

for the ak whichshows (see:e Eq. :,38) that they:,determine iea filter' that.isa

! ii:. ' stepwiseapproximation to • the desiired"transfer characteristic f(x).i (A closer:,:.i.

, ,examination ofthis exaple shows,:that• the same results are obtained: for :::::,!•

.any weighting function.G(t). This isa.because for this example. the desired.:, : :

,, filteris a,"memberofthe.class of no-storage filters and hence as n.-, o .

the error.e in Eq. (41): can be ma•e zero for any. G(t).)

In addition to :knowing that..asn 0 the gate. function.epanion (Eq." 38)'

can approximate any continuous transfer function arbitrarily closely, it is:.: ::,i -:i

::,i.,. •of practical interest."to..investigate. how*the expansion*,converges. for..smail~ii" ,,,::,:•l i

: : n as n is increased when the coefficients are chosen to minimize.the mean ':,,

square error. This is most easilydone-with; the: aid of an;,,,example., Let:
.. .. ~~~~~ • .. . •::;.

' thetransfer, charateristic ofFig., 2:lbethe one that"we desire' to: approximate.,::•

:".":: T 'hesimplest gate" functionexpansion is that for:which: n =:1.. The: best mean :

ii:: sq u : sguare : approximationc:learly accurs:for a:1 (y:+ T)/2.; :For n= 2 the best

43 :::zI-
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i:·· approximation is seen to occur for a1 = y.and a 2 = y2 " This approximation

iss considerably better thian:that for n = I. Now consider n = 3. The best

mean square:approximation is, by inspection a 1 = yI" a 2 = (Y1 + Y2) /2

and a 3 = Y2 " But this is seen to be a worse approximation than that for

n = 2 ! For n = 4 we: clearly:must do at least as well as for n = 2 since

al = a2 = Y1 and a 3 = a4 = Y2 constitute a possible solution. Again, for

this example, the approximation for n = 5 is inferior to that for n = 2 or 4

but better than the n = 3 approximation. A moment's reflection reveals

that the reason for this peculiar convergence is that the function f(x)

changes appreciably in an interval that is small compared to the width

of the gate functions and hence the position of the gate functions along

the x axis is critical. For this example when n is even one gate function

ends at x = (atb)/2 and another begins, thus providing a nice • fit to f(x).

For n odd one gate, function straddles the potnt xx= (a+b)/2 and because.of

symmetry it will havea coefficient equal to .(y1 + y 2 )/2. As we increase

n beyond the point where the width (w = (b-a)/n) of the gate functions

becomes less than 6, the position of the gate functions becomes less

• and less critical, the oscillatory behavior disappears andthe expansion

converges to f(x) everywhere.

From this simple example we can draw some :general conclusions

regarding the convergence of the gate function expansion to continuous

functions. When thie desired function changes appreciably in an interval

of x comparable to or smaller :than w it may.:happen that an increase in

n will result in a poorer: approximation. However, if n :is increased by

an integral factor the approximation willr always be at least as good aas

that before the increase. Further, if n is taken large enough so that

the function is essenialy ... consant :over any interval of width w then

.  .. .. : .4
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any in:•. crease in• n Will yield, at least as• good anapproximation as before

the inrease. Thus in the practical appication of this theory if wte increase4

n and get an inferior filter we should not be alarmed, It is merely an

indication that the desired filter characteristic has a large slope over

someinterval. By further increasing n the desired characteristic will

be obtained.

In' the discussion above it was assumed for convenience that each gate

functionhad thesame width w. This is not a necessary restriction however.

S  It issufficient to choose them.so that they cover the.interval (a, b). and do

not :overlap. Thus if we have :some a priori knowledge": about the optimum

transfer characteristic we may be able to- save time and work in determining

it by judiciously choosing the widths of the ,j(x)'s. In fact, afterevaluating ::-i.

51i, anynumber m of the ak's we are free to alter· the widths of the remaining

i!Il functions Oj(x) (j >,m)l.as we proceed. This flexibility is permissible

because in taking: advantage of it we do not disturb the time domain

orthogonality of the .gate functions.

ii•: 3. 3 Linear and Nonlinear Systems from the Function.Space Point of View

:In section 1. 3 we saw how .we can characterize the past of:a time function I

by the coefficients of a complete set of orthogonal functions such as the

. .Laguerre. functions. Let us now: thin.kof a function space which has as a

basis the Laguerre:. functions. -Just as in a.vector space a given vector:

can be- represented as a linear combination of the basis vectorls, so. in "

S functionspace a given function,(satisfying appropriate relarityconditions),"

can- be represented as a linear combination of the functions; that form the .

basis of"thespace. We can: think ofthe eeecoeffcentsof a functinon

.:x(t) as being: the. ,r component of x(t) alog",, ti- Irespectl ve as" :bas"s

K 46....... ...



vecor. t ny nsan, he a~ o xt)is rereene by the point in

ucion space corresp~ondng ti. o -the i p of t he veod:ctoar wosesaarcm

pponentsare the Laerre coefficient ofthei past of x(t).

We have also discussed that any function of the past of x(t) can be

S expressed as a function of theaguerre coefficients of this past. In

:il termsoif , the: functionspace then, a fncion of the past of x(t) can:be

iexpressedas a uction of position in this space. We saythat we gen-

S erate the desired function of: the past of x(t) by a:transformation that maps

the fu•ction space onto a: line - the line corresponds to the amplitude of

~ii the desiredfunctlon. This concept provides a powerful tool in the study

of linear and nonlinear systems. To better understand it let us consider

the Wiener theory in this llght. The output of the general Wiener nonlinear

sstem :is expressed i(Eq. 17) as :a Hermite function expansion of the Laguerre

ilj coeffic~ients of ithe past of the input time functiqn. The Laguerre functions

:- eform the basis of the function:space of :the past of the input and the ,Hermite

function exansion maps thi space onto a line - the amplitude of the system

output.

Several important concepts follow immediately from this viewpoint.

The first,, as:Was made evident by the :Wiener theory. is that any system

(i o the broad clas considered 'in the Wiener thleory) can be represented

by the cascade :of a inear sytem:follo wed by a no-memory:nonlinear

syem. Th outpeuts of the linear:system characterizethe past of the

:input •s a point -in function space and the no-memory nonlinear :system

maps this spae e onto a line. ecOndlywe see.that in priciple (we
a!!!"!" -Sssue" that the~nomplete. set 'of Laguerr~e fuctions, is ,used)..the dif•ference .

between any two• systems is accoted for by ia diferenceIn ithe nomemory
"parttltt performsthe ppep lin ear

;il ', 7
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(we shall discuss this case in a later section) then a linear system is

Srepresented, if it is not then a nonlinear system is represented. Since

the difference between: two systems is just in thi mapping, the problem

of determining an optimum system for a desired performance and given

error criterion becomes that of determining the optimum no-memory

system which maps the :function space onto the output.

Finally we see that this function space point pf view provides the key

for finding a general orthogonal expansion for the output of a nonlinear

system. For reasons that will become evident in-the next section, we

desire to obtain a series expansion for the output of a nonlinear system

in which the terms are mutually orthogonal in time. Furthermore, we

require that this orthogonality be independent of the input time function.

Clearly this is achieved by choosing a mapping that partitions the function

space into non-overlapping cells and by letting each term in the series

expansion represent the system output for a particular cell in the function

space. Since at any instant the past of the input is represented by only

one point in the function space, only one term in the series expansion:

will be non-zero at any instant: thus all the:terms are mutually

orthogonal in time. The gate function expansion for the no-storage filter

(Eq. 39) is recognized to be an application of this approach: in the simple

case for whichthe input space is just a line. The next: section applies

this approach to the more general case of a finite dimensional space.

(Note: Although the function space of which we have spoken is infinite.

dimensional we shall continue to use the term even when we speak:of

a finite number of cIaguerre functions.)
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is non-zero only when the amplitude of u is: in the -interval for which

i(ul) is unity and the amplitude of u2 is in the interval for which :(u)
is unity, and: so on for each Laguerre coefficient. The collection of these

intervals defines a cell in the function space and thus the term in Eq. (52)

is non-zero only when this cell is occupied. Hence the expansion (Eq. 5:1)

divides the function space into non-overlapping cells and each term

represents y when the corresponding cell in the function space of the

input is occupied. Thus the terms are mutually orthogonal in time for

any x(t). It is clear that as the width of the gate functions is decreased,

by increasing n, the cells become smaller and y can ,i:b mad to approxi-

mate any continuous function of the u's everywhere with vanishing error.
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If ~ l# ()rprsnsthehfunction 4(1  4hue adA epreet

f.. ethe coresonin coefficient aij ~ - ~.h Eq. (51) tae thesiplfid or

y(t) A = A4(a) (53)
a

This equation is the desired orthogonal representation for nonlinear

systems involving storage. We now proceed.to determine the A ' s for

the optimum filter problem. As inthe case of the no-storage filter (Eq. 41)

we adopt.a weighted mean square error criterion and minimize the error

= - G(t) (t) - ZA Af(a )}dt (54)

with respect to the coefficients A . For thecoefficient A. we have

13'i = I2T - 2G(t) ON(p) t)-Z- A§(a)dt (55)

For the error to be a minimum with respect to A we set this equation

to zero. The result is

G(t)(p) Aa *(a) z(t)G(t) i(p) (56)
a

Taking advantage of the time domain orthogonality of the W!s this equation

reduces to

A GO) (0) -=zt) G.(t)#(4) (5?)

I Since the l's are products of ga:tfctions t ••y ca nytake onithe values
zero: or: unity, bence Eq. ý(57) is eqIvalent toI,

{

L

··

,i:

iiY



A- G(t) () = (t) G(t) (p) ()

which forms the basis for the experimental procedure for determining

the optimum filter coefficients.

The apparatus for the determination of the optimum filter coefficients

is shown in Fig. 13. An ensemble member of x(t) is fed into the Laguerre

network and the corresponding ensemble member of z(t) is fed into the

product averaging device. The outputs of the Iaguerre network are fed

into a no-memory nonlinear circuit consisting of level selectors and gate

or coincidence circuits. This circuit generates the W's. Since the l's

are either zero or unity they can be multiplied by G(t) in a simple gate

circuit. The output of this gate circuit is averaged and also multiplied

by z(t) and averaged to yield the two quantities necessary to find the

optimum coefficients according to Eq. (58).

Having determined the optimum coefficients, the nonlinear system

can be synthesized formally according to Eq. (53) as indicated in Fig. 14.

In Fig. 14 we note that the operation from the outputs of the Laguerre

network to the system output y(t) is a no-memory operation. That is

y is an instantaneous function of the Laguerre coefficients. Once the

A's are known this function is directly specified and any other method

of synthesizing no-storage systems for a prescribed operation can be

used. One such method is described in reference 9.

In the procedure described above for determining and synthesizing

optimum nonlinear filters the use of gate functions in the expansion of

Eq. (51) is of central importance. Let us examine some of the con-

sequences of this:

1. The use of gate functionsg providesus Waeith a series representation
•Z' .i: i!;i
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then the mean-square error criterion results. Other choices for G(t)

enable us to design filters for different error criteria and to introduce

a priori information into the filter design. In this section a few choices

of G(t) are discussed. We restrict G(t) to be non-negative since the

concept of negative error is not meaningful.

One choice of G(t) is illustrated by the following example. Let the

signal component z(t) of the filter input x(t) consist of amplitude modu-

lated pulses occurring periodically. x(t) is z(t) corrupted in some way

by noise as shown in Fig. 15. We assume that we know when the signal

pulses occur. Our object is to determine their amplitude. The optimum

mean-square filter, of a given class of filters, for recovering z(t) from

x(t) is the one for which the time average of [z(t) - y(t)]2 is a minimum

for all filters of the class. (In this expression y(t) is the filter output.)

However, we are actually interested in minimizing the error between

z(t) and y(t) only during the time when signal pulses are present. By

choosing a G(t) that is a constant during the time intervals when signal

pulses occur and zero at all.other times (Fig. 15) we can design just

such a filter. In general, if both these filters have the same degree

of freedom (i. e., the same number of Laguerre coefficients and gate

functions) the performance of the one designed with the weighting

function mentioned above will be superior to that of the mean-square

filter since all the freedom of the former is used to minimize the

error over the time intervals of interest. Thus through G(t) we have

introduced a priori information (about the periodic occurrence of the

signal pulses) into the filter design to obtain a better filter.

In other problems it may be desirable to choose G(t) to be a function

of the magnitude of the difference between the present values of x(t) and

;;.·..;·: : ? -: :-. .. : :.:.i:·::- ;si·a.-··;;~::::,:· · ··· · · · ·



X(t), FILTER INPUT

Z(t) DESIRED FILTER OUTPUT

G(t)s ERROR WEIGHTING TIME FUNCTION

n F-

Fig. I5. An example of the use of the error weighting time function.
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z(t) so that the freedom of the filter is used to do a better job, on the

average, when Ix(t) - z(t)I lies in certain ranges, at the expense of

its performance when this difference lies in other ranges. For example,

we might desire that the filter output be as close as possible to the

desired output, on the average, when the difference between the input

and desired output is small and, when this difference is large, we

might choose to attach less significance to the filter output. In such a case

we could let G(t) be Ix(t) - z(t)l n. For large n this G(t) weights small

errors between x(t) and z(t) much more heavily than large errors.

The choices of G(t) are limited only by the ingenuity of the designer

to best make use of the data at his disposal. By precisely defining the

object of the particular filter problem and carefully studying the nature

of the problem he may often be able to choose a G(t) that yields a far

better filter than the mean-square filter.

3.6 Minimum Error Determination

Paralleling the Wiener approach to linear filters we shall find an

expression for the minimum error of nonlinear filters that can be eval-

uated from a knowledge of the input and desired output time functions.

The general expression for the error between the desired output and

the actual nonlinear system output is given by Eq. (54) which is repeated

below for convenience.

T 2
lim TG(t) )- A (a dt (54)

We have seen (Eq. 55) that for this error to be a minimum with respect

to the Aa's we must have
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T r
lim G(t) () z(t) - A a *(a dt = 0 for all p (59)
T-co T a

and hence

Tflim A (P) G(t) z(t) - ZA (a) dt = O (60)
T-o 2T

-T P a

Now Eq. (54) can be written as follows:

= G(t) z(t) [z(t) - A (a) - Ap (p) G(t) z(t) - Aa i(a)

(61)

But from Eq. (60) we see,-that the term on the right side of Eq. (61) is zero

for the optimum filter. Using this fact and inserting the expression for the

optimum filter coefficients (Eq. 58) into Eq. (61) we obtain the desired

expression for the minimum error.

min z (t) G(t) - G(t (62)
L- G(t) i(a)"

This equation expresses the error of the optimum system, having a given

number of Laguerre coefficients and gate functions, in terms of the filter

input and desired output time functions. If, in Eq. (62), f(a) is changed

to W(x) and the summation is taken over j then we have the minimum

error expression for no-storage filters.

With the addition of a squaring device at the output of the product

averaging circuit in Fig. 13 the quantities necessary to determine mmin

can be evaluated and can thus be found without first constructing



the optimum filter. Similar apparatus could be built to automatically

evaluate 6 min upon application of x(t) and z(t). For those filters having

a sufficiently small number of A 's (for example, no-storage filters and

simple filters involving one or t7 o Laguerre coefficients) all the terms

in the sum (Eq. 62) could be evaluated simultaneously and added. This

would give a rapid way of find' g min. When the number of coefficients

becomes very large then, to s ve equipment at the expense of time, the

terms in the sum could be evuated sequentially. This apparatus would

be useful in deciding a priori the complexity of the nonlinear filter to use

for a particular problem. It would also enable us to decide whether or

not it is worthwhile to construct a complicated nonlinear filter to replace

a simple linear or nonlinear one. Since such apparatus would make use

of the same measurements that determine the Aa Is, if after measuring

its error we decided to build the filter we could construct it without

further measurements.

3.7 The Statiistical Approach

1~

~I

ri



minimizes the error

e= .. G(z-y) P(z, G, u, ... , u) dul . .du dz dG
1 s

(63)

This expression is seen to correspond to the weighted mean square

criterion of Eq. (54). The y that minimizes this expression is found

by direct application of the calculus of variations. Setting the variation

of . to zero we obtain

6(e) = ... - 2G(z-y) P(z, G, u 1 .... u ) 6(y) dul...du s dz dG=0

(64)

or the equivalent expression

6( E ) = ... f -ZG(z-y) P(z, Glu 1 ... , us) dz dG 6(y) P(ul, ...., us)

Xdul.. du =0 (65)

which must be true for all 6(y) where 6(y) is the variation in y. Equation (65) ..

will hold for all 6(y) if we set

f J G(z-y) P(, GIul . . ,u) dz dG = 0 (66)

From this equation we obtain the equation

y G P(zGu, ... us) dz dG = G z P(z,Gu 1..... u) dz dG

61



Performing the integration with respect to z in the'left side of this

equation we obtain the result

G z P(z,Gjul ... ,us)dz dG
G - (68)

G GP(Gulu... us) dG

This equation, though it is certainly not very suggestive of a filter

design, is the desired relation between the optimum filter output and the

s Laguerre coefficients of the past of the filter input. It should be noted

that in deriving Eq. (68) no restrictions have been made on the relation-

ship between y and the s Laguerre coefficients and hence this equation

yields the optimum y in terms of these coefficients. Equation (68) takes

on the more familiar form

y = z P(ul . Us) dz (69)

when G is a constant, corresponding to the mean square error criterion.

In this case we have the result that the optimum output for a given past

of the input is just the conditional mean of the desired output given this

past of the input.

Let us now investigate the relation between the result of the statistical

approach (Eq. 68) and that of the so-called time domain approach (Eq. 58).

For convenience this latter equation is repeated below

A G(t) §(a) = G(t) z(t) *(a) (58)

We shall express both these time averages as ensemble averages and then

compare the result to Eq. (68). The average on the left side of Eq. (58)

62



GGz P(zGUl. ....ush) dG dz

A (73)a G P(GJul ... ,us )dG
G j h

Recall that A is just the system output when the ath cell in the function

space is occupied. Thus as the cells become smaller the system deter-

mined by Eq. (58) approaches the optimum system of Eq. (68).
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Let us now remove the restriction on the size of the cells. For

simplicity in interpreting the results we shall let G = 1, corresponding

to the mean square error criterion. Equation (58) becomes

A a)= z(t)(a) (74)

Expressing the time averages as ensemble averages we have for 0(a)

(a) ... (a)P(u1 ....,us) dl...dus  (75)

But this is just the probability that the ath cell is occupied. That is

(a) = P(ath cell) (76)

For the time average on the right side of Eq. (74) we have

z(t) (a) = ... z(a) P(u .. Uslz ) P(z) dz dul... dus
u1 s

(77)

Integrating over the u's we obtain

z(t) () = z P(ath cell z) P() dz (78)

in which P(ath cell z) dz is the probability that the ath cell is occupied

given that z is in the interval dz about z. It is convenient to rewrite

Eq. (78) in the form

z(t) *(a) = P(ath cell) z P( lath cell) dz (79)

64



Using Eqs. (79) and (76) in Eq. (74) we obtain the result

Aa= z P(zlath cell) dz (80)

In words, A a is equal to the conditional mean of the desired output given

that the ath cell in the input function space is occupied. Hence the result

of the filter theory developed in the previous sections can be interpreted

(for G(t) = 1) as a procedure that quantizes the function space of the input

and assigns an output to each cell equal to the conditional mean of the

desired output given that this cell is occupied.

It is interesting to note that although we can interpret this filter

theory either in tle time domain or on a statistical basis, the former

leads directly to associated equipment for the filter determination and

synthesis while the latter just expresses a mathematical relationship

between the quantities involved in the problem. For example, in the

simple case in which G(t) = 1 Eq. (80) might suggest that we evaluate

P(z lath cell) for all cells and for all z and then perform the indicated

integration. However, the time domain approach directly shows us that

the convenient quantities to measure are those of Eqs. (75) and (79) which

look quite formidable from the statistical point of view. Further when

we introduce G(t) the problem appears considerably more complicated

from the statistical point of view but as we have seen from the time

domain approach it only involves the addition of a single gate circuit

in the experimental apparatus (Fig. 13).

3.8 Optimum Nonlinear Filters for a Maximum Probability Criterion

In this section we discuss a method for determining a nonlinear filter
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course assumes ithat m is large enough so that the amplitude interval

associated with. z is very small compared to:the maximum amplitude

of z(t).) Hence the optimum Aa for the maximum probability',criterion

is equal to zk.

For convenience in rapidly determining which output of the averaging

circuits is largest, the outputs can be displayed -on an oscilloscope as

indicated in Fig. 16. Once the A's are determined the filter can be

synthesized in the standard form shown in Fig. 14.

3. 9 Improving the Performance of a Given Filter

As we increase the complexity of the filter (i. e., we use more
Laguerre coefficients to characterize the past and more gate functions

for each coefficient) the number of A 's necessary to specify the filter

grows very rapidly. In particular, if we use s Laguerre coefficients

and n gate functions for each coefficient we have ns A 's to evaluate.

After evaluating a large number of A 's we should like to have some

guarantee that our filter would perform at least as well as, say, a

linear filter or a simple nonlinear filter that can be designed with less

effort. Methods of obtaining this guarantee will now be described.

Let us first of all prove the existance of a property of our class

of filters which will be used in one of the methods. We want to show

that the class of filters employing s Laguerre coefficients includes the

class of filters that only uses any one of the s Laguerre coefficients.

Since we can always renumber the Laguerre coefficients it is sufficient

to prove that the s-coefficient class includes the class that uses only

the first Laguerre coefficient u I . The series representation for the
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general system of this one coefficient class is

n

y(t) = a, i(u) (82)
i= 1

We now make use of the fact that the sum of the n gate functions of any

one coefficient is unity in order to express the series representation (82)

in the form

y 1(t) a (u.) Z (u +)(u ..(us). (83)
i= 1 j 1 k= 1 h= I

which is recognized to be a special case of the expansion (Eq. 51) for the

general s-coefficient system. In a similar way it can be shown that the

class of filters using a Laguerre coefficients includes all classes having

less than a coefficients. Note that this property is independent of the

nature of the u's; they may be Laguerre coefficients of the past of x(t)

or they may be obtained from x(t) by any linear or nonlinear operation.

We now make use of this property to determine a filter whose per-

formance is equal or superior, with respect to a weighted mean square

criterion, to a given filter F. F may be linear or nonlinear. We

augment the Laguerre coefficients with the output, uo, of the given filter

F, as shown in Fig. 17. Then, by the property demonstrated above, the

filter whose output is expressible as

n

y(t) = a i(Uo) (84)
"ir o

is a member of the class oefilters which has a Laguerre coefficients
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augmented by uo . If the number n of gate functions associated with

the variable uo is sufficiently large, then to any degree of approximation

Eq. (84) represents the class of filters shown in Fig. 18, consisting of

F cascaded with a no-storage filter. Since the transfer characteristic

of the no-storage system can be linear, the latter class certainly contains

the filter F. Hence the filter determined by the procedure indicated in

Fig. 17, for any s, performs at least as well as the given filter F and,

in fact, at least as well as F cascaded with any no-storage filter.

Having determined the A 's of the desired filter as indicated in Fig. 17

the filter synthesis is accomplished as shown in Fig. 19.

We now turn to another method of determining filters to improve the

performance of given filters. Let the output of the given filter F be

u (t) when its input is x(t). Our object is to improve (with respect to

a weighted mean square criterion) the performance of F by paralleling

it with a filter which will be determined. The A 's of the desired filter

are those that minimize the error

1 G(t) (t) - u + A .Id(8

This expression is seen to be equivalent to

2T ..
- T G(t) z(t)- uo(t)]- A (a) dt (86)

Comparing Eq. (86) with Eq. (54) we see that the optimum Aa's are

determined by an experimental procedure like that of Fig. 13 with z(t)

replaced by z(t) - uo(t). The latter quantity is easily obtained by applying
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x(t) to the given filter F and subtracting the output of F from z(t), as

shown in Fig. 20. The parallel combination of F and the filter deter-

mined as we have just described will always perform at least as well as

F, since that filter which has no transmission from input to :output is a

member of the class of filters considered in our theory. In other words,

the -solution in which all the A 's are equal to zero is a possible solution

of Eqs. (84) and (85).

The second method described for improving the performance of given

filters offers the advantage of not having gate functions associated with

the output time function of the given filter; therefore improvements can

be made on the performance of F by very simple systems involving as

little as one Laguerre coefficient and hence having a relatively small

number of A 's to evaluate. The first method does require a gate function

expansion of the output of the given filter F but it has the advantage of

ensuring that the performance of the resultant filter will always be at

least as good as the performance of F cascaded with any no-storage

system. In either method, the resultant over-all filter approaches the

most general filter (of the class considered in this theory) as the number

of Laguerre coefficients and gate functions is increased.

Still another design procedure involves the determination of that filter

which when cascaded with F (with F as the first member of the combination)

yields an over-all filter having a performance superior to that of F alone.

In order to ensure that the resultant over-all filter performs at least as-

well as F we could augment the Laguerre coefficients of the cascaded

filter by a variable u that is equal to the input of the Laguerre network.

While this procedure gives a filter that is at least as good as F we have
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IV. Linear and Simple Nonlinear Systems

4. 1 A Test for the Coefficients

Once.,the coefficients for an optimum filter have been determined,

the filter can, as we have seen, be synthesized formally as shown in

Fig. 14. Much simpler synthesis procedures (apparatus wise) exist

however if the filter is linear or belongs to a particular sub-class of

nonlinear systems. Hence it is desirable to have a means of detecting

linear and simple nonlinear systems directly from a knowledge of their

characterizing coefficients. In this section a simple procedure for testing

the coefficients (Aa's) is developed that detects such systems and directly

yields a convenient synthesis of them.

The class of simple nonlinear systems that we shall consider is shown

in Fig. 23. It consists of a Laguerre network and no-storage nonlinear

two-poles (no-storage nonlinear systems with one input and one output

terminal). Each output of the Laguerre network is fed into one no-storage

two-pole circuit and the outputs of these circuits are added to form the

system output y(t). In this class of systems the nonlinear circuits introduce

no cross-talk among the Laguerre coefficients (i. e., there are no cross

products of Laguerre coefficients introduced). This class of systems is

clearly a sub-class of the general class considered in Section III. When

the transfer characteristics of all the two-poles are straight lines the

system is linear. In particular, it is an ath order Laguerre network in

which the gain factors associated with the Laguerre network outputs are

equal to the slopes of the respective lineartwo -rpoletransfer tcharacteristics.

The synthesis of nonlinear systems belonging to this sub-class ina

relatively simple, apparatus wiae. The noalinear two-poles may be
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synthesized by piecewise linear approximations using diodes and resistors.

If the system is linear the synthesis takes .the form of a Laguerre network

whose outputs are properly amplified or attenuated before being added to

form the system output. In this linear case it may be desirable to measure

the transfer function of the optimum system and then use available synthesis

techniques to obtain alternate realizations of this transfer function using

coefficients A of a nonlinear system, if the system belongs to the class

shown in Fig. 23 and, if it does, how we can determine the transfer

characteristics of the nonlinear two-poles.

From the function space point of view the sub-class of nonlinear

systems shown in Fig. 23 consists of all those systems for which the

system output corresponding to each cell in function space is equal to the

sum of the outputs corresponding to the coordinates (the Laguerre coef-

ficients) of the cell. That is, since there is no cross-talk, each coordinate

contributes to the output an amount that is independent of the other coor-

dinates and hence the system output corresponding to any cell is the sum

of the outputs corresponding to the coordinates of the cell. (We speak here

of cells rather than points in function space because we represent our non-

linear system by a gate function expansion which quantizes the function space.

In this connection we should also realize that we obtain a stepwise approximation

to the two-pole characteristics of Fig. 23 rather than the continuous curves.)

Hence Eq. (51), which represents a general gate function expansion of the

Laguerre coefficients, takes on the form

n n n

y(t) = Zbi (ui) + b Z(UZ) +... + b 4 () (91)
i=1 1h=I
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for the sub-class of systems of Fig. 23. Each sum in the equation yields

the transfer characteristic of the nonlinear two-pole that is associated with

the Laguerre coefficient indicated in that sum. For convenience in comparing

this expansion with that of Eq. (51) the latter is repeated below.

n n n
y(t)= . ., . aij .... h i(ul) j(u2 ) " (us)  (51)(

i=1 j=1 h= I

In the experimental procedure described in Section II for finding optimum

filters (Fig. 13) we determine the A a or equivalently the ai. j .h of the

filter. If andl only if these a's are such that Eq. (51) can be expressed in

the form of Eq. (91), the system can be synthesized according to Eq. (91)

in the form shown in Fig. 23. Let us see how the a's must be related to

the b's if these two equations are to be equivalent. By the two equations

being equivalent we mean that they yield the same value for every cell

in function space; hence we must have

aijh...h= bil + b + ... + bhs for all i,j,...,h (92)

This relation represents a set of ns simultaneous equations that the a's

must satisfy. We shall now develop a simple way of finding whether, for

any given set of a's, this set of equations is satisfied.

It is convenient to establish an order for the evaluation of the a's

(and thus the A0as). It is assumed henceforth that these coefficients are

evaluated as follows. The first coefficient we evaluate is that for which

i = j = ... = h = 1. The next n - 1 coefficients are obtained by letting h

run from 2 to n while holding all other indicies equal to unity. To obtain

the (n+ 1)th coefficient we set the index preceding h to 2 and let all the

other indices be unity. The following n - 1 coefficients are obtained by
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again letting h range from 2 to n. We continue this procedure until the

index i has gone through all its n values, at which.point all the a's will

have been evaluated. This order of evaluating the coefficients is best

illustrated by a simple example. Consider the coefficients (a's) of a

nonlinear system having three Laguerre coefficients: and two gate functions

for each coefficient. That is, s = 3 and n = 2. There are ns = 8 coefficients

ai, j, k to evaluate. According to the above procedure these coefficients are.

evaluated in the following order:

alla111
all2

a 1 2 1

alZ2

5. a2 1 1

6. a2 12

7. a221

8. a222

A study of the order in this simple example is sufficient to establish the

order of evaluating the a's for any s and n.

Now think of the coefficients a.i, h arranged in the order of

evaluation, as components of a vector A and the corresponding coefficients

b 1 1 b21 ..... bn, b 12 b2 2 ... bn2 .... bljs b2s. ... bns, arranged as

shown, as components of a vector B. Then the set of equations represented

by Eq. (92) can be written in matrix form as follows

A] = [M] B] (93)

where [M] is the matrix that operates on the vector B to give the vector A.

Let us determine the form of the matrix [MJ. In order to illustrate the

form of this matrix we shall consider a nonlinear system for which s = n = 3

and for which Eq. (92) is assumed to hold. From the results of this example

the form of (M] can be visualized for any a and n. The equations indicated
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in· Eqi. (92) are written, fo~r ~this examplel in Tablse 1. The b's are

written at the top of the columns so that 'the form of the matrix: [M]

is evident. The actual eqluations are obtained by dropping the b's

down, be-side the unity coefficients. (All1 the blank ·spaces in the matrix

represent zero matrix coefficients.) Thus the first equation reads

a1 1 1 =bl + b1 + b1 3  (94)

We see that the matrix [M] is composed entirely of zeros and ones.

We also note the very regular pattern of the unity coefficients. A study

of this pattern will enable the reader to visualize its form for any s and

We now state a test for the a's that enables us to directly find if the

set of equations (92) or equivalently Eq. (93) is satisfied. The test was

developed from a study of [M] and the reader can check its validity (for

s = n = 3) by analyzing it. in terms of the matrix of Table 1.

1. Starting with a1 , 1, ... , 1 plot the a's (consecutiveliy in the order

in wbich: they are evaluated) in groups of n at ·unit intervals along a linear

scl.That is, form a set of n(l graphs, each of which contains n

a's plotted at equal intervals along a line. We call this set of graphs

set i.

2. Take the first "a" of each graph above, starting with a. 1 . . ~ ,1

and plbt these consecutively in groups of n at unit intervals on a linear

scale. Call, this set of grapihs set 2.

3. Repeat the procedure of step 2 until s sets .of graphs are obtained.

The ath set will consist of only one graph.

From a study of the general form of (MJ it can be seenthettif for a given

set of a's there exists a set of b's siuch that Eq. (93):1s- satisfied then all
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the graphs of these a's within each set of graphs will be identical except

for a possible vertical translation. Further, the converse holds; that is,

if all the graphs of the a's within each set of graphs are identical, within

a vertical translation, then there exists a set of b's such that Eq. (93) is

satisfied.

Hence, if there exists a system governed by Eq. (91) that is equivalent

to a system governed by Eq. (51) for a given set of a's, then all the graphs

of the a's, within each set of graphs, must be the same except for a possible

vertical translation. And, conversely, if we apply the above test to the a's

of a system and find that all the graphs within each set are the same within

vertical translation we know that the system having these a's can be syn-

thesized in the form shown in Fig. 23.

4.2 Synthesis Procedure

In this section we assume that the a's have been tested as described

above and that they correspond to a system of the type shown in Fig. 23.

We are now concerned with the synthesis of this system. In particular,

we want to find the transfer characteristics of the no-storage two poles.

One way to do this is to solve Eq. (93) for the b1s, which, by Eq. (91),

directly determine the no-storage transfer characteristics. As a

consequence of the special form of [M] this solution is readily accom-

plished. However, a simpler method of synthesizing the desired system

makes direct use of the graphs that are drawn when the a's are tested.

Referring to the previous section let us examine, relative to the a's in

Table 1, the sets of graphs defined in the test procedure. From inspection

of Table 1 it is readily seen that all the graphs of set 1 are identical to
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Example 4. 1

Suppose that we have determined-lthe coefficients of an optimum

filter of the class s = n = 3 and that they have the values given below.

all 1 =1 a 2 1 1 = 0 a3 1 1 = 2

all 2 =4 a 2 1 2 = 3 a31 = 5

all 3 = 3 a2 13 = 2 a3 13 = 4

a 12 1 = 2 a2 2 1  a3 2 1 = 3

a1 2 2 =5 a2 2 2 =4 a322

a123 = 4 a223 = 3 a323= 5

a 13 1 =5 a 3 1 = 4 a3 3 1 = 6

a 13 2 8 a2 3 2 =7 a3 3 2 =9

a1 3 3 =7 a2 3 3 = 6 a333 = 8

We shall test these coefficients to see if the corresponding system can

be synthesized in the form shown in Fig. 23. The coefficients, plotted

according to the test procedure described in section 4. 1, are shown in

Fig. 24, In order to make the form of each graph stand out, consecutive

points corresponding to the a's have been joined by straight lines. We

see that all the graphs within each set of graphs are identical within a

vertical translation. Hence the system can be synthesized in the form

shown in Fig. 23.

The synthesized system is shown in Fig. 25. The transfer charac-

teristic of the no-storage two-poles are obtained directly from the graphs

of Fig. 24. The graph of set 3 is the transfer characteristic of the two-

pole.-associated with ul. That is, all1 is the coefficient of the first gate

function 1 (ul), a2 1 1 is the coefficient of 4O(Ul) and a311 is the coeffiient

of 93 (ul). Similarly, any graph in set 2 can be taken as the transfer
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bthe so.e id lihes in Fig. 25. However, as we have seen, a gate function

expansion yields a stepwise approxinmation to the transfer characteristic

in which the height of each step is equal to the corresponding coefficient

in. the expansion. This step curve is shown by dotted lines in Fig. 25.

Exanmple 4. 2
Again we consider a filter of the class a = n = 3. Let the coefficients

i:for this filer b

91
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a 11 1 = a2 11  0 a3 11=0"

a11 = 2 12 = 1 a312 =

a 113 = 3 a2 13 = 2 a313 1

a 12 1 =3 a 2 2 1 = 2 a3 2 1 = 1

a 122 =4 a22 2 =3 a32 2 =

a12 3 =5 a 2 2 3 = 4 a3 2 3 = 3

a131 = 5 a2 3 1 = 4 a331 = 3

a 13 2 = 6 a2 3 2 = 5 a3 3 2 = 4

a 1 3 3 = 7 aZ3 3 = 6 a333 = 5

These coefficients, plotted according to the test procedure described

in section 4. 1, are shown in Fig. 26. We see that all the graphs within

each set of graphs are identical within a vertical translation, and further,

we see that they are all linear. Hence the system can be synthesized as

shown in Fig. 27. The transfer characteristics of the no-storage two-

poles are found directly from the graphs of Fig. 26.as discussed in

Example 4. 1. The solid lines in the transfer characteristics of Fig. 27

indicate a linear interpolation between the coefficients that specify these

characteristics. Since these solid line transfer characteristics are all

linear they may be replaced by ampliers whose gains are equal to the

slope of the lines.

4. 3 Approximating Filters by Linear and Simple Nonlinear Filters

We have seen that If the graphs of the characterizing coefficients

(the a's) of a system satisfy certain conditions the system can be

synthesized in the relatively simple form shown in Fig. 23 and that

under certain additional conditions the system is linear and. the

7i
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synthesis even simpler. In practical problems it is unlikely that the

system coefficients will exactly satisfy these conditions. However,

the relative simplicity of the systems of Fig. 23 makes it worthwhile

for us to determine when a more complicated system can be approxi-

mated by one having this simple form.

The concept of approximating one system by another is meaningful

only when we specify a criterion for the approximation and specify the

degree of approximation relative to this criterion. In this section we

consider the approximation of one system by another from the point

of view of two different error criteria.

We first consider the weighted mean square error criterion defined

by Eq. (54). Relative to this criterion we ask how much error is intro-

duced if we change the coefficients of the system from their optimum

values A to the values A'.
a a

According to Eq. (54), the error for a system whose coefficients are

A' is given by
a

= li G(t) (t) - AI (a) dt (95)
T oa

Expanding this equation we have

=Z (t) G(t)- 2G(t) z(t) A' (a) + G(t) Aa' A §(a) i(p)

a a

(96)

Taking advantage of the time domain orthogonality of the f(a), Eq. (96)

can be written



Using Eq. (58) for the optimum filter coefficients, Eq. (62) can be written

min = z (t) G(t) - A a G(t) z(t) 1(a) (98)
a

From Eqs. (97) and (98) we obtain the relation

- mi - (Aa - 2Aa) G(t) z(t) 1(a) + A' 2 G(t) 1(a) (99)
:a a

Again using Eq. (58), we can write Eq. (99) as follows

- .min= Z(A2 - 2A A + A ' 2) G(t) (a) (100)
a

which is equivalent to

- mi =  (A - A') 2 G(t) i(a) (101)
a

This equation is the desired expression for the error that is introduced

when the system coefficients are changed from their optimum values Aa

Sz2 (t) G(t) - 2Z A'a G(t) z(t) I(a) + At 2 G(t) f(a) (97)
a a

in which I (a) has been replaced by its equivalent, §(a).

For the optimum filter coefficients Aa, a takes on its minimum value

min' given by Eq. (62) as follows

=min z2(t) G(t) - Gt)z(t) (a) (62)
G(t) 1(a)



to the values A'.

There are several interesting points to notice about Eq. (101) and

the equations that lead to it. First, we notice that - is always

positive since G(t) and 1(a) are non-negative functions. Thus, Eq. (101)

shows that the optimum coefficients (the Aa) determined by Eq. (58)

actually render the error a minimum. Next, we notice that as a con-

sequence of the time domain orthogonality of the 1(a) each cell contributes

independently to the expression for the system error (Eq. 97). This very

convenient property of the gate function representation of a nonlinear

system enables us to directly and independently relate changes in any

system coefficient to changes in the error 6. From Eq. (101) we see

that the increase in error due to a change in the pth coefficient from its

optimum value A to Aý is just

- mi = (Ap - A')L G(t) §(a) (102)

But recall (Fig. 13) that G(t) *(a) is a quantity that we must evaluate in

determining the optimum system. Hence, if any coefficient is changed

from its: optimum value (as it may be for purposes of approximating a

system by a: simpler system as we shall see) we can immediately write

down the corresponding increase in error. Finally we notice the interesting

fact that for G(t) a 1 (i; e., the mean square error criterion) the increase

in error introduced by a given change in a coefficient is proportional to

the probability that the corresponding cell in function space is occupied

(recall that #(a- is equal to the probability that the ath cell is occupied).

We now introduce another error criterion and relative to it we

examine the effect of changing the system coefficients. As the criterion
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we specify an amplitude tolerance band T for a system output and regard

two systems as approximately equivalent if their outputs (for any input

that is common to both systems) coincide within this tolerance band.

T can be chosen to have a constant width for all amplitudes of the

system output or its width can be chosen as a function of the amplitude

of the system output (examples of these choices are illustrated later).

Now recall that in the gate function representation of a nonlinear system

the output of the system at any instant is equal to the value of the coefficie

I$

im
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A that corresponds to the occupied cell in the function space. Hence, if

we change the Pth coefficient from A to A' , then the system output will

change from A to A' when the Pth cell is occupied. At all other times

(i. e., when the pth cell is not occupied) the system output will be the

same as that before the change was made. Notice that this result holds

regardless of the system input. As a consequence of this simple relation

between changes in the coefficients and changes in the amplitude of the

system output we can directly transfer the tolerance band on the system

output to the coefficients. That is, for example, if we choose a two volt

wide tolerance band about the output waveform then we can alter any and

all of the coefficients by as much as ± 1 volt amplitude and the system

output will remain within this tolerance band.

In the optimum filter problem (for the case G(t) - 1) if we alter any

coefficient from its optimum value A to A', in addition to knowing that

the system output will change from A to A' when the Pth cell is occupied,

we know the probability of the occurrence of this error. This probability

is just I~- which was measured in the process of determining A .

In summary, when any filter coefficient is changed from its optimum
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value A to A' we can immediately determine the following quantities:

1. The change in the weighted.mean square error.

2. The tolerance band relating the optimum and the altered systems.

3. (For the case G(t) = 1) The probability that the output of the altered

system will differ from that of the original optimum system.

Conversely, if we specify upper limits on any of these quantities we

can find the permissible variation in the A 's. In this respect it is mosta

convenient to specify a tolerance band, for, as we have seen, the same

tolerance band can be applied to the system coefficients, thus directly

determining their maximum permissible variation. Furthermore, of

the three quantities listed above, the tolerance band is the only one whose

specification determinesthe permissible range of the Aa's independent of

the system input. Hence, this criterion is truly characteristic of the system

itself. (More precisely, it is characteristic of the gate qfunttion represen-

tation of the system.) Henceforth when we speak of two systems as being

nearly equivalent it is understood that this "equivalence" holds with respect

to some suitably chosen tolerance band. To illustrate these concepts we

consider an example of a nearly linear system.

Example 4. 3

Let the coefficients of an optimum mean square filter be the same as

those of Example 4. 2 with the one difference that a 22 2 = 3. 5 instead of 3. 0. A.

The graphs of these coefficients are shown in Fig. Z8. It is recognized that

these graphs do not satisfy the conditions (section 4. 1) for synthesis in the

simple form of Fig. 23. However, let us establish a tolerance band of

+O. 5 volts about the system output and ask if there is a linear system that
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shows immediately that the system is near
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other graphs of set 1, without exc ýeeding t
by the dotted line. Hehce .this system is n

Exainple 4. 2anid :ian thus be approximat

of Fig. 27 Furthermore, by Eq.:: (10), t

error when this optimum system is appro3
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where 22,- 2)' is: othe of the measurementi

a2 2 2 . Fin •iy e see that the output of the
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and then this: output will be 3.ý0 vols inste;

of this error is the known qntity 1(2, 2,

In this simple example only one graph
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V. Notes on the Application of the Theory

5. 1 Reducing the Coplexity of System by tracting Siple ystems

In section 4. 3 we considered the approximation of nmonlinear ilters

by linear and simple nonlinear filters. The object of this approximation

is to reduce the complexity of thefilter. In many cases we may find that,

for a given tolerance band, there exists no system of the form shown in

Fig. 23 that approximates a given system. It may, however, still be

possible to simplify the synthesis of this system by dividing it into two

or more parts, each of which can be synthesized in a relatively. simple

form. The basis for the division of the system into separate parts. is

provided by the gate function representation of nonlinear systems given

in Eq. (53). This representation lends itself conveniently to the decom-

position of systems into parallel connected component systems. For any

cell of the given system, the coefficient A is just the sum of the coef-

ficients of the corresponding cell in each of the parallel connected

component systems. Hence we can extract a simple system from a

given system by subtracting the coefficients of the simple system from

the corresponding coefficients of the given system. If the extraction

simplifies the original system then we have succeeded in breaking one

complex system into two less complexparts. To illustrate this let us

consider Example 4. 3. Instead of approximating the system of this

example by a linear one let us ,sythesize it as the parallel combination

of two simple systems. We note (Fig. 28) that, except for the coefficient

a,2, 2 -all the grahs of the coefficients satisfy the conditions for a linear

system. Let us subtract the set of coefficients corresponding to this

Pan
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that allithe codfficients of the remaining system are zero except the

one corresponding to the 2, 2, 2 cell, which is 0.5. The coefficients of

the extracted linear system are those of Example 4. 2. Hence, the non-

linear system of Example 4. 3 can be synthesized as the parallel com-

bination of the linear system of Fig. 27 and a very simple nonlinear

system having only one coefficient, a2, 2, = 0.5. This approach of

extracting simple systems to reduce the complexity of a -system is

effective only when, as in this example, the extraction causes many

of the coefficients of the remaining system to be zero, thereby simpli-

fying its synthesis.

5. 2 Optimization of the Laguerre Function Scale Factor

It has been assumed throughout that the scale factor associated with

the argument of the Laguerre functions is unity. By substituting kx for

x in Eq. (1) we obtain the Laguerre functions having the scale: factor k.

Unfortunately, we have no convenient analytical method for determining

this optimum value of k in the filter problem. Recall that the impulse

response at the nth output terminal of the Laguerre network is h (t),

or h (kt) with the scale factor k. We see that k effects a time scaling

of the impulse response of the Laguerre network and hence a frequency

scaling of the: transfer function of this network. In determining optimum

filters., by the methods described we can make use, of our knowledge of

the frequency band of x(t) to judiciously choose k. It would be: convenient

however to have a method for obtaining the optimum k rather than just

a good guess for it. An: eperimentaprocedure for accomplishing this

106:•• i: i ;i•:
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result is now described.

Cosiderthe effect of changing the time scaleof x(t) and z(t) in

the experiental. procedure for determining optimum -filters. That

is, consider that these time functions are replaced by x(t/k) and

z(t/k) respectively. In the laboratory this could be. achieved by

recording the ensemble members- of x(t) and z(t) and then playing

the recording back at a speed of 1/k times the yecording speed.

First, consider the effect of this time scaling on the determination

of.no-storage filters according to Fig. 9. It is clear that since the

apparatus for determining the filters has no memory, its operation

is independent of the time scaling indicated above. That is, the

same filter willbe determined regardless of the value of k. Now

consider the procedure (Fig. 13) for determining optimum filters

involving memory. We notice that the only portion of the apparatus

that involves memory is the Laguerre network. As. a consequence if

we replace x(t) and z(t) by x(t/k) and z(t/k) respectively, we obtain

the same filter as if we had used x(t) and z(t) but changed the scale

factor of ..the Laguerre network from unity to k. Now recall (section 3. 6)

that apparatus can be constructed which indicates the minimum error for

the optimum filter (6ftthe class of filters having. a given Laguerre network

and i generator). This apparatus, like that of Fig, .13, consists of no-

memory circuits and a Laguerre network. By varying the speed .of the

recordings of x(t) and z(t) that are fed into this apparatus and observing .

its output. of Eq.. 62)we. can directly determine the optimum k.

In practice we would build the Laguerre.network in the minimum error

detecting apparas to have a scale factor correponding to our ud
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g•ess of the optimum k. Then we could vary the speeds ofthe recordings "

of x(ta• z(t)inorerf to explore scale factors in the eighborhd of our

guess. We should note that in general the amplitude ofthe signals at the

outputs ofthe Laguerre network will change: with the :chage in speed of the

recordings of x(t). The maximum amplitude of these signals must be kept

at a constant leel corresponding to the range a-b (Eq. 37) over which the

gate functions are defined. If desired, circuitry can be constructed to

accomplish this adjustment automatically.

5. 3 Choosing the Functions that Characterize the Pastýof the Filter Input

For the theoretidal discussions of the preceding sections it was con-

venient to bharacterize the past of the filter input by Laguerre functions

since they form a complete set of functions on this past. In practice,

however, we will only use a small number of Laguerre functions and

hence the fact that they form a complete set is no longer of prime

importance to us. The important question in the practical case is,

"How well can we do.with a ssmall number of functions of the past? n

In many filter problems involving the separation of signals from

noise the immediate past of the filter input contains more information

about the present: value of the desired signal than does the more remote

past.. Since the Laguerre functions decay exponentially (Eq. 1) they

weight the immediate past of the input considerably more than the more

remote past and hence we expect that they will form a convenient set of

functions for use in many filter problems.

For some application -it may be convenent ito derive the functions

of the past from ts on a delay line rather than from a .•aguerre network

108
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t A.ll!
(evew though. the; tpuits of a delay line do notform a comipleteset .of

Sfunctions ithe t of the input). For example -suppose we are d ling

with me•iages i whiiw h consecutive symbols are coded in asequence of

pulses of different amplitudes. Then it would be appropriateqto replace

the Laguerre network by a delay line with taps so spaced that consecutive

pulses appear at adjacent taps. Then at any instant the s outputs of the

delay line would specify the amFlitudes of the as preceding pulses. Another

example for which it is appropriate to replace the Laguerre network by a

delay line is the problem of detecting the presence of. a train of pulses that

are :.equally .spaced in time. If the delay between the taps is equal to the

time interval between the pulses then when the train of pulses is present

it will affect all outputs of the delay line simultaneously. These are

examples in which it is desirable to give equal weight to different portions.

of a: finite :interval of the past and hence a delay line is more appropriate

than a Laguerre network.

It is clear that there are many choices we can make for the functions

that characterize the past of the filter input. Each choice implies a

restriction• to a class of filters from which the experimental procedure.

similar to that of Fig. 13, will pick theoptimum for the particular problem.

We can make. use of: the apparatus that determines the minimum error for

a given class of filters (mentioned in sections 3. 6 and 5.2) in order to

decide whether to use a -Lauerre network or a delay lne :etc. In a given

problem. We insert: the different networks nto this apparatus in place

of the Laguerre network and choose that onewichl elyds ithe smallest

error. i-
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5. 4 Choosing the Number of Gate Functions

By increasing the number of gate functions associated with each

Laguerre coefficient we quantize the function space of the input into

smaller cells. While in general this is desirable from the point of

view of reducing the filtering error, it leads to a very large number

of coefficients to evaluate. In application of the theory we should, when

possible, make use of any information about thd particular filter problem

that will enable us to reduce the number of gate functions. For example,

consider the problem of pure (noiseless) prediction of a stationary time

function consisting of equally spaced pulses having amplitudes of zero or

unity with a certain probability distribution. As discussed in the previous

section it is appropriate, for a problem of this type, to replace the Laguerre

network by a delay line. The output from each tap on the delay line will

then take on only the values zero and unity. Hence we need only two gate

functions for each output of the delay line.

In the previous section we have also mentioned that in many filter

problems the immediate past of the input contains more information

about the present value of the desired output than does the more remote

past. A study of the Laguerre functions shows that the higher order func -

tions weight the remote past more strongly than do the lower order functions.

Hence, we expect that, for purposes of filtering, it might not be as important

to distinguish small changes Inthe amplitude of the higher order Laguerre

coefficients as in the lower order ones (or, in the case of delay lines it

might not be as important to distinguish small changes in those outputs

that represent samples of the more re remote past). Thus we might choose

a smaller number of gate functions for the higher order Laguerre coefficients

110
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than for theilowr rder ones.:

In sumaryi te choices ofthe scale factor, the functions that

characteize the- past othe input, and the number of gate function,

are all choices that determine the class of filters, from which the

procedure si~lar to that of Fig. 13 determines the optimumfilter,

We should use any information:about the particular filter problem

that will enable us to judiciously choose the clabs of filters so that

the number of coefficients is reasonable in the light of the task that

the filter is to perform.
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