
A

Simulation of Models and Algorithms for Wireless

Communication Systems

by

Imad W. Jabbour

B.E., Computer and Communications Engineering
American University of Beirut (2005)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

A u th or .. . .............................. ***......................................

Departmen of Civil and Environmental Engineering
April 19, 2007

Certified by ........... . . ..... ............. . . .
Lizhong Zheng

Associate Professor, Electrical Engineering and Computer Science
Thesis Supervisor

Read by .........................................................
Steven R. Lerman

Professor, Civil and Environmental Engineering
Thesis Reader

Accepted by ....................................... ....................
Daniele Veneziano

Chairman, Departmental Committee for Graduate Students

BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 0 7 2007

LIBRARIES



C9



Simulation of Models and Algorithms for Wireless Communication

Systems

by

Imad W. Jabbour

Submitted to the Department of Civil and Environmental Engineering
on April 19, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The thesis presents a set of simulations of models and algorithms for wireless communi-
cation systems. The simulations are developed using graphical MATLAB interfaces, and
cover the fundamentals of wireless channel modeling, the advantages and limitations of
antenna beamforming in multiuser systems, and the underlying principles of OFDM. The
thesis targets two types of audiences in particular: students and wireless industry profes-
sionals. For the former, it constitutes an excellent complement to lecture notes, and for the
latter, it is an efficient way to review the key principles and technologies. In either case, the
simulations provide an intuitive view of the addressed topics, thus allowing users to com-
prehend the basics of wireless channels and phenomena without delving into mathematical
complexities.
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Chapter 1

Introduction

1.1 Overview and Motivation

In undergraduate and graduate wireless communication courses, students are often in-

troduced to the concepts of fading, wireless channels, multiuser environments and multi-

antenna systems, together with the equations governing these systems and concepts. Often

times, information theory is also brought into the picture, and students are frequently asked

to deal with tedious derivations of the capacity of wireless channels.

The motivation of this thesis has been to bring out a simple yet efficient way to vi-

sualize wireless communication phenomena, and understand the underlying concepts and

state-of-the-art technologies. The thesis presents a set of simulations for important models

and algorithms in wireless communications. The simulations were implemented using the

graphical user interface development environment (GUIDE) component of MATLAB. We

chose MATLAB because it offers a wide range of tools to deal with complex equations,

matrices and probabilistic models.

The simulations may be run in a typical classroom environment as a complement to

slides or lecture notes, and are intended to help students understand important wireless

communication concepts, tradeoffs, and standards. Moreover, the set of simulations could

help the industry professionals review the key principles and visualize modern wireless

technologies being simulated, without having to deal with mathematical complexities.

Of course, the wireless communication arena is vast and it would be difficult to present all

key principles in a single manuscript. Nevertheless, we thought that the following important

topics would be useful and appealing to a wide audience of students and engineers:

11



" The wireless channel: This is a fundamental topic in virtually every wireless com-

munication course. Our interface simulates a simple two-path channel and covers the

important physical parameters associated with any fading channel.

" Statistical analysis of Rayleigh fading: Rayleigh fading is a very common model

for wireless channels. We simulated an intuitive scenario that proves the underlying

probabilistic nature of the Rayleigh model.

" Multiple antennas and multiuser environments: These two topics constitute

the bulk of many graduate courses in wireless communication. We coalesced the

analysis into a single simulation that deals with dumb antennas, multiuser diversity

and scheduling algorithms.

" Orthogonal frequency division multiplexing (OFDM): OFDM is a popular

multicarrier technique that was recently incorporated into many wireless applications.

Its digital implementation is quite complicated, but the basic idea - that sinusoids are

eigenfunctions of LTI systems - is surprisingly simple and elegant. We implemented

a graphical interface that abstracts this intuitive view of OFDM.

We hope that the graphical simulations that we have developed will help students and

professionals understand key principles in wireless communication systems, without having

to delve into mathematical details or analytical derivations.

1.2 Thesis Organization

The thesis proceeds in Chapter 2 with the analysis and simulation of a simple wireless

channel. The more general Rayleigh model is described and simulated, as well. Chap-

ter 3 investigates the use of dumb antenna in multiuser environments. The proportional

fair algorithm is simulated in Rayleigh and Rician channels, using both ULA and random

beamforming techniques. In Chapter 4 we explain the advantages of OFDM and illustrate

the use of the cyclic prefix to combat intersymbol interference. Chapter 5 concludes the

thesis.

12



Chapter 2

The Wireless Channel

In this chapter, we describe the physical aspects of a generic wireless communication chan-

nel. In Sec. 2.1 we look at a simple transmit-receive model and then derive a linear system

model for wireless channels. In Sec. 2.2 we define the fading phenomenon and analyze its

main parameters. In Sec. 2.3 we analyze and simulate a simple two-path wireless channel.

Finally, in Sec. 2.4 we complete the description by coalescing the development into the

well-known Rayleigh fading model, which we discuss and simulate as well.

2.1 Modeling of Wireless Channels

This section describes a simple modeling of wireless channels, and is primarily based on the

analysis in [2].

2.1.1 Transmit-Receive Model

Consider a fixed antenna (base station) transmitting into free space. In the far field, assume

that there is a receiving antenna (mobile station), at a location p(t) = (r(t), 0, #), 1 moving

away from the transmitting antenna. Hence, the electric field at the mobile station at time

t, in response to a sinusoid exp(j27rft) can be expressed as [2]

F(0, #, f) exp[j27rf(t - 9)]
E(f , t, p(t)) = ~ t (2.1)

where F(0, #, f) is the product of the antenna pattern functions of the transmit and

'Here, t represents time, and (r(t), 0, #) are the spherical coordinates of the mobile station

13



receive antennas, and c = 3 x 108 m/s is the speed of light.

2.1.2 Linear System Model

In the above scenario, the wireless channel has one direct path between the transmit and

receive antennas, called the line of sight (LOS). In other more general situations, the wireless

medium may or may not include a LOS component, and could then be described by a

collection of I paths that usually result from reflection, scattering, shadowing, or other

phenomena produced by the surroundings. Assuming that the pattern function F(.) does

not depend on the frequency f, [2] expresses the overall response y(t) to an input exp(j27rf t)

as a direct generalization of Eq. (2.1), i.e.,

I Fi(t) exp[j27rf (t - ()2
yt) ri () (2.2)

i=1 ri(t)

It is important to note that there are cases where the electric field does not attenuate as

1/r, so it is more convenient to replace Eq. (2.2) with an expression that uses attenuation

explicitly; we denote the complex attenuation on path i by ai(t).2 We also define the time

delay of path i as ri (t) it). Hence, Eq. (2.2) may be rewritten as
C

y(t) = ay (t) exp{j27rf [t - -r(t)]} (2.3)
i=1

If we factor out the input exp(j27rft), then Eq. (2.3) becomes

y(t) = H(f, t) exp(j27rft), (2.4)

where H(f, t) is the system function of the linear time-variant (LTV) wireless system,

and is defined as

H(f, t) = 5a (t) exp[-j27rfTr(t)] (2.5)
i=1

Let h(-r, t) be the inverse Fourier transform of H(f, t), with time variable r and parame-

ter t. Then h(r, t) is the channel impulse response of the LTV system, and can be expressed

2ai(t) is a complex-valued attenuation function for path i that takes into consideration both amplitude

and phase changes caused the various wireless phenomena. In the case where the electric field decays as l/r,

ai(t) = (q.

14



as [2, 5]

h(-r, t) = a (t)6[r - ri(t)], (2.6)

where 6(.) is the Dirac delta function.

It can be shown that the response y(t) to an input x(t) is given by the convolution

equation for LTV systems [2]:

y(t) = J h(T, t)x(t - r)dT (2.7)

Substituting Eq. (2.6) into Eq. (2.7), we get

I

y(t) = ai(t)x[t - Ti(t)] (2.8)
i=1

This says that the output signal can simply be described as the sum of attenuated and

time-delayed versions of the input waveform.

2.2 Fading

2.2.1 Definition

The superposition of several signals at the receiver having different attenuations, delays

and phase shifts, causes the distortion of the transmitted signal. This phenomenon is called

fading, and can be understood more fundamentally by considering again the case where a

sender is transmitting a sinusoid exp(j27rft). By expressing H(f, t) in the phasor notation,

i.e. IH(f, t)Iexp[jZH(f, t)], Eq. (2.4) becomes [2]

y(t) = IH(f, t)|exp{j[27rft + ZH(f, t)]} (2.9)

We further consider the real and imaginary components of y(t), which are the output

responses to cos(27rft) and sin(27rft), respectively, i.e.

R{y(t)} = IH(f, t)I cos[27rft + ZH(f, t)] (2.10)

and Q'{y(t)} = IH(f,t)jsin[27rft + ZH(f, t)] (2.11)

15



We can see that both real and imaginary responses vary at approximately the frequency

f, inside the slowly varying envelope ±IH(f, t)| [2]. Therefore, in this simple model, we

may define the fading amplitude as IH(f, t) , and the fading phase as ZH(f, t).

2.2.2 Physical Parameters

Several parameters are used to characterize fading. Those include the Doppler spread, the

coherence time, the delay spread and the coherence bandwidth.

The Doppler effect says that if for path i, the receiver is moving with a relative velocity

v, and an angle of arrival 79i, then the transmitted signal's frequency f is not the same at

the receiver, but differs by the Doppler shift [1]

Ah = -f-cosOj (2.12)
c

If the wireless channel has I paths between the sender and receiver, then the Doppler

spread D, is defined as the difference between the largest and smallest Doppler shift over

all paths [2], for i = 1, 2, ... , I. That is,

D, = max Di - min Di (2.13)

A closely related parameter is the coherence time T of the channel, which approxi-

mates the typical time interval for the fading the change significantly. Mathematically, the

coherence time can be expressed as [2]

1
Tc = (2.14)

2D8

Another important parameter is the delay spread T d of the channel, which is the differ-

ence between the longest and shortest time delay at some given time t, over all paths, i.e.

[2]

Td = maxTi(t) - minT r(t) (2.15)

Finally, the coherence bandwidth W, of the channel approximates how much the fre-

quency of the system must be changed in order for a deeply faded channel to become

unfaded, and vice versa. It is defined as [2]

16



WC =T (2.16)
2 Ed

2.3 Reflecting Wall

The purpose of this section is to highlight the key parameters of Sec. 2.2 using a simple

reflection example. The idea of the simulation is primarily based on the reflecting wall

example of [5].

2.3.1 Simulation Overview

Consider Fig. 2-1 in which there is a fixed antenna sending a sinusoid exp(j27rft) in free

space, and a mobile station (MS) moving away from the antenna at a constant velocity v.

At t = 0, the MS is at distance ro from the transmitting antenna; furthermore, there is a

large and perfectly reflecting wall at a fixed distance d from the antenna.

r(t) MSt v(t)

d
Antenna Wall

ro

Figure 2-1: Reflecting wall scenario

Two signals superpose at the MS as it moves: the signal of the direct path from the

transmitting antenna, having a time delay of ri, and the signal of the reflected path from

the wall, having a delay of T2. Assuming that the MS antenna pattern is identical for

both paths, and noting the phase reversal for the reflected path, we can write the path

attenuations as [5]

ai(t) F a2(t) F- (2.17)
ro + vt 2d - (ro + vt)

and the time delays as

Ti) M=ro + vt T2(t) 2d - (ro + vt) (2.18)
C C

17



where F is the (constant) product of the pattern functions of the sending antenna and the

MS. It follows that the instantaneous delay spread can be written as: Td = 1ri(t) - T2(t)=

2(ro+vt-2d)

By substituting Eqs. (2.17) and (2.18) into Eq. (2.3), we get the instantaneous response

y(t) at the MS, i.e.

SF exp{j27rf [(1 - 2)t - 1]} F exp{j27rf [(1 + ")t _ ro-2d(2
ro+vt 2d-ro-vt (2.19)

We can see that the direct response is a sinusoid of frequency f(1 - 2), whereas the

reflected response is a sinusoid of frequency f(1 + L). Therefore, the Doppler shifts for the

2 paths are Di = -f 2 and D 2 = f 2, respectively, which means that the Doppler spread is

Ah = 2f'.

2.3.2 Simulation Results

The parameters used are: f = 900 MHz, d = 2.5 km, ro = 2.25 km, v = 20 m/s and F = 1,

which means that D, = 120 Hz and T ~ 4.2 ms. Fig. 2-2 shows the response at the receiver,

as well as the fading envelope, during the approximate time interval (8, 40) ms.

As we can see, the response can be approximated by a sinusoid of frequency f, with a

varying fading envelope whose peaks and valleys alternate every T seconds. Indeed, the MS

is much closer to the reflector than to the transmitter, which means that the attenuations

from both paths are approximately equal [5]. In this case, the received signal can be

approximated by a product of two sinusoids of frequencies f and D,/2 respectively [5],

which explains why the response has a time-varying envelope.

2.3.3 MATLAB Graphical Simulation

Fig. 2-3 shows a screenshot of our MATLAB simulation of the reflecting wall scenario. The

interface was developed in the GUIDE component of MATLAB, and comprises five main

parts:

* Simulation parameters: This panel contains five important parameters that the

user can change before running the simulation. These parameters are the carrier

frequency f, the velocity v of the MS, the distance d between the transmitter and the

18



X 10-3

1~ _ 91{y(t)}
-H(f, t)I

E 0

-0.5

0.01 0.015 0.02 0.025 0.03 0.035
Time (seconds)

Figure 2-2: Plot of the received signal and the fading envelope for t E (8,40) ms. The

response varies at the frequency f between the time-varying fading envelope. The coherence

time T is the interval over which the fading changes significantly

wall, the initial distance ro between the transmitter and receiver and the product of

antenna gains F.

" Animation panel: This panel contains an illustration of the reflecting wall scenario.

The mobile station is represented by a small filled circle .that moves towards the

reflector while the animation is taking place.

" Control panel: This part of the interface has three buttons that allow the user to

control the running simulation. The Start Animation button uses the saved parameters

to start the simulation. The Pause Animation button pauses the simulation at any

time, and Resume Animation resumes it wherever it stopped.

" Statistics panel: Once the simulation parameters get saved, this panel displays the

numerical values of the Doppler spread and the coherence time.

" Received signal figure: The received signal at the mobile station is plotted versus

time, as the simulation is taking place. The thick lines around the response represent

the time-varying fading envelope.
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The user could observe the effect of each parameter by separately changing it while

holding all the others constant. An interesting simulation would be to test how the response

at the receiver looks when the MS is much closer to the transmitter than to the wall (ro < d).

In this case, the reflected signal's amplitude will be negligible, and the effect of fading will

not be very obvious.

The users may restart a new simulation by going to the Options menu, and selecting

Reset. This will enable them to input new parameters and observe the changes on the

received signal and fading envelope.

20



Figure 2-3: Reflecting wall - MATLAB graphical simulation. The received signal and the fading envelope are plotted dynamically on

the figure while the MS is moving towards the reflector in the Animation panel



2.4 Statistical Analysis of the Channel

In situations where the received signal consists of several paths, the derivation of the re-

sponse at the receiver becomes tedious. In that case, it is more convenient to model the

channel statistically, i.e. to consider a probabilistic model for fading.

One of the widely used statistical models is the Rayleigh fading model, where the fading

is modeled as a complex Gaussian random variable, whose real and imaginary components

are zero-mean Gaussian random variables, and whose magnitude is Rayleigh-distributed. 3

This model applies well in scenarios where the number of paths I is relatively large. By

the central limit theorem, both real and imaginary parts of the fading are the sum of

several independent components, and thus will approximately be distributed as zero-mean

Gaussian variables, for a sufficiently large I. Mathematically, the magnitude of such fading

is Rayleigh distributed, and it can be shown that the phase is uniformly distributed [5] over

[-7r, 7r]. However, even though this model is a very good approximation in several practical

cases, it is important to mention that it loses its validity when I is not large enough, or

when there is a dominant (LOS) path between the transmitter and receiver [4].

2.4.1 Simulation Overview

We now describe the simulation of the Rayleigh fading channel using the simple case scenario

of Fig. 2-4. This simulation is based on an example found in [4]. A transmitter is sending

a sinusoid exp(j27rft) in free space, and in the far field, there is a mobile station moving

over a square region A. There are I reflectors (scatterers) between the BS and the MS,

which signifies that the MS is receiving I attenuated and time-delayed copies of the original

signal. Furthermore, we assume that there is no LOS between the sender and receiver, and

that the reflectors are distributed in a quasi uniform fashion around the area A.

We denote by p = i + yj the instantaneous location vector of the MS, 4 and by ,i the

wave propagation unit vector for path i. If di is the angle of arrival of path i with respect

to the y-axis, then the projection of the propagation vector onto the location vector can be

3The density of a Rayleigh-distributed random variable X is given by: fx(x) = x exp(- 2 ), x > 0.
4 i and j are the unit vectors of the x and y axes, respectively.
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A

Transmitter

Figure 2-4: Statistical analysis scenario

written as

(,' p) = (r, xi + yj)

= ( , xi) + (., yj)

= x sindi + y cos di (2.20)

Since we are interested in analyzing the fading H(f, t) statistically, we may, without

loss of generality, consider a particular time instant, say t = 0. We denote the attenuation

and path delay at t = 0 as ai and Ti, respectively. Assuming that path i has a phase of

Wi, then ai can be written as lail exp(jpi). By writing the path delay as ri = 9 , and by

substituting Eq. (2.20) into Eq. (2.5), we get

H(f,t = 0) = [2fi) exp - -f(x sin V + y cos i) (2.21)
i=1L

We claimed earlier that for I large enough, both real and imaginary components of

H should be normally distributed, and that its magnitude and phase should be Rayleigh-

and uniformly-distributed, respectively. These findings were confirmed by our MATLAB

simulations, as we will see next.

2.4.2 Simulation Results

The parameters used are: I = 12 paths, f = 900 MHz, and A = {x E [-6, 6] m ; y E [-6, 6]

m}. Furthermore, the angles of arrivals are chosen to be approximately uniform around A,
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and the path attenuations are selected to be lail ~ M( = 1, oa = 0.09).

In Fig. 2-5 through 2-11, we plot the fading over A and draw the following conclusions:

" Fig. 2-5 through 2-8 confirm our analysis that both real and imaginary components

of fading are approximately zero-mean Gaussian random variables.

" Fig. 2-9 and 2-10 show that the magnitude of fading is nearly Rayleigh distributed,

which directly follows from the normality of both constituents of the complex fading

variable.

" Finally, Fig. 2-11 confirms that the phase of fading is roughly uniformly distributed

over the interval [-7r,7r], again corroborating our earlier discussion.

These observations thus justify the nomenclature "Rayleigh fading" when the number

of paths in the channel is large enough, and when the reflectors in the medium are approx-

imately uniformly distributed around the receiving antenna.

{{H(f, t)} over the Area of Interest

6

0 /101, 6

-10 0

6 4 2-2

-2 -6 -6 x (meters)
y (meters)

Figure 2-5: Mesh plot of R{H(f, t)} over A.

2.4.3 MATLAB Graphical Simulation

Fig. 2-12 and 2-13 show two screenshots of our MATLAB simulation of the statistical

analysis scenario. The interface displays a small paragraph describing the statistical analysis
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Figure 2-8: Histogram of the pdf of Q {H(f, t)}. The thick curve is the fitted zero-mean

Gaussian pdf
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Figure 2-9: Mesh plot of IH(f, t)I over A
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Figure 2-11: Histogram of the pdf of the phase of H(f, t). The thick curve is the uniform

pdf over [-7r, 7r]
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setup. After pressing the Simulate Rayleigh Fading button, the simulation parameters will

be displayed, and these include:

" Number of paths: the number I of multipath components due to reflection or

scattering.

" Signal frequency: the frequency f of the sinusoidal input.

" Area of interest: the square area A in which the mobile station is moving.

" Angles of arrival: these are the angles at which the different reflected signals arrive

at the mobile station. Note that these angles are approximately uniformly distributed

around the region A.

" Path attenuations: the attenuation of each of the I paths. These are normally

distributed with mean p = 1 and a small variance, in order to prevent any path's

signal from dominating the others.

" Path phases: the randomly generated phases of each path's attenuation.

The "Next" (>>) button allows the user to view the next plot, and the "Previous"

(<<) button displays the previous plot. The plots that are being generated are the same as

the ones we showed in Fig. 2-5 through 2-11. For example, Fig. 2-13 shows the histogram of

the imaginary component of fading, along with the fitted Gaussian distribution. The user

may restart a new simulation by going to the Options menu, and selecting Reset.
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Figure 2-12: Statistical analysis - MATLAB graphical simulation. After the simulation parameters get displayed, the user can visualize
the fading plots and statistics
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Chapter 3

Antenna Beamforming in

Multiuser Fading Channels

In this chapter, we address the issue of antenna beamforming in a multiuser faded envi-

ronment. In Sec. 3.1 we look at linear antenna arrays and describe a generic downlink

fading channel. In Sec. 3.2 we give an overview of beamforming and discuss beamform-

ing techniques using dumb antennas. In Sec. 3.3 we investigate the relationship between

dumb antennas and multiuser diversity, and analyze it in both multiuser Rayleigh and Ri-

cian fast-faded environments. Finally, in Sec. 3.4, we describe our MATLAB simulation in

detail.

3.1 Preliminaries

3.1.1 Antenna Arrays

In general, single-element linear antennas have low directivity and their main beams point

to fixed directions [1]. Directivity is an important property of antennas, and can be defined

as the ratio of the maximum radiation intesity in a particular direction to the average

intensity radiated in all directions [1].

An antenna array denotes the arrangement of several antennas into a specific configu-

ration in order to produce a better directivity at certain locations in space. Often times,

these antennas are coupled to a common source, and the currents feeding them usually have

varying relative amplitudes and phases.
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Uniform Linear Arrays

In a uniform linear array (ULA), two or more equally spaced antennas are fed with signals

having the same amplitude and a uniform progressive phase shift between them. We consider

a linear array with Nt antennas placed along a horizontal line, and we denote by d the

distance between consecutive array elements. The antenna spacing d is usually expressed in

terms of the carrier wavelength A. In the remainder of the chapter, we assume that d = .

As shown in Fig. (3-1), the antennas are numbered sequentially from 1 to Nt, so that

the progressive phase shift mechanism assigns a phase of (n - 1) to the nth antenna, where

n =1, 2, -.. Nt.

User

0 2 (Nt - 2) (Nt - 1)

d d d

1 2 3 Nt - 1 Nt

Figure 3-1: A uniform linear array with Nt antennas placed along the horizontal axis,

transmitting to a user in the far field. The signal in each antenna leads the previous one's

by a constant phase shift

The variation of the intensity of radiation of the antenna array as a function of the

departure angle # is often called the array factor. For a user located in the far field, the

normalized array factor can be expressed as [1]

IA(6)I = 1l + ejo + ej 2 0 + - + ej(Nt-1)I (3.1)
Nt

where

6 = -dcoso + (3.2)
A

3.1.2 Downlink Fading Channel

The simplest model of a downlink communication channel features a single transmitter (with

one antenna) sending information to several users. For a downlink flat-fading channel with

K users, and time index m, the fading process of user k is denoted by {hk[m]}. There is a
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power constraint P = 1 on the input signal x[m], and the noise process of user k, {zk[m]},

is assumed to be white Gaussian with mean 0 and variance No, i.e. zk[m] ~ Cff(0, No). If

user k receives the signal y at time m, then the downlink fading channel can be represented

generically by the following model:

yk[m] = hk[m]x[m] + zk[m] k = 1,2, ... , K. (3.3)

In many situations, several antennas are placed at the transmitter (base station), say

Nt. In this case, the channel between the transmitter and user k is often called a multiple

input single output (MISO) channel. Assuming that the input at time m is now x[m] =

(x 1 [M], x 2 [m], - - - , xN, [m])t, and denoting the fading realization between antenna n and user

k by hn,k[m], the channel can then be modeled as

y[m] = hk[m]f x[m] + zk[m] k = 1,2, .. , K, (3.4)

where hk [m]t = (hiim],k [M] , hNp,k [M]) is the fading vector from the antenna array to

user k.

3.2 Beamforming Using Dumb Antennas

3.2.1 Overview

Beamforming is a technique used to direct the beam of an antenna array in such a way

to have more power received in certain directions. In the remainder of the chapter, we

investigate the use of dumb antennas to induce beamforming, an area which was investigated

by Viswanath et al. in [6].

Unlike transmit beamforming techniques, dumb antennas do not know the location of

the users and need not measure their individual channel gains. Each user k only feeds

back its own received signal-to-noise ratio (SN R) to the base station; the latter employs a

scheduling algorithm that transmits data to a specific user in each time slot [6].
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3.2.2 Channel Representation

As shown in Fig. (3-2), the scheme proposed in [6] transmits x[m] = wk[m] [m] to user k

at time m, where wk[M] is the transmit weight vector of user k, and is defined as

Vai [m ] ej01, k[M]

Wk [m] V a2 [m]eijI)2,k fm]

/aN,[M ejNt,k[M]

As we will see shortly, the phases 0n,k could be chosen randomly and independently

(random beamforming), or could actually represent the phases of a uniform linear array.

In either case, the power coefficients an[m] are chosen in such a way to preserve the total

transmit power at time m, i.e. EN1 an[m] = 1.

It follows that the received signal for user k at time m is given by

k[m] = (hk[M]tWk [M])X[M] + Zk[m] k = 1,2, .. , K (3.6)

The overall channel gain of user k is the equivalent channel realization seen by user k

after multiplying the fading coefficients by the weight vector, and is defined as gk[M]

hk[M]twk[M].

3.2.3 Beamforming Techniques

The time-varying attenuations and phases, an[m] and 4 n,k[M], could be chosen in various

ways, thus producing different weight vectors. In this section, we describe two beamform-

ing techniques and in subsequent sections, we compare their performance in fast fading

environments.

Uniform Linear Beamforming

The ULA described in § 3.1.1 is an interesting example of dumb antennas. If we assume,

here again, that the transmitter knows neither the users' locations nor their channel gains,

fluctuations in the channel can be induced simply by changing the progressive phase shift

. We coin this technique uniform linear beamforming to imply that the beam is produced
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User k

hi,k [M] 
hNt,k

h2,k [M] hNt-1,k

V 2 [m] ejV2,k0[M]

;[m]

Figure 3-2: Beamforming using dumb antennas: the signal sent by each antenna is a mod-

ified version of the scalar z[m], with time-varying powers and phases

by a ULA.

By conveniently choosing the phase shift , the main beam can be steered to a specific

steering angle Os in the plane. Consequently, at each time m, the transmitter randomly

picks a phase shift uniformly distributed between 0 and 27r, independently of previous

time slots. It can be shown that the steering angle 0s is related to the phase shift by

Os = cos-1(- IN .

By using Eq. (3.2), it follows that the instantaneous phase of user k due to the signal

from the nth antenna is given by

27r
=n,k (n - 1) r d os k + )

2-7r 2 -r
S(n - 1) d cos #k - d cos #s), (3.7)

where n = 1, 2,- , Nt, and #k is the location of user k. As a result, the weight vector wk [m]

of Eq. (3.5) can be rewritten accordingly by substituting the values of 'n,k in Eq. (3.7).
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Random Beamforming

In the beamforming technique proposed in [6], the antenna phases Vn,k[m] are random and

independent of the location of the users. In other words, On,[i] is uniformly distributed

in [0, 27r], for n = 1, 2, -- - , Nt. We will label this technique random beamforming to stress

upon the fact that the contribution of an antenna to the overall gain is independent of the

contributions of all other antennas.

Beamforming Patterns

In the absence of fading, it is often useful to plot the overall channel gain versus the angle

of departure q, for a particular time slot m. In this case, hk = 1N, and the normalized

overall channel gain g I9I is thus given by L1+ ej',k + ejV)2,k +-- + ejVNt -11. The polar

plot of I9kI is often called the normalized beamforming pattern.

As shown in Fig. 3-3 and Fig. 3-4 , the beamforming pattern of a ULA has two main

beams of high gain, pointing in the direction of OS and 27r - Os. The smaller beams

situated on either side of the main beams are called side lobes, and the directions in which

the pattern's strength is zero are called nulls. Note that when we increase the number of

antennas from Nt = 2 to Nt = 4, while keeping the separation d constant, more side lobes

appear in the pattern and the main beam gets narrower.

In a nutshell, we can clearly see that in the absence of fading, changing the phase shift

( at each time slot will produce a different beamforming pattern with directions receiving

more power than others. However, we expect that on average, all directions will get the

same power if the number of time slots is sufficiently large.

In the case of random beamforming, the beamforming pattern at a specific time slot

looks totally random, even in the absence of fading. Indeed, as shown in Fig. 3-5, no

direction is more privileged that the other, and the gain at each direction depends solely

on the random phases generated at each antenna.

3.3 Dumb antennas and Multiuser Diversity

In this section, we show that multiuser diversity can be achieved by using dumb antennas

and an appropriate scheduler. We consider both Rayleigh and Rician fast fading channels,

and show that the use of dumb antennas leads to an improvement in performance only in
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Figure 3-3:
d = A/2

ULA normalized beamforming pattern for Nt = 2 transmit antennas with
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Figure 3-4: ULA normalized beamforming pattern for Nt = 4 transmit antennas with

d = A/2. Note that by increasing the number of antennas from 2 to 4, the main beam gets

narrower, and side lobes begin to appear
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Figure 3-5: ULA and random beamforming normalized beamforming patterns for Nt = 4
transmit antennas with d = A/2

the latter case.

3.3.1 Multiuser Diversity

Generally speaking, diversity is a technique for improving the reliability of communication

between a sender and a receiver, by utilizing two or more signal paths that fade indepen-

dently. Diversity plays a central role in combatting fading, and many diversity classes exist,

such as time diversity (multiple versions of the same signal are transmitted over different

time slots), frequency diversity (the signal is transmitted over different frequency channels)

and space diversity (the signal is transmitted over different paths).

Multiuser diversity is another diversity class that operates at the system level rather

than the user level, and that exploits fading instead of combatting it [6]. The goal is to

maximize the overall throughput of the system by communicating to the user that can best

exploit the channel resources [6] at a given time instance.

Choosing which user to transmit to at a particular time is handled by the scheduler, and

a tradeoff between throughput and fairness is inevitable. For instance, the scheduler could

assign time slots to each user in equal portions and in order, handling all users without
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priority; in this case it is called a "round-robin" scheduler. This is a fair scheduler, but

does not necessarily exploit the channel resources efficiently. Another type of scheduler

would transmit to the user that currently has the best channel among all users. Even when

the users have the same fading statistics, two users could have different average signal-to-

noise ratios, due perhaps to different distances from the base station [5], or because of very

disparate channel gains. Consequently, this scheduler lacks fairness since some users might

never be scheduled.

Multiuser diversity can be achieved by using the proportional fair scheduler (PFS) pro-

posed in [6]. This algorithm transmits to the user that has the best channel with respect

to its own average. As we have previously mentioned, the base station need not know the

location of the users nor their individual channel coefficients.

Each user k feeds back only the throughput that its channel can support, or equivalently,

the overall received SN R of its own channel, given by

htwk[m]I2
SNRk[m] - N (3.8)

and the base station schedules transmission to the user k with the highest SNR with

respect to its own average SNR, i.e.

(SN Rk[M]

k = arg max k =1, 2,... , K. (3.9)
k SNRk

3.3.2 Assumptions

In the sequel, we suppose that the following assumptions hold:

" There are Nt = 2 transmit antennas at the base station, aligned on the horizontal

axis, and separated by a distance d = A/2.

" There are K users in the system, and all of them are situated at the same distance R

from the base station; we assume that R >> d so that the far field assumptions apply.

" Independent, fast fading: the users' channels fade rapidly and independently.
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3.3.3 Rayleigh Fading

We start by considering the independent Rayleigh fading model, whereby the individual

channel coefficients are i.i.d. and ha,k[M] - CA(0, o.2 ). This means that the overall channel

coefficients hk[m]twk[m], k = 1,2, - - - , K, are independent across all users, and follow a

Gaussian distribution regardless of the choice of wk[M] [5].

This says that the distribution of the channel gain does not change if we increase the

number of antennas, or whether we use ULA or random beamforming.

Distribution of the overall channel gain

In Fig. 3-6 we plot the kernel density function of the overall channel gain of one user in

the system. In the case of ULA beamforming, we are plotting the density of the following

quantity:

Ihi,kwk,1 + h2,kwk,21 = Jhi,kV/Ci ± h2,kv/a2exp[j(7r cos 4k + )]I, (3.10)

where a, and a2 = 1 - al vary between 0 and 1, and varies uniformly between 0 and 27r,

whereas in the random beamforming case, we are plotting the density of

Ihl,kwk,1 + h2,kwk,21 = Ihl,k\/&i exp(j01) + h2,k v2 exp(j02)1, (3.11)

where b1 and 0 2 vary uniformly and independently between 0 and 27.

As we expected, there is no essential difference between the two cases, and the distri-

bution of the overall channel gain is identical to the case where there is only one transmit

antenna. Consequently, using dumb antennas in a fast Rayleigh-faded system does not lead

to any improvement over the single antenna case.

Average Received Power

In Fig. 3-7 we plot the mean received power, E[Ihk [m]twk [M] 12], versus the angle of departure

0, for both ULA and random beamforming. We can see that there is no privileged location,

and that on average, all user positions will receive roughly the same power, regardless of

whether we use ULA or random beamforming. Also note that the grand mean over all

powers is equal to 1, which was achieved by choosing al + a2 = 1.
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Figure 3-6: Rayleigh fading - Comparison of the distributions of the overall channel gains

for one user. There is no essential difference between ULA and random beamforming, or

between using 2 antennas versus 1 antenna
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Figure 3-7: Rayleigh fading - Comparison of the mean received power versus q5, between

ULA and random beamforming
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Overall Channel Gain and Scheduling

In this paragraph, we consider a system with K = 5 users and investigate the performance

of the proportional fair scheduler (PFS). In Fig. 3-8 we plot the overall channel gain of user

1 versus time, over a total duration of 120 time slots. The small squares correspond to

the values of the gain at the times when the user is scheduled by the PFS, i.e. when the

user has the best gain compared to its own average. As we can see, this specific user has

been scheduled 25 times during that interval, or equivalently 20.8% of the time, which is

approximately equal to 1/5. Similar plots further substantiate the fairness of the PFS by

showing that each of the remaining users will be scheduled roughly 20% of the time.

2.5

2

7 1.5-
C
c

0
0

0.5-

0 20 40 60 80 100 120
Time slot

Figure 3-8: Rayleigh fading - Overall channel gain of user 1 versus time, for K = 5. The

small squares correspond to the times when the user is being scheduled for transmission

3.3.4 Rician Fading

The Rayleigh model is extensively used in the literature to model wireless fading channels.

Nevertheless, this model is often not sufficient to describe many channels found in the real

world, and other models are used instead. One such model is the Rician fading, and is

appropriate when there is a strong dominant (LOS) component between the transmitting

antenna and the user, coupled with a scattered Rayleigh component.

The ratio of the energy in the dominant path to the energy in the diffused paths is

denoted by r, and is often called the K-factor. For a fixed n, the channel strength between

antenna n and user k, at time m, can be written as [5]
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hak[m] = jgJin,k + CA(0, ,2 ) (3.12)
' K+1i;+1

The first term corresponds to the dominant path arriving with a uniform phase sOn,k

and amplitude o, whereas the second term refers to the usual Rayleigh component

having Gaussian real and imaginary components with variance o 2/2 each. In what follows,

we assume that the dominant component of the fading is fixed between antenna n and user

k, so that the Gaussian part is the only varying component. Note that for r = 0 we can

recover the Rayleigh fading, and for , -+ oo, the fading is purely deterministic.

Distribution of the Overall Channel Gain

We saw in the Rayleigh fading case that the use of dumb antennas does not provide any

gain in performance. However, significant gains can be achieved in a Rician environment,

especially when the K-factor is large [5]. Indeed, the random variation in the phases ')n,k

and attenuations an helps create fluctuations in the LOS component, and the stronger this

component is (larger r.), the larger the fluctuations become.

This intuition is corroborated in Fig. 3-9 and 3-10. In these figures, we plot the kernel

density function of the overall channel gain of one user for r, = 10 and r, = 100, respectively.

The following conclusions can be drawn:

" Contrary to the Rayleigh fading case, dumb antennas can increase the dynamic range

of fluctuations in the presence of Rician fading.

" Since we are using only two transmit antennas, there is no essential difference in

performance between ULA and random beamforming.

" When we increase the K-factor from 10 to 100, larger gains, relative to the single

antenna case, can be achieved.

Average Received Power

In Fig. 3-11 we plot the mean received power versus 0. As in the Rayleigh fading case, we

see that on average, all locations will receive the same power, regardless of whether we use

ULA or random beamforming.
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Figure 3-9: Rician fading
one user, for r, = 10
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Figure 3-10: Rician fading - Comparison of the distributions

for one user, for r, = 100
of the overall channel gains
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ULA beamforming
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Figure 3-11: Rician fading - Comparison of the average received power versus q$, between

ULA and random beamforming, for r = 10

Overall Channel Gain and Scheduling

In this paragraph, we consider a system with K = 5 users and investigate the performance

of the proportional fair scheduler (PFS). In Fig. 3-12 we plot the overall channel gain of user

1 versus time, over a total duration of 120 time slots. We can see that this user has been

scheduled 21 times during that interval, or equivalently 17.5% of the time. The remaining

users will also be scheduled roughly one fifth of the time, again proving the fairness of the

PFS.

3.4 MATLAB Graphical Simulation

Fig. 3-13 through 3-15 show three screenshots of our MATLAB simulation of dumb anten-

nas and beamforming in multiuser environments. The simulation efficiently amalgamates

the concepts of beamforming, dumb antennas, multiuser fading channel and scheduling

algorithms, in a simple and user-friendly interface.

We used a uniform linear array to perform the simulation. The interface includes five

main sections:
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Figure 3-12: Rician fading - Overall channel gain of user 1 versus time, for K = 5 and

K= 10. The small squares correspond to the times when the user is being scheduled for

transmission

" Simulation parameters: this panel contains three important parameters that can

be changed before running the simulation. These parameters are the number Nt of

transmit antennas (2, 4 or 8), the number of users K (1, 5 or 10) and the fading

distribution (Rayleigh or Rician). These variables can be saved by clicking on the

Save Parameters button.

" Beamforming panel: this panel contains a polar plot of the normalized beamform-

ing pattern of the ULA antenna array. As the simulation is taking place, the plot

updates the pattern at each time slot. Moreover, the users are represented by (fixed)

small filled disks distributed randomly around the circle. At each time slot, the disk of

the scheduled user will be colored in green, whereas all other users will be represented

by the blue color.

" Control panel: this panel contains three buttons that allow the user to start, pause or

resume the simulation. The Start Animation button starts the simulation, whereas the

Pause Animation and Resume Animation buttons pause it and resume it, respectively.

" Graph figure: this graph plots the overall channel gain of user 1 versus time. The

small squares indicate that the user has been selected for transmission by the propor-

tional fair scheduler.

" Output panel: after the simulation completes (we fixed the number of time slots to

120), the output panel displays the percentage of schedules for this user (this should
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be around 1/K x 100%), the average overall gain, and the average overall gain at the

times where the user has been scheduled.

After the simulation ends (see Fig. 3-14), we can plot the distribution of the overall

channel gain of the user (see Fig. 3-15). The Options -+ Reset menu item resets the initial

parameters and allows us to run another simulation.
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Figure 3-15: Dumb antennas - MATLAB graphical simulation. The distribution of the channel gain of user 1 can also be plotted after
the simulation ends



Chapter 4

Underlying Principles of OFDM

In this chapter, we describe the underlying principles of orthogonal frequency division mul-

tiplexing (OFDM). In Sec. 4.1 we prove that sinusoids are the eigenfunctions of linear

time-invariant systems. In Sec. 4.2 we give an overview of frequency-selective fading and

describe the input-output relationship of this type of channel. In Sec. 4.3 we coalesce the de-

velopment of the first two sections by explaining the motivation behind OFDM and proving,

by simulation, the need for the cyclic prefix. Finally, in Sec. 4.4, we describe our MATLAB

graphical simulation of OFDM.

4.1 Eigenfunctions of LTI Systems

We consider the linear time-invariant (LTI) system H shown in Fig. 4-1. We denote by h[m]

the impulse response of the system, where m is the time index, and by x[m] and y[m] the

input and output sequences, respectively.

x[m] y[m]
h[m]

Figure 4-1: Discrete-time LTI system

It is well known that complex sinusoids are eigenfunctions of LTI systems. This means

that the response to a sinusoid is another attenuated sinusoid of the same frequency. In

other words, if the input is a sinusoid of frequency fo = ', i.e. x[m] = ejiom, then

7Hf{ejwom = A.ejwom, where A is an arbitrary constant. This can be proved straightforwardly
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by noting that the discrete-time Fourier transform (DTFT) of x[m] is equal to

X(w) = 1 x[m]e-jr = 27r6(w - wo)

It follows that the DTFT of y[m] is given by

Y(w) = X(w)H(w)

= 27rJ(w - wo) - H(w)

= 27rH(wo) - 6(w - wo)

= A - 6(w - wo),

where A = 27rH(wo) is a constant. As a result, y[m] = DTFT-1 {A - J(w - wo)} = A ejom,

effectively proving that sinusoids are eigenfunctions of LTI systems.

4.2 Frequency-selective Fading

Consider a wireless channel of bandwidth W, and denote its coherence bandwidth by W.

In the case where W > We, the channel is called frequency-selective, and the number of

resolvable multipath components (channel taps) is L ~ TW, where Td is the delay spread

of the channel.

The discrete-time representation of a frequency-selective channel can be described by a

tapped-delay line model, as shown in Fig. 4-2. A unit time delay is denoted by D, and the

noise z[m] is assumed to be complex Gaussian. It follows that the system response at time

m is given by
L-1

y[m] = E he[m]x[m - f] + z[m] (4.1)

t=o

We further assume that the fth tap does not vary with time and thus the channel is

linear time-invariant [5]. Therefore, Eq. (4.1) can be rewritten as

L-1

y[m] = hex[m - f] + z[m] (4.2)

t=o
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Figure 4-2: Tapped-delay line model. The output depends on attenuated and time-delayed

copies of the input

4.3 Orthogonal Frequency Division Multiplexing (OFDM)

4.3.1 Motivation

Consider the frequency-selective, single-carrier channel of Eq. (4.2). In this scenario, the

delay spread is typically of the order of the symbol period or larger, which means that the

system experiences significant intersymbol interference (ISI). The effect of ISI can usually

be mitigated by using complex equalization schemes. 1

However, if we break the channel into N subcarriers, where N is typically large, then each

subchannel bandwidth WN = W/N would be small compared to W [3]. If the subcarriers

are orthogonal to each other, then the symbols on each subchannel could be demodulated

without interference from other carriers. The system would thus behave as a collection of

flat-fading subchannels, where both intersymbol and intercarrier interferences are negligible.

4.3.2 Orthogonal Subcarriers

As we showed in Sec. 4.1, if we transmit a sinusoid over an LTI system, the resulting response

is another sinusoid of the same frequency. In OFDM, the subcarriers are sinusoids and

possess this special property of being the eigenfunctions of the LTI channel. Furthermore,

'Generally speaking, equalizers are filters that attempt to combat ISI by applying digital processing

techniques on the received signal.
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these sinusoids are chosen to be orthogonal to each other, thus practically eliminating

intercarrier interference (ICI). Orthogonality between subchannels is ensured by carefully

choosing the frequencies of the carriers and the pulse shaping filters.

4.3.3 Finite Duration Sinusoids

If we transmit a time-limited sinusoid over an LTI system, then the resulting output will no

longer be a sinusoid. Fortunately, the channel impulse response can usually be treated as

having a finite number of taps L, so orthogonality could be restored by ensuring that every

subcarrier has an integer number of cycles over each OFDM symbol duration TN = TN,

where T is the single carrier symbol duration.

To see this more clearly, assume that the input to the channel is a finite-length sinu-

soid and that the channel coefficients are real Gaussian, he ~ ' (y = 0, o2 = 1/2), f =

0, 1, - - - , L - 1. In Fig. 4-3, we plot the channel output versus time and compare it to the

sinusoidal input, in the absence of noise, and for L = 20 taps. As we can see, y[m] is dis-

torted over the interval 1 < m < L, which corresponds to the delay spread of the channel.

Beginning at m = L +1, the response starts to look as a sinusoid having the same frequency

as the input.

4.3.4 Cyclic Prefix

A cyclic prefix is a special sequence that can be added to the beginning of the input sinusoid,

and that consists its last L sample points. The function the cyclic prefix is two-fold:

" Restore the orthogonality between the subcarriers, by ensuring that each has an in-

teger number of cycles over the interval [0, TN]

" Remove any remaining ISI within each subcarrier by extending the length of the data

sequence enough to cancel the effect of multipath spread.

In Fig. 4-4 we show that by adding a cyclic prefix at the beginning the sinusoid, we

can disregard the first L symbols at the receiver, and only consider the remaining symbols

of the output. Note that the output after time m = 20 is a sinusoid that has exactly 3

periods. A similar plot would show that if we remove the cyclic prefix at the receiver, all the

subcarriers would effectively have an integer number of cycles over [0, TN], thus restoring

orthogonality between them.
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Figure 4-3: Input-output relationship in an LTI fading channel with L = 20 taps
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4.4 MATLAB Graphical Simulation

The purpose of this simulation is to get a sense of why a time-limited input sinusoid is no

longer an eigenfunction of an LTI channel. We are evaluating this observation in the context

of OFDM, for our channel input is actually a sinusoidal subcarrier of an OFDM system.

OFDM restores the eigenfunction property by adding a cyclic prefix to the subcarrier, which

both eliminates ISI and ensures that all subchannels are orthogonal to each other. We tried

to abstract this intuitive idea of multicarrier systems, for the actual digital implementation

of OFDM is quite complicated, and involves dealing with Fourier transforms at both the

sender and receiver.

In this simulation, we are considering only one sinusoidal subcarrier and observing the

effects of multipath fading on the subchannel's output. The total duration of the simulation

is 150 time slots, and the input has 3 cycles in this time interval. The channel taps are

independently distributed real Gaussian variables, each with mean 0 and variance 1/2, and

the number of taps is chosen to be L = 20. Note that the number of taps is usually much

smaller than 20, but we purposely used a large number in order to better assess the effect

of multipath fading, and to better highlight the ability of the cyclic prefix to combat it.

Fig. 4-5 and 4-6 show two screenshots of our MATLAB simulation of OFDM. The

interface includes two main parts:

" Control panel: this panel contains three buttons. The Start button uses the saved

parameters 2 to start the simulation. The button Add Cyclic Prefix - which can only

be pressed after the simulation ends - adds a cyclic prefix to the input sinusoid and

redraws both the input and output. The button Remove Cyclic Prefix restores the

original configuration that has no prefix.

" Graph figures: the top figures plot a sinusoidal subcarrier input and the correspond-

ing output versus time, respectively. These are plotted dynamically as the time index

increases from 1 to 150. The bottom figure shows the channel taps magnitude versus

time.

2 These parameters are not shown on the interface, but include the input frequency, the number of taps

L, the number of time slots, and the channel distribution, among others
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Chapter 5

Conclusion

5.1 Summary

This thesis presented a set of simulations for models and algorithms in wireless commu-

nications. The simulations involved topics of central importance in wireless systems and

presented them in user-friendly, graphical MATLAB interfaces. The topics included wire-

less channel modeling and statistical analysis, antenna beamforming in multiuser fading

environments and orthogonal frequency division multiplexing.

These simulations target two types of audiences in particular: students and wireless

industry professionals. Typically, they may be demonstrated in undergraduate or graduate

classrooms as a visual complement to lecture notes, or used individually by students and

engineers in order to better understand key aspects of wireless channels and technologies.

The motivation of this thesis emanates from the fact that understanding wireless com-

munications can often be hindered by complicated mathematical details. This manuscript

abstracted the physical aspects and underlying principles of wireless systems, in an attempt

to make their comprehension easier and more intuitive.

Although our MATLAB code dealt with complex derivations and algorithms, the result-

ing simulations were simple and easy to use. The educational value of the thesis lies in the

fact that it allows students and engineers to visualize wireless phenomena and quantities

without having to deal with tedious derivations.
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5.2 Future Work

It was difficult to implement all important concepts in wireless communication, for this area

is immense and rapidly evolving. In the near future, we intend to simulate the underlying

concepts of spread-spectrum modulation, which is the cornerstone of many state-of-the-art

wireless systems such as CDMA and UMTS. Demonstrating the fundamentals of cellular

systems is an idea that we would like to implement as well. Our ultimate objective is to

have a complete set of simulations that serve as an effective visual material for introductory

classes, and as a simple yet important complement for students in more advanced courses.
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