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Abstract

In the first part, we present a family of entanglement purification protocols that gen-
eralize four previous methods, namely the recurrence method, the modified recurrence
method, and the two methods proposed by Maneva-Smolin and Leung-Shor. We will
show that this family of protocols have improved yields over a wide range of initial
fidelities F, and hence imply new lower bounds on the quantum capacity assisted by
two-way classical communication of the quantum depolarizing channel. In particu-
lar, we show that the yields of these protocols are higher than the yield of universal
hashing for F less than 0.99999 and as F goes to 1.
In the second part, we define, for any quantum discrete memoryless channel, quantum
entanglement capacity with classical feedback, a quantity that lies between two other
well-studied quantities. These two quantities - namely the quantum capacity assisted
by two-way classical communication and the quantum capacity with classical feedback
- are widely conjectured to be different. We then present adaptive protocols for this
newly-defined quantity on the quantum depolarizing channel. These protocols in turn
imply new lower bounds on the quantum capacity with classical feedback.
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Chapter 1

Preliminaries

1.1 Introduction

Quantum information theory studies the information processing power one can achieve

by harnessing quantum mechanical principles[8, 35, 38]. Many important results

such as quantum teleportation, superdense coding, factoring and search algorithms

make use of quantum entanglements as fundamental resources[3, 11, 22, 41]. There

is no complete theory to categorize and quantify the amount of entanglements in

N spin-! particles in general. Among the prominent measures are entanglement

cost, entanglement of formation, relative entropy of entanglement and distillable

entanglement[14, 20, 21, 45].

In studying the entanglement-assisted capacities of a quantum discrete memoryless

channel (QDMC) and the trade-offs between resources in attaining them, quantum

entanglement is expressed in terms of an ebit - a pair of maximally entangled spin-1

particles - shared by the sender Alice and receiver Bob[9, 10, 18, 23, 40]. For example,



00o: I4D) = (ITT) + 1Wl))
01 : + = (ITI) + I+T))

10: = L(ITT)- j1j))

11: IT-) -- •([)- 11M}) (1.1)

are the so-called Bell basis and each of these states is considered equivalent to an ebit.

However, these maximally-entangled pure states are only special cases of a general

two-particle mixed state. In fact, any pure states, entangled or not, become mixed

states once they are exposed to noise. Therefore, it is important to study procedures

by which the sender and receiver can extract pure-state entanglement out of some

shared mixed entangled states. These procedures are called entanglement purification

protocols (EPP).

EPP are divided into 1-EPP and 2-EPP according to whether the sender and

receiver are allowed to communicate uni- or bi-directionally. The scenario in which

we study EPP is described as follows:

At the beginning of these entanglement purification protocols, Alice and Bob share

a large number of the generalized Werner states[47]

1-F
PF = F '+) (+lI + 3 ( 1 |-) (D-I + II+) (T+I + IT-) (T-I), (1.2)

say p~O, and they are allowed to communicate classically, apply unitary transforma-

tions and perform projective measurements. We place no restriction on the size of

their ancilla systems so that we lose no generality in restricting their local operations

to unitaries and projective measurements. In the end, the quantum states T shared

by Alice and Bob are to be a close approximation of the maximally entangled states

(I'+) ((D+ l)®M, or more precisely we require the fidelity between T and (jV+) (D+|)®M

approaches one as N goes to infinity. We define the yield of such protocols to be M/N.



There are two main reasons why this is considered a general scenario. The first

reason is, by a preprocessing operation known as "twirl", any two-particle mixed state

can be converted to a classical mixture of the four Bell basis states, and this alone is

sufficient as an input state to all the protocols discussed in this thesis[7]. However, it

is more convenient to equalize three of the four Bell states and prepare the input as

the Werner state PF, even though the equalization only adds unnecessary entropy to

the mixture.

The second reason is the equivalence between an entanglement purification pro-

tocol on the Werner state PF and a protocol to faithfully transmit quantum states

through the (4F-1)-depolarizing channel established in [7]. A p-depolarizing channel

is a simple qubit channel such that a qubit passes through the channel undisturbed

with probability p and outputs as a completely random qubit with probability 1 - p.

Specifically, the yield of a 1-EPP on the Werner state PF is equal to the unassisted

quantum capacity of a (4F-1) depolarizing channel (Q); and the yield of a 2-EPP on

the Werner state pr is equal to the quantum capacity assisted by two-way classical

communication of a (4F-1) -depolarizing channel (Q2).

1.2 Elementary notions in quantum information

theory

In this section, we review some elementary notions in quantum information theory.

Not only do they provide background materials, but also introduce notations to facil-

itate discussion in this thesis. Most of these notations and discussions follow [30, 35].

1.2.1 Quantum states

As a postulate of quantum mechanics, one can associate any isolated physical system

with a Hilbert space known as the state space of the system. The system is then

completely characterized by a state vector. In quantum computation and quantum

information theory, the conventional unit is a qubit - analogous to a classical bit in



classical information theory [16] - and its state is represented by a unit vector in a

two-dimensional Hilbert space, -/2 . Unlike its classical counterpart that has a state

of either 0 or 1, however, a qubit can be a linear combination of the basis states 10)

and I1). For example, ao 10) + al I1) E H2 where ao and a, are complex numbers.

The basis states 10) and I1) are also known as the computational basis. In fact, we

have already seen examples of a state vector in higher dimension. The state vector

I0+ ) = -L(100) + Ill)), one of the four Bell states in (1.1), is in a four-dimensional

Hilbert space, 'H4 - H2 0 7R2 and thus describes the state of two qubits.

The density operator language is very useful in describing quantum states that

are not completely known[30]. For example, we use the notation 10) (01 + 11) (11

to describe a qubit that has a probability 1 to be in the state 10) and a probability

of 2 to be in the state 1). In general, if a quantum system has a probability of pi to

be in the state 0i/) for i = 1, 2,..., n, then we say the system is an ensemble of pure

states {pi, JVb)}Lj and is described by the density operator

n

P= AP Il i) (bil E B(7-ld) (1.3)
i=1

where 1j ) E -d and B(ld) is the bounded algebra on a d-dimensional Hilbert space.

Mathematically, any operator p is the density operator associated to some ensemble

{pi, I0i) } if and only if

1. p has trace equal to one; and

2. p is a positive operator.

1.2.2 Quantum gates

In this section, we introduce circuit notations for common quantum gates such as

the single-qubit Pauli matrices and the two-qubit Controlled-NOT gate. We also

illustrate the BXOR operation - bilateral application of Controlled-NOT on a bipartite

quantum state - which will be used extensively. Note that all matrices in this section



and throughout this thesis are expressed in the computational basis unless stated

otherwise. In figure 1-1, we show examples of quantum gates that act on one or two

qubits.

xt (s0 1
X0 (1 0

/

Y

z (
(a) Pauli m
(7, ay, a7 z

-i

0

0

-1

latrices:

1000

0100
0001

0010

(b)
gate.

Controlled-NOT

Figure 1-1: Single-qubit and two-qubit quantum gates.

When we study entanglement purification of bipartite quantum states, we will

often use the BXOR operation. Suppose two persons whom we call Alice and Bob

share the two bipartite states 1(I+) and I4-), we say Alice and Bob apply BXOR

on 14D+) and j)-) and that I(+) is the 'source' and jI-) is the 'target' when the

scenario in figure 1-2 occurs. In table 1.1, we list all possibilities of applying BXOR

to the four Bell states in (1.1) as these will be useful in the discussion of entanglement

purification protocols.

1.2.3 Quantum measurements

A projective measurement, a special case of what is known as POVW measurements,

is represented by a Hermitian operator M on the state space of the system on which we



Alice

source II+)

target IJ<-)

Bob

Figure 1-2: BXOR operation.

input

K~)
jlJI+)

K)

I-)>

+ j+>) Ij->) I'+)

) I-+> ) K-) IT-)I¢a-/ ¢ > I¢ I+
ia-/ ¢ / I¢ / I -I'->) I -) I'+)
I )- ID-) I -)

|K+)141-)

(source)
(target)

(source)
(target)

(source)
(target)

(source)
(target)

Table 1.1: Outputs of the BXOR operations for
'target' (the leftmost column) inputs.

Bell states 'source' (the top row) and

would like to take a measurement. This Hermitian operator, also called an observable

in this case, has a spectral decomposition,

M = E Pm,
m

where Pm is the projector onto the eigenspace of M with eigenvalue m. The different

values of m are the possible measurement outcomes. If the quantum state is repre-

sented by a state vector [4), then the probability of getting the measurement result

m is given by

prob(m) = (,0I Pm [0) -

I'->

I|-)



Given that the measurement outcome is m, the quantum system immediately after

the measurement is described by

Vprob(m)

For example, when the quantum state 10>+11> is measured by the observable uz =

(+1) 10) (01 + (-1) 11) (11, there is a probability 0.5 that the outcome is +1 and the

quantum state is 10); and a probability 0.5 that the outcome is -1 and the quantum

state is 11). When the observable is a. (or respectively az), we say we measure a

quantum state along the x-axis (or respectively z-axis). In section 1.2.1, we learned

that a mixed quantum state can be conveniently represented by a density operator

p. Then the probability of getting measurement result m is given by

prob(m) = tr(PtPmp)

and the quantum system immediately after the measurement is described by

P pP""
tr(Pt~Pmp)

1.2.4 Quantum discrete memoryless channel (QDMC)

and its various capacities

Discrete memoryless channel (DMC) can be described by a probability transition

matrix and its capacity is uniquely defined[16, 38]. Quantum discrete memoryless

channel (QDMC) can be described in many different ways and has various well-

defined capacities depending on the availability of auxiliary resources such as classical

communication or shared entanglements.

Mathematically, QDMC can be defined as a trace-preserving, completely positive

linear map from the bounded algebra of an input Hilbert space to the bounded algebra

of an output Hilbert space,



N: B(Nd,) - B(N 2a)

and any such map N can be given an operator-sum representation [30, 35] which we

state as follows,

N(p) = E EjpEý (1.4)

where {Ey} is a set of linear operators which map the input Hilbert space Nd, to the

output Hilbert space 7-td2 and Ej EE = I. Hence if we represent a general input

state as a density operator (c.f. equation (1.3)), the output state is

n

P=-Epii)(/iI P- p = piEj I'0i) (ViIE. (1.5)
i=1 i,j

The QDMC we study in this thesis is the quantum depolarizing channel. A p-

depolarizing channel £p , B(:( 2) --: B(N 2) has the following set of linear operator

elements:

{Eo 3p I, E = 4-x, E2 = • o• , E3 = =

Simple algebra shows that

3

(p) =Z E pE=p x p + (1 -p) x 7
j=0

i.e. with probability p the quantum state passes the channel unaffected and with

probability 1 - p the quantum state is replaced by a completely random state 1.

While the capacity of a DMC is given by a single numerical value representing



the amount of information that can be transmitted asymptotically without error

per channel use and that this value is unaffected by the use of classical feedback,

for quantum discrete memoryless channels, the analogous statements are not true.

Capacities are affected by side classical communication and shared entanglement[5, 9];

and QDMC can be used to transmit either classical or quantum information.

We can then define, for every quantum discrete memoryless channel, various ca-

pacities: C, unassisted classical capacity; CB, classical capacity assisted by clas-

sical feedback; C2 , classical capacity assisted by independent classical information;

CE, entanglement-assisted classical capacity; Q, unassisted quantum capacity; QB,

quantum capacity assisted by classical feedback; Q2, quantum capacity assisted by

independent classical information; and finally QE, entanglement-assisted quantum

capacity. So far, some progress has been made to compute the capacities for spe-

cific channels[6, 9, 27] and to study their relations[5]. However, search for a general

formula only succeeded in a few cases[10, 17, 24, 37, 40], and progress in this direc-

tion has been hindered by the additivity conjecture[39]. In particular, the following

capacities (of the quantum depolarizing channel) will be studied in this thesis,

* C: the rate at which the sender can transmit classical information to the receiver

asymptotically without error;

* Q: the rate at which the sender can transmit quantum information to the

receiver asymptotically without error;

* QB: the rate at which the sender can transmit quantum information to the

receiver asymptotically without error when a classical communication channel

from Bob to Alice is available; and

* Q2: the rate at which the sender can transmit quantum information to the

receiver asymptotically without error when a bidirectional classical communi-

cation channel between Alice and Bob is available.

Whilst the first two capacities can easily be described mathematically, the last two

capacities cannot because the protocols to achieve the capacities may be interactive,



i.e. Alice and Bob can communicate classically after each channel use. In this thesis,

we will improve the lower bounds of the last two capacities for a p-depolarizing

channel.

1.3 Previous works

In this section, we review the best known entanglement purification protocols, namely

the universal hashing, the recurrence method and the Maneva-Smolin method. Uni-

versal hashing is a 1-EPP and the last two methods are 2-EPP. As aforementioned,

it is known that the yield of any 1-EPP on the Werner state PF is the same as the

unassisted quantum capacity of a (4F1 -depolarizing channel (Q(&p)); and the yield

of any 2-EPP on the Werner state pF is the same as the quantum capacity assisted

by two-way classical communication of a (4F -depolarizing channel (Q2(Ep)).

1.3.1 Universal hashing

Universal hashing, introduced in [7], requires only one-way classical communication

and hence is a 1-EPP. The hashing method works by having Alice and Bob each

perform some local unitary operations on the corresponding members of the shared

bipartite quantum states. They then locally measure some of the pairs to gain classical

information about the identities of the the remaining unmeasured pairs. It was shown

that each measurement can be made to reveal almost 1 bit of information about

the unmeasured Bell states pairs. Since the information associated with a quantum

state PF is given by its von Neumann entropy S(pF), we know from typical subspace

argument that, with probability approaching 1 and by measuring NS(pF) pairs, Alice

and Bob can figure out the identities of all pairs including the unmeasured ones.

Once the identities of the Bell states are known, Alice and Bob can convert them

into the standard states (D+ easily. Therefore this protocol distills a yield of (N -

NS(pF))/N = 1 - S(pF).



1.3.2 The recurrence method and the modified recurrence

method

Alice

PF

PF

source

target

soullrce

target

Figure 1-3: The recurrence method.

The recurrence method[4, 7] is illustrated in figure 1-3. Alice and Bob put the

quantum states pf g into groups of two and apply XOR operations to the correspond-

ing members of the quantum states p 2, one as the source and one as the target.

They then take projective measurements on the target states along the z-axis, and

compare their measurement results with the side classical communication channel. If

they get identical results, the source pair "passed"; otherwise the source pair "failed".

Alice and Bob then collect all the "passed" pairs, and apply a unilateral 7r rotation

ax followed by a bilateral ir/2 rotation Bx1 . This process is iterated until it becomes

more beneficial to pass on to the universal hashing. If we denote the quantum states

by p = Poo •D+) (4+D +pol 'I+) (,+i+plo ID-) (I- J+pll |I-) (9-1, then this protocol

has the following recurrence relation:

Po/ = (P20 + p20)/ppass; P1 (p021 - p21)/Ppss;

P 10o = 2 PoxP11/Ppass; P11 = 2 pooPlo/Ppass; (1.6)

and
1As mentioned in [7], the application of a oa and Bx rather than a twirl was proposed by C.

Macchiavello. This is known as the modified recurrence method



Ppass - po + P- p + P + 2pooPio + 2p01P11. (1.7)

1.3.3 The Maneva-Smolin method

The Maneva-Smolin method[34] is illustrated in figure 1-4. Alice and Bob first choose

a block size m and put the quantum states into groups of m. They then apply bipartite

XOR gates between each of the first m - 1 pairs and the mth pairs. After that, they

take measurements on these mth pairs along the z-axis, and compare their results

with side classical communication channel. If they get identical results, they perform

universal hashing on the corresponding m - 1 remaining pairs; if they get different

results, they throw away all m pairs. The yield for this method is:

m-lI( - H(passed source states)
p••ss -

m m-1

where H(P) is the Shannon entropy of the probability distribution P.

Alice

source

SMz target

P1

P11,

Starget

Bob

Figure 1-4: The Maneva-Smolin method when m = 4.



Chapter 2

Adaptive entanglement purification

protocols

In this chapter, we study 2-EPP, entanglement purification protocols when the two

parties, Alice and Bob, are allowed to communicate classically. In section 2.1, we

introduce a new 2-EPP [32]. We compute its yield for the Werner state PF and com-

pare with the 2-EPP introduced in section 1.3. We also give a closed-form expression

for general Bell-diagonal input states. In section 2.2, we present a family of 2-EPP

that generalizes the previous methods in section 1.3 and the method in section 2.1.

We show this family of protocols have improved yields over a wide range of initial

fidelities F. In particular, the yield of this family of protocols on the Werner state PF

is higher than that of universal hashing for F < 0.993 and as F -- oo. In section 2.3,

we established the 'F - oc' part of the previous statement analytically. In section

2.4, we modify the family of protocols to achieve higher yields. Finally, we discuss the

results of 2-EPP, some recent progresses[25, 46] and directions for further research.

Our protocols work for any Bell-diagonal states, and we adopt the 2-bit repre-

sentation of the Bell states in (1.1). As a result, the Werner state pF is simply a

probability distribution over the four Bell states, 00, 01, 10 and 11. Similarly, when

Alice and Bob share N bipartite states that are Bell diagonal, a probability distrib-

ution over a binary string of length 2N provides a complete description.



2.1 The Leung-Shor method

In section 2.1.1, we present a new entanglement purification protocol and compare its

yield with the yields obtained by the recurrence method [7] and the Maneva-Smolin

method [34]. In section 2.1.2, we give a closed-form expression for the yield of this

new protocol.

2.1.1 New protocol with improved yield

Alice

It'

W W

Bob

Figure 2-1: The Leung-Shor
2-2.

method. The yield of this protocol is shown in figure

The new protocol is illustrated in figure 2-1. Alice and Bob share the quantum

states pFN and put them into groups of four. They then apply the quantum circuit

shown in figure 2-1 and take measurements on the third and fourth pairs along the

x- and z-axis respectively. Using the side classical communication channel, they

can compare their results with each other. If they get identical results on both

measurements, they keep the first and second pairs and apply universal hashing[7].

If either of the two results disagrees, they throw away all four pairs.

The four pairs can be described by an 8-bit binary string, and since these are mixed

states they are in fact probability distribution over all 256(= 28) possible 8-bit binary

strings. The quantum circuit consists only of XOR gates and therefore maps the

'gook14 P,
Am
14 P,

I

1

P ,



8-bit binary strings, along with their underlying probability distribution, bijectively

to themselves. Let us call these probability distributions P(ala2bib 2C1C 2did 2) and

P'(ala2blb2Cl C2dd 2).

The quantum measurements on the third and fourth pairs are simply checking

the 5th bit (measurement on the third pair along x-axis) and the 8th bit (mea-

surement on the fourth pair along z-axis), where a "0" means Alice and Bob get-

ting identical results and a "1" means their getting opposite results. For exam-

ple, if the 8-bit binary string is "ala2blb2c lc2d1 d2 = 00100111", which corresponds

to the quantum states D+(ID-T+T -, then Alice and Bob will get identical results

on the third pair but opposite results on the fourth. The "pass" probability is

Ppass = Za,a2 ,bl,b2 ,c2,dlE{0,1} P'(al a
2bib 2

0 c
2d10 ) and the post-measurement probabil-

ity distribution is Q(ala2blb2) = -c 2 ,dlE{0,1} P'(ala2bib 2Oc2dO)/pa,,ss. The yield of

this method[34] is:

Ppass H(Q(aia2blb 2)) (2.1)

where H(Q(ala2bib 2)) is the Shannon entropy function. Figure 2-2 compares the yield

of our new method with the recurrence method and the Maneva-Smoline method.

2.1.2 Closed-form expression

The quantum circuit that Alice and Bob apply to the quantum states pf4 consists only

of XOR gates and therefore maps the 8-bit binary strings bijectively to themselves.

Let us call this bijection f:

f : {0,1}8 {0,1}8

(al, a2, b-, b27 c 1, c,2, d, d2) - (al E di, a2 G c2, bl E di, b2 G c2,

al E bl @ cl E di, c2 , di, a2 E b2 c2 ED d2)



Table 2.1: The quantum states that lead to identical results for Alice and Bob.
G = (1 - F)/3; D+ = 00; x+ = 01; 1- = 10; - = 11.

P(ala2 bib 2clc2dld2 ) a l a 2 blb2clc 2 dld 2  f(ala2 bib2ClC2dld2 ) tr,d (f(ala2 bib2 Clc 2dld2))
F 4  00000000 00000000 0000
G 4  01010101 00000100 0000
G 4  10101010 00000010 0000
G4  11111111 00000110 0000

F 2G2  00010001 00010000 0001
F 2G2  01000100 00010100 0001
G4  10111011 00010010 0001
G 4 11101110 00010110 0001
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F 2 G 2

F
2
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G4

G4

00101000
01111101
10000010
11010111
00111001
01101100
10010011
11000110
00010100
01000001
10111110
11101011
00000101
01010000
10101111
11111010

00100000
00100100
00100010
00100110
00110000
00110100
00110010
00110110
01000100
01000000
01000110
01000010
01010100
01010000
01010110
01010010

0010
0010
0010
0010
0011
0011
0011
0011
0100
0100
0100
0100
0101
0101
0101
0101

F G 2  00111100 01100100 0110
G4  01101001 01100000 0110
G4  10010110 01100110 0110

F 2G 2 11000011 01100010 0110
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01100110
10011001
11001100
00001010
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10110001
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00100111
01110010
10001101
11011000
00011110
01001011
10110100
11100001
00001111
01011010
10100101
11110000

0111
0111
0111
0111

10000010
10000110
10000000
10000100
10010010
10010110
10010000
10010100
10100010
10100110
10100000
10100100
10110010
10110110
10110000
10110100
11000110
11000010
11000100
11000000
11010110
11010010
11010100
11010000
11100110
11100010
11100100
11100000
11110110
11110010
11110100
11110000

28

1000
1000
1000
1000
1001
1001
1001
1001
1010
1010
1010
1010
1011
1011
1011
1011
1100
1100
1100
1100
1101
1101
1101
1101
1110
1110
1110
1110
1111
1111
1111
1111
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Figure 2-2: The dotted line is the yield for modified recurrence method [7]; the dash
line is for the Maneva-Smolin method [34]. The yield of our new method is represented
by the solid line, and there is an improvement over the previous methods when the
initial fidelity is between 7.5 and 8.45.

In table 2.1, we list the quantum states that lead to identical measurement results

for both measurements and the associated probabilities in the ensemble pf 4 . From

that, we can write down expressions for Ppass and H(Q(ala2bib 2) in equation(2.1) as

follows:

JI(Q(aia2bib 2)) =

Ppass -

- (F4 + 3G4) log ( F4 + 3G4  9(2F2G2 + 2G4) log2

Ppass Ppass Ppass

-6 (4FG3 )o (4FG3 )

Sppass + 2 ppass
F4 + 18F 2 G 2 + 24FG3 + 21G 4

2F2G + 2G4

Ppass

(2.2)

(2.3)

where G = (1 - F)/3. So far, we have applied the new protocol to the quantum states



1--F

PF = F ) ( + 3 + +

however, our method works for any Bell-diagonal states

p = Poo Id+) ( h+ I + Poel +) (b+c +e PlO I() ((i) + P1l 01 (T- -

Equation (2.2) and (2.3) then become

H($QQlaj2bjb2a (po +-(Po + Pio + P¾11 (Poo + P io P11
Ppass Ppass

-6 x 4p oOPolploPil )102 4p oopolploP11

Ppass Ppass

2 1 + 2p2 2 2p 1 + 2p 2
-3 x 2p°0 1O11 1092 2l log2Op11

Ppass Ppass

(2p 2o o 2p2 2p 2 oP + 2p 21 2
-3 x (2POp 2Pol10) log 2  POPp 01)

Ppass Ppass
(2p oP 1 + 2p 2o2 2 2 2 + 2p 1p 2

-3 x 0 110 log2 Pp11as 10
Ppass Ppass

Ppass (P40 + Po P + P 41) + 6 x 4poopolploP1l + 3 x 2pIp
i,jCe{O1}

2

i7j

With these equations, we can combine the recurrence method and our new method:

we start with the recurrence method and pass on to our new method rather than

universal hashing. Indeed, there are improvements, but they occur over segments of

narrow regions and the improvements are insignificant. Therefore we believe these

improvements have only to do with the number of recurrence steps performed before

passing on to universal hashing, and we will spare the readers with the details.



2.2 Adaptive Entanglement Purification Protocols

(AEPP)

In this section, we will present a family of entanglement purification protocols that

generalize four previous methods, namely the recurrence method, the modified recur-

rence method, and the two methods proposed by Maneva-Smolin and Leung-Shor.

We will show that this family of protocols have improved yields over a wide range

of initial fidelities F, and hence imply new lower bounds on the quantum capacity

assisted by two-way classical communication of the quantum depolarizing channel. In

particular, the yields of these protocols are higher than the yield of universal hashing

for F less than 0.993 and as F goes to 1.

The sender Alice and receiver Bob will often apply the BXOR operation on two

of their N bipartite quantum states. These N states are mixtures of Bell diagonal

states and can be represented by a probability distribution over a string of '0' and '1'

of length 2N. Using the two classical bit notations, we write

BXOR(i,j) : {0, 1}2N -* {0, 1 }2N

(a , bi) - (ai D aj, bi)

(aj, bj) H (aj, bi G bj)

(ak, bk) (ak, bk) if k 4 i,j

when Alice and Bob share apply BXOR to the ith pair as 'source' and the jth pair as

'target'.

2.2.1 Description of AEPP

1. AEPP(a,2): Alice and Bob put the bipartite quantum states pf N into groups of

two, apply BXOR(1,2)



(al, bl, a2 , b2) - (al E a2, bi, a2 , bl D b2 )

and take projective measurements on the second pair along the z-axis. Using two-

way classical communication channel, they can compare their measurement results.

If the measurement results agree(b1 D b2 = 0), then it is likely that there has been no

amplitude error and Alice and Bob will perform universal hashing on the first pair; if

the results disagree(bi EDb 2 = 1), they throw away the first pair because it is likely that

an amplitude error has occurred. We give a graphical representation of this protocol

in figure 2-3.

universal
hashing

tthrow
away

Figure 2-3: AEPP(a,2).

2. AEPP(a,4): Alice and Bob put the bipartite quantum states pON into groups of

four, apply BXOR(1,4), BXOR(2,4), BXOR(3,4)

(al, bi, a2, b2, a3, b3 , a4, b4)

(al E a4, bl, a2 E a4, b2, a3 E a4, b3 , a4 , bl E b2 E b3 E b4 )

and take projective measurements on the fourth pair along the z-axis. Using two-way

classical communication channel, they can compare their measurement results. If the

measurement results agree(b1 E b2 E b3 E b4 = 0), then it is likely that there has been

no amplitude error and Alice and Bob will perform universal hashing on the first

three pairs together.

On the other hand, if the results disagree(b1 E b2 E b3 E b4 = 1), it is likely that

there is one amplitude error and Alice and Bob want to locate this amplitude error.



They do so by applying BXOR(2,1)

(al E a4 , bl, a2 D a4 , b2 , a3 @ a4, b3, a4, 1)

(al E a4 , bl D b2 , a ED a2, b2, a3 E a4, b3, a4, 1) (2.4)

and taking projective measurements on the first pair along the z-axis. Note that

the second pair(al D a2 , b2) and the third pair(a 3 E a4 , b3) are no longer entangled.

Alice and Bob then use classical communication channel to compare their results.

If the results agree(b1 E b2 = 0), then the amplitude error detected by the first

measurements is more likely to be on either the third or the fourth pair than on the

first two. Therefore Alice and Bob perform universal hashing on the second pair and

throw away the third pair. If the results disagree(bl E b2 = 1), then the amplitude

error is more likely to be on the first two pairs. In this case, Alice and Bob perform

universal hashing on the third pair and throw away the second pair.

Note that the amplitude error could have been on the fourth pair but this protocol

works well even if that is the case; and also that with this procedure we always end

up with one pair on which Alice and Bob can perform universal hashing when the

first measurement results disagree. We represent this protocol graphically in figure

2-4(a).
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(a) AEPP(a,4) (b) AEPP(a,8)

Figure 2-4: AEPP(a,4) and AEPP(a,8).

3. AEPP(a,8): Alice and Bob put the bipartite quantum states pFN into groups of



eight, apply BXOR(1,8), BXOR(2,8), BXOR(3,8), ... , BXOR(7,8)

(al, bl, a2, b2, * • , a7, b7, as, bs) -

(al E as, bl, a2 6 a8 , b2, ... , a7 6 a8 , b7, as, bl D ... @ bs)

and take projective measurements on the eighth pair along the z-axis. Using classical

communication channel, Alice and Bob compare their measurement results. If the

results agree(bl @... ED b8 = 0), then an amplitude error is not likely and they perform

universal hashing on the first seven pairs together.

On the other hand, if the measurement results disagree(b1 ED ... ED b8 = 1), then

Alice and Bob want to catch this amplitude error and they do that by applying

BXOR(2,1), BXOR(3,1), BXOR(4,1)

(al E as, bi, a2 6 a8, b2, . . , a7 6) a8 , b7 , as, 1) I

(al E as, bi E b2 E b3 E b4, a1 E a2, b2, a1 D a3 , b3,

al ED a4 , b4 , a5 ED a8 , b5 , a6 E as, b6, a7 D a8 , b7, as, 1)

and taking projective measurements on the first pair along the z-axis. Note that the

second, third and fourth pairs are not entangled with the fifth, sixth and seventh pairs.

After Alice and Bob compare their results with classical communication channel and

if the results disagree (bl ED b2 D b3s b4 = 1), they perform universal hashing on the

fifth, sixth and seventh pairs because bl ED b2 ED b3  b4 = 1 and bl ED ... ED b8 = 1

together imply b5 ED b6 ED b7 D b8 = 0. The first four pairs are now represented by

(al ED as, 1, al ED a2, b2, al ED a3, b3, al ED a4, b4), and it can be easily seen that we are in

the same situation as the left hand side of equation (2.4): Alice and Bob know that

bl ED b2 D b3 E b4 = 1 and the pair on which they measured to find out this information

has its phase error added to the other three pairs. Therefore Alice and Bob can apply

the same procedure as equation (2.4) and end up with one pair that they will perform



universal hashing on. Now if the results actually agree (bl E b2 b3 3b4 = 0), the same

procedure still applies but we need to switch the roles played by the first four pairs

and by the last four pair. We represent this protocol graphically in figure 2-4(b).

4. AEPP(a,N=2n ) and AEPP(p,N=2n): Clearly, the above procedures general-

ize to AEPP(a,N=2n ) and can be proved inductively. The procedures - AEPP(a,N=2n)

- we discussed so far focus on amplitude error. If we instead try to detect phase er-

ror by switching the source pairs and target pairs in all the BXOR operations and

measuring along the x-axis rather than the z-axis, AEPP(p,N=2n) can be defined

analogously. We represent the protocols AEPP(p,N=2") graphically in figure 2-5,

and we present the yields of AEPP(a,N = 2n) for n = 2, 3, 4, 5, 6 in figure 2-6.
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Figure 2-5: AEPP(p,N=2n).

2.2.2 Generalization of previous methods

We show that, four previous protocols - the recurrence method, the modified recurrence

method and the two methods proposed by Maneva-Smolin and Leung-Shor - all belong

to the family AEPP(a/p,N = 2n).

1. The recurrence method: The recurrence method[7] is the repeat applications

of AEPP(a,2). When Alice and Bob have identical measurement results, rather than

applying universal hashing right away, they repeatedly apply AEPP(a,2) until it is

more beneficial to switch to hashing.



................. Recur+MS+LS+hashing - AEPP(a,N) - - AEPP*(a,4)

1.00

0.90

0.80

0.70

0.60 ..

0.50

0.40

0.30 ..

0.20

0.10

0.00

0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99

Figure 2-6: Comparison of AEPP and previous methods: The lightly colored line is
the yield of the four methods discussed in sec.2.2.1; the solid line represents the yields
of AEPP(a,N = 2n ) where n = 2, 3, 4, 5, 6; the dashed line represents the optimized
AEPP(a,4), which is denoted by AEPP*(a,4) (see section 2.2.3 for details).

2. The modified recurrence method: The modified recurrence method[7] is

the repeat, alternate applications of AEPP(a,2) and AEPP(p,2). After Alice and

Bob apply AEPP(a,2) and obtain identical measurement results, rather than apply-

ing universal hashing right away, they repeatedly and alternately apply AEPP(p,2),

AEPP(a,2) and so forth until it becomes more beneficial to switch to universal hash-

ing.

3. The Maneva-Smolin method: The Maneva-Smolin method[34] is to apply the

first step of AEPP(a,N). Perform universal hashing on the N-i pairs if the measure-

ment results agree but throw away all the N-1 pairs if they do not. This is illustrated

in figure 2-7.

4. The Leung-Shor method: The Leung-Shor method(section 2.1.1 and [32]) is a

combination of the first step AEPP(a,4) and AEPP(p,4); however, this method fails

to utilize all entanglements by throwing away the 3 pairs if the first measurement

results disagree. This is illustrated in figure 2-8.
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Figure 2-7: The Maneva-Smolin method[34].
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Figure 2-8: The Leung-Shor method: section 2.1.1 and [32].

2.2.3 Optimization

After we apply AEPP(a,N=2'), we might end up with either 2n -1 pairs or n-1 groups

of pairs (2n - 1 - 1, 2n - 2 - 1, ... 2k - 1, ... 3 and 1) pairs depending on the results of the

first measurements. It is possible to treat these n-1 groups differently because they

are not entangled to each other. We can either perform universal hashing(as in the

Maneva-Smolin method) or apply AEPP(p,2k - 1)(as in the Leung-Shor method). If

we do apply AEPP(p,2k - 1), we will end up with two groups of quantum states of

different sizes because we started with N = 2 k - 1 rather than N = 2
k . In figure 2-9,

we show two such possibilities as shown for N = 4 , and higher yields are achieved

for F > 0.74 as shown in figure 2-6.

2.2.4 Higher yield than universal hashing

As we can see from figure 2-6, the yields of AEPP(a,N = 2n ) exceed the yield of

universal hashing for F < 0.993. In section 2.3, we prove the following theorem:
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Figure 2-9: AEPP*(4,a).

Theorem 1. Let N = 2n where n is a positive integer.

of AEPP(a,N) on the Werner state PF. Then
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where p = prob(bl @b2 (a... .b = 0) and SK-1 = H(al aK, bl, a2 -aK, b2, - . , aK-1 (
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p* = lim p=
n---oo

1 4S(1 + e -).2

2.3 Proof of theorem 1

Lemma 1.

p* = lim prob(bx D b2 .
n--oo

1
1 + e3).2

Proof. bi's are the amplitude error bits and, for any i, prob(bi = 1) = 2G = '

When we have N qubit pairs,

prob(no error) =

prob(1 error) =

2 N

3N)
N(1 2)N1

3N

(2)
3N

2 N-1 2e2/3
3N 3

(2.5)

(2.6)

prob(2 errors) =
N(N - 1) 2 ) N-1 (2 )2

3N 3N

N- (
prob(k errors) =

32 )-2 (2/3)2

N(N-1)... (N - k + 1)

2 )
3N
2 -k

3N

(2/3)2 -2/3
2!

(2/3)k 2k!1 -
kc! 3P

-(2/3)k + O (2.8)N))

In equation (2.5), (2.6) and (2.7), we did not include the error term O ) because

- (2/3) k 2 is negligible. In the following calculation, we will drop the error terms

for brevity.

where

(2.7)

e-2/3

"



lim
l--+ oo

p = prob(bl D b2 G ... bN = 0)

(2/3)k -2/3
k!

k is even

1 (2/3)k 2/3 (-2/3)k

k=O

e-2/3 (2/3)k (-2/3)k

2 k! + k!1 k=
1 +- e4/3

p

)- 2/3)

Lemma 2. For K = 2, 4, 8,..., 2", let

SK-1 = H(al a K, bl,a 2 ® aK, b2, . . ,aK-1 D aK, bK-1Ibl ... bK = 0) and

TK-1 = H(al D aK, bi, a2 (D aK, b2,... , aK-1 D aK, bK-1bl b . . . D bK = 1).

Then

N x H(F, G, G, G) > H(p, 1 - p) + pSN-1 + (1 - p)TN_ 1 and

TK-1 > SK/2-1 + TK- + 1
2

(2.9)

(2.10)

Proof. To prove (2.9), note that N x H(F, G, G, G) = S(p~N). Let p = prob(b 1b 2 6

. . bN = 0). Then we can write pF = p x Po + (1 - p) x pl, where po is the state whose

support lies on Bell states that are characterized by bl a b2 e ... . b= 0 and p, is the

state whose support lies on Bell states that are characterized by bl D b2 G ... bN = 1.

It is clear then Po and p, have orthogonal supports as any two distinct Bell states

!"



are. Then we have

N x H(F, G, G, G) = S(pfN)

= S(p x po + (1 -p) x p1)

= pS(po) + (1 - p)S(pi) + H(p)

= pH(al, bi, a2,..., bN-, aN, bbl ... E b = 0) +

(1 - p)H(al, bl, a2,..., bN_1, aN, bNIbl (... b = 1) + H(p)

= pH(al E aN, bl,..., aN-1 (D aN, bN-1, aN, bl E ... E bNIbl E ... E bN = 0) +

(1 - p)H(al E aN, bl,..., aN-1 D aN, bN-l, aN, bl E ... E bNI

b, ED... E bN = 1) + H(p) (2.11)

where the last equality holds because the operations BXOR(1, N), BXOR(2, N) ...

BXOR(N - 1, N) are all unitary and hence preserve entropy. Since the function

-p log2 p is subadditive for p < 1, we have

SN-1 - H(al E aN, bl,...,aN-1 E aN, bN-11Ibl ... E bN = 0)

< H(al D aN, bl, ... , aN-1 E aN, bN-l, aN, bl ED ... bNbl ED ... e bN = 0) and

TN-1 -- H(al E aN,bl,..., aN-1 aN, bN-11b• E... E bN = 1)

< H(ai @ aN, bl,..., aN-1 E aN, bN-1, aN, bl E ... E bNIbl E... DbN = 1).

Substituting these into equation (2.11) yields N x H(F, G, G, G) > H(p) + pSN-1 +

(1 - p)TN-1.

To prove (2.10), note that for K qubit pairs shared between Alice and Bob

where K = 2,4,8,..., N, when they apply the unitary operations BXOR(1, K),

BXOR(2, K) ... BXOR(K - 1, K) and get different results for measuring the Kth

pair along the z-axis, then the entropy of the resulting quantum state F can be



described by S(F) = H(al D aK, bl,..., aK-1 D aK, bK-lbl D... bK = 1)).

symmetry, prob (b, a... . bK/2 = 1) = prob (bK/2+1 E ... D bK = 1) = 1. Therefore,
F (b...bK/2=1) + (bK/ 2+1j...ebK=1) where F(ble... bK/2=l) and F(bK/ 2+1e.ebK=1)

have orthogonal supports:

TK-1 H(al H ( aK, bl,...., aK-1 aK, bK-lIbl E... bK = 1)

= S(r)

SS( (b,,...(bK/2=1) + (bK/2+1(...EbK=l)2 2v/Zl··mK-r
=- S F(bl ..-. bK/2= 1)) + IS F(bK/2+1l...®bK=l)) (2.12)

Note that

S(F(b~e...EbK/2=1))

= H(a1 E aK, bl,..., aK-1 aK, bK-1 (b1  ...

= H(al E aK, bl E... E bK/ 2 , a2 al, b2, ... aK/:

bK/2+1,... aK-1 0D aK, bK-l (b, E ... E bK/2 =

bK/2 = 1) A (bK/ 2+1 e ..

2 D a1 , bK/2, aK/2+1 D aK,

1) A (bK/ 2+1 E ... E bK =

.EbK = 0))

o))
= H(alOaK, bl ... bK/2, a2 1,b2,... , aK/2a1, bK/2(b 1 E...bK/2

H (aK/ 2+l D aK, bK/2+1, .... aK-1 aK, bK-1 (bK/2+1 ED ... E bK = 0))

= H(al aK, bl E ... bK/ 2, a2 E al, b2,..., aK/ 2 E al, bK/ 2 (bl

+SK/2-1

E ... (E bK/2 =

(2.13)

1))

(2.13)

where the second equality was obtained by applying the operations BXOR(2, 1),

BXOR(3, 1),..., BXOR(K/2 - 1, 1), BXOR(K/2, 1). And since -p log2 p is subad-

ditive for p < 1, the first term in (2.13)

+ H(1)



H(at ~ aK, bl ... bK/2,a2 l, b2, ... aK/2 al, bK/2 (b ... bK/ 2  1))
Ž H(a 2a 1, b2, *aK/2 al, bK/2 (b ... ED bK/2=1))

= TK/2-1. (2.14)

Therefore, S(F(bl®...EbK/2=1)) TK/2+1 + SK/2-1. Using similar argumnts, one can

show S ((bK/ 2 +±e ... bK•l ) > SK/2-1 +TK/2+1. Putting these back to equation (2.12),

TK-1

- S IF(bl ... EbK/2=1)

> - (TK/2+1 + SK/2-1)-2

= SK/2-1 + TK/2-1+ 1.

We are now ready to prove theorem 1. We first apply the above lemmas:

Nx H(F, G, G, G)

> H(p) + pSN-1 + (1 - p)TN-1

> H(p) + pSN-1 + (1 -

> H(p) +pSN-1 + (1 -

> H(p) + pSN-1 + (1 -

p) (1 + SN/2-1 + TN/2-1)

p) (1 + SN/2-1 + TN/4-1)

p) ((n- 1) + SN/2-1 + SN/4-1 + ... + S3 + S 1

+ S (F(bK/2+1e ...EbK=l) + H()
1

+ (SK/2-1 +TK/2+I) 12

+ 1 + SN/4-1

+T )



ipSN-1+(1-p)(SN/2-1+. .- .+Si+S NxH(F, G, G, G)-H(p)-(1-p) (n-+T)

Simple calculation shows T, = 2. Therefore,

YAEPP = -(1 + SN-1) - N (n + 1 + SN/2-1 + SN/4- 1+ .+ S3 + Sl)N N
p 1-p p  1-p

= 1 - (n + 1) SN-1 (SN/2-1 + .+ S3 + S)
N N N N

1p 1-p ) 1
I- 1 g (n+ 1) - N x H(F, G, G, G) - H(p) - (1 - p)(n - 1 + Tj)

N N N

H(p) - p
> 1 - H(F, G, G, G) + N

N
> 1 - H(F, G, G, G).

This completes the proof of theorem 1.

2.4 Modified AEPP

In this section, we modify AEPP from the previous section to achieve higher yields.

Recall that, as the first steps of AEPP(a,N=2n), Alice and Bob apply BXOR(1, N),

BXOR(2, N), ... , BXOR(N - 1, N) to obtain the quantum state (al @ aN, bi, a 2 &

aN, b2 , ... , aN-1 ( aN, bN-1, aN, bl D b2 (D ... bN-1 @ bN) and take measurements on

the Nth qubit pair, (aN, bl @ b2 E ... E bN-1 D bN). However, if the entropy of the

Nth qubit pair is small, or more precisely if S(aN, bl @ b2 E ... D bN-1 D bN) < 1,

they can perform universal hashing instead of taking measurements along the z-axis.

Specifically, Alice and Bob can apply AEPP(a,N=2") to M blocks of N qubit pairs

and apply universal hashing to the M Nth qubit pairs as shown in figure 2-10. This

modification has two immediate advantages:

1. As a result of hashing, there are an extra amount of EPR pairs equal to (1 -



S(aN, b b2 e ... e bNl E bN))/N.

2. Taking measurements in the original AEPP protocols destroys the information

in aN. However, universal hashing not only reveals the identity of bl E b2  ... @

bN-1EGbN but the value of aN as well. As a result, if aN = 0 and bl ... DbN = 0,

the N-1 remaining qubit pairs are represented by (al, bl, a2 , b2,... , aN-1, bN-1);

and if alv = 1 and bl E.. .Eb = 0, the qubits are represented by (al, 1, bl, a2ED

1, b2 ,... , aN-1 ( 1, bN-1). Alice and Bob can collect a large number of these

two distinct groups and apply universal hashing separately. By the concavity

of entropy function, S(plp1 + P2P2) 1 plS(pl) + p2S(p2), the entropy is smaller

and hence a higher yield will be obtained by hashing.

M blocks of N qubit pairs

N qubit pairs

a, (D aN

bl

a2 ® aN
b2

aN.-1 D aN

bN-1

aNr

bl ( ... e bN

N qubit pairs

ai D aN

a2 e aN
b2

aNl-1 E aN
bN-1

aN

bl D ... G bN

1111111 I I

31111111I I

N qubit pairs

a (9 aN

b,

a 2 G aN

b2

aN-1 E aN
bN-1

aN

bl ( ... G bN

Figure 2-10: New-AEPP(a, N=2n). Alice and Bob replace measurements along Z-axis
by universal hashing wherever the entropy of the qubit pair is less than 1.

In AEPP(a, N=2n), there are n - 2 more measurements if the first measurement

reveals bl ... E bN = 1. Obviously we should also replace these measurements by

hashing whenever possible, and take measurements only if the entropy of the qubit

universal

hashing



pairs is greater than 1. We now explain how to compute the yield for New-AEPP(a,4)

before we give a recursing procedure to compute the yields of New-AEPP(a,N=2n).

2.4.1 New-AEPP(a,4)

After Alice and Bob apply BXOR(1, 4),BXOR(2, 4),BXOR(3, 4), the quantum states

become

al D a4

bl

a2 e a4

b2

a3 E a4

b3

a4

bl E b2 (1 b3sE b4

Denote by m the value of (a4, bl @ b2 E b3 E b4). Then the yield of New-AEPP(a,4) is

given by

prob(m = 00) x HASH-00(4) + prob(m = 01) x HASH-01(4)

+ prob(m = 10) x HASH-10(4) + prob(m = 11) x HASH-11(4)

+ (1 - H( prob(m = 00), prob(m = 01), prob(m = 10), prob(m = 11)))/4

1. HASH-00(4): Conditioned on m - (a4 , bl D b2 E b3 E b4 ) = 00, the 3 remaining

qubit pairs are (al, bl, a2 , b2, a3 , b3) and by universal hashing the yield is



HASH-00(4) = 1 - H a,b, a2, b2, a3, b3 (a4 = 0) A (b, E, b2  b3 (D b4 = 0))/3 x .

2. HASH-10(4): Conditioned on m - (a4, bl E b2 E b3 @ b4) = 10, the 3 remaining

qubit pairs are (al 1, bl, a2 ( 1, b2, a3 ( 1, b3) and by universal hashing the yield is

HASH-10(4) = 1-H( l, bi, a21, b2, a3 (1, b3 (a4 = 1)A(bb 2Eb 3EDb4 = 0))/3) x .

3. HASH-01(4): Conditioned on m (a4, bl @ b2 D b3 G b4 ) = 01, the 3 remaining

qubit pairs are

al, a 1

bl bl E b2

a2 '-> a2  1 al

b2 b2

a3 - a3

b3 b

where the mapping is achieved by applying BXOR(2, 1). Denote by q the value of

(al, bl @ b2 ). Depending on the entropy of this qubit pair, Alice and Bob can choose

to apply universal hashing or take a measurement. First, assume the entropy of this

pair is less than 1, then universal hashing is applied. If q = 00, the second pair

becomes (a2, b2) conditioned on al = 0 and bl E b2 = 0; if q = 10, the second pair

becomes (a2 e) 1, b2 ) conditioned on al = 1 and bl b2 = 0; if q = 01, the third

pair becomes (a3, b3) conditioned on a4 = 0 and b3 G b4 = 0; finally, if q = 11, the

third pair becomes (a3, b3) conditioned on a4 = 0 and b3 D b4 = 0. Therefore, if



H( prob(q = 00), prob(q = 01), prob(q = 10), prob(q = 11))) < 1, then

HASH-01(4) = ( prob(q = 00) + prob(q = 01) + prob(q 11))

x (1 - H(a 2, b2 (a =l-- 0) A (b @b 2 = 0)))/4

+ prob(q = 10) (1 - H(a 2  1,b2 1(al=1)A (bl b2 =0)))/4

S(I - H prob(q = -- 00), prob(q = 01), prob(q 10), prob(q= 11)) /4.

If the entropy is greater than one and they have to take measurements on the first

qubit pair, then the probability of getting identical results is simply prob(q = 00) +

prob(q = 10) and that of getting different results is prob(q = 01) + prob(q = 11). If

bl D b2 = 0, Alice and Bob can apply hashing on the second pair, (al D a2, b2 ) and the

yield is (1- S1)/4 using the notation from the previous section; if bl D b2 = 1, then the

yield of applying hashing on the third pair is (1- H(a3 , b3l(a 4 = 0)A(b 3 ±b4 0= )))/4.

Therefore, if H( prob(q = 00), prob(q = 01), prob(q = 10), prob(q = 11))) > 1,

then

HASH-11(4) = (prob(q = 00) + prob(q = 10)) x (1 - S1)/4 + (prob(q 01)

+ prob(q= 11)) x (1 - H (a3 , b3 (a4 = 0) A(ba3@ b4 = 0)))/4.

4. HASH-11(4): Conditioned on m -

qubit pairs are

(a 4 , bl q b2 ± ba3 b4 ) = 11, the 3 remaining



al,

a2 G

1 a- aE 1

bl bl E b2

1 a2 1 al

b2 b 2

a3 ED 1 '- a3  1

b'- b3

where the mapping is achieved by applying BXOR(2, 1). Denote by r the value of

(al D 1, bi E b2 ). Depending on the entropy of this qubit pair, Alice and Bob can

choose to apply hashing or to take a measurement. First, assume the entropy of this

pair is less than 1, then universal hashing is applied. If r = 00, the second pair

becomes (a2 GE 1, b2 ) conditioned on al = 1 and bl ED b2 = 0; if r = 01, the third pair

becomes (a3s E 1, b3) conditioned on a4 = 1 and b3 E b4 = 0; if r = 11, the third pair

becomes (a3 ED 1, bS) conditioned on a4 = 1 and b3 E b4 = 0; finally, if r = 10, the

second pair becomes (a2, b2) conditioned on al = 0 and bl E b2 = 0. Therefore, if

H( prob(r = 00), prob(r = 01), prob(r = 10), prob(r = 11))) 1, then

HASH-11(4) = prob(r = 00) + prob(r = 01) + prob(r = 11))

x (1- H (a 2  1, b2 (al = 1) A (b EDb2 =)))/4

+ prob(r =10) x (1-H(a2 , b2 (a=0) A (b b2 = 0)))/4

+ (1 - H( prob(r = 00), prob(r = 01), prob(r = 10), prob(r = 11)))/4.

If Alice and Bob have to take measurements on the first qubit pair, then the proba-



bility of getting identical results is simply prob(r = 00) + prob(r = 10) and that of

getting different results is prob(r = 01) + prob(r = 11). If bl E b2 = 0, Alice and

Bob can apply hashing on the second pair, (al D a2, b2) and the yield is (1 - S1)/4;

if bi E b2 = 1, then the yield of hashing on the third pair is (1 - H(a3 ( 1, b31(a4 =

1) A (b3 @ b4 = 0)))/4. Therefore, if H( prob(r = 00), prob(r = 01), prob(r =

10), prob(r = 11))) > 1, then

HASH-11(4) = prob(r = 00) + prob(r = 10)) x (1 - S1)/4 + ( prob(r = 01)

+ prob(r=11))x (1 - H(a 3 e 1, b(a 4 =1) A(b b4 = 0)))/4.

2.4.2 New-AEPP(a,N=2n)

After Alice and Bob apply BXOR(1, N),BXOR(2, N),..., BXOR(N - 1, N), the

quantum states become

a, E aN

bl

a2 G aN

b2

aN-1 ( aN

bN-1

aN

bl @ ... @ bN



Denote by m the value of (aN, bl E... e bN). Then the yield of New-AEPP(a,N=2")

is given by

prob(m = 00) x HASH-00(N) + prob(m = 01) x HASH-01(N)

+ prob(m = 10) x HASH-10(N) + prob(m = 11) x HASH-11(N)

+ (1. - H( prob(mn= 00), prob(m = 01), prob(m = 10), prob(m = 11)))/N.

where HASH-00(N), HASH-01(N), HASH-10(N) and HASH-11(N) can be evaluated

using the following recurrence formulas for K = 4, 8, 16, 32,..., N:

1. HASH-00(K): Conditioned on m = (aK, bl ... . obK) = 00, the K- 1 remaining

qcubit pairs are (al,bl,..., aK-1, bK-1) and by universal hashing the yield is

HASH-00(K)

( t[(a,, b', aK-1, bK-1 (aK = 0) A (b ... bK = 0)

K-1
K-1

x-
K

2. HASH-10(K): Conditioned on m = (aK, bl .. ..bK) = 10, the K -1 remaining

qubit pairs are (al ± 1, b ,..., aK-1 @ 1, bK-1) and by universal hashing the yield is

HASH-10(K)

H ( 1, bl..., a•K-1 1, bK- l(aK = 1) A(b ... bK •- 0)) K -

- V -

K-1 K

3. HASH-01 (K): Conditioned on m - (aK, b, E ... G bK) = 01, the K-1 remaining

qubit pairs are

1

___



al1  al

bl b5 D ... bK/2

a 2 f a2 ) a1

b2 ) b2

aK/2 H aK/2 1 a,

bK/2 H bK/2

aK/2+1 - aK/2+1

bK/2+1 F bK/2+1

aK-1 K-1

bK-1 H bK-1

where the mapping is achieved by applying BXOR(2, 1), BXOR(3, 1), ... , BXOR(K, 1).

Denote by q the value of (al,bl e... T bK/2). Depending on the entropy of this

qubit pair, Alice and Bob can choose to apply universal hashing or take a measure-

ment like the discussion of New-AEPP(a,4). It can be verified that if H( prob(q =

00), prob(q = 01), prob(q = 10), prob(q = 11))) < 1 and they apply hashing, then

HASH-01(K) =(( prob(q = 00) + prob(q = 01) + prob(q = 11)) x HASH-00(K/2)

+( prob(q = 00) + prob(q = 01) + prob(q = 10)) x HASH-01(K/2)

+ prob(q = 10) x HASH-10(K/2) + prob(q = 11) x HASH-11(K/2)) /2

+ 1 - H(prob(q = 00), prob(q = 0)rob(q 01), prob(q = 10), prob(q = 11)))/K.



If the entropy is greater than one and they have to take measurements on the first

qubit pair, then the probability of getting identical results is simply prob(q = 00) +

prob(q = 10) and that of getting different results is prob(q = 01) + prob(q = 11).

Therefore, if H( prob(q = 00), prob(q = 01), prob(q = 10), prob(q = 11))) > 1,

then

HASH-01(K)

= (prob(q = 00)+ prob(q = 10))

+ prob(q = 01) + prob(q = 11))

SK 1 K
+ 8 - T-+ +(

(HASH-1I(K/2)/2 + (1 S_- ) X K
2

( ( S• K
" HASH-oo00(K/2)/2 + 1 - X 4

4 K

A51 x .1
2-1 2-1- - x -

4. HASH-11(K): Conditioned on m -- (aK, bl ED... DbK) = 11, the K-1 remaining

qubit pairs are

a l ® 1 al

bl, bl e... e bK/ 2

a2 • 1 - a2  1 al

b2 b2

aK/2 ( 1 F- aK/2 D al

bK/2 t-+ bK/2



aK/2+1 @ 1 -ý aK/2+1 @ 1

bK/2+1 bK/2+1

aK- 1 ( - aK-1 ( 1

bK-1 bK-1

where the mapping is achieved by applying BXOR(2, 1), BXOR(3, 1), ... , BXOR( K , 1).

Denote by r the value of (al, bl e ... D bK/2). It can be verified that if H( prob(r =

00), prob(r = 01), prob(r = 10), prob(r = 11))) < 1 and they apply hashing, then

HASH-11(K) (( prob(r = 00) + prob(r = 01) + prob(r = 11)) x HASH-10(K/2)

+ (prob(r = 00) + prob(r = 01) + prob(r = 10)) x HASH-11(K/2)

+ prob(r -10) x HASH-00(K/2) + prob(r = 11) x HASH-01(K/2)) /2

+ ( - H(prob(r = 00), prob(r= 01), prob(r= 10), prob(r= 11)))/K.

If the entropy is greater than one and they have to take measurements on the first

qubit pair, then the probability of getting identical results is simply prob(r = 00) +

prob(r = 10) and that of getting different results is prob(r = 01) + prob(r 11).

Therefore, if H( prob(r = 00), prob(r = 01), prob(r = 10), prob(r = 11))) > 1,

then



HASH-11(K)

= prob(r = 00) + prob(r = 10) x

+ (prob(r = 01) + prob(r = 11)) x

SK 1 K

SK K 1
HASH-11(K/2)/2 + (1 - Xj) x 2;)

SK K
HASH-10(K/2)/2 + (1 - X 47K

4

1) x 2-1
2-1 K

2.4.3 Yield of New-AEPP(a,N=2") on the Werner state

In figure 2-11, we compute the yield of New-AEPP(a,N=2") on the Werner state for

n = 2, 3, 4, 5, 6. Note that the protocols as described in the previous section are only

well-defined when S(aN, bl E ... E bN) < 1. Also, with this modification, even for

N = 4, the yield of New-AEPP(a,N= 2n ) is higher than that of universal hashing for

any F < 0.99999.

I- -Hashing - - - AEPP(N=2An) - New-AEPP(N=2^n)

1.0

0.9

0.8

.• 0.7

0.6

0.5

0.4

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

F

Figure 2-11: Yield of New-AEPP(a, N=2n) on the Werner state PF for n = 2,3, 4,5, 6.



2.5 Discussion on 2-EPP

We presented a family of entanglement purification protocols AEPP(a,N) with im-

proved yields over previous two-way entanglement purification protocols. More-

over, the yields of these protocols are higher than the yield of universal hashing

for F < 0.993 (computed numerically) and as F goes to 1 (shown analytically in

section 2.3). We modified AEPP(a,N) by replacing measurement with hashing and

obtain yields higher than the yield of universal hashing for F < 0.99999. There are

other recent progresses in this direction[25, 46]. It is worth studying whether one can

combine AEPP with these works to achieve even higher yields.



Chapter 3

Quantum entanglement capacity

with classical feedback

It is an open question whether the quantum capacity with classical feedback QB and

the quantum capacity with two-way classical communication Q2 are equal to one

another[5, 8]. In section 3.1, we define a new quantity called quantum entanglement

capacity with classical feedback EB and this quantity is shown to lie between QB and

Q2. We will then give an alternate operational meaning of EB. In section 3.2, we

describe how one can turn a QECC into an EB protocol. We demonstrate the idea

with Cat code and Shor code, and we modify some of the 2-EPP in the last chapter to

EB protocols. In section 3.3, we compute new lower bounds on QB implied by these

EB protocols. We then discuss some characteristics of Cat code and discuss further

research directions.

3.1 A quantity that lies between QB and Q2

In this section, we define, for any quantum discrete memoryless channel, a quantity

called quantum entanglement capacity with classical feedback EB. We will show that

this quantity is less than the quantum capacity with two-way classical communication

(Q2 and is greater than the quantum capacity with classical feedback QB.



3.1.1 Definition of EB

Quantum entanglement capacity with classical feedback of a QDMC can be loosely

described as the maximal asymptotic rate at which the sender Alice can share the

entangled state II+) e NR- 2 with the receiver Bob with the assistance of a classical

feedback channel. Precisely, let the QDMC be described by

nf : B(Nd,) (d 13d2

where -j EtEj = I and {Ei} is a set of linear operators which map the input Hilbert

space N-d to the output Hilbert space Nd 2 . Then in the first round of any EB

protocols, Alice prepares a quantum state a• = IT) (TI B(N7N 0 Na), where Na

is the Hilbert space representing the ancilla system in her laboratory and she sends

the first part of the quantum state to Bob via the quantum channel KA:

K: B3(Nd) B- 3(N 2)

P1 = tr(dN-1 xa)(IT)(TI) F-4 pA=EEiplE4

After sending pl, Alice's quantum system is described by ca = trdl (al) E B(,N(N-l)d

,Na). On the other hand, Bob is now in possession of the quantum state p' he just

received from Alice as well as the ancilla system in his laboratory, and therefore his

quantum system can be described by 0' = p' 0(31 = p1 10) (0 1®lg2 b E B ( N-d2 0 Nb).

Next Bob performs local quantum operation on his quantum system:

B:1L3(Nd 2 0 Hb) - B 13(Nd2 0Nb)

B3 / ='=ZBif3Bý



where E•i BBi = I. Bob then uses the feedback channel to send classical information

to Alice. Note that if Bob's operation comprised quantum measurements, this classi-

cal information could include the measurement results(i). Upon learning the classical

information sent by Bob, Alice's quantum system transforms from c' to a•'() and

she performs operation on her quantum system:

A(): (N®(N1) Na) L(N(N 1) a)

Note that both the quantum system a,(i) and Alice's operation A(i) are dependent

on the classical information(i) she received from Bob. This is the end of the first

round of any general EB protocols and can be summarized as:

LOCCA+-1(1) o N(1) : (H-dON 0 -a N 'Nb) B (N-1) 9Na 9Nd 2  b)

W1 2 W2.

The second round of the protocols starts with Alice holding a2 = tT(d 2 xb)( 2) and Bob

holding /32 = t1r(d -lxa)(W2). After N rounds of protocols as seen in figure 3-1, we

require the fidelity between the quantum state shared between Alice and Bob, WN+l,

and the quantum state, (If+) (4+±)OM, to approach 1 as N goes to infinity. Then

we define EB (N') to be the supremum of any attainable NM (d2) or simply M/N if

d2 = 2.

Note that in this section, when we discuss an EB protocol, for brevity, we often

say to compute the EB associated with the protocol rather than to compute the lower

bounds on ELn(A/) impled by the protocol.
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3.1.2 EB < Q2

To show EB - Q2, we simply convert any EB protocol to a Q2 protocol with the same

rate. Suppose we have a protocol on N and this EB(A) protocol achieves NM1 (d2)

then at the end of this protocol Alice and Bob share the quantum state fI )+ ((ID+ ®M

Alice now uses the forward classical communication channel to teleport any quantum

state p (E H7 -*M and therefore this new Q2 (K) protocol achieves NN 1og 2 (d2 )"

3.1.3 QBE < EB

This follows from the fact that QB protocols are more restricted than EB protocols

because in defining quantum capacities[2] the sender is required to not only transmit

the quantum state p but also preserve its entanglement with the environment to

which neither the sender nor the receiver has access. In any EB protocols, the sender is

required to transmit half of the maximally entangled states 1I+)m and is in possession

of the other half which she can manipulate in her laboratory. Concisely, one can

convert any Q1B protocol to an EB protocol as follows: Alice prepares ~V+) ((+|®M E

B(H7-(" 0 7-(H'") in her laboratory and performs the QB protocol on p = (I/ 2 )®M

tr(2M)(alv+) K(f+l®M). At the end of the protocol, Alice and Bob share the bipartite

quantum state 1)+) ((+|eM and hence EB(N) > QB(N) > N (.N1og 2(d2)

3.1.4 EB as quantum backward capacity with classical feed-

back

In section 3.1.1, EB was defined as the maximal asymptotic rate at which Alice shares

the singlet state |4+) with Bob with the assistance of a classical feedback channel.

Alternatively, we can associate EB with a different operational meaning, namely the

asymptotic rate at which Bob can send quantum states to Alice. This is because after

any EB protocols Alice and Bob share the quantum states ( I#) (~+Il)I and there

is a classical channel from Bob to Alice. Therefore, Bob can teleport any quantum

states p E •u to Alice and this achieves the same yield Mo( if we normalize by

the dimension of the output Hilbert space or if we assume the input Hilbert space



and the output Hilbert space are of the same size. Trivially, if Bob can send quantum

states to Alice, Bob can choose to send half of the EPR pair |I+). Therefore these

two notions are equivalent to one another.

3.2 Adaptive quantum error-correcting codes (AQECC)

In quantum error-correcting codes[29, 35, 42, 44], quantum states are encoded into the

subspace of some larger Hilbert space. Although it has been discovered that quantum

states can more generally be encoded into a subsystem rather than a subspace[1, 31],

we focus only on subspace encoding. Our aim is to convert any quantum error-

correcting codes (QECC) to new adaptive EB protocols on the quantum depolarizing

channel £p. In section 3.2.1, we briefly review the stabilizer formalism; and in section

3.2.2 we introduce the idea of AQECC. In the rest of the section, we will illustrate

with and compute the EB(8p) for two QECC, namely the Cat code and Shor code.

We then consider how the recurrence method - a 2-EPP - in chapter 2 can be turned

into an EB protocol. Finally we explain that the Leung-Shor method in chapter 2 is

in fact an EB protocol.

3.2.1 Stabilizer formalism for QECC

We briefly review stabilizer formalism and introduce notation. A clear and detailed

discussion can be found in [35]. G. denotes the Pauli group on n qubits, and therefore

consists of the n-fold tensor products of Pauli matrices. For example,

G1 = {±I, fil, ±X, +iX, ±Y, fiY, ±Z, ±iZ}

where X = ao, Y = au and Z = a,. We use subscripts to denote the qubit that a

Pauli matrix acts on. For example, X 2Y 4 means I 0 X 0 I Y 0 I 0 ... 01I E Gn.

Generators of a subgroup S C G, are independent if for any i = 1,2, 3,..., n - k,

< 91, - - , gi-1, 9i+l, * • , gn-k >< 91, • -- gn-k > -



We say a vector space Vs C 7FI is stabilized by a subgroup S C Gn if for any

I¢) E Vs and for any s E S,

The following lemma can be shown easily:

Lemma 3. Let S =< gl,... , gn-k > be generated by n-k independent and commuting

elements from Gn, and -I V S. Then Vs is a 2k-dimensional vector space.

Therefore to specify a 2k-dimensional subspace for error-correcting codes, we only

need to specify n - k independent generators gl,... , gn-k. However we still need to

specify the logical basis vectors zXl,..., Xk)L within Vs. In this thesis, we only deal

with codes where k = 1. Therefore, it suffices to specify the logical X and logical

Z such that XI0), = I1)L E 'n, XI1)L = 10)L E 'n, Z0)L = 0)L E G'n and

Z l1), = - I1),L E 7n. Note that in doing so, we indirectly specify I0), and I1)L.

3.2.2 EB protocols via AQECC

Recall the aim of any EB protocols is for Alice to share the bipartite state '+) =

(1|00) + I11)) with Bob. We will explain our idea of turning a QECC to an EB

protocol in two steps.

The first step is to simply encode half of the EPR pair |#+) in an [n, 1] stabilizer

code, one that encodes a qubit in an n-dimensional Hilbert space 7-n. Alice performs

the encoding

A: B(h-/2) 2(~ n)

tr2ough the -depolarizing channel

and then sends the n qubits through the p-depolarizing channel



Sp :B7 B 2) - B> H2

1+3p 1 -p pP + xp+ 4 x (up+ + UyPa + UzafY)
4 4

Since the error elements of the p-depolarizing channel are Pauli matrices, Alice can

choose the logical basis states (or alternatively the logical operators X, Z as we ex-

plained in the previous section) in such a way that after the error-correction operation

B, the encoded qubit has either an X error, a Y error, a Z error or no error. Since

X J(+) = ][+), Y 1I4) = IJ-) and Z J>+) = JI-), the bipartite state between Alice

and Bob will be a probabilistic mixture of the four Bell states. Therefore Bob can use

the classical feedback channel to perform universal hashing and distill perfect EPR

pairs ID+) = -(100) + Ill)). This first step is illustrated in figure 3-2.

The second step is to modify what has just been described so as to achieve a higher

rate. Recall an [n, 1] stabilizer code is described by the generators of a subgroup

S =< gl, g2,... n-2, gn-1 >. The error-correcting operation B performed by Bob

involves measuring the observables gi, g2,... , gn- 1 since they are all tenser products

of Pauli matrices acting on n qubits. Note that, however, many of the gi's have

identity action on all but a few qubits. For example, in 9-bit Shor code, gi = Z1Z2( =

Z 1 0 Z2 0 13 14 0 15 0 6 0 17 0 Is 19). Also, whenever a measurement result

'-1' is obtained, it means some errors have occurred. In the case of Shor code, if

Bob takes a measurement on the first two qubits immediately after he receives them

from Alice and the measurement result is '-1', it is better for Bob to use the classical

feedback channel to inform Alice that some errors have occurred in the first 2 qubits

and they should give up this block of transmission and start all over. It is because

the quantum state wn+1 Alice and Bob obtained after n channel uses and decoding

will be more mixed if some errors have occurred. It is thus more economical to not

continue with this particular block of codes and give up the few qubits that have

already been transmitted.
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It is thus important to arrange the order of the measurements g1 , g2,... ,n-1 Such

that it only involves as few more qubits as possible when one goes down the list. So

that when an error is detected early on, Alice and Bob can stop the block and start

all over so as to save more channel uses. For example, the generators of Shor code

can be arranged as follows:

91 = Z 1 0 Z 2 1 13 0 14 9 15 0 16 170 9 180 19

92 = 1 9 Z2 0 Z3 0 14 0 150 16 0 17 8 Is 19

93 = I1 012 0 13 9 Z4 0 Z 5 9 16 9 17 0 18 0 19

g4 = I1 102 0 13 Z 14 Zs5 Z6 0 17 0 18 I9

95 = X 1 9 X 2 0 X3 9 X 4 0 X5 ( X 6 0 17  18 Is 19

96 = II I12 13 14 0 5 6 Z7 0 Zs8 19

97 = II @ 12 13 I14 9 15 9 16 9 17 9 Zs8 Z9

98 = II 1 2 13 9 X 4 9 X5 0 X 6 0 X7 9 X 8 0 X 9  (3.1)

It is conceivable that after a large portion of the qubits in a block have been transmit-

ted, it is better to continue even if an error is detected. It is indeed the case for Shor

code when the probability parameter p of the channel 4p is large. In the next two

sections, we will apply this AQECC idea to Cat code and Shor code, and compute

the lower bounds on EB(Ep) implied by these codes.

3.2.3 Cat code and modified Cat code

The n-bit Cat code is an [n, 1] stabilizer code with the following generators



gl = Z1 Z2

92 = Z2 Z3

93g = Z3Z4

gn-2 = Zn-2Zn-1

gn-1 = Zn-,_Zn

and we choose the following logical operators

X= X1X2 . . Xn_1Xn

Z = Z1 Z 2 ... Z,-1Z, if n is odd and

Z= Z1Z2 ... Zn- 1In if n is even.

This in turn determines the logical computational basis

0), = 100...00) E I, and I1)L = I ... 11 • •

Therefore, the singlet state (100) + I11)) EE 202 is encoded as (100... 00) +
11...11)) E · 2n+l in Alice's laboratory. Alice will send the last n qubits to

Bob via the channel 8,. In accordance with the AQECC idea in the previous sec-

tion, Alice sends the first two qubits first and Bob takes the measurement gl. If

the measurement result is '-1', Bob will inform Alice of the result via the classi-

cal feedback channel and Alice will discard the n-i qubits remaining in her labo-

ratory and start all over by encoding another EPR pair and sending the quantum

states. If the measurement result is '+1', Bob will inform Alice of the result and



Alice will continue to send the third qubit. Bob will then measure g2. This con-

tinues until all n qubits are passed to Bob and Bob gets '+1' in all n-1 measure-

ments g1, g2, ... gn- 1. Alice and Bob will then process a bipartite quantum state

Wn+l - Poo VI)+) (( )+ j + PPo IF+ ) (P+l + Pio II - ) (I-ji + pil I4 - ) (4-1 that is Bell

diagonal. If Alice and Bob repeat the process until they share N copies of ~n+1,

i.e. w ON, they can perform universal hashing on these states and they will have

N( 1- H(poo,Pol,Pio,pii)) EPR pairs |I+). However we are interested in the yield

per channel use. Let pi = prob('+l' for measurement g9). Then the average number

of channel uses needed before we successfully pass a block of n-qubit Cat code through

the depolarizing channel is given by

n-1 i-2 n-2 n-1

n* = ix ( pj) x (1 - pi_)) + x )/(n x Hpi
i=2 j=1 i=1 i=1

(2 x (I -pl) +3 xpl x(1 -p2) + + (n- 1) xp2 X ... Pn-3 X(1Pn-2)

+nx *p x p2 X X )/-2Xx pi X... X P-1

From this, the number of EPR pairs per channel use is

1 x N 1 - H(poo, Poi, Piop, ii)
N x n* x n

Hn1 Pi x 1 - H(P, Po,PljoP11) ( i (3.2)

n-1 X f i-2 X (I _ Pi -1

=2 ( j=l ix(1ppi-) +nx i l2p

We now present how to calculate the probabilities p,..., pn- 1 and the quantum state

wn+l = Poo I( f) (I+l +Pol I + ) (I+l+Plo II- ) (I-I +pll |I -) (T- . The computation

can be given by a simple recurrence relation [19, 43] which can be understood more

easily in the language of entanglement purification protocols. Owing to the formal
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Figure 3-3: 4-bit Cat code in the language of entanglement purification protocols.
Note that in our protocols if Bob's measurement results do not agree with Alice's,
then not all qubits will be sent through 8p. Alice's measurement results are assumed
to be all '+1' so Alice need not send Bob any classical information even though Bob
'compares' his results against Alice's. See the text for details.

equivalence between the measurement of half of a Bell state and the preparation

of a qubit, the encoding and decoding of the Cat code can be viewed as a 1-EPP

as shown in figure 3-3 for n = 4. Note that in order for the purification protocols

to work, it appears Alice has to send her measurement results to Bob via a side

forward communication channel as in chapter 2. This is in fact not the case because

even though the measurement results are non-deterministic, Alice can perform the

measurements before she sends the 4 qubits (or generally n qubits). One can pretend

Alice takes measurements for as many times as needed until she gets all '+1' before

she sends the other halves of the quantum states via 8p. Therefore Alice need not

tell Bob the results because Bob already knew the results were all '+1'. (Of course,

in reality, Alice can apply unitary operation in her laboratory to transform the states

to what she needs even if the measurement results are '-1'.)

Note that, applying a CNOT gates on the first and the (i-1)th qubits followed by

measuring the (i-1)th qubit along the z-axis as shown in figure 3-3 is the same as

measuring gi, and we are interested in keeping track of the quantum state of the first

qubit that passed through E, after each measurement gi. We are only interested in its

quantum state if the measuring result is '+1', since we otherwise discard the states
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Figure 3-4: Lower bounds on EB(~,) via n-bit Cat code and modified Cat code. See
the text for details.

and start all over. Denote this state by Mi, and we have the following relations [43]

which follow from table 1.1:

I A T )

G (P+| M IT+) + G (T MI

(•+| Mi+1 I') =

Mý-II )4+ -) =

p- I Mi+ IT-) =

pi

G (D|Mi 1+)+F(,D- I|M| 1-)

" (,P+ Mi I,+) + G (T-I Mi IT-)

where F = 3p+l G = 1-F and Mn- 1 = w,+l. From these equations and (3.2), we4 ) 3

- -n=5

pi+ - (F+G) (+1 Mi I|+)+(2G) (,I|+l M I|+)+(F+G) (I-I Mi I-)+(2G) (TI

F (,I+ I Mi I V) + G (4-I Msi 1-)
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Figure 3-5: 4-bit Cat code vs. 4-bit modified Cat code.

compute the lower bounds on EB with n-bit Cat code and modified Cat code for

n = 3,4, 5 in figure 3-4. Modified Cat code differs from Cat code in the same way

that the modified recurrence method differs from the recurrence method. Namely, Bob

switches the I (-) (I- I and I -) (- -I components in the probabilistic mixture of Bell

states after each measurement. This can be done by first applying a bilateral 7r/2

rotation B. and then a unilateral 7r rotation ax [7]. Modified Cat code outperforms

Cat code when the channel is less noisy(large p), but Cat code performs slightly better

when the channel is very noisy and hence achieves a lower threshold value. In figure

3-5, we plot the yield for 4-bit Cat code and modified Cat code separately.

3.2.4 Shor code

The generators of Shor code are listed in (3.1). The logical operators and logical

computational basis states are as follows:

x = ZIZ 2z 3z 4z5z 6Z7ZsZ 9

Z = x, x 2x 3x 4x5xX 7XsX9
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I_ - (1000) + 111))(1000) + I111))(|000) + -111))

220
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As aforementioned, for 9-bit Shor code, the optimal AQECC protocols are slightly

different for different levels of noise. We can divide the protocols into 3 regions:

p protocol

less than 0.75 start all over if any measurement result is '-1'

between 0.75 start all over if any of the first 7 measurement results is '-1';

and 0.78 otherwise continue with the regular error-correcting operation

great than 0.78 start all over if any of the first 4 measurement results is '-1';

otherwise continue with the regular error-correcting operation

In the first region (p less than 0.75), one only has to enumerate all 49 error possibilities

in the 9 channel uses and adds up all probabilities associated with having an X error,

a Y error, a Z error or no error on the encoded qubit. Then the EB rate achieved for

8, is given by:

Pl x P2 ... P8 x (1 - H(p00, p01,p1O, pll))

where

n* = 2 x (1 - pi) + 3 x pl(1 - p2) + 5 x pip2(1 - p3) + 6 x pil2p3(1 - P4)

+6 x p1P2P3P4(1 - P5) + 8 X P1P2P3P4P5(1 - P6) + 9 x PIP2P3P4P5P6-
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Figure 3-6: Lower bounds on EB(Ep) via 9-bit Shor code and 9-bit Cat code.

In the second and the third region, the computation is slightly different. We will

illustrate with the third region, and the computation for the second region is similar.

Since Alice and Bob will start all over if any of the first 4 measurement results is

'--1', there are only 2(8 - 4) = 16 possible measurement results given that the whole

block of 9 qubits are sent through the channel. Denote the 4-tuple measurement

results by m ( {0, 1,..., 15}. For each measurement result, Bob will carry out error-

correcting operation as in the standard 9-bit Shor code and inform Alice which of

the 16 measurement results this block of 9 qubits has. Then after a large number

of 9-bit blocks are transmitted successfully, Alice and Bob share a large number of

each of the 16 types of Bell-diagonal probabilistic mixtures so that they can perform

universal hashing on each of these 16 types of mixtures separately. And the EB rate

achieved is given by

S -> - prob(measurement result is m) (I - H(pOOO1,pl1Op11 m))T?(In**'



Figure 3-7: Lower bounds on EB(Sp) via the modified recurrence method.

where H(pOO, p01, p10, p11mn) is the entropy of the probabilistic mixture given a

particular measure result m E {0, 1,..., 15} has occurred and n** = 2 x (1 - p1) +

3 x p1(1 - P2) + 5 x Pip2(1 - P3) + 6 X PIP2P3(1 - P4) + 9 X P1P2P3P4. In figure 3-6,

we plot the EB rate achieved; for comparison EB rate achieved for 9-bit Cat code is

also shown.

3.2.5 Modified recurrence method

Modified recurrence method[7] as described in chapter 2 is a 2-EPP which requires

two-way classical communication. Although Alice can perform the measurement be-

fore she sends halves of the EPR pairs 14+) through SE so that Bob need not know her

measurement results in the first round, as we discussed in section 3.2.3 and 3.2.4, an

iterative process is not possible. In particular, one round of recurrence plus universal

hashing via the classical feedback channel achieve positive EB rate only for p > 0.638.

If Alice and Bob want to carry out another round of the modified recurrence method,

she needs a forward channel to communicate her measurement results to Bob. Since

the only forward channel for Alice is Ep, a straightforward extension, therefore, is

to use the channel Ep to send her measurement results to Bob. As a result, from

the second round onwards, one classical bit per pair is required for each round of

recurrence.
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Figure 3-8: Lower bounds on EB($p) via the Leung-Shor method.

By proving the additivity conjecture for the quantum depolarizing channel Sp, the

formula for the classical capacity of 8, is known[27]:

( ) - 1 +P)C(S,) = 1 + i,- -- log2 ( P)(2 +(1P)2 log 2 ( P)

Then the EB yield implied by this method for k rounds of recurrence before switching

to universal hashing is given by:

(2)
Ppass

2 + 1/C(S~) x . .
(k)

Ppass

2 + 1/C(S,)

where p 0c, )1, , p) and pa ss for i = 1,2, ... , k are given by the recurrence

relations (1.6) and (1.7) in section 1.3.2. In figure 3-7, we plot the EB rate achieved

by this method.

3.2.6 Leung-Shor method

The method introduced in section 2.1 is in fact an EB protocol. Alice only needs

to encode the qubits into what they would have been if the measurement results in

1-p)1-p= 1 - H + p
2

( pass)
2 x(1 H (k) (k) (k) (k)H00, p0o 1)

PO I , '/)1o



figure 2-1 were both '+1'. In figure 3-8, we plot the EB rate achieved. In figure 3-9,

we compare the yield of the four methods in this section.

. Cat - -Shor

- - - Leung-Shor - Modified recurrence

Figure 3-9: Lower bounds on EB(Sp).

3.3 New lower bounds on QB

We will establish the following lemma which gives lower bounds on QB based on EB

protocols:

Lemma 4.

1
Q B(EP) >

Q+ (S)P)
EB (Ep)

where C(ES) = 1 - H( +P, 1-2).

Proof. In an EB protocol, Alice and Bob share M EPR pairs (I)) in N channel uses.

Therefore, EB(EB) = M/N. To teleport a quantum state p e 1 •"M, Alice can use
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Figure 3-10: Lower bounds on QB(Sp).

the channel EP for j( many times to send M bits of classical information to Bob.

Thus,

M M/N
C(E,) 1 + MINN C(EP) C(S

EB(Sp) _ 1

EB (ESp) 1+ C(E)
C(EP) EB(Ep)

From the lemma, any lower bounds on EB will imply lower bounds on QB. The lower

bounds are presented in figure 3-10.

3.4 Threshold of Cat code

It has been shown that in the absence of side classical communication one can achieve

non-zero capacity for lower threshold fidelity F = 3p+l by concatenating 5-bit Cat4



0.74

0.72 -

0.70 -

0.68 -

0.66 -

0.64 -

0.62 -

0.60

0 5 10 15 20 25 30

Figure 3-11: Threshold fidelity F = 3p for n-bit Cat code.

code inside a random code (hashing)[19]. Threshold fidelity for concatenating n-bit

Cat code into random code was also studied. It was found that threshold fidelities fall

into two smooth curves, one for even n and one for odd n, but both curves increase

with n, i.e. one does not attain lower threshold by using a longer Cat code. We

therefore compute the threshold fidelity for n-bit Cat code in figure 3-11 and we

found that these phenomena do not occur in AQECC.

3.5 Discussion on QB, EB and Q2

In this chapter, we define the quantum entanglement capacity with classical feedback

EB for any quantum discrete memoryless channel. For any channel, this quantity is

shown to lie between two other capacities, namely the quantum capacity with classical

feedback QB and the quantum capacity with two-way classical communication Q2. It

is an open question whether these two capacities are equal to one another. While the

introduction of this new, intermediate quantity EB does not simplify the question,

it is our hope to shed some light on and provide other means to tackle this open

-

---

**~~*'~*~~*,



problem. In section 3.1, we provide an alternate operational interpretation of this

quantity: it represents the amount of quantum information Bob can send to Alice. It

is our hope that, by working with this interpretation, one might be able to prove a

non-trivial upper bound on EB and hence lead to a separation between QB and Q2.

We turn many of the well-known QECC into EB protocols and compute their

yields. These in turn lead to new lower bounds on QB. The QECC that we stud-

ied, namely Cat code and Shor code, exhibit different behaviors under this AQECC

framework. For example, for Shor code, it is beneficial to not insist on getting no

error in all measurements but instead carry out error-correcting procedures after get-

ting no error in the first few measurements. Whereas for Cat code, one has to insist

on getting no error in all measurements. It is interesting to study which of these two

features is exhibited by other codes.

We also see some connections with 2-EPP. Firstly, even though the Leung-Shor

method was introduced in chapter 2 as a 2-EPP, it is in fact an EB protocol. Secondly,

the idea that modified recurrence method applies to Cat code and achieves higher

yields.

Finally, one may want to ask whether the threshold fidelity in section 3.4 goes

down monotonically and if it does, what value it converges to as n goes to infinity.
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