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Abstract— The proper orthogonal decomposition (POD) has
been widely used in fluid dynamic applications for extracting
dominant flow features. The “gappy” POD is an extension to this
method that allows the consideration of incomplete data sets. In
this paper, the gappy POD is extended to handle unsteady flow
reconstruction problems, such as those encountered when limited
flow measurement data is available. In addition, a systematic
approach for effective sensor placement is formulated within
the gappy framework. Two applications are considered. The
first aims to reconstruct the unsteady flow field using a small
number of surface pressure measurements for a subsonic airfoil
undergoing plunging motion. The second considers estimation of
POD modal content of a cylinder wake flow for active control
purposes. In both cases, using the dominant POD basis vectors
and a small number of sensor signals, the gappy approach is
found to yield accurate flow reconstruction results.

I. I NTRODUCTION

The proper orthogonal decomposition (POD), also known as
Karhunen Lóeve expansion and principle components analysis,
has been widely used for a broad range of applications,
including derivation of reduced-order dynamical models [1],
image processing [2] and pattern recognition [3]. The POD
method computes a set of basis vectors that capture the dom-
inant structures of the system. For example, for fluid dynamic
applications, the dominant POD basis vectors correspond to
the most energetic flow modes in the system.

Sirovich introduced the method of snapshots [4] as a way
to efficiently determine the POD modes for large problems,
such as those encountered in computational fluid dynamic
(CFD) applications. A set of instantaneous flow solutions, or
“snapshots” is obtained from a simulation of the CFD method.
These snapshots are then used to compute the POD basis
vectors, which yield a representation of the data that is optimal
in the sense that, for any given basis size, the two-norm of
the error between the original and reconstructed snapshots is
minimized. Reduced-order dynamic models can be derived by
projecting the CFD model onto the reduced space spanned by
the POD modes [5], [6], [1].

The concept of using active control to enhance the stability
properties of an unsteady flow has been addressed for several
applications, for example in [7], [8], [9], [10]. In order to
derive control models that will be effective, it is vital that the
relevant unsteady flow dynamics are captured accurately. A
high-fidelity CFD code can offer the degree of flow resolution

that is required; however, for control design it is imperative
that the flow model have a low number of states. The POD
provides not only a way to obtain accurate low-order models
for control design, but also a systematic means to identify
the most dominant flow structures. One approach for flow
controller design, demonstrated to yield effective results, is
to control the dominant POD modes [9], [11].

To achieve active flow control in practice, the issue of flow
sensing must also be addressed. Using a POD-based control
approach, a strategy is required to accurately estimate the
POD modal content in real time from a limited number of
sensor measurements. In addition, the question of where to
best place the sensors in order to achieve this estimation must
be addressed. In [11], flow control of a cylinder wake was
considered. Two sets of POD basis vectors were derived using
collections of flow snapshots, obtained from a CFD simulation
of the problem and from particle image velocimetry (PIV)
measurements of an experimental setup. In each case, a linear
stochastic estimator (LSE) was used to provide a mapping
from the velocity data (computational or experimental) to
the POD modal content. The sensor locations were chosen
according to a heuristic procedure that placed them at spatial
maxima and minima of each POD mode.

Here, an alternate approach is proposed for estimating the
modal coefficients, based on the gappy POD method. This
method was developed by Everson and Sirovich [12], and
is a modification of the basic POD method that handles
incomplete or “gappy” data sets. Given a set of POD modes,
an incomplete data vector can be reconstructed by solving a
small linear system. Moreover, if the snapshots themselves
are damaged or incomplete, an iterative method can be used
to derive the POD basis. This method has been successfully
applied for reconstruction of images, such as human faces,
from partial data in [12]. In [13], the gappy POD was applied
for reconstruction of airfoil pressure fields from limited surface
measurements. In that work, it was shown that the entire
pressure field for subsonic and transonic inviscid flows could
be reconstructed using just a handful of POD modes and a
small number of surface measurements.

In this paper, the gappy POD method will first be de-
scribed and extended to handle unsteady flow reconstruction
problems. A quantitative metric for placing sensors will then
be developed using the gappy formulation. Results will then



be presented for two test cases. The first considers the two-
dimensional, linearized Euler equations to analyze a subsonic
airfoil operating in unsteady plunging motion. The second
example considers a Navier-Stokes simulation of flow about a
circular cylinder at low Reynolds number. Finally, conclusions
are drawn and directions for future work are discussed.

II. PROPERORTHOGONAL DECOMPOSITION

A. Standard POD basis

Before describing the gappy POD procedure, the standard
approach to computing POD basis vectors via the method of
snapshots is first reviewed [4]. Consider the collection ofm
flow snapshots,

{
Uk

}m

k=1
, whereUk is a vector containing

the flow solution at a timetk. The correlation matrixR is
formed by computing the inner product between every pair of
snapshots

Rik =
1
m

(
U i, Uk

)
, (1)

where
(
U i, Uk

)
denotes the inner product betweenU i and

Uk. The eigenvaluesλi and eigenvectorsψi of R are then
computed. Thejth POD basis vector,Φj , is given by a linear
combination of snapshots

Φj =
m∑

i=1

ψj
i U

i, (2)

whereψj
i denotes theith element of thejth eigenvector. The

magnitude of thejth eigenvalue,λj , describes the relative
importance of thejth POD basis vector. This importance is
commonly quantified by defining the relative energy content,
Ej , for each basis vectorj as

Ej =
λj∑m
i=1 λi

(3)

where the term “energy” refers to a measure in the two-norm.

B. Gappy POD

The gappy POD procedure uses a POD basis to reconstruct
missing, or “gappy” data. This procedure was developed in
[12] and can be described as follows. The first step is to define
a mask vector, which describes for a particular flow vector
where data is available and where data is missing. For the flow
solutionUk, the corresponding mask vectornk is defined as
follows:

nk
i = 0 if Uk

i is missing

nk
i = 1 if Uk

i is known

whereUk
i denotes theith element of the vectorUk. Pointwise

multiplication is defined as
(
nk, Uk

)
i

= nk
i Uk

i . Then the
gappy inner product is defined as(u, v)n = ((n, u), (n, v)),
and the induced norm is (‖v‖n)2 = (v, v)n.

Let
{
Φk

}m

k=1
be the standard POD basis for the snapshot set{

Uk
}m

k=1
, where all snapshots are completely known. Letg be

another solution vector that has some elements missing, with
corresponding mask vectorn. Assume that there is a need to
reconstruct the full or “repaired” vector from the incomplete

vector g. Assuming that the vectorg represents a solution
whose behavior can be characterized with the existing snapshot
set, the intermediate repaired vectorg̃ can be represented in
terms ofp POD basis functions as follows:

g̃ ≈
p∑

i=1

biΦi (4)

To compute the POD coefficientsbi, the error,E, between the
original and repaired vectors must be minimized. The error is
defined as

E = ‖g − g̃‖2n (5)

using the gappy norm so that only the original existing data
elements ing are compared. The coefficientsbi that minimize
the errorE can be found by differentiating (5) with respect
to each of thebi in turn. This leads to the linear system of
equations

Mb = f (6)

where

Mij =
(
Φi,Φj

)
n

(7)

and

fi =
(
g, Φi

)
n

(8)

Solving equation (6) forb and using (4), the intermediate
repaired vector̃g can be obtained. Finally, the completeg is
reconstructed by replacing the missing elements ing by the
corresponding repaired elements ing̃, i.e. gi = g̃i if ni = 0.

While not discussed here, we also note that if the original
snapshot ensemble has incomplete data, the POD basis vec-
tors can be computed using an iterative gappy approach, as
described in [12].

C. Gappy POD for unsteady flows

It is relatively straightforward to extend the gappy POD
algorithm for consideration of unsteady flows. Assume we
have a sequence ofT sensor measurements,

{
gi

}T

i=1
, where

gi corresponds to a gappy flow solution at timeti. At each
timestep, one can solve the gappy problem given by equation
(6) to determine the corresponding POD basis vector modal
content. The matrixM depends only on the POD basis vectors
and the mask vector. For a given sensor configuration, the
mask vector is fixed andM is thus not a function of time.
Its inverse can therefore be precomputed to yield an efficient
implementation. The time-dependent gappy problem can be
stated as

Mbi = f i (9)

wherebi contains the POD modal coefficients at timeti. The
matrix M and vectorf are defined as before in (7) and (8),
except nowg, and thereforef , varies with time.



III. SENSOR PLACEMENT PROBLEM

We consider the problem of placingN sensors in a flow.
The sensor locations should be chosen so that the required
flow information can be obtained. In particular, in the active
flow control framework, we are concerned with using sensor
data to determine the POD modal content of the flow.

This problem can be cast in the gappy framework. We
assume that POD basis vectors have been computed, which are
representative of the flows under consideration. A particular set
of sensor measurements then corresponds to a gappy solution
vector: the solution is known at the sensor locations and
unknown for other parts of the flow, i.e.nj = 1 if location j
is a sensor. Using the gappy POD procedure outlined above,
the modal content,bi

k for POD modek at timestepi, can
be determined by solving equation (9). If desired, the full
flowfield can then be constructed using (4). In [13], it was
shown that this approach worked well for reconstructing steady
flow pressure fields when considering a number of sensors
distributed evenly around the surface of an airfoil.

Within the gappy framework, we now consider the problem
of where best to place the sensors, i.e. givenN sensors and
l possible locations, how does one select the locations that
will enable the POD modal coefficients to be determined most
accurately? Consider equations (6), (7) and (8). If all data
are available, i.e.nj = 1 for all j, then M is the identity
matrix, and the modal coefficients can be calculated exactly.
Consider removing available data, and computing the gappy
inner products between basis vectors to form the entries ofM .
In general, the POD basis vectors are no longer orthogonal
when inner products are considered in the gappy sense, and
M therefore becomes fully populated. As this orthogonality
is lost, so is the ability to exactly identify the modal content.
The sensor locations, and correspondingly the non-zero entries
in the mask vector, should therefore be chosen to preserve
orthogonality between the POD basis vectors, when calculated
using the gappy inner product. One should also ensure that the
diagonal entries ofM are not too small (this would correspond
to choosing sensor locations where a POD basis vector value
is close to zero). Mathematically, one way to achieve these
goals is to minimize the condition number ofM . The sensor
location problem is therefore stated as:

min κ(M)
s.t. nj ∈ {0, 1}, j = 1, 2, .., l

l∑

j=1

nj = N (10)

whereκ(M) is the condition number ofM .
A solution to this combinatorial optimization problem may

be obtained using a greedy algorithm as follows.

(i) Consider placing the first sensor: loop over all possible
placement points, evaluateM for each point, and choose
the point that minimizesκ(M).

(ii) With the first sensor location set, loop over all possible
remaining placement points. For each point, update the

mask vector, evaluateM , and choose the point that
minimizesκ(M).

(iii) Repeat step (ii) for all remaining sensor locations.
Note that this approach does not yield an optimal solution, but
can be implemented efficiently.

IV. RESULTS

Results will be presented for two cases: unsteady plunging
motion of a subsonic airfoil and low Reynolds number flow
over a circular cylinder. Both the sensor placement algorithm
and the time-dependent gappy reconstruction of POD modal
content will be considered.

A. Subsonic airfoil plunging motion

The first case considered is a NACA 0012 airfoil operating
in unsteady plunging motion about a steady-state condition
that has a freestream Mach number of 0.755 and an angle of
attack of0◦. The CFD method is described in [14], and uses a
finite-volume formulation on an unstructured grid to solve the
two-dimensional linearized Euler equations. The CFD mesh
used has 3482 grid points, which corresponds to 13,928 flow
perturbation unknowns. POD basis vectors were calculated
using a frequency domain method of snapshots approach [15],
[14]. The reduced frequency,kc, is defined as

kc =
ωc

Ū
(11)

whereω is the frequency of the airfoil plunging motion,c is
the airfoil chord, and̄U is the freestream velocity. In order to
compute the POD basis vectors, flow snapshots were evaluated
at 21 evenly spaced reduced frequencies between zero and one.

1) Gappy sensor placement:The full POD basis vectors
contain all flow variables; however, only pressure measure-
ments on the airfoil surface were considered as possible sensor
locations. For the grid used, there were 115 possible sensor
locations. The first four POD basis vectors capture99.99% of
the energy in the snapshot ensemble, thusp = 4 modes were
considered when formulating the gappy problem. The greedy
algorithm was used to determine the sensor locations while
attempting to minimize the condition number of the4× 4 M
matrix. The resulting sensor locations are shown in Figure 1
for N = 5, 10 and 20. In the figure, the dots correspond to a
possible sensor location (this is a CFD grid point on the airfoil
surface), while the crosses correspond to the chosen sensor
locations. The condition number of the gappy matrixM is
70.96, 12.60, and9.82 for N = 5, 10 and20, respectively.

It can be seen from the figure that as the number of sensor
locations is increased, the positions show some clustering in
particularly sensitive regions of the flow, such as near the
airfoil leading edge. In the three cases considered, it can
be seen that the algorithm chooses to place the sensors in
particular regions of the airfoil surface. The choice of these
regions can be understood by plotting the spatial variation
of the POD basis vectors. Figure 2 shows the values of the
first four basis vectors along the airfoil surface. The basis
vectors are symmetric with respect to the airfoil top and
bottom surfaces. The figure shows increasing spatial frequency
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Fig. 1. Resultant positions for sensors usingp = 4 basis vectors. Dots
represent available CFD mesh surface points, crosses represent the chosen
sensor locations. From top: 5 sensors, 10 sensor, 20 sensors.

of subsequent POD vectors, which is commonly observed in
flow applications.

By comparing Figures 1 and 2, it can be seen that the
locations of the sensors are chosen in regions that correspond
roughly to local optima of the POD basis vector variation. This
observation corresponds well to the heuristic sensor placement
procedure suggested in [11]. In that work, sensors were
placed at local spatial optima for each mode. The locations
determined by the gappy methodology proposed here do not
correspond exactly to optima because the POD basis vectors
are not pure harmonics, and the optimization criteria is based
on maintaining orthogonality between modes. For example,
it can be seen in Figure 2 thatx = −0.25 is close to a
maxima for modes one, two and four. Data at this location
may not provide a strong differentiation between the three
modes, therefore the algorithm chooses not to place a sensor
there. It can also be seen that the algorithm chooses to place
a number of sensors at the airfoil leading edge, which is a
region where the POD basis vectors vary rapidly.

2) Gappy flow reconstruction:The question of interest is
how well, with the selected sensor configuration, the modal
content of the time-dependent flow solution can be predicted.
For the NACA 0012 airfoil, an unsteady simulation was run
that used a forcing input that varied temporally as a Gaussian
pulse, i.e. the plunging input,h, is given by

h(t) = h̄e−α(t−t0)
2

(12)

where h̄ is the amplitude of the pulse,t0 determines the
time at which the peak input occurs, and the parameterα
determines the sharpness of the pulse and, therefore, the range
of frequencies excited in the system. The case considered used
h̄ = 1, t0 = 40, and α = 0.01. This value ofα yields an
input whose significant frequency content lies within the POD
snapshot sample range.
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Fig. 2. POD basis vector values along the airfoil surface. Note that the
vectors are symmetric with respect to top and bottom surfaces and that spatial
frequency increases with increasing mode number.

At each timestep in the simulation, the actual POD modal
content was computed and compared to that predicted using
the gappy reconstruction from just the sensor data. The results
for the first four POD modes are shown in Figure 3 for
N = 10. The solid lines show the exact modal amplitude
while the symbols are the results calculated using data from
the ten sensors. It can be seen that a very good match is
obtained for all four modes. The corresponding errors between
the actual and predicted values are plotted in Figure 4. For
the first two modes, the error can be seen to be very small
in magnitude relative to the actual values shown in Figure 3.
For modes three and four, the error is larger; however, the
prediction is still very good.

B. Cylinder wake flow

The second example analyzes the problem described in [11]
of flow prediction in a cylinder wake at a Reynolds number of
100. CFD simulation data from that study was used to form an
ensemble of snapshots. This data was obtained using a direct
numerical simulation of the Navier Stokes equations on an
unstructured grid with the COBALT solver. The cylinder has
an incoming flow Mach number of 0.1. The Strouhal number
of the wake shedding was computed to be 0.163 [11].

From these snapshots, POD basis vectors were calculated
for the vorticity flow component. The relative energy content,
defined by (3), corresponding to the first twelve POD basis
vectors is given in Table I. It can be seen that the modes occur
roughly in pairs (due to the periodic nature of the shedding)
and that twelve modes are required to capture 99.9% of the
flow vorticity energy.

1) Gappy sensor placement:The sensor placement al-
gorithm described earlier was applied to this problem. As
discussed in [11], it is desirable to place the sensors in
location that experiences relatively large modal amplitudes.
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Fig. 3. POD modal amplitude as a function of time for pulse plunge
input. Solid lines denote the actual amplitudes; symbols denote the amplitude
predicted using gappy POD usingp = 4, N = 10.
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Fig. 4. Error in POD modal amplitude as a function of time for pulse plunge
input usingN = 10 sensors. Plotted is predicted minus actual amplitude for
the first four modes.

The optimization formulation based only on minimizing the
condition number ofM was found to yield reasonable results;
however a much better solution could be obtained by mod-
ifying the approach as follows. The first sensor was placed
by considering the sum of the diagonal elements ofM minus
the sum of the off-diagonal elements ofM . The first sensor
location was chosen so as to maximize this quantity, yielding
a larger emphasis on amplitude size. Subsequent sensors were
then placed according to the condition number minimization
described previously. The modified algorithm is therefore as
follows.

(i) Consider placing the first sensor: loop over all possible

Mode number,i Ei (%)
∑i

j=1
Ej (%)

1 46.17 46.17
2 37.81 83.99
3 5.47 89.46
4 4.94 94.40
5 2.31 96.71
6 2.26 98.97
7 .35 99.31
8 .34 99.65
9 .10 99.75
10 .10 99.85
11 .03 99.88
12 .03 99.91

TABLE I

PERCENTAGE ENERGY AND CUMULATIVE ENERGY CONTENT FOR

VORTICITY POD MODES FOR CYLINDER FLOW.

placement points, evaluateM for each point, and choose
the point that maximizes the summation of diagonal
minus off-diagonal entries ofM .

(ii) With the first sensor location set, loop over all possible
remaining placement points. For each point, update the
mask vector, evaluateM , and choose the point that
minimizesκ(M).

(iii) Repeat step (ii) for all remaining sensor locations.

2) Gappy flow reconstruction:In [11], the time histories
of the POD modal content were estimated using a linear
combination of sensor signals. The coefficients of the linear
combination were determined using a least squares fit to
the known POD modal amplitudes of the original snapshot
simulation. The sensing locations were determined using a
heuristic criterion of placing sensors in areas of high modal
activity, thus using a total of twelve sensors to estimate the
first four POD modes: two sensors each for modes one and
two, and four sensors each for modes three and four.

The modified gappy sensor placement algorithm described
above was implemented for this problem and then the gappy
reconstruction approach was used to determine the time-
dependent POD modal content. The first case considered was
with p = 4 POD modes andN = 12 sensors. Figure 5 shows
the actual and predicted POD modal coefficients using the
gappy approach. While the overall trends are captured, it can
been seen that there is some error in the prediction, particularly
in the peak areas. The RMS error of the prediction for thejth

mode is defined as

ej =

√∑m
i=1

(
bi
j − b̃i

j

)2

√∑m
i=1

(
b̃i
j

)2
(13)

where bi
j and b̃i

j are respectively the estimated and actual
coefficient for POD modej at timestepi, m = 70 is the
number of timesteps considered, and the error is normalized
by the RMS value of the actual modal coefficient. The RMS
errors for reconstruction of the first four modes are given in
Table II. The table also shows that the condition number of



N p e1 e2 e3 e4 κ(M)
12 (greedy) 4 11.84% 23.48% 32.72% 12.69% 1.82

12 (modal max/min) 4 6.12% 5.74% 8.03% 9.32% 1.65
12 (modal max/min) LSE 2.1% 0.6% 7.1% 2.9% -
12 (modal max/min) 12 3.63% 1.98% 48.56% 7.76% 1.64×104

20 (greedy) 12 1.75% 1.46% 5.94% 5.23% 46.42

TABLE II

RMS ERRORS OF GAPPY RECONSTRUCTION FOR VARIOUS SENSOR CONFIGURATIONS AND NUMBERS OF MODES. THE LSE DATA IS TAKEN FROM [11].
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Fig. 5. Actual (lines) and estimated (points) POD modal coefficients using
twelve sensors and four POD modes.

the matrixM in this case was 1.82.
The sensor configuration suggested by Cohen et al. [11]

was also considered, obtained by selecting sensing locations at
spatial minima and maxima of the POD modes. The resulting
RMS errors from the gappy reconstruction are given in Table
II. It can be seen that this configuration resulted in an improved
condition number of 1.65, demonstrating the inability of the
greedy algorithm to find the true optimum. Since the cylinder
flow case exhibits strong periodicity, the POD modes resemble
Fourier modes, and the heuristic approach is expected to yield
accurate results. The RMS errors for this case are also given in
Table II and can be seen to be much lower than for the previous
configuration. This result suggests that the condition number
criterion is appropriate for sensor location choice, but that a
better optimization algorithm is required. For comparison, the
RMS errors using the least squares approach with this sensor
configuration are also given in Table II.

There are two possible sources of error for the results
presented in Figure 5. First, there may be insufficient sensors
to accurately reconstruct the modal information using gappy
POD. Secondly, an insufficient number of POD modes may
be used in the reconstruction. Recall that the gappy procedure
chooses the coefficients so as to minimize the gappy norm
between the available and the reconstructed data. If the ne-
glected higher POD modes have significant contribution to
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Fig. 6. Actual (lines) and estimated (points) POD modal coefficients using
twelve sensors and twelve POD modes.

the sensor signals, then the reconstruction will be inaccurate.
As Table I shows, the first four modes capture only94.4%
of the flow energy. In order to more accurately represent the
flow, the number of POD modes considered was increased to
p = 12. Using the twelve sensors located at modal optima,
the reconstructed modal coefficients were calculated and are
shown in Figure 6. As can be seen from the figure, and from
the corresponding RMS errors in Table II, the reconstructions
for modes 1,2 and 4 are now excellent; however, the estimated
response for mode 3 shows significant oscillations and a large
reconstruction error. This error is most likely due to poor
numerical conditioning of the system, which has a condition
number of 16,400.

In order to reduce the condition number of the system and
thus reduce the reconstruction error, more sensors must be
added. The greedy algorithm was used to placeN = 20
sensors while attempting to minimize the condition number of
a gappy matrix withp = 12 POD modes, yielding an improved
condition number of 46.42. The modal amplitudes are plotted
in Figure 7 and, along with the RMS errors in Table II, show
an excellent prediction.

3) Discussion and Comparison of Approaches:As can be
seen in Table II, the RMS errors for the gappy estimation of
the first four modes obtained withN = 20 sensors andp = 12
modes are of similar magnitude to those obtained using a least
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Fig. 7. Actual (lines) and estimated (points) POD modal coefficients using
twenty sensors and twelve POD modes.

squares approach withN = 12. In the latter method, the RMS
error represents a measure of the quality of the least squares
fit for the known evolution of the modal coefficients. It is
not obvious how accurate the prediction would be for flows
where the relative modal content is different to that used for
calibration. The gappy estimation procedure does not require
knowledge of the actual modal coefficients, and should yield
accurate results for a range of different flows, provided the
flow can be resolved with a sufficient number of available
basis vectors.

For the cylinder flow, which exhibits strong periodicity,
the heuristic approach to sensor placement results in a well-
conditioned gappy problem and accurate reconstructions for
the first four modes. In this case, the greedy algorithm did
not find a twelve-sensor configuration that yielded a better
condition number. However, the greedy algorithm provides a
satisfactory alternative for cases where the heuristic approach
may not be appropriate. For example, if the POD basis vectors
do not exhibit a strong sinusoidal structure, location choices
may not be obvious. The locations of modal optima may also
not be physically available for sensing (for example, in the
cylinder case it is assumed that velocity measurements are
available anywhere in the flow). Finally, the heuristic approach
often may not extend to estimation of higher modes. If the
higher modes exhibit sinusoidal behavior, then an increasing
number of sensors per mode will be required to capture all
optima. If the higher modes lose their structure (as is often
the case for flow applications) then it will not be clear where
to choose the sensor locations. The gappy formulation easily
handles an increasing number of modes, although as the results
demonstrated, a sufficient number of measurement points must
be provided in order to reduce the condition number of the
gappy matrixM .

V. CONCLUSIONS

The gappy POD methodology provides a natural framework
to directly estimate POD modal content from limited flow
measurements and has been shown to work effectively for two
examples. With limited sensor measurements, modal content
for the dominant POD modes can be estimated accurately for
an unsteady flow, provided a sufficient number of modes are
used to resolve the flow. When used in conjunction with a
heuristic approach of placing sensors at POD spatial optima,
the gappy reconstruction yields excellent results. Alternatively,
the sensor placement problem can be formulated mathemat-
ically in the gappy framework using a condition number
criterion. While the resulting optimization problem cannot
be solved exactly, an approximate solution method leads to
results that support the intuitive approach of placing sensors
at modal optima. The more formal approach extends to cases
where the heuristic criterion might be difficult to apply. Further
investigation into an improved optimization solution method
is required.

In another area of future work, an iterative gappy procedure
can be used to derive a set of POD basis vectors using incom-
plete snapshot data. This would, for example, enable the CFD
and PIV measurements to be combined when determining the
POD basis vectors. It would also enable effective handling of
imperfect PIV measurement data, a situation often encountered
in practice.
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