
Servo Compensation Using a Floating Point
Digital Signal Processor

by

Susan Jean Wittman

S.B., Aeronautical and Astronautical Engineering
Massachusetts Institute of Technology

(1986)

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND
ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1989

@ Susan J. Wittman 1989

The author hereby grants to M.I.T. and the M.I.T. Lincoln Laboratory, permis-
sion to reproduce and to distribute copies of this thesis document in whole or
in part.

Signature of Author

Certified by

Depar

Approved by"2

Accepted by

Department 6f Aeronautics anu nvoronautics
January, 1989

jraq a l- .-

td Computer Science
Thesis Supervisor

'- Norval P. Smith
aical Supervisor

Id Y. Wachman
Nmall , "c u jparxLiueIInax uraauate Committee

MA4 ACHUS-T. INSTITUIT
OF TECHNOLOGY

MAR 10 1989
UBRES

Aern



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

LEXINGTON, MASSACHUSETTS 02173-0073.

5 April 1989 Area Code 617
863-5500

Chairman, Department Graduate Committee
Department of Aeronautics & Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dear Mr. Chairman:

The thesis submitted to your department by Susan J. Wittman
as part of her master of science degree requirement titled "Servo
Compensation Using a Floating Point Digital Signal Processor", has
been released by the Department of Defense for general use. So,
you may reproduce, publish and distribute the thesis as you see
fit.

Very truly yours,

Ii~- ;I:

Carl H. Much
Group Leader,
Control Systems Engineerink

CHM/apg

I

Iln^-~L



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

LEXINGTON, MASSACHUSETTS 02173-0073

January 20, 1989

Chairman, Department Graduate Committee
Department of Aeronautical and Astronautical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dear Mr. Chairman:

I have reviewed the attached thesis of Susan J. Wittman on behalf of the
MIT Lincoln Laboratory. The thesis is within the scope of the thesis proposal
previously approved and in my opinion does not contain any material that is
objectionable to the MIT Lincoln Laboratory. It is also approved for its technical
content.

It is understood that the actual thesis document will be the permanent prop-
erty of MIT and will be placed in the MIT Library within one month after the
date of submission. However, the thesis will not be given general circulation
until a review by the Department of Defense has been completed and the thesis
released for general use. I will inform the Department of Aeronautical and As-
tronautical Enginneering of the results of such review as soon as possible. It is
also understood that Susan J. Wittman has granted MIT and the MIT Lincoln
Laboratory the right to reproduce, publish, and distribute the thesis.

Carl H. Much
Group Leader, Control Systems Engineering

MIT Lincoln Laboratory



Servo Compensation Using a Floating Point
Digital Signal Processor

by

Susan Jean Wittman

Submitted to the Department of Aeronautics and Astronautics
on January 20, 1988 in partial fulfillment of the requirements

for the degree of Master of Science

ABSTRACT

The capability of using a 32-bit floating-point digital signal processor (DSP32)
in a closed loop feedback system is established. A dedicated input/output (I/O)
board for interfacing with the serial port of the DSP32 was designed and built.
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DSP32. A simulated position loop was closed around an operational amplifier
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enough for use in compensating higher bandwidth systems.
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Chapter 1

Introduction

1.1 Overview

Digital signal processing chips are ideally suited to perform mathemastically-

intensive, repetitive algorithms. Conventional microprocessors which use mi-

crocode to do this processing tend to be slow. A dedicated hardware approach

leads to inflexible particular solutions to various applications. The AT&T WE

DSP32 Digital Signal Processor combines flexibility through programmability,

with high speed [1].

Complex image processing and speech recognition are examples of areas

where the DSP32 can be used effectively. This thesis involves using a DSP32 as

a compensator in a closed loop servomechanism control configuration. The ca-

pability of using the DSP32 for control purposes in closed loop feedback systems

is established.

This thesis is organized as follows. The remainder of this chapter discusses

the mirror servomechanism configuration and the required background informa-

tion on the DSP32. The hardware and software experimental configuration are

discussed in Chapter 2. Chapter 3 contains the preliminary filter designs done

using the DSP32. These programs laid the foundation for the more complicated

controllers discussed in Chapter 4. The design and evaluation of two di:fferent

compensated hardware systems is covered in Chapter 4. Chapter 5 sums up the

results of the thesis and suggests future work.
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Figure 1.1: Analog Mirror Control Loops

1.2 The Mirror Servomechanism

The analog controller for a two-axis, three inch diameter mirror was de-

signed and built by Dr. N. P. Smith, at the M.I.T. Lincoln Laboratory. Each

axis consisted of a proportional-plus-integral position loop, and a proportional

derived rate loop as shown in Figure 1.1.

The plant includes the mirror and its dynamics, the power amplifiers used

to drive the motors, and the torque motors which were mounted on the shafts

connected to the mirror. The elevation axis control system had a 40 Hz position

loop bandwidth, with an approximately 120 Hz rate loop bandwidth.

It was found that the transfer function of the motor and mirror configuration

(shown in Figure 1.1 as G,) could be approximated as a dominant single pole of

the form:
1

The transfer function for the closed rate loop, shown in Figure 1.1 from input

B(s) to output Y(s), is of the form:

B)- + K. 1+ ) (1.1)
B(s) 1 + s(Ts +1+ K)



Figure 1.2: Closed Loop Operational Amplifier System

where

K, = derived rate gain

T = dominant rate loop lag

An operational amplifier (op amp) circuit simulating the transfer function

in Equation 1.1 was built [2]. A simulated position loop was closed around

this simulated rate loop (see Figure 1.2) to evaluate the DSP32 as a digital

forward compensator. For comparison, an analog proportional-plus-integral

compensator was also designed and implemented using the same control gains

as the DSP32. Successful closed loop operation using the DSP32 demonstrated

its capability as a digital compensator in closed loop control systems.

To evaluate the use of the DSP32 as a closed loop compensator, it was substi-

tuted for the analog compensator in the actual mirror servo system. Figure 1.3

shows the location of switches added to the the analog mirror controller that

could be used to bypass the analog circuitry with the DSP32. The three switches

made three distinct modes of operation possible. The first mode was total analog

compensation. The second mode involved switching the analog proportional-

plus-integral position compensation out of the loop and replacing it with the

DSP32. The third mode of operation was total digital compensation. Both the

analog position and rate compensation were disabled for total digital control.



Figure 1.3: Mirror Loop Digital Control Interfaces

1.3 The DSP32 Digital Signal Processor

The DSP32 uses a hardware multiplier and an arithmetic logic unit to exe-

cute 32-bit floating-point mathematics and logic operations. A highly pipelined

architecture allows the device to achieve throughput on the order of 8 million

floating-point operations per second. The floating-point capabilities of the de-

vice allow much greater system dynamic range than that obtainable with fixed-

point digital signal processors. This is especially important in control system

design, where the effects of scaling, normalization, and overflow are critical to

performance. The DSP32 is also the first 32-bit floating-point digital signal

processor on the market.

1.3.1 Device Hardware

The version of the DSP32 device without direct external memory interfacing,

which was used in this thesis, comes in a 40 pin dual-in-line package requiring



a single +5 volt power supply. The DSP32 consists of two main execution

units: the control arithmetic unit (CAU) and the data arithmetic unit (DAU).

Control, addressing, arithmetic and logic functions are supported by the 16-bit

fixed-point CAU. The DAU is a 32-bit signal processing unit containing four

40-bit accumulators.

On-chip memory includes 2048 bytes of ROM and 4096 bytes of RAM, which

can be addressed as 8-, 16-, or 32-bit words. Four main memory address

configurations are possible, although only one of them has the RAM portion of

memory assigned to the first block of addresses. (Appendix A shows all four

configurations for reference.) The DSP32 follows the instructions it finds in

memory starting with the lowest address, so it is important to designate RAM

in this lowest address location. The memory is divided into two banks, which

must be alternatively accessed to achieve maximum throughput.

Both serial and parallel ports are available for interfacing with external de-

vices. Both of these ports also contain a direct memory access option for trans-

fers between the input and output buffers and memory, without program inter-

vention.

The DSP32 processor cycle is divided into four states: the instruction fetch,

two memory reads and one memory write state. The high degree of pipelining

used results in up to six different instructions in various stages of fetch-decode-

execute during any particular processor cycle. Various latencies (described in

Appendix A) due to the execution of instructions in the pipeline have to be

included in the programming of the DSP32.

The Input/Output Control Register (IOC) sets the input/output (I/O) con-

ditions for the DSP32 when interfacing with external devices. These conditions

include information such as data lengths, clocking and synchronization.



1.3.2 Device Software

The DSP32 has two instruction sets. One set, called the data arithmetic

instructions, is for signal processing algorithms. The other set, the control

arithmetic instructions, is for control and logic instructions. The program coding

strongly resembles assembly language.

A complete set of software tools is available for creating, debugging, and

testing DSP32 application programs using the WE DSP32-SL Support Soft-

ware Library [3]. These tools interface with MS-DOS 1 on an IBM computer

and include programs for compiling, linking, loading, simulating and emulating

(through the WE DSP32-DS Digital Signal Processor Development System)

code [4].

1MS-DOS is a registered trademark of the Microsoft Corporation.



Chapter 2

Experimental Configuration

2.1 Overview

The experimental configuration was broken into two distinct parts: the hard-

ware set-up and the software set-up. Both of these are described in detail in

the following sections. The hardware configuration is defined here to be the

physical devices used to program and run the DSP32 including the IBM XT,

the development system, and the I/O interface board. All the programming

methodologies and the resulting code downloaded to the DSP32, including the

software tools used to generate and move the code, are included in the software

configuration.

2.2 Hardware Configuration

The overall hardware system connections are shown in Figure 2.1. An IBM

XT computer was used to do the programming and downloading to the DSP32

chip. The development system was connected to the IBM through a serial port.

The development system was set up to function as an emulator connected to a

dedicated I/O board via a ribbon cable. The I/O board provided a means of

getting analog signals to and from the DSP32 chip located in the development

system. The next two sections discuss first the development system and then

the I/O board.
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Figure 2.1: Hardware System Connections

2.2.1 The Development System

A WE DSP32 Digital Signal Processor Development System was purchased

from AT&T. The development system contained a DSP32 device, memory, a

microcomputer, and communication ports. The user interface to the develop-

ment system was provided by the DSP32 simulator described in Section 2.3.

The IBM XT computer hosted the DSP32 simulator software and linked to the

development system.

The development system could be used to download and execute programs

on the DSP32 device. Examination of the contents of DSP32 registers, accu-

mulators, and memory was enabled. In-circuit emulation allowed testing of

the system's analog I/O Interface, and subsequently enabled the DSP32: device

contained in the development system to be used as a controller in closed loop

applications.



2.2.2 The Input/Output Board

The precision codec i supplied in the development system contains low pass

filters which cause unacceptable phase lags between input and output signals. A

dedicated I/O interface board for the DSP32 digital signal processor with 12-bit

analog-to-digital (A/D) and digital-to-analog (D/A) converters was designed

and built so that the codec could be bypassed. A complete circuit diagram of

the I/O board is included in Appendix C.

The DSP32 can input sampled data through both the serial and parallel

ports. It was decided to interface with the serial port in order to leave the

parallel port open for interfacing with other devices, such as a microprocessor,

if desired. This approach also made it relatively easy to change the s:ampling

rate of the data.

Three main functional units comprise the interface board: the input circuitry,

the output circuitry, and the timing and control circuitry. The function of the

input circuit and its topology is described in the following section. The output

circuit is described next. The circuitry that controls the input and output

circuits is described in last. The timing and control circuit is responsible for

regulating all the signals on the I/O board and is basically the master sequencer

that steps the I/O board through all its functions.

Input Circuitry

The overall input circuitry is illustrated in Figure 2.2. The main func-

tional blocks are the sample and hold (S/H) circuit, the A/D converter and

the parallel-to-serial shift register.

The LF398H monolithic integrated circuit is used as the S/H circuit. Its

acquisition time is less than 10 psec and its logic input is TTL compatible. The

'codec is the tradename of an integrated circuit which contains an A/D converter, anti-
aliasing filters, a D/A converter and a smoothing filter.
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Figure 2.2: I/O Board Input Circuitry

AD574 was chosen as the A/D converter. It is a 12-bit successive approximation

A/D converter with a 35 ipsec conversion time.

The S/H chip was connected to the A/D converter. The signals to sample the

analog data line and to convert the sampled data to 12 data bits are generated by

the master sequencer in the timing and control circuitry. The master sequencer

also triggers the shift register to load the converted data. The parallel-in, serial-

out shift register (two LS165's) shifts this data to a latch. Notice that the shift

register is continuously shifting at the rate of OCK, which is 2.048 MHz, but

that the data isn't loaded into the DSP32 until the input load command (ILD)

comes from the master sequencer.

Since the DSP32 was programmed to accept 16-bit data streams, the four

least significant bits could be user supplied to encode information to the DSP32.

OUT



Figure 2.3: I/O Board Output Circuitry

When the DSP32 was used in conjunction with a multiplexor to ena'ble two

channels of input data (see Section 4.2.1), the least significant of these bits was

used to signal which of the two channels the data was from, while the other

three available user bits were grounded.

The LS195 latch was used to meet the timing requirements of the DSP32.

It provides a one clock delay before the data is shifted into the DSP32. The

inverter on the AD574 sign bit is used to convert to the two's complement format

required by the DSP32. An LS244 tristate buffer is used to isolate the I/O board

from the development system.

Output Circuitry

The overall output data flow is illustrated in Figure 2.3. The primary com-

ponents are the serial-to-parallel shift register, the data latches and the D/A

converter.



The output circuit is functionally similar to the input circuit. The serial

data stream from the DSP32 goes through a buffer and is shifted into a serial-

in, parallel-out shift register (two LS165's). When the DSP32 data transfer to

the shift register is complete the OSE signal from the DSP32 latches the data

in the LS165's into latches (LS374's). The data is then converted by a DAC80

12-bit D/A converter to an analog signal. The inverters on the output data

stream and on the most significant bit to the DAC80 are used to convert the

two's complement format of the DSP32 into the offset binary format required

by the DAC80.

Timing and Control Circuitry

The basic timing signals for the I/O board were derived from the DSP32

generated Output Clock (OCK). The I/O control word (IOC) was selected to

produce a 2.048 MHz clock signal on OCK. This signal and all other signals to

and from the DSP32 via the emulator cable were isolated from the DSP32 by a

buffer chip, an LS244 tristate buffer. The timing and control circuitry is shown

in Figure 2.4.

The main idea for controlling the I/O board was to build a master sequencer

by dividing down the 2.048 MHz reference clock from OCK and then using it

to trigger a shift register to shift a control signal to various parts of the circuit

at appropriate times. Figure 2.5 shows a timing diagram of this sequencer's

output.

Two dual 4-bit LS393 counter chips were used to divide down OCK by

powers of two. The 128 kHz signal obtained by this method was used to "clock"

the shift register.

The divided down clock signals between 1 kHz and 16 kHz were used as can-

didate sample rate sources. A set of switches was connected as an 8:1 selector so

that different clock signals could be chosen. One of these switches was available



Figure 2.4: I/O Board Timing and Control Circuitry
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for the user to supply a clock signal in case a specific frequency other than a

divided down factor of the OCK signal was desired for sampling. The sampling

rate signal thus supplied was designated as the "GO" signal and connected to a

D-type latch, which in turn triggered the serial input of the shift register with

a high logic level input control signal. This signal was then shifted through the

shift register. By connecting the output pins of the shift register to the triggers

of the different various parts of the I/O board, the shift register acted like a

master sequencing controller. The A/D converter could be triggered after wait-

ing the appropriate acquisition time for the S/H device, and the data could be

shifted into the DSP32 after waiting for the A/D converter to settle.

2.3 Software Overview

This section discusses the various issues involved with the software associated

with programming and using the DSP32. It begins with a description of tools

available with the Software Support Library [3], continues by defining a typical

progamming architecture, and ends with a specific example of the software used

to implement the 100 Hz notch filter described in Section 3.2. A complete list

of the various programs downloaded to the DSP32 can be found in Appendix B.

2.3.1 The Software Support Library

The Software Support Library comes with an assembler and a link editor.

The commands for invoking these tools, along with both the input files and the

resulting output files are shown in Table 2.1. File extensions denote file types,

where:

.a = assembly source code

.o = object code

.1 = listing file



The final assembled and linked code has no file extension.

Table 2.1: Software Tools

Function Invocation Input File Output File
assembler dsp3as sample.s sample.o, sample.

linker dsp3ld sample.o sample
assembler/linker dsp3make sample.s sample

The Software Support Library also contains a simulator. This simulator can

be invoked to simulate programs on the IBM XT, or to download programs

to the development system for emulation. Software breakpoints can be set in

both modes of operation. The simulation program is invoked by the command

"dsp3sim". Adding the suffix '-dl" to the invocation tells the program to

simulate the program on development system #1. The command "dsp3init 1"

initializes the development system and establishes a communication port for

downloading programs.

2.3.2 A Programming Architecture

Digital control systems often lead to transfer functions in the form of ratios

of polynomials in z. A typical transfer function with second order polynomials

is shown in Equation 2.1.

Y(z) A + Bz - 1 + Cz -'
X(z) D + Ez-1 + Fz- (2.1)

The result of cross-multiplying out the terms of Equation 2.1 is

(D + Ez- 1 + Fz-')Y(z) = (A + Bz-1 + Cz-2)X(z)

Associating z-1 with a unit delay [5], and rearranging terms yields the following

difference equation:

A B C E FYn= Z+ n-1+ Xn- 2 - n- - n-2 (2.2)D D D D D

- 1



The current output of the difference equation is y., with the previous output

being designated as Yn-1. The current input to the transfer function is designated

as zn. Hence z,n- and zn-2 designate the two previous inputs.

The DSP32 programming architecture lends itself very well to this difference

equation format. A standard instruction involves both a multiply and an accu-

mulate command. Equation 2.2 has four such instructions and one initial mul-

tiply and store instruction. Registers can be updated during these instructions,

such that current inputs can become previous inputs on the next instruction

cycle.

2.3.3 A Specific Software Example

The computer code shown in Figure 2.6, is meant to illustrate the major

points involved with programming the DSP32 as a typical filter. It shows how

straightforward the programming can be and demonstrates the modular ap-

proach taken in coding, throughout this thesis. The "dot" commands, .rsect

and .global, are linker commands used to designate memory locations for the

program to reside in the DSP32 memory and to define labels for sections .of code

for referencing throughout the program, respectively. Comments are surrounded

by /* and */.

The algorithm portion of the program is located in the first seven lines of

the subroutine labeled Unotch". The rest of the program is mostly register

initialization. The comments illustrate how closely the programming follows the

difference equation format discussed in the previous section.



/*notch.s- 100 Hz Tustin Notch Filter */
.rsect ".lo-ram"
.global sample, notch, coef, ym2, yml, xm2, xml, pause

ioc=0x986; /* 16-bit I/O Board */
dauc=O;
r2=ym2; r3=xm2; /* assign memory pointers */
r4=xml; r5=yml;

sample: if(ibe) goto sample; /* wait for sample */
rl=coef; /* assign coef pointer */

notch: aO=float(ibuf); /* input X(n) */
al=*rl++**r2; /* -F/D*Y(n-2) */
al=al+*rl++**r3; /* C/D*X(n-2)-F/D*Y(n-2) */
al=al+(*r3=*r4)**rl++; /* B/D*X(n-1)+... */
al=al+(*r2=*r5)**rl++; /* -E/D*Y(n-1)+... */
al=al+(*r4=a0)**rl; /* A/D*X(n)+... */
*r5=al=al; /* store Y(n-1) */
goto sample;

out: obuf=al=int(al); /* new output */
.rsect ".hi-ram" /* coef = filter coef.*/
coef: float -.894957983, .946778712, -1.889169001

float 1.889169001, .948205686, 0.0
ym2: float 0.0 /* allocate memory
xm2: float 0.0 for storage */
xml: float 0.0
yml: float 0.0

Figure 2.6: Computer Code used for 100 Hz Notch Filter



Chapter 3

Preliminary Designs

Filter programs were written and tested to evaluate the I/O circuit designed

and the DSP32.

3.1 The First Design: A Low Pass Filter

The first design attempted was a software low pass filter. It was decided

to make the design breakpoint value equal to 100 Hz. A sampling rate of 8

kHz was chosen. This sampling rate was chosen relatively high compared to the

break frequency in order to minimize the effects of the time delay associated

with sampling in the frequency range of interest.

The sampling delay for this system comes from two sources. One is the

sampling process itself which can be modeled as a zero-order [6] hold with a

phase lag of e-f. The other source of time delay is the processing time. The

DSP32 is configured to take an input in on one sample, process it and adjust

the output on the next sample. This processing delay equals a pure time delay

of the form e-". Thus the total sampling time delay for this system is e- 2 .

The analog transfer function of a one pole 100 Hz low pass filter is shown in

Equation 3.1.
27r * 100

G(s) = (3.1)
s + 2rx 100

Pole-zero matching was chosen from among the various A/D transformations,



as the means for discretizing Equation 3.1. This involves setting

z = e" (3.2)

to match the pole at a = -21r * 100, and placing a discrete zero at z = -1 to ac-

count for the implicit analog zero at -oo. A sampling rate of 8 kHz corresponds

to a sampling time of r = .000125 seconds.

2GDr * 100(z + 1)
Z - C-2r*100*.000125

The gain k was chosen to make the low frequency responses of the analog and

digital functions match.

GD(z),=l = G(s)lI=o
The resulting equation is shown in Equation 3.3.

GD() .037767375(1 + z-) (3
1 - .924465250z-1

It was useful to think of GD(z) as a difference equation for an output, y, in

terms of an input, z, as follows:

y, = .9 2 4 4 6 5 2 5 0y, ,- + .037767375z, + .037767375x,, 1

This difference equation was programmed into the DSP32 for testing. The

program is listed in Appendix B.

A computer simulation of GD was run over the frequency range of 1 Hz to

1 kHz. The magnitude and phase results shown in Figure 3.1 match those of

a 100 Hz low pass filter as expected. The phase angle is -45 degrees and the

magnitude is down 3 dB at the breakpoint. This simulation does not include

the phase lag associated with the sampling process, e- t. At 100 Hz the phase

lag of the sampling process is -6.75 *. At 1 kHz the sampling process phase lag

is -67.5 *.

The HP3562A Dynamic Signal Analyzer was used to measure the frequency

response of the DSP32 filter implementation. Figure 3.2 shows the actual fre-

quency response of the DSP32 implementation. The results shown in Figure 3.2



indicate that the phase is -53 degrees and the magnitude is down a little more

than 3 dB at 100 Hz. The discrepancy in phase between the actual frequency

response and the computer generated frequency response is -8* which is mostly

accounted for by the sampling phase lag of -6.75 *. The actual phase is down to

-172 at a frequency of 1 kHz, which is 14 0 less than the theoretical value. The

model is more accurate at frequencies much less than the sampling frequency.

Even though the system is being over-sampled by a factor of 40 times the

Nyquist rate, the phase lag contributed by the time delay associated with sam-

pling is -6.75* at the desired break frequency of 100 Hz, which is not an in-

significant factor. The amount of phase lag due to sampling time delays that

can be tolerated for a particular system will have to be calculated in order to set

an appropriate sampling rate for that system. The trade-off to be considered

involves increasing the sampling rate at the cost of loosing algorithm processing

time. For "simple" systems like a 100 Hz low pass filter, running at high sam-

pling rates is justified since the processor is being severely underworked and is

spending most of its time waiting for the next sample to arrive.

3.2 The Second Design: A Notch Filter

The second design was a 100 Hz notch filter. A fairly high Q analog notch

filter was targeted for implementation on the DSP32. The first attempts at

discretization were done using the same pole-zero mapping as was used in the

low pass filter design. Section 3.2.2 discusses these pole-zero mapping attempts.

Notch filters with magnitude responses unsymmetrical with respect to the notch

frequency were obtained and computer simulated. Different continuous-to-

discrete transformations were tried in order to get a symmetrical magnitude

frequency response.

The final implemented difference equation was arrived at by using the bilinear
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transformation [6] with an 8 kHz sampling rate, where

! = - (3.4)

and

GD(z) = G(-S)l _ (3.5)

3.2.1 The Analog Notch Filter

A two pole, two zero notch filter of the following form was chosen:

+ (()sA+ 1

WO 2 Wo

where

w. = 100 x 2r,

d = .707,

S= .01

3.2.2 The Pole-Zero Matched Digital Notch Filter

Using the pole-zero mapping of Equation 3.2, G(s) was transformed into the

z-domain.

GD() =k (1- 1.990705833z-' + .996863337z-2 (3.6)
1- 1.786989192z - 1 + .800799923z - 2

The gain of GD(z) was set to unity for various frequencies of interest by adjusting

the gain k. The two frequency regions of interest were low frequencies and high

frequencies.

The resulting values of k along with the resulting locations of poles and

zeros are shown in Table 3.1. Notice the setting of the gain factor, k, does not

influence the pole and zero locations of the transfer function. Changing the gain,

k, simply translates the magnitude frequency response up and down as shown in
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Figure 3.3: Magnitude Responses for Pole-Zero Notches

Figure 3.3. Hence both computer simulated gain settings and all other possible

gain settings produce asymmetrical magnitude frequency responses about the

notch frequency. This is because the gain k can only adjust the gain of the

transfer function, GD(z), at one specified frequency. Setting the gain for low

frequencies to a desired value does not guarantee the gain at other frequencies

to be any desired value.

Table 3.1: Pole-Zero Notch Filter Gain Settings

Frequency Range Gain, k Z Domain Poles Z Domain Zeros
Low Match 2.2429 .8935 ± .0497j .9954 ± .0783j
High Match .8998 .8935 ± .0497j .9954 ± .0783j

3.2.3 The Bilinear Transform Notch Filter

A different continuous-to-discrete transformation was used in order to get a

symmetrical magnitude frequency response. The bilinear (Tustin) transforma-

AI



tion of Equation 3.4 was chosen. The resulting discretized equation,

.948205686 - 1.889089965z-1 + .946719706z -2

1 - 1.889089965z-1 + .894925392z - 2

produced the symmetrical frequency response shown in Figure 3.4. The z domain

pole and zero locations associated with this GD(z) are slightly different than

those of the pole-zero mapping transfer functions:

poles = .9445 ± .0525j

zeros = .9961 ± .0784j

The actual 100 Hz notch filter performance obtained from programming

Equation 3.7 into the DSP32 is shown in Figure 3.5. The measured Bode per-

formance is almost identical to the computer simulated performance. The high

frequency phase rolls off due to the increasing significance of the sampling time

delays at those frequencies.
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Chapter 4

Compensated Systems

4.1 The Op Amp Design

In order to simulate the rate loop of the mirror servomechanism (see Equa-

tion 1.1) which contained a dominant pole and an integrator, the op amp plant

was designed to have a transfer function of the form:

Y(s) K 100

B(s) - (ra + 1) s(.001s + 1)
The gain, K, was arbitrarily chosen to be 100 so that simply closing the

plant loop without any compensation would result in closed loop poles at 18

Hz and 141 Hz. The op amp plant constructed is shown in Figure 4.1. The

back-to-back zener diodes shown were used to limit the output of the op amp

integrator to 9.1 volts.

Figure 4.1: Op Amp Rate Plant

Associating each op amp shown in Figure 4.1 with its transfer function, leads

to the block diagram representation of the plant shown in Figure 4.2.
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Figure 4.2: Plant Block Diagram
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Figure 4.3: Closed Loop DSP32 Compensator Configuration

The overall plant transfer function was thus:

Y(a)_ 99.2
B(a) (.001s + 1)

In order to close the hardware loop, a summing amplifier was constructed.

Zener diodes were used to voltage limit the output signal of the summer, which

was used to drive the DSP32 via the I/O board. Since the A/D and D/A

converters on the I/O board were set to operate in the ±10 volt range, 9.1 volt

zener diodes were chosen. The overall closed loop configuration is shown in

Figure 4.3. Inverters are used to make the necessary sign changes.

To verify that the plant was behaving as expected, the loop was closed with-

out the DSP32 and the closed loop frequency response was measured. The

HP3562A Dynamic Signal Analyzer calculated the closed loop poles to be at 18

and 139 Hz from the frequency response data shown in Figure 4.4.

4.1.1 DSP32 Unity Gain Block

The next test performed was simply to place the DSP32 in the loop at the

forward compensator location, programmed to be a unity gain block. (The
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program is listed in Appendix B.) In this way the effects of the sampling delay

could be isolated from any effects caused by the digital processing associated

with control algorithms. Figure 4.5 shows the frequency response obtained with

the DSP32 unity gain block in the loop. The frequency response is almost

identical to that shown in Figure 4.4 for the closed loop system without the

DSP32 until higher frequencies where the phase roll-off associated with the

sampling process starts to be significant.

The unity gain DSP32 system was driven by a 2.5 volt peak-to-peak 5

Hz square wave. The step response shown in Figure 4.6 shows an exponential

response corresponding to the dominant closed loop pole at 18 Hz. The 10 to

90 % risetime was approximately 20 ms for the step response measured both

with and without the DSP32 in the loop.
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4.1.2 DSP32 Proportional-plus-Integral Block

In order to mimic the control architecture used in the analog mirror system,

a proportional-plus-integral position compensation form was chosen with

B(s) = K,(1 + r8s)
E(9) a

Placing the proportional-plus-integral compensator in the forward loop, the

overall open loop transfer function is

Y(s) 100K,(1 + ) (4.2)
E(s) =2(.001a + 1)

The two remaining variables in Go,(s), corresponding to K, and r,, were chosen

to place the zero of Go (a) at 16 Hz, and to make the open loop unity magnitude

crossover point occur at approximately 50 Hz. Hence,

K, = 315.296

=r = .0099472

Using the bilinear transform of Equation 3.4, G,(s) was transformed into GDP(z)

shown in Equation 4.3.

3.156018 - 3.116606z - 1

GD,(z) = 1- z-  (4.3)

This transfer function was programmed into the DSP32 using the method

described in Section 2.3.2. Notice that in the notation of Equation 2.2, both a

and f are zero for GDpi(z).

A software limiter was added to the program to limit the output of the

software integrator to ±10 volts. The I/O board A/D and D/A converters were

configured to accept and produce voltages in the ±10 volt range, respectively.

Sending the I/O board the digital data corresponding to more than 10 volts from

the DSP32 would still result in the D/A producing 10 volts. More importantly,

the integrator limiter was used to keep the software integrator from adding up to



Table 4.1: DSP32 vs. Op Amp Compensator Step Characteristics

Compensator Peak Overshoot Risetime Settling
Overshoot Time

Op Amp 3.1 V 24% 3.4 ms 6.8 ms
DSP32 3.2 V 28% 3.6 ms 7.0 ms

excessively large values. Whenever the integrator added up to a number greater

than the positive limiting value corresponding to +10 volts, it was reset to be

the positive limiting value. The same strategy applied for negative sums with a

negative limit.

In this way, when the integrator had reached the positive limit set on its

register and a negative input was applied, the integrator would immediately

start to subtract from its current value. Since this value was within the range

of the I/O board, the effects would immediately be seen without a large time

delay occurring while the integrator came out of saturation.

The step response for the closed loop system to a 2.5 volt step input is

shown in Figure 4.7. The overshoot is approximately 28%, and the 10 to 90%

risetime is 3.6 ms. For comparison, an op amp compensator with the same

transfer function was built and tested. Table 4.1 compares the step response

characteristics of the two compensators both driven by a 2.5 volt step input.

The settling time shown in Table 4.1 refers to the time required for the output

to enter and remain in a 10% envelope surrounding the steady state output

value. The DSP32 performance as a closed loop compensator compared closely

to the op amp compensator performance. The slightly lower stability of the

DSP32 system can be attributed to the sampling delay present.
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4.2 The Overall Mirror Servomechanism

4.2.1 The Mirror Compensator Design

In order to program the DSP32 to control the actual mirror servomechanism,

the analog control gains shown in Figure 4.8 were used. The notation used in

Figure 4.8 refers to that used to define signals in the block diagram shown in

Figure 1.1. E(s) is the position error signal, Y(s) is the output position signal,

and B(s) is the power amplifier drive signal.

Notice that Figure 4.8 illustrates two control inputs and one control output.

B(s)



TO S/H
DATA INPUT

4T

TO LSB OF
DATA INPUT

TO DSP

Figure 4.9: Input Multiplexor

In order to input these two different channels to the DSP32, a hardware mul-

tiplexor (see Figure 4.9) was designed and built for the front end of the I/O

board. The channel information was encoded on the least significant bit sent to

the DSP32 and decoded in the software. If the input channel consisted of E(a),

the program conditionally branched to the proportional-plus-integral part of

the code. If the channel contained Y(s), the program proceeded to the rate loop

algorithm. In order to get an 8 kHz sampling rate on both channels, the overall

sampling rate was increased to 16 kHz. The 8 kHz channel sample rate was

achieved by alternately sampling the two channels.

The derived rate transfer function,

.05.
G, (a) 0.003183. + 1

was bilinearly transformed to yield,

131.3025(1 - z- 1)

1 - .6717437z-1

The term in the denominator corresponds to a 500 Hz pole which was added to

smooth the differentiation process by low pass filtering. The analog compensator

had a similar filter at 500 Hz.



The proportional-plus-integral transfer function of the analog controller was

similarly transformed to yield

.006125(1 + z-1)
1 - z- 1

The DSP32 was programmed with these transfer functions and interfaced with

the mirror through the hardware multiplexor. The analog .24 gain block was

implemented with a potentiometer attenuator on the DSP32 output signal.

4.2.2 The Mirror Compensator Performance

Closed loop system testing was done with a 2.4 volt peak-to-peak square

wave input. Figures 4.10 and 4.11 show the step responses of the analog com-

pensator and the digital compensator, respectively. The DSP32 system demon-

strates more overshoot (19 %) than the analog system (10%). When the pole

associated with the differentiator in the rate loop is moved to 159 Hz from 500

Hz, the overall system becomes more oscillatory as shown by the step reponse in

Figure 4.12. The proportional-plus-integral position loop gain was reduced by

30 % while keeping the differentiator pole at 159 Hz to produce the step response

shown in Figure 4.13. Lowering the position loop gain to 70 % that of the analog

system, lowers the step response overshoot appreciably.

A comparison of the drive signal, B(s), sent to the motor power amplifiers for

both the analog system and for the digital system with the 159 Hz differentiator

pole and can be made by looking at Figures 4.14 and 4.15. The step input shown

on the top half of Figures 4.14 and 4.15 serves as a time reference for the drive

signals shown. The digital signal with the 159 Hz filter shows much less noise

than the analog signal with the 500 Hz filter.
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Figure 4.13: Mirror Step Response - 159 Hz rate pole, 70 % position gain
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Chapter 5

Conclusions

5.1 DSP32 Results

The DSP32 is capable of performing closed loop compensation. Once the

hardware for interfacing to the serial port of the digital signal processor was

built, the DSP32 proved to be a very flexible controller. The flexibility was

derived from the programmability of the on chip RAM.

The DSP32 successfully compensated an operational amplifier model of the

rate loop of the mirror as well as the closed loop mirror servomechanism. The

step responses of the DSP32 compensated system and an analog compensated

system were comparable. With the relatively high sampling rate of the digital

system compared to the analog bandwidth desired, the pure time delay associ-

ated with the sampling process was a barely significant part of the response.

Four distinctly different control algorithms were implemented on the DSP32.

The key to programming the algorithms is to break the code into modules. For

example, placing a software limiter on the integrator in a proportional-plus-

integral transfer function is relatively simple if the code is broken down into an

integrator piece and a proportional piece. Large complex systems can be built

by connecting many small functional groups together.

The beauty of using the DSP32 is its versatility. For example, once a certain

two pole, two zero filter has been implemented, the filter coefficients can easily

be modified to produce other filters of that form. Another place the programma-



bility of the DSP32 is advantageous is in the implementation of complex control

algorithms. Long complex algorithms can be programmed and easily adjusted

with software changes.

The high speed capabilities of the DSP32 really weren't exercised in this

thesis. As noted in Section 3.1, the phase lag associated with the sampling pro-

cess cannot be ignored, and yet many more programming steps could have been

executed at the 8 kHz sampling rate used. Many different control loops running

at different rates can be closed at the same time by appropriately multiplexing

signals into the DSP32.

5.2 Future Work

In order to increase the sampling rate of the DSP32, it will be necessary to

not only purchase faster A/D and D/A converters, but also to expand the length

of the sequencer shift register by adding another shift register in series with the

existing one. At the current sequencer clock rate of 128 kHz, each control pulse

shift takes just over 7.8 ps. This pulse shift time will decrease if the clocking rate

is increased, making it impossible to wait the amount of time necessary for the

current A/D converter to settle without more than the current 8 shifts available.

The DSP32 should be capable of sampling up to about 50 kHz, whereas with

the I/O board configured as it is now, the maximum sampling rate is 16 kHz

for one channel, and 8 kHz for two channels.

To make the DSP32 useful for field applications, some sort of EPROM down-

loading scheme needs to be developed. The idea would be to program the

EPROM with the control algorithms for the DSP32 and then to download the

new algorithms at the site. A dedicated download board similar to the interface

board would take care of the static RAM problem.

Finally, now that its capabilities as a closed loop compensator are docu-

mented a test needs to be performed to establish the system bandwidth obtain-



able. Theoretically, 500 to 1000 Hz systems should be feasible. The sampling

speed of the DSP32 will have to be increased as suggested above and the size of

the algorithm implemented will be limited.
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Appendix A

DSP32 Information

The following figures were
Information Manual [1].
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Appendix B

Computer Programs

This appendix contains the computer programs used in this thesis. The following
list gives the names of the programs and the sections that they correspond to
in the thesis:

f ilter.s from Sections 2.3.2 and 3.1

notch8.s from Section 3.2

cl.s from Section 4.1

pilim.s from Section 4.1

mirpc.s from Section 4.2

mirtot.s from Section 4.2.2

larpi.s from Section 4.2.2

B.1 100 Hz Low Pass Filter

/*filter.s- 100 Hz Low Pass Filter */
.rsect ".lo.ram"
.global sample,filter,coef,oldx,oldy,end

ioc=0x986;
dauc=0;
r3=oldy;
r4=oldx;

sampleif(ibe) goto sample;
rl=coef;

filter: aO=float (ibuf);
3*nop;
al=a0**rl++;
a2=al+*rl++**r4;
nop;
*r3=a3=a2+*rl**r3;
nop;



*r4=aO=a0;

goto sample;
obuf=a3=int (a3);

end: 4*nop;
.rsect ".hi-ram"
coef: float .037767375,.037767375,.924465250
oldx: float 0.0
oldy: float 0.0

B.2 100 Hz Notch Filter

/*notch8.s- 100 Hz Tustin Notch Filter */
.rsect ".loram"
.global sample,notch,coef,ym2,yml,xm2,xml,pause

ioc=0x986; /* 16 bit I/O Board */
dauc=0;
r2=ym2; r3=xm2; /* assign memory point
r4=xml; r5=yml;

sampleif(ibe) goto sample; /* wait for sample */
rl=coef; /* assign coef pointer *

notch: a0=float(ibuf); /* input X(n) */
al=*rl++**r2; /* -F/D*Y(n-2) */
al=al+*rl++**r3; /* C/D*X(n-2)-F/D*YI
al=al+(*r3=*r4)**rl++; /* B/D*X(n-1)+... */
al=al+(*r2=*r5)**rl++; /* -E/D*Y(n-l)+... */
al=al+(*r4=aO)**rl; /* A/D*X(n)+... */
*r5=al=al; /* store Y(n-1) */
goto sample;

out: obuf=al=int(al); /* new output */
.rsect ".hi.ram" /* coef = filter coef.*/
coef: float -.894957983,.946778712,-1.889169001

float 1.889169001,.948205686,0.0
ym2: float 0.0 /* allocate memory
xm2: float 0.0 for storage */
xml: float 0.0
yml: float 0.0

ers

/

(n-2) */

B.3 Unity Gain Block

/*cl.s- unity transfer function



.rsect ".lo-ram"

.global sample,gain,pause;
ioc=0x986;
dauc=O;

sampleif (ibe) goto sample;
nop;

gain: a0=float(ibuf);
goto sample;

pause: obuf=a0=int(a0);

B.4 Proportional-plus-Integral Compensator

/*pilim.s proportional + integral compensator */
.rsect ".lo-ram"
.global sample,algor,pause,coef,ym2,yml,xm2,xml,limit

ioc=0x986;
dauc=O
r2=ym2;
r3=xm2;
r4=xml;
r5=yml;
r6=limit;

sampleif (ibe) goto sample;
rl=coef;

algor: a0=float(ibuf);
al=*rl++**r2;
al=al+*rl++**r3;
al=al+(*r3=*r4)**rl++;
al=al+(*r2=*r5)**rl++;
al=al+(*r4=a0) * *rl;
*r5=al=al;

4*nop
a2=-*r6; /*initialize a2 with neg. limit*/
aO=-al+*r6; /*compare al with pos. limit*/
al=ifalt(*r6); /*if al+limit,replace with limit*/
aO=al+*r6; /*compare al with neg. limit*/
al=ifalt(a2); /*if al-limit,replace with neg. limit*/
4*nop
goto sample;

pause: obuf=al=int(al);
coef: float 0.0,0.0,-.03116606

float 1.0,.03156018,0.0



ym2: float 0.0
xm2: float 0.0
xml: float 0.0
yml: float 0.0
limit: float 8000.0

B.5 Mirror Controller (Analog Gains)

/*mirpc.s analog gains*/
.rsect ".lo.ram"
.global sample,pcoef,rcoef,pyml ,pxml,limit,rxml ,ryml ,chan,ploop,rloop;

ioc=0x986;
dauc=0
r4 =pxml ;r5=pyml ;r6= limit;
r7=rxml;r8=ryml;

sampleif (ibe) goto sample;
rl=pcoef;

chan: r9=ibuf;4*nop;
r10=r9/2;
if (cs) goto rloop; nop;

ploop: aO=float(ibuf);
al=*rl++**r4;
al=al+*r5**rl++;
al=al+(*r4=aO) **rl++;
4*nop
a2=-*r6; /*initialize a2 with neg. limit*/
a0=-al+*r6; /*compare al with pos. limit*/
al=ifalt(*r6); /*if al+limit,replace with limit*/
aO=al+*r6; /*compare al with neg. limit*/
al=ifalt(a2); /*if al-limit,replace with neg. limit*/
4*nop;
*r5=al=al; /*store yml*/
4*nop;
al=al+*r4**rl; /*proportional branch*/
4*nop;
goto sample;
nop;

rloop: r2=rcoef;
a2= float (ibuf);
a3=*r7**r2++;
a3=a3+*r8**r2++;
a3=a3+(*r7=a2) **r2;



*r8=a3=a3;

4*nop;
aO=al+a3;
4*nop;
goto sample;
obuf=aO=int(aO);

pcoef: float .00625,1.0,.00625,10.0
rcoef: float -131.3025,.6717437,131.3025
pxml: float 0.0
pyml: float 0.0
rxml: float 0.0
ryml: float 0.0
limit: float 32767.0

B.6 Mirror Controller (159 Hz Rate Pole)

/*mirtot.s analog gains and 159 Hz rate pole*/
.rsect " .lo.ram"
.global sample,pcoef,rcoef,pyml,pxml,limit,rxml,ryml,chan,ploop,rloop;

ioc=0x986;
dauc=0O
r4=pxml;r5=pyml;r6=limit;
r7=rxml;r8=ryml;

sampleif (ibe) goto sample;
rl=pcoef;

chan: r9=ibuf;4*nop;
rlO=rg/2;
if (cs) goto rloop; nop;

ploop: a0=float(ibuf);
al=*rl++**r4;
al=al+*r5**rl++;
al=al+(*r4=a0)**rl++;
4*nop
a2=-*r6; /*initialize a2 with neg. limit*/
a0=-al+*r6; /*compare al with pos. limit*/
al=ifalt(*r6); /*if al+limit,replace with limit* /
aO=al+*r6; /*compare al with neg. limit*/
al=ifalt(a2); /*if al-limit,replace with neg. limit*/
4*nop;
*r5=al=al; /*store yml*/
4*nop;
al =al+*r4**rl; /*proportional branch*/



4*nop;
goto sample;
nop;

rloop: r2=rcoef;
a2=float(ibuf);
a3= *r7**r2++;
a3=a3+*r8**r2++;
a3=a3+( *r7=a2) **r2;
*r8=a3=a3;

4*nop;
aO=al+a3;
4*nop;
goto sample;
obuf=a0=int (aO);

pcoef: float .00625,1.0,.00625,10.0
rcoef: float -47.05882,.882353,47.05882
pxml: float 0.0
pyml: float 0.0
rxml: float 0.0
ryml: float 0.0
limit: float 32767.0

B.7 Mirror Controller (159 Hz Rate Pole and
70 % Position Gain)

/*larpi.s analog gains,159 Hz rate pole, .7*gain */
.rsect ".lo..ram"
.global sample,pcoef,rcoef,pyml ,pxml ,limit,rxml,ryml ,chan,ploop,rloop;

ioc=0x986;
dauc=0
r4=pxml;r5=pyml ;r6=limit;
r7=rxml ;r8=ryml;

sampleif (ibe) goto sample;
rl=pcoef;

chan: r9=ibuf;4*nop;
r10=r9/2;
if (cs) goto rloop; nop;

ploop: aO=float (ibuf);
al=*rl++**r4;
al=al+*r5**rl++;
al=al+(*r4=a0) **rl++;



4*nop
a2=-*r6; /*initialize a2 with neg. limit*/
aO=-al+*r6; /*compare al with pos. limit*/
al=ifalt(*r6); /*if al+limit,replace with limit*/
aO=al+*r6; /*compare al with neg. limit*/
al=ifalt(a2); /*if al-limit,replace with neg. limit*/
4*nop;
*r5=al=al; /*store yml*/
4*nop;
al=al+*r4**rl++; /*proportional branch*/
4*nop;
al=al**rl;
4*nop;
goto sample;
nop;

rloop: r2=rcoef;
a2=float (ibuf);
a3=*r7**r2++;
a3=a3+*r8**r2++;
a3=a3+(*r7=a2) **r2++;
4*nop;
a3=a3**r2;
4*nop;
*r8=a3=a3;

4*nop;
aO=al+a3;
4*nop;
goto sample;
obuf=aO=int (aO);

pcoef: float .00625,1.0,.00625,10.0,.7
rcoef: float -47.05882,.882353,47.05882,1.0
pxml: float 0.0
pyml: float 0.0
rxml: float 0.0
ryml: float 0.0
limit: float 32767.0



Appendix

Detailed I/O Board Circuitry

The following page contains the detailed circuit schematic for the entire I/O
board. It includes all three subsystems discussed in Section 2.2.2.
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