A Hierarchical Feature Representation for Phonetic Classification

by

Raymond Y.T. Chun

Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering at the Massachusetts Institute of Technology

March, 1996

©Massachusetts Institute of Technology, 1996.
All rights reserved.

Signature of Author

Department of Electrical Engineering and Computer Science
March 4, 1996

Certified by

James R. Glass
Principal Research Scientist
Computer Science

Accepted by

Chair, Department Committee on Graduate Students
A Hierarchical Feature Representation for Phonetic Classification

by

Raymond Y.T. Chun

Submitted to the Department of Electrical Engineering and Computer Science in February, 1996 in partial fulfillment of the requirements for the Degree of Master of Engineering

Abstract

The objective of this research is to investigate the use of a hierarchical framework for phonetic classification of speech. The framework is motivated by the observation that a wide variety of measurements may be needed to make phonetic distinctions among different types of speech sounds. The measurements that best discriminate among one class of sounds will most likely be suboptimal for other classes. By allowing a succession of measurements, a hierarchy ensures that only the meaningful features are used for each phonetic distinction. Furthermore, by partitioning phones into classes, a hierarchy provides some broad context for making finer phonetic distinctions among confusable sounds.

In the hierarchies explored in this thesis, a speech segment is initially classified into a broad phonetic class using a feature set targeted towards making the broad distinction. Probability scores are assigned to each phonetic class, reflecting the likelihood that the speech segment belongs to the broad class given the features extracted at that stage. Subsequent stages classify the segment into successively finer subclasses, again producing intermediate class probabilities based on feature sets optimized for each particular stage. Overall phone scores are then computed within an MAP probabilistic framework which combines all relevant class scores, allowing meaningful comparisons to be made across all phones.

A set of classification experiments are performed on the TIMIT acoustic-phonetic corpus. A set of baseline experiments are established which represent state of the art classification results for the vowels and all phones. Hierarchical classification results indicate that overall performance can be improved by raising scores at individual nodes in the hierarchy. The improvements reported in this thesis reflect gains of less than half percent, but larger gains are expected with the use of more rigorously optimized feature sets.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist
I wish to express my sincere thanks to my thesis supervisor, Dr. James Glass, for the thoughtful consideration he has given to all aspects of this thesis. His insight and vision have guided this work from start to finish. I truly appreciate the dedication which he has shown to me.

I am grateful to Dr. Victor Zue for providing me with the opportunity to work with so many extraordinary individuals. His magnanimity has made the SLS group a wonderful place to conduct research.

I would like to thank the following people for their contributions to this thesis: Special thanks to Mike McCandless for reshaping the speech recognizer into a form easily accessible to all, and to my officemate Jane Chang, for answering all my questions. Helen Meng and Stephanie Seneff (and Jim Glass, of course) for proofreading my thesis. All members of the Spoken Language Systems group, for their friendly nature. Frank, Joe, and Susan, for making my experience at MIT an enjoyable and memorable one. My sister, mother, and father, for their love and support.
Contents

1 Introduction

1.1 Speech Knowledge for Phonetic Classification 10
1.2 Probabilistic Pattern Classification ... 12
1.3 Hierarchical Framework ... 14
 1.3.1 Hierarchical Structures ... 14
 1.3.2 Probabilistic Framework for the Hierarchy 17
1.4 Brief Summary of Previous Work .. 19
 1.4.1 Uses of Hierarchies .. 19
 1.4.2 Broad Class Partitions .. 20
1.5 Thesis Overview ... 22

2 Baseline Experiments ... 24

2.1 Background and System Overview .. 24
 2.1.1 Corpus .. 24
 2.1.2 System Components ... 25
2.2 Acoustic Modelling .. 29
2.3 Calibrating the Posterior Probabilities ... 31
2.4 Results .. 34
2.5 Chapter Summary ... 35

3 Hierarchical Phonetic Structures ... 37
3.1 A Hypothetical Hierarchy .. 37
3.2 Class-based Hierarchies .. 38
 3.2.1 Heterogeneous Feature Sets 41
3.3 Clustering based on confusability 46
 3.3.1 Properties of Strong Fricatives and Affricates 47
 3.3.2 Results and Discussion 49
 3.3.3 Multiple Class Membership 50
3.4 Chapter Summary .. 53

4 Pruning .. 54
 4.1 Results .. 55
 4.2 Chapter Summary .. 58

5 Conclusions and Future Directions 61
 5.1 Summary ... 61
 5.2 Future Directions .. 62

A Confusion Statistics ... 65
 A.1 SONORANT vs. OBSTRUENT vs. SILENT partition 65
List of Figures

1-1 Spectrogram of the utterance, “Two plus seven is less than ten.” . . . 11
1-2 Hypothetical Gaussian distributions for VOT for [b] and [p]. 13
1-3 Sample hierarchical classification of [§] phone. 16
1-4 Sample hierarchical classification of [§] phone. 16
2-1 Triangular Mel-scale Filters . 28
2-2 Baseline performance as the minimum number of data points is varied. 30
2-3 Histogram of probability estimates 32
2-4 Histogram of probability estimate ratio 32
2-5 Effect of varying β on probability estimates 34
2-6 Effect of varying β on baseline performance 35
2-7 Baseline performance as the number of cepstral coefficients is varied. 36
3-1 Manner based hierarchy ($Manner$ tree). 39
3-2 Hierarchy by voicing and speech (SOS tree) 39
3-3 Combined hierarchy ($3 LVL$ tree). 39
3-4 Vowel classification accuracy for feature subsets. 45
3-5 Tree targeting the [s] vs [z] distinction 48
3-6 Tree formed by clustering based on confusability 49
3-7 Variable realizations of the [§] phone. 51
4-1 Classification accuracy with pruning 56
4-2	Computation required, as percentage of baseline.	56
4-3	Classification accuracy after pruning all but the n-best class models.	57
4-4	Computation required, as percentage of baseline	59
4-5	Inclusion of correct model within top n scores	59
List of Tables

1.1 Distinctive feature representation. 21
2.1 Comparison of train and test sets. 25
2.2 IPA symbols for phones in the TIMIT corpus with example occurrences 26
2.3 39 phone classes used by Lee [10] 27
2.4 Phonetic classification accuracies 35
3.1 Broad classes and constituent phones. 38
3.2 Phone and class accuracies. 40
3.3 Phonetic accuracy across various phonetic subclasses. 42
3.4 16 vowels used in previous experiments. 43
3.5 Comparison of train and test sets for vowel studies. 43
3.6 Conditions and results for previous vowel classification experiments. 44
3.7 Vowel classification accuracies. 44
3.8 Phones in the vowel subset. 46
3.9 Performance for the hierarchy using F0 information. 46
3.10 Phonetic confusions among the strong fricatives. 48
3.11 Confusions among the SON, OBS, and SIL classes. 51
3.12 Phones with significant confusions. 52
3.13 Reassigned labels. 53
A.1 Phone confusions 66
Chapter 1

Introduction

Speech is produced by a series of closely coordinated articulatory gestures that result in a sequence of sounds called phones. Due to similarities in the production of these phones (e.g., in the manner or place of articulation), phonetic classes naturally emerge whose constituent phones exhibit common acoustic-phonetic properties [4]. Sonorant phones, for instance, are produced with a periodic excitation at the glottis and collectively exhibit a low frequency periodicity in the speech waveform. Phones in other classes, however, are characterized by different features, and require the use of different acoustic cues to distinguish. Stop consonants in particular have few traits in common with sonorant phones, and require a more temporal approach to signal analysis [28]. In this thesis, we explore a hierarchical feature representation in which different cues can be considered for unrelated classes of sounds, allowing the use of targetted features for making fine phonetic distinctions among confusable phones.

The effectiveness of the hierarchical framework is evaluated on the phonetic classification task. We choose this task because it isolates the problems associated with the feature representation and acoustic modelling from those of the segmentation, and does not rely on higher order language constraints. Though our task will end
with phonetic classification, we believe that improvements in this task will ultimately be reflected by improvements in phonetic recognition, which in turn should lead to higher accuracies at the word and sentence level [10].

1.1 Speech Knowledge for Phonetic Classification

In this thesis, much of the intuition for structuring the hierarchy is based on a knowledge of the acoustic features which define and differentiate classes of phones. We need speech-specific knowledge to guide us in creating the phonetic classes, as well as in optimizing the feature sets for use within each class. Even with automated procedures, it is important that we use speech knowledge in order to establish reasonable criteria for selecting the classes and features.

There are many different sources of speech knowledge available to us. We can consult models of speech production and perception to determine what is acoustically important and what is irrelevant, with the assumption that the auditory system is best matched to the decoding of the speech waveform. We can also study the waveform indirectly, in the form of a spectrogram, since the waveform must contain all information necessary for making phonetic distinctions, and the spectrogram, we presume, retains much of that information.

One observation we can make from reading spectrograms is that there are different types of acoustic cues associated with different types of speech sounds. In particular, not all acoustic features are equally important for a given phonetic distinction. We demonstrate this with the spectrogram in Figure 1-1.

We can see that certain portions of the spectrogram are characterized by formants (e.g., from 0.25 to 0.4 s, or from 1.0 to 1.1 s), indicating, in general, a vocalic segment. These formants are important for differentiating among phones in the vowel class. However, for the fricatives centered around 0.45 s and 1.2 s, extracting formant information would be uninformative, since there are no low frequency resonances to
Figure 1-1: Spectrogram of the utterance, “Two plus seven is less than ten.” The spectrogram displays the spectral components of the utterance against time. Instead, we might look at the low frequency energy, the high frequency energy cutoff, duration, formant transitions in adjacent vowels, or the intensity of frication.

As Zue, Cole, and others [29, 2] have demonstrated, we can use spectrograms to discover acoustic features for specific speech sounds. In particular, we can discover acoustic features for making fine distinctions between confusable phones such as [b] and [p], or [m] and [n]. This is necessary for good recognition, since many words share the same broad class representation but differ in one phone. For instance, when recognizing the word ‘bear,’ we may be unable to eliminate the confusable candidates such as ‘pear,’ or ‘beer,’ without higher order language constraints. A detailed inventory of acoustic cues would be crucial in such a circumstance.

In order to make the detailed decisions described above, we need to first classify speech segments into meaningful phonetic classes. We can use our knowledge of the
speech production process to select these classes. Studies indicate that phones with
the same manner of articulation, i.e., phones that are produced in similar ways, are
highly confusable [18]. For example, [m] and [n] both have similar spectral profiles
during the period of oral closure [5]. An examination of the formant transitions
surrounding the two phones is needed to distinguish them. Other class groupings are
worth investigating, based on place of articulation or confusability.

1.2 Probabilistic Pattern Classification

We would like to develop a mathematical framework in which observations in differ-
ent feature spaces, corresponding to sets of measurements uniquely defined for each
phonetic class, can be combined together so that meaningful comparisons can be
made across all phones. For this thesis, we use a probabilistic formulation based on
a maximum a posteriori (MAP) decision strategy. In this formulation, the goal of
phonetic classification is to determine the most probable phone given the acoustic
feature vector for the speech segment. If we represent the phone set as \{a_i\}, and the
n-dimensional acoustic feature vector as \(\{ \bar{f} = f_0, f_1, f_2, \ldots, f_{n-1} \} \), we can express the
problem mathematically as \(\text{arg max}_i \Pr(a_i \mid \bar{f}) \).

In its simplest form, the MAP decision strategy can be used to decide between two
hypotheses given a single measurement. For example, suppose we wish to classify a
speech segment as either a [b] or a [p] using voice onset time (VOT). Figure 1-2 shows
the probability distributions of the two phones as might be expected using the VOT
attribute.

For a given VOT measurement, the acoustic score \(\Pr(VOT \mid H_i) \) under each
hypothesis \(H_i \) (\(i = 0, 1 \)) is determined, and then each score is scaled by a factor
proportional to its prior probability to obtain the posterior probabilities \(\Pr(H_i \mid \).

12
VOT). The exact relationship is described by Bayes’ rule:

\[Pr(H_i \mid VOT) = \frac{Pr(VOT \mid H_i)Pr(H_i)}{Pr(VOT)} \] (1.1)

The higher of the two posteriors is selected as the score representing the correct hypothesis. In practice, since the denominator term in Equation 1.1 is identical for every \(H_i \), it can be disregarded, so that the decision rule reduces to choosing \(H_i \) that satisfies:

\[\arg \max_i Pr(VOT \mid H_i)Pr(H_i) \] (1.2)

Note that if the a priori probabilities are the same, (that is, if \(Pr(H_1) = Pr(H_2) \)), then the decision rule reduces to a maximum likelihood decision, in which the greater of the two likelihood terms is chosen as the correct hypothesis.

In this thesis, we use mixtures of Gaussians to approximate the underlying distribution of the phones [22], so that the likelihood for any given feature \(f \) is computed as,

\[Pr(f \mid H_i) = \sum_j Pr(f \mid m_j, H_i)Pr(m_j \mid H_i) \] (1.3)

where \(m_j \) represents the \(j^{th} \) Gaussian mixture. The likelihood associated with each mixture is summed to determine the total likelihood for that feature, which is scaled
as explained above to produce the phone’s posterior.

1.3 Hierarchical Framework

In the baseline configuration for classification, the entire set of features is used for classifying all speech sounds. One of the problems with a uniform feature vector is that not all features are relevant to identifying any one particular phone, as is the case when examining VOT when the segment is a vowel. At such times, the irrelevant features introduce the equivalent of noise into the feature space, since the likelihoods associated with these features are not indicative of the underlying phone. In some cases, the contributions from all extraneous features may even corrupt the overall phone posterior, so that the wrong phone is hypothesized. An alternative framework is provided by a hierarchy. In a hierarchy, we can select a subset of meaningful features for each phonetic decision, thus minimizing the dimensionality of the feature space and possibly increasing the robustness of the acoustic models at each node.

It is important to note that the performance of the hierarchy is as much affected by the choice of phonetic classes as by the choice of features for each class, since it is the class structure that determines the types of phonetic distinctions which must be made. Thus, in addition to optimizing features for each node, we must consider the effectiveness of different phone groupings.

1.3.1 Hierarchical Structures

Meaningful classes will ensure both a compact feature representation and efficient acoustic modelling, both of which are important factors affecting the performance of the hierarchy. We can conceive of several different ways to arrive at a reasonable tree structure. The simplest method is to select classes manually, based on acoustic-phonetic knowledge or confusion statistics. Intuitively, we would like the more robust decisions to occur first, since later decisions will be influenced by these parent nodes.
Accordingly, we reserve the most confusable decisions for the leaf nodes, where we discriminate among a much smaller set of acoustically similar phones. Figures 1-3 and 1-4 show sample tree structures which might arise with these objectives in mind.

The darkened line in Figure 1-3 indicates the correct path for classifying a [8] phone. Note that since phones are mapped to individual classes, there is only one path that correctly classifies each speech segment. In this case, the highest scoring path must include either the *OBSTRUENT* and *STRONG FRICATIVE* classes.

Alternatively, we can allow phones to belong to multiple phonetic classes. Though we can theoretically give all phones membership to all classes, this would be computationally taxing and probably unwarranted, since a phone like [8] will rarely get confused with a phonetic class consisting of vowel tokens. A more reasonable approach is to select just those phones which are confusable with more than one phonetic class, and extend membership for those phones. Probability scores are computed for all possible paths, and then summed to arrive at an overall score.

As illustrated in Figure 1-4, we can, under this scheme, allow for the possibility that the [8] might be realized with little energy, and provide a means for scoring the [8] as both a *STRONG* or *WEAK* fricative. This method acknowledges that a phone may have more than one group of confusable partners. For instance, the [8] is confusable with [z] at times and [θ] at other times. Using separate paths, different features can be used for making these two distinctions. (Similarly, multiple branches can represent the same set of phones, to account for the fact that different cues can independently indicate the presence of a phone. The difference between an [s] and a [z] might be voicing on the one hand, and duration on the other. A simple threshold might suffice in this case).

Automatic methods for clustering phones into classes would presumably lead to trees with the same overall structure as those created manually. That is, given our knowledge of acoustic-phonetics, and the empirical evidence to guide the selection of confusable phone sets, it is unlikely that automatic procedures for defining pho-
Figure 1-3: Sample hierarchical classification of [ʂ] phone.

Figure 1-4: Sample hierarchical classification of [ʂ] phone.
netic classes will result in a significantly different tree structure. The more valuable application of automatic procedures might be in developing features for the classes.

A more involved method for developing a hierarchy is to start with a list of features, derived either manually or automatically, and allow our choice of features to dictate the partitioning of the phones into natural phonetic classes. Thus, for instance, we could use a voicing feature and observe the phones divide into SONORANT and OBSTRUENT classes. This appears to be a natural way to partition phones, since phones may be characterized by different bundles of features at different times, and thus belong to different phonetic classes on different occasions. Then, we would be less susceptible to modelling errors caused by inconsistencies in the phonetic realizations, since the acoustic models would be trained only on well-formed tokens.

1.3.2 Probabilistic Framework for the Hierarchy

It was stated that the goal of phonetic classification is to determine \(\arg \max_{i} Pr(\alpha_{i} \mid \bar{f}) \). In the hierarchical approach, we are further interested in the probability that the phone belongs to a particular broad class \(C_{j} \) given the acoustic data, expressed as \(Pr(\alpha_{i} \in C_{j} \mid \bar{f}) \). For compactness, we will express this simply as \(Pr(C_{j} \mid \bar{f}) \). If the classes are collectively exhaustive, we can expand \(Pr(\alpha_{i} \mid \bar{f}) \) into the equivalent expression:

\[
Pr(\alpha_{i} \mid \bar{f}) = \sum_{j} Pr(\alpha_{i} \mid C_{j}, \bar{f}) Pr(C_{j} \mid \bar{f})
\]

(1.4)

Equation 1.4 describes the hierarchical scheme depicted in Figure 1-4, in which phones are members of multiple classes, and the overall phone posteriors are computed as the sum of all path scores.

If, on the other hand, we assume that each phone belongs to a single class, the
summation in equation (1.4) can be discarded, leaving:

\[Pr(\alpha_i \mid \vec{f}) = Pr(\alpha_i \mid C_j, \vec{f}) Pr(C_j \mid \vec{f}) \]

(1.5)

where \(C_j \) is the assigned class for phone \(\alpha_i \). This is the simplified case depicted in Figure 1-3. The framework can be readily extended to additional stages. Introducing a subclass \(C_k \) of class \(C_j \) to the tree, the expression in (1.5) becomes:

\[Pr(\alpha_i \mid \vec{f}) = Pr(\alpha_i \mid C_k, \vec{f}) Pr(C_k \mid C_j, \vec{f}) Pr(C_j \mid \vec{f}) \]

(1.6)

We now make the assumption that each class probability can be more accurately derived using a subset of features contained in \(\vec{f} \). These sub-vectors, which we will denote using \(\{f_a, f_b, \ldots\} \), together constitute \(\vec{f} \) such that \(f_a \cup f_b \cup \ldots = \vec{f} \). Then, we are left with:

\[Pr(C_i \mid \vec{f}) = Pr(C_i \mid f_a, \vec{f}_b, \ldots) = \frac{Pr(C_i f_a, f_b, \ldots)}{Pr(f_a, f_b, \ldots)} \]

(1.7)

\[\approx \frac{Pr(C_i f_a) Pr(f_b, f_c, \ldots)}{Pr(f_a) Pr(f_b, f_c, \ldots)} = Pr(C_i \mid f_a) \]

(1.8)

Note that we must assume independence between feature subsets in order to justify the term expansion between equations 1.7 and 1.8.

Finally, since each node of the tree uses a different subset of the feature vector, equation (1.5) becomes:

\[Pr(\alpha_i \mid \vec{f}) \approx Pr(\alpha_i \mid C_j, f_a) Pr(C_j \mid f_b) \]

(1.9)

Bayes’ rule is applied to each of the terms on the right hand side to rewrite the
equation in a more convenient form. Each term is expanded as follows:

\[
Pr(C_j | f_a) = \frac{Pr(f_a | C_j)Pr(C_j)}{Pr(f_a)}
\]

(1.10)

where \(Pr(f_a) = \sum_j Pr(f_a | C_j)Pr(C_j) \)

(1.11)

The calculation is identical at the leaf nodes, since phones may be thought of as single member classes.

1.4 Brief Summary of Previous Work

1.4.1 Uses of Hierarchies

Hierarchies incorporating speech knowledge have been developed for various speech related tasks. In the early 1980’s, FEATURE, an alphabet recognition system developed by Cole et al [2], demonstrated the effectiveness of using speech knowledge within a hierarchical framework. The system relied on manually chosen sets of features to classify speech segments into successively smaller classes of letters, computing posterior probabilities at each node of the tree. The a posteriori probability for each letter was obtained by chaining together all of its prior class probabilities, and the letter with the maximum posterior probability was the one hypothesized.

In this thesis, we adopt a similar approach, but apply our hierarchy to the identification of phones rather than isolated letters. Using phones as the basic recognition units allows the hierarchy to be applied to other tasks such as word recognition. However, because we have generalized the problem, there are fewer constraints and more variabilities to account for in classifying each segment. For instance, in phonetic classification, there is a larger inventory of sounds. Furthermore, we must now account for co-articulation across segments, since one phone can affect the characteristics of its neighbors.
In 1985, Leung [15] developed a decision tree based on broad classes for use in automatically aligning a speech waveform with its phonetic transcription. He used a binary classifier to classify speech segments into one of five broad phonetic classes under the premise that an initial broad segmentation, insofar as it is both reliable and constraining, could serve as an anchor point around which the more confusable segments could be aligned. His use of a binary decision tree was motivated by the increased flexibility with which he could partition the feature space, an advantage inherent in any hierarchical classifier. One significant difference, however, between Leung's system and the hierarchy we investigate is that we assign likelihoods to each broad class, whereas Leung makes a hard decision at each node, resulting in a single class being proposed. This suffices for his task, which only requires that a broad class be hypothesized, but since we require further classification into phones, some measure of relative likelihoods must be incorporated into our hierarchy. This allows us to analyze all acoustic data before committing to a particular phonetic class.

In 1992, Grayden and Scordilis [7] developed a hierarchy for classifying obstruent phones in continuous speech. They used Time-Delay Neural Networks for most class decisions (a simple threshold on low frequency energy was first used to eliminate sonorants). Their system demonstrates the feasibility of applying hierarchies to classification at the phone level. In this thesis, we extend classification to include all phones and use mixtures of full covariance Gaussian classifiers.

1.4.2 Broad Class Partitions

Since a broad class representation is a natural intermediate stage in our tree structure, the constraints provided by such a representation are of interest to us and lend appeal to the development of a class-based hierarchy. Various studies in the past have been related to partitioning phones into classes. In 1982, Shipman and Zue [26] demonstrated that a broad class representation based on manner of articulation could pare a 20,000 word vocabulary down to a manageable set of candidates. Studies had
shown that perceptual confusions were common among phones within a manner of articulation class [18].

Alternative class partitions based on distinctive features have also emerged. Distinctive features are a way of representing phones using a set of binary indicators that correspond to the minimal difference between phones [16]. Table 1.1 lists some vowels and their distinctive features.

Stevens [27] has placed these features in a hierarchy since certain features are more easily identified once other features are known.

An interesting property of distinctive features is that since they can discriminate between two phones that are minimally distant, they are equally suited for making broad and fine phonetic distinctions. For instance, we can partition the vowels in Table 1.1 into two classes of sounds using the feature tense, and then use combinations of the other features to discriminate further among the candidates. However, we can also first eliminate all phones except for [i] and [I] using all features except for the feature tense, and then use tense to make the final distinction between the two. This property makes distinctive features both simple and powerful.

In 1989, Meng [16] performed vowel classification experiments using an MLP classifier in which the spectral representation was mapped to an intermediate distinctive feature representation before accessing the lexicon. If the features were assigned binary values then performance dropped, as this required all distinctive features to be

<table>
<thead>
<tr>
<th>Feature</th>
<th>i</th>
<th>I</th>
<th>u</th>
<th>e</th>
<th>o</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>low</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>back</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>labial</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>tense</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1.1: Distinctive feature representation.
correctly determined. However, if the distinctive feature scores (i.e., the probability estimates for the distinctive features, obtained using an MLP classifier) were fed into a second MLP, classification accuracy was comparable to that of the bare spectral representation.

The mapping to distinctive features can be viewed as a hierarchy in which each node generates a score for a different feature. Assigning the features binary values equates to making a hard decision at each node, which agrees intuitively with the decrease in performance. Her work indicates that an intermediate representation can potentially offer better performance, but it requires more careful consideration for the acoustic attributes before improvements can be demonstrated.

1.5 Thesis Overview

This thesis attempts demonstrate the feasibility of a hierarchical feature representation. The framework for scoring is based on a MAP decision rule that allows fair comparison across disjoint observation spaces. Initial experiments in chapter 2 establish a baseline system within that framework. The behavior of the probability estimates is observed to ensure that the MAP framework is functional. A correction factor is introduced to ensure healthy probability estimates using the baseline feature vector.

In chapter 3, we evaluate hierarchical structures, and investigate methods for raising classification scores. We begin with manually determined trees, and demonstrate the feasibility of heterogeneous feature sets for different classes of sounds. Specifically, we increase vowel classification scores by augmenting the baseline feature vector with a measure of pitch, and then demonstrate that these improvements translate into overall classification gains.

We also explore a bottom-up clustering approach, in which confusable sounds are merged into classes. In order to constrain the phone space, this experiment is
performed only on the strong fricatives and affricates. Again, we use heterogeneous feature sets (this time subsets of the baseline feature vector) and demonstrate that improvements can be made overall.

In Chapter 4, we study the use of pruning thresholds to save computation. Since more robust decisions are made at the broad class level, we can reliably eliminate subsections of the hierarchy for which the broad class model scores poorly. This has implications for lexical access and fastmatch.

Chapter 5 summarizes the work presented in this thesis and suggests directions for future work.
Chapter 2

Baseline Experiments

In this chapter, we resolve modelling issues associated with the hierarchy, and incorporate the constraints in evaluating the baseline. In addition, we assess the effectiveness of the MAP framework in computing posterior probabilities by performing experiments with the baseline system.

2.1 Background and System Overview

2.1.1 Corpus

Experiments are conducted on the publicly available TIMIT acoustic-phonetic corpus, which has been widely used for phonetic classification and recognition studies [11]. The TIMIT database provides speaker-independent, continuous-speech from both male and female speakers, \(^1 \) together with time-aligned phonetic transcriptions of all utterances. We use 8 sentences from each speaker, of which 3, the ‘si’ sentences, are phonetically diverse and unique to a given speaker. The remaining 5 ‘sx’ sentences

\(^1\)The database represents 8 dialect regions of American English. 70% of the speakers are male, and 30% female.
are phonetically compact and are repeated by other speakers. Table 2.1 lists the sets used or cited in this thesis. Unless otherwise noted, test accuracies are reported on the NIST TEST set using models trained from NIST TRAIN. All optimization are performed on NIST DEV, which is configured such that there is no overlap among utterances in DEV and TEST. The train set MIT TRAIN 2 has been developed for simplicity and consists of all NIST utterances excluding those in MIT TEST. It is nearly identical to MIT TRAIN, but contains 13 additional speakers.

<table>
<thead>
<tr>
<th>SET</th>
<th>#SPEAKERS</th>
<th>#UTTERANCES</th>
<th>#TOKENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST TRAIN</td>
<td>462</td>
<td>3,696 sz, si</td>
<td>142,910</td>
</tr>
<tr>
<td>NIST TEST</td>
<td>118</td>
<td>944 sz, si</td>
<td>35,697</td>
</tr>
<tr>
<td>NIST DEV</td>
<td>50</td>
<td>400 sz, si</td>
<td>15,057</td>
</tr>
<tr>
<td>MIT TRAIN</td>
<td>567</td>
<td>4,536 sz, si</td>
<td>175,101</td>
</tr>
<tr>
<td>MIT TRAIN 2</td>
<td>580</td>
<td>4,640 sz, si</td>
<td>133,988</td>
</tr>
</tbody>
</table>

Table 2.1: Comparison of train and test sets.

The phonetic transcriptions in the TIMIT database specify 61 different phone labels, listed in Table 2.2. For testing, we collapse these labels to a set of 39 classes developed by Lee [12], as is commonly done in reporting accuracies. The collapsed set is shown in Table 2.3. In addition, glottal stops are ignored, both in accordance with Lee and because the glottal stops in particular are difficult to group with other phones.

2.1.2 System Components

For this thesis, since we deal only with the task of phonetic classification, we are only interested in the front end components of recognition. In these early stages, the acoustic signal is transformed into a signal representation which holds the signal’s phonetic information in a more compact form. A feature vector is then computed from this representation for each segment of speech. Finally, the Bayesian classifier
<table>
<thead>
<tr>
<th>IPA</th>
<th>TIMIT</th>
<th>Example</th>
<th>IPA</th>
<th>TIMIT</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>aa</td>
<td>bob</td>
<td>i</td>
<td>ix</td>
<td>debit</td>
</tr>
<tr>
<td>Æ</td>
<td>ae</td>
<td>bat</td>
<td>iy</td>
<td>iy</td>
<td>beet</td>
</tr>
<tr>
<td>ñ</td>
<td>ah</td>
<td>but</td>
<td>j</td>
<td>jh</td>
<td>joke</td>
</tr>
<tr>
<td>o</td>
<td>ao</td>
<td>bought</td>
<td>k</td>
<td>kcl</td>
<td>k closure</td>
</tr>
<tr>
<td>ò</td>
<td>aw</td>
<td>bout</td>
<td>k̂</td>
<td>kcl</td>
<td>k closure</td>
</tr>
<tr>
<td>ð</td>
<td>ax</td>
<td>about</td>
<td>l</td>
<td>l</td>
<td>lay</td>
</tr>
<tr>
<td>ðh</td>
<td>ax-h</td>
<td>suspect</td>
<td>m</td>
<td>m</td>
<td>mom</td>
</tr>
<tr>
<td>ðr</td>
<td>axr</td>
<td>butter</td>
<td>n</td>
<td>n</td>
<td>noon</td>
</tr>
<tr>
<td>ðy</td>
<td>ay</td>
<td>bite</td>
<td>ng</td>
<td>ng</td>
<td>sing</td>
</tr>
<tr>
<td>ð</td>
<td>b</td>
<td>bee</td>
<td>ñ</td>
<td>nx</td>
<td>winner</td>
</tr>
<tr>
<td>ðp</td>
<td>bcl</td>
<td>b closure</td>
<td>o</td>
<td>ow</td>
<td>boat</td>
</tr>
<tr>
<td>ðc</td>
<td>ch</td>
<td>choke</td>
<td>ð</td>
<td>oy</td>
<td>boy</td>
</tr>
<tr>
<td>ð</td>
<td>day</td>
<td></td>
<td>p</td>
<td>p</td>
<td>pea</td>
</tr>
<tr>
<td>ðp</td>
<td>dcl</td>
<td>d closure</td>
<td>ð</td>
<td>pau</td>
<td>pause</td>
</tr>
<tr>
<td>ð</td>
<td>dh</td>
<td>then</td>
<td>ðp</td>
<td>pcl</td>
<td>p closure</td>
</tr>
<tr>
<td>ð</td>
<td>dx</td>
<td>muddy</td>
<td>ð</td>
<td>q</td>
<td>bat</td>
</tr>
<tr>
<td>ð</td>
<td>eh</td>
<td>bet</td>
<td>r</td>
<td>r</td>
<td>ray</td>
</tr>
<tr>
<td>ð</td>
<td>el</td>
<td>bottle</td>
<td>s</td>
<td>s</td>
<td>sea</td>
</tr>
<tr>
<td>ð</td>
<td>em</td>
<td>bottom</td>
<td>ð</td>
<td>sh</td>
<td>she</td>
</tr>
<tr>
<td>ð</td>
<td>en</td>
<td>button</td>
<td>t</td>
<td>t</td>
<td>tea</td>
</tr>
<tr>
<td>ð</td>
<td>eng</td>
<td>Washington</td>
<td>ð</td>
<td>tcl</td>
<td>t closure</td>
</tr>
<tr>
<td>ð</td>
<td>epi</td>
<td>epenthetic silence</td>
<td>ð</td>
<td>th</td>
<td>thin</td>
</tr>
<tr>
<td>ð</td>
<td>er</td>
<td>bird</td>
<td>ð</td>
<td>uh</td>
<td>book</td>
</tr>
<tr>
<td>ð</td>
<td>ey</td>
<td>bait</td>
<td>ð</td>
<td>uw</td>
<td>boot</td>
</tr>
<tr>
<td>ð</td>
<td>f</td>
<td>fin</td>
<td>ð</td>
<td>ux</td>
<td>toot</td>
</tr>
<tr>
<td>ð</td>
<td>g</td>
<td>gay</td>
<td>v</td>
<td>v</td>
<td>van</td>
</tr>
<tr>
<td>ð</td>
<td>gcl</td>
<td>g closure</td>
<td>w</td>
<td>w</td>
<td>way</td>
</tr>
<tr>
<td>ð</td>
<td>hh</td>
<td>hay</td>
<td>y</td>
<td>y</td>
<td>yacht</td>
</tr>
<tr>
<td>ð</td>
<td>hv</td>
<td>ahead</td>
<td>z</td>
<td>z</td>
<td>zone</td>
</tr>
<tr>
<td>ð</td>
<td>ih</td>
<td>bit</td>
<td>ð</td>
<td>zh</td>
<td>azure</td>
</tr>
<tr>
<td>ð</td>
<td>h#</td>
<td>utterance initial and final silence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2: IPA symbols for phones in the TIMIT corpus with example occurrences
Table 2.3: 39 phone classes used by Lee [10]

1	a, o	14	l, l	27	ý
2	æ	15	m, m	28	p
3	ι, ù, ùh	16	n, n, ŋ	29	r
4	ò	17	γ, η	30	s
5	æ, ì	18	e	31	ś, ź
6	ì	19	f	32	t
7	b	20	g	33	ŋ
8	b, p, c, t, g, k	21	h, h	34	o
9	c	22	i, i	35	u, ũ
10	d	23	i	36	v
11	ð	24	j	37	w
12	r	25	k	38	y
13	é	26	o	39	z

compares acoustic models with this feature vector and selects the most likely phone. Below, we summarize the pertinent aspects of this process.

Signal Representation

The baseline system uses a Mel-based signal representation that is characterized by a warping of the frequency axis to approximate the frequency response of the ear [17]. First, the speech waveform is sampled at 16 kHz and windowed with a 20.5 ms Hamming window advanced at a 5 ms frame rate. The 20.5 ms window size was determined to be optimal through preliminary experiments using a baseline configuration roughly equivalent to the one used in this thesis. A power spectrum is then computed for each segment by squaring the 256 Fourier coefficients obtained from a simple DFT on the windowed speech samples. A set of 40 triangular filters is used to compress the 256 power spectral coefficients into 40 Mel-frequency spectral coefficients (MFSC) [16]. As Figure 2-1 shows, these filters are spaced further apart at high frequencies since the ear cannot discriminate as well among high frequency sounds. Finally, a
cosine transform converts the MFSC to 40 Mel-frequency cepstral coefficients, the first 12 of which are used in the feature vector.

Feature Vector

The baseline feature vector consists of 12 MFCC’s averaged across thirds of the segment, as well as MFCC derivatives taken at the start and end of the segment and the log of the segment duration. 12 MFCC’s was found to be optimal for the classification task on the NIST DEV set (see Figure 2-7).
2.2 Acoustic Modelling

All acoustic models use mixtures of full covariance Gaussians \(^2\) [3]. This means that each phone is modelled by several (full covariance) Gaussian distributions, where the multivariate density for a Gaussian is given by:

\[
Pr(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp[-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)]
\]

(2.1)

where \(\mu\) is the mean vector, \(n\) is the dimensionality of the feature space, and \(\Sigma\) is the covariance matrix. Unlike diagonal Gaussian models, which ignore all non-diagonal elements of \(\Sigma\), full covariance Gaussian models capture important cross-covariance relations among the features in the feature vector. Although they require large amounts of data to train, the broad phonetic classes modeled in the hierarchy are well suited for this need, since they can pool all data from phones within that class.

To maintain consistency in modelling across both phones and phonetic classes (and to ensure that the mixtures may be adequately trained for classification), we set a constraint on the minimum number of data points necessary to train each mixture Gaussian. This naturally sets a ceiling on the maximum number of mixtures we can use for each model, ensuring that each class model uses roughly as many mixtures as its constituent phone models use in total. For instance, if phones \(\alpha_1\), \(\alpha_2\), and \(\alpha_3\) have 1000, 2000, and 3000 data points for training, respectively, and the minimum is set to 1000, then \(\alpha_1\) will be modelled by a single mixture Gaussian, \(\alpha_2\) by 2 mixtures, and \(\alpha_3\) by 3 mixtures. The class model representing the three phones would be entitled to 6 mixtures.

An optimal value for the minimum number of data points is determined using the baseline configuration, i.e., with a single stage classification using a uniform feature vector. Results are shown in Figure 2-2 as determined on the development set.

\(^2\)The Gaussians are trained using k-means clustering.
There is a clear peak between 750 and 1000, with performance declining on either side. Above 3000 data points, only one full covariance Gaussian is being trained for most phones, so classification accuracy remains constant. Below 200 points, accuracy decreases dramatically.

The highest score is obtained with a minimum of 900 data points per Gaussian. The corresponding number of mixtures used for each phone varies between 1 and 8. In subsequent experiments with phonetic classes, we assume 900 minimum data points to be sufficiently optimal, so that optimizations concerning the number of mixtures for the phonetic class models will not be made.

Figure 2-2: Baseline performance as the minimum number of data points is varied.
2.3 Calibrating the Posterior Probabilities

Preliminary experiments with the baseline system have demonstrated that the phone posterior probability scores obtained using the MAP framework are not accurate indications of the actual probabilities of the phones given the acoustic data. In order to correct for these mis-estimates, we observe their behavior using histograms of the estimates across all tokens in the NIST development set. Specifically, we keep a count of the probabilities estimated when the correct phone model is used to evaluate the speech segment, as well as when all phone models (including the correct one) are used. Figure 2-3 shows these counts.

Each plot represents a histogram $H(x)$ for probabilities x between 0 and 1. The solid line can be explained as follows. If we let α_s represent the correct phone for a given speech segment S, then $H_{\text{solid}}(x) = Cnt\{Pr(\alpha_s | S) = x\}$, where the term on the right hand side represents the number of times that the correct phone model hypothesizes a probability estimate of x. The $H_{\text{solid}}(x)$ is appropriately high for probabilities x near 1, but it is also high for probabilities near zero. This is a clear indication that not all of the features used for evaluating the segments are meaningful. It could be that there are too many extraneous features generating low likelihoods. A more efficient feature vector might alleviate this problem.

Similarly, the histogram drawn with the dotted line represents the count across all phones, not just the correct one. So, $H_{\text{dotted}}(x) = Cnt\{Pr(\alpha_i | S) = x\}$ for all i, where $\{\alpha_i\}$ represents the phone set. Since $H_{\text{dotted}}(x)$ represent both correct and incorrect phone probability estimates, it should closely follow $H_{\text{solid}}(x)$ for high probabilities, but have most of its mass at the low probabilities. This is approximately indicated in the figure.

If we plot the ratio of the correct histogram to the total, we measure the relationship between our estimated posterior and the experimentally observed posterior (Figure 2-4). Ideally, the slope should be 1:1, representing a linear correspondence
Figure 2-3: Histogram of probability estimates
Probability estimate counts using the correct phone model (solid line) and all phone models (dotted line).

Figure 2-4: Histogram of probability estimate ratio
Number of occurrences of a given probability estimate using the correct phone model, scaled by the number of occurrences of that probability estimate by all models.
between estimated and actual probabilities. We can see that instead, $\hat{Pr}(\alpha | \bar{f})$ generally underestimates $Pr(\alpha | \bar{f})$.

One remedy for this problem is to alter the amount of influence given to the phone’s a priori probability, relative to the phone’s acoustic score. Specifically, the probability estimates have been computed using Bayes’ rule:

$$Pr(\alpha_j | \bar{f}) = \frac{\hat{Pr}(\bar{f} | \alpha_j) \hat{Pr}(\alpha_j)}{\sum_j \hat{Pr}(\bar{f} | \alpha_j) \hat{Pr}(\alpha_j)}$$ (2.2)

In the numerator, we have a probability estimate based on the extracted feature vector (the left term) and an a priori probability estimate. By weighting the likelihood term, as shown in equation (2.3), with an exponential scaling factor β, we can readjust the probability estimates to more closely approximate the actual probabilities. Because the denominator term under the expansion acts simply as a scaling factor, we can ignore it in this discussion.

$$Pr(\bar{f} | \alpha_j) \approx [\hat{Pr}(\bar{f} | \alpha_j)]^\beta$$ (2.3)

The effect of β on the accuracy of the probability estimates can be seen in the plots of figure (2-5). For β near 0.3, we have a near linear relationship between $\hat{Pr}(\alpha | \bar{f})$ and $Pr(\alpha | \bar{f})$. For lower and higher values of β, $\hat{Pr}(\alpha | \bar{f})$ is a warped representation of $Pr(\alpha | \bar{f})$. The plot in figure (2-4) corresponds to a β of 1, i.e., an unweighted estimate. The actual classification accuracies (on the NIST development set) using the exponential scaling of acoustic scores are shown in figure 2-6. As we would expect, the higher classification scores correspond to the plots that have a slope near 1, indicating some consistency between estimated and actual probabilities. The highest accuracy is achieved with $\beta = 0.25$. This value for β was used for scoring all phone models.
The three graphs represent, from left to right, $\beta = 0.2, 0.3$, and 0.6. The x-axis represents the probability estimated, and the y-axis the ratio of the good histogram to the total histogram for a given probability.

2.4 Results

We begin by varying the number of cepstral coefficients in the feature vector in order to obtain an optimal baseline system. The classification accuracies obtained on the NIST development set are plotted in Figure 2-7. Using these results, we will set the baseline system to use 12 MFCC’s. Test accuracies obtained with this value on various train and test sets are listed in Table 2.4. These scores are competitive with others reported in the literature.

Goldenthal [6] reports 75.2% (MIT TRAIN and MIT TEST sets) using a superset of the features used in this study. He uses statistical trajectory models to capture the dynamic behavior of the features across the speech segment. When gender specific models are included, Goldenthal achieves 76.8%. Leung et al reports 78.0% using a perceptually based linear prediction signal representation with an MLP classifier [13]. Though their train and test sets are different from those used in this thesis or by Goldenthal, they consistently obtain better classification performance with an MLP using a PLP representation, over a Gaussian classifier using MFCC’s. With conditions similar to the baseline for this thesis (MFCC’s, Gaussian classifier), they achieve 75.3% accuracy.
2.5 Chapter Summary

In this chapter, we have established an optimal baseline system that operates within the MAP probabilistic framework. We have placed a constraint on the allowable number of Gaussian mixtures for each phone model, ensuring that fair comparisons can be made with the class models in the following chapter. In addition, we have intro-

<table>
<thead>
<tr>
<th>TRAIN SET</th>
<th>TEST SET</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST TRAIN</td>
<td>NIST DEV</td>
<td>77.3%</td>
</tr>
<tr>
<td>NIST TRAIN</td>
<td>NIST TEST</td>
<td>76.4%</td>
</tr>
<tr>
<td>MIT TRAIN 2</td>
<td>MIT TEST</td>
<td>77.5%</td>
</tr>
</tbody>
</table>

Table 2.4: Phonetic classification accuracies
duced a warping factor in computing the phone likelihoods in order to produce more accurate probability estimates. Finally, we have optimized the number of cepstral coefficients given all previous optimizations. The resulting baseline is competitive with others using context-independent models.
Chapter 3

Hierarchical Phonetic Structures

In this chapter, intermediate phonetic class models are introduced to the baseline configuration. Probability scores based on these phonetic classes are incorporated into the overall posterior phone probabilities, and the effectiveness of the MAP framework is assessed in relation to a hierarchical structure. Different methods for incorporating heterogeneous feature sets into the hierarchy are also investigated.

3.1 A Hypothetical Hierarchy

It is important to note that baseline performance can always be achieved in any hierarchical framework, though with more computation. Since the baseline deals only with individual phones, the class probabilities can be computed as the sum of the probabilities of its constituent phones, \(Pr(C \mid \bar{f}) = \sum_j Pr(\alpha_j \mid f) \) for all \(\alpha_j \in C \), and then the phone probabilities normalized so that within any given class they sum to 1. The overall posterior phone probability that results from chaining the probabilities is simply the original baseline phone probability, so the performance of this hierarchy is identical to that of the baseline. But if we could somehow improve the accuracy of
the probability estimates at any given node, then performance would increase.

For the sake of computation, it is desirable to model each class with a single acoustic model formed as the union of its constituent phones. Then, a single pass can be used to derive a score for each class, as opposed to summing scores from all phones. Given this equivalent framework, the feature vector can be adapted at any node to allow for better discrimination among the candidates at that node, thereby boosting overall accuracy.

3.2 Class-based Hierarchies

In this section, we develop more practical hierarchies in which the phonetic classes are selected manually. Figures 3-1, 3-2, and 3-3 show the tree structures and the classes relevant to each. Table 3.1 lists the constituent phones of each class.

<table>
<thead>
<tr>
<th>Phonetic Class</th>
<th>Constituent Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOWEL</td>
<td>a, æ, ʌ, ɔ, ɒ, ɔː, ɑ, ɑː, e, e</td>
</tr>
<tr>
<td>NASAL</td>
<td>i, ɪ, ə, ʊ, ʊ̃, ʊ̂, ʌ, ʌ̃, ʌ̂, і, і, р</td>
</tr>
<tr>
<td>STRONG FRICATIVE</td>
<td>й, ј, s, š, z, z̆</td>
</tr>
<tr>
<td>WEAK FRICATIVE</td>
<td>ʃ, h, Ŵ, Ŵ̃, Ŵ̂, v</td>
</tr>
<tr>
<td>STOP</td>
<td>b, d, ɡ, k, p, t</td>
</tr>
<tr>
<td>SILENT</td>
<td>b̆, d̆, ɡ̆, k̆, p̆, t̆</td>
</tr>
<tr>
<td>SONORANT</td>
<td>VOWEL + NASAL</td>
</tr>
<tr>
<td>OBSTRUENT</td>
<td>STRONG FRIC + WEAK FRIC + STOP</td>
</tr>
</tbody>
</table>

Table 3.1: Broad classes and constituent phones.

Note that for all hierarchies, the leaf nodes, corresponding to individual phones, have not been included. The first hierarchy is based on manner of articulation classes. These classes are appealing because they contain phones which have been shown to be perceptually confusable [18], and because they are highly constraining in terms of lexical access [9]. The former agrees with our intuitive notion that similar phones
Figure 3-1: Manner based hierarchy (Manner tree).

Figure 3-2: Hierarchy by voicing and speech (SOS tree)

Figure 3-3: Combined hierarchy (3 LVL tree).
should be tagged for more detailed analysis, and the latter is appealing in a practical sense. Furthermore, manner classes are known to be relatively invariant across speakers, making them a good first-pass choice to establish the context for further discrimination.

The second hierarchy uses a more general class partition based on voicing and frication. It distinguishes sonorant phones from obstruent or silent phones. It is a simplistic tree that we will use in our study of overlapping classes. The third tree is simply a union of the two previous.

We would like to be able to compare classification results at the class level for both the hierarchies and the baseline. For the hierarchies, the class score is simply the result of classification using the relevant broad class models. For the baseline, the class score is derived from the phone scores as explained above.

Results and Discussion

The classification accuracies obtained (on the NIST TEST set) at both the phone and broad class levels with the three hierarchies are shown in Table 3.2, together with baseline scores for comparable conditions.

<table>
<thead>
<tr>
<th></th>
<th>Overall accuracy</th>
<th>Manner (5 classes)</th>
<th>Son/Obs/Sil (3 classes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td>76.4%</td>
<td>95.3%</td>
<td>97.6%</td>
</tr>
<tr>
<td>MANNER</td>
<td>76.3%</td>
<td>95.2%</td>
<td>-</td>
</tr>
<tr>
<td>SOS</td>
<td>76.3%</td>
<td>-</td>
<td>97.4%</td>
</tr>
<tr>
<td>3 LVL</td>
<td>76.2%</td>
<td>94.9%</td>
<td>97.4%</td>
</tr>
</tbody>
</table>

Table 3.2: Phone and class accuracies.

The hierarchy scores indicate slight drops in accuracy as compared to the baseline system. McNemar’s test indicates that the differences are not statistically significant, at a significance level of 0.001.
The slight drop in performance is in agreement with Meng’s study of intermediate representations [16], but the cause of the drop is unclear. The simplest explanation would be that uncertainty is introduced with every stage of processing. In this thesis, we can imagine additional factors which may be affecting performance. One reason for the decrease may be that probability estimates are being multiplied to produce the overall phone scores, so that slight errors are being compounded with every stage. These errors might originate from the β factor used to compute the probability scores, or from suboptimal modelling at the class level. It could be that some of the acoustic models are better able to capture the acoustic nature of the phones when the phones are modelled individually. That is, modelling phones collectively might smooth over important characteristics of any one particular phone.

It might be helpful to utilize scores from all classes independently, in much the same way that Meng passes the distinctive feature scores into an MLP to improve performance. Then, the degree of the match between the segment and the phonetic classes could be taken into account in accessing the lexicon.

In the following sections, we investigate ways in which to raise the overall score using the hierarchy. In particular, we introduce heterogeneous feature sets for targeting specific classes of phones, to better discriminate among them. In anticipation of these broad class experiments, we tabulate (Table 3.3) classification accuracies on various subsets of phones (on the NIST development set) using the baseline feature vector. Notice that scores within each phonetic class vary greatly, reflecting the different degrees of confusability within each class.

3.2.1 Heterogeneous Feature Sets

In order to capitalize on the hierarchical configuration, we should attempt to adapt the feature vector at one or more nodes to demonstrate that the MAP framework can accommodate heterogeneous feature sets. The natural candidate for such an experiment is the vowel class, since vowels are distinctively characterized by formant information.
<table>
<thead>
<tr>
<th>Class</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOWEL</td>
<td>71.0%</td>
</tr>
<tr>
<td>NASAL</td>
<td>82.4%</td>
</tr>
<tr>
<td>STRONG</td>
<td>79.9%</td>
</tr>
<tr>
<td>FRICATIVE</td>
<td></td>
</tr>
<tr>
<td>WEAK FRICATIVE</td>
<td>86.3%</td>
</tr>
<tr>
<td>STOP</td>
<td>78.4%</td>
</tr>
</tbody>
</table>

Table 3.3: Phonetic accuracy across various phonetic subclasses.

We will perform experiments on the manner based tree, since it is best suited for allowing optimization on the vowel task.

We will perform two sets of experiments. The first will use compact formant-based measurements, and the second will use the baseline measurements augmented with F0 information. The latter approach is adopted after trying unsuccessfully to match baseline performance (on the vowel task) using the more compact formant-based representation. Using F0, the fundamental frequency, we hope to indirectly normalize the cepstral values according to the gender of the speaker, thus improving classification on the vowel set and across all phones.

Formant Based Feature Vector

For comparative purposes, we begin by running vowel classification experiments under conditions similar to those used previously by Meng [16], Carlson et al [1], and Goldenthal [6]. The phone set consists of 16 vowels, listed in Table 3.4. Tables 3.6 and 3.5 list other relevant data.

The experiments conducted by Carlson et al [1] are most relevant to this section. For the formant experiments, they use 3 formant frequencies, formant amplitudes, and formant transition speeds, all averaged across thirds of the segment. Their for-
<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Vowel set</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA</td>
<td>ə, æ, ʌ, ɑ, ɑ̃, ɑ̃', e, ɛ, ɛ̃, ɪ, ɪ, o, ɔ, ʊ, ů, ū</td>
</tr>
<tr>
<td>TIMIT</td>
<td>aa, ae, ah, ao, aw, ay, eh, er, ey, ih, iy, ow, oy, uh, uw, ux</td>
</tr>
</tbody>
</table>

Table 3.4: 16 vowels used in previous experiments.

<table>
<thead>
<tr>
<th>SET</th>
<th>#SPEAKERS</th>
<th>#UTTERANCES</th>
<th>#TOKENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT TEST (Vowels)</td>
<td>50</td>
<td>250 sx</td>
<td>8,922</td>
</tr>
<tr>
<td>HM TRAIN (Vowels)</td>
<td>499</td>
<td>2,495 sx</td>
<td>20,528</td>
</tr>
<tr>
<td>HM AUGMENT TRAIN (Vowels)</td>
<td>499</td>
<td>3,992 sx, si</td>
<td>34,576</td>
</tr>
</tbody>
</table>

Table 3.5: Comparison of train and test sets for vowel studies.

...mant estimates are derived using analysis-by-synthesis techniques, and classification performed using a multi-layer perceptron.

Goldenthal [6] uses a statistical trajectory model to capture the spectral movements characteristic of vowel segments. He uses 15 MFCC’s averaged across fourths of the segment, together with derivatives of the MFCC’s at the start and end of the segment, and log duration.

Leung [14] and Meng [16] both use an MLP classifier with outputs from Seneff’s Auditory Model [25]. The main difference between the two experiments is that Meng uses a principal components rotation on the outputs, achieving 66.1% where Leung achieved 64%.

We use the first three formant frequencies averaged across thirds of the speech segment (9 dim), formant amplitudes also averaged across thirds (9 dim), formant derivatives at the start and end of the segment (6 dim), log of the segment duration (1 dim), and F0 (1 dim). Formant frequencies are estimated using the Entropic Speech Processing System (ESPS), which solves for the roots of the linear predictor polynomial. Local constraints are imposed to obtain the optimal formant trajectories. Results for vowel classification experiments using these features are illustrated in
Table 3.6: Conditions and results for previous vowel classification experiments.

Figure 3-4, and summarized in Table 3.7. The scores indicate that the formant-based feature set is not competitive with the baseline. It may be preferable to augment the baseline in order to show improvements, rather than change it entirely.

Table 3.7: Vowel classification accuracies.

Augmented Baseline Feature Vector

The success of MFCC’s for the vowel task is attributed to the ability of the cepstral coefficients to capture formant information, though not as elegantly as a formant tracker. One problem with the cepstral coefficients however, and formant frequencies as well, is that they are not normalized to account for the gender of the speaker,
which naturally shifts the formant frequencies in correspondence with the length of the speaker’s vocal tract. Since male speakers generally have longer vocal tracts, their formant locations tend to be lower than those of female speakers. By augmenting the baseline MFCC feature vector with F0, we can indirectly normalize the formant frequencies and thus reduce the variance of the acoustic models.

For this study, we will revert back to our original set of conditions, to compare results with the baseline. Classification on the set of vowels listed in Table 3-8, based on the 39 classes proposed by Lee [12], results in 70.2% accuracy (NIST TRAIN and NIST TEST set), a slight improvement over the baseline.

More importantly, when incorporated into the manner based tree of the previous section, overall performance also improves. Scores are listed in Table 3.9, as
Table 3.8: Phones in the vowel subset.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Feature vector</th>
<th>Vowel accuracy</th>
<th>Overall accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Baseline</td>
<td>69.8%</td>
<td>76.3%</td>
</tr>
<tr>
<td>Baseline</td>
<td>Baseline + F0</td>
<td>70.2%</td>
<td>76.6%</td>
</tr>
<tr>
<td>Manner tree</td>
<td>Baseline</td>
<td>(69.8%)</td>
<td>76.4%</td>
</tr>
<tr>
<td>Manner tree</td>
<td>Baseline + F0</td>
<td>(70.2%)</td>
<td>76.6%</td>
</tr>
</tbody>
</table>

Table 3.9: Performance for the hierarchy using F0 information.

To be fair, we have also performed an experiment using the augmented feature vector on the baseline configuration, i.e., a one-shot classification into all phones. This also results in 76.6%, an equivalent improvement as that obtained using the hierarchy. So the hierarchical structure cannot be considered more robust in this case. However, it is probable that when features for making fine phonetic distinctions are introduced, overall scores for a uniform feature vector will begin to deteriorate, while scores for the hierarchy continue to improve.

3.3 Clustering based on confusability

In this section, we explore a bottom-up clustering procedure based on confusability which allows for a more systematic development of both classes and features. The ad-
vantage is that only those phones which demonstrate some similarity need be merged. We will restrict this study to the class of strong fricatives and affricates, since they are a relatively invariant group, and since hierarchical strategies can be applied in every sense to this limited set of phones.

The strong fricatives and affricates are an appealing group because differences between the phones are well defined, and because phones in this set can be paired in logical ways. The fact that they have relatively few realizations, even under different phonetic contexts, minimizes the variability that must be accounted for, so that improvements can be demonstrated with simple adjustments to the feature vector and signal representation.

3.3.1 Properties of Strong Fricatives and Affricates

The strong fricatives and affricates are \{[s], [z], [ʃ], [ʒ]\}, and \{[c], [z]\}, respectively. The six phones have in common an intense high frequency spectral component, resulting from an obstruction in the vocal tract which creates turbulence in the air flow. The location of this constriction varies, splitting the phones into two groups based on place of articulation, alveolar and palatal. The affricates resemble the palatals ([ʃ] and [ʒ]), but are further characterized by an initial burst which makes them similar to the plosives. Among pairs of phones in the same place of articulation class, one of the pairs is voiced. Thus the [z] can be distinguished from the [s], the [ʒ] from [ʃ], and the [ʃ] from [c].

The acoustic correlates for these two features are well defined. Voicing is exhibited as a low frequency component. A check on low frequency energy can be used to locate periodicity. The palatal phones can be distinguished from the alveolar phones from the bandwidth of the high frequency frication, which varies in proportion to the length of the front cavity. As the constriction is moved further back in the vocal tract, the front cavity is lengthened, lowering the natural resonances associated with the cavity. As a result, the frication extends lower in the spectrum.
Table 3.10 shows the confusion matrix for phones in this set, obtained using the baseline uniform feature vector on the *NIST development* set.

<table>
<thead>
<tr>
<th></th>
<th>[s]</th>
<th>[z]</th>
<th>[ʃ]</th>
<th>[ʒ]</th>
<th>[c]</th>
<th>[j]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[s]</td>
<td>579</td>
<td>62</td>
<td>14</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>[z]</td>
<td>111</td>
<td>243</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[ʃ]</td>
<td>9</td>
<td>1</td>
<td>118</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>[ʒ]</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>[c]</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>49</td>
<td>7</td>
</tr>
<tr>
<td>[j]</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>18</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 3.10: Phonetic confusions among the strong fricatives.

The most confusions occur between the [s] and the [z], suggesting that they are good candidates for merging into a class. So, we begin by clustering the two to form our initial hierarchy (Figure 3-5).

We observe first how the hierarchy affects performance at this level, and then optimize the feature vector at the [sz] node. We perform this optimization simply by varying the number of cepstral coefficients used at that node.
3.3.2 Results and Discussion

Baseline classification performance on the six fricatives under consideration is 79.4%, obtained using the NIST TRAIN and NIST TEST sets. Classification using the tree of Figure 3-5, prior to any optimisation on features, results in a phone accuracy of 79.7%, a serendipitous improvement over the baseline. This is promising, since it means that for this condition, the hierarchical structure is not debilitating, as it was in the previous chapter. Proceeding to optimize for the [sz] distinction, we find that better performance can be obtained using 6 MFCC’s, resulting in 79.9% accuracy overall.

Naturally, we would like to find other groups of phones which are well behaved as clusters. As long as performance is not hurt significantly, we can merge these phones into clusters and make optimizations on the local feature set. Following this procedure, we find that the best performance is obtained with the tree in Figure (3-6).

![Figure 3-6: Tree formed by clustering based on confusability](image)

This is intuitively pleasing, since the leaf node clusters represent phones with the same place of articulation. Optimizing the number of MFCC’s independently for each node, including the initial three way split, results in 80.2% accuracy. Reincorporating this new substructure into the Manner tree of Figure 3-1 results in a minor (less than 0.1%), but positive, change in performance compared to the baseline.
McNemar significance levels indicate that the 80.2% accuracy on the STRONG FRICATIVE set, and the 76.4% accuracy overall, are not statistically significant. However, we would like to think that this procedure, when performed on a larger scale, with more meaningful features, would lead to significant improvements.

3.3.3 Multiple Class Membership

In this section, we study the benefits of allowing multiple class membership for phones. Though more complex, the flexibility of assigning phones to secondary classes enables us to create more acoustically compact phonetic classes, and places more emphasis on the features which distinguish one class from another. Since the SOS hierarchy (sonorant vs. obstruent vs. silent) uses simple features for defining its broad classes, we will use it for this study.

For any particular class partition, there are bound to exist phones which exhibit the acoustic patterns of more than one class. It may be advantageous to transfer such tokens to other classes, resulting in more homogenous phonetic classes. Consider the [ḍ] phone, previously assigned to the OBSTRUENT class. Although the [ḍ] is characterized by frication, as are other phones in the OBSTRUENT class, it is also characterized by voicing, giving it similarities with the SONORANT class. At times, this voicing may be so pronounced that the [ḍ] should and will be scored in favor of a SONORANT, with a lower probability given to the OBSTRUENT model. Because the obstruent model is underscored, the overall posterior for the [ḍ] will also be underscored, as it is directly proportional to any class score. Without multiple paths, information has been lost regarding the nature of the segment.

Figure 3-7 illustrates the dichotomy present in the [ḍ] phone. In the spectrogram on the left, the [ḍ] at 0.95s is realized with very little low frequency energy and as a result is highly confusable with the unvoiced [θ] phone. The obstruent nature of the token is clear. In contrast, in the spectrogram on the right, the [ḍ] at 3.8s is clearly voiced and exhibits a low frequency spectral tilt. This token could easily be
considered a sonorant. To accommodate this type of variability, phones such as the [δ] can be replaced by more class-specific phones, such as [δ]_{son} or [δ]_{obs} to represent a sonorant or obstruent-like realization.

Our first task is to determine which phones are confusable across broad phonetic boundaries and should be included in secondary classes. Confusion statistics for broad classification into the three classes are shown in Table 3.11. These tests are run on the NIST TRAIN set since we will be retraining our broad class models using the results of these procedures. A more detailed and informative breakdown is given in

<table>
<thead>
<tr>
<th></th>
<th>SON</th>
<th>OBS</th>
<th>SIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>son</td>
<td>18636</td>
<td>135</td>
<td>182</td>
</tr>
<tr>
<td>obs</td>
<td>253</td>
<td>9114</td>
<td>147</td>
</tr>
<tr>
<td>sil</td>
<td>140</td>
<td>77</td>
<td>7013</td>
</tr>
</tbody>
</table>

Table 3.11: Confusions among the SON, OBS, and SIL classes.
Appendix A.1. Some phones are repeated below in Table 3.12 for convenience. These phones account for more than 80% of the confusions into the *SONORANT* class, and 56% of the confusions into the *SILENT* class. Intuitively, we would have expected phones such as [v] and [ð] to be confused, since they exhibit characteristics of multiple classes. Similarly for the voiced stops and nasals, which are often realized with very little energy.

To account for this variability, we create a new set of labels in which the phones

<table>
<thead>
<tr>
<th>IPA</th>
<th>CLASS</th>
<th>SON</th>
<th>OBS</th>
<th>SIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>OBS</td>
<td>103</td>
<td>335</td>
<td>49</td>
</tr>
<tr>
<td>ð</td>
<td>OBS</td>
<td>84</td>
<td>524</td>
<td>27</td>
</tr>
<tr>
<td>ì</td>
<td>OBS</td>
<td>43</td>
<td>107</td>
<td>2</td>
</tr>
<tr>
<td>ðʰ</td>
<td>SIL</td>
<td>42</td>
<td>7</td>
<td>881</td>
</tr>
<tr>
<td>ðʱ</td>
<td>SIL</td>
<td>28</td>
<td>8</td>
<td>300</td>
</tr>
<tr>
<td>ðʰ</td>
<td>SIL</td>
<td>18</td>
<td>11</td>
<td>535</td>
</tr>
<tr>
<td>r</td>
<td>SON</td>
<td>399</td>
<td>18</td>
<td>55</td>
</tr>
<tr>
<td>n</td>
<td>SON</td>
<td>1443</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>m</td>
<td>SON</td>
<td>907</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>ð</td>
<td>SON</td>
<td>265</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3.12: Phones with significant confusions.

listed above are expanded according to Table 3.13. Those tokens in the train set which score higher for a secondary class are reassigned a label reflecting the confusion. New class models are created using the reassigned phones, and classification is performed allowing multiple paths to represent the above phones. Classification performance improves slightly (less than 0.1%), bridging the gap between this SOS tree and the baseline.
Table 3.13: Reassigned labels.

<table>
<thead>
<tr>
<th>Original</th>
<th>New labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v.obs, v.son, v.sil</td>
</tr>
<tr>
<td>ᶾ</td>
<td>ᶾ.obs, ᶾ.son, ᶾ.sil</td>
</tr>
<tr>
<td>h</td>
<td>h.obs, h.son, h.sil</td>
</tr>
<tr>
<td>𝝊</td>
<td>𝝊.sil, 𝝊.son</td>
</tr>
<tr>
<td>𝝋</td>
<td>𝝋.sil, 𝝋.son</td>
</tr>
<tr>
<td>r</td>
<td>r.son, r.sil</td>
</tr>
<tr>
<td>m</td>
<td>m.son, m.sil</td>
</tr>
<tr>
<td>n</td>
<td>n.son, n.sil</td>
</tr>
<tr>
<td>Ṯ</td>
<td>Ṯ.son, Ṯ.sil</td>
</tr>
</tbody>
</table>

3.4 Chapter Summary

We have demonstrated that an MAP based hierarchical feature representation is a feasible structure for classification, and that it can match the performance of the baseline system when optimizations are performed on the features at each node. Though scores for the unoptimized hierarchies are slightly below those of the baseline, optimizing features at the individual nodes compensates for this initial drop. It is encouraging to see this level of performance even with the use of crude feature optimizations on a single node of the tree. More significant gains are to be expected with the use of better feature optimization procedures.

In the next chapter, we see that a hierarchical structure offers a relatively risk-free method for reducing computation. By pruning unlikely phonetic classes, we can reduce the space of candidate phones, as well as the number of candidate words in lexical access.
Chapter 4

Pruning

In the hierarchical framework, potentially complex decisions between confusable phones are delayed while simpler, robust decisions based on general attributes are made at the start. Since the hierarchy is structured in such a way, the probability scores obtained for these initial stages are robust, as the scores in the previous section indicate. This suggests that we can exploit the tree structure of the hierarchy and eliminate branches of the tree following low scoring nodes. Since the classification accuracy at the broad class level is bound to be much higher than that at the phone level, we can be confident that most decisions will be correct. If more accurate decisions are desired, the thresholds can be relaxed such that the correct path is almost never eliminated.

The motivation behind a pruning strategy is twofold. First, because a hierarchy requires broad class scores to be computed, in addition to individual phone scores, it inevitably requires more computation at run-time than a single-pass scheme. This means that the hierarchy will always be the slower approach. However, with pruning, the effective size of the hierarchy can be decreased, so that speed is no longer an issue. In fact, it will probably be the quicker of the two classification schemes.
Second, effective pruning allows a fastmatch at run-time, so that word candidates can be reduced even as the phone is being classified. The benefits are in space (fewer word hypotheses) as well as speed (fewer word matches can constrain the paths that must be scored). We will study two different methods for establishing a pruning threshold. First, we will prune all classes scoring below a fraction of the highest score. If, for instance, the nasal class scores \(Pr(NASAL \mid \vec{f}) = 0.6 \), and we choose to prune at 50\%, we will eliminate all classes scoring below 0.3. Second, we will prune all classes below the \(n \) highest scoring classes. For this condition, we also examine the likelihood that the correct class is within this \(n \) best threshold. The criteria we will use for judging the effectiveness of the thresholds will be performance and computation reduction.

We will evaluate the pruning thresholds on the manner based tree of the previous chapter, since this tree was determined to be very similar in performance to the baseline, achieving nearly the same classification accuracy at both the class and phone levels. To isolate the effect of pruning from other considerations, we will use the baseline feature vector for all experiments. We choose to prune only at the class level in the two-stage Manner tree. For multiple level trees, where the classification robustness varies at different levels of the tree, it may be necessary to vary the threshold depending on the reliability of the node, in order to achieve a safe bound at each decision point.

4.1 Results

Figure 4-1 shows classification accuracy as the pruning threshold is varied relative to the highest scoring phonetic class. As the plateau in the graph indicates, classification accuracy is not affected until the threshold is set to within 60\%-80\% of the maximum. The computational load, as a percentage of the baseline, is shown in Figure 4-2. Note that more than half the computation can be eliminated by setting the
Figure 4-1: Classification accuracy with pruning

Figure 4-2: Computation required, as percentage of baseline.
threshold to just 5% of the maximum. As we approach 0%, we are not rejecting any of the paths, so computation is greater than that for the baseline, since we have an additional 10% from the 6 class models as well as the 60 phone models. At the other extreme, approaching 100%, we are only accepting the top choice path, so nearly 65% of the computation is eliminated. For the plateau region of Figure 4-1, the computation remains steadily between 35% and 40% of the baseline. Therefore, by setting the threshold safely at 5%, we can achieve roughly 60% reduction in computation without loss of performance.

We can also observe performance and the corresponding reduction in computation as we prune the 6 - n worst candidates (or, alternatively, keep only the n best). Overall classification accuracies as n is varied between 1 and 6 are shown in Figure 4-3. The scores at the two endpoints for the n = 1 case (top choice) and the n = 6 case (no pruning) match those of Figure 4-1, where 100% corresponds to the top choice and 0% corresponds to no pruning.

The computational savings associated with each of the pruning thresholds of Fig-

![Figure 4-3: Classification accuracy after pruning all but the n-best class models.](image-url)
ure 4-3 are shown in Figure 4-4.

It is clear that there are no substantial savings in computation until the pruning threshold is set to $n = 2$, which seems rather high. To investigate the feasibility of this stringent threshold, we can observe the frequency of the correct class scoring among the n best (Figure 4-5). These numbers are all high, but there is a distinct jump in performance between $n = 1$ and $n = 2$. To be safe, we would like to place the threshold further inside the plateau, as we did in the first case. Unfortunately, this means a smaller savings in computation.

Comparing the two pruning methods, the first seems to offer more robust performance at a greater computational savings, making it the better choice. In fact, according to Figure 4-5, for the given conditions, we must prune all but the top choice in order to match the computational savings offered by the first pruning strategy. We would like to avoid this for obvious reasons.

One explanation why the n best method is less appealing may be that ranking the models does not preserve a measure of absolute scores, so that models scoring near zero, though they could reasonably be eliminated (and probably would be by the first method), often climb to high standing when only one class model scores well. With the first method, if only one class model scores well, it will be the only one considered.

4.2 Chapter Summary

The advantages and disadvantages of pruning are quite clear. Because unlikely phone or class candidates can be eliminated robustly, we can achieve near baseline performance with less than half of the computational load. However, because pruning phonetic classes is equivalent to making a hard decision, doing so invariably results in a loss of information. One consequence could be a less effective lexical access, which weighs the scores of multiple phone candidates in arriving at an optimal phone string.

Despite this drawback, pruning is an attractive option available to the hierarchical
Figure 4-4: Computation required, as percentage of baseline

Figure 4-5: Inclusion of correct model within top n scores
framework. With a loosely set pruning threshold, a hierarchy could offer computational savings at a negligible risk. For more stringent thresholds, it might be feasible to provide pruned phones with some minimum score, or assign these phones some score that reflects the likelihood of the broad phonetic class to which they belong, thereby maintaining some finite probability that the phone could have been spoken.
Chapter 5

Conclusions and Future Directions

5.1 Summary

In this thesis, we have attempted to assess the effectiveness of a hierarchical framework for classifying speech sounds. We have developed tree structures based on broad phonetic classes, and used an MAP probabilistic framework to score classes and phones alike, at various stages in the tree. This framework has been motivated by the desire to evaluate speech segments based on meaningful subsets of features, in order to improve the robustness of the acoustic models and probability estimates. A benefit of such a framework is that it allows the system to perform fine phonetic distinctions, so that acoustically similar regions of confusable words can be inspected with a greater level of specificity than dissimilar regions.

We have demonstrated that a modularized approach to classification is an appealing and potentially more robust framework for classification. Experimental results have indicated that within the hierarchical framework, optimizing the features for a given node will lead to improvements not only at that node but also overall. However, further studies are necessary to see if the hierarchy can provide significantly better
performance than a one-shot classification.

We have also demonstrated that the ability to prune phonetic classes gives the hierarchy a computational advantage over a uniform feature vector. We have shown that with a well chosen threshold, significant savings in computation can be achieved with absolutely no deterioration in performance. This suggests that with well chosen features at each node in the hierarchy, better performance can be achieved at a reduced computational cost.

These results highlight two driving forces behind the hierarchy. The first is the ability to isolate fine phonetic distinctions from broader ones, enabling the use of heterogeneous feature sets for optimally discriminating among sounds of differing acoustic significance. The second is the potential for fastmatch, which can focus the search space on a probable subset of candidate words. For the latter purpose, the hierarchy can be designed to balance good acoustic classes with classes that facilitate lexical access.

5.2 Future Directions

Several avenues remain to be explored. We have only developed hierarchies manually, using an intuitive choice of phonetic classes and a crude optimization on the features. Immediate improvements can be made using an automatic procedure for selecting features for each phonetic decision. SAILS offers one way to accomplish this.

SAILS has been developed within the Spoken Language Systems group to allow for the automatic optimisation of feature parameters across a specified set of tokens [19, 21]. It relies on the speech scientist to provide meaningful attributes for a given class of sounds, and optimises the parameters to best discriminate among the sounds. We could, for instance, use SAILS to search for the optimal time bounds within a speech segment to discriminate among the stops. In this case SAILS would likely
verify that the beginning of the segment is where we should extract measurements. Recently, SAILS has been enhanced to select the optimal subset of features for making a particular phonetic distinction. Applying such a procedure to the various nodes in a hierarchy would be one step toward fully utilizing the flexibility afforded by the hierarchy.

For optimal performance, an iterative approach to selecting both features and classes might be worth investigating. We can propose a few phonetic classes as part of a hierarchy, and then find features for optimally discriminating among them. We can then reassign the classes based on confusion (allowing for phones to belong to multiple classes), and again optimize the features for these new classes. In time, the feature sets should gradually become more compact at each node, and the phonetic classes more homogeneous. Similarly, we can begin by first hypothesizing a set of features, and automatically determine an initial scattering of phonetic classes based on those features.

Eventually, it may be desirable to incorporate more context dependent units into the hierarchy. This could be in the form of context dependent phones, or even syllables. For a context dependent hierarchy, each context independent phone model in the current scheme could be replaced by several context dependent models, without the need for major revisions to the structure presented in this thesis. Heterogeneous feature sets could be used for differing contexts.

It should be noted that the use of heterogeneous feature sets could include the use of features derived from different signal representations. With the baseline window size and frame rate, many acoustic cues, such as the \([b]\) plosive, which often last on the order of 10 ms, will be smoothed over or contain acoustic information from neighboring regions of the waveform. Other representations are worth considering for this reason. A wavelet representation, or a representation derived from a shorter analysis window would be ideal for capturing localized events in the waveform, and could be incorporated into a hierarchical framework at nodes requiring temporal information.
Finally, based on the results of the pruning study, and the feasibility of the hierarchical framework we have proposed in this thesis, it might be desirable to implement a hybrid lexical search, in which phones or classes could be hypothesized to form the elements of the lexical string. This would enable all elements of the string to maintain a minimum level of confidence. After all, it could be argued that a phone with an exceedingly low score conveys no useful information, even if it represents the highest score among the phone set. The classifier could back off when it encountered an unrecognizable segment and instead hypothesize NASAL, as opposed to [m] or [n]. This is possible within the hierarchical framework because the classifier assigns probability scores to all nodes in the hierarchy, at both a coarse and fine level, reflecting the varying degrees of certainty and significance in the structure of speech sounds.
Appendix A

Confusion Statistics

A.1 SONORANT vs. OBSTRUENT vs. SILENT partition
<table>
<thead>
<tr>
<th></th>
<th>SON</th>
<th>OBS</th>
<th>SIL</th>
<th></th>
<th>SON</th>
<th>OBS</th>
<th>SIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>610</td>
<td>0</td>
<td>0</td>
<td>i</td>
<td>993</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>æ</td>
<td>535</td>
<td>0</td>
<td>0</td>
<td>i</td>
<td>1736</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>ι</td>
<td>612</td>
<td>0</td>
<td>0</td>
<td>i</td>
<td>1244</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>o</td>
<td>538</td>
<td>0</td>
<td>0</td>
<td>j</td>
<td>209</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>α'</td>
<td>155</td>
<td>0</td>
<td>0</td>
<td>k</td>
<td>824</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ø</td>
<td>945</td>
<td>7</td>
<td>3</td>
<td>k</td>
<td>5</td>
<td>5</td>
<td>933</td>
</tr>
<tr>
<td>ø h</td>
<td>51</td>
<td>14</td>
<td>12</td>
<td>l</td>
<td>1293</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>ø</td>
<td>710</td>
<td>3</td>
<td>4</td>
<td>m</td>
<td>907</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>ø</td>
<td>472</td>
<td>0</td>
<td>0</td>
<td>n</td>
<td>1443</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>b</td>
<td>6</td>
<td>628</td>
<td>3</td>
<td>η</td>
<td>265</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>b h</td>
<td>18</td>
<td>11</td>
<td>535</td>
<td>r</td>
<td>169</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>195</td>
<td>0</td>
<td>o</td>
<td>432</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>591</td>
<td>7</td>
<td>e</td>
<td>97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d h</td>
<td>42</td>
<td>7</td>
<td>881</td>
<td>p</td>
<td>1</td>
<td>674</td>
<td>1</td>
</tr>
<tr>
<td>δ</td>
<td>84</td>
<td>524</td>
<td>27</td>
<td>q</td>
<td>248</td>
<td>0</td>
<td>248</td>
</tr>
<tr>
<td>r</td>
<td>399</td>
<td>18</td>
<td>55</td>
<td>p</td>
<td>1</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>855</td>
<td>1</td>
<td>0</td>
<td>r</td>
<td>1290</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>l</td>
<td>241</td>
<td>0</td>
<td>1</td>
<td>s</td>
<td>0</td>
<td>1510</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>ś</td>
<td>0</td>
<td>326</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>149</td>
<td>1</td>
<td>5</td>
<td>t</td>
<td>0</td>
<td>942</td>
<td>12</td>
</tr>
<tr>
<td>η</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>r</td>
<td>25</td>
<td>13</td>
<td>1350</td>
</tr>
<tr>
<td>ŋ</td>
<td>7</td>
<td>20</td>
<td>199</td>
<td>θ</td>
<td>0</td>
<td>169</td>
<td>14</td>
</tr>
<tr>
<td>ø</td>
<td>461</td>
<td>0</td>
<td>0</td>
<td>o</td>
<td>161</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>571</td>
<td>0</td>
<td>1</td>
<td>u</td>
<td>108</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>618</td>
<td>13</td>
<td>ü</td>
<td>299</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>6</td>
<td>315</td>
<td>4</td>
<td>v</td>
<td>103</td>
<td>335</td>
<td>49</td>
</tr>
<tr>
<td>g h</td>
<td>28</td>
<td>7</td>
<td>300</td>
<td>w</td>
<td>608</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>h</td>
<td>3</td>
<td>224</td>
<td>8</td>
<td>z</td>
<td>2</td>
<td>869</td>
<td>3</td>
</tr>
<tr>
<td>h</td>
<td>43</td>
<td>107</td>
<td>2</td>
<td>ż</td>
<td>0</td>
<td>54</td>
<td>0</td>
</tr>
</tbody>
</table>

Table A.1: Phone confusions
Bibliography

[19] Manish Muzumdar and Lee Hetherington. Personal communication regarding development of SAILS.

