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Abstract — The Moment Recursion (MR) models are a 

class of models for tactical planning of job shops or other 
processing networks. The MR model can be used to determine 
or approximate the first two moments of production 
quantities and queue lengths at each work station of a job 
shop. Knowledge of these two moments is sufficient to carry 
out a variety of performance evaluation, optimization and 
decision-support applications. This paper presents a literature 
survey of the Moment-Recursion models. Limitations in the 
existing research and possible research opportunities are also 
discussed. Based on the research opportunities discussed, we 
are in the process of building a model that attempts to fill 
these research gaps.
 

Index Terms— job shop tactical planning model, literature 
survey and research opportunities in moment recursion 
models,  moments of production quantities and queue lengths. 
 

I. INTRODUCTION 
HIS paper considers a class of models for tactical 
planning of job shops or other processing networks. 

This class of models is called the Moment Recursion (MR) 
models. A job shop is a process structure in which there is 
a wide variety of jobs and a jumbled work flow through the 
shop. Due to the large variety of jobs and the diverse 
processing requirements of each job, there is no distinct 
workflow through the shop. Specifically, a work station 
may receive jobs from different stations and jobs 
completed at the station may be routed to one of the several 
stations or may leave the shop if completed. Because of the 
wide variety of jobs and thus a lack of prevailing work 
flow, production control is difficult and can be very 
complex. Examples of job shops are the manufacturing of 
custom-made products, such as machining workshops, 
where each job has unique requirements from different 
customers. 
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A job shop often represents the most complex and 
generic form of a manufacturing environment. Therefore, 
the ability to plan a job shop will provide useful insights 
for production control of such other process structures. 

By tactical planning, we imply that we are not concerned 
with the detailed scheduling issues. Here, we are more 
interested in identifying the dominant flows in the job shop 
and subsequently modeling the job shop for tactical 
planning purposes, such as capacity planning. 

 We consider a class of models called the MR Models 
for modeling and analyzing job shops. The defining 
features of a MR model are:  

1) It is a discrete time model, such that work is 
completed during fixed-length periods, and work 
arrivals and transfers occur at the start of these periods. 
2) Each station of the network produces a quantity that 
depends on the work-in-process level at that station 
through some production function. 
3) Workflows are Markovian such that processing 
requirements do not depend on how the work gets to 
the station. 
4) Work arrivals are stochastic and are characterized 
by finite mean and variance. 
5) Recursion equations can be written to describe the 
relationship between the first two moments of 
production quantities and queue lengths in periods. 

 
The MR models can be used to determine or 

approximate the first two moments of production quantities 
and queue lengths at each work station of a job shop. 
Knowledge of the first two moments is sufficient to carry 
out a variety of performance evaluation, optimization and 
decision-support applications.  

For example, we may use MR models to help optimize 
processing networks of job shops. We may optimize the 
performance of a job shop (e.g. throughput rate or work-in-
process inventory) with a budget constraint for capacity, or 
minimize the capacity cost with a performance target 
(throughput rate, work-in-process or lead time).  

One of the main capabilities of the MR models is its 
ability to compute the second moment of production 
volume, which is one of the key measures of variability in 
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a manufacturing facility. Variability of production volume 
is important for several reasons. A larger degree of 
variability implies a higher level of finished-goods 
inventory for a make-to-order manufacturer, or a longer 
lead-time quoted to customers in a make-to-order 
environment. In addition, variability can upset production 
planning and schedules. Overtime, use of subcontractors, 
temporary workers and other expediting services are often 
associated with high variability.  

This paper presents a literature survey of the Moment-
Recursion models which is useful for modeling and 
analyzing job shops. Limitations in the existing research 
and some possible research opportunities are discussed. It 
is hoped that such a discussion would provide directions 
for future work to make MR models more realistic and 
applicable to real-life manufacturing environment. The 
remainder of the paper is organized into three sections. 
Section II gives a review of the concept of a MR model. 
Section III presents the literature survey of MR models as 
well as other related research. Section IV discusses the 
limitations and possible research opportunities in this area.  

 

II. CONCEPT OF A MOMENT-RECURSION MODEL 
In this section, we present the basic concept of a MR 

model. There are a number of variations within this class of 
models, largely in the control rules and release policies. 
The different variations will be discussed in the next 
section. Here, we will only look at the MR models in its 
most general form. Consider a job shop or other network of 
processing stations. The shop is modeled in discrete time, 
such that the stations process some amount of work-in-
process during each time period, and transfer the work to 
other stations or out of the network at the start of the next 
time period. The workflow is modeled as work hours, 
rather than as a set of distinct jobs.  

 Each station i must satisfy the following elementary 
inventory balance equation, 
 

titititi APQQ ,1,1,, +−= −−    (1) 
 
where is the work-in-process level (both in queue and 
in service) at the start of period t,  is the amount of 
work processed in period t-1, and  is the amount of 
work that enters station i at the start of period t. We write 
(1) for all stations in matrix form as 
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where  is a vector of work-in-process,  is a vector 
of production quantities, and   is a vector of arrivals.  

tQ 1−tP

tA
The following assumptions are made about  and . 
 is a function of the work-in-process at the start of 

period t, i.e. 

tP tA

tP

)( tt QfP = , where f is a production function 
or control rule that relates the production quantities of a 
station in a period with the work-in-process at the start of 
the same period.  has two components. The first 

component  represents work that is transferred 
internally within the network between stations and is a 
deterministic function of , i.e. . It 
corresponds to the concept that completed work at one 
station in one period triggers work at other stations in the 
next period. The second component  consists of work 
that arrives to stations externally from outside the shop. 

 can be independent and identically distributed, or can 

be a function of  i.e.  which allows the 
modeling of “pull” release policies such as constant-
inventory job shops. 
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By substituting the above expressions for  and  
into (2), we obtain the recursion equation (3) that that 
forms the basis of the MR models. 

1−tP tA

 
E
ttt

I
tttititi AQPAQPQQ ++−= −−−−− )]([)( 1111,1,,   (3) 

 
If we know the expected value and variance of , we 

can express (3) in terms of  and , or alternatively 
 and . By repeatedly iterating the resulting close-

form expressions, and assuming that the job shop has a 
defined steady state, we can obtain a converging infinite 
series. We can determine the expected values and the 
variance of this series to obtain the first two moments of 
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III. RELATED LITERATURE 
We devote this section to a literature survey of MR 

models as well as other related models of processing 
networks. 

A.  Moment-Recursion Models 
The first paper on the MR models is by Graves in which 

he developed the Tactical Planning Model (TPM) [1]. The 
stations in this model use a linear control rule  

tiiti QP ,, α= , where iα  is a production smoothing 

parameter for station i and its inverse iα/1 is the planned 
lead time. The control rule implies that the production rate 
at station i is a fixed proportion iα of its queue length in 
each time period, and is consistent with the assignment of a 
planned lead time to each station. The longer the planned 
lead time, the greater amount of production smoothing the 
station will be subjected to. This control rule is based on 
the approximate analytical model for production smoothing 
developed by Cruickshanks, Drescher and Graves [2]. By 
using an example of a factory that produces grinding 



 
 

machines, he illustrated how to use the model to evaluate 
the choice of the planned lead time and also to find a good 
specification that will result in an acceptable shop 
behavior. 

Parrish presented some extensions to the TPM [3]. First, 
he proposed a framework for modeling work releases to 
meet a delivery due date for a finished product. In addition, 
he showed how to apply the TPM modeling framework to 
generate two service measures - the probability that 
demand exceeds inventory and the average number of 
successive periods in which demand is not met. In addition, 
he also showed how to adjust the control parameters of the 
TPM to change these service measures.  

Leong modeled the Kanban and other pull systems using 
the TPM [4]. In a pull system, work is produced at a station 
whenever there is a downstream inventory shortfall. Here, 
the linear control rule is )( ,, tiiiti QTP −= α , where Ti is 
the target inventory level.   

Graves presented a model to provide a rough-cut 
assessment of both the staffing and component inventory 
levels of a repair depot [5]. The repair rate of the depot has 
a production function that resembles the linear control rule 
of the TPM. He first suggested the piecewise linear 
production function  where K and 
n are constants. The rationale behind this function is that 
the total production level cannot exceed the work-in-
process (backlog of failed units in this case). Here, the 
production level is set equal to the sum of a constant term 
K and a term that is proportional to the work-in-process 
Q

]/,min[ nQKQP ttt +=

t/n. However, this function cannot be evaluated directly. 
Hence, he suggested an approximation  nQKP tt /+=  . 
Here the values of K and n are set so that the probability of 
the production quantities Pt exceeding the work-in-process 
Qt is small.  

Graves presented three extensions to a single station 
model of the TPM [6]. First, he modeled a station that fails 
according to a Bernoulli process and the duration of each 
failure is exactly one period Second, he derived the 
approximate steady state moments for the TPM with lot-
sizing. In this model, work completed by the station is 
merged into lots of fixed size, and the lots are routed 
probabilistically. Finally, he presented the mathematical 
bounds on the behavior of a station with a bounded control 
rule which depicts the capacity constraint at the station. 
The control rule is of the form ),min( MQP tt α= , where 
M is the capacity constraint of the station.  

Mihara extended the work of Graves [6] on unreliable 
single station in TPM when he looked at unreliable multi-
station TPM [7]. But similar to Graves’ work, the stations 
also fail according to a Bernoulli process. He also 
performed simulation studies of a multi-station TPM in 
which each station i uses bounded control rules of the 
form ),min( MQP tt α=  as discussed in [6]. He found that 
the behavior of the bounded models approaches the 
behavior of the unbounded TPM provided that the capacity 

constraint of each station is sufficiently large relative to the 
workload.  

Fine and Graves applied the TPM to a real-world job 
shop that manufactured thermal conduction modules for 
IBM mainframes [8]. Here, the model was extended to 
allow consideration of features such as release policies. By 
using regression methods, the parameters were fitted to the 
observed data and they found some empirical evidence for 
the use of linear control rules in practice. The model was 
then used to study the impact of various planning policies 
and the effect of changes in product mix.  

Hollywood made several extensions to the TPM [9]. He 
defined the class of MR models of which the features are 
stated in Section 1. Previously, work on this class of model 
had been limited to the TPM and direct extensions to the 
TPM. Consequently, all research assumed that the 
production is a fixed fraction of work-in-process, and that 
work arrivals are stationary fluid arrivals. He showed that 
the TPM is one model in a much larger class of models that 
may be analyzed through similar techniques. 

He expanded the TPM to include models with general 
linear control rules which are also known as affine control 
rules. These rules allow production to be a weighted sum 
of inventory levels at multiple stations, plus a random noise 
term. He then applied these models on a network that uses 
highly sophisticated affine control rules, i.e. the 
proportional restoration rules of Denardo and Tang [10]. 

Next, he demonstrated how to calculate approximations 
for the steady-state moments of MR models with general 
non-linear control rules. These models allow for the 
modeling of a wide range of realistic machine and human 
behavior, including machine congestion and effects of 
overtime work. He suggested a non-linear control rule 
which is based on Karmarkar’s “clearing function” [11]. 
However, the results are approximations. Errors can be 
large if the network is heavily loaded and work arrivals are 
highly variable.  

Hollywood also showed how to set up and solve 
optimization problems related to MR models, including 
maximum performance (minimum queuing times or queue 
lengths, and maximum throughput) and minimum cost 
problem. In doing so, he showed how to model capacity 
requirements for models with linear or general control 
rules.  

He also used the underlying recursion equations to find 
the transient behavior of MR models that are subjected to 
changes in the network. For simple network changes, he 
found the analytical expression for the transients, 
extending the work of Parrish [3]. Using this transient 
analysis, he also found that the optimal control rules are 
linear functions of the work-in-process, thereby justifying 
the use of linear control rules.  

Graves and Hollywood developed a constant-inventory 
TPM in which the release of work into the shop is 
regulated to maintain a constant inventory level [12]. They 
were able to determine the first two moments for the 
production random vector for such a release policy and 
also characterized the conditions for which the production 
levels converge to a steady state. They then illustrated the 



 
 

use of the model with an application and showed the 
benefits of such a release policy with a computational 
experiment. 

B. Other Related Models  
We now compare the MR models with other related 

models. Our focus here is to compare the modeling 
framework and the approaches, rather than the intent of the 
models. 

Queuing models are widely used to model processing 
networks. Jackson developed the basic queuing model for 
open queuing networks, now known as the Jackson 
networks [13][14]. Similar to the MR models, the detailed 
sequencing of jobs is not considered and work flows can 
be characterized in a complex job shop. Gordon and 
Newell extended Jackson’s work to a closed queuing 
system in which the number of jobs remains constant [15]. 
There is now a large literature on queuing networks that 
extends and generalizes Jackson’s work, with much of it 
validating against simulation studies. Buzacott and Yao, 
and Suri and Sanders provided an extensive survey on 
queuing models [16][17]. 

Queuing models usually assume the arrival and service 
times to be independent and identically distributed. In 
order to compute the exact solutions, the arrivals are 
assumed to follow a Poisson process with exponentially 
distributed service times. Whitt provided approximations 
for general networks with GI/G/m queues using the first 
two moments of inter-arrival and service times [18][19]. 
The resulting queuing model is known as the Queuing 
Network Analyzer. Bitran and Tirupati extended this 
model by improving the approximation accuracy of the 
multiple customer class version of the model [20]. They 
achieved this by developing an improved approach to 
estimate the interaction between customer classes, albeit it 
requires more complex computation.   

Much recently, there is some literature that focuses on 
the approximations of heavy-traffic queuing models. Work 
in this area includes Harrison and Williams, Harrison and 
Wein [21]-[23]. These are Brownian motion 
approximations based on the fact that departures from 
heavily-loaded stations are approximately exponentially 
distributed. However, the major drawback of these models 
is that the accuracy of these models largely depends on the 
traffic-intensities of the queues, and thus they are more 
applicable to heavily-loaded queues.  

MR models allow the modeling of splits and merges in 
workflows, i.e. a single job can split into multiple jobs, or 
multiple jobs can merge into a single job upon completion 
and moves to downstream stations. But this is generally not 
possible in queuing models. Furthermore, MR models 
allows the computation of first two moments of both 
production quantities and queue lengths, while queuing 
models usually gives only the first moments. However, it is 
difficult to model probabilistic job routing in MR models 
which is a basic feature of queuing models, although 
Graves presented an approximation method for such 
modeling for the TPM [6]. Generally, MR models are more 
suitable if the production output per time period can be 

expressed as a function of the total work and the network 
has well-defined workflows. Queuing models are more 
appropriate if the network has stations with independent 
and identically distributed service times and has distinct 
classes of “customers”. 

Besides queuing models, it is also worthwhile to compare 
the MR models with deterministic planning models that are 
often used for aggregate and capacity planning. Compared 
to MR models which are stochastic models, the 
deterministic models assume the modeling parameters to be 
deterministic. The expected production quantities and 
queue lengths are usually assumed to be deterministic 
quantities. The main advantage of deterministic models 
over MR models is that it is possible to model complicated 
production rules such as bounded control rules which is not 
possible with MR models. However, capacity is usually a 
hard constraint in deterministic models. A station i 
processes up to its fixed capacity in each discrete time 
period, i.e. production of station i is given by the bounded 
control rule Pit = min(Qit, Mi). As a result, such models do 
not account for the lead time or work-in-process 
consequences of capacity loading, as lead time of 
production (and work-in-process) is constant regardless of 
the amount of capacity loading. Reviews of these models 
can be found in Hax, Baker, and Bitran and Tirupati [24]-
[26]. 

One deterministic model that is closely related to the MR 
models is the Input/Output control by Wight (1970). The 
Input/Output control is a way of analyzing the 
consequences of order release decisions of material 
planning. Similar to the MR models, it is a discrete-time 
processing network model at a shop level. In this model, 
work arriving at each station is determined and the amount 
of work processed is computed by the bounded control 
rule. Work in excess of capacity is carried over to the next 
period. The discrete treatment of work order and job step 
of this model causes it to resemble a discrete-time 
simulation. Thus the resulting computations required are as 
detailed and complex as the real simulation, and hence it is 
difficult to embed it in optimization procedures.  
 Karmarkar’s deterministic model takes into account of 
the capacity-loading effect on the lead time and work-in-
process by a “clearing function” [11]. Similar to the control 
rules in MR models, the clearing function describes the 
amount of output “cleared” from the manufacturing facility 
as a function of its work-in-process.  The function is  
 

    
Q

MQP
+

=
β

    (4) 

 
where P is the production rate, Q is the work-in-process 
level, M is the capacity level,  and β is a parameter that 
determines the clearing rate. He adapted (4) for a discrete 
period dynamic planning model that directly models work-
in-process and finished inventories. Since it is a 
deterministic model, it can be incorporated readily in 
mathematical programming techniques.  



 
 

Unlike the clearing function, the linear control rule in 
the TPM does not capture the effect of capacity loading on 
work-in-process and production lead times. Hence 
Hollywood suggested a non-linear control rule based on 
the clearing function and also illustrated an approximation 
method to compute the steady-state moments of MR 
models with general non-linear control rules [9]. 

In this section, we have presented the literature on MR 
models as well as other related models. However, there still 
exist some significant research gaps, which will be 
discussed in the next section. 

 

IV. RESEARCH OPPORTUNITIES 
There is substantial literature on MR models as 

presented in the previous section. However, additional 
work is needed to make MR models more realistic and 
applicable in real-life manufacturing facilities. There are 
more unresolved issues than can be listed; we will look at 
some that seem interesting and valuable. 

Many production facilities show congestion effect due to 
capacity loading. Hollywood has derived the non-linear 
control rule that is based on Karmarkar’s “clearing 
function” which is a concave function designed to model 
saturation and congestion behavior [9][11]. But 
Hollywood’s non-linear control rule does not perform well 
in high traffic-intensity conditions and when the arrival is 
highly variable. This greatly limits the use of this model 
since stations of high traffic-intensity (bottleneck stations) 
are usually the ones that are more crucial, and thus require 
a more thorough performance evaluation. Hollywood 
performed a discrete-time simulation study to validate his 
approximations. He found that errors in approximating the 
second moments of both production and queue lengths of a 
single-stage station are larger than 50% when subjected to 
a traffic-intensity of 0.9 and work arrivals with a 
coefficient of variability equal to 1.0. Therefore, more 
effort is required to improve the non-linear control rules or 
the approximation method. 

One feature of the MR models is that work transfers 
between stations occur only at the beginning of each 
discrete time period. In many manufacturing facilities, jobs 
move to the next processing station immediately after 
completion at each station. Thus there is a continuous 
shuttle of jobs between stations of the network. Graves 
suggested that the MR models still applies to such an 
environment if the periods are carefully sized [1]. The 
periods must be long enough such that a significant amount 
of work is done in each period, but short enough that a job 
is unlikely to travel through more than one station in a 
particular period.  

However, such period-sizing might be restrictive in 
general applications. In many production systems, it takes 
only a short time (e.g. less than half an hour) for a job to 
travel through more than one station, and thus the discrete 
time period has to be short. In most applications, a longer 
time period might be more valuable. This is because the 
MR model outputs, such as the production variance, are 

more meaningful if they are defined over a longer time. It 
is usually more useful for a production manager to know 
the production variance of a shift, rather than over a one-
hour period. For example, a manager planning the capacity 
might use the expression Pt kPECapacity σ+= ][  , where 

 is the expected production quantities per period, σ][ tPE P  
is the standard deviation of production quantities, and k is 
the “safety” factor that converts the standard deviation of 
the throughput into performance guarantee. k equals to the 
z-value of standard normal distribution if Pt is normally 
distributed. Here, it is hard to set the value of k if pσ  is of 

a one-hour period even if Pt is normally distributed, as it is 
difficult to determine the amount of performance guarantee 
needed for each one-hour period. A performance guarantee 
for a shift would be more meaningful. It is generally 
complex to determine the production variance of a longer 
time period given the production variance of shorter time 
periods. This is because the production quantities of 
successive periods are generally correlated.  

Hollywood’s approximation for non-linear control rules 
is more accurate if the arrival process is less variable [9]. 
In many other forms of network approximations in which 
there is a stochastic arrival process, such as Whitt’s 
approximation of GI/G/m queues [18][19], a high level of 
arrival variability generally worsens the accuracy of the 
approximation. By having a longer discrete time period, 
the variability of the amount of work that arrives in each 
period will be lower due to variability pooling over a 
longer period of time. Therefore, in the case where an 
exact solution of the MR model cannot be obtained and 
thus requires an approximation, a longer discrete time 
period will probably improve the accuracy of the 
approximation.  
 We are in the process of building a model that attempts 
to fill the above mentioned research gaps. This model 
accounts for machine congestion and has significantly 
more accurate second moment approximations than 
Hollywood’s non-linear control rule model. Furthermore, it 
models continuous flow of jobs and can have discrete time 
periods longer than the time for a job to travel through 
more than one station. Simulation studies were carried out 
to validate the accuracy of the model. Preliminary results 
of the studies are encouraging.   

 As mentioned in Section I, one of the main 
capabilities of the MR model is its ability to determine or 
approximate the variances of production volume. Machine 
failure is the main source of unplanned variability in the 
production floor. Hence, the ability to include machine 
failures in the MR model will greatly improve its 
applicability. Graves modeled an unreliable single station 
in which the station fails with a fixed probability p and the 
duration of the failure is exactly one period [6]. This is of 
limited realism compared to actual machine failures and 
additional effort is therefore required in this aspect of 
modeling. 
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