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Abstract

We consider large-scale, network-based, resource allocation problems under uncer-
tainty, with specific focus on the class of problems referred to as multi-commodity flow
problems with time-windows. These problems are at the core of many network-based
resource allocation problems. Inherent data uncertainty in the problem guarantees
that deterministic optimal solutions are rarely, if ever, executed. Our work examines
methods of proactive planning, that is, robust plan generation to protect against fu-
ture uncertainty. By modeling uncertainties in data corresponding to service times,
resource availability, supplies and demands, we can generate solutions that are more
robust operationally, that is, more likely to be executed or easier to repair when dis-
rupted. The challenges are the following: approaches to achieve robustness 1) can be
extremely problem-specific and not general; 2) suffer from issues of tractability; or 3)
have unrealistic data requirements.

We propose in this work a modeling and algorithmic framework that addresses
the above challenges. Our modeling framework involves a decomposition scheme that
separates problems involving multi-commodity flows with time-windows into routing
(that is, a routing master problem) and scheduling modules (that is, a scheduling sub-
problem), and uses an iterative scheme to provide feedback between the two modules,
both of which are more tractable than the integrated model. The master problem
has the structure of a multi-commodity flow problem and the sub-problem is a set of
network flow problems. This decomposition allows us to capture uncertainty while
maintaining tractability. Uncertainty is captured in part by the master problem and
in part by the sub-problem. In addition to solving problems under uncertainty, our
decomposition scheme can also be used to solve large-scale resource allocation prob-
lems without uncertainty. As proof-of-concept, we apply our approach to a vehicle
routing and scheduling problem and compare its solutions to those of other robust
optimization approaches. Finally, we propose a framework to extend our robust,
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decomposition approach to the more complex problem of network design.
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Chapter 1

Introduction

1.1 Motivation

Resource allocation involves the distribution and utilization of available resources

across the system. Because resource availability is usually scarce and expensive,

it becomes important to find optimal or even 'good' solutions to such problems.

Thus, resource allocation problems represent an important class of problems faced by

mathematical programmers.

Conventionally, such resource allocation problems have been modeled and solved

assuming input data to be known with certainty. Such models that consider the inputs

to be invariant are called nominal models and their solutions are denoted nominal

solutions. However, in practice, these assumptions are rarely, if ever, true, which

raises questions regarding the validity and practicability of the solutions obtained

under these assumptions. The presence of such uncertainty can disrupt operations

and cause plans to be infeasible during implementation. In fact, Mulvey [25] and

Ben-Tal and Nemirovski [6] show that such nominal solutions can become irrelevant

in the presence of real-world uncertainty.

In this thesis, we study resource allocation problems that are network-based, involv-

ing the flow of resources over a typically, large-scale network in an optimal manner.
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This sub-class of problems has some applications that are of special interest, includ-

ing those that arise in the areas of transportation, logistics and communications.

Specific examples include airline scheduling, vehicle routing, service network design,

load distribution, production planning, computer scheduling, portfolio selection, and

apportionment. These application domains have important economic value, and high

importance is attached to achieving efficient solutions.

Network-based resource allocation problems have several characteristics that con-

tribute to their complexity. Optimization must be performed over both space and

time dimensions, that is, resources need to be distributed in space and over time.

The networks considered are usually very large, and it is important to find solution

methods that are scalable. Multiple, heterogenous resources need to be allocated.

Costs and constraints are often non-linear, and need to be approximated well to facil-

itate solution tractability while maintaining model realism. Moreover, discreteness of

resources requires that solutions to these problems be integer or binary, which further

complicates solving the mathematical program.

In addition, uncertainty caused due to inherent system stochasticity plays an im-

portant role. In the real world, randomness and probability are always at work, and

no scenario can be predicted exactly. Thus planners usually work with nominal 'best-

guess' or 'mean-value' system parameters. When the realized parameters are different

from those planned, the system no longer behaves in a near-optimal way. Because

the 'optimized' system is likely to have little slack, infeasibilities are encountered, and

sometimes frequently. Hence, solutions produced under these conditions are rarely (if

ever) executed, and certainly, never truly optimal. In this thesis, our objective is to

build 'robust' network resource allocation solutions that:

1. are less fragile to disruption,

2. easier to repair if needed, and

3. optimize the realized, not just planned, problem objective.

16
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The potential impact of providing robust, efficient resource allocations over net-

works can be enormous. For example, plans that were disrupted during operations

cost the airline industry 6 billion dollars during the year 2006 [1].

In what follows, we first provide some background related to resource allocation

problems, define the problem we solve, and discuss some challenges in this research.

1.2 Background

Resource allocation problems have been extensively researched. In generalized op-

timization terminology, we categorize the network-based resource allocation prob-

lems we study into three main classes: 1) multi-commodity flow problems, 2) multi-

commodity flow problems with time-windows and 3) network design problems. In

general, these problems are NP-hard problems for which polynomial time solution

algorithms do not exist.

For instance, consider a service network design problem, arising in transportation

and logistics, subject to resource constraints and variable demands. The objective of

the carrier is to determine the cost minimizing or profit maximizing set of services

and their schedules. In this problem, several decisions have to be made, such as: pick

the best location and size of facilities such that overall costs are minimized; and what

is the best fleet mix and size such that service requirements are met? Instances of

such problems include: determining the set of flights and their respective schedules

for an airline; routing and scheduling tractors and trailers in a trucking operation;

and jointly managing the air networks as well as ground networks by determining

the routes and schedules for aircraft flights, ground vehicles and package movements

for time-sensitive package delivery. All the questions raised here can be formulated

as network-based resource allocation problems that fall under the three classes of

problems described above.
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In this thesis, a commodity is defined as a set of packages that needs to be routed

on the network, between the same origin and destination (or between the same set

of origins and set of destinations). Multi-commodity flow problems involve routing

multiple commodities over the given network from their origins to destinations, un-

der capacity constraints, in order to minimize costs. If the pickup and delivery of

the shipments at their respective origins and destinations are constrained by time

windows, this problem is referred to as the multi-commodity flow problem with time-

windows, and can be harder to solve than simple multi-commodity flow problems. The

problem of network design adds another level of complexity to the multi-commodity

flow with time-windows problem. Here, the network itself needs to be designed by

making decisions regarding the presence or absence of arcs and nodes in the network,

and allocating resource supplies, such as capacity, over the network. Moreover, the

commodities must be routed optimally on the network to (typically) minimize costs.

In the example of a trucking operation, we find the routes and schedules of tractors,

also referred to as vehicles, and trailers, also referred to as shipments. This is an

instance of the network design problem. If we add an assumption to the above

problem, that the routes of tractors are known, we reduce the scope of the problem.

We then need only to route the trailers and schedule these movements. This is an

example of a multi-commodity flow problem with time-windows. If we further assume

that the tractor movements are scheduled beforehand, and simply route the trailers

over the available paths, we are solving a multi-commodity flow problem. Note that

in this progression, the scope and complexity of the problem keeps decreasing.

1.3 Problem Description

In this thesis, we shall focus on the class of problems including multi-commodity

flow problems with time-windows (MCFTW). As mentioned earlier, our goal is to

build robust solutions that are less vulnerable to uncertainty. Uncertainty in MCFTW

can occur in the form of stochasticity in the supplies and demands of commodities;

18
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available capacities of the network links; and travel and service times on the network.

We denote the multi-commodity flow problem with time-windows under uncertainty

as MCFTW- UU. As illustrated through the examples in this section, the MCFTW

is at the core of network design problems, and has sufficient complexity to be of

significance in itself. Hence, solving the MCFTW-UU and finding robust solutions is

expected to provide insights into the more complex problem of network design under

uncertainty.

To illustrate and evaluate our approach, we consider a specific MCFTW(-UU)

problem, namely the Shipment Routing Problem with Time Windows (SRTW) and

the Shipment Routing Problem with Time Windows Under Uncertainty (SRTW-UU).

Under SRTW and SRTW-UU, for each vehicle v in the set of vehicles V, we are

given a set of vehicle routes defining a network of locations with time-independent

travel times and capacities uj corresponding to vehicle capacities on the links, and

service times at locations. Each shipment k with a single pickup and delivery location

and demand dk needs to be routed over this network, from its origin O(k) to its

destination D(k). All units of shipment k must have the same route and schedule.

Moreover, shipment k must be picked up after its earliest available time at its origin

(EATE>(k)) and delivered before its latest delivery time at its destination (LDTfk(k)).

The objective is to find shipment routes and vehicle and shipment schedules that

minimize costs due to vehicle operations, and non-service of shipments. We consider

early drop-offs to have no bonuses, and we disallow late drop-offs. We are therefore

interested in determining shipment routes and shipment and vehicle schedules, given

the sequence of stops each vehicle makes. In this work, we are particularly interested

in addressing the stochastic nature of input data as seen in penalty costs, vehicle

capacities, demands and supplies of shipments, and travel and service times.

SRTW-UU is at the core of the generic network design problem of vehicle routing

with pickup and delivery of shipments under time-windows and uncertainty (denoted

VRPPDTW-UU [18]). The VRPPDTW-UU reduces to the SRTW-UU if we assume

19



the routes of vehicles to be known, with the schedule still unspecified. The approach

we develop for SRTW-UU problems is directly applicable to MCFTW-UU problems,

and provides a natural foundation on which to develop approaches for problems in-

volving network design and resource allocation under uncertainty.

1.4 Challenges

As researchers increasingly recognize the importance of robust solutions that are

less susceptible to operational disruption and easier to repair if disrupted, there is a

growing body of research and associated literature devoted to the problem of resource

allocation under uncertainty. Nonetheless, current capabilities to generate robust

solutions to large-scale problems fall short on several dimensions, namely:

1. The robust optimization approaches corresponding to reported successes in the

literature are not typically generalizable; instead, they represent approaches

highly-tailored to the specific problem being addressed.

2. More general robust optimization approaches, with their underlying non-linear

models, do not scale well; resulting in issues for large-scale problems even when

solution times are allowed to be long, causing these approaches to be inappli-

cable when real-time operational solutions are required.

3. Conventional robust optimization models often have associated data require-

ments that are excessive, requiring data that is either unknown or so extensive

as to be too difficult to incorporate into a tractable model. More recent tech-

niques simplify the data requirements, but do not take advantage of information,

if known, pertaining to the distributions of pertinent data.

We focus our attention in this thesis on developing an approach that overcomes the

above limitations. Designing an approach to create robust plans involves numerous

challenges, chief among them are the following:

20



1. Designing an approach that is tractable for large-scale strategic, tactical and

real-time planning problems, when existing techniques are often intractable even

for very small-scale problems with no limitations on solution times;

2. Providing guarantees or bounds on the quality of the solution produced; and

3. Developing a robust optimization modeling approach that does not require

knowledge of the data distributions underlying the model, but does allow for

the capture and exploitation of this data if known. The challenge is to design a

model that can incorporate this additional data, but remain tractable. A design

goal is that the model's structure should remain the same, whether the data is

known, partially known, or unknown.

1.5 Contributions

In addressing the problem of MCFTW-UU, our contributions are as follows:

1. We examine existing approaches of modeling uncertainty and propose suitable

modifications, in the context of resource allocation, such that they are applicable

to large-scale problems and are more flexible with respect to data requirements.

2. We develop a decomposition scheme that provides a new modeling and algo-

rithmic approach (for MCFTW as well as MCFTW-UU problems) and provides

robust solutions that are less vulnerable to uncertainty.

3. We propose a framework for extending the method to address other resource

allocation problems, especially those involving network design.

We develop a decomposition approach for MCFTW-UU that:

" provides a new way of modeling the problem by separating the routing and

scheduling elements of the problem,

" is flexible with respect to data requirements,
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" is applicable to large-scale problems while remaining tractable, and

" is extendable to more complex problems and embeddable within other solution

approaches.

1.6 Thesis Structure

In Chapter 2 of this thesis, we address the importance of robustness, and reference

related literature. We examine in detail the approaches of Bertsimas and Sim [9], and

Charnes and Cooper [12, 13]. We examine these methods in light of the large-scale

nature of resource allocation problems, and place particular emphasis on large-scale

approaches that are generalizable to a broad class of resource allocation problems.

In Chapter 3, we present various modeling approaches for SRTW-UU, a represen-

tative instance of the MCFTW-UU. After describing current approaches, we discuss

their shortcomings in addressing the problem, and propose a new decomposition mod-

eling framework within which methods from Chapter 2 can be applied to produce

robust solutions.

In Chapter 4, we present methods to solve the SRTW-UU (and thus the MCFTW-

UU). The algorithm for our decomposition approach is presented and explained with

an example. We analyze the quality of the solution generated by our approach with

a sample problem, and also examine its performance on a real-world problem. We

also explain how this approach is applicable to large-scale problems.

In Chapter 5 we summarize the findings of our work. We discuss the effectiveness

of our decomposition approach and the impacts of the robust solutions generated.

Finally, we suggest future work in this area.
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Chapter 2

Robust and Large-scale

Optimization Approaches and

Variants

2.1 Introduction to Robust Optimization

Conventionally, problems have been solved assuming the input data to be invariant.

However, in practice, the realizations of the input data to the model are, more often

than not, different from those assumed in the mathematical model. This causes the

solutions that are obtained to be far from optimal in real life, and in some cases, even

infeasible.

Models are typically formulated by using 'best-guess' values or mean-values of input

data, or by solving 'worst-case' problems. Such 'worst-case' or 'best-guess' formula-

tions do not give satisfactory solutions. They are either too expensive (worst-case

models) or have large errors (mean-value models). We refer to model inputs that

are assumed to be realized with certainty, as nominal values; the models formulated

using nominal inputs as nominal models, and the solutions thus obtained as nomi-

nal solutions. To understand the impact of differences between data realizations and

nominal data, sensitivity analysis is often employed. However, this is only a post-
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optimality study, referred to as reactive studies by Mulvey [25], and serves only to

identify the extent of the solution's validity. Mulvey also points out the importance

of proactive approaches to this issue. He argues there is a need for models that "by

design, yield solutions that, compared to classical mathematical formulations, are less

sensitive to the model data". Mulvey also demonstrates, through the use of examples,

how nominal models fall short when uncertainty exists in the real-world realizations

of the data. After conducting a case-study on the problems in the Net Lib library

[20], Ben-Tal and Nemirovski [6] also concluded that "in the real-world applications

of linear programming, one cannot ignore the possibility that a small uncertainty in

the data can make the usual optimal solution completely meaningless from a practi-

cal viewpoint". In fact, the need for robustness has been recognized in a number of

planning and operations areas. Paraskevopoulos et.al. [27] demonstrate this in the

case of a capacity planning problem where uncertainty plays an important role.

To adequately address issues of stochastic problem parameters, we need a method-

ology that produces solutions less vulnerable to uncertainty, allowing us to find so-

lutions that are feasible, and near-optimal, under several data realizations. Robust

optimization, an approach specifically considering uncertainty, is designed to achieve

these goals. In this work, we will refer to models that consider parameter uncertainty

and variability in a range of values, and identify those parameter values that are best

used in the model, as robust models. Solutions produced from such models will be

referred to as robust solutions.

Researchers have had different notions of robustness, though there is general agree-

ment in the optimization community that a robust solution should reduce the vulner-

ability of the system. Some researchers define a robust plan as one for which there

is a reduced need to re-plan because the plan more frequently remains feasible even

as uncertain parameters assume their specific values. Several such metrics exist to

measure robustness, with many 'tailored' to the problem under consideration and to

reflect its specific vulnerabilities to uncertainty. We will describe metrics we develop
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for the MCFTW-UU and SRTW-UU in Chapter 3.

2.1.1 Distinguishing Robust Optimization from Other Meth-

ods

It is important to understand that robust optimization differs from existing ap-

proaches of handling uncertainty, such as sensitivity analysis and stochastic program-

ming. Sensitivity analysis is a post-optimality study that only indicates the extent of

the nominal solution's validity. Stochastic programs, on the other hand, differ from

robust optimization in that they take advantage of the fact that probability distri-

butions governing the data are known or can be estimated. Their goal is to find

some policy that is feasible for all (or almost all) possible data instances, while max-

imizing the expectation of some function of the decisions and the random variables.

More generally, such models are formulated, solved analytically or numerically, and

analyzed in order to provide useful information to a decision-maker. However this

requires an assumption of knowledge of the data distributions which might not always

be satisfiable. An important restriction for stochastic programming problems is that

the probability distributions of the random parameters are assumed to be known, and

cannot depend on the decisions taken.

The most widely applied and studied stochastic programming models are two-

stage linear programs, referred to as stochastic programming with recourse. Here the

decision maker takes some action in the first stage, after which a random event occurs,

affecting the outcome of the first-stage decision. A recourse decision can then be made

in the second stage, that compensates for any negative effects that might have been

experienced as a result of the first-stage decision. The optimal policy from such a

model is a single first-stage policy and a collection of recourse decisions (a decision

rule) defining which second-stage action should be taken in response to each random

outcome.
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Dynamic programming is another classical method that allows the incorporation

of uncertainty by modeling uncertain parameters as random variables. It can gener-

ate provably correct policies that facilitate decision making. However, this method

requires knowledge of, or an assumption about the distributions of uncertain param-

eters, which are not always available, and which moreover, increase complexity of the

method greatly. Finally, this method suffers from the well-known curse of dimension-

ality - as problem instances grow in size, the representation of the problem and the

resulting solution time grow exponentially.

2.1.2 Robust Optimization Methods

In the linear programming context, the concept of robust optimization is associated

with providing slack in the solution, as slack allows feasibility of the planned solution

for different realizations of the uncertain data. Instead of finding an optimal solution

to a single instance of the problem using nominal values of the data, the goal is to

find a solution that remains near-feasible and near-optimal when the data changes.

An early step in this direction was taken by Soyster [31], who proposes a worst-

case linear optimization model in which each data element takes on its extreme, or

worst-case, value that is at the boundary of its range of values. That is, for each

uncertain parameter, the model computes a solution assuming that the realization of

the parameter that would consume the maximum possible resources of the system.

Such a solution would, in fact, have the highest possible slack in the system for any

realization of the uncertain parameters. However, Ben-Tal and Nemirovski [7] argue

that such solutions are too conservative because low probability events force a very

costly solution relative to that achieved for the nominal problem.

Bertsimas and Sim [9] note that the probability of all the data points simultaneously

taking on their worst case values, as in Soyster's model, is very low. Moreover, it is not

practical to plan for maximum uncertainty, as robustness comes with an associated

cost. Instead, they argue that decisions are to be made which attain a reasonable
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trade-off between the degree of robustness and cost spent. In 2002, Bertsimas and Sim

proposed a linear model in which some of the data elements take on extreme or worst-

case values, while the others assume their nominal values. The degree of robustness

can be controlled by adjusting a level of robustness parameter F, which guarantees a

feasible solution to any instance in which fewer than F coefficients realize their worst-

case values. The resulting robust counterpart to the linear program is still linear,

and has an intuitive appeal in that the tradeoff between robustness and solution cost

can be computed by varying F. Moreover the data requirements of this model are

low, matching the availability (or lack thereof) of data for many real-world problems.

This approach is of particular interest to us, and we shall examine it in more detail

in Section 2.4.

In another approach addressing the issue of over-conservatism, Ben-Tal and Ne-

mirovski [6, 7] propose the usage of ellipsoidal uncertainties, which result in less con-

servative solutions than that of Soyster's method. The principal motivation for using

this kind of uncertainty set is that measurement errors are typically distributed in an

ellipsoid centered at the mean of the distribution. Under this uncertainty assumption,

linear programs have robust counterparts that are conic quadratic problems. How-

ever, an important drawback of this approach is that the resulting models, though

convex, are non-linear and computationally more difficult than Soyster's models, es-

pecially under integer constraints and for large-scale problems.

Yet another approach to robust optimization, called chance-constrained program-

ming, was introduced by Charnes and Cooper in 1959 [121. This work was among the

very first to address the problem of planning under uncertainty. Chance-constrained

programming (CCP) admits random data variations and permits constraint violations

up to certain specified probability limits [13]. It is not required (unlike stochastic pro-

gramming) that the decisions be feasible for (almost) every outcome of the random

parameters, but require feasibility with at least some specified probability. When un-

certainty in a constraint is limited to the right-hand-side, Charnes and Cooper show

27



that the randomness component can be modeled deterministically and the model can

be converted into a linear program with very little increase in complexity. The model

is intuitively appealing, but requires at least partial knowledge of data distributions.

CCP models, however, face computational issues with the addition of uncertain pa-

rameters in a constraint. Under uncertainty in the left-hand-side of the constraint

matrix, the usage of multinomial distributions becomes necessary, and serious com-

putational difficulties are encountered. Most chance-constrained programming appli-

cations have been limited to capturing uncertainty only in the right-hand side due to

these computational difficulties. Chance-constrained programming has been applied

to, among other areas, critical path analysis [14], networks [16] and research and

development projects [17].

In addition, several problem specific approaches to protect solutions against un-

certainty have been explored. Paraskevopoulos et.al. [27] solve a capacity planning

problem, using a sensitivity approach, by minimizing an augmented objective function

that penalizes the sensitivity of the objective function to various types of uncertainty.

They cast the problem in a deterministic framework in order to avoid complications

inherent to nonlinear stochastic formulations, thus maintaining computational sim-

plicity. Lan, Clarke and Barnhart [23] propose an 'intelligent routing model' for

aircraft routing to reduce propagation of delays along the downstream flight legs. In

addition, they introduce a new approach to minimize the number of passenger miscon-

nections by re-timing the departure times of flight legs within a small time window.

Their approach helps to improve passenger connection times without significantly

increasing costs.

Kang and Clarke [22] present an approach to improve operational robustness and

improve airline quality using degradable airline scheduling, an approach to derive ro-

bust airline schedules that simplify recovery operations. Prioritizing on the basis

of revenue, schedules are divided into layers that provide airlines with a clear de-

lay/cancellation policy and might enable them to market and sell tickets for flight
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legs based on passenger preference for reliability. Different models of incorporating

degradability are presented, namely the degradable schedule partitioning model, the

degradable fleet assignment model, and the degradable aircraft routing model.

Shebalov and Klabjan [30] propose robust approaches tailored to specific instances

of crew scheduling problems, which are instances of the MCFTW-UU with the sched-

ule defined apriori, by exploiting the specialized structure of the problem. The authors

introduce the concept of move-up crews and improve costs by swapping crews, and

show the resulting benefits.

The methods presented in the literature thus far can be divided into three broad

categories: problem specific (e.g. Shebalov and Klabjan, Lan et. al., Kang and Clarke,

Paraskevopoulos et. al.), distribution free and general (e.g. Soyster, Bertsimas-Sim)

and those that are general but use knowledge of uncertainty distributions (e.g. CCP).

Among the methods discussed above, the Bertsimas-Sim and Chance-constrained

programming approaches allow for a controlled tradeoff of robustness with cost. More-

over, they are applicable, in theory, to all linear or integer programs. In both these

approaches, the 'robust' linear program can be converted into a deterministic program

that is still linear. Hence these methods are computationally attractive, especially

for large-scale problems. We detail these methods, which are of special interest to us,

beginning in Section 2.4 onwards.

We shall devote the next two sections to discussing the implications of large-scale

problem structure on the solution of network-based resource allocation problems un-

der uncertainty.

2.2 Large-scale approaches

As discussed in Chapter 1, network-based resource allocation problems are often

large-scale, and often require integer solutions. As such, specialized methods are re-
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quired to solve them. Problems requiring binary integer solutions can be solved using

integer programming solution approaches, such as branch-and-bound. Branch-and-

bound is an efficient solution enumeration technique that finds an optimal solution

by repeatedly solving the linear programming (LP) relaxation of the integer prob-

lem with the binary constraints relaxed to allow variable values between (or at the

boundaries) of 0 and 1 [3]. A branch-and-bound 'tree' is constructed, with a linear

programming relaxation typically solved at each node of the tree. Given the LP so-

lution, branching decisions set fractional variable values to 0 or 1, thereby defining a

new LP. The process repeats until an integer solution (if it exists) is found. The best

integer solution is recorded, and continually updated, as new solutions are found. The

value of the best solution is used to identify nodes (or LP problems) in the branch-

and-bound tree that cannot lead to improved solutions. These LPs, and others, need

not be solved and hence, optimal solutions can be identified without evaluating all

possible solutions.

In the case of very large-scale problems, it can be impractical to solve even the linear

programming (LP) formulation directly. Instead, an indirect technique called column

generation is employed. Here the word 'column' indicates 'variable'. The approach

is to enumerate only some, not all, variables, generating them on an as-needed basis.

The optimal solution, according to linear programming theory, uses only a subset

of the total number of variables; hence, the goal is to identify those variables that

are present in the optimal solution. The challenge here is to identify the subset of

relevant variables as efficiently as possible [2]. Column generation consists of the

following steps [3]:

" Step 1: The Restricted Master Problem (RMP), a linear program containing

only a subset of the variables is constructed and solved.

" Step 2: Generate one or more variables that might improve the LP solution by

solving the Pricing Problem. If no such variables are generated, STOP; the LP

problem is solved.
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* Step 3: Add the variables generated in the pricing problem to the RMP and

return to Step 1.

By appropriately defining the pricing problem, the column generation approach is

guaranteed to find, for any LP, an optimal solution. Solving large-scale binary integer

programs, however, involves a combination of both column generation and branch-and

bound techniques. This combined methodology is referred to as branch-and-price, in

which column generation is used to solve each LP solved in the branch-and-bound

tree. Critical to the success of branch-and-price solution approaches are:

1. a tractable solution algorithm for the pricing problem; and

2. branching strategies in the branch-and-price algorithm that allow the same algo-

rithm to be used to solve the pricing problem for each LP solved in the branch-

and-bound tree, while ensuring that all branching decisions are enforced in the

solution.

Further details of the challenges associated with branch-and-price solution approaches

are provided in Barnhart et. al. [4] and Desrosiers et al. [19].

An approach analogous to column generation is row generation, where, instead

of columns, rows or constraints are generated on an as-needed basis. This is used

in the case when there are a very large number of constraints or a set of 'hard'

constraints that make the problem difficult to solve. 'Hard' constraints are omitted

from the constraint set, and a relaxed master problem with a smaller set of constraints

is first solved. The resulting solution is examined for feasibility with respect to the

omitted constraints. If these constraints are also satisfied, then the solution is optimal,

otherwise selected constraints are added back into the master problem to obtain a

better solution. This process continues until a feasible, and thus optimal, solution is

found.

Typically, resource allocation problems of large size require application of not only

one, but a combination of the aforementioned approaches. These are called branch-
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and-price-and-cut algorithms, which combine column as well as row generation within

the framework of branch-and-bound. This indicates that the robust approaches that

we will examine should also have formulations that allow the efficient utilization of

such large-scale approaches.

2.3 Robust, Large-scale Approaches

Mulvey[25] tailors his robustness methods to large-scale problems using a scenario-

based approach. His algorithm can be extended to large-scale problems by taking

advantage of high-performance computers and advances such as parallel computing.

However, because the approach requires the enumeration of all scenarios against which

the solution is to be protected, computational tractability can quickly become an issue

as problem size or the number of scenarios grow.

Among the robust approaches discussed in Section 2.1.2, not all can be applied to

large-scale problems because the robust solution methodology is not compatible with

existing large-scale approaches. Hence there is a need to adapt robustness approaches

to existing large-scale approaches, or to develop novel large-scale, robust optimization

approaches.

In the rest of this chapter, we focus on the Bertimas-Sim approach and the Chance

Constrained Programming (CCP) approach, with specific emphasis on applying them

to large problems.

2.4 Robust Formulation of Bertsimas and Sim

Consider a standard linear program, that is:
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max cTx (2.1)

s.t. Zaijxj b (2.2)
jEJ

1< x < u. (2.3)

Soyster [31] considers column-wise uncertainty, where each column A, of the con-

straint matrix belongs to a convex set Kj. He shows that the above problem is

equivalent to the following robust formulation:

max cTx (2.4)

s.t. Zx, < b (2.5)
jEJ

I< x <U. (2.6)

where dij = supAEK(a 2 3). This means that extreme (or worst-case) values of

coefficients that effectively maximize the amount of slack for the nominal problem

are used in the 'robust' model. The use of worst-case values results in solutions that

are far from optimal for many realizations of the constraint matrix coefficients.

Bertsimas and Sim [9] argue that worst-case approaches such as that of Soyster,

are too conservative, and hence, expensive. Instead, they suggest an approach aimed

at avoiding the overly conservative tendencies of Soyster's approach by providing a

mechanism to control the 'degree of conservatism'.

In the approach of Bertsimas and Sim, all uncertainty is assumed to be located

in the coefficients of the A matrix. By performing some simple transformations and

rewriting A, uncertainty in c and b can also be captured. By changing the objective

function to maximize z and adding the constraint z - cTx < 0, the objective function

can be moved into the A matrix, thus enabling uncertainty in the objective function
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coefficients to be captured. Similarly, if we have uncertainty in the right-hand-side

b-vector, the b-vector values can be subtracted from the left-hand side and the right-

hand side can be replaced by zero. The assumption of uncertainty in the A-matrix

therefore incurs no loss of generality.

Each entry of of the left-hand side of the constraint matrix, A, is assumed to be a

random variable with dij being the symmetric, unbounded variable corresponding to

the (i, j)th entry of A. No actual probability distribution of the random variable is

assumed, only an interval of values that dij can assume. Specifically, aj denotes the

nominal value of iij, which is used in the deterministic formulation, and aij is the

half-interval of dij. Hence, dij can take on values in the interval [aij - aij, aij + &1] and

the nominal value aij is the mean value of the symmetric distribution. The extreme

values that dij can take are aij - aij and aij + hij.

Let Ji be the set of coefficients for constraint i that are subject to parameter

uncertainty, that is, di, j E Ji takes values from a symmetric distribution as described

above. For each constraint i, there is a parameter Fi which can take a (possibly

continuous) value in the interval [0, |Ji I]. Because it is unlikely that all |Ji coefficients

will assume their worst-case (or extreme) values, Fi is used as a means of adjusting

the 'level of protection'. The Bertsimas-Sim formulation protects against the case

when up to -yi of the |Ji coefficients are allowed to assume their extreme values, for

all constraints i.

The corresponding robust non-linear model according to the Bertsimas-Sim model

can then be written as:
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max cTx (2.7)

s.t. aij xi + max {Z tiyy + (17j [-j]) yt} : bi V i
{siulteisic-Ji,lsil=LriJ,tiE Jig Si} j

(2.8)

- yJ < X < y 3  
V j

(2.9)

1<x<u Vj

(2.10)

y > 0 (2.11)

Because PI can take on continuous values, up to [Liij of the coefficients dij in

constraint i are allowed to take on their worst-case values, and one coefficient ait

changes by (Fi - [Uij)&i. In the above formulation, Si represents the set of uncertain

parameters in constraint i that take on their extreme values, such that ISil = [Fij,

Si C Ji. {tj} indicates the coefficient ait,, for constraint i, that changes by (Fi -

[rij)ais

For the ith constraint, the term max { dijyj+(Fi- [FiJ)hitiyt}
{Siulti}siGJilsil=[TiJti4EJi si} jESi

is a protection function that protects against the worst-case realizations of all aij, j E

Ji. The parameterized protection function thus uses Fj to offer various levels of pro-

tection. [1Fi1 indicates the minimum number of coefficients in constraint i that can

assume their worst case values without destroying feasibility of the solution. F, = 0

represents the deterministic or nominal case, whereas i = Ji I reduces this formula-

tion to the Soyster formulation.

Bertsimas and Sim [9] prove that the above non-linear formulation (2.7) - (2.11)

can be cast as a deterministic linear program, as follows:
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max cT x

s.t. E a> j + zi]P + E Pij < b
jEJ jEJi

zi + pij aijyj

- yi X3 yj

1 < x < U

Puj 0

yi 0

zi 0

Vi E I

Vi E I,Vj E J

Vj E J

Vi E I, Vj E Ji

The detailed proof of the equivalence of (2.12)-(2.19) with (2.7)-(2.11) is in [9].

Thus, the Bertsimas-Sim robust optimization approach ensures that the form of

the math program remains linear, and hence more tractable than formulations with

non-linearities. Bertsimas and Sim [9] also provide probabilistic guarantees on the

feasibility of constraints when more than 1i coefficients take on their worst-case values.

Moreover, they show how this formulation can be applied to portfolio optimization,

knapsack problems, supply chain management [10], and network flows [8] in order to

obtain robust solutions.

The advantages of the Bertsimas-Sim model are:

o It is generally applicable to linear programs and integer programs.

* Linear integer programs remain linear integer programs,

ables, degrading tractability minimally.

but contain more vari-

* Probability distributions for the uncertain data are not required to be known.

Uncertainty can be captured knowing the symmetric bounds of variation alone.
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" It allows adjustments to the 'level of robustness' using the F parameter, thereby

providing measures of the price of robustness, that is, the changes in planned

objective function value with changes in protection level. Robustness involves

backing off from optimality to gain solutions less vulnerable to uncertainty,

implying that there is a price associated with achieving each level of robustness.

" This model, with minor alterations, can also capture simple correlations between

uncertain data in a constraint [9]. However, it cannot capture correlations

among uncertain data across constraints.

The approach, however, also has some limitations:

" To determine the change in planned costs (or profits) as a function of the level

of 'protection', the problem has to be re-solved multiple times, once for each

different value of Fi, for all i. Because the bounds are also not tight, there are

very few guidelines to the choice of Fi. This poses computational challenges for

large-scale problems.

" It assumes symmetric and bounded distributions of uncertainty of parameters

about their nominal values.

" It does not incorporate knowledge of probability distributions, if known. This

can result in lack of inclusion of problem knowledge in the model.

" Probability bounds of constraint violation are derived for each constraint, and

cannot be easily extended to an overall protection level for the system.

* As discussed in section 2.5, this approach is not particularly well-designed for

the solution of very large-scale resource allocation problems.

Further, recent investigations by Sakamoto [28] and Bryant [11] report that the

Bertsimas-Sim approach works better in cases where the error is small, rather than

where the uncertainty ranges are large. Moreover, they report issues in applying this

approach to discrete optimization problems, especially binary integer programs, and

37



for large-scale problems. Results from these works are described in greater detail in

Section 2.8.

2.5 Extended Bertsimas-Sim (Delta) Formulation

Taking into account the above limitations of the Bertsimas-Sim formulation as

applied to resource allocation problems, we propose an alternative Delta formulation

which preserves the spirit of the basic formulation while addressing some issues. This

alternative formulation is designed for binary integer programs, the type of problems

we address in this thesis.

The standard binary integer program that is required to be made robust is:

max cTx (2.20)

s.t. Zajx <; b V i E I (2.21)
jEJ

x E {O, 1} (2.22)

The basic practical issue to be addressed is to select the appropriate level of pro-

tection Fi for each constraint i. A planner must specify a level of protection for each

constraint or type of constraint; a potentially cumbersome task for large-scale prob-

lems. Given this, it might be necessary to solve the Bertsimas-Sim model repeatedly

for varying values of the Pi parameters before a satisfactory solution is identified.

Because solving the model even once can be computationally challenging, the re-

quirement to solve it multiple times is likely to be impracticable for large problems.

To avoid the need to specify ' values, we modify the Bertsimas-Sim formulation

to include a constraint requiring the total profit of the robust solution to be within a

difference of 6 from the nominal optimal value. Additionally we change the objective

to one of minimizing the maximum number of variables that must assume their nom-

inal, rather than extreme, values to satisfy all constraints. We refer to this model as
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the Delta formulation, derived from the added constraint on profit.

We define variable Ai equal to the maximum number of variables x in the solution

with x = 1 whose coefficient values must assume their nominal values for constraint

i to remain feasible. The objective function value, denoted v, equals the maximum

value of Ai over all constraints i. We arrange, for each constraint i, its associated

binary decision variables, xj, in increasing order of their hij values. After ordering,

the position of the jth column in the ith row is denoted by l(i,j). For example, the

variable j in constraint i with the smallest dij value has l(i, j) = 1. Also the variable

with the largest &ij value has l(i, j) = N, with N equal to the number of binary

variables.

Data:

" cj: profit coefficient for variable j.

" I: set of constraints.

" J: set of variables.

" dij: realized constraint coefficient for constraint i and variable j, V i E I, j E J.

" ai3 : Nominal value of &ii, also the mean value of its symmetric range of variation,

Vi E 1, j E J.

" &i3: Half-interval of symmetric range of variation of iij, V i E I, j E J.

" bi: Right-hand side value for ith constraint, V i E I.

" N: number of variables.

" l(i, j) = the ranking of the jth variable when the hij values in constraint i are

sorted in increasing order.

" j(i, 1): is the original index (j) of the variable that takes the lth position in the

sorted &ii values for constraint i.
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* y : optimal value of variablej for the nominal problem, V j E J.

* 6: user-specified incremental cost that is acceptable for increased robustness,

that is, the profit of a robust solution from the Delta formulation is at least

Zcyj -6.
jEJ

Decision variables:

" xj: binary decision variable that equals 1 if variable is present

and 0 otherwise.

" sij: equals 1 if the coefficient dij is not allowed to take on its

and takes on its nominal value in the solution.

in the solution

extreme value,

" Aj: the maximum number of variables x in the solution (with x = 1) whose

coefficient values must assume nominal values for constraint i to remain feasible

" v: the maximum number of uncertain coefficients in any constraint that must

assume nominal values, rather than their extreme values, to satisfy the con-

straints

This leads to the following Delta formulation:

C. 3 3

v> A,

3(a j + ai&)x 3 - > i :s5 bi

Aj 2 > lsij(2 ,) - >[1 - Xjti,k)]
k= 1

Xi E {0, 1}

sij E {0, 1}

V

V

iE

SE

I

I

V I J, V i I

V

V

i E Ij E J

i E Ij E J
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The formulation is described as follows: The objective is to minimize the maximum

number of coefficients that must assume their nominal values to satisfy all constraints.

This serves the purpose of trying to maximize the number of coefficients that can take

their extreme values and still maintain feasibility. Constraints (2.24) require that

the profit from the 'robust' solution not differ from the profit of the deterministic

solution by more than a 'robustness budget' of 6. Requirements (2.25) ensure for

each constraint i that v is greater than or equal to Ai, that is, the maximum number

of coefficients in constraint i that must assume nominal values to maintain feasibility.

Because the objective is to minimize, v exactly equals the maximum value of Ai,

over all constraints i. Feasibility is assured by constraints (2.26). We set sij equal

to 1 in constraint i, for all coefficients j that must be set to their nominal values.

Inequalities (2.27) set sij to zero if xj is zero in the solution. Constraints (2.28)

provide a mechanism to count the maximum number of variables in constraint i E I

whose coefficients must take on nominal values. The explanation for this constraint

lies in the realization that when the columns are sorted in increasing order of hij values

for each row i, the maximum number of coefficients that must assume nominal values

to maintain feasibility is determined by forcing the smallest hi.s in the solution to

have their associated sij values set to 1, if xj is in the solution. The x and s variables

are binary, as required by (2.29) and (2.30) respectively. Alternatively, one can think

of this model as maximizing the minimum number of coefficients in a constraint that

can take on their worst-case values, under budget limitations.

The mechanism to find the maximum number of nominal-valued coefficients in a

constraint is best explained using an example. Consider a constraint i with J| = 5,

with &ij values of 7, 1, 2, 0.5, and 10. Arranging these in ascending order, with indices

denoted 1, we have 0.5, 1, 2, 7 and 10. Let xgy be zero, and x* = 1 for all other j.
Constraints (2.27) set sij(i) = 0 and allow si,j(i,) to equal 0 or 1 for all other 1. Say,

for this solution, constraint i is violated by 4 if the coefficients for all variables in the

solution are set to their extreme values, that is, Z(a 3 + hij)x < b is violated by 4,
jEJ

with bi = 6. To achieve feasibility of constraint (2.26), possible solutions are to set:
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1. si,j(i,2) = Si,j(i,3) = Si,j(i,4) =1 and sij(i,1) = Si,j(i,5) = 0;

2. si,j(i,3 ) = Si,j(i,4) = 1 and sij(i,1) = Si,j(i,2) = Si,j(i,5) = 0;

3. SiJ(i,4) = 1 and sij(i,i) = Si,j(i,2) = Si,j(i,3) = Si,j(i,5) = 0;

4. si,j(i,5) = 1 and sij(i,1) = Si(i,2) = Si,j(i,3) = Si,j(i,4) = 0;

5. si,3 ji,4) = Si,j(i, 5 ) = 1 and Sij(i,i) = sij(i,2) = Si,j(i,3) = 0.

Note that only the first solution is allowed, as it represents the solution with the

maximum number of coefficients that must assume their nominal values to maintain

feasibility of the constraint. Note further that Ai, as defined by constraints (2.28),

equals 3 for solution 1; equals 3 for solution 2; equals 3 for solution 3; equals 4

for solution 4; and equals 4 for solution 5. Constraints (2.28) ensure that the invalid

solutions represented by 2), 3) and 4) do not define the value of the maximum number

of coefficients by inflating the number of variables in each of these solutions with s-

values set to 1 to at least the value of the true maximum. Because there exists another

solution with the same x-values and different s-values whose objective function value

2.23 is improved (and is correctly computed), a solution with the correct Ai, for all

i, will always be selected.

Observe further that constraints of the form (2.27) can be violated only when xj = 0

for some j and for some i in a solution. Because constraints (2.26) are 'less than or

equal to' constraints, they will not be violated when xj = 0 and sij = 1. However,

because the objective is to minimize, the largest Ai will be required to be as small

as it possibly can, which happens when sij = OVi E I when xj = 0. Therefore,

constraints (2.27) will never be violated in an optimal solution, and may be relaxed.

2.5.1 Investigation of Large-scale Extension Capabilities

For the Delta formulation to be practical for use in solving large-scale resource allo-

cation problems, it should be amenable to column generation techniques, as explained
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in Section 2.2. We check this condition for a simple variant of the MCFTW-UU prob-

lem, namely the multi-commodity flow problem under uncertainty. If the path-based

multi-commodity flow problem under uncertainty recast using the Delta model al-

lows efficient column generation, we conclude that the Delta model is applicable to

large-scale problems.

In this context, efficient column generation is possible if the maximum reduced

cost variable (in this case, a path) can be identified without enumerating all the

variables. Specifically, if the reduced costs on paths can be expressed in terms of arc

costs, shortest path algorithms can be used to identify the most positive reduced cost

variable and efficient column generation is possible.

The following is the integer multi-commodity flow formulation.

Data:

" cj,: Profit on arc (i, j)

" cp: Profit due to 1 unit of flow on path p, equivalent to the sum of profits of

the arcs on the path. cp = ciS
(ij)Ep

" A: Set of arcs in the network

" K: Set of commodities to be transferred from their respective origins to their

respective destinations

" d: Required flow of commodity k between the demand and supply nodes of

commodity k.

" 6p: Arc-path indicator variable that is equal to 1 if arc (i, j) is on path p, 0

otherwise

" us3 : Capacity of arc (i,j)

" pk: The set of origin to destination paths for commodity k
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* N: The total number of paths in the network. N = |pk|
kEK

Variables:

9 fp: equals 1 if all dk units of commodity k flow on any path p E Pk; and equals

0 otherwise.

max 1 1 dkCpfp

kEK pEpk

S. t. 1: dk 6g , : Uis
kEK pEPk

Sfp1

ep {0,o1}

V (i,j) E A

V k E K

Vp E pk,Vk E K

The objective in the above formulation is to maximize profits due to commodity

flows on the network. The constraints correspond to choosing flows satisfying capacity

constraints and satisfaction of demands on the network.

The Delta version of formulation (4.1)-(4.4) considering uncertainty in demands, is

as follows. We define the following additional notation:

* f'*: is the optimal solution to (4.1)-(4.4) using nominal values of data;

* 6: is the user-specified incremental cost that is acceptable for increased robust-

ness, that is, the profit of a robust solution from the Delta formulation is at

least dkcpf* -6;

kEK PEpk

* l(ij, p): the ranking of the pth variable when the dk values in each capacity

constraint of form (4.2) corresponding to arc (i, j) are sorted in increasing order;

* p(ij, 1): is the original index (p) of the variable that takes the lth position in

the sorted dk values of the capacity constraint corresponding to arc (i, j);
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" v: is the maximum number of uncertain coefficients that must assume their

nominal values, rather than their extreme values, to satisfy all constraints;

" A23 : is the maximum number of variables f in the solution (with f = 1) whose

coefficient values must assume their nominal values for the capacity constraint

for arc (i, J) to remain feasible; and

" si: equals 1 if the coefficient dk (with 6 = lp E pk) is not allowed to take

on its extreme value in the capacity constraint for arc (i, j), and takes on its

nominal value in the solution to maintain feasibility.

The duals associated with the constraints containing the variable f, are shown in

the right-most column. -y, ir, /y and a are non-negative variables and a are unrestricted

in sign.

min v

s.t. E E dkcpfp (> Sdkcpfp)* 6
kEK pEPk kEK pEPk

v > A' V (i, j)A

(dk + dk pfp- 8 < kos;U
kEKpEPk kEKpEPk

V (i, j) E A

V l = 1...N, V (i,j) E AAg2ikl -E[l - f,(ij'M)]
M=1

f= V k E K
pEPk

f, sg V (i, j) EA, V pEJ

fp E {0, 1} VpE Pk, Vk E.

sE{,1} VpEP, V k E

kPI V k E K

K

K

(2.35)

y (2.36)

(2.37)

-,7ri (2.38)

-i' (2.39)

c-k (2.40)

aP (2.41)

(2.42)

(2.43)

In Section 2.5 we show that constraints of the type (2.41) be relaxed. Therefore,

the reduced cost of variable f,
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N

= 0 - {ydkc, - rij (dk + dk)6ip -- 1p -- ±k} (2.44)
(ij)EA (ij)EA 1=1

( N

- j 6{-ydk Cij ± 1rij(dk+± dk)} + -z1ijp U'k. (2.45)
(ij)EA 1=1

This expression for reduced cost is similar to that of standard multi-commodity

flow formulations. This indicates that negative reduced cost variables, even though

not present in the current formulation, may be identified by solving shortest path

algorithms with modified costs on the network arcs. If a path with negative reduced

cost exists, it indicates a variable with negative reduced cost, which is added to the

formulation, and the resulting LP re-solved. If no such path exists, the current solu-

tion is optimal for the linear programming relaxation. Because the Delta formulation

allows us to price-out variables that are not currently present in the formulation, it

is amenable to column generation approaches.

2.6 Chance-Constrained Programming (CCP)

Charnes and Cooper [12] were among the first to address the problem of robust

planning under uncertainty. Because uncertain input data can lead to constraint vio-

lations once a plan is put into operation, they regulate the chance that any constraint

is violated, hence the name "chance-constrained programming" (CCP).

Charnes and Cooper define chance-constrained programming to admit random in-

put data variations and permit constraint violations up to specified probability limits

[121. CCP thus requires that each of the constraints of the LP be satisfied with some

user-specified probability.

To illustrate the basic principle of CCP, consider the following basic LP:
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max cTx (2.46)

s.t. Ax < b (2.47)

x > 0. (2.48)

When A, b and c are random variables with known distributions, we can write

a chance-constrained model in which the probability of constraint feasibility is rep-

resented by a vector of constants a. The idea is that given certain constraints with

uncertain data, we want the probability of the constraints being satisfied to be greater

than a. Thus the chance-constrained model for (2.46)-(2.48) is of the form:

optimize f(c, x) (2.49)

s.t. P(Ax < b) > a (2.50)

x > 0. (2.51)

where 'P' means 'probability'. In the vector a, each element ao (0 < a 1) is a

constant, referred to as the protection level for constraint i, and (1 - ac) specifies the
N

maximum degree of violation of constraint i. Thus, the ith constraint E a jxj < bi
j=1

N

is converted to P(Z aijxj 5 bi) > ai in the CCP formulation, which means that the
j=1

ith constraint is allowed to be violated at most (1 - ai) proportion of the time.

Charnes and Cooper translate (2.49)-(2.51) into different models, for varied types

of objective functions and correspondingly different constraints. They present models

for three types of objective functions, namely: the expected value optimization model

(E-model), the minimum variance (or mean-square error) objective (V-model) and a

maximum probability model (P-model). In each of these models, b and c are assumed

to be uncertain.' Further details of these models are given in [13] and [15].
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Further, Ben-Israel [5] shows that

N N

P(Z aj bi) a, aij j x F 1 (1 - at), (2.52)
j=1 j=1

with y = FC1(1 - ai) equal to the quantile value in the cumulative distribution

function (CDF), Fb1 , of bi such that the probability that bi takes on values less than

or equal to y is (1- a). That is, if f(bi) is the probability distribution function of bi,

fw f(bi)dbi = 1 - ai.

The expression on the right of (2.52) is a linear programming constraint. Suppose

the objective function in (2.49)-(2.51), that is, optimize f(c, x), assumes the form

max E(cT x), where c is a vector of random variables. Let E(cTx) = pTx so that M,

is a vector whose elements are the expected values (means) of the elements in c.

The linear program is then

max A Tx (2.53)

s.t. Ax < Fg1 (1 - a) (2.54)

x > 0. (2.55)

From the distributions of the elements in c, we can determine a vector of stipulations

/3 such that P(c < A,) > 3 for some A. Ben-Israel shows that we can also write the

above linear program as

max (FC 1(I))"x (2.56)

s.t. Ax < F-1(1 - a) (2.57)

x > 0, (2.58)

with Fr 1 (3) is defined similarly to F 1 (1 - a) above.
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We capture uncertainty in the cost function using the expected values of the c

vector, or by using quantiles of c that we want to protect against, and uncertainty in

the RHS can be captured by using the relevant quantiles of the b-vector.

Our focus in this work is on models whose objective function is to optimize the

expected value of the objective function, with uncertainty in the right-hand side

values, and hence we adopt the deterministic equivalent as shown in (2.53)-(2.55).

Thus, given the CDF of the right-hand-side (RHS) vectors, (or even certain quantile

values of the distribution), we convert the stochastic problem into a deterministic

linear programming problem of the same size as measured by the number of variables

and constraints. Quantiles of the probability distribution for uncertain parameters

can be obtained by analyzing historical data and incorporating additional knowledge

of the system behavior.

The CCP model assumes the RHS (= b) and c alone to be uncertain, and adjusts

the values of these uncertain parameters to create a solution with more slack. The

solution to the LP (2.53)-(2.55) has higher slack than the solution to (2.46)-(2.48).

Unfortunately, chance-constrained programming encounters serious computational is-

sues as we try to capture uncertainty in multiple coefficients per constraint. For most

of their models, Charnes and Cooper limited uncertainty to one random variable per

constraint (the b-matrix value or RHS value). To incorporate uncertainty in the

A-matrix (left-hand-side), we must calculate a joint probability distribution for all

uncertain coefficients in the constraint, making the deterministic program cumber-

some to solve. Miller and Wagner [24] discuss chance-constrained methods for the case

of multiple random variables (per constraint) generated by a multinomial distribu-

tion. However, most chance-constrained programming has been limited to uncertainty

in the constraints only in the right-hand-side due to the difficulties associated with

multiple random variables.
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Modifying the right-hand side b vector in (2.52) is sufficient, however, to provide

the entire constraint a protection of ai. Therefore, though capturing uncertainty

explicitly in the A matrix is cumbersome, constraint (2.52) is implicitly protecting,

to some extent, against changes in the left-hand-side matrix.

The following are some of the advantages of this model:

" The structure of the CCP model is generalizable to all linear/integer programs.

" The model of capturing uncertainty has intuitive appeal. The deterministic

formulation is also easy to understand and interpret.

" The CCP model does not require complete knowledge of the distribution that

the uncertain data follows. In fact, knowledge of the quantile value of the

distribution, corresponding to the required protection level for the constraint,

is sufficient. In general, knowledge of a few discrete quantiles of the uncertain

data for each constraint allows the user to approximate the distribution without

requiring too much data about the distribution. Such information is also usually

available through statistical analysis of the historical data of the system.

" Finer knowledge of the behavior of the system, as compared to simply the

bounds of variation, can be captured through this model. Distributions other

than the uniform distribution can be easily incorporated without an increase in

complexity.

However, this model also has some limitations, as mentioned below:

" Uncertainty in the left-hand side A matrix, including correlations among un-

certain data, is difficult to model explicitly.

" Approximate probability distributions or some quantiles of the distribution of

the RHS have to be known. If unknown, the extreme-value bounds, as used

in the Bertsimas-Sim model, can be considered as the bounds of a uniform

distribution.
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2.7 Extended Chance Constrained Formulation

(ECCP)

The CCP faces a similar issue as the Bertsimas-Sim model: the problem of speci-

fying a probability of satisfaction for each constraint. This is potentially a limitation

of the approach when applying to large problems. We propose a model that avoids

the need to specify the protection level for each constraint explicitly. Instead, we in-

clude a constraint on the overall expected profit of the robust solution and change the

objective to one of maximizing the minimum protection level provided any constraint.

For this, we require the knowledge of some quantiles and their associated values, of

the probability distribution of the RHS for each constraint, and the expected values of

the profit function. Let Ki represent the set of quantiles known in the ith constraint.

We define a binary variable ai for each constraint i representing the quantile that is

chosen from among the Ki available quantiles. pk is the protection level probability

associated with quantile k E K for constraint i E I. The objective function value,

denoted y, equals the minimum protection level achieved over all constraints i E I.

To capture the tradeoff of robustness with profits, we assume that the planner is

willing to forego a (user-specified) profit of A to instead gain a robust plan.

We propose a new budget-based chance-constrained formulation for (2.49)-(2.51)

that can be written as:

max -y (2.59)

s.t. P(Ax < b) > a (2.60)

Y < ai Vi E I (2.61)

E(cTx) > cTy* - A (2.62)

x > 0 (2.63)

a > 0 (2.64)
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Here cTy* is the expected profit of the nominal optimal solution y*. -Y indicates

the minimum level of protection over the set I of all constraints i, and the objective

is to maximize the minimum protection level over all constraints in the model. The

objective may also be cast as a weighted sum of the protection levels of the constraints

- E wayi, with wi representing the non-negative weight assigned to any constraint
iEI

i E I.

The formulation (2.59)-(2.64) is not linear. To write it in a linear fashion, we define

the following notation:

Data:

" I: set of all constraints i;

" J: set of all variables j;

" Ki: number of discretized protection levels for constraint i;

" wi: weight assigned to the protection level of the ith constraint;

" aij: constraint matrix coefficients of the problem, corresponding to the ith

constraint and jth variable, V i E I, j E J;

" bi: nominal RHS values corresponding to the ith constraint, V i E I;

" cj: expected profit coefficient corresponding to the jth variable, V j E J;

* bi: kth quantile value of the RHS parameter of the ith constraint, Vk E Ki, i E I;

and

" zj: Optimal solution to (2.46) - (2.48) found using nominal values of the b and

c parameters, V j E J.
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Decision variables:

" xj: Non-negative decision variables in the problem, Vj E J

" yk: Binary variable that is equal to 1 if the protection level (expressed as a

probability pk, with 0 < pk 1) represented by the kth quantile (k E Kj)

is attained in constraint i E I; and 0 otherwise. This means that if the kth

quantile value is protected against, the (k + 1)st quantile is also automatically

protected against. This follows from the fact that constraints are "less than"

inequalities. For example, if there are 5 quantile values for b, with b < 2 satisfied

1% of the time, b < 3 satisfied 5% of the time, b < 5 satisfied 20% of the time,

b < 7 satisfied 35% of the time and b < 8 satisfied 50% of the time, then the

quantiles k are k, = 2 with protection level 99%, k2 = 3 with protection level

95%, k3 = 5 with protection level 80%, k4 = 7 with protection level 65%, and

k5 = 8 with protection level 50%. That is, a protection level of 95% is achieved

with b = 3 (and hence 80%, 65% and 50% protection levels are also achieved

with b = 3). The yk values for any constraint i, therefore, follow a step function

as shown in Fig. 2-1.

yik

0

99 98 ........... 50
Protection Levels

Figure 2-1: Step function representing the form of protection level variables

* -y: protection level attained for the ith constraint, V i E I.
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The extended chance-constrained model (ECCP) is as follows:

max E wS Y
iEI

s.t. cx 3 cZ - A
jE J JEJ

K

Aijxj Y bi(y? - yik-1)
jE J k=1

yk > yk

MO0yi = 0

yK = 1

Ki/

_, < LPik (yik_ z - f1)

k=1

Xj 0

yi E {0, 1}

0 < 4 :5 1

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

V i E I

V k = 1,1... Ki, i E I,

V i E I

V i E I

V i E I

V j E J

Vk E Kii E I

V i E I

The objective function (2.65) maximizes the weighted discretized probability that

each constraint i E I is feasible. It can also be re-written to maximize the minimum

value of -yi over all constraints. (2.66) ensures that the solution's expected profit is

within A units of the expected profit associated with the nominal optimal solution

(found by solving the problem using nominal values of the b vector). For all con-

straints i E I, (2.67) forces the left-hand-side (LHS) to be less than or equal to bi

if yk equals 1, thereby ensuring constraint satisfaction with at least the probability

associated with quantile k. For the smallest quantile k* that can be satisfied, the yi*

value is 1, and quantiles k < k* have yi = 0. Thus, the RHS value of this constraint

is selected as the smallest one that can be satisfied by the solution. (2.68) ensures

that the yks are monotonically increasing and follow the step function shown in Fig.

2-1, such that if a smaller quantile (higher protection) is achieved, the larger quan-

tile (lower protection) is automatically achieved. (2.69) and (2.70) set the boundary

values of the yi step functions. Constraints (2.71) set -y to be no greater than the
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highest protection level provided to constraint i by the solution. The xjs are non-

negative for all j E J; yfs are binary for all j E J and all k c Ki for all i c I; and -yjs

are non-negative for all i E I as required by (2.72),(2.73) and (2.74), respectively.

2.7.1 Large-scale extension capabilities

In the ECCP, the number of constraints and variables is much greater than that of

the original chance-constrained formulation. The additional constraints are needed to

model the quantiles of each uncertain RHS parameter. Due to the nature of the step

function, several of these constraints do not play a significant role, or are not tight, at

the optimal solution. Thus, we can apply the concept of row-generation to make the

solution process more tractable. Moreover, we can add quantiles dynamically, adding

those corresponding to higher levels of protection only if the solution currently satisfies

the highest level for a particular constraint. In doing so, we can greatly decrease the

number of constraints in the model. By including only partial quantile information

at first, we have a model with fewer constraints and variables that is easier to solve.

Because the number of decision variables also increases in the ECCP, the applica-

bility of column generation techniques is critical. Hence, as in the case of the Delta

model, we shall again write the standard multi-commodity flow problem ((4.1)-(4.4))

as an ECCP formulation and check if the property of column generation is retained.

Additional notation:

" Lij: Set of quantiles 1 = 1, ... ILij of uncertain capacity parameters, for each

constraint corresponding to arc (i, I).

" fp*: Is the optimal solution to (4.1)-(4.4) using nominal values of data.

" p : Is the protection level probability associated with quantile I E Lij for the

capacity constraint corresponding to arc (i, j), 0 <p. K 1.
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" y,,: Is the binary variable that is equal to 1 if the protection level expressed

as a probability p , represented by the lth quantile, is attained in the capacity

constraint for arc (i, j); and 0 otherwise.

" The duals of the constraints containing variable fp are expressed in the rightmost

column of each equation, with 1r1 and7r for all (i, j) E A, non-negative and ak

for all k E K unrestricted in sign.

The following formulation is analogous to (2.65) - (2.74).

max > Wi 3 Yij
(ij)EA

s.t.> > d Cp fp > dkcpf* A

kEK PEPk kEK pEPk

|Lij|

dk fpbp < ), U(y'5 - )
k EK pePk 1=1

y > y . V 1 ,., |Lij|

y= 0 V (i, j)E A
L"I =1 V (i,j)EA

E fp=1 V k E K

PEpk

(2.75)

(2.76)

V (i,j) E A 27r- (2.77)

(2.78)

(2.79)

(2.80)

Uk (2.81)

|Lij

Yij >p y(y 3 -U U)

fp E f0, 1} Vp E Pk

y E {O, 1} Vl E Li

0 < -yj :5 1 V (i, j)

V (i,j) E A

,Vk E K

j, V (i, j) E A

E A

(2.75) is the ECCP objective function that maximizes a weighted sum of protec-

tion levels over constraints with uncertain parameters. Constraints (2.76) limit the

expected cost of the robust solution (due to non-service of shipments) to no less than

the user-specified value of A less than the expected optimal cost when using nominal
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parameter values. Constraints (2.77) find the highest protection level attainable for

the uncertain parameters. Inequalities (2.82) set -yei to be no greater than the highest

protection level provided to the capacity constraint corresponding to (i, j). (2.78)

ensure that the protection level variables follow a step function, that is, if a higher

level of protection is achieved, all lower levels of protection are also achieved. (2.79)

and (2.80) set the boundary values of the step functions. Constraints (2.81) assign

one path to each shipment. Constraints (2.83), (2.84) and (2.85) require the y1, and

f, variables to be binary, and the probability protection level variables to lie between

or at 0 and 1.

The reduced cost of the variable f, from the above formulation is

0 - [-ir' dkcp + E 7rijdk6 + ± k (2.86)
(ij)EA

= dk( E 7irciP6, - 7 rirj6{) - Uk (2.87)
(ij)EA (ij)EA

= dk 1 (wrc 3i - 2)jp. - (2.88)

(ij)EA

This is similar to the form of the reduced cost expression in the case of standard

multi-commodity flows. Hence, we can rewrite the objective function as min - E W
(ij)EA

and solve a shortest path problem on the network with arc costs -1rici, + 7r?. If the

shortest path for commodity k has length less then Uk/dk, then the path has negative

reduced cost and it is added to the formulation and the augmented LP is re-solved.

If no such path exists, the current solution is optimal for the linear programming

relaxation.

Column generation approaches are therefore, compatible with chance-constrained

programming models, and we can combine the approaches of column generation and

row-generation for large-scale linear programs. These can be integrated to form

branch-and-price-and-cut algorithms for large-scale binary programs.
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2.8 Comparative Analysis and Insights into Berstimas-

Sim and CCP Models and Extensions

In this section, we will first compare the Bertsimas-Sim and ECCP models in

terms of their approach to modeling uncertainty. Then we will examine how robust

solutions from these approaches are evaluated, and their behavior with respect to

different metrics.

Conventional robust optimization models often have associated data requirements

that are excessive, requiring data that is either unknown or is so extensive that it

cannot be incorporated into a tractable model. Techniques such as the Bertsimas-Sim

approach, simplify the data requirements, but do not take advantage of information, if

known, pertaining to the distributions of uncertain data. The CCP/ECCP approaches

can capture data distributions if known, and can work with extreme values such as

those used by the Bertsimas-Sim model if distributions are unknown.

The assumption of a uniform symmetric distribution, as in the Bertsimas-Sim

model, may not always be valid. If we provide protection against measurement error,

it is more probable that the distribution of uncertainty is Gaussian, in which case

the extreme values usually have a very low probability [28]. Protecting against such

values is also overprotective and often expensive. Moreover, uncertainty distributions

often tend not to be symmetric. For example, capacity shortages are much more

common than capacity excesses.

The advantage of the CCP/ECCP approaches are that we can utilize knowledge of

distributions and/or use several quantiles, and model with higher fidelity if desired.

However, currently, we can incorporate uncertainty only in the objective function

and RHS, but not in the A matrix without adding a lot of solution complexity.

(To a certain extent we are protecting against some uncertainty in the A matrix by

adjusting the b vector.) The Bertsimas-Sim approach, however, is general enough to

model uncertainty in the A matrix also.
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The protection level metrics for CCP/ECCP are more intuitively meaningful with

respect to robustness than the measure of robustness used in the Bertsimas-Sim ap-

proach. Because the protection parameter for each constraint -Yi is apriori less mean-

ingful, the Bertsimas-Sim models might have to be solved multiple times to identify

the desired robustness levels. In contrast, the CCP models are intuitively more un-

derstandable. The extended versions of these models alleviate the need to provide

protection level targets for each constraint and instead, achieve the 'highest' levels of

protection for a given budget. While providing enhanced modeling capabilities, the

performance of the solutions are best evaluated not by the objective function values

but rather by other means such as simulation.

For the Bertsimas-Sim approach, row-generation and column generation are diffi-

cult or impossible to do efficiently. In contrast, row and column generation can be

efficiently accomplished in the Delta, CCP and ECCP approaches. If the nominal

problem formulation allows for column generation, the robust formulations of the

Delta, CCP and ECCP models preserve this property, whereas the robust formula-

tions of the Bertsimas-Sim model does not. This provides Delta, CCP and ECCP a

definite advantage, one that is often necessary, in solving large-scale problems.

Several metrics can be used to evaluate the solutions obtained from robust optimiza-

tion approaches. Unlike deterministic approaches in which the metrics are typically

restricted to a comparison of the objective function values and the run times, there

are several robustness metrics. These include quantification of the degree of violation

of constraints; of how often constraints might be violated; of the scope of replanning

required (the replanning may be local or global); on the number of times replanning

is necessary; and so on. In 2006, Sakamoto [28] applied the Bertsimas-Sim model

to a UAV mission planning problem. In this work, he developed a UAV Mission

Planner that couples the scheduling of tasks with the assignment of these tasks to

UAVs, while maintaining the characteristics of longevity and efficiency in the plans.

The problem is formulated using the Bertsimas-Sim approach and is a mixed integer
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program (MIP) that is evaluated using simulation. The author uses several metrics

such as the number of constraints violated, the degree of constraint violation, and

the time until violation of the first constraint to evaluate the true robustness of the

solution. In this work, the author concludes that solutions obtained using nominal

values for all parameters possess a degree of slack, especially due to the requirement

of integer solutions. He concludes, however, that robustness modeling indeed adds

value to the overall plan. He observes through simulation, however, that the number

of violations did not decrease monotonically with increases in the protection levels.

In a seemingly contradictory result, he concluded that increasing protection in the

Bertsimas-Sim model did not increase the expected plan value to the user. Also,

among the several metrics used to evaluate robustness, it was observed that increased

protection rarely resulted in the simultaneous improvement of all metrics, indicating

a tradeoff even among different metrics of robustness.

The Bertsimas-Sim model also did not produce meaningful objective function val-

ues, because the objective function costs themselves were 'protected against'. The re-

sult was that the objective function values ceased being good estimates of plan reward,

suggesting the need for alternative means of protection for the objective function it-

self. The Bertsimas-Sim approach is most appropriate for uncertainty distributions

that have non-negligible weight at the tails, for example, the uniform distribution.

However in the case of Gaussian-type distributions, the applicability of the model

must be investigated. Moreover, uncertainty correlations between constraint types

and correlations between data uncertainties are not captured in this model.

Bryant [11] finds robust plans for the Effects-Based Operations (EBO) model of

UAV mission planning. He applies both the models of Bertsimas-Sim and CCP to

the problem. He finds that the robust plans in both cases are of far greater value

than the deterministic plan with nominal values. He states that both the models have

near-identical effects in terms of value added due to protection/robustness (in spite

of the CCP model protecting only in the RHS, and the Bertsimas-Sim model in both

60



the RHS and LHS). As in the case of Sakamoto, he reports that the frequency of

constraint violations does not decrease monotonically with protection level. He also

observed through simulation that the CCP approach tends to produce better plans

than the Bertsimas-Sim model in the case of normally distributed uncertainty.

Both authors agree that robustness gained by adding slack is seen to add value to

solutions. Another general conclusion in the literature is that the ability to select

gradations of the level of protection is of value in that it adds flexibility to the mod-

eling process and helps tailor the solution to the needs of the user. However, it is not

necessarily correlated with solution quality.

From the literature seen in this chapter, we see that there is a need to define suitable

metrics for robustness. Because robustness metrics can be conflicting, it is important

to decide which metrics are of primary importance.

Overall, we conclude that ECCP is the approach that meets our primary require-

ments of flexibility in using available information, ease of interpretation of robustness

metrics, and scalability of the solution approach to large problems.

2.9 Summary

Robust optimization is a new field of study with great potential for impact. Lit-

erature in this field is not vast, especially in the case of large-scale problems. We

examined different approaches to robust optimization in this chapter and found that

the Bertsimas-Sim and the CCP approaches were the most applicable models given

their tractability. Further in-depth analysis indicated the need for modeling enhance-

ments, which we tailored for large-scale problems and detailed in sections 2.5 and

2.7. We also analyzed the scalability of these models, their flexibility (in terms of

data requirements) and the interpretability of the inputs and the results. In spite

of some disadvantages, the ECCP model was found to be more versatile than the

Bertsimas-Sim model in applications to large-scale resource allocation problems.
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Chapter 3

Modeling Shipment Routing With

Time-Windows Under Uncertainty

In this chapter, we will address the problem stated in Chapter 1, and discuss

different ways of modeling the shipment routing problem with time-windows under

uncertainty (SRTW-UU), an instance of MCFTW-UU. We will apply some of the

lessons from our examination of the Bertsimas-Sim and CCP models in Chapter

2 to the SRTW without consideration of elements of uncertainty and then expand

our consideration to the SRTW-UU. We present several models and discuss their

shortcomings. We then motivate the necessity for a new approach to solve both

nominal problems as well as problems under uncertainty, and describe the framework

of such an approach.

In the SRTW-UU, we are interested in addressing the stochastic nature of input

data as seen in operations costs, vehicle capacities, shipment demands and supply

quantities, and travel and service times. We formulate the problem using existing

modeling approaches, and model uncertainty using the methods of Bertsimas-Sim

and CCP. We shall show that the generalizable approaches of Bertsimas-Sim and

CCP face issues in terms of scalability and capturing uncertainty. Problems involving

commodity routing and vehicle scheduling are NP-hard because they generalize the

Traveling Salesman Problem (TSP), which is known to be NP-hard [29]. Very large
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instances of this problem have been addressed using heuristics because exact methods

are not tractable [18]. To address problem size and tractability issues, we describe a

new decomposition approach for the SRTW and SRTW-UU, and provide a detailed

description of its design in Chapter 4.

3.1 Shipment Routing with Time-windows under

Uncertainty (SRTW-UU): Modeling Approaches

Models for the SRTW have primarily been derived from the basic multi-commodity

flow formulation. Modeling and solving multi-commodity flows has been addressed

extensively in the literature, and standard methods exist to solve it [2]. For SRTW,

additional decision making in the form of the vehicle scheduling element, along with

the shipment routing element leads to a considerable increase in complexity. The

scheduling element can be captured in terms of a static network representation or a

dynamic network representation, as discussed in the following sections. We explore

both static and dynamic modeling approaches in the context of uncertainty, by for-

mulating them using the approaches of Bertsimas and Sim and CCP. We then discuss

the relative advantages and disadvantages.

3.1.1 Static Network Approach - Schedule Modeled as a Con-

tinuous Variable

Network Description

The network G= (N, A) with node set N and arc set A, for the continuous variable

approach, as shown in Figure 3-1, is defined such that each node j of the network

has three attributes: a location 1(j), vehicle v(j) (v(j) E V, the set of vehicles), and

information if it is an arrival node or a departure node. An arrival node j corresponds

to the arrival of vehicle v(j) at location (j). Similarly a departure node j corresponds

to the departure of vehicle v(j) from location (j). For example, in Figure 3-1, node

DA1 is the departure node for vehicle 1 at location A, and AA2 is the arrival node
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Travel arc
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Figure 3-1: Network for the schedule-as-a-continuous-variable approach

for vehicle 2 at location A. The set of arcs A is partitioned into three arc sets,

namely travel arcs, connection arcs and transfer arcs. Travel arcs (i, j) on the network

represent movement of vehicle v(i)(= v(j)) departing from location l(i) and arriving

at location 1(j). Flows on these arcs represent the movement of shipments on vehicle

v(i) from l(i) to 1(j). Connection arcs connect the arrival node of vehicle v(i) at

location l(i) and the departure node of v(i) = v(j) at location l(j) = l(i). Flows

on these arcs represent shipments remaining on vehicle v(i) while it is positioned at

location 1(i). We denote the set of travel arcs and connection arcs for vehicle v as

A(v), and the nodes that arcs in A(v) are incident on as N(v), for all v E V. Transfer

arcs (i, j) connect the arrival node of vehicle v(i) at location I(i) to the departure node

of vehicle v(j)(5 v(i)) at location 1(j) = l(i). Flow on these transfer arcs, denoted

A(t), represents the transfer of shipments between vehicles at a location. Associated

with each transfer arc (i, j) E A(t) and shipment k E K is a transfer time tr .

Travel arcs, connection arcs and transfer arcs are shown in Figure 3-1. In addition,

we have an artificial arc for each shipment k E K, connecting the departure node of

the shipment's origin location, denoted O(k), to the arrival node of its destination

location, denoted D(k). We denote the set containing the artificial arcs for shipment

k as A' and the set of artificial arcs for all shipments k E K as A'. The artificial

arcs have infinite capacity and zero travel time, but have large cost equal to that

associated with non-service of shipments. Hence, an artificial arc is used when we
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cannot find a feasible path for the shipment, in which case it does not receive service.

In Chapter 1, we introduced the problem and associated notation as follows: dk

units of each shipment k in the set of shipments K must flow from O(k) to D(k)

in the network, satisfying restrictions imposed by its earliest available time EAT(k)

at the origin and latest delivery time LDTk(k) at the destination. To formulate this

problem over the static network, we introduce the following additional notation:

Additional Notation:

" K: Set of shipments, k = 1, 2, ..., IKI. In addition, k can take a value of 0,

where the Oth commodity represents vehicle flows over the network G = (N, A),

and commodities k = 1, 2, ..., IKI represent shipments k = 1, 2, ..., IK.

" bk: origin-destination indicator for shipment k E K at node i E N, equals 1 at

0(k), -1 at D(k), and 0 otherwise.

Uncertain Data:

" tUk : Time required for shipment k to traverse arc (i, j),V (i, j) e A. This

is equal to the travel time between the locations for vehicle v for travel arcs

(i, j) E A(v); equal to the minimum turn time of vehicle v for connection arcs

(i, j) E A(v); and equal to tr,, the time to transfer shipment k E K from node

i to node j, for transfer arcs (i, j) E A(t).

" c : If (i, j) is an artificial arc that connects O(k) and D(k), c equals the cost

(penalty) of non-service of shipment k, and equals a very large value M for

all other shipments I E K, I z k. This effectively disallows a shipment I from

flowing on an artificial arc belonging to shipment k, because that indicates an

infeasible path. If (i, j) is not an artificial arc, ck = 0 V k E K

* uij: capacity of arc (i, j) E A

" M: A large positive number
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Variables:

* ykj : binary variable that takes value 1 if shipment k E K travels on arc (i,j), 0

otherwise. For the commodity k = 0 representing vehicle flows, we set = 1

for all (i, j) E A(v).

" ti: continuous variable representing the time at which vehicle v departs from

node i E N(v),Vv E V

Nominal Formulation

In the nominal model, we assume that all input parameters are known and invariant.

The mathematical formulation for the problem is as follows.

kEK (ij)EA

t, + t&i yk < t.

tO(k) EAT (k)( - yO(k),D(k))

tD(k) < LDTD(k) + M(yh(k),D(k))

Z y y =bi
j:(ij)EA j:(j,i)EA

kEK~k E O1
yik E {0, 1}

ti > 0

V (i, j) E A, V k = 0,1, ... ,K

V k =0,1, ...,IKI

Vk =0, 1, ...,.IKI

ViE N, Vk= 0, 1, ... , IKI

V (i, j) E A

V (i, j) E A, V k = 0, 1,..., IKI

Vi E N

The objective function (3.1) minimizes the costs of penalties incurred due to non-

service of shipments. Constraints (3.2) guarantee that the schedule associated with

vehicle travel is feasible (given that k = 0 represents vehicle flows), and that shipment

flows and schedules are feasible with respect to travel times, connection times, and

transfer times. (3.3) and (3.4) disallow shipments that are served (not those assigned

to the artificial arcs) from being picked up or dropped off before or after their earliest
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available and latest delivery times, respectively. Constraints (3.5) maintain shipment

flow balance at nodes. (3.6) are the vehicle and transfer capacity constraints that

ensure satisfaction of capacity restrictions. (3.7) restrict the y variables to values of

0 and 1, thereby disallowing shipments to be served along more than one path. (3.8)

maintain the non-negativity of the schedule times.

The above formulation contains the arc-based multi-commodity flow constraints

(3.5), (3.6) and (3.7), along with additional constraints (3.2)-(3.4) and (3.8) that

ensure schedule feasibility.

This formulation contains IKIIAI binary variables, INI continuous variables and

JAI + K(2 + NI + JAI) constraints; a very large formulation that is difficult if not

impossible to solve for many practical size problem instances. Thus, even when

uncertainty is not considered, the problem is difficult to solve for large instances.

Additionally, if we model uncertainty using the approaches of Bertsimas-Sim and

CCP or their extensions, we exacerbate the tractability issues associated with solving

this formulation.

Due to the difficulties associated with solving large problems with the arc-based for-

mulation, path-based multi-commodity flow approaches have been extensively studied

and applied. A path-based formulation for the SRTW, which models shipment flows

on paths rather than arcs, is formulated using the following notation.

Notation:

" cp: cost of path p E pk, is equal to the penalty for non-service on each artificial

path, and 0 for all other paths

" 6.: Arc-path indicator that is equal to 1 if arc (i, j) is on path p, and 0 otherwise

" pk: The set of paths p = 0,1, .pk connecting O(k) and D(k) for shipment

k E K, let p = 0 denote the path comprised of the artificial arc from O(k) to

D(k).
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* fp: equals 1 if all dk units of commodity k flow on any path p E Pk; and equals

0 otherwise.

min E dicpfp
kEK PEPk

s.t. tj + E tti6Jfif, ti
p~pk

tO(k) > EAT (k) (1 - fO)

tD(k) < LDTk(k) + M(fOk)

Z:fpl
pEPk

SSd5ofy , uj3
kEK pEPk

f, E {0, 1}

ti > 0

V (i, j) E A, V k = 0, 1,...IKI

V k = 0, 1, ... ,K

V k = 0, 1, ... ,|JK|

V k = 0, 1, ... , |KJ

V (ij) c A

VpE Pk, V k = 0, 1,...,IK

ViE N

Constraints (3.13) - (3.15) form the path-based multi-commodity flow formulation

that can be solved using column generation approaches designed specifically for large-

scale problems. However, the additional schedule related constraints (3.10) - (3.12)

exceed the number of constraints in the path-based multi-commodity flow formula-

tion, making solution, especially for large-scale problems, difficult if not impossible.

For large-scale multi-commodity flows involving time, approaches have been devel-

oped and used that incorporate the time element into the network structure, and

eliminate the need to include constraints of the form (3.10) - (3.12). The time-

expanded network is called a time-space network. We discuss path-based time-space

network models in the next sections.

3.1.2 Dynamic Network Approach - Time-space Networks

In this section, we model the SRTW-UU using a time-discretized dynamic approach.

We will first present the nominal model for the problem.
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In time-space networks, both time and space are captured together, as two di-

mensions, by using the same variable, as shown in Figure 3-2. The nodes represent

locations at points in (or windows of) time and the arcs represent movement between

locations over time.

..--.---. A~t - - - - - At+l - - - A+2 A,t+3 -----

.**60Bt+I60. -t+ -t+ - -60

...-.. -t -1 C '+3 .....

Figure 3-2: Example of a time-space network

This definition allows the SRTW to be formulated as a standard multi-commodity

flow problem, without adding constraints for timing restrictions.

Network Description

The static network when expanded in time gives rise to the time-space network.

Each node j of the time-space network G = (N, A) is associated with a location

1(j), time t(j), vehicle v(j), and designation as an arrival node or a departure node.

An arrival node j corresponds to the arrival of vehicle v(j) at location 1(j) at time

t(j). Similarly a departure node j corresponds to the departure of vehicle v(j) from

location 1(j) at time t(j). Arcs on the network represent movements between nodes.

Travel arcs on the network represent movement of a shipment k = 1, ...jK| or vehicle

v(i)(= v(j)) departing from location l(i) at time t(i) and arriving at location 1(j) at

time t(j) > t(i) + ttk. Connection arcs connect the arrival node of vehicle v(i) at

location l(i) and time t(i) and the departure node of vehicle v(i) = v(j) at location
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1(i) = 1(j) and time t(j), allowing a shipment k = 1, ...IKI to stay on a vehicle v(i)

at location 1(i). These arcs indicate that vehicle v(i) remains at 1(i) = 1(j), from

time t(i) to t(j) t(i) + tt.j. Transfer arcs (i, j)k connect the arrival node of vehicle

v(i) at location 1(i) and time t(i) to the departure node of vehicle v(j)( 4 v(i)) at

location l(j)(= (i)) and time t(j), such that t(j) t(i) + ttk, allowing shipment

k = 1, ... |K| to transfer from v(i) to v(j) at location 1(i). In addition, we have

artificial arcs (1(0(k)), l(D(k))) from the origin node to the destination node of each

shipment with infinite capacity and cost M, equal to a very large number.

Because the sequence of movements of each vehicle is known, but the schedule

is unknown, we create departure and arrival nodes at each of the locations of each

vehicle at all the possible (discrete) times that the vehicle can depart or arrive from

the location. This allows us to create travel arcs that represent movements of the

vehicle between the same locations, but at different times. Such travel arcs are copies

of each other. The choice of a different copy indicates the choice of a different schedule.

These copies are made such that the vehicle departs from its origin and reaches its

destination within its specified time-window. In the solution, only one of the copies

may be chosen in defining the schedule.

In this network, a vehicle route is simply an alternating sequence of travel arcs

and connection arcs, with the timing of each connection arc satisfying minimum time

requirements for a vehicle to stopover at a location. For each vehicle, several paths

exist in the network, each representing the single route of the vehicle but with different

associated schedules. Among all the schedules for each vehicle, one and only one may

be chosen and the selected schedule must minimize the costs incurred for shipment

non-service.

A feasible shipment path is an alternating sequence of travel arcs and connection

or transfer arcs, with all shipment time-windows satisfied.
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We formulate this problem by defining the variables corresponding to vehicle routes

that obey the vehicle time-windows and shipment routes that obey shipment time-

windows. We introduce the following additional notation and provide our formula-

tions as follows:

Data:

" V: set of vehicles

" R,: set of feasible paths on the network for vehicle v E V

" (j 7 : is 1 if arc (i, ) E A is included in vehicle route r E R; and 0 otherwise

" P.: is 1 if arc (i, j) E A is included in shipment path p; and 0 otherwise

" uV: capacity of vehicle v

Shipment paths p E P', V k E K and vehicle paths r E Rv for vehicle v are

picked such that they satisfy the scheduling constraints (3.2)-(3.4) and (3.8). Thus,

by definition, the paths chosen have a feasible schedule with respect to the nominal

values of travel, connection and transfer times. We call this network the nominal

time-space network. Therefore, only the demand satisfaction constraints and capacity

constraints have to be explicitly formulated.

Variables:

" fp: is a binary decision variable whose value is 1 if shipment path p is present

in the solution, and 0 otherwise

" yr: is a binary decision variable whose value is 1 if vehicle route r is present in

the solution, and 0 otherwise
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Nominal Formulation

min E E dkCpfp (3.17)
kEK pEPk

s.t. E f, = 1 V kE K (3.18)
pE pk

E yr = 1  V v E V (3.19)
rERv

S5 dk 67fp U u 3 ,Yr V(ij) E A (3.20)
kEKpEPk vEV rER,

Yr E {0,1} Vr E RvVv E V (3.21)

fp E {0, 1} Vp E Pk,Vk E K (3.22)

The objective function (3.17) minimizes the expected penalty costs of the shipments

that are not serviced. Constraints (3.18) choose exactly one path for each shipment

amongst each of its alternative paths. Equalities (3.19) choose exactly one route

among all the vehicle paths on the network for each vehicle. Because the sequence of

stops the vehicle makes is known, this is equivalent to choosing exactly one schedule

for each vehicle. Inequalities (3.20) constrain the flow on each arc (i, i) to its possible

capacity if a vehicle were assigned. (3.21) and (3.22) restrict the vehicle schedule

choice variables and the shipment path choice variables to be binary.

The formulation (3.17) - (3.22) selects network paths for both the vehicles and the

shipments, and in doing so, determines vehicle schedules and shipment paths and

schedules simultaneously. In this process, we make decisions regarding the presence

of arcs in the solution. In that sense, we are solving a network design problem, which

we described in Chapter 1.

The number of constraints is IKI + lvi + Al and the number of variables in the

formulation is equal to the total number of possible schedules for vehicles and possible

paths for shipments on the network. In general, compared to the formulation (3.1) -
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(3.8), we will have far fewer constraints, but many more variables. In fact, for large

problems, because the number of path variables is exponentially large, the number of

variables is so large that they cannot be enumerated fully. However, as described in

Section 2.2, iterative techniques such as row and column generation can be used to

solve large-scale problems of this type. Applicability of such large-scale techniques is

critical to being able to achieving optimal or near-optimal solutions to the nominal

formulation.

Robust Formulations

In (3.17) - (3.22), constraints (3.20) have uncertain parameters. In order to capture

uncertainty in the shipment demands and supplies and vehicle capacities, we can apply

the Bertsimas-Sim and CCP models and their extensions. As discussed in Chapter 2,

ECCP is the approach we will implement to solve SRTW and SRTW-UU because we

can capture information regarding the distribution of supply, demand, and capacity

uncertainty, can apply column and row generation techniques, and do not have to

specify the target probability of satisfaction for each individual constraint.

Constraints (3.20) contain uncertain parameters in both the right-hand-side and

the left-hand-side of the constraint, with the demand parameters on the left-hand-side

and the capacity parameters on the right-hand-side. However, correlations between

both these uncertain parameters are unlikely, which avoids excessive complications

due to usage of multinomial distributions as seen in [24]. According to (2.52), we

see that using a quantile value of the right-hand side protects the entire constraint

against uncertainty, thus protecting partially against uncertainty in the left-hand-side

parameters. We can therefore use ECCP to provide protection against uncertainty

in constraints of the form (3.20). We formulate (3.17) - (3.22) as an ECCP using the

following additional notation.

Additional notation:

* Lij: Set of quantiles 1 = 1, ... jLjIj of uncertain capacity parameters, for each
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constraint corresponding to arc (i, I)

" f*: Is the optimal solution to (3.17)-(3.22) using nominal values of data.

" A* : Is the probability protection level (0 < p. < 1) associated with quantile

1 E Li for arc (i, j)

" z; : binary variable that is equal to 1 if the protection level represented by the

lth quantile is attained in the capacity constraint of arc (i, j); and 0 otherwise.

" -y3 : maximum protection level attained for the capacity constraint of are (i, j),

for all (i, j) E A, with -yi expressed as a probability.

" wij: non-negative weight assigned to the protection level of the capacity con-

straint corresponding to arc (i, J).

Robust Formulation with the ECCP approach

max E Wiy 7y (3.23)
(i,j)EA

s.t. 3 ( d c fp 3 E dkcpfp* + (3.24)
kEK pEPk kEK PEPk

E f, =1 V k E K (3.25)
pE Pk

E Y, 1  V v E V (3.26)
rER,

S 6,d fS , ( 7 ,u,(z - z%71) V (ij) E A (3.27)
kEK pEPk

z . > z 1 V (i, j) E A, l E Lij (3.28)

Z = 0 V (i, j) E A (3.29)

z = 1 V (i, j) A (3.30)
Lij

m < 5P,1 z - 4') V (i,j) E A (3.31)
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E I: dk i6fp < E M E Yr V (i, j) E A (3.32)
kEKpEPk vEV rER

zjE {0, 1} V (i, j) E A, I E Lij (3.33)

r E to, 1} Vr E RvVv c V (3.34)

fp E {0, 1} VP E Pk, V k E K (3.35)

0 < 7ij < 1 V (ij) A (3.36)

Constraints (3.25), (3.26), (3.32), (3.34) and (3.35) are the constraints in the nom-

inal formulation, while (3.23), (3.24), (3.27), (3.28), (3.29), (3.30), (3.31), (3.33) and

(3.36) are as presented in the ECCP formulation in Section 2.7.1.

Through this formulation, we have captured uncertainty in the shipment demands

and supplies, and vehicle capacities, in such a way that column generation is pos-

sible. Additionally, if we require capture of uncertainty in the time element - the

travel times, connection times and transfer times - we can do so by changing the

network to incorporate time uncertainty. To do so, we re-draw the time-space net-

work in the spirit of the CCP, with modified arc traversal times set equal to apriori

decided quantiles of the distribution of traversal time for each arc. We refer to this

modified time-space network as the robust time-space network. By solving the ECCP

formulation (3.23) - (3.36) on this robust time-space network, we can simultaneously

capture uncertainty in the travel times, shipments supplies and demands, and vehicle

capacities.

Another way of capturing uncertainty in the travel times is to make copies of

each arc in the nominal time-space network that capture different quantiles of the

arc traversal times. This can capture a larger range of possible vehicle schedules

and shipment paths than the network that specifies the quantiles of times apriori.

However, it presents a formidable challenge in terms of the number of possible paths

on the network, which increases the size of the problem far beyond that in the nominal

time-space network.
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Thus, using the ECCP approach, we can directly capture variability in the uncer-

tain parameters, and solve it using large-scale approaches like column generation. But

the size of the problem is now huge, due to additional size associated with capturing

uncertainty. Hence, for large instances, the ECCP formulation presents a tremen-

dous tractability challenge, one which we address by applying a new decomposition

modeling and algorithmic approach that we have developed.

3.1.3 Motivation for a New Approach

As seen in Section 3.1, robust optimization approaches such as the Bertsimas-Sim

and CCP and their extensions, do not scale well to the STRW-UU. This results in a

likely inability to solve large-scale network-based resource allocation problems even

when solution times are allowed to be long, and is certainly even more difficult when

real-time operational solutions are required.

The challenge, therefore, is to design a model structure that can incorporate data re-

lated to parameter uncertainty, but remain tractable. A design goal is that the model's

structure should remain the same, whether the data is known, partially known, or

unknown. In the following sections, we will present such a modeling approach, and

discuss how it overcomes the limitations of existing models while taking advantage of

the strengths of the CCP and ECCP approaches, namely, flexibility with respect to

data requirements and amenability to column generation.

3.2 Model Decomposition

3.2.1 Decomposition Overview

Our decomposition model leverages the natural advantages of the static as well as

dynamic models. It builds off the static model by not considering the scheduling com-

ponent in the network construction. It also seeks to use the efficient multi-commodity

flow path formulation presented in the context of time-space networks, while avoid-
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ing the intractability issues faced with such models. This leads us to consider a

decomposed model in which routing and scheduling are treated separately.

Decomposition itself is used in several solution techniques, such as Lagrangean

relaxation [2], Dantzig-Wolfe decomposition [2], Resource-directive decomposition [2],

etc.

Our decomposition modeling approach separates the shipment flows, and scheduling

(of vehicles and shipments) in the SRTW-UU problem into two modules - the flow

module and the scheduling module. Decisions pertaining to shipment flows are made

in the flow module and decisions regarding the shipment and vehicle scheduling are

made in the scheduling module. Because the costs in the objective function for the

problem can be expressed as purely flow-based costs (costs for using artificial arcs)

we formulate the flow module as an optimization problem which we call the Flow

Master Problem. The Flow Master Problem finds a cost-minimizing set of path flows

for the shipments. Given shipment paths and vehicle routes, the Scheduling Sub-

problem attempts to find a feasible schedule for the vehicle and shipment movements.

It is possible, however, because scheduling constraints are not considered in the Flow

Master Problem, that some of them are violated and a feasible schedule does not

exist. In that case, in solving the Scheduling Sub-Problem, we identify a set of

constraints to add to the Flow Master Problem to eliminate the current infeasible

solution. These constraints 'cut' off the infeasible solution but not any schedule-

feasible solutions in the Flow Master Problem. The Flow Master Problem and the

Scheduling Sub-Problem are solved repeatedly until a feasible, and hence optimal,

solution is identified by the iterative approach.

In the following sections, we will provide further details about the formulations of

the Flow Master Problem and Scheduling Sub-Problem, focusing first on the nominal

variants and later showing how to extend them to include uncertainties.

78



3.2.2 Flow Master Problem

For each shipment, we build a network similar to that described in Section 3.1.1

and Figure 3-1. A shipment path consists of a sequence of alternating travel and

connection/transfer arcs from the shipment origin to its destination. Each sequence

of arcs on this network does not contain specific scheduling information, although

some ordinal time relations are implied. A schedule is the set of times at which the

tasks along the shipment/vehicle route are performed. A feasible schedule is defined

as one which allows both vehicles and shipments to travel along their paths while

obeying all time-window constraints and making all the required connections and

transfers.

In each of the shipment networks, there are several paths (including artificial paths,

which consist of the artificial arc alone) to which the shipment may be assigned. For

each shipment, exactly one such path has to be picked, and there must be a solu-

tion associated with the set of selected paths that satisfies capacity and scheduling

constraints. Referring to the nominal formulation in Section 3.1.1, we see that con-

straints 3.2, 3.3, 3.4 and 3.8 are the scheduling constraints and 3.5, 3.6, 3.7 are the

flow constraints.

When the scheduling constraints are relaxed, the problem reduces to flowing ship-

ments on the vehicles. We formulate this as a path-based multi-commodity flow

problem (with each shipment representing a commodity) so that techniques such as

column generation can be used to solve it. Thus, the Flow Master Problem is an in-

teger program that assigns one path to each shipment. We first present the nominal

version of the problem and then its robust version.

The nominal version of the Flow Master Problem, denoted SRTW-MP, is defined

over the static network presented in Section 3.1.1 and is formulated as:
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min E dkCpfp (3.37)
kEK PEPk

s.t. E dk fp < uij V (i, j) E A (3.38)
kEK pepk

fp =1 V k E K (3.39)
pEPk

fp E {0, 1} Vp E PkVk E K. (3.40)

The structure of this formulation is equivalent to the standard path-based multi-

commodity flow formulation. Due to the removal of the scheduling decisions, the

SRTW-MP is easier to solve than either the static network or dynamic network models

presented in Section 3.1.

Formulation (3.37) - (3.40) can be modified to incorporate uncertainty in supplies,

demands and capacities using the Extended Chance-Constrained model (ECCP) pre-

sented in Section 2.7. We capture uncertainty explicitly in capacities, and through the

increased slack in the capacity constraint, also protect against demand uncertainty.

By obtaining the maximum amount of slack possible through the utilization of the

capacity quantile, we are effectively using a higher quantile of demand to protect

against demand uncertainty.

Using the same notation for the ECCP models as used in Section 2.7.1, the ECCP

formulation of the SRTW-MP, denoted SRTW-UU-MP, is as follows:

SRTW-UU-MP:

max w5jyij (3.41)
(ij)EA

s.t. E E dkcpfp (> 5 dkcpf>* + Z (3.42)
kEKpEPk kEKpEPk

dk fp 6P < u' (y, - y- 1 ) V (i, j) E A, V 1 E Li (3.43)
kEK pEPk
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yj 2 yij VI E Lij (3.44)

yiy = 0 V (i,j) E A (3.45)

y 1 V (i,j) E A (3.46)

E fp=l VkEK (3.47)
pEPk

|Li j|

-yij 5p ,(y' - yij) V (i,j) E A (3.48)
1=1

fp E {0, 1} VpE Pk, VkEK (3.49)

y'. E {0, 1} V 1 E Lij,V (i, j) E A (3.50)

0 7Yi ! 1 V (i,j) E A (3.51)

The objective function and constraints (3.41) - (3.51) are as presented in Section

2.7.1.

In spite of additional variables to capture quantiles, we know that the formulation

is amenable to column generation (as detailed in Section 2.7.1) of the path variables,

whose number is the same as that in networks involving multi-commodity flows with-

out time-windows.

3.2.3 Scheduling Sub-Problem (SRTW-SP)

Given a shipment flow solution F from the SRTW-MP or SRTW-UU-MP, the

objective of the Scheduling Sub-Problem (SRTW-SP) is to determine if the shipment

flows obtained from solving the Flow Master Problem satisfy scheduling constraints

(3.52)- (3.55), that is, if the flows have a feasible schedule obeying time-windows and

allowing connections and transfers. All other constraints are contained within the

SRTW-UU-MP, and therefore, are satisfied by F. If the scheduling constraints are

not satisfied, F is not a feasible solution to the SRTW-UU.

ti + I:iji ttk yk < ti V (,j E A (3.52)
kEK

S k Yk Vkc {O}UK (3.53)tOrk) : EA Tjgk,) -- ya(k), D k>) kE{}UK(.3
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tD(k) < LDT(k) + M(y(k),D(k)) V k E {0} U K (3.54)

ti ;> 0 V i EN (3.55)

Solving the SRTW-SP can be accomplished by solving a series of shortest path

and network-labeling algorithms. From the SRTW-UU-MP, shipment paths F and

vehicle routes are known. We can determine if all the scheduling constraints are

satisfied by finding feasible time-windows for each shipment at every node in the

network using efficient network search algorithms. If we find a feasible schedule,

we are done, otherwise, the same algorithm identifies the sources of infeasibility. We

provide details of these infeasibilities, the means of identification of such infeasibilities,

and incorporation of uncertainties in Chapter 4.

Uncertainty in travel times, connection times and transfer times is captured using

quantiles of the travel times, connection times and transfer times that are chosen

apriori, and reflect the protection level that we want to provide for each arc in the

solution. We refer to the chance-constrained version of the SRTW-SP as the SRTW-

UU-SP, and its form is exactly the same as the SRTW-SP. Whether solving SRTW-SP

or SRTW-UU-SP, then, the procedure for identifying feasible schedules or infeasibili-

ties remains the same. The only difference between the two is the values of traversal

time on arcs. Due to the ease of solving SRTW-UU-SP, we can perform sensitivity

analysis for different possible choices of *apriori quantiles.

3.2.4 Iterative Feedback Mechanism

As shown in Figure 3-3, we iterate between solving the SRTW-UU-MP and the

SRTW-UU-SP, identifying infeasibilities in the SRTW-UU-SP solutions and adding

them as new constraints into the SRTW-UU-MP in order to eliminate current in-

feasibilities. We will show in Chapter 4 that these constraints eliminate exactly the

infeasible solution but do not eliminate any feasible solution. With each iteration,

the constraints added to the SRTW-UU-MP increase its size minimally, but decrease

the size of its feasible solution space. Thus, we converge to the optimal solution with
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each iteration of the algorithm. The rate of convergence can be improved if we can

add cuts that eliminate more of the infeasible solution space in each step. Such effec-

tive cuts can be identified by finding cliques in the SRTW-UU-SP. We discuss this in

further detail in Chapter 4. We have solved the SRTW-UU when the shipment flows

obtained from the SRTW-UU-MP have associated feasible schedules, and the itera-

tive procedure terminates. In Chapter 4, we will describes the algorithmic procedure

in greater detail.

Flow Master
Problem

SRTW-UU Feasible Add
Infeasible No Shipment paths? Constraint(s)

~Yes

Sub-problem

In~~~~~ ths c a t r e e a i e S tihdelingme 
h d fo t e S T W U . tai

Feasible No
Schedule?

Yes

FsRTW-UU solved

Figure 3-3: Iterative mechanism of the decomposition approach

3.3 Summary

In this chapter, we examined existing modeling methods for the SRTW-UU. Static

network approaches as well as time-space network approaches encounter issues of

tractability, especially for problem instances under uncertainty. For this reason, we

propose a modeling approach where the problem is decomposed into flow (STRW-

UU-MP) and scheduling (STRW-UU-SP) modules and solved separately. An iterative
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approach repeatedly solves the two problems and terminates with an optimal solution

to the unified flow and scheduling problem. We incorporate knowledge of uncertain

data distributions and provide protection to the solution by modeling the STRW-UU-

MP as an ECCP, thus capturing uncertainty in vehicle capacities, shipment supplies

and demands, and limiting expected costs. We capture uncertainty in times using

the scheduling sub-problem, and solve it using efficient network labeling algorithms.

The combined structure, though iterative, ameliorates tractability issues due to the

solvability of the multi-commodity flow problems without time-windows (the Flow

Master Problem) relative to its counterpart with time-windows, and the ease of solving

the Scheduling Sub-Problems.
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Chapter 4

Solving Shipment Routing With

Time-Windows Under Uncertainty

We described the model of our decomposition approach in Chapter 3. In this

chapter, we illustrate the workings of our approach by means of an example. This

example shows how decomposition works in the nominal case, that is, when data

uncertainty is not considered. We then provide an algorithmic structure for solving

the SRTW under more general cases involving uncertainty. Finally, we analyze the

various elements of the decomposition algorithm, and provide insights for applying

the approach to large-scale problems.

4.1 Illustration

We illustrate the workings of our decomposition approach in the nominal case using

an example. Suppose the network shown in Figure 4-1 is a simplified version of the

static network described in Section 3.2.2. Consider the network G = (N, A) with

costs and capacities on each of the arcs, and shipment origins, destinations and time-

windows as described in Table 4.1. All arcs on this network have capacities of 2 units

and unit travel times, and all connection times are 0.1 units. Each vehicle has a total

of 8 hours to complete its shift, starting at time 0 and ending at 8. We build one

such network for each shipment, and track the flow of the shipment on the network
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through labels.

D

A * ------- ---- C

-E

F -------------- + B '

Legend:

------- Vehicle 1
Vehicle 2

Figure 4-1: Network Characteristics

Shipment Origin Destination Demand EAT LDT Penalty
1 A C 1 2 4.2 100
2 E D 1 3.5 6 100
3 E A 1 4.2 9 100

Table 4.1: Shipment Characteristics

Flow Master Problem

Each shipment has several network paths over which it can travel from its origin node

to its destination node on the network. For example, shipment 1 has the following

paths from its origin to its destination: (AF)1 - (FC)2 , (AF) 2 - (FC)2 , (AF)1 -

(FB)1 - (BE)1 - (EC)1 , (AF)2 - (FB)1 - (BE)1 - (EC)1 , where (AF)1 - (FC)2

indicates the path that travels from A to F on vehicle 1 and from F to C on vehicle

2. In the Flow Master problem, a path is assigned to each shipment by solving the

following path-based multi-commodity flow formulation.
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max S S dkcpfp (4.1)
kEK pEPk

s.t. 5 5 dktf, u 3 V (i, j) E A (4.2)
kEK pEPk

5 fp =1 VkEK (4.3)
pE Pk

f E 0, 1} VpE PkVk E K. (4.4)

After solving the above formulation, suppose the assigned paths are as follows:

Shipment 1: (AF)1 - (FC)2

Shipment 2: (EC)1 - (CD) 2

Shipment 3: (EC)1 - (CD) 2 - (DA) 2.

Note that shipments 2 and 3 travel together on leg EC of vehicle 1 and on leg CD

of vehicle 2, requiring vehicles 1 and 2 to be at node C at the same time.

Scheduling Sub-Problem

In the Scheduling Sub-Problem module, either a feasible schedule for the shipment

flows specified in solving the Flow Master Problem is determined, or the current Flow

Master Problem solution is found to be schedule-infeasible. A feasible schedule is one

that allows all the shipments and vehicles to travel on their respective paths while

allowing sufficient time for connections and transfers to take place, while schedule-

infeasible solutions do not allow sufficient time. Schedule infeasibilities are caused

by paths that do not allow vehicles or shipments that have to travel together to be

present in the same place at the same time. We determine if a feasible schedule exists

by finding the earliest arrival time (EAT) and latest departure time (LDT) of each

shipment at each node in the network. If the time-windows, determined as (EAT,

LDT), are such that they allow shipments that have to connect or transfer across

vehicles to be present in the same place at the same time, then a feasible schedule

exists.

87



The first step in solving the Scheduling Sub-Problem is to find time-windows of

vehicles and shipments at all nodes, by finding the shortest path for each shipment

from its origin to all nodes in the network, and from all nodes to its destination. (The

latter can be accomplished by reversing arc directions and running simple shortest

path algorithms from the destination node to all other nodes.) For our example, we

find the shipment time-windows in Table 4.2 and vehicle time-windows in Figure 4-3.

If a vehicle or shipment cannot reach a node, its time-windows at the node will have

negative duration, that is, the difference LDT - EAT will be negative. Observe from

Table 4.2 that shipment 1 cannot use a path passing through nodes D or E, shipment

2 cannot use a path passing through nodes A, B or F, etc. Because there are no

possible paths through these nodes, we remove nodes D and E (and all incident arcs)

from shipment l's network and nodes A, B and F from shipment 2's network. Thus,

after this operation, shipment 1 travels on the network shown in Figure 4-2. This

process allows us to capture routing and scheduling infeasibilities.

(2,2.2) --------- (4,4.2)

Legend:

(ni, n2): nj is the
EAT and n2 is the
LDT for shipment 1

F ------- B at the node.
(3,3.2) (4,4.2)

Figure 4-2: Network of Shipment 1

Importantly, note that routing and scheduling infeasibilities such as those described

above, can be identified without knowledge of the paths assigned in the Flow Master

Problem. Therefore, we eliminate such infeasibilities before solving the Flow Master

Problem using a Pre-processing step that excludes paths that are schedule-infeasible.

Given the assigned paths for shipments 1, 2, and 3, in the next step of solv-

ing the Scheduling Sub-Problem, we determine if a feasible schedule exists, and if
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2(4,7)

D

1 (4,7)
1 (0,3) 2 (3,6)

(0,4) A *---~~~ C2(O------ - - - - - - - - - - C

Legend:1' -- - ~ Ev (ni, n2): v is the
vehicle number and

1 (3,6) n, is the EAT and n21(1, 4 )F ---------- + B is the LDT at the

2 (1,5) 1(2,5) node.

Figure 4-3: Vehicle Time Windows

Node A Node B Node C Node D Node E Node F
Shipment 1 (2, 2.2) (4, 4.2) (4, 4.2) (5, 1.2) (5, 3.2) (3, 3.2)
Shipment 2 (5.5, 3) (7.5, 3) (4.5, 5) (5.5, 6) (3.5, 4) (6.5, 2)
Shipment 3 (6.2, 9) (8.2, 6) (5.2, 8) (6.2, 8) (4.2, 7) (7.2, 7)

Table 4.2: Shipment Time-Windows (EAT, LDT)

not, we identify the sources of the infeasibilities. We begin by re-computing the

time-windows for each shipment, given the specific path to which it is assigned

in the solution to the Flow Master Problem. We also compute the time-windows

of each vehicle-shipment pair at all nodes of the network. For example, to com-

pute a vehicle-shipment time-window for vehicle v and shipment s at node i, we let

EAT' = max{EATvz, EAT,}, with EATi representing the earliest arrival time at node

i for vehicle v and EATi representing the earliest arrival time for shipment s at node

v; and LDT = min{LDT, LDT,}, with LDTv' representing the earliest arrival time

at node i for vehicle v and LDT' representing the earliest arrival time for shipment

s at node i.

For each vehicle route or shipment path, there is an ordinal relationship between

its nodes, with node i preceding another node j along the route or path. We refer to

i as 'upstream' of node j and node j as 'downstream' of node i. Note that upstream
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(vehicle-shipment) (EAT,LDT)
(1,1) (4, 4.2)
(1,2) (4.5, 5)
(1,3) (5.2, 7)

Table 4.3: Vehicle-Shipment Time Windows at Node C

flows influence the schedule feasibility of downstream flows, and vice versa, because

both affect the time-windows of the vehicle. Infeasibilities or scheduling conflicts

arise when a shipment k, on vehicle v tries to 'push' the time-windows to the latest

allowed at some node i, while another shipment k2 on the same vehicle v 'pulls'

the time-windows at node i to be at the earliest allowed. We use labels to identify

when shipments k, and k2 give rise to a conflict at node i. To illustrate, consider

the example in Table 4.3, with time-windows computed at node C of our example

network. Note that shipment 2 must depart node C by 5, but shipment 3 cannot

arrive at C before 5.2. Hence, there is no feasible schedule allowing shipments 2 and

3 to travel together from E to C, as required by the solution to the Flow Master

Problem. We compute the time-window at C for shipments 2 and 3 as (5.2,5) =

(max{EAT2C, EAT3}, min{LDT2C, LDT3}) = (max{4.6, 5.2}, min{5, 7}). This 'non-

overlapping' time-window with negative duration, that is, LDT < EAT, represents

an infeasible schedule. To eliminate associated infeasible shipment assignments, we

add to the Flow Master Problem the following constraints:

fP + fP3 < 1. (4.5)

This constraint enforces the restriction that shipments 2 and 3 cannot both be

assigned as in the current solution to the Flow Master Problem.

After adding this constraint to the Flow Master Problem, we repeat, iterating

between solving the Flow Master Problem and Scheduling Sub-Problem until a set

of shipment paths and a feasible schedule for the shipments and vehicles is found; or

the problem is shown to be infeasible.
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4.2 Outline of the Algorithm

In this section, we more formally describe the algorithm, depicted in Figure 4-

4, and extend it to the case under uncertainty. As described in Sections 3.2.2 and

3.2.3, uncertainty is captured using the ECCP in the Flow Master Problem and

using the CCP in the Scheduling Sub-Problem. As observed in Section 4.1, we im-

prove the solvability of the Flow Master Problem and Scheduling Sub-Problem by

invoking a pre-processing step that identifies time-infeasible path assignments. The

Pre-processing step is executed before the commencement of iterations solving the

Flow Master Problem and Scheduling Sub-Problem. We use the same notation intro-

duced in Chapter 3, and detail each module of the Decomposition algorithm in the

following sections.

Pre-procsig

Flow Master
Problem

SRTW-UU FeasibleAdSRTW-Ub Shipment Add
Infeasible No Assignments? onstraint(s)

F 4Yes

Scheduling
Sub-problem

Feasible No

< : Schedule?

Yes

SRTW-UU solved

Figure 4-4: Flow Chart of the Decomposition Approach
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We first present the notion of shipment networks and aggregate networks. Shipment

networks Gk = (Nk, Ak) for each shipment k E K, are created as described in 3.1.1,

such that initially Nk = N and Ak =UvevA(v) U A'. Aggregate networks are formed

by superimposing the shipment and vehicle networks for all k E K over each other.

4.2.1 Step 1: Network Pre-processing

On Gk, for all k E K, we define EATj as the earliest time shipment k can reach

node j after starting from 0(k) and sp(k is the shortest path distance for shipment

k from 0(k) to node j. LDT is the latest time shipment k can leave node j to get to

its destination D(k) on time and sp as the shortest path distance for shipment

k from node j to its destination. Similarly, EAT and LDTj' are the earliest arrival

time and latest departure time of vehicle v at each node j E N. In order to capture

uncertainty in this module of the algorithm, we implement a CCP-based approach

and decide a priori the quantiles of the service times (travel times, connection times

and transfer times) for each arc based on the desired protection levels. These quantile

values of service times are used in the computation of the shortest paths, the EATs

and the LDTs.

The steps of the network Pre-processing phase are detailed as follows:

i For each shipment network Gk for all k E K, based on the EAT~k~k and

LDTD(k), we find time-windows, expressed in terms of the earliest arrival time

EATIk of each shipment k E K at any node i E Nk and the latest departure

time LDTik, of any shipment k E K at each node i E Nk. EATIk is the earliest

time shipment k can reach node i (along a shortest path) from 0(k). LDTk

is the latest time at which shipment k can leave node i to reach Dk (along the

shortest path) on time. Thus,

EATjk = EAT(k) - P(k),i (4.6)

LDTIk = LDT(k) P jD(k)
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ii We find time-windows (EATV, LDTi) for each vehicle v E V at each node i E N

along its route based on the earliest start time and latest return time required

at the depot for the vehicle. These schedule constraints are driven by driver

work rules. If vehicle v does not pass through a node i, the node is labeled

unreachable for v. Thus, for all reachable arcs (i, j) E Ay, for all v E V, we

have

EATj = EATv + ttj ; and (4.8)

LDTv = LDTV - ttj (4.9)

We refer to the time-windows of vehicles and shipments thus obtained as pre-

processing time windows. They are the broadest set of time windows possible

over any travel path for the vehicles and shipments (because these time-windows

are formed using the shortest paths). These time-windows form the set of pre-

processing labels at the nodes.

iii If the time-window duration of a shipment k is negative at a node i E Nk,

that is, LDTjk - EATjk < 0, because the pre-processing time-windows are the

broadest time-windows, no schedule feasible path for shipment k passes through

i. For each shipment k E K, we remove all the schedule infeasible nodes from

Gk. We also remove all arcs in Gk incident to these nodes. This results in a

reduced network Gk = (Nk, Ak) containing only those arcs and nodes through

which shipment k may pass.

iv We say that the time-windows of shipment k and vehicle v overlap at node i if the

resulting vehicle-shipment pre-processing time-window has non-negative dura-

tion. Specifically, we denote the time-window at node i for the vehicle-shipment

pair v and k as: (EATI', LDTk' v), where EATk,, = max{ EATk, EAT," } and

LDTfk'" = min{LDT k, LDTv}. If the duration of this time-window is non-

negative, that is, LDT k'v - EATk'" > 0 then the time-windows of shipment k

and vehicle v are said to overlap at node i. A non-negative duration implies
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that it is possible for shipment k and vehicle v to be present at node i at the

same time. We find all possible overlaps of shipment-vehicle pairs at each node

i E N. If the overlap between time-windows of shipment k and vehicle v is

negative at node i, shipment k cannot travel on the vehicle arcs A, incident to

node i. We delete such arcs and nodes from the shipment network Gk, further

reducing the size of Gk. If the time-windows of a vehicle-shipment pair (V, k)

are non-zero at both ends of an arc (i, j) E A, for any v E V, shipment k can

travel on (i, J) within the specified time-windows. We find all shipments k E K

that can travel on an arc (i, j) E A, by identifying all shipment-vehicle pairs

with overlapping pre-processing time-windows at nodes i and j.

v Consider the aggregate network with the vehicle-shipment pre-processing time-

windows for all k E K superimposed on each other at each node i E N. Assume

that shipments k1 and k2 , each have overlapping feasible vehicle-shipment time-

windows with vehicle v c V on arc (i, j) E A,. Assume that the time windows

of the two shipment-vehicle pairs (v, k1 ) and (v, k2 ) at node i or node j do

not overlap, thus making it infeasible for both k, and k2 to travel together on

(i, j) E A, in any schedule-feasible solution to the SRTW-UU. This infeasibility

can be eliminated from the set of feasible solutions to the Flow Master Problem

by adding the following constraint to it:

& + f2 <1, (4.10)
P1EPk1j(ij)Ep1 p2EPk2 |(ij)Ep2

where fp, p E Pk is defined as before, that is, it is a binary variable that takes

on value 1 if shipment k is assigned to path p; and 0 otherwise. We add these

constraints to the Flow Master Problem in the Pre-processing step to eliminate

known infeasible solutions.
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4.2.2 Step 2: Flow Master Problem

In the nominal case, we formulate the Flow Master Problem as the SRTW-MP; and

in the case with uncertainty in vehicle capacities, supplies and demands, we formu-

late the Flow Master Problem as the SRTW-UU-MP. These formulations, described

in Section 3.2.2, are enhanced to include cuts generated in the Pre-processing stage

and Scheduling Sub-Problem. The augmented SRTW-UU-MP is as shown below.

max E wayyy
(ij)EA

s.t. dkcpfp E S dkcf -+ A

kGK pEPk kEK pEPk

E E d5fp6 5 U (y -y-1)

kEKPEPk l

y = 0

y= 1

pE Pk

f, E {0, 1}

y E {0, 1}

0 Yij 1

Cuts from the Pre-processing Step

Cuts from the Scheduling Sub-Problem.

V (i, j) E A, V 1 E Lij

V 1 E Lij

V (ij) E A

V (ij) E A

Vk E K

V (ij) E A

Vp E pkVk E K

V 1 E Lij, V (i, j) E A

V (ij) E A

4.2.3 Step 3: Scheduling Sub-problem (SRTW-UU-SP)

After solving the SRTW-UU-MP, vehicle routes and assigned shipment paths p'1 , ... , p

are known. Though the paths introduced into the Flow Master Problem are individ-
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ually schedule-feasible, it is still possible that interactions between these shipment

paths p'..., p produce infeasible schedules. Therefore, in the Scheduling Sub-

Problem, we 'flow' these shipments on the network G to determine if each of these

movements is schedule feasible.

As in the case of the Pre-processing step, in solving the scheduling sub-problem for

the nominal case, the travel times and connection time values are set to the nominal

values. In order to capture uncertainty, again, we use the a priori quantiles used in

the Pre-processing step. We provide more details on the a priori choices of the service

time quantiles in Section 4.3.

The Scheduling Sub-Problem consists of the following steps on the aggregate net-

work:

i Initialization: Let k = 0 represent the vehicle flows, and

1, ... IKI represent the shipments.

(a) Set EATik = 0, and LDTIk = M, a very large number,

for all k E K

(b) Set EAT = 0, and LDT = M.

(c)

(d)

commodities k =

for all i E N, and

Set processing list to empty.

For k = 0, 1, ...IK1, determine the time-windows for commodity k along its

currently assigned path p' in the aggregate network, as indicated in (4.24)

and (4.25). That is, for each node i E N, and k = 0,1, ... ,|K|:

EA T = max EA j, EATk + tti

LDT k =min LDTk, LDTk - ttij

(4.24)

(4.25)

These time-windows will at least be as tight as the Pre-processing time-

windows obtained in Step 1, because each shipment k E K is restricted
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to path p'. The time-windows for the vehicles (k = 0) remain the same

as those in the Pre-processing step, because the vehicle routes are given

inputs that do not change in solving the SRTW-UU.

ii For node i E N and k = 0, 1, ... IK1,

(a) if EATk # EAT and EATk : 0 set EATjk = EAT,

(b) if LDTk = LDT and LDTk | M set LDTk = LDT,

(c) and add k to the processing list, if it not already present.

We refer to (EAT, LDT) as the movement time windows at node i.

iii If the processing list is not empty, remove the first element from the list, and

go to step iv, else go to step v. If the processing list is empty, it indicates that

the widest movements time-windows allowing all the flows that are output from

the Flow Master Problem, are found.

iv Update EATk, LDTk for all (i, j) E pk, processing (i, j) in sequence along pk

as:

EAT = max{EA, EATk + ttij} (4.26)

LDT = min{LDTV, LDTVk - ttj (4.27)

Return to Step iii.

v Define lij = LDT - EAT, V(i, j) E A. Find the shortest, non-cyclic path p*,

beginning and ending at any node, in the aggregate network with arc lengths

lij. Suppose the length of p* is 1*. If path p* has negative length, that is, 1* < 0,

let K* be the set of commodities assigned to at least one arc in p*; otherwise

stop - a feasible schedule has been identified.

vi Add the following constraint to the Flow Master Problem:

fP <IK*I -1; (4.28)
kEK*
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with |K*| representing the size of the set K*. Constraint 4.28 states that the

set of paths causing schedule infeasibility of the current solution should not be

repeated in further iterations.

4.2.4 Stopping Criterion

If no infeasibilities are identified in the scheduling algorithm, that is, 1* ;> 0 the

SRTW-UU is solved; otherwise, the algorithm returns to Step 2 with added con-

straints of the type (4.28) in the Flow Master Problem. We iterate between solving

the Flow Master Problem and the Scheduling Sub-Problem until either the algorithm

terminates with a feasible schedule for the Flow Master Problem solution, in which

case we have found the optimal solution to the original problem; or if the Flow Master

Problem is determined to be infeasible, in which case, the SRTW is infeasible.

4.2.5 Output

The solution obtained from the above algorithm is a set of paths to which shipments

are assigned and a set of time-windows indicating the earliest and latest time each

vehicle and shipment movement can occur. These time-windows provide bounds

within which the current set of vehicle and shipment flows may be scheduled. In the

case when schedule delays and disruptions occur, the windows allow the solution to

remain feasible at times, even when re-scheduling is necessary. This is indicative of

the inherent flexibility provided by the solution to our decomposition approach.

4.3 Comments on the Robust Decomposition Ap-

proach

4.3.1 Elimination of Infeasible Space Using Cuts

The correctness of the decomposition approach is dependent on the fact that the

cuts introduced in the Pre-processing and Scheduling Sub-Problems eliminate that
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region of the Flow Master Problem solution space that is infeasible to the original

SRTW(-UU) problem, and ensure that the current infeasible solution is not repeated.

Proposition: The cuts generated in the Pre-processing module and Scheduling

Sub-Problem correspond to infeasible SRTW(-UU) solutions, and do not eliminate

any feasible SRTW(-UU) solutions.

Proof: In the Pre-processing stage, the pre-processing time-windows identified are

the broadest possible time-windows for the shipment and vehicle movements because

the shortest path is used in determining these windows. Therefore, when we eliminate

nodes and arcs from the network, we eliminate those solutions that cannot satisfy

schedule constraints under any conditions. Similarly, when we generate constraints

of the type (4.10), we are eliminating all vehicle-shipment pairs that are schedule-

infeasible even under the broadest time-windows. Hence, such vehicle-shipment pairs

cannot travel together in any solution. Thus, constraints (4.10) are valid, and do not

eliminate more feasible space from the Flow Master Problem than necessary.

In the case of the Scheduling Sub-Problem, the movement time-windows on the

aggregate network are the broadest possible time-windows for the shipments and

vehicles as assigned in the Flow Master Problem solution. If all nodes and arcs have

scheduling time-windows that are non-negative, then one or more feasible schedules

can be constructed. One trivial case is to set the scheduled time at each node i E N to

EAT. Alternatively, a feasible schedule can be constructed by setting the scheduled

time at each node i E N to LDT. If we find instead, that some of the movement

time-windows are of negative duration, that is, l* < 0, there does not exist a feasible

schedule for the current Flow Master Problem solution. l* < 0 for path p* implies

that E ttiz > LDT - EAT., with s and e representing the start and end nodes,
(ij)Ep*

respectively, of path p*. Hence, the minimum time necessary to traverse the arcs in p*

exceeds the maximum allowable time to get from s to e. Constraints of the form (4.28)

eliminate only the portion of the current solution creating the schedule infeasibility.

One can add more constraints of the form (4.28) by running additional shortest path

algorithms from different nodes in the aggregate networks and identifying other paths
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with negative length, if they exist.

4.3.2 Convergence of the Algorithm

In each iteration of the decomposition approach, we solve a relaxed version of the

formulation (3.9) - (3.16). Thus the cost incurred by the solution to the SRTW(-

UU)-MP is a lower bound on the objective function cost of the SRTW. As we add

cuts to the Flow Master Problem, the objective function cost increases (or stays

the same) because we are further constraining the minimization problem. Each cut

corresponds to the elimination of at least one infeasible solution to the SRTW(-UU).

Hence, each cut is unique, and after a finite (but possibly large) number of iterations,

all infeasible solutions are eliminated and the Flow Master Problem solution will

be feasible to the SRTW(-UU). Because the Flow Master Problem is a relaxation

of SRTW(-UU) and the added cuts eliminate only infeasible SRTW(-UU) solutions,

finding a feasible schedule to the Flow Master Problem corresponds to solving, that

is, finding an optimal solution to, the SRTW(-UU).

4.3.3 Identification of Dominant Cuts

We can strengthen the constraints in the Pre-processing and Scheduling Sub-

Problem as described below.

Consider constraints in the Scheduling Sub-Problem of the form:

f&i + fP2 < 1, (4.29)

fi + fP3  1, and (4.30)

f2 + fP3 < 1. (4.31)

Notice that these three constraints can be modeled effectively with a single, dom-

inant constraint, of the form:

f,1 + fP2 + fP3 <1. (4.32)
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Similarly, in the Pre-processing step, suppose shipments ki, k2 and k 3 are identified,

such that each pair cannot travel together on an arc (i, j), pair-wise constraints of

type (4.10) are generated for k, and k2 , k2 and k3 , k3 and k1 . These constraints can

be replaced by a single dominant constraint:

E f + E f2+ 5 fP3<1. (4.33)
PiEPk I(ij)Epi p2EPk2 |(ij)EP2 P3EPk3 I(i, )EP3

Identifying such dominant constraints becomes important when we have a large

number of shipments and vehicles, as it reduces the size of the Flow Master Problem

and it can reduce the number of iterations of the algorithm necessary to solve the

SRTW-UU. Dominant constraints can be identified by finding maximal completely

connected components (called cliques) in a particularly constructed graph. We discuss

clique algorithms in Section 4.4.

4.3.4 Capturing Service Time Uncertainty

To capture uncertainty in service times, we use a priori defined quantile values of

service time (travel time, transfer time, connection time) on each arc. These quantile

values, representing the protection levels we want to provide, provide additional slack

in the service times, thereby acting as 'buffers'. The quantile value for the arc service

time can be picked based on the desired protection level for the path. For example,

to protect against uncertainty in service times to the 90% level, we can determine

the appropriate value of the service time on each arc, making assumptions such as

independence of arc service times. With dependent service times, we can use historical

path-based service times and set arc-based quantile values to achieve the desired levels

of protection approximately.

Consider a shipment path iji, ij 2, ... , ijn containing n arcs. Let tij for all (i, j) E A

be the service time on arc (i, j). If tij for all (i, j) E A are independent random

variables, and Tij for all (i, j) E A represent, say, the 90% quantile values of the arc

service times, then Pr(tij, < T,,) = 0.9, for all p 1, ... , n, and:
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Pr(tiji < Tij3 , ... , tijf < Ti,, ... tijn < Tij,) = Pr(tij, < Tij,) = 0.9", and(4.34)
p=1

n1 n

Pr( tijp > ETi,) <= 1 - 0.9". (4.35)
p=1 p=1

This provides a weak bound on the level of protection of the service time along

the path iji, ij2, ... , iln,

Stronger bounds can be obtained for some simple cases. For example, if the tij

are independent uniform [0,1] random variables and all the Tij are equal to a, where

n- <a < 1 then
n te

n n n(n( ))
Pr(Z tij, > 13 Ti,,) = Pr( tij, > na) (nI . (4.36)

p=1 p=1 p=l

This result is easily generalized to a more 'realistic' scenario, e.g., all the tij are

uniform [a,b] random variables and all the Ti are scaled appropriately. Similarly,

strong bounds exist for other special cases such as uncorrelated Gaussian random

variables, and independent and identically distributed exponential random variables.

These assumptions are not necessarily overly restrictive, as travel time distributions

have historically been well-approximated by some of these special cases. Therefore,

the most appropriate quantiles to be adopted as a priori protection levels in the Pre-

processing and the Scheduling Sub-Problems can be determined through the use of

these bounds.

4.3.5 Running Time of the Algorithm

Pre-processing involves employing network labeling and shortest path algorithms.

We solve O(2(1KI + VI)) shortest path problems, for which highly efficient algorithms

are available. We note that in the Pre-processing stage, the shipment networks are

reduced in size, due to elimination of arcs and nodes. Computation of time-windows
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involves computation at each node and arc of each shipment network, requiring a

maximum of IKI(IN + Al) computations.

The Flow Master Problem is solved by standard integer programming techniques. It

is more tractable than conventional SRTW formulations, however, its size is expected

to be smaller, even with the addition of cuts from the Pre-processing and Scheduling

Sub-Problems, than the size of the formulation of (3.1) - (3.8).

The Scheduling Sub-Problem involves network labeling algorithms to compute the

time-windows, similar to the Pre-processing stage. Tracing the paths of commodities

involves O(IN12(IKI + IVI) +| N|(KI + IV|)) operations, because label initialization

requires O(INI(IKI + IVI)) and each time a shipment or vehicle path is traced, one

label at some node i is set to EAT or LDT, and it will not be changed again in the

algorithm. The number of labels at each node is restricted to 2(IKI + IVI) and each

relabeling tkes O(INI) steps.

4.3.6 Advantages of the Decomposition Approach

We summarize the advantages of our decomposition approach as:

" The decomposition methodology involves solving a multi-commodity Flow Mas-

ter Problem and a series of network-based, easy-to-solve sub-problems. Because

we are breaking a large optimization problem into two smaller parts, one involv-

ing finding an optimal solution and the other simply finding a feasible solution,

tractability is enhanced.

" The Flow Master Problem is a simple multi-commodity flow problem, for which

standard solution techniques exist.

" Capturing uncertainty in the decomposition approach does not incur much ad-

ditional complexity relative to solving the SRTW for the nominal case.
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* Specific types of additional constraints, such as those restricting time-windows

of a vehicle at a particular location, can be added without increasing algorithmic

complexity.

4.3.7 Limitations of the Decomposition Approach

We summarize the limitations of our decomposition approach as follows:

" Correlations between uncertain parameters are not captured. For example, it

is possible that travel times on adjacent arcs on the network are correlated. As

yet, we cannot capture such correlations.

" The choice of 'protection levels' for travel times on the network has to be made

a priori, and involves repeated solution of instances of our model. As in the

case of applying the extended CCP to the Flow Master Problem, it would be

useful to develop a mechanism to automate the choice of protection levels.

4.4 Using Cliques to Find Dominant Cuts

1 ~ 2

3

Figure 4-5: Incompatibility Network: Cliques

As introduced in Section 4.3.3, in the Pre-processing step, after considering all

possible pairs of shipments on the aggregate network, we can replace weak cuts of the
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form (4.10) by stronger constraints as described in (4.33). Similarly, in the Scheduling

Sub-Problem, we can identify constraints, for example, (4.29) - (4.31) that can be

replaced by stronger constraints, such as fp + fp, + fp, < 1. One approach to finding

such constraints is to construct an incompatibility network over which completely

connected subgraphs, called cliques, are identified. To construct the incompatibility

network, we create one node for each path in the Flow Master Problem solution. An

arc connects a pair of nodes if the associated paths are contained in at least one

constraint that is added to the Flow Master Problem as a result of the Pre-processing

or Scheduling Sub-Problem solution steps. Each completely connected subgraph in

the incompatibility network is a clique that corresponds to set of paths (the nodes

of the clique), of which at most one can exist in a solution. We find dominant, or

strong cuts, by identifying cliques of maximal size, that is, with the largest number

of nodes. For the set of constraints (4.29) - (4.31), Figure 4-5 is the incompatibility

network, giving rise to the dominant constraint (4.32).

Identification of dominant cuts minimizes the number of cuts that must be identified

and added to the Flow Master Problem, thus potentially reducing the number of

iterations of the decomposition algorithm and leading to faster solution times. Note

that identifying cliques and stronger constraints requires additional computation time.

It is necessary, then, to find appropriate trade-offs between increased time to identify

stronger constraints and the corresponding reduction in overall solution time.

We describe a basic algorithm that finds cliques, in the following section.

4.4.1 Clique Algorithms

Tarjan [32] presents one of the earliest and best algorithms to find cliques in a

graph. Here we present a version of Tarjan's algorithm. Consider a directed graph

G = (V, E), where V is the set of nodes and E the set of edges of the graph. Tarjan

has presented an algorithm that finds the cliques in O(IV + E) time. The algorithm

is presented below:
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procedure VISIT(v)

begin

root[v] = v, InComponent[v] = false;

PUSH(v, stack);

for each node w such that (V, w) E E do begin

if w is not visited then VISIT(w);

if not InComponent[w] then root[v] = min{(root[v], root[w])};

end;

if root[v] = v then

repeat

w = POP(stack);

InComponent [w] = true;

until w = v;

end;

begin /* Main program */

stack = q;

for each node v e V do

if v is not already visited then VISIT(v);

end;

Tarjan's algorithm is asymptotically efficient. More efficient algorithms that build

upon the above have been proposed in Nuutila and Soisalon-Soininen [26] and Wood

[33]. Though the problem of finding cliques in a network is NP-hard, because we

expect to have only a subset of shipments incurring infeasibilities at a particular node,

we expect that the size of our incompatibility network will be small and therefore

tractability should not be an issue. Also, we need not identify all cliques in the

graph to improve the algorithmic efficiency; adding even a few clique constraints can

improve algorithmic performance.
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4.5 Applicability to Large-scale Problems

In large-scale SRTW problems, each shipment will have a number of associated

paths to which it can be assigned and, likely, a very large number of possible sched-

ules. Enumerating all path-schedule combinations for all shipments is often imprac-

tical, thereby leading to issues of intractability. In this section, we discuss how our

decomposition approach is well-structured to solve large-scale problems.

Because we strip out schedule considerations, and use a static network in the de-

composition algorithm, the number of network paths for each shipment is likely to

be manageable, even if many paths exist for each commodity. The size of the Flow

Master Problem, is therefore, much smaller than that of (3.9) - (3.16) or (3.17) -

(3.22). Including a variable corresponding to each path in the Flow Master Problem

might be tractable for some instances. And, in those cases for which intractability is

encountered due to the presence of all paths in the formulation of the Flow Master

Problem, we can resort to explicit column generation. This involves enumerating all

the paths in the network and placing them in a 'pool'. Only a limited number of paths

from this pool are initially included in the Flow Master Problem formulation. At each

iteration, we explicitly price-out all the paths in the 'pool' and add all or a subset

of paths that have negative reduced-costs to the Flow Master Problem formulation.

This is likely to be practical, even for large problem instances.

Note that in the Pre-processing stage, we eliminate paths that are unreachable or

schedule-infeasible (Section 4.3), thus, reducing the number of paths in the 'pool'.

An important observation in this regard is that inclusion of schedule decisions in

the problem to be solved using conventional approaches causes formulation size to

increase, whereas their inclusion results in a decrease in the size of the SRTW(-UU)-

MP.

Note that when solving the problem in the nominal case or under uncertainty,

the structure of SRTW(-UU)-MP allows the use of multi-commodity flow solution
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techniques.

4.6 Illustration 2

We apply our decomposition approach and other conventional approaches to a

scaled-down version of a SRTW-UU problem. The problem instance contains 5 loca-

tions, 3 vehicles and 6 shipments. Each vehicle has a capacity of 2 units. Each arc

has a travel time of 1 unit and connections and transfers take 0.2 units in the nominal

case. Costs are associated with non-service of shipments.

In this example, we deal with uncertainty in service times, and in particular, we

assume uncertainty to exist only in the connection times. Note that this assumption

incurs very little loss of generality because uncertainty in travel times can similarly

be captured by 'shifting' the uncertainty onto the connection times. We assume that

the connection times all vary uniformly between values of 0 and 0.4 time units. The

value used for the nominal case is the commonly used expected value, that is, 0.2.

We solve this problem both with and without uncertainty. In the nominal case,

the problem is solved using the conventional formulation of (3.1) - (3.8) and our

decomposition approach. In the robust case, we solve it using the Bertsimas and Sim

approach and our decomposition approach. In the Bertsimas and Sim approach, each

constraint has just one uncertain parameter per constraint, and because its protection

parameter is usually an integer, it uses the worst-case value of 0.4 for connection times.

In the robust decomposition approach, we choose a protection level of 75%, yielding

a value of 0.3 for the service time.

The solutions obtained from each approach were tested for feasibility by simulating

randomly generated scenarios, with the realization of each of 100 scenarios constructed

by sampling from a uniform distribution between 0 and 0.4. The results from the

approaches are summarized in Table 4.4.
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Nominal solutions Robust solutions
Static Decomposition Bertsimas-Sim I Decomposition

Solution Nature Exact times Time-windows Exact times Time-windows

Cost 0 0 1 shipment 0
not serviced

% scenarios 18 73 100 95
feasible

Table 4.4: Computational Results of the Decomposition Approach on a Small Instance

For the nominal case, we observed that the optimal schedule from the conventional

approach is contained within the time-windows obtained by our decomposition ap-

proach, that is, they formed a proper subset of all solutions. Our decomposition

approach, however, outputs all possible solutions. Because the solution to the de-

composition approach is in terms of time-windows, it indicates the extent to which

the schedule can be changed while keeping the current solution feasible, and thus it

is feasible for 73% of the sampled scenarios. In contrast, the conventional approach,

with its exact output schedule, was feasible for only 18% of the sampled scenarios.

When incorporating uncertainty, the Bertsimas-Sim approach, due to its higher

protection level, results in a solution in which one shipment is not delivered. The

solution, however, is feasible for 100% of the scenarios. The solution corresponds to an

83.3% (5/6*100) average service level. The decomposition approach, however, serves

all the shipments for 95% of the scenarios. The Bertsimas-Sim approach requires no

re-planning for any scenario (it is always feasible) while the decomposition approach

required replanning 5% of the time. The two approaches, therefore, present solutions

that trade-off re-planning requirements and service level.

We understand, from this illustration, that metrics of robustness may often be

conflicting, and a higher level of protection need not necessarily perform 'better' with

respect to all metrics. Therefore, there is a necessity to define robustness for each

problem, based on the needs of the user, and tailor the robust solution approach to

the relevant metrics.
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4.7 Proof of Concept

In this section, we apply our decomposition approach to a large-scale problem

involving dynamic airline scheduling. We compare its performance with conventional

models that are built using the time-space network approach discussed in Section

3.1.2.

Dynamic scheduling addresses the problem of demand stochasticity faced by air-

lines. Because airlines determine their flight schedules a year to six months in advance,

when demand forecasts are highly uncertain, they face the issue of matching capacity

to demand during operations. Demand forecasts for flights become more accurate as

the date of flight approaches, giving the airline an opportunity to match capacity to

demand better by adopting a dynamic scheduling approach.

Traditionally, dynamic scheduling consisted of flight re-fleeting alone. Jiang [21]

introduces fleet re-timing as a dynamic scheduling mechanism and supplements re-

fleeting with re-timing. Re-timing the schedule and re-fleeting of aircraft increase

or decrease the number of connecting itineraries available to passengers (compared

to the original schedule) and increase or decrease the number of seats available in

the affected markets. This can help to reduce passenger spill by better matching

capacity. The dynamic scheduling approach modifies the existing flight schedule

and fleet assignments, keeping existing bookings still feasible (though possibly re-

timed), so that realized demand can be accommodated as much as possible. Jiang

[21] shows that through the dynamic mechanisms of flight re-timing and re-fleeting,

even 'optimized' schedules can be improved by re-designing the schedule at regular

intervals.

By performing dynamic scheduling during the booking period, the airline can sup-

plement revenue management techniques that manage the demand side, with re-

fleeting and re-timing the supply side. Especially in the case of de-banked hubs,

minor adjustments to flight leg arrival and/or departure times can affect the set of
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connecting itineraries served through that hub. In fact, flight schedule re-timings

can increase or decrease the supply of available seats in markets connecting at the

hub [21]. For each daily schedule available, Jiang sets the period of re-optimization

of schedule to be 21 days before departure of the flight. Further details of Jiang's

modeling approach are available in Jiang [21].

4.7.1 Traditional Solution Approaches

In this section, we examine in detail the approach proposed by Jiang for dynamic

scheduling. His network representations and model formulations follow.

Network Description

To achieve schedule re-optimization, two tailored time-space networks are created.

One is a passenger flow network and the other a set of aircraft flow networks, created

for each fleet type. The flow of aircraft over the airline fleet schedule, for each fleet

type k, is modeled in the aircraft flow network Gk. In the network Gk, every node

corresponds to departure time of a flight leg f in the flight schedule, or to the arrival

time plus minimum turn time for fleet type k at the arrival location of flight leg f.
An arc in Gk is either a ground arc or a flight arc, with flight arcs representing flights

in the schedule, and ground arcs representing an aircraft waiting on the ground at

the same location. Wrap-around arcs are ground arcs that connect the first and last

node at every location, representing balance of aircraft. We also define a count line,

which is arbitarily defined at some point in time, and used to count the number of

aircraft of fleet type k used on network Gk, to operate the flight schedule.

The passenger flow network G models the passenger flow over the network G, which

is fleeted. In this network, each node is either the departure time of a flight leg at

the corresponding location, or the arrival time of a flight leg at the location. Arcs are

classified as flight arcs and connection arcs. Flight arcs represent flights in the current

schedule. A connection arc is created to connect two flight arcs if a passenger can

connect between the two corresponding flights, that is, minimum connection time and
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maximum connection time restrictions are satisfied. A path in this network represents

a feasible itinerary for a passenger. Capacities of the flight arcs are determined by

the fleet type assigned to the flight leg represented by that arc.

Problem Formulation

In order to capture the idea of re-timing of flights, copies of each flight leg are made

at discrete intervals on the passenger and aircraft flow networks. Among all copies

of each flight leg, only one has to be in the solution, resulting in the new re-timed

schedule. This involves making decisions about the presence or absence of arcs in the

network, making the problem one of network design, as defined in Chapter 1. The

notation and formulation presented by Jiang [21] is as follows.

Notation:

" 11: set of fleet types.

" S: set of cities.

" G: set of ground arcs in fleet 7r E 11's network.

" FML(r): set of fleet types in the same family as 7r E H.

* D : demand forecast for market m.

* fare.: forecasted average fare for demand in market m.

* yf: number of aircraft overnighted at city i E S for fleet type 7r in the original

schedule.

* r1: the fleet type used on leg 1 E L in the original schedule.

e T: set of time intervals at the hub, indexed by t.

* MAX": maximum number of aircraft arrivals at the hub in the interval t E T.

* MAXdt: maximum number of aircraft departures from the hub in the interval

t e T.
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S1, if arc g E G' is a wrap around arc at city i E S;

7 0, otherwise

" C(l): set of flight copies for flight leg 1 E L.

" (1, k): copy k E C(l) of flight leg I E L.

* clk.: Cost to fly (1, k) with aircraft type 7r E rl, where k E C(l), I E L.

* c,: fixed cost to have one additional aircraft type 7r E Pi.

" N': nodes in flight network of fleet type 7r E H.

" nr: number of aircraft available for fleet type 7r E H.

" BKD: number of seats already booked on flight leg 1 E L before re-optimization.

1, if (1, k) in fleet ir's network begins at node i E N';

* &lk, = -1, if (1, k) in fleet 7r's network terminates at node i E N';

0, otherwise.

S1, if ground arc g E G' begins at node i E N';

6z' d = --1, if ground arc g E G' terminates at node i EN';

0, otherwise.

S1, if c in fleet ir's network crosses the count line;

0, otherwise.

1, if ground arc g E G crosses the count line;

0, otherwise.

11, if (1, k) arrives at the hub during interval t E T;

0, otherwise.

1dt f1, if (1, k) departs from the hub during interval t E T;
e Ylk =

0, otherwise.

* Q: set of connecting itineraries that are booked previously.
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Decision Variables:

* fIk-, 1, if fleet 7r E l is used to fly flight copy (1, k), where k E C(l), 1 E L;

0, otherwise.

* y,: number of aircraft on ground arc 9 E G'.

* z,: number of aircraft used for fleet type 7r.

Formulation:

max r xf arei -F ( ( c - S (4.37)
mEM rER(m) LEL kEC(l) 7rEf 7rEn

E Eflkr =1,V1 E L (4.38)
kEC(l) IrEH

S xmr D , Vm E M (4.39)
rER(m)

S Z e lXmr S fki,(CAP, - BKD,),Vl E L, k E C(l) (4.40)
mEM rER(m) irEH

flkidik,, + 5 yg =& 0, Vi E NI, 7r E l (4.41)
1EL kEC(l) gEGr

5 5 flk7 rlk7ir + > Ygir/ = z,,V7r E 11 (4.42)
lEL kEC(l) gEG

z 5 n , Vlr E l (4.43)

S . fk MAXal,Vt E T (4.44)
tEL kEC(l) 7rEn

S ,l 1 fk,, < MAX tVt E T (4.45)
1EL kEC(l) irEf

f k = 0,Vl E L,k E C(L),7r/ FML(7r?) (4.46)

S gr ( y , Vi E S, V7r E l (4.47)
gEG"

3flik, + E fl2k27r < 1, V(1 1 , 12) E Q, (ki, k2 ) V C(1, 12) (4.48)

flk, E {0, 1}, Vl E L, k E C(l), r E H (4.49)
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Xmr 0, Vm E M, r E R(m) (4.50)

Yg 0, V9 E G", 7 E l (4.51)

z> > 0,V7r E H (4.52)

Constraints (4.38) enforce that each flight leg is covered exactly once. Constraints

(4.39) limit the number of passengers traveling in each market to the value of that

market's unconstrained demand. Constraints (4.40) do not allow the number of future

passenger bookings to exceed the number of remaining available seats. Constraints

(4.41) ensure flow balance of aircraft. Constraints (4.42) and (4.43) ensure that the

re-optimized schedule uses no more aircraft than the original schedule. (4.44) and

(4.45) constrain the number of departure and arrival activities in each time interval

to the maximum number of allowable activities. Constraints (4.46) enable re-fleeting

within fleet families. Constraints (4.47) position aircraft as in the original schedule,

at the beginning and end of each day. Constraints (4.48) ensure service to passengers

whose itineraries are previously booked. Constraints (4.49), (4.50), (4.51) and (4.52)

enforce the ranges of possible variable values.

4.7.2 Decomposition Solution Approach

In the approach presented in Section 4.7.1, copies of arcs are made in order to

indicate the flexibility in the schedule, and only one copy of each flight leg is picked

in the solution, indicating the optimal schedule. We now present a decomposition

solution algorithm for dynamic scheduling, a network design problem.

Step 1: Initialization

We create passenger flow networks G' and aircraft flow networks G', for all fleet

types k, in which no copies are made. We provide the broadest possible schedules

to the Flow Master Problem passenger flow networks and aircraft flow networks as

follows: in the passenger flow network, if a connection is possible between flight leg

l and flight leg 12 by means of re-timing (if copies were used, as in Section 4.7.1,
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this would be interpreted as having a connection between some copy k, of flight leg

11 and some copy k2 of flight leg 12, obeying the minimum connection time MinCT

and maximum connection time MaxCT constraints), then we allow flight legs 11 and

12 in the decomposition network to be connected by means of connection arcs in the

passenger flow networks. In the aircraft flow networks G', because minimum turn

times are incorporated directly in the flight arcs, any pair of flight legs having an

ordinal relationship (one arc follows the other in time) can be connected by means

of fleet connection arcs. This design of the Flow Master Problem network allows

passenger and aircraft paths with all possible schedules for the aircraft and passengers

to be represented by means of the reduced network.

Figure 4-6 shows a connection in the time-space network G'. Copies for the flight

arcs are not created. Normally, the flight legs (represented by the bold lines) cannot

connect; however, connection arcs are added between the two flight legs because if

re-timing is allowed, flight leg l can connect with flight leg 12 without exceeding the

MaxCT.

MaxCT

Figure 4-6: Connections in the Passenger Flow Network G'

Step 2: Flow Master Problem

The Flow Master Problem solution is an assignment of aircraft to flight legs, as well

as passengers to itineraries, such that the total profit, defined as the difference between

the revenue and cost, is minimized, by solving (4.37) - (4.52) on the underlying
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networks G and Gk for all fleet types k.

The Flow Master Problem solution is an assignment of itineraries to the passengers

on the passenger flow network, from passenger origins to their respective destinations.

It is also an assignment of fleet types to flight legs, satisfying fleet count constraints.

Because we are solving a relaxed version of the original problem, the solution ob-

jective function value of this Flow Master Problem is an upper bound on the value

of the objective function of the dynamic scheduling problem.

Step 3: Scheduling Sub-Problem

Because no constraints pertaining to schedule feasibility are included in the Flow

Master Problem and the network considered is not expanded using copies to capture

exact schedules, after the Flow Master Problem is solved, the passenger paths or

itineraries in the solution can be infeasible. This can happen because the passenger

MinCT and MaxCT are not considered explicitly in the construction of the network

G', and therefore, the passenger itineraries obtained as output from the Flow Master

Problem might not satisfy the MinCT and MaxCT restrictions. Therefore, in the

Scheduling Sub-Problem, we examine the solution from the Flow Master Problem,

and check if it has a feasible schedule. Note that in this solution, all aircraft have a

feasible schedule, because fleet networks G' incorporate fleet minimum turn times,

and therefore, any set of flight arcs that can be connected by means of ground arcs

has a feasible schedule.

In the Scheduling Sub-Problem, therefore, we examine each of the passenger itineraries,

and check if the connections in the itinerary satisfy the MinCT and MaxCT con-

straints. If a passenger itinerary r in market m is infeasible, then re-timing of some

of the flights constituting the itinerary might be required, or the passenger might be

transferred to some other itinerary in the same origin-destination market.
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In order to eliminate the infeasibility, we re-formulate the networks G' and G' for

all k, with copies made for all flight legs present in each itinerary r in market m

with schedule infeasibility, and create connection arcs on the passenger flow network

and aircraft flow networks for the new set of arcs that satisfy exactly the MinCT

and MaxCT conditions. This will allow us to capture all possible schedules for

the passenger, eliminating infeasibilities present in the current solution to the Flow

Master Problem. With this modified network as the underlying network, we again go

to Step 2, and iterate.

Stopping Criterion

Different stopping criteria such as the number of iterations, the number of passen-

gers with infeasible paths, etc., can be defined by the user.

If a feasible solution to the problem (4.37) - (4.52) is obtained, it is a lower bound

on the optimal objective function value, and we can also define another stopping

criteria in terms of the difference between the upper bound and the lower bound.

The decomposition approach algorithm for the dynamic scheduling problem is rep-

resented by the flow chart shown in Figure 4-7.

Some Comments on the Decomposition Approach

1. Note that in each iteration, if infeasibilities are identified, we make copies for

only a subset of the arcs of the network. The size of the Flow Master Problem

in each iteration, is thus contained, thus contributing to tractability.

2. In the conventional approach described in Section 4.7.1, a solution is obtained

only when the entire model is solved to completion, which can be an issue

due to large computation times in the case of large instances. In contrast,

the decomposition approach will have a solution available at the end of each

iteration, which can provide potentially useful information to the user.
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Figure 4-7: Decomposition Solution Approach to Dynamic Airline Scheduling

Computational Experience

In this section, we demonstrate how the issue of scalability is addressed by our

decomposition approach. We solve the problem of dynamic scheduling using data

from a major US airline. The airline operates a hub-and-spoke network with about

1000 flights that serve approximately 100 cities on a daily basis. Partial passenger

data for this network is available and is used as input.

The problem of dynamic scheduling is solved using the re-optimization model of

Jiang [21] as well as our decomposition approach, for comparison purposes. We use

ILOG CPLEX 9.0 interfaced with Visual Studio C++. Computational experiments

are conducted on a computer equipped with one Intel Pentium 4 2.8 GHz processor

and 1 GB RAM.

Results and Discussion

For this instance, the decomposition approach required only one iteration, that is,

the Flow Master Problem as well as the Scheduling Sub-Problem had to be solved
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exactly once, because the maximum profit solution did not require any re-timing for

any of the flights, and the solution from the Flow Master Problem had a feasible

schedule, as ascertained by the Scheduling Sub-Problem.

These observations were in agreement with the solution obtained from the con-

ventional approach, which was solved by assuming that re-timings up to 15 min are

acceptable for each flight. Minute-by-minute copies were made for each flight leg, over

an interval of [-15 min, +15 min] from the original flight leg. Note that the routing

and fleeting results obtained from the decomposition approach and from the conven-

tional time-space network approach are the same, and both approaches indicated that

the original flight schedule need not be re-timed.

We report the problem sizes and computation times from both approaches in Table

4.5. In this table, constraint matrix size is the size of the full formulation in the

conventional approach, and the size of the Flow Master Problem in the decomposition

approach.

Time-Space Network Decomposition
MIP solution time 153.49 sec 0.09 sec

Program Elapsed Time 1059.75 sec 2.56 sec
Constraint Matrix Size 185000x394000 12000x15900

Table 4.5: Comparison between our Decomposition Approach and a Conventional
Approach

Solution Time
Flow Master Problem 0.1 sec

Scheduling Sub-Problem 0.01 sec

Table 4.6: Solution times for modules of the Decomposition approach

Table 4.6 shows the short solution times for both the Flow Master Problem and

the Scheduling Sub-Problem, indicating that several iterations of the decomposition

approach can be run in the same time that the conventional approach is solved.
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Addition of copies to the Flow Master Problem network as the iterations progress

can increase the problem size, but the size of the network is still manageable and

tractable. In the case of large instances, our decomposition approach can potentially

undergo a large number of iterations, each time creating a solution that is 'more'

schedule-feasible, whereas conventional approaches do not give indications of progress

of the solution algorithm, and therefore in very large instances, the user is unable to

get any intermediate information that may be useful.

This computational experiment provides proof-of-concept that our decomposition

approach might be effective in addressing large-scale problems that otherwise face

issues of intractability.

One such problem that is closely related to dynamic scheduling is robust hub de-

peaking, that is, spreading out the departing and arriving flights at a hub to create

more uniform demands for runway capacity, gates and airline resources at hubs. De-

peaking of hubs is an important planning problem in the airline industry. Jiang [21]

presents the robust de-peaking approach as a predecessor of dynamic scheduling, to

produce a more robust airline schedule. Jiang reports that the robust de-peaking

formulation did not solve in most cases, and restrictive assumptions were imposed to

make the models tractable. A natural extension of our work, therefore, is to apply

the decomposition approach to the problem of robust hub de-peaking.

4.8 Summary

In this chapter we apply the decomposition approach presented in Section 3.2 to an

instance of dynamic airline scheduling. We describe in detail the solution procedures

for each of the modules of our decomposition algorithm. Network algorithms to solve

the Pre-processing step and the Scheduling Sub-Problem are discussed. We argue

that our decomposition approach can capture capacity, cost, demand and supply

uncertainties in the Flow Master Problem using the ECCP, and time uncertainty in

the Pre-processing and Scheduling Sub-Problem using the CCP. We also discussed

121



how infeasible solutions generated in the decomposition algorithm can be eliminated,

how such constraints can be strengthened, and convergence and complexity issues of

our decomposition algorithm. In addition, we show how our decomposition approach

is applicable to large-scale problems. Computational results indicate that the output

of our decomposition algorithm is 'inherently robust,' providing windows of feasible

schedules rather than schedules corresponding to points in time.
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Chapter 5

Conclusions and Extensions

Focus in the optimization community has shifted from finding solutions to models

using nominal data to finding solutions that are valid under a range of data real-

izations. Investigations reported in the literature have clearly shown that nominal

solutions are not optimal, making the strong case for robust solutions. We consider

resource allocation problems, which are prevalent, and develop models and methods

to generate robust solutions that are less vulnerable to uncertainty.

In particular, we consider the problem of multi-commodity flows with time-windows

under uncertainty, which we refer to as the MCFTW-UU. This problem is at the core

of many resource allocation problems, including network design problems.

The issue of introducing robustness into existing models and solutions is of in-

creasing importance in the optimization community in the past decade. The area

of developing robust models for resource allocation problems is ripe with challenges

and opportunities. Our contribution in this thesis is to provide models and methods

capable of producing robust solutions to large-scale multi-commodity flow problems

with time-windows, under uncertainty.

9 In this thesis, we examined several models aimed at producing robust solutions.

We consider the Bertsimas-Sim and the Chance-constrained approaches and

describe extensions to these models that allow solution of large-scale problems.
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" Focusing on the Extended Chance-Constrained Programming approach (ECCP),

we propose a new modeling approach which decomposes the routing and schedul-

ing aspects of the MCFTW problem into a Flow Master Problem and a Schedul-

ing Sub-Problem, thus enhancing tractability. Our decomposition approach can

be applied to problems that deal with nominal data as well as problems under

uncertainty. Under uncertainty, the Master Problem can be formulated as an

ECCP and the Scheduling Sub-Problem can capture uncertainties by altering

arc costs and times in a manner similar to that used by chance-constrained

approaches.

" Our decomposition algorithm solves the Flow Master Problem using standard

integer programming techniques and the Scheduling Sub-Problem using network-

based techniques, thus enhancing tractability, even for large-scale problems.

Additional side-constraints, such as precedence constraints and time-windows,

can be implemented without significant increases in complexity.

" Our decomposition approach makes extensive use of standard network-based

algorithms, like shortest-path and simple network search algorithms. We explain

the applicability of our approach to large-scale problems for which conventional

techniques become intractable.

" Application of our decomposition approach to a problem involving dynamic

flight scheduling for a major airline indicates that the Flow Master Problem

and Scheduling Sub-Problem can be solved very quickly. This supports our

hypothesis that our decomposition approach is scalable, and might be applicable

to problems such as robust flight schedule de-peaking; a problem that presents

computational challenges using conventional approaches when applied to the

problems of large U.S. airlines.
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5.1 Future Work

During the course of this work, several directions for future research have been re-

vealed, namely:

" The area of robust optimization is rife with challenges, and several open issues

on this subject deserve further investigation. As seen in Chapter 2, there are

often questions about what constitutes a robust solution. An important issue

is, therefore, to identify the metrics needed to measure solution 'robustness'.

" Another important step is to quantify the 'value of robustness'. This requires

more than comparing objective function values for different solutions. Instead,

because we must compare realized, not planned, costs of the solutions, it is often

necessary to build extensive simulations.

" Problem parameters are often correlated to some degree, causing the realizations

of their values to be correlated. Capturing such correlations is an important

challenge that, if addressed, should lead to better models and solutions.

" An important goal is to extend the approaches discussed in this thesis to the

more complex problem of network design. In the following section, we provide a

framework to extend our decomposition approach to network design problems.

" In the scheduling algorithm, we can apply heuristics involving route swaps or

local neighborhood searches to generate feasible schedule assignments. This can

potentially reduce the number of required iterations of the algorithm to generate

a solution.

5.1.1 Network Design

We propose a framework for modeling and solving network design problems with

our decomposition approach embedded. In network design problems, decisions in-

volve specifying the network as well as determining optimal flows on the network. We

present an algorithmic framework for finding a solution to this problem, and illustrate
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our approach for a vehicle routing problem with pickup and delivery time-windows

under uncertainty (VRPPDTW-UU), described in Chapter 1. We relax the assump-

tion that the vehicle routes are known so that in the case of the VRPPDTW-UU,

routing decisions correspond to both routes of vehicles as well as flows of shipments.

Scheduling decisions correspond to the movements of both vehicles and shipments.

Costs are incurred due to the routing of both vehicles and shipments. Uncertainties

may occur in costs, supplies and demands, capacities, and service times.

In our future work, we plan to embed the decomposition methodology we developed

in Chapter 3 into an expanded framework in which vehicle routes are determined,

and not known a priori. We propose to use a heuristic method to find vehicle routes

and then use our decomposition approach to find shipment routes and schedules. A

suitable heuristic must be designed to construct vehicle routes, switch from one 'good'

vehicle routing solution to another, and account for variability in vehicle operating

costs.

The proposed framework for solving the VRPPDTW-UU is shown in Figure 5-1.
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Figure 5-1: Decomposition Approach applied to Network Design
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