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Abstract

This thesis considers the problem of achieving better system performance through
adaptive experiments. For the case of discrete design space, I propose an adaptive
One-Factor-at-A-Time (OFAT) experimental design, study its properties and compare
its performance to saturated fractional factorial designs. The rationale for adopting
the adaptive OFAT design scheme become clear if it is imbedded in a Bayesian frame-
work: it becomes clear that OFAT is an efficient response to step by step accrual of
sample information. The Bayesian predictive distribution for the outcome by imple-
menting OFAT and the corresponding principal moments when a natural conjugate
prior is assigned to parameters that are not known with certainty are also derived.

For the case of compact design space, I expand the treatment of OFAT by the
removal of two restrictions imposed on the discrete design space. The first is that
the selection of input level at each iteration depends only on observed best response
and does not depend on other prior information. In most real cases, domain experts
possess knowledge about the process being modeled that, ideally, should be treated
as sample information in its own right-and not simply ignored. Treating the design
problem Bayesianly provides a logical scheme for incorporation of expert information.
The second removed restriction is that the model is restricted to be linear with pair-
wise interactions - implying that the model considers a relatively small design space. I
extend the Bayesian analysis to the case of generalized normal linear regression model
within the compact design space. With the concepts of c-optimum experimental de-
sign and Bayesian estimations, I propose an algorithm for the purpose of achieving
optimum through a sequence of experiments. I prove that the proposed algorithm
would generate a consistent Bayesian estimator in its limiting behavior. Moreover,
I also derive the expected step-wise improvement achieved by this algorithm for the
analysis of its intermediate behavior, a critical criterion for determining whether to
continue the experiments.
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Chapter 1

Introduction

1.1 Motivation

Inspired by Box (1999) who pointed out that "there should be more studies of statis-

tics from the dynamic point of view" and that "it is the investigation itself that must

be regarded as the unit, and the success of the investigation that must be regarded

as the objective," we consider the problem of developing mathematical results re-

garding adaptive experiments and the relationship between expected improvement

and information gathered from adaptive experiments. More specifically, we would

like to investigate whether such an adaptive experiment approach could attain better

result and how much the improvement one could expect from one stage of experiment

to the next. In fact, conducting experiments adaptively to achieve better system

performance is in general discouraged by many statistical studies, especially in the

field of Design of Experiments (see Wu and Hamada, 2000; Logothetis and Wynn,

1995). One key reason is that, in terms of regression, conducting experiments adap-

tively could not make unbiased estimates while keeping the variance of the estimates

minimum. However, this goal could be easily achieved by many other experimental

designs such as fractional factorial design (Wu and Hamada, 2000). Therefore, since

the estimates from the adaptive experiments are less accurate, the expected value

of the estimated best performance would not be the real optimum. This argument

assumes that estimating unknown parameters with minimum variance would lead to



exploiting the best expected value of the performance. However, the study of (Frey

et al., 2002; Frey, 2003), which indicate that conducting experiments adaptively could

achieve better expected performance improvement through hundreds of case studies,

renders a strong counterexample. Moreover, as discussed in (Lai, 2001) and the cor-

responding discussion by Wei, the roles of mean and variance in this kind of adaptive

procedures still requires satisfactory theories.

1.2 Literature Review

The research topics related to the problem considered in this thesis are very rich.

However, most of them could be regarded as a special case within the following four

categories: Stochastic Approximation, Multi-Armed Bandit Problem, Bayesian Ex-

perimental Design, and Response Surface Methodology. The reason why we review

these four topics is not only because they are closed related to the adaptive experi-

ments but also because the mathematical techniques and the concepts developed in

these topics are inspiring to us.

1.2.1 Stochastic Approximation Problem

The study of sequential design of experimentations could be traced back to (Robbins,

1952), in which the author proposed the idea of stochastic approximation and multi-

armed bandits. The typical stochastic approximation (SA) problem could be described

as follows. Consider a regression model

Yi = F(xi, 8) + Ei, i = 1, 2,...

where yi is an observed response contaminated with unobservable random error/noise

ei, and F(xi, 0) : R2 -+ R is a smooth regression function with unknown parameters

0 and input xi. The goal of the SA problem is to choose the root of the partial

derivative of F(x, 0) with respect to the input x through a sequence of observation of

response yi's. Note that to find a maximum, minimum or a saddle point of a smooth



function F : R2 --+ R is equivalent to find the x* which satisfies O (x*) = 0. Hence,

the SA problem sometime is termed as sequential optimization problem (Lai, 2001).

To solve this problem, Robbins and Monro (1951) proposed the following recursive

scheme

Xn+l = Xn + OnYn

which has been generalized to (see Kushner and Yin, 2003)

OF(x, 9)
Xn+1 = Xn + an (x (Xn, Yn)

where ~(xn, yn) is the estimate of the gradient of the function F(., -) at x, and

the estimate is made according to the observation yn. Moreover, the coefficients an

have the property

an = 00 and a2 < oo.
n=1 n=1

Later Blum (1954) proved that the recursive scheme in (Robbins and Monro, 1951)

would converge to the root of the real partial function F() with a strict assumption

on error E. Kiefer and Wolfowitz (1952) proposed the following recursive algorithm

to deal with the SA problem

Xn+1 = Xn + a F(x, y)

where

y') = F(x$'), 9) + E), i = 1, 2

are the two samples at the stage n experiment with inputs

X(1) = Xn - 3n and x(2) = x + 4,

where the positive coefficients an and 3n satisfy

00 c200

1an = 0c0, 1: (an < 00, and O, -- oo,
n=l n=l



and the estimate of the derivative of the smooth function F(x, 0) is defined as

(2) (1)oF(x,)(Xn, Yn) y - y
0x 2 0n

Blum (1954) also proved that the above recursive algorithm would converge to the

maximum of F : R2 --+ R under certain conditions on function F and error C. After

the schemes proposed by Robbins and Monro (1951) and Kiefer and Wolfowitz (1952),

there is a, vast literature of variants of the two recursive schemes, and the problem

has soon been extended to multivariate case. That is, F(x, 0) : R P -- IR with p > 2.

For example, (Spall, 1992) and (Spall and Cristion, 1994) have proposed a pertur-

bation gradient estimation scheme to estimate VF(x,0) at each stage of experiments.Vx

See (Ruppert, 1991) for a detailed survey of algorithms related to the SA problems.

Although the stochastic approximation problem is to find the maximizer of a smooth

regression function through a sequential observations of responses contaminated with

errors, a problem which is very close to the one we consider in this thesis, yet the

convergence conditions is usually difficult to justify in advance, and the SA problem

in general does not consider the case in which the design points lie in a constraint

set. Most importantly, as indicated in (Lai, 2001), the interaction between the esti-

mates of mean and variance through the sequential experiments remains unclear in

the literature concerning the SA problem.

1.2.2 Multi-Armed Bandit Problem

The pioneering work of Robbins (1952) also introduces a new problem called the multi-

armed bandit problem, which could be interpreted as follows. Imagine a slot machine

with q > 2 slots. When one pulls a slot, say slot i, one would obtain a reward yi which

is a random variable with mean [p(0i) and with a density function f(0i). In the setup of

the multi-armed bandit problem, the density function f(Oi) is usually known; however,

the parameter 02 remains unknown but belongs to some set e. The key difference

between the multi-armed bandit problem and the stochastic approximation problem

is that the latter deals with a continuous case where the design points could be



chosen from 1R, while the former chooses the design points from a discrete set with

q > 2 elements. The goal of the multi-armed bandit problem is to maximize the total

expected rewards from the sequence of N trials. That is, to maximize E [C, 1 Y].

There is a fundamental dilemma between exploration, such as choosing different slots

to estimate the parameter 0, and exploitation, such as determining which slot with

the highest mean IL(0) so as to achieve highest E [CEg ].

After the multi-armed bandit problem has been proposed, this topic has been

extensively studied in the fields of engineering, economics and statistics. In the engi-

neering field, the extensive study of the bandit problem was motivated by the adaptive

control of finite state Markov chains with a finite control set (Bertsekas, 2001). See

(Kumar, 1985) for a detail survey for the development of the adaptive control. Lai and

Robbins (1985) proposed a sampling rule called uniformly good rule, and developed

an asymptotic regret-type performance lower bound for this uniform good sampling

rule. Graves and Lai (1997) extended this result to the case in which the rewards be-

have as a Markov chain random variable. Moreover, they used the sequential testing

theory to demonstrate that the derived lower bound is achievable. Auer et al. (1995)

revised the problem and assumed that an adversary, instead of the conventionally

assumed a well-defined density function, will completely govern the rewards. They

proposed an algorithm and showed the algorithm converging to the best arm at the

rate of O(N-1). This line of research has become a branch of game theory in the

Economics field, (see Foster and Vohra, 1997; Vovk, 1999; Auer, 2000; Piccolboni and

Schindelhauer, 2001; Blum et al., 2003). The multi-armed bandit problem also has

been studied in pricing under demand uncertainty, portfolio selection, and resource

allocations in economics, (see Rothschild, 1974; Parkes and Huberman, 2001; Brezzi

and Lai, 2000). In the economic literature, the multi-armed bandit problem would in-

corporate the discount factor into its objective function, and thus the future rewards

would become the present values. Gittins (1979) showed the optimal solution of this

discounted multi-armed bandit problem under certain conditions.

The multi-armed bandit problem as well as many variants of this problem has been

extensively studied and many fruitful results have been discovered by researchers.



However, the problem has several differences from the problem we are interested in

this thesis. The most important is that the objectives are different. The objective

for the multi-armed bandit problem is to maximize the total rewards which one could

receive along the way he explores the slots and exploits what he learns in the ex-

ploring stage. This implicitly implies that, by sequentially trying different arms, i.e.

conducting sequentially experiments, he would learn about the slots and then identify

the arm with highest expected reward asymptotically. On the other hand, the goal of

our problem is not to pursue the sum of the rewards along the sequential experiments

but to apply the information gathered from the limited finite number of experiments

to identify the best possible arm.

1.2.3 Bayesian Experimental Design

The basic idea for Design of Experiments (DOE) is that the statistical inferences

about the quantitative objectives of interests could be improved by appropriately se-

lecting the levels of control variables (see Wu and Hamada, 2000). It is no wonder

why the DOE is usually perceived as a technique for extracting the most useful in-

formation from the data to be collected. Moreover, DOE could also serve different

purposes. For instance, it serves as a suitable vehicle for constructing the link be-

tween estimation, prediction, control, and optimization. The Bayesian Experimental

Design is the DOE under the Bayesian framework, in which one would assume that

the unknown parameters are random variables and the associated prior distributions

are known. When the prior distributions contain no information, for instance, the

corresponding variances are infinite, and then the Bayesian experimental design could

be dealt with the ordinary DOE.

Lindley and Smith (1972) applied the decision theory to lay out the fundamental

structure for the Bayesian experimental design. His argument is as follows. Consider

a design qr (see notiations in Fedorov, 1972), chosen from a design space X, and let y

denote the observed data. According to the data y, an experimenter needs to make

a decision d from the decision space D. The experimenter encounters a problem on

two folds: (1) how to determine the design 7 from X and (2) how to select d from



D. Let the prior information be a density function f(0) with unknown parameters

0 E O. Then the objective that the experimenter needs to maximize is

U(m) = max U(d, 7, y; )f (9 y, I)f(yiT) dOdy

where U(d, Tr, y; 0) could be regarded as a utility function of the experimenter and

f(.) denotes a probabilistic measure. Note that the structure of this objective is in

the Bayesian format. To find the best experimental design q*, we need to maximize

the utility backwards, i.e., we need to find 7* such that

(,*) = max U() = max max U(d, , y; 8)f(l y,r )f(y l)dOdy
r]EX 77EX dE je

It is obvious that the selection of the utility function U(d, ,, y; 0) is crucial in this

framework. DeGroot (1962) chooses the mutual information as the utility function for

the purpose of inference, and this choice leads to the Bayesian D-optimality (Fedorov,

1972; Silvey, 1980) in the linear regression model (see Bernardo, 1979, for a detailed

discussion). It is clear that the estimation is not necessarily equivalent to prediction.

Suppose now the goal of the experimenter is to predict a linear combination of the

unknown parameters 0, then the utility function the experimenter encounters could

be

U(O) = - J J( - O)A(O - 0)f(y, 09 )d0dy

where the utility function represents a quadratic loss function, 0 denotes the estimate

of 0, and matrix A is a symmetric positive definite matrix with a proper dimension.

Chaloner (1984) solved the above problem with the assumption of Gaussian linear

regression model, and concluded that the optimal design 7* would maximize the

criterion -tr {A(nXTX + R)- 1}, where n is the number of experiments, X is the

design matrix according to an experimental design r, and R denotes the variance

matrix of the prior distribution. Note that this is equivalent to the A-optimum

design (see Silvey, 1980). A special selection of matrix A is that A = ccT. Since

matrix A is symmetric positive definite, there must exist a column vector c satisfying



the selection. This responds to the Bayesian c-optimum design (see Silvey, 1980).

Chaloner (1984) gave a geometric argument for this case, which is extended by Dette

(1996). There are other types of optimum designs closely related to the Bayesian

experimental design; see (Chaloner and Verdinelli, 1995) for a detailed review.

From the above discussion, we know that the Bayesian D-optimum design could

lead to better estimation while the Bayesian c-optimum design corresponds to better

prediction. Suppose now the goal of the experimenter is to maximize the response

while decreasing the variance of the estimate, which is very close to the problem

we consider in this thesis. A combination of the D- and c- optimum design could

be expected. Verdinelli and Kadane (1992) proposed the following expected utility

objective function

U(7)= Jf y + a log f (01 yq) f ( 1 y, q) d0d y

where a is the weight of the importance in exploration and exploitation. Note that this

utility function corresponds to the problem of multi-armed bandit problem discussed

earlier. Verdinelli (1992) extended this utility to

U(7) = JJlog f (yn+1 IY, 77y) f(y, Yn+ i ) )dydy+i + a log f (9 y, r) f (9 l y,) )d dy

where yn,+ could be regarded as the outcome of the experimental design and the

coefficient a denotes the weights between the prediction and estimation. A similar

problem could be found in (Pronzato, 2000; Pronzato and Thierry, 2003).

In certain linear regression problems, both the Bayesian and non-Bayesian ex-

periments are independent of the observations (Lindley and Smith, 1972), implying

that the sequential experiments could not gain any more information. However, for

most problems, including the linear ones, it is still not clear whether the sequential

designs could be better, especially when the goal is to maximize the response as we

discussed earlier. Moreover, for nonlinear regression models, the posterior analysis

clearly depends on the observation y (Silvey, 1980). We expect that there is a gain



from choosing design inputs sequentially.

1.2.4 Response Surface Methodology

Response Surface Methodology (RSM) is a collection of mathematical and statistical

techniques developed for modeling and analyzing problems of determining optimum

operating points through a sequence of experiments. Particularly, RSM is a useful

technique in cases where system optimization is the goal and the system is largely

unknown. Pioneered by Box and Wilson (1951) in the field of experimental design

and analysis, the RSM has been vastly studied and implemented in a wide range of

fields. Box and Draper (1975) was the first to point out the need to deal with the

model uncertainty in design, and applied the idea of RSM to establish the robust

design concept. Taguchi (1987) extended this frontier and gave the routine use of

fractional factorial designs a central role in the design of products and process, a sim-

ple practical approach which allows engineers to design, perform and analyze their

experiments within a context of a unified scheme called robust parameter design (see

Nair, 1992, for the discussion of Taguchi's method and its drawbacks). In the last

two decades, many researchers have encouraged the use of RSM in solving parameter

design problems; for example, (Myers et al., 1992; Lucas, 1994; Lin and Tu, 1995;

Engel and Huele, 1996; V. N et al., 2002). The increase has broaden the use of RSM

and has shifted the focus of RSM. The computer-aided design has made much empha-

sis on R.SM focused on finding regions where there is demonstrated improvements in

response over what has been achieved by current operating points instead of finding

optimum response (Myers, 1999). A detailed review concerning the response surface

methodology could be found in (Hill and Hunter, 1966; Myers et al., 1989; Myers,

1999).

Even the RSM has been demonstrated in numerous cases, there still lacks a theo-

retical foundation for RSM to justify its achievements in these cases. Moreover, from

the claim made by Wu and Hamada (2000): "if the input factors are quantitative and

there are only a few of them, response surface methodology is an effective tool for

studying this relationship," we know that the application of RSM is strongly influ-



enced by the scaling properties of the techniques comprising the methodology. This

is opposite to the problem we consider in this thesis when the design point is finite,

since what we would like to investigate is how to make improvements within very few

experiments. Additionally, note that the RSM is for one interested in designing ex-

periments on a set of design points and analyzing the experimental data with the goal

of determining variables that provide improvements (Box et al., 1978). Although the

goal of RSM is very close to ours in this thesis, we would like to put more emphasis

on the roles of estimating mean and variances as the experiments proceeds, which is

ignored in the response surface methodology.

1.3 Structure of the Thesis

We consider the cases when the design spaces discrete and compact respectively be-

cause of their unique properties, which will be explored in the following chapters.

In Chapter 2, we will first consider the case of discrete design space. In this case,

we assume that the resource for the experiments is very limited, and the goal is to

make improvements in response as large as possible. I propose an adaptive One-

Factor-at-A-Time (OFAT) experimental design, study its properties and compare its

performance to saturated fractional factorial designs. The rationale for adopting the

adaptive OFAT design scheme become clear if it is imbedded in a Bayesian framework:

it becomes clear that OFAT is an efficient response to step by step accrual of sample

information. The Bayesian predictive distribution for the outcome by implementing

OFAT and the corresponding principal moments when a natural conjugate prior is

assigned to parameters that are not known with certainty are also derived. Chapter

3 will consider the case in which the design space is continuous. In this case, I will

extend the treatment of OFAT by the removal of two restrictions imposed on the

discrete design space. The first is that the selection of input level at each iteration

depends only on observed best response and does not depend on other prior informa-

tion. In most real cases, domain experts possess knowledge about the process being

modeled that, ideally, should be treated as sample information in its own right-and



not simply ignored. Treating the design problem Bayesianly provides a logical scheme

for incorporation of expert information. The second removed restriction is that the

model is restricted to be linear with pairwise interactions - implying that the model

considers a relatively small design space. I extend the Bayesian analysis to the case of

generalized normal linear regression model within the compact design space. Much of

the literature on adaptive optimization of experimental designs focuses on D-optimum

schemes, minimizing the uncertainty over the entire design space. I instead focus on

c-optimality, in which the objective is to minimize uncertainty in the neighborhood

of design points of interests, and propose an adaptive experiment algorithm. I will

prove that this proposed algorithm would generate a consistent Bayesian estimator

almost surely in its limiting behavior. Moreover, I also derive the expected step-wise

improvement achieved by this algorithm for the analysis of its intermediate behavior,

a critical criteria for determining whether to continue the experiments. Moreover,

this improvement scheme would be shown to be applicable when neither regression

parameters nor residual error variance are known with certainty. In Chapter 4, we

conduct a case study to illustrate the practical value of the proposed algorithms in the

cases of discrete and compact design space. We conclude and discuss future research

directions in Chapter 5. Since we will use the Bayesian analysis technique frequently,

a succinct survey of the Bayesian techniques is presented in Appendix A.





Chapter 2

The Discrete Space and the

One-Factor-at-A-Time

Experimental Scheme

We begin, with presenting the regression model for the case in which the design space

is discrete. We will propose an adaptive experimental scheme, the One-Factor-at-A-

Time scheme, and demonstrate its ability to achieve a better response improvement

under the restriction of scare resource for experiments. We also provide relational

for the construction of the adaptive One-Factor-at-A-Time scheme with a Bayesian

analysis. Finally, we will explore the properties of this adaptive experimental scheme

and compare its performance to that of conventional fractional factorial schemes.

2.1 The Fundamental Model

We consider the following linear Gaussian regression model

q q-1 q

y(x) = 0 + /ff (x) = /o + zx, + x, + >,
i=1 i=1 j=i+1



where x = (x 1 , X2,... , Xq) T denotes a q-element input vector, and

f(x)= (xL,... Xq, XX2, . . . ,Xq-Xq) T

includes the main as well as interaction effects. Moreover, q > 2 denotes the number

of factors, o0 is a constant, and E denotes the experimental error. Furthermore, in

this chapter, we consider a discrete 2 q experimental design, and thus the design space

is

x E X= {(1,il,...,+l)±  E N}.

Since we consider the engineering applications, we assume that o0 is sufficiently large

such that y(x) is positive almost surely. Finally, the prior of the main and interaction

coefficients 3 = (1, . . ., q, 012, , 3· (q-1)q) is

13olf Af ((OV)

S A N(O,o0,) (2.1)

V = Diag(a .E,ME MEUINT ,7 ' INT
q main coefficients q(q-1) interactions2

where Diag(v) denotes a diagonal matrix with its diagonal vector v, and E's are all

independently, identically distributed throughout the experiment. We also assume

that the linear model follows the hierarchical structure (Wu and Hamada, 2000), and

therefore 0 ME > a2NT. Notice that, this prior assumes that all the coefficients in 3

are mutually independent, which is a strong assumption.

2.2 A Bayesian Analysis for Adaptive Experiments

The analysis approach we take in this section is to consider all the possible obser-

vations. We first construct the design matrix X for all possible inputs and then

numerate the inputs. That is, we set

X = [f(x1), f(X2), . . . ,f(x)]



in which we always have xl = (1, 1,..., 1)T and X2q = (-1,-1, .,--1)T. For exam-

ple, when q = 3, we have

X = [f(xI),..., f(xs)] =

1

1 -1 -1 1

1 1 1 -1

1 -1 1 -1

1 -1

-1 -1

1 1 -1 -1 1

-1

-1

-1 1

-1 -1 1 1

a 6 x 8 matrix. Then, the vector

Y(.

y(xl)

y(X 2q)

w = XTVX + UI 2q

[(0, W)

Let W(i, j) denote the element of W in the ith row and jth column. Then, by

construction, we have the diagonal terms

W(2, i) q U2 ( - 1)2 2

W(i,i)=quME + q 2NT + , i= 1,...,2

Furthermore, suppose, for some j = k, we observe

q

JX(i,j) - X(i, k)I = 2r
i=for some integer

for some integer 1 < r < q. Then we have

W~ik~=(n 2ri- q2 -(4r +1)q±+4r 2 2,
W\jk)~ =(q -. 2 vr) (2.2)IIN I

Note that r denotes the number of different elements in input vectors xj and Xk, and

SE I VI



W(j, k) denotes the covariance of y(xj) and y(xk). It is clear that the covariance

function (2.2) is a convex function in r. Moreover, by a straightforward analysis,

W(i, k) has the following property:

If 
r

2
U2 
2  , then W(j, k) is decreasing

2 I + O then W(j, k) attains minimum2 20INT
2 

2

> + , then W(j, k) is increasing2 IN
T

Figure 2-1 illustrates this fact. From Fig. 2-1, we observe that the value would achieve

its highest when r = 1 and behaves as a U-shape curve, which is convex. Last, we

note that W(i, i) > W(i, j) for all possible i and j ý i. This property will reveal its

importance in its later usage.

The Covariance between different inputs with various ratios of oME and oINT

OUU

100

0

-100
0 5 10 15 20 25

Number of Differences in Input Elements (n=30)

Figure 2-1: The change of covariance with the increase of different
elements

numbers in input

2.2.1 After the first experiment

Without loss of generality, we pick the input vector of the first experiment as x2,, and

obtain an observation 2Y2. As indicated before, Y2q >Ž 0 almost surely. With the goal



of searching the input x which achieves the highest response 0 + /3Tf(x), we select

the highest posterior estimation of response other than the X2q as the next sample

input.

Then the posterior estimation of response Yi = y(xi) for all i = 1, 2,..., 2q - 1

becomes
W(i, 2q)

W(2q, 2q ) y2"

To select the highest yi is equivalent to search for the input xi with the highest

W(i, 2q). Hence, we obtain the following observation.

Proposition 1

W(2 - 1 , 2q) > W(i, 2 q), Vi = 1, 2 ,..., 2q -1.

Proof: Choose any j with j=1=L X(i, j) - X(i, 2g) = 2r > 2. Then we have

W(2q - 1, 2) - W(j, 2')

2 _2 - 5q + 4 2 2 q2 - (4r + 1)q + 4T2 2(q - 2) eME + 2 U, (q - 2r) uME + 2 UNT

[(q - 2) - (q - r)]02E + q2 - 5q + 4 q2 - (4r + 1)q + 4r2 0' 2= ( 2 2
= 2(r - 1) [E + (q- (r + 1))I2NT]

> 0

Hence, after the first experiment, the input with one factor different from the first

input vector is the optimal one to choose.

2.2.2 After the second experiment

After the second experiment is conducted, we obtain two observations Y2q-1 and Y2q,

and, without loss of generality, we assume that Y2' >_ Y2q-1. Then the posterior



estimate of the other response becomes

Var2 (Y2q) - COV2 (y21-1, 29 )

Cov(y1, y2,,-1)

CoV(y 2, 2, Y2q-1)

COV 9(Y2q-2, Y211-1)

Cov(yl, y2q )

Cov(y 2 , Y2q)

CO (y29- 2, Y21 -1)

-CoV(y 2,q1 , y 2q) I [2-1
Var(y 2q) 2J

Hence, for some i E {1,2,...,2 q - 2}, we have

1
a12 I Var(y2q)COV (Yi,

+ Var2 (y2q) - Cov2(y2 ,y 2 ) Var(yCov(y,

+ Var 2  I Var(y2q)Cov (yi,Var2q2) _ COV2 (Y211-1, Y21)

y2q-1) - Cov(yi, Y2 q)COV(y 2 q 1 , Y2q)] Y2q-1

Y21) - Cov(yi, y2q-I)COv(y 2ql, Y2q)] y2q

Since Var 2(y 2q) - Cov 2 (y2 q,1, y2,) > 0, we need to find

= arg max Var(y 2 q)COV (yi, y2q-1) - COVVi, Y2)COV 2-1 lI2q) Y2q-1
iE 1,2[,...,2 -2}

+ [Var(y 2q)COV (yi, Y2q) - COV(yi, y2q-1 )COV(Y 2q-1 , Y2)] Y2( 2 .3)

To facilitate our discussion, we define the function

0 (r) = Cov(yi, yj)

for all corresponding xi and xj such that

SIxi(k) - xj(k)l = 2r,
k=1

Vr = 0,1,...,q.

We will show that the best input regarding the information collected so far is X 2 q-2

which is only one element deviate from X2q. Recall that x 2 q generates the highest

ý1
Y2^

Y2q-2

Var(jy2q)
x

-Cov(y 2 -1 , Y2q)



response in assumption.

Proposition 2 Given y2 > Y2q-1 > 0, we have

/2,-2 - 9i 2 0, Vi = 1, 2,..., 2q -2.

Proof: Since x2, and X2, - 1 have only one different elements, all other elements

could have either r elements different from x2q and r + 1 elements different from X2q-1

with r > 1, or r elements deviate from X2, and r - 1 elements from X2q- 1 with r > 2.

We first consider xi with r different elements from x 2q and r + 1 elements from

X 2q--1

y2,-2 - 4i 0)2 (1) (0)[(2) - 0(1)4(1) y2q-1 + [(0)0(1) - 0(2)0(1) Y2q

- [(o>(r + 1)- (r)(1) 2-1 - )(0)(r) - 0(r + 1)0(1) y2q

= (0 2 _ (1)2 ( (0)V)(2) - 0(1)2 - ?P(0)(r + 1) + '(r)W(1) Y2q-1

+ 10(0))0(1) - 0(2)0(1) - 0(0)0(r) + O(r + 1)0(1)] Y2)

-0 z,(1)2 20(0) [0(2) - $(r + 1) + 0(1) - 0(r)]

> ¢(0)2 - ¢(1)2 ) (+ (r ± 1Y2q-1((0)2 - P 2 ( - 0 (1)] (2) - ± 1) + V-(1) -Y

From Eq.(2.2), we know that ?(1) > 0(2) and it remains to show that V'(2) 2 (q).

Hence,

-2 2 - 5q + 4 2 U2 q 2 - (4q + 1)q + 4q2 20(2) - (q) = (q - 2)oME •2 INT + qME INT

= 2(q - 1)UE - 2U2NT

= 2(q - 1)aoE - 2a~,

Ž 2(q - 2)aME > 0



The other case is for xi with r different elements from X2, and r - 1 elements from

x 2,- 1 with r > 2. Following the identical argument from above, we have

s··* I 1 ~iij 0[(4o(0)[()(1)]
y2q-2 - Yi 2 1(0)0(2) - 0(1)0(1) y2q-1 + 0(0)0(1) - 0(2)0(1) Y2Q

- (0)(r - 1) - 0((r)0(1) Y2-1-[(0)#(r) - #( - 1)(1)] y2)

> (0) 2 (0) (2) - 0(r -1) + 0(1) - O(r)

+V(1) [(r) - V(1) + (r - 1) - (2)]) Y2-1

(0)2 0 [(0)- (1) [(2)- (r - - 1) + 0(1) - (r)] y2)-1
(0)2 -  y(1)2

> 0

Hence, from Prop. 2, the best thing one could do for the next experiment after

the second is to choose the input which is one element different from the input with

higher response.

An alternative, heuristic way to obtain the desired next input x is to rearrange

elements in Eq.(2.3) and find the difference between xi and xj as follows

Var(y2q) (Co(Yi, Y29-1) - Cov(y, Y2-l) Y2q-1

+ Var(y2 ) (Cov(yi, y2q) - Cov(yj, 2)) Y2 (2.4)

+ Cov(y 2q- 1,y 2q) (Cov(yy2) - Cov(i, Y2q ))Y2-1

+ Cov(y 2q-1,y 2q) (Cov(Y jY2-1) - Cov(Yi, Y2 n1))y 2

Since Var(y 2•) dominates all other covariance and Y2,J > Y2,-1, we consider only

Eq.(2.4) and choose the next input vector accordingly. By our discussion above, we

should choose the input with only one element different from the input x2. -



2.2.3 After k experiments with 3 < k < q

Suppose that we have conducted k experiments with 3 < k < q, and that y,, 1 < s <

k, dominates all other observed response. According to (Horn and Johnson, 1990),

we know that the inverse of a nonsingular matrix A could be represented as

1
A - l =jI adj(A)

det(A)

where det(A) denotes the determinant of matrix A, and adj(A) denotes the adjugate

of matrix A. Hence, by the definition of adj(A), the prediction of yi would involve

the term

Vark-l(ys)Cov (yi, yI) ys.

Recall that Var(y 2q) dominates all other covariance terms. Thus, given y, > 0,

to achieve the highest response is to select the appropriate xi such that Cov (yi, y,)

is maximum. Therefore, the input vector which differs only one elements from x,

is the optimal choice. Suppose now that we impose one more restriction that the

experimenter will not toggle the factors that has been investigated before, then we

will have the following adaptive one-factor-at-a-time (OFAT) experiment scheme.

2.3 Adaptive One-Factor-at-A-Time Experimental

Scheme

In this section, we will propose an adaptive experimental scheme, the adaptive One-

Factor-at-A-Time (OFAT) Scheme, according to the analysis in the above section. In

the adaptive OFAT scheme, we consider the q factor normal linear model

q q-1 q

y(x) =EZ/ix + Z E /3iXjxj + (2.5)
i=1 i=1 j=i+l

where y(x) denotes the response at the input level xT = (x 1,... X, ), i denotes the

main effects associated with the ith factor, fij represents the interaction between



factors xi and xz, and, finally, e is the experimental error. We omit the term /o here

because we could not control the constant term and thus 0o becomes redundant in

our analysis. Notice that, in this model, we havep = q elements in the coefficient

vector 0. For simplicity, we assume that the coefficients and the errors are mutually

independent and the distributions are

fME), i= l,...,4
Uij o2 '(0, a(O,2+NT,), Vi=,,(q - 1), j =i + 1,...,q (2.6)

This prior implies that we have no specific information about the magnitude and

sign of the coefficients, and thus the variances aME and f2N is expected to be large.

That is, the prior would be weak. The analysis of the adaptive OFAT scheme is very

sensitive to the assumption of prior, and we will discuss the prior in details later.

2.3.1 The Processes of Adaptive OFAT Scheme

We illustrate the process of the adaptive OFAT scheme with the case of three two-

level factors labeled here as A, B, and C, which is shown in Figure 2-2. First, an

experiment is conducted at some baseline point in the design space. In Figure 2-2 this

baseline point is A=-1, B=+1, C=+1, and any of the eight points in the space have

the same probability to be chosen. Next a factor is varied and another experiment

is run. In Figure 2-2, factor A is varied first. If the experimental results suggest

there was an improvement in the latter response, then the change in factor A will

be retained. Thus, all future experiments are affected by the results of the first two

experiments. Next, another factor is changed. In Figure 2-2, B is toggled from +1 to

-1. Another experiment is conducted and compared to the best result observed so far.

If the most recent change does not seem favorable, it is reversed before proceeding.

The process ends when all the factors have been changed. The final settings are

determined by the best observation in the sequence.

Note that this adaptive OFAT scheme has several features. First, it requires



If there is an improvement,
Do an Experiment retain the change

Change ONE Factor

+

B

If response gets worse,
go back to previous state

top after every factor has
!en changed once

- A +

Figure 2-2: Illustration of the adaptive OFAT applied to a system with three two-level
factors (A, B, and C)

q + 1 experiments, which is significantly less than almost all traditional design of

experiment schemes. In fact, only the saturated fractional factorial designs could

require the same experimental runs. Thus, we choose the fractional factorial scheme

to be the benchmark for our comparison later. Further, the factors flip the sign of

its corresponding inputs one at a time, regardless of its history. This is one of the

key reasons why this analysis of its performance is tractable. It also implies that the

adaptive OFAT scheme explores each dimension one by one while keeping all other

dimensions fixed. However, it does not behave like the gradient search as we usually

see in the optimization algorithms, because the OFAT scheme considers only the

sign of difference but not the direction of most improvement. Moreover, due to the

symmetry of the prior distribution of /3, it would not make any stochastic difference

in selecting the initial inputs and therefore the order of the sign change of inputs

could be arbitrary. We will discuss the symmetry property of the prior distribution

later. Finally, the determination of the inputs depends on the observational difference

between the corresponding two consecutive experiments. It implies that the OFAT

scheme implicitly has a short memory; it only considers the current and the previous

experiment results and ignores all other experiments.

In the mathematical framework, the input levels of the adaptive OFAT scheme



could be described as follows:

(0) (0) (0)
x(o) = (x , 2 O * I q ))

X0 2  (x ) (0) 00)

(k) (k) 1 /0) (oi (0) (0) Tx(k+1) = A( , , 2k -I, Xk+ 2, q

X(q-1) (q-1) (D) ((oI•T
X(1 ( " -2 q.

where the x(o) denotes the initial input level of the OFAT scheme, the superscript k of

scalar 4xk) denotes the kth experimental run, and the associated subscript i denotes

the ith element of the input x(k), the kth input level. The final decision of the input

level for the adaptive OFAT is

XOFAT ** , -1''' .' I sign (I (..1)) - ( (q,

We would like to address several remarks for the process of the OFAT scheme in the

2 q experimental environment.

* all elements of input level X(k) (k > 1) are identical to those of X(k-1) except

the (k - 1)th and the kth elements, and the change of the kth element is static

* the (k - 1)th element of X(k) (k > 2) depends on the values of y(x(k-1)) and

y(X(k-2)); if y(X(k-1)) wins, i.e., y(X(k-1)) > y(X(k-2)), then we keep the (k-1)th

element of y(x(k-1)) in X(k); otherwise, we keep that of y(x(k-2))

* although the selection of the input levels does follow the posterior Bayesian

analysis after each experiment runs as we did earlier, it is more convenient to

regard it depending on the observations of previous two experiments

Before we proceed to analyze the OFAT scheme, we would like to review several



historical remarks in the DOE literature regarding the scheme. As pointed out by Frey

and Wang (2006), OFAT experimental scheme is generally discouraged by experts in

experimental design and quality improvement (see Box et al., 1978; Logothetis and

Wynn, 1995; Czitrom, 1999; Wu and Hamada, 2000). Reasons cited include

1. It requires more runs for the same precision in effect estimation;

2. It cannot estimate some interactions;

3. The conclusions from its analysis are not general;

4. It can miss optimal settings of factors;

5. OFAT can be susceptible to bias due to time trends because OFAT cannot be

randomized in the same sense that fractional factorial designs frequently are.

While these cautions are valid and should be taken into account when considering use

of OFAT, some researchers have articulated a role for OFAT and demonstrated that it

has some advantages under some conditions. Friedman and Savage (1947) suggested

that a one-factor-at-a-time approach might be used in preference to balanced factorial

plans when the experimenter seeks an optimum within a system likely to contain

interactions. They suggested that OFAT might offer advantages since it concentrates

observations in regions that are likely to contain the optimum. Daniel (1973) suggested

that OFAT may be preferred when an experimenter wishes to react more quickly to

data and can safely be used in those cases in which factor effects are three or four

times the standard deviation due to pure experimental error. Koita (1994) showed

that a one-factor-at-a-time method was effective for identifying selected interactions

after running fractional factorial designs as part of an overall approach to sequential

experimentation. McDaniel and Ankenman (2000) provided empirical evidence that,

for "small factor change problems," a strategy including one-factor-at-a-time and Box-

Behnken designs often worked better than a comparable strategy employing fractional

factorial designs when there is no error in the response. Qu and Wu (2005) used one-

factor-at-a-time techniques to construct resolution V designs within an economical

run size.



2.4 Preposterior Analysis of OFAT Scheme

In this preposterior analysis, we will assume that the parameter a, > 0 is known,

which is a common assumption in many DOE literatures. An analysis for unknown

a, will be presented later. In this section, we will focus on the performance of the

OFAT scheme from one experiment to the next. There are two performances we will

analyze in this section: one is the expected response value after experiments and the

other is the exploitation probability of a. coefficient in our model Eq.(2.5). Before

starting the analysis, we define the exploitation in the following.

Definition 1 An effect pi or pij is said to be exploited if the product of the suggested

xi and/or xj has the same sign as that of the corresponding effect.

2.4.1 The First Step in Adaptive OFAT

Theorem 1 If adaptive OFAT scheme is applied to a response model (2.5), then the

expected improvement after the first step (the second experiment) is

E [y(x(2))]= E IxL ] + (q 1)E lj x)]

where

2M ME

and

E [,ljx (2) (0)] V U2NT

Recall that, in Eq.(2.7), x) denotes the ith element of the jth experiment in the

adaptive OFAT scheme. For the ease of reading, all the proofs in this section will be

delivered later.

As Theorem 1 indicates, the expected response in the second experiment following

the adaptive OFAT arises due to the main effect of the first main factor and all the

q - 1 interaction factors in which the first factor participates. This combination of a



main effect and related interactions is often called the conditional main effect since it

represents the effect of the factor conditioned on the current initial settings, i.e. y(xo)

and y(xl). Moreover, Theorem 1 also suggests that, when aME > aINT, most of the

expected improvement is due to the main effect; otherwise, most of the improvement

would be from the interactions.

Although there is an improvement in response realized due to interactions after

the first step in OFAT, note that none of interaction factors has been exploited (see

Def. 2.4). All of the factors except for xi) will be toggled in subsequent steps of

adaptive OFAT. Depending on what is observed, their final state may be different from

the state after the first experiment. In that case, the contributions due to interaction

factors 1jj may potentially be reversed as the process continues. By contrast, the

first main effect pl has been exploited and its contribution to the expected value

is permanent. No subsequent steps in the adaptive OFAT process will affect the

contribution of 1l to expected response in Eq.(2.5). Thus, the probability of P3 being

exploited can be fully determined by analyzing the behavior of the first step. This

probability is given in the following theorem.

Theorem 2 If adaptive OFAT scheme is applied to a response model (2.5), then the

probability of the main effect 31 being exploited would be

P (BXl2)> 0 1 + 1 arcsin UME
2 +r(q --2M) T +a

Theorem 2 shows that the probability of exploiting the main effect approaches

100% as the main effect strength is much larger than interactions and experimental

error, i.e., oaME >> max {UINT, Ua}. It also shows that the probability will drop to 50%

as the experimental error a, increases.



2.4.2 The Second Step in Adaptive OFAT

Theorem 3 If adaptive OFAT scheme is applied to a response model (2.5), then the

expected improvement after the second step (the third experiment) is

E [y(x(3))] = 2E [3x )] + 2(q - 1)E x [ : o + E(3) 12 (3) 23)

where E [01X 3) and E plj(2) x o) are identical to those in Thoerem 1, and

X(3)
X ( 3 ) ]  -- 2INTE [0 12 13) 2 2 2NT

.2VE 2NT+ a2

Theorem 3 reveals that, after the second step in the OFAT process, the response

has an additional increase due to main effects and also added contributions due to

interactions. The improvements at this stage arise due to three different contributors:

1) two main effects that might be exploited, 2) a two-factor interaction 012 which may

have been exploited, and 3) a set of 2(q - 2) interactions which involve exactly one

of the two main effects that have been toggled so far.

After the second variable is set by adaptive OFAT, the interaction 012 will not

be affected in any way by subsequent experiments. The probability of exploiting the

interaction factor O12 can therefore be determined by analyzing the process at the

second step of adaptive OFAT. The following theorem arises from such an analysis.

Theorem 4 If adaptive OFAT scheme is applied to a response model (2.5), then the

probability of the interaction effect /12 being exploited would be

P 123)X (3) >3)0 + I arctan INT
E ± (q - 2)o

Note that the probability given in Theorem 4 is greater than 50% for all systems

with nonzero interactions. This presents a paradox. The adaptive OFAT process

confounds the two-factor interaction /312 with the main effects 01 and /2. Nevertheless,

the probability of exploiting the interaction is better than that provided by random



chance and the experimenter gains some improvement from the interaction on average.

Thus, the experimenter benefits from an effect which he cannot resolve.

2.4.3 Subsequent Steps in Adaptive OFAT

As the adaptive process proceeds through subsequent steps, the mathematical results

become increasingly complex. Exact closed form solutions to the probabilities and

expected values become cumbersome. However, simple bounds and approximations

can still be derived and provide useful insights.

Theorem 5 If adaptive OFAT scheme is applied to a response model (2.5), then the

probability of exploiting interaction /ij depends only on j for all 1 < i < j < q.

Theorem 5 argues that any interaction factor /ij would not be exploited until the

input P() is determined, which matches our earlier observations. Therefore, whether

an interaction fij will contribute to the response improvement will not be clear until

the j + 1 experiment. More importantly, the result of Theorem 5 would lead to the

following observation.

Theorem 6 If adaptive OFAT scheme is applied to a response model (2.5), then the

probability of exploiting a two-factor interaction /ij is greater than or equal to the

probability of exploiting the two-factor interaction 012, i.e.,

p O , j (q) 3()) )(q) (q) •
P • 3i~xi  •) Ž> P (•1/a2X1 X2 )

Note that X q) denote the final decision of ith input of OFAT scheme. Theorem 6

shows that /12 is the least likely exploited interaction factor. One conjecture is that

the exploiting probability would increases as the OFAT scheme proceeds alone.

Finally, we derive a lower bound for the output of the adaptive OFAT scheme.

Since it is extremely difficult to obtain a theoretical closed form for the final expected

response of the adaptive OFAT scheme, Frey and Wang (2006) proposed a closed

form from a practical observation. Fortunately, Theorem 6 renders us a nice way to

derive the following performance lower bound, which would be clear in the proof.



Theorem 7 Given the number of control variable q > 3, the expected value of the

outcome of the OFAT scheme, denoted by y (xoFAT), obeys the following

qE[y (xoFAr)] q x 2 x arctan rME X UME

q- ( a2 )

×+ (2) x 2 x arctan xlNT X UiNT

ME +(q INT +

(2.8)

Note that the equality would hold when alNT = o = 0. Theorem 7 provides a lower

bound for the final performance on the expected response. The lower bound indicates

that the final performance of adaptive OFAT scheme is sustained by strength of both

main factor, i.e. UME, and the interaction factor, i.e. OINT. When the strength of

main factors is much larger than that of the interaction factors, i.e. UME > UINT,

the first term of Eq.(2.8) would be large although the otehr term would be small.

On the other hand, when IiNT > UME, the lower bound would be sustained by the

second term in Eq.(2.8). This lower bound will be used to compare the performance

of adaptive OFAT to that of conventional fractional factorial experimental scheme.

2.5 Comparison with Fractional Factorial Experi-

ments

The previous section enables estimates of the expected response provided by adaptive

OFAT and reveals some of the mechanisms providing the improvements. To under-

stand whether those improvements are large or small, it is worthwhile to have a basis

for comparison. Saturated resolution III fractional factorial experiments are useful

in this regard. Resolution III designs are used frequently for screening and also

sometimes used in improvement processes, especially in robust parameter design. A

saturated resolution III design, if it exists for a given q, can be carried out using the

same number of experiments as adaptive OFAT; that is, q + 1 experiments. Thus,



with resolution III designs and adaptive OFAT, we are comparing alternatives with

similar resource demands. To make a quantitative comparison, the following result is

useful.

Theorem 8 If a saturated resolution III two-level fractional factorial experiment is

applied to the response model Eqs. (2.5) and the factor levels are chosen among their

discrete levels to achieve the maximum response based on the main effect estimates,

then the expected performance is

E [y(xlil)] = E  
q 1

E 2(q+) INT " + 2

where x11, denotes the optimal input chosen by the saturated resolution III fractional

factorial experiment scheme.

Theorem 8 shows that the final performance of the saturated resolution III exper-

iment is proportional to the strength of main effect, i.e. UME, and is contaminated

by the strength of interaction factors and the errors, i.e. o2NT and o,. Moreover,

the influence of the interaction factors on the performance is far more than that of

error. In other words, the expected improvement provided by the resolution III de-

sign is more sensitive to interactions than to errors. This observation makes perfect

sense because resolution III experiments are devised so as to provide information

about main effects with the greatest possible robustness to experimental error. These

designs are not well suited for providing information about two-factor interactions.

Resolution III designs, unlike resolution IV designs, are negatively affected by two-

factor interactions. Although Resolution III designs cannot exploit interactions, they

are optimally robust to experimental error and therefore should provide better results

than adaptive OFAT under some conditions.

Figure 2.3 illustrate the performance between OFAT and saturated resolution III

factorial fractional experiment by the lower bound derived in Theorem 7 and the

result obtain in Theorem 8 with three error strength, o~ = 0, 0a = 1, and or = 10.

From Fig. 2.3, one could conclude that the OFAT scheme would outperform the



saturated fractional factorial experimental scheme when the strength of the interac-

tion factors is large, at least no less than 45% of the main factor strength aME when

the error strength is worst. As the error strength au increases, the performances

for both schemes become weak. However, the saturated resolution III experimental

scheme is more inferiorly influenced by the adaptive OFAT scheme because the OFAT

would still make observable improvements while the other scheme make less and less

improvements when the error increases.

0.1 0.2 0.3 0.4 0.5 0.6
O NT/1ME

Figure 2-3: Comparison of E[y(xOFAT)]

0.7 0.8 0.9 1

and E[y(xIII) ]

For completeness, we discuss the exploiting probability of the saturated fractional

factorial experimental scheme.

Theorem 9 If a saturated two-level fractional factorial experiment scheme is applied

to Eqs. (2.5), the main effect pi will be exploited with probability

1 1 OME
- + - arctan
2 7r (q-1)(q-2) 2

S2(q+1) cINT± q+l



Finally, in a saturated two-level fractional factorial experiment, the interaction

effect /3 j will be exploited with probability 1. It is because whether the choice of the

resolution III experiment for the ith input element xi"') as well as the jth element

xj ) equal to +1 or -1 are independent of 3j for all possible i and j, the probability

of exploiting the interaction effect is .

2.6 The Posterior Analysis

In this section, we will conduct the posterior analysis for the adaptive OFAT scheme

and the fractional factorial scheme with an emphasis on the case where the error

strength oa is unknown.

2.6.1 Posterior Analysis for OFAT Scheme with Unknown a2

When ao2 is unknown, we assume that a 2 has the prior

f(a 2 ) = (2 ) 2 2 pf () a exp -

with parameter a, d > 0. Then, recall the Eqs.(2.7) and apply results in Appendix A,

the posterior distribution of the response at y(XoFAT) would be

XOFAT (= ) ign (y(x()) - y(x(1))) , sign (y(x(1)) - y(2))) , .

.. , ) sign (y(x(q,1)) - y(x(q))) )T

q+d

f (y(x*)I yOFAT) (aFAT) ( +1)

(r (x*TV FATX*)) 2(g

aA ((x*) - x*TmFAT)T (y(x*) - X*TmA
01 X*TV* X** OFAT/



where

q

XOFAT = (i)i)
i=O

YOFAT (Y (X(o)), y((1)), ... ,y(X(q))

mOFAT = Diag (a2E Iq, Ua- Iq(q-1)) + (Xo•T(A)XOFAT)) (XOFAT) TyOFAT

VFAT = (Diag I,, -2 IN-1) + (XOFAT)T(XOFAT)

aOFAT a ±YOFAT (q+1-XOFAT Diag aM2E IO'-T T~(q +(XOFAT)T(XOFAT) (XOFAT) T YOFAT

and Diag(A, B) denotes a matrix consists of matrix (A, B) on its diagonal and keeps

all other elements zero. We have the expectation and variance of the response at xOFAT

E [y(XOFAT) = XOFAT) MOFAT

Var(y(XFAT)) aoFAT(1 + (XOFAT)VOFATxOFAT
q /q+d-2

2.6.2 Posterior Analysis for Saturated Fractional Factorial

Experimental Scheme with Unknown o2f

In a general case with q input factors, each main effect would have (1 2) aliased

interactions. Hence, the model Eqs.(2.5) is now modified to

y = X3 + E

where y denotes the observations through the entire saturated fractional factorial

experiments, X denotes the design matrix in this modified model, and 3 is an (q x 1)

vector with prior information

0 ( MN (, E q NT) 9 = 2 2 .NT)
(2.9)



Furthermore, from (Wu and Hamada, 2000), we know that the design matrix X would

have the following property

xiTXi = (q + 1)Iq (2.10)

From Eq.(2.9), and Eq.(2.10) and results in Appendix A, we obtain the following

posterior distribution of 3

Y, 2

mFF

VFF

ANf (mFF, VFF), where

( (q + 1)(2U E + (q - 1)O2NT)

(q + 1)(2a E (q - )2NT) + 2J

2 L (q + 1)(2aU2E ( 2 - )aNT)

(q + 1)(2a2 E + (q - I)2 T)+ 2aM N
We now turn to the case in which ao is unknown with the prior distribution

d
)

2or2

where a, d > 0. Then the prior distribution of joint (/3, a 2) becomes

d
(2)2( 2 J1 ,2 2

(21 (o E+ 2 NT 2

S d+q+2
(2) 2 exp 

( a ME +

r (2)

g~laq2) 
1 jT1 +2NT-a1T

2 22E

and therefore

(a) A r )
2

( (ME + NT))2 r( )(a+ UME

_d+q

q-1_ ,
2

Finally, from Appendix A, the posterior distribution of (/U, a') is

) 2 d2+2
f(, 01Of 2 ( a 2)( 2

- mFF) T (VFF)- ( - mFF)exp ( 2 2af

f( 0, a) =
a)

+ aFF

)

II

B



mFF

VFF

2 q-1 2
S "ME 2 INT XT

1+ (q + 1) (uME q T-2

•ME + 2OINT

1 + (q + 1) (-2 q I2NT0-
-I

(2.11)

aFF1 + l+(q + 1) (U2 - NT Y

By Eq.(2.11), we choose the optimum input level as

x* = sign fyyj

j=l

Vi= 1,...,q

Then, the posterior distribution of the response at y(x*) would be

,*I . * * * * *T
X (X,...,Xq, 1 2 ,..., q1 Xq

(a f +d ( )
(a FF) 2r ~~ (y(x*) - x*Tm,)T (y(x*),,,•; (FIx*

S2,F(q+d)
2

- Diag 2 I' -T Iq(q-1)
S(Diag ME q, -INT' )

= Diag I4, a INT

aFF +-

+ XTX) XTy

+ XTX)

aF* a+y T(Iqi - X Diag (U2 q, a2 I ) +X(Dag(ME 1 INT )j) XTx)- Xg)

Notice that f(y(x*) y) is a standard t-student distribution. Therefore, we have the

expectation and variance of the response at x*

E[y(x*)] = (x*) TmF

Var (y(x*))
a, 1 + (x*)TVx*)

q+d-2

where

f(y(x*)I y)
(r (x*.TV*x*)

where

- x*Tm*)

1 + X*TV* X*

mFF

V*FF

__ _J
I



2.6.3 A Brief Discussion

It is very difficult to determine whether the matrix (VoFAT - V ) is positive definite

or not. Observe

V ,FAT-V•F Diag (O2E Iq, a2INT I(w) {FxT (,XFFDiag(au-EIQ~ aj~ I2T(Q1)XTF)XFFX a I2 2  T (2(V i Oi2NT i- X Ip+XFFDiag a- E ) ) XNT X21

-X(FAT I, + XOATDiag a-2E 9 N2 le X AT XOFAT Diag oME 4OrI2NT lq-1)

implying that it is equivalent to determine whether the matrix

XF (Ip+XFFDiag (CE 1) X ) X X OFAT I+XOFATDiag (or ' IT X FAT XOFAT

is positive definite. However, since we do not have sufficient information for XOFAT,

the analysis is difficult to proceed. Although the case study indicates that the matrix

is positive definite most of the time, it still remains to find the possibility that the

matrix is positive definite.

Another comparison is

E [y (xAT)] - [y (xFF)] = (FAT) mFAT - (F)T m

which is also hard to compare directly.

2.7 Proofs

We need to following lemma to prove Theorem 1.

Lemma 1 Let X and Y denote two independent Gaussian random variables with

distribution f (0, oa) and Kf (0, oa) respectively. Then, we have

Ehere the sign [Xfunction sgn(Z sn(X= 1 Y) 2 sn(Z) = -1 otheise.Tr i + or2

where the sign function sgn(Z) = 1 if Z > 0 and sgn(Z) = -1 otherwise.



Proof: We integrate by two parts: X > -Y and X < -Y as follows

E [X -sgn(X + Y)]

where ¢(x,a2) = exp

and variance a 2 at value x.

f x((x, o' )00(y, 4 )dx(

2 02 -

OO

a x t + aU.

-2o2 I denotes a normal density function with mean 0

Proof: (Theorem 1) Without loss of generality, we choose x0 = (+1, +1,..., +1)

in this proof. By the OFAT scheme indicated in Eq.(2.7), we have

x(2) = Sgn + Ij + -El
j-=2

which leads to the expected response

q 
q-1 q

j=2 i=2 j=i+l

From Eq.(2.6), the last term reduces to 0. Moreover, the terms E [Olsj2)] are iden-

tical. Therefore, we have

+ (q- 1)E[/1a (2) (o)]t0.jx1 j I

Now applying Lemma 1 by taking X = ,1 and Y = E=q2 fU + •-, in which X and

Y are independent by assumption, we obtain

aME

rE + (q - 1)o2NT +ME+ IT + 2c

E1 [
E [y(X2)] = [OEi 2)] + E -ljX 2

j=2

l" - Ji -2

E [y(x2)] = E [zl
2 )]

(1) /12
'" '~ ''~



Repeating to apply Lemma 1 by having X = ljj and Y = 0r + Cs j,k=2 lk -+ -

we have

EJ [ o)(2 (0)1_
I L[t ' J -I

t2
O1NT

V/ + (q -1)NT

We need the following lemma to prove the Theorem 2.

Lemma 2 Let X and Y denote two independent Gaussian random variables with

distribution A (0, a2) and KA (0, a2 ) respectively. Then, we have

1
P(X >0, X+Y 0)=-+

4
1 ocx-arcsin k.27r 2+o

Proof: By definition,

P(X > O, X +Y > 0) 0= j( (x, o- )(y, o4)d ydx
S --x

+ I arcsin a 2

4 27r 02 +o,2

Proof: (Theorem 2) Follow the notations in the proof of Theorem 1, we have

= P 1 >0, x(2)= 1)

= P 71 Ž 01 +E,
j=2

+ 0, '3i +

= 2P •1 _0, /31 +
j='

-P( 1 0, z 
2 ) ---

2]•lj -t- --- T -
/l

-- plj 6+ 1 <o0
j=2

EO - E1lI lj+ - 2
2

P (6(2) > 0)1

\

l

'" ·



where the last equality holds because the symmetric prior assumption Eqs. (2.6). Now

we apply Lemma 2 by setting X = P1 and Y = - 1 =2 ij + 9, we have

P 2) > 0 = arcsiME+ - arcsin
2 7 2E - 1)O"2 2

+O

We will apply the following lemma to prove Theorem 3.

Lemma 3 Let X .N (0, oa), Y1, Y2  (0, a ), and Z AfN (0, U2 ) denote mu-

tually independent random variables. Then we have

E[X-sgn(X+Yi-Y 2 +(Z+Yi+ Y2)a)] 4 +

where a E {+1, -1}.

Proof: This is an extension to Lemma 1. Let Y = Yi - Y2 + (Z + Y1 + Y2) a, and

we have Y - N" (0, 4U2 + Uo) for either a = +1 or a = -1. Moreover, X and Y

are independent by assumption. Then the proof is complete by applying Lemma 1. O

Proof: (Theorem 3) By Eqs.(2.7), we have

3 q +XI + - -- 1 6-1
X(3) = sgn )32 +12X 13) + E f32j 2 0 2 2 162sg K22 + tlZL1 2

j=3

Hence,

E [y(x3) ]  E /1 + lj x + E )2 2j

j=3 j=3

[q q-1 q
12 E 12i 3) 23) + E E Zij

i=3 i=3 j=i+1

in which the last term reduces to zero by the prior assumption Eqs.(2.6). The first two

terms could be obtain by applying Lemma 1 and find both amounts to E [1 lx(3)1 +



(q - 2)E [ljjx(3)]. It remains to find the term E [012X3) 3)]. By letting a2  NT1' a reman 2 X INT

y and (q1 - 2)62Nt + , and applying Lemma 3, we obtainCT. ~ and 2 = 4

2
[12 13)X(3)][012 1 2

2
INT

J E 9 - 1) U2N T

Proof: (Theorem 4) The probability to be determined could be expanded as

P(1 3) 3) 0)
g 0/12Xl '3X2

- P (012 0, x

+ P (12 :5 0, x3) = +1, X23) --) P ( :12 •0, X = -1, 2 +1)

Consider the first term of the expression above first. Substituting in the values of the

final settings of the variables x(3) and x23) , we have

P (12 > 0, x3)= +1, (23)

= P (ý12 0, 012 +-1 -• 1j +q 6 2 0,0,

q

312 +/ + + 02j + -2
j=3

By (Tong, 1990), we know that, if X = (X 1, X 2 , X 3 )T - Hn(O, E), where E is a 3 x 3

matrix, then we have

P(min{Xi,X 2, X 3} > 0) = +•- sin4 -

S8 41r (
( 1~12
v' H

We apply this result to the first term with Ejj = O2NT, Vj = 1, 2, 3, E23 - aI2NT + 4

and E22 = E33 = E + (q- 1)INT + f, and thus obtainand zZ C33= 6 + q - )~,~ 2

1 (
+ - arctan

14
4w

OINT

(q - 2)u2NT -
I

2/

arctan ( - 2) NT +
E + (q - 2)072 ) E •2 1NT2

=+1,)± +1) +P(12 -1)

S0)

0, x (3) 2 (3)

+ sin-1 E13
V/E11 ra33

sin-1 ( 123

/E22r,33)



Applying the same procedure to the three other three terms gives expressions in a

similar form with only the signs of the terms changing. Summing up the four expres-

sions, we get the expression in Theorem 4. OE

Proof: (Theorem 5) For some j E {2, 3,...,q}, we consider interaction Pij and 3kj

for some i, k < j. Then the probability that interaction Oij is exploited could divided

into 2j-1 cases which is identical to the cases that we consider in the probability of

exploiting 3kj. Substituting /ij by Okj completes the proof. O[

Proof: (Theorem 6) By Eqs.(2.7), we have

( 2 q + 1+X( 1X 1 (2q) X q)

X(q) =- sgn 3 + 3 i3x q) + E 03j -- 2 2• 0 + 2 2 61 + 2I2 -63
i=1 j=4 2

The probability P(,13X( X3 ) could be extended to four terms as we did in the proof

of Theorem 4. The sum of the first two terms would be larger than

2xP 13 _ 0, 01 - 012 - 013 + +"lj -+ " 21> 0, 2 f 012 -- 23 + 1:33j +3 - > 0
2 2

j=2 j=4

because substituting the term 0/13 - 0 by 013 < 0 in the second term makes the

joint event less likely. Hence we have P(P13 X q)x")  P(312 q)xJ 2 ) because the sub-

stitution of 013 for 012 makes the joint event less likely. A similar process holds

for every case in which the interaction 013 is exploited. By Theorem 6, we have

P(i/3. x) > 2 P(1312x1 2 ) for all i < 3. Repeating reasoning applied to 313 for ev-

ery 31j for all 3 < j < q, we have P( 1-(ljX1 )I ) > P( 1 2 (1q) ). Again, by repeating

the application of Theorem 6, we complete the proof. O



Proof: (Theorem 7) From Eq.(2.5), we have

q q-1 q

E[y(XOFAT)] -E [o] + E• E ± , [,+jE ) + Eq])]
i=1 i=1 j=i+l

= (E [|~AI]P (1ix q) > o) + E [-ji] P (zix() •0)) + E [ijxi zj
i=1 i=1 j=i+l

q q-1 qS((2P (4q) > o) -_ ) .I/3I)+>Z ((2P(fq-1q (4) M) > o) -) E iI [3oI])
( 2P i 0 -1 •E [|oi] + 2 P E 0 (-2 ijx i x j

-E ]
i=1 i=1 j=i+1

2 
(ME

- arctan x (TME
(a2 2  +2)

i= (q - 1) T2NT + -T

q-1 q arctan 
INT X INT

i=1 j=1 (ME + (q- 2)NNT +

(2 1 ( ME
q x (2)2 x arctan (- ME X (ME

(q- 1)a2NT +

x+ x x arctan X (OINT
2 7r kv'E+ (q - 2)N 2,/

The inequality come from the conclusion of Theorem 6 and the fact that E [[il] =

V/UME and E [j3ij ] = V/-,INT for all possible i and j. OE

Proof: (Theorem 8) Given q+1 observations of responses as defined in Eqs.(2.5) are

made using a saturated resolution III fractional factorial experiment with a design

matrix X. It follows that the estimate for each main effect factor Oj would be

q+1 q+1 q

S= 3,+ EjX(i, j) + X(i, j)
i=q i=1 j=1,joi



The choice of factor levels is set according to the sign of the main effect estimates.

Therefore the expected value is

q+1

j + 1i
i=1

Ssgn + EX(i,( +1i= 1

q
E X(i, j)X

j= 1, j'i

By Lemma, 1 and the properties of the design matrix X, the result of Theorem 8

follows. O

Proof: (Theorem 9) Since the experiment is saturated, the total number runs of

the experiment is q + 1. Then, the probability that the main effect 3i will be exploited

is

P(-+0, (q+ 1).+(q+1) ?' 0+ jO) + P(fl<o, (q+1)f.+(q+1) •=E'-+l Oij + 30+lj<O)

= 2P (01

= 2P (01

q q+1 q+1

> 0, (q + 1)i + (q + 1)E E +
i=1 j=i+l j=1

q q+1

So, A + E ij
i=1 j=i+l

31 O0 fl- +

1 1
2 7

q q+1

i=1 +1
i=1 j=i+1

q+1

+ E
j=1 q +

q+1

j=1

Ej > O)

> 0)

> 0)
'ME

arctan
(q-1)(q-2) C2 22(q+1) INT q+l

The first equality comes from the symmetry assumption Eq.(2.6), and the third equal-

ity follows the Bayes' rule and the last equality follows Lemma 2 in our paper.



Chapter 3

The Optimization Scheme Through

Sequential Experiments in

Compact Design Space

In Chapter 2, we study the sequential experiments in the finite design space, propose

the adaptive OFAT scheme, and present the (pre-)posterior analysis of its outcome.

However, although easily implemented, the scheme is restricted at least in two ways

in addition to the restriction of finite design space. The first restriction is that the

selection of input level x at each iteration depends only on the observations, but not on

the posterior analysis at all, implying that the information from the whole experiment

history might not be well utilized. The second restriction is that the normal linear

model for the posterior analysis is confined to be a first-order polynomial model,

implying that the model considers a relatively small design space. In this section, we

will remove these two restrictions, and consider the problem of optimization through

sequential experiments in compact design space. We will first present the model

considered in this chapter and then propose a general algorithm. Two important

properties of the algorithm will be investigated. One is the consistency issue, which

justifies the use of the algorithm in the limiting behavior. The other issue is the

expected improvement we could expect from one experiment to the next. This issue

would help experimenter to determine when the experiments should stop. To begin



with, we will present the model considered in this chapter.

3.1 The Fundamental Model

We consider the following linear regression model

y(Xk, 3) = f(xk)T/3 + Ek, Vk= 1,2,...

where Ei - A(0, oa ) are the unobservable i.i.d. experimental errors, / = (p1,. .,/3p)T

are unknown parameters, and yi A y(xi, /) is the observed response correspond-

ing to the input levels f(xi) = (fi(xi),..., f,(xi)) in which the input level x T =

, ... ,xi )) is selected in a nonempty compact set X C R q , and the function fi(')

is assumed to be continuous for all i. Following the Bayesian embedding approach,

we assume that the unknown parameter /3 has a prior

Ial , A (mo, aUVo),

and we denote / as the true value of p. Note that, unlike what we assume in Chapter 2,

the prior of /3 given o,2 has a mean mo which is not necessarily zero. Moreover, we

also assume the matrix Vo to be positive definite to avoid triviality.

3.2 The Proposed Algorithm

Ideally, we would like to locate the optimal input level with a tradeoff between its

expected response and the corresponding variance. In summary, an algorithm to

achieve our goal will go through the following steps:

1. run the kth experiment

2. update the posterior analysis of parameter /3, the mean mk and the variance

Vk, with the information collected from the kth experiment



3. locate the optimal input level ck+1 according to current estimation of mean mk

and variance Vk

4. determine appropriate input level Xk+1 for the next run of experiment

5. ensure the consistency of the proposed algorithm

6. investigate the expected improvement of each iteration to determine whether to

conduct next run of experiment or not

To present the adaptive experiment strategy explicitly, we propose the following

algorithm

ck+1 = arg max f(c)Tmk _- k (f(c)TVkf(c)) (3.1)
cEX 2

(f(ck+l)TVkf(X)) 2

Xk+1 = argminf(k+1 )TVk+lf(Ck+l) = argmax (3.2)
xEX xEX 1 + f(x)TVkf(X)

Vk - V-l + f(Xk)f(xk)T - 1  (3.3)

mk = Vk (Vk-mk-1 + Ykf(xk))

-( Vk-lf(Xk)f(Xk) T  (mk-1 + Yk (Vk-lf(Xk)) (3.4)

1 + f(Xk)TVk-lf(Xk)

We would like to make several remarks on this algorithm to facilitate the discussion

of this proposed algorithm.

1. Eq.(3.1) considers the tradeoff between the high mean and low variance, and

the sequence of strictly positive coefficients {fak} denotes the tradeoff between

the mean, f(c)Tmk, and variance, f(c)TVkf(C), at step k

2. Eq.(3.2) minimizes the volatility corresponding to the point of interest Ck; fur-

thermore, the numerator f(c)TVkf(x) denotes the covariance between point c

and x after the kth experiment

3. Vk: denotes the posterior covariance matrix of parameter / given known 0a2

4. Eq.(3.4) represents the least square estimator, which obtains the minimum vari-

ance among all the linear estimator; in this case, since the unobserved errors

61



are all i.i.d. normally distributed random variables, the LSE and the Bayesian

estimator coincide

3.2.1 A Brief Discussion On The Problem of Optimization

Through Sequential Experiments

Lai (2001) has discussed this problem in Section 5, in which he treated this problem

as a self-tuning problem in the control field as we discussed in Chapter 1. Later, in

the comment of this paper, Wei extended the problem discussed in Lai (2001) to the

multivariate case and said that "... the mean response is maximized while controlling

the variance at a specific level. It is not clear what is the effect of the roles of the

means and variance on the associated procedure." We are motivated by this paper

and would like to investigate an approach which could locate optimum input level

with acceptable variance in finite number of experiments. Pronzato (2000) proposed

an iteration algorithm

xk+1 = arg max f(x)Tmk + akf(x)TVklf(x)} (3.5)

In the paper, although the convergence rate remains unknown, Pronzato (2000)

proved that the sequence {Xk} generated by above algorithm (3.5) would asymp-

totically achieve the optimal input level x* which maximizes the objective function

f(x)Tmm = f(x)T .

Recall that 3 indicates the real value of unknown P. Later, Pronzato and Thierry

(2003) discussed the finite case by applying the concept of dynamic programming,

although the issue of dimensionality has not been discussed. The algorithm that Pron-

zato (2000) proposed is indeed an adaptive D-optimum experimental design. The idea

of the approach is that the algorithm needs to be repeated infinitely many times to

have the event {V,1 -- 0} occurs almost surely. However, since the estimation is

consistent, the achievement of locating the optimum input levels should be straight-



forward.

We will proceed the analysis of the proposed algorithm in two categories: one with

known a•2 and the other with unknown o,2. In the former case, we will focus on the

consistency issue and the step-wise improvement. In the other case, we will derive an

explicit presentation for the stepwise improvements.

3.3 Bayesian Analysis with Known cr2

3.3.1 Consistency of the Bayesian Estimator mk

Lai and Wei (1982) have shown that the necessary and sufficient condition for the

least square estimator to be consistent is that

Amax(Vk) -+ 0, log(Amin(Vk) ) -= O(Aax(Vk)) a.s.

where An.ax(V) denotes the maximum eigenvalue of matrix V, and Amin(V) denotes the

minimum eigenvalue of matrix V. Moreover, Hu (1996) also argues that the necessary

and sufficient condition for the Bayesian estimator to be strongly consistent almost

surely is that

Amax(VNk) 0 (3.6)

We are going to demonstrate the consistency property of the Bayesian estimator

presented in Eq.(3.4) by showing that the sequences {Ck} and {Xk} generated by

proposed algorithm satisfy the condition (3.6) in the following theorem.

Theorem 10 (Consistency) If f(Xk) / 0 for all possible k, then

lim Vkf(Xk+1) = 0 and A•,(Vk) -* 0 a.s.
k--+*o

Proof: Pick some c E X and define the value function

1 Cf C = CT(f(c)TVkf(Xk+l))2 Vk = 0, 1,2,...
Jk+ () f()TVk+lf() = f()TVf()- 1 + f (Xk+TVkf (Xk+l)



Then, we have

f(c)TVk-lf(Xk)
Jk (C) - Jk-1 (C) = - X< 01 + f(xk)TVklf(Xk) -

Hence, after each iteration, the estimation volatility of each point in the design space

X will decrease. By iteration, we have

k (f(C)TV,_lf(X,))2

Jk (c) = Jo (c) - (f c)1 vf(x))l
=1 1 + f(x) TV,_f (x,)

Notice that this is valid for all c E X and k. Thus, we have

S(f(c)TV,_f(X,)) 2

oo = 1 + f(x,)TVs-lf(x,)
s= I

(f(c)TV_ 1f(X,)) 2

1 + A.ax.(Vji-)B 2 -
=(l (f(c)TV,_1f(xs)) 2

1 + max(Vo)B 2

in which, by the compactness/discreteness of X and the continuity of all fi's, there

exists a number B > 0 such that f(x)Tf(x) < B for all x E X. This implies that

lim f(c)TVk-1f(Xk) = 0,
k--00

VcEX (3.7)

Therefore, if f(xk) 6 0 for all possible k, we could have

lim Vk-1f(Xk) = 0.
k-+oo

Next, we show that Amax(Vk) -+ 0. Since Eq.(3.7) is valid for all c E X, we replace ck

by Xk, and have

lim f(Xk)TVklf(xk) = 0
k--oo

Since we do not restrict the generation of the sequence {Xk} but only assume that

f(xk) # 0, V k, there must exist a sufficient small coefficient 6 > 0 such that

Vx E X = X\{x E X If(x) = 0}f(x)Tf(x) > 6,



By Eq.(3.7), we also have f(x)TVkf(X) --* 0 for all x E X. Note that, it implies that

max f(x)TVkf(X) > 6A ..ax(Vk)
xEA2

Since the left hand side approaches to zero asymptotically, we have

Amax(Vk) -- 0

It remains to show that f(Xk) f 0 for all possible k. Consider the sequence Xk

generated by Eq.(3.2) and suppose that, for some k, we have f(xk) = 0. In the

event of f(ck) = 0 or Vk-1 = 0, we could choose f(xk) ý 0 without changing the

corresponding variance. If the events f(ck) - 0 or Vk-1 -4 0 occur, then we have a

contradiction. Consequently, we conclude that the algorithm we proposed in Eqs.(3.1)

to (3.4) is consistent almost surely.

3.3.2 Discussion for Selection of Sequence {ak}

We only require that the sequence {ak} be positive in our algorithm. However, in

the literature of stochastic control, the selection of sequence {ak} plays an important

role in ensuring the consistency of the estimator. Usually, the selection of {ak} is

with a strict constraint. For example, Pronzato and Thierry (2003) requires

(i) 2 log ak decreases monotonically, and

(ii) -k increases monotonically to oo for some 6 > 0.
(log k) +d

to ensure the consistency of the estimator in the proposed algorithm. The reason why

the sequence {ak} is crucial in ensuring the consistency of the estimator is because

the selection of the sampling points and the selection of optimal inputs are bundled

together in the form of Eq. (3.5). Therefore, in our discussion concerning the consist

property of estimator mk, we do not see the sequence {ak} crucial in any perspective.

However, the selection of {ak} remains certain practical meanings.



In the kth stage, we consider the following optimization problem

minimizec E -f (c)T mk (3.8)

subject to ' (f(c)TVkf(c)) < vksubject to f V r V

where the exogenous parameter vk. satisfies the practical condition 0 < vk _< supNEx f(c)TVkf(c).

Then the Lagrangian function for the optimization becomes

L (vk) = _-f(c)Tmk + a ( f(c)TVkf(C) - Uk)

where a denotes the Lagrangian multiplier. Following the Lagrangian method, we

need to minimize the Lagrangian function £(vk), which is equivalent to

max f(c)Tmk - - ( Vkf C)
cEx 2

which is exactly the same with Eq.(3.1) except that ak is replaced by the Lagrangian

multiplier a. Hence, we realize that Eq.(3.1) is indeed a mean-variance optimization

problem with a trade-off (Lagrangian) parameter ak.

By the Lagrangian theorem, we know that the Lagrangian multiplier a is a func-

tion of the exogenous parameter vk. From the above analysis, we ignore the constraint

c E X temporarily and know that optimal solution c* would satisfy

f(c*) = -Vk-lmk

Therefore, considering the constraint in the optimization problem (3.8), we have

a(vk) = m7V=k mk

Recall that vk is the exogenous parameter of the optimization problem (3.8), and that

Vk represents the experimenter's allowance of the estimation variance at the points

of interests. Hence, the selection of vk would be cope with the practical need. By



setting ak = a(Vk), we know how to choose ak in Eq.(3.1).

3.3.3 Expected Improvement in Each Iteration

To begin with, we define the following conditional expected value operator

Ek['] = E[- I Ck, Xk, mk, Vk].

Then by Eq.(3.1), we redefine the value function

Jk+1(Ck+1) f(Ck+l)Tmk - 2 f(Ck+l)TVkf(Ck+l)}

which indicates the value we will obtain after the kth experiment. The following

lemma will help us to evaluate the improvement from one experiment to the next.

Lemma 4 For all possible k > 1, we have

Jk+l(Ck+l)-Jk(Ck) >

Proof: Recall that

f(ck)TVk-lf(Xk) )T
1 + f(Xk)TVk-lf(Xk) (Mk)

1 + f(Cxk)TVklf(Xk)
2 1 + f(Xk )TVk-1f Xk)

= f(Ck+l)Tmk - {f(Ck+l)TVkf(ck+)}

{ Vk-lf(Xk)f(X k)T
Sf(ck+l)T mk-1 + ykVk-lf (Xk) -- Vk f(Xk)TV(Xk)T m

t  + ykV;
1 + f (Xk )TVk-IfXk)Z

k )T - Vk-lf(Xk)f(Xk) TVk-1 )f(ck+l)
2 1 + f( Xk)TVk-lf(Xk) )

f(ck Tmk- - k-lfT(Ck)TVk-f(Ck) + kf(Ck)TVk-lf(Xk)

f(ck)TVk- f(Xk)f(Xk T f(k (f(ck)TVk -

1 + f(Xk)TVk-lf (Xk) k / 2 1 + f(xk)TV

Hence, we obtain

Jk+l(Ck+l)-Jk(Ck) Ž 4k (f(ck)TVk-lf(Xk)) 2

2 1 + f(Xk)TVk-1f(Xk)
f(ck)TVk-lf(Xk) (ykf(xk)T(mk))

1 + f(xk)TVk-lf(Xk)

Jk+1(Ck+l)

-lf(xk)) }

k-1f(Xk)
(k-1f(xk)



F-

Theorem 11 (Stepwise Improvement) If the initial prior of /3 is unbiased, i.e.,

Eo[mo] = 3, we obtain

ak f(ck)TVk-lf(Xk)

Ek [Jk+l(Ck+1) - Jk(Ck)] > -1 + -f(k)TVklf(Xk) > 0
S2 1 + f (Xk )TVk-If (X k)

Proof: By the property of least square estimator, if mo is unbiased, then we have

Ek [mkl = /

Then, by Lemma 4, we have

-Ek [Jk+l(Ck+1) - Jk(Ck)

- (mk) + Ck)
ak (f(ck)TVk-lf(Xk))

2

2 1 + f(Xk)TVklf(Xk)

_k f (Ck )T V k- l f (X k ) )

2 1 + f(Xk)TVk-lf(xk)

which is guaranteed to be positive because f(Xk)TVk-lf(Xk) > 0. O

3.3.4 An Illustrative Example

Ford and Silvey (1980) considered a design problem for locating the optimal input

level of a linear model yk 81X~k) 822 + ECk with design space X = [-1, +1]2. We

first implement our algorithm in Eq.(3.1)-(3.4). We assume the prior distribution of

0 is

01
02

0.5

0.2
1 0.2

0.2 1

and the real 0 = (0.21, - 0 .3)T. For simplicity, we also define the estimator error as

ek = ý(6Ok)T(9Oký).

/

> f(ck)TVk-lf(Xk) (f(Xk)TEk[/
-1 + f(Xk)TVk-lf(Xk)

rj jV



We first run our algorithm for the case 02 = 1. Notice that volatility of the noises

is relatively large. We present the simulation results in Fig. 3-1 and Fig. 3-2. In

Fig. 3-1, one could observe that the estimator error approaches to zero fast after 200

iterations and the selected input level also approaches to the optimal level. Figure 3-

2 shows the output value of the selected input level. One could observe that the

output value, i.e., f(Ck)TO, closely attain the optimal performance fast within 100

iterations. Next consider the case when oa = 0.5. Notice that the volatility here is

more moderate. One could observe the associated result presented in Figure 3-3 and

find that the estimation error diminishes to zero very fast and also the input level

hits the optimal level very quickly.

One would also notice that the the sampling sequence {Xk} is either at +1 or -1.

This is similar with the optimal experimental design constructed in (Ford and Silvey,

1980).

We next consider the algorithm (3.5) proposed by Pronzato (2000). The results are

shown in Fig. 3-4 to Fig. 3-6, in which we assume that a = 1. The simulation shows

that the performance of the algorithm is not stable. Around half of the repeated

trials have a bad performance, as the one shown in Figure 3-4. It seems that the

estimator would loose strong consistency property. On the other hand, sometimes

the algorithm performs very well. As indicated in Figure 3-5 and 3-6, the estimation

error converges to zero very fast and the output performance would also converge to

the optimal level fast, while the final result is not as good as our proposed algorithm.

3.4 Bayesian Analysis with Unknown a2

In this section, we assume that a02 is uncertain and has prior

d

f ( (2d) (a2) 2 exp - where a, d > 0.

69



and all other conditions are identical to the case when a2 is known. Then, from

Appendix A, we have

d+1

f(, (7 y=.. .,yk) = (2r)Vk1( exp M k (Vk)-I Mkh )

where the posterior analysis results are

mk+1 = (V I1 + f (Xk)f (Xk)T) - (Vlmk + f(xk)Tyk)

Vk+l = (Vkl + f(Xk)f(Xk)T
- 1

ak+l = ak + y + V mk m+T(Vk+)-(k+)

After the kth experiment , we want to find the optimal input level ck+l by solving

Ok a k(1 + f(c)TVf(c)T )
Ck+1 = argmax f (c)Tmk--

ceX 2 d - 1

argmax f(c)Tmk - kak (f()TVkf(c)) (3.9)
cEX 2(d - 1)

Comparing Eq.(3.1) and Eq.(3.9), one could easily find that they are in the same

structure but the tradeoff coefficient ak is replaced by kak. Then, the series of

{ ak} in the case when a2 is unknown must decrease faster than the case in which a2

is known. However, it is convenient to maintain the assumption that the sequence
{k ak } is nonincreasing, for example, by setting dk = 1
d-1 • log(k)ak"



Next, we determine the next sampling input xk+l by considering

arg min
xEX

= arg min
xEX

ak+1 ( + f(Ck+l) V + f(xk)fXk T )-f(k+l))

(akk mkVk mk + yc - mT(V 1 + f(x)f(x)T)mk)

X (1 + f(Ck+l)T(v1 (V + f(x)f(x)T) f (ck+l))

argmin (ak + y - (mf(x))2)
xEX

TkVkf`(Ckl (f(Ck+l)TVkf(X))21 f(c)TVf(l) 
-1 + f(x)TVkf(X)

(3.10)

Observing Eq.(3.10), we know that the sequence of xk will not incur the event

{f(Xk) = 0}.

Now, we apply the value function in the previous section and discuss the con-

sistency issue and expected improvement for each iteration. Observing the value

function in this unknown o~ case

Jk+1(Ck+1) = f(Ck+l)Tmk - 2( 1) {f(Ck+l)TVkf(Ck+l)}

we know that the rest of the derivation are identical to that in the previous section,

except that k := k in this section. Hence, we could attain the same conclusion

as we made in the case when oa is known.

Xk+1
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Chapter 4

A Case Study for Adaptive OFAT

Scheme and Sequential Response

Optimization Scheme

The purpose of this chapter is to convey two case studies for the following two ap-

proaches: the adaptive OFAT scheme described by Eqs.(2.7) in Chapter 2, and the

Sequential Response Optimization scheme described by Eqs.(3.1) to (3.4) in Chap-

ter 3. I will begin with introducing the background of each case studied in this

chapter, and then present and discuss the performances of the two proposed schemes.

4.1 Electric Powered Aircraft Flight Duration

4.1.1 Background for the case study

This case study concerns improvement in the flight duration of electric powered air-

crafts. To build an electric powered aircraft, one needs to determine the seven factors

listed in Table 4.1. One could read from the table that each of the seven factors

has two possible selections, which amounts to a total of 128 possible combinations.

We encode each factor as letters and the corresponding selections as -1 and +1. For

example, the selection of 450 in2 for wing area is coded as D = -1, whereas the



selection of 600 in2 is encoded as D = +1.

Level
Coded Factor Description - +

A Propeller Diameter 7 in 8 in
B Propeller Pitch 4 in 5 in
C Gear Ratio 1:1 1:1.85
D Wing Area 450 in2  600 in 2

E Size of Battery 7 8
F Motor Type SP400 SP480
G Number of Motor 1 2

Table 4.1: The factors and levels in the electric powered aircraft experiment

In this case study, the performance measure of interest is the maximum flight

duration defined here as the battery life at the lowest throttle setting capable of level

flight or at slight a positive rate of climb. A computer aided analysis package, Electri-

calc Version 1.OE, has been developed for simulating the performance of the aircrafts

and the prediction is quite accurate when used properly. A full factorial 2' exper-

iment was conducted using Electricalc based on all the combinations of the factors

and levels presented in Table 4.1 by manually feeding the software with associated

aircraft weights and wing loading with the following equations

Aircraft Weight = 5 oz + 0.01 oz x Wing Area + 0.5 oz x Size of Battery

2.3oz if SP400 0.Ooz if 1: 1.00
+Number of Motors x +

3.5oz if SP480 0.5oz if 1: 1.85

Aircraft Weight
Wing Loading =

Wing Area

The complete results of the full factorial experiments are shown in Table 4.3, which

is attached to the end of this chapter for completeness. We regard the full factorial

responses as the true data for this case study.

Based on the data from the full factorial 27 experiment, the main effects and in-

teractions were computed. The twelve largest effects are listed in Table 4.2. Table 4.2

suggests that this system is dominated by main effects (especially factor C, the gear



ratio), but also has a number of interactions of substantial practical significance. For

example, the Dx G interaction represents the influence of wing area on the benefit

of adding an additional motor to the aircraft. This interaction accounts for about

two minutes of flight time, which is practically significant. It appears that this is a

design problem in which interactions influence the outcomes in an important way.

This observation also implies that the flight duration is a complicated combination

of the seven factors and will be difficult to derive an analytical expression for the

relationship between the flight duration and the seven factors. Therefore, a careful

design of experiment is needed to select the combination of the factors to achieve

larger flight duration.

Term C G E F DG AC CFG EG BC DEG CDEF B BG AF
Coefficient 9.71 5.10 3.58 -3.24 1.91 1.43 -1.13 0.9 0.83 0.83 0.79 -0.79 0.38 0.35

Table 4.2: The largest 12 effects in magnitude

4.1.2 Adaptive OFAT Scheme

Imagine a scenario in which each design evaluation involves building and evaluating

an electric airplane. Moreover, since the experiment duration is very limited, the

experimenter could only select the two choices for each factor, as shown in Table 4.1.

Under these conditions, a design method that requires only eight design variants

seems feasible and any method that requires much more prototyping might be ruled

out depending on the budget and schedule. Under such circumstance, we consider

to conduct the proposed adaptive OFAT scheme, which satisfies the resource and

schedule constraints imposed by the environment.

The data from the full factorial experiment were used to simulate adaptive OFAT.

For each trial, a starting point design and an order in which to toggle the factors were

selected at random. Then the adaptive OFAT process was simulated by looking up

the response in the tabulated data. Experimental error was simulated by adding

a normally distributed pseudo-random number to the tabulated value to create a

simulated observation. After the adaptive OFAT process selected the seven factor



levels, the response at that set of levels without simulated error was stored as the

outcome of the trial. This was repeated 10,000 times for each of 8 different amounts

of simulated experimental error.

The results of the simulations are presented in Figure 4-1. The maximum flight

time within this design space of 128 possible discrete factor settings is 50.5 minutes

and the mean is 36.3 minutes, which are both indicated by heavy lines. The circles

represent the average flight time achieved by adaptive OFAT over different starting

point designs and orderings of the factors. The bars indicate the range exhibited from

one empirical standard deviation. When experimental error was low, adaptive OFAT

provided an average flight time of 48.02 minutes. This observation represents 83% of

the potential improvement (from starting design to final design) within this discrete

space of factor settings. This is consistent with the prediction made in Chapter 2 for

low experimental error and for systems with - N• - .

One way to understand why the improvement made by adaptive OFAT is high is

to record the probability that effects are exploited when the strength of experimental

error o2 is low. The main effects were exploited with probability 82%. The two-factor

interactions were exploited with probability 62%. The largest two-factor interaction

D x G was exploited with probability 72%. These values are all consistent with the

prediction we derived in Chapter 2 with low experimental error and 13. ý .

When experimental error becomes high, the performance of adaptive OFAT de-

clined. With experimental error having a standard deviation of 3.0 minutes, which

is a very large error for such an engineering experiment, adaptive OFAT provided an

average flight time of 45.4 minutes or 64.5% of the potential improvement. This is

consistent with our prediction for high experimental error and moderate interactions.

Comparison with Saturated Fractional Factorial Experimental Design

Under the same strict resource and schedule limitations, another popular strategy is

the saturated fractional factorial experiment design strategy. To provide a basis of

comparison, the data from the full factorial experiment were used to simulate factorial

experimentation. Since adaptive OFAT required 8 experiments, a 2 7-4 experimental
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design was used to maintain an equivalence of resource requirements. For each trial,

one of 35 possible fractions was selected at random. Then the experiment was simu-

lated by looking up the responses in the tabulated data and adding random variables

to simulate experimental error as before. After the data collection was complete,

the main effect estimates were used to select factor levels. The response at that set

of levels without simulated error was stored as the outcome of the trial. This was

repeated 10,000 times for each of 8 different amounts of simulated experimental error.

The results of the simulations are presented in Figure 4-2. The circles connected

by the solid lines represent the average flight time achieved by the fractional factorial

experimentation. The bars indicate the range exhibited from one standard deviation.

When experimental error was low, the process provided an average flight time of 46.3

minutes. That represents 74% of the potential improvement. This is substantially less

than the 83% improvement provided by adaptive OFAT under the same conditions.

This is consistent with our prediction in Chapter 2 for low experimental error and for

systems with 3.-5. It is expected that the volatility of outcomes for the factorial

design would be much smaller than the adaptive OFAT; however, the range of the

performance includes mostly the worse outcomes on the low end than that of adaptive

OFAT and the high end is still much smaller than the counterpart of adaptive OFAT.

When experimental error was introduced, the performance of fractional factorial

experimentation was relatively consistent. With error having a standard deviation of

3 minutes, the process still provided an average flight time of 46.2 minutes or 69% of

the potential improvement. This was superior to the performance of adaptive OFAT

under very noisy experimental environments.

It is worth considering how much experimental error is present when factorial

design provides more improvement than adaptive OFAT. In this case study the curves

for average flight time in Figure 4-1 and Figure 4-2 cross at an experimental error of

around 2.5 minutes. The theorems derived in Chapter 2 suggest that the break even

point of the degree of error is about the same size as that of a typical main effect

coefficient. In this case study, the median main effect coefficient is about 3.5 minutes

and the crossing point is about 2.5 minutes. The crossing points vary widely from



case to case, and so this seems close enough to be consistent with our result.

4.1.3 Sequential Response Optimization Scheme

Now imagine a scenario in which the experimental resources are abundant and more

selections are available for the factors in Table 4.1. One key feature of this scenario is

that the experiments will be conducted sequentially, instead of in a parallel manner.

This is very common when an experimenter investigates a large scale engineering sys-

tems, e.g. satellites, or when he considers the ethical issues, e.g. clinical experiments.

Since the experiments are conducted sequentially, at the end of each experiment,

the experimenter will make Bayesian estimations, locate the optimal levels of the

factors, and determine whether to run next experiment. I will simulate the sequential

response optimization scheme described by Eq.(3.1) to Eq.(3.4) in this section. More

specifically, at the end of each runs, I will estimate the main effect and the interaction

effects by the least square estimator. Given the updated estimates, I determine the

optimum levels of the factors from the design space to achieve a longer flight duration.

The design space, for simplicity, is assumed to be the product of the closed interval

between the two levels for each factors.

To be consistent with the case study investigated in the adaptive OFAT scheme,

I select the regressor as

f(x,... ,x7) = (1, 17,..., X7, x 1x 2 , X 1X3 ,... X6 7 )

where f(x) above includes the main factors and interaction factors identical to those in

the OFAT scheme. Note that the choice of regressors is free in the sequential response

optimization scheme. The priors for the coefficients are i.i. d. normal random variables

with mean zero and standard deviation for the constant effect is 30, the main effects

are 15 and the interaction coefficients are 5, which is close to our prediction 'k1 _ 1•
rME "'3.5

in the adaptive OFAT case. We simulate this case with eight different experiment

error standard deviations. For the purpose of presentation, we present the following

three cases: a0 = 0.01, ao = 1.5, and a, = 3.50.



Consistency of the Bayesian Estimator

We first consider the consistency property of this sequential experimentation scheme.

As we discussed in Chapter 3, if the event that the covariance matrix Vk of a se-

quential estimator approaches to zero occurs, i.e. {Vk -+ 0}, then the estimator is

consistent. Therefore, we track the maximum eigenvalue of the covariance matrix at

each stage.

The maximum eigenvalue of matrix Vk at each stage k for all k = 1, 2,..., 500, is

presented in Fig 4-3. It is clear that the maximum eigenvalues of the three different

experimentation error cases, i.e., a, = 0.01, ao = 1.5, and ua = 3.50, all converge to

zero with almost the identical speed, which implying that the estimators are consis-

tent. That the maximum eigenvalues converge in the same pattern for three different

cases meets our expectation because the generation of the covariance matrix V is

influenced directly by the selection of estimation points chosen from the design space,

but much less influenced by the observation errors. More importantly, the maximum

eigenvalues begin to decay around the 25th iteration, and it decays dramatically fast

between the 25th and 100th iterations, implying that the estimator m of the unknown

coefficient 0 for two consecutive iterations changes dramatically during these itera-

tions. Fig. 4-4 presents the norm of the difference between two consecutive estimators,

and the decreases of the norms for the three cases presented are consistent with our

observation in the maximum eigenvalues. That is, the difference would be dramatic

before the 100th iteration, and the difference would be relatively mild afterwards.

Hence, the maximum eigenvalue of the covariance matrix V could be an indicator to

determine whether to terminate the sequential response optimization scheme.

Performance of the Sequentially Response Optimization Scheme

The goal of this scheme is to select the optimal factor levels to achieve longer flight

duration. Hence, we present the flight duration determined at each iteration in this

subsection. Given the Bayesian estimation after each iteration, the experimenter

determines optimal levels of the seven factors. The associated observed optimum



response is presented in Fig. 4-5. For the purpose of illustration, the case of a, = 1.5

is taken off from this figure because it overlaps with the case of o, = 3.50. The

result shown in Fig. 4-5 meets our expectation: the larger the experimentation error

is, the more chaos the observed optimal response would be. However, when the

case of o, = 0.01 is regarded as the mean of the other larger experimentation error

case, we could see that the observed response follows the trend which approaches

to the optimum response. Hence, we know that, although the sampling points and

the estimated optimal factors levels are different in each case, the estimation of the

optimal response behaves almost the same in all cases and the experimental error is

the only source of perturbation in observation. Moreover, after the 100th iteration, the

volatility of the observed responses becomes obviously smaller than those in previous

iterations, which is consistent with our observation in the maximum eigenvalue of the

covariance matrix V.

The true response, the observed response minus the experimentation error, of each

iteration is presented in Figure 4-6 and 4-7.

Figure 4-6 presents the first 150 iteration and Fig 4-7 is for the first 500 iterations.

In Fig. 4-6, we observe that, the smaller the experimentation error is, the faster the

process of response achieves to the optimal level and less volatile the process is. One

spike is shown in the case of a, = 1.5, we suspect it is from the computation error

because the optimization tool box terminated improperly at that iteration.

Figure 4-7 presents longer term behavior. We again observe that the true response

becomes stable after the 100th iteration, when the maximum eigenvalue of the co-

variance matrix becomes small. Moreover, the less volatile the experimentation error

is, the faster the true response would become stable. It is clear that the final optimal

response is around 50.5 the maximum flight duration in this case study. Finally, from

Figure 4-7, we suspect that the response process behaves as a submartingle process.
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43.8
36.6
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-1 +1 +1 +1 +1 +1 +1 46.5

A B C D E F G Response

+1 -1 +1 -1 +1 -1 +1 46.3

+1 +1 +1 -1 +1 -1 +1 47.5

+1 -1 -1 +1 +1 -1 +1 42.9

+1 +1 -1 +1 +1 -1 +1 39.6

+1 -1 +1 +1 +1 -1 +1 49.3

+1 +1 +1 +1 +1 -1 +1 50.5

+1 -1 -1 -1 -1 +1 +1 30.1

+1 +1 -1 -1 -1 +1 +1 29.6

+1 -1 +1 -1 -1 +1 +1 38.3

+1 +1 +1 -1 -1 +1 +1 39.4

+1 -1 -1 +1 -1 +1 +1 30.1

+1 +1 -1 +1 -1 +1 +1 31.7

+1 -1 +1 +1 -1 +1 +1 40.5

+1 +1 +1 +1 -1 +1 +1 39.4

+1 -1 -1 -1 +1 +1 +1 32.7

+1 +1 -1 -1 +1 +1 +1 30.7

+1 -1 +1 -1 +1 +1 +1 41.2

+1 +1 +1 -1 +1 +1 +1 44.1

+1 -1 -1 +1 +1 +1 +1 35.1

+1 +1 -1 +1 +1 +1 +1 32.2

+1 -1 +1 +1 +1 +1 +1 43.6

+1 +1 +1 +1 +1 +1 +1 46.7

Table 4.3: The Response of the 27 Full Factorial Experiments



4.2 Uniformity in the Manufacture of Integrated

Circuits

4.2.1 Background for the case study

The second case study considers the experiments which Buckner et al. (1997) reported

on characterizing the uniformity of a tungsten deposition tool used in the manufac-

ture of integrated circuits. As indicated by Buckner et al. (1997), poor uniformity

in the deposition of tungsten thin films has been the significant factor for the loss of

yield in the manufacture of integrated circuits using tungsten Chemical Vapor Depo-

sition (CVD). They carefully selected seven factors presented in Table 4.4. According

to (Buckner et al., 1997), the factors A to E are selected by a commonly accepted

kinetic rate equation for tungsten deposition. Factor F, the ratio of backslide H2 and

argon flow is unique to the reactor. Last, the factor G, backslide total flow, is used

to prevent deposition on the backslide of the wafer.

Level
Coded Factor Description - + Units

A Temperature 405 425 °C
B Pressure 35 45 torr
C (PH2)2 2.61 4.51 torr2
D WF6 Flow 360 440 sccm
E Argon Flow 10 14 slm
F Backslide H2/Argon Flow 1.5 3.5 (unitless)
G Backside Total Flow 5 9 slm

Table 4.4: The factors and levels in the uniformity experiment

In this case study, we assume that the measure of interest is the maximum uni-

formity of the manufacture of integrated circuits. Buckner et al. (1997) reported a

2Iy 4 experiment plus three center points spaced at the beginning, middle, and the

end of the sequence of 19 runs. Later, Mee and Peralta (2000) conducted a semifold-

ing experiment analysis based on the experimental data provided in (Buckner et al.,

1997). For completeness, we present the the analysis results for combined analysis of

the initial 2r73 experiment plus the semifolding design in Table 4.5. It is obvious that



the interaction coefficients AC, BC, CD, and CF are statistically significant and the

factor C plays a key role among these interaction coefficients. For the purpose of our

study, we will use the analysis results in Table 4.5 to simulate the adaptive OFAT

scheme and optimization algorithm for the compact design space.

Term Estimated Standard t p value
coefficient error

A .192 .051 3.74 .007
B .121 .044 2.72 .030
C .226 .051 4.40 .003
D .061 .051 1.18 .276
E -.048 .051 -.94 .379
F -.078 .051 -1.69 .134
G .279 .049 5.63 <.001
AC .406 .051 7.92 <.001
BE = DG .108 .051 2.11 .073
BC -.548 .044 -12.34 <.001
AE = DF -.017 .044 -.37 .720
CD -.215 .051 -.419 .004
BF = AG -.019 .051 -.38 .717
CE .042 .051 .83 .435
AB = FG -.133 .051 -2.60 .036
CF -.661 .051 -12.90 <.001
BD = EG .009 .051 .18 .860
CG .099 .051 1.94 .094
AD = EF .098 .051 1.90 .099
DE(= AF = BG) -.066 .044 -1.48 .183

Table 4.5: Analysis of Buckner et al.
alta, 2000)

(1997) 27 3> Experiment source: (Mee and Per-

4.2.2 Adaptive OFAT Scheme

Imagine a scenario in which each design evaluation involves building and evaluating

a wafer. Moreover, since the experiment duration is very limited, the experimenter

could only select the two choices for each factor, as shown in Table 4.4. Under these

conditions, a design method that requires only eight design variants seems feasible

and any method that requires much more experimental resources might be ruled



out depending on the budget and schedule. Under such circumstance, we consider

to conduct the proposed adaptive OFAT scheme, which satisfies the resource and

schedule constraints imposed by the environment.

We apply the information presented in Table 4.5 to simulate adaptive OFAT. For

each trial, a starting point design and an order in which to toggle the factors were

selected at random. Then the adaptive OFAT process was simulated by the value

generated from Table 4.5. Experimental error was simulated by adding a normally

distributed pseudo-random number to the simulated value to create an experimental

observation. After the adaptive OFAT process selected the seven factor levels, the

response at that set of levels without simulated error was stored as the outcome of

the trial. This was repeated 10,000 times for each of 8 different amounts of simulated

experimental error.

The results of the simulations are presented in Figure 4-8. The maximum uni-

formity capability within this design space of 128 possible discrete factor settings is

2.951(%) with the corresponding input x = (+1, -1, + +1+1, -1, -im + 1), and the

average uniformity is approximately 0%, which are both indicated by heavy horizon-

tal lines. The circles represent the average uniformity capability achieved by adaptive

OFAT over different starting point designs and orderings of the factors. The bars indi-

cate the range exhibited from one empirical standard deviation. When experimental

error was low, adaptive OFAT provided an average 1.8% uniformity. This observation

represents approximately 148% of the potential improvement (from starting design

to final design) within this discrete space of factor settings. This is consistent with

the prediction made in Chapter 2 for low experimental error and for systems with

aME 10'

When experimental error becomes high, the performance of adaptive OFAT de-

clined. With experimental error having a standard deviation of V12 (100%), which is

a very large error for such an engineering experiment, adaptive OFAT provided an

average uniformity capability of 1.02% or 98% of the potential improvement. This is

consistent with our prediction for high experimental error and strong interactions.
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Comparison with Saturated Fractional Factorial Experimental Design

Under the same strict resource and schedule limitations, another popular strategy is

the saturated fractional factorial experiment design. To provide a basis for compar-

ison, the data presented in Table 4.5 are used to simulate factorial experimentation.

Since adaptive OFAT required 8 experiments, a 27-4 experimental design was used to

maintain an equivalence of resource requirements. For each trial, one of 35 possible

fractions was selected at random. Then the experiment was simulated by the approx-

imated function with coefficients in the tabulated data and adding random variables

to simulate experimental error as before. After the data collection was complete,

the main effect estimates were used to select factor levels. The response at that set

of levels without simulated error was stored as the outcome of the trial. This was

repeated 10,000 times for each of 8 different amounts of simulated experimental error.
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Figure 4-10: Performance Comparison between OFAT and Fractional Factorial
Schemes

The results of the simulations are presented in Figure 4-10. The circles connected

by the solid lines represent the average uniformity capability achieved by the sat-
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urated fractional factorial experimentation. The bars indicate the range exhibited

from one standard deviation. When experimental error was low, the process provided

an average uniformity of merely 0.3%. That represents only 7.5% of the potential

improvement. This is substantially less than the 148% improvement provided by

adaptive OFAT under the same conditions. This is consistent with our discussion in

Chapter 2, since the interactions are much more significant than the main factor as

indicated in Table 4.5.

Figure 4-10 presents the performance comparison of the OFAT and the fractional

factorial experiment design scheme. It is evident that the range of the performance

includes mostly the worse outcomes on the low end than that of adaptive OFAT

and the high end is still way smaller than the lower part of adaptive OFAT. This

observation matches the discussion in Chapter 2. The performance of OFAT will

seriously outperform when the main effect is weak and the interaction factors are

strong, which is the case we study in this subsection.

When experimental error was introduced, the performance of fractional factorial

experimentation was relatively consistent. With error having a standard deviation

of v', the fractional factorial remains an average 0.3% uniformity or 7.5% of the

potential improvement. This is still lower to the performance of adaptive OFAT

under very noisy experimental environments, where the performance down half to

approximately 102%. Finally, notice that, since the interaction factors, instead of the

main factors, dominate the response of the experiments, the expected performance of

the OFAT scheme remains much better than that of the saturated fractional factorial

scheme. This observation matches our discussion in Chapter 2.

4.2.3 Sequential Response Optimization Scheme

Now imagine a scenario in which the experimental resources are abundant and more

selections are available for the factors in Table 4.4. One key feature of this scenario is

that the experiments will be conducted sequentially, instead of in a parallel manner.

This is very common when an experimenter investigates a large scale engineering sys-

tems, e.g. satellites, or when he considers the ethical issues, e.g. clinical experiments.



Since the experiments are conducted sequentially, at the end of each experiment,

the experimenter will make Bayesian estimations, locate the optimal levels of the

factors, and determine whether to run next experiment. I will simulate the sequential

response optimization scheme described by Eq.(3.1) to Eq.(3.4) in this section. More

specifically, at the end of each runs, I will estimate the main effect and the interaction

effects :)y the least square estimator. Given the updated estimates, I determine the

optimum levels of the factors from the design space to achieve a higher uniformity

capability. The design space, for simplicity, is assumed to be the product of the closed

interval between the two levels for each factors presented in Table 4.4.

Following the data presented in Table 4.5, I set the regressor as

f(xl, 2 --. , 7)= (X1, x 2 ,. - ,x 7 , X 1X2 , 1 X3 ,..., x 6x 7)

The priors for the coefficients are i.i.d. normal random variables with mean zero and

standard deviation for the main effects are v/5 and the interaction coefficients are v1

since we know that the interaction would be statistically significant in this uniformity

experiment. For the purpose of presentation, we present the following three cases:

a,2 = 0.1, a2 = 0.5, and at2 = 1.0.

Consistency of the Bayesian Estimator

We first consider the consistency property of this sequential experimentation scheme.

As we discussed in Chapter 3, if the event that the covariance matrix Vk of a se-

quential estimator approaches to zero occurs, i.e. {Vk -+ 0}, then the estimator is

consistent. Therefore, we track the maximum eigenvalue of the covariance matrix at

each stage.

The maximum eigenvalue of matrix Vk at each stage k for all k = 1, 2,..., 600, is

presented in Fig 4-11. It is clear that the maximum eigenvalues of the three different

experimentation error cases, i.e., a0 = 0.1, aU = 0.5, and a, = 1.0, all converge to

zero with almost the identical speed, which implying that the convergence process

are insensitive to the experimental error strength au. That the maximum eigenvalues



converge in the same pattern for three different cases meets our expectation because

the generation of the covariance matrix V is influenced directly by the selection of

estimation points chosen from the design space, but much less influenced by the

experimental errors. More importantly, the maximum eigenvalues begin to decay

around the 50th iteration, and it decays dramatically fast between the 50th and

150th iterations, implying that the estimator m of the unknown coefficient P for two

consecutive iterations changes dramatically during these iterations. Fig. 4-12 presents

the norm of the difference between two consecutive estimators, and the decreases of

the norms for the three cases presented are consistent with our observation in the

maximum eigenvalues. That is, the difference would be dramatic before the 50th

iteration, and the difference would be relatively mild afterwards. Hence, the maximum

eigenvalue of the covariance matrix V could be an indicator to determine whether to

terminate the sequential response optimization scheme.

Figure 4-13 presents the norm of the difference between parameter estimator and

the true parameters for each iteration, i.e., Ilmk - 3112, Vk = 1,2,..., 600. The fig-

ure shows that the deviation of the estimators and the true parameters decreases

dramatically after the 50th iteration, which is consistent with our previous observa-

tion. However, as indicated in Figure 4-13, the larger the experimental errors are the

smaller the convergence rate of the estimators would be. Table 4.6 presents all the es-

timators for the coefficients after the 600 iteration for the three different experimental

error variances. It is clear that all the statistically significant terms, such as AC, BC

and CF, are captured by the algorithm; that is, the estimated parameters are also

significant as well. However, the accuracy would be deteriorated as the experimental

error increases, an observation which meets our intuition.

Performance of the Sequentially Response Optimization Scheme

Figure 4-14 presents the actual uniformity capability of the estimated optimal input

for each iteration. As we expected, the response would become more stable after the

50th iteration since the change in estimated parameters would become smaller as we

discussed earlier. It is obvious that the response would hit the optimality frequently,



while a noticeable portion of outcome stays far from the optimal level. We conjecture

that it is because the optimization algorithm terminates without reaching the real

optimality. Since the parameter estimations changes in a rather small magnitude

after the 150th iteration, there exists no reason for a dramatic change in the selection

of optimal inputs with a compact design space.
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Term True Estimator Estimator Estimator
Parameter 0.1 2 = 0.5 2 = 1.0

A (Xl) 0.192 0.195 0.143 0.182
B (x 2) 0.121 0.108 0.110 0.115
C (x3) 0.226 0.203 0.195 0.263
D (x4) 0.061 0.023 0.035 0.120
E (x5 ) -0.048 -0.064 -0.024 0.030
F (x6) -0.087 -0.072 -0.147 -0.271
G (X7) 0.279 0.306 0.274 0.145

AB (xxl2) -0.133 -0.159 -0.094 -0.141
AC (x1 x3) 0.406 0.410 0.430 0.359
AD (xI4) 0.098 0.098 0.098 0.131
AE (XIX5) -0.017 -0.035 0.027 0.044
AF (XIX6) -0.006 0.021 0.030 0.116
AG (xlx7) -0.019 0.022 0.016 0.099
BC (x 2x3) -0.548 -0.539 -0.601 -0.668
BD (x 2x4) 0.009 0.013 -0.119 -0.010
BE (x2 X5 ) 0.108 0.075 -0.005 0.080
BF (X 2 X6) -0.019 -0.005 0.067 0.092
BG (X 2 X7) -0.006 0.018 0.006 0.059
CD (X 3 X4) -0.215 -0.202 -0.171 -0.161
CE (x 3x5) 0.042 0.051 0.000 0.012
CF (x 3 x 6 ) -0.661 -0.629 -0.560 -0.491
CG (X 3 X7) 0.099 0.073 0.087 0.023
DE (X 4 X5) -0.066 -0.043 -0.072 -0.015
DF (x 4x6) -0.017 -0.064 0.023 -0.144
DG (X4XT) 0.108 0.119 0.133 0.052
EF (x 5 X6) 0.098 0.124 0.158 0.102
EG (x5x7) 0.009 0.007 0.013 -0.009
FG (X 6 X7) -0.133 -0.121 -0.140 -0.103

Table 4.6: True and Estimated Parameters under Different Experiment Error Vari-
ance a.
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Chapter 5

Concluding Remarks

Achieving better improvement through proper sequential experiments is an exciting

area of research. The Bayesian analysis approach presented in this thesis has much

to explore in the Design of Experiment field, in which the updated information could

be used to determine the next stage of experiment, balance the tradeoff between

exploration and exploitation, and validate the accuracy of estimations.

In this thesis, we start with considering a problem of achieving higher system

performance with scarce experimental resources through analyzing a normal linear

regression model with a Bayesian embedding prior information. To make the best

use of information collected from stage-by-stage Bayesian analysis, we propose an

adaptive one-factor-at-a-time (OFAT) experimental scheme for the case of discrete

design space. We provide a mathematical argument to prove the superiority of this

OFAT scheme in terms of expected improvement and its exploitation capability on

factors. It is shown that, although this adaptive scheme could not achieve the "min-

imum" covariance matrix for estimation, the outcome of OFAT scheme is sustained

by both the main as well as the interaction factors (see Theorem 7), while the con-

ventional fractional factorial experimental design is only sustained by the main factor

(see theorem 8) under the same experimental resource restriction. That is, the OFAT

scheme could achieve a better improvement not only when the main factors but also

the interaction factors are strong, while the fractional factorial design would perform

poorly once the interaction factors become stronger. Figure 2.5 illustrates this com-
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parison. The exploitation capability of OFAT scheme provides a flurther insight about

its superiority in achieving better performance improvement. The OFAT scheme is

shown to have a higher probability to exploit the interaction factor than does the

saturated fractional experimental design. Moreover, Theorem 5 shows that the latter

interaction factor would be more likely to be exploited than those exploited earlier.

This property implies the stage-by-stage improvement capability of OFAT scheme,

see (Frey and Wang, 2006) for detailed presentation.

We extended the Bayesian analysis to the case of generalized normal linear regres-

sion model within the compact design space. We apply the concepts of c-optimum ex-

perimental design and Bayesian experimental design to propose an algorithm Eq. (3.1)

to Eq.(3.4) for the purpose of achieving optimum through a sequence of experiments.

This experimental design has been shown to be consistent in its limiting behavior.

Moreover, we also derive the expected stage improvement achieved by this algorithm

for the analysis of its intermediate behavior. Through the analysis, we learn that

there is a tradeoff between the variance of exploration (estimation) and the predicted

mean response (exploitation). However, it is not necessary to minimize the covari-

ance matrix for the whole design space, i.e. minimizing Amax(V), to achieve our goal.

Instead, we show that it is sufficient to minimize the uncertainty at the points which

are of interests. Moreover, all the sequential optimum schemes developed so far are

considered in their limiting behavior. The expected value of stepwise improvement

could help experimenters determine whether to terminate the experiments or not.

This work is intended as an early step in a broader research program regarding

adaptive experimentation schemes. Moreover, we are interested in potential applica-

tions of adaptive experimental scheme in engineering, economics and medicine areas.

We therefore conduct a case study in the engineering design field. In addition, the

adaptive mechanisms explored here are only the simplest kind requiring no physical

knowledge. A richer theory would include consideration of the experimenter's mental

models, the ways such models influence the planning of experiments, such as the order

in which factors are considered, and the ways that the experimental data alter one's

mental models. It is also possible that adaptive experimental scheme will prove useful
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in computer experiments wherein some model errors may be present since physically

reasonable predictions are more easily made when only one factor is changed or when

the experimental resource is scarce. These topics are all interesting possibilities for

future research.
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Appendix A

A Brief Summary of Bayesian

Analysis for Normal Linear

Regression Models

A.1 Known Error Variance a 2

We consider the following normal linear regression model

y= XP + E

where y is an (b x 1) vector, X is an (b x p) matrix, f is an (p x 1) column vector, and E

is an (b x 1) vector of random errors. The elements of e is assumed to be i.i.d. normal

random variables with zero mean and known variance o~, i.e., e (O, oIb), where

Ib denotes the (b x b) identity matrix.' Moreover, the ith row of matrix X is denoted

by x T = (xl, 2,.... , Xq), where T stands for the transpose of a matrix. Thus the ith

element of y is y, = xU3 + Ei. Note that b stands for the number of experimental

runs, q denotes the number of factors, and p represents the number of elements in the

coefficient vector 0.

'If the variance of the error is unknown, then the natural conjugate of a2 is the Inverse Gamma
distribution.
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The prior of the coefficients / is assumed to be

P N(m, V)

where we assume that V is positive definite. We also define f -_- (XTX)-I XTy,

which will be used soon.

The posterior distribution of 13 would be

f (Pl Y) c f(yfP)f (0)

oc exp (0 --) TXTX(O - )

oc exp ((0 -

x exp ((0 -m))
m*)T(v*)-l( - m*))

where

m* = (V-' + 2XTX) - 1 (V-'m + XTy)

V* - (V-1 +a XTX') -

Therefore we re-scale the prior of the coefficient / and set

V = aUE

Since the posterior of the coefficient 0 is still normal, we have the associated

posterior distribution

f(81 y) An/ (m*, V*)

m* = (E-1 + XTX)-1 (E-'m + XTy)

V* = ao (-1 + XTX) - 1

(A.1)

(A.2)

(A.3)

We make several remarks here.

1. If (XTX) is singular, then there will not exist a unique solution of /, which is
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the well known identification issue. However, since we assume that E > 0, i.e.,

the matrix E is positive definite, we could still obtain a unique m* in (A.2),

and therefore have the posterior distribution (A.1) proper.

2. If the prior is very diffuse (weak), i.e., E - --- 0, then it is necessary that (XTX)

is non-singular; otherwise, the posterior distribution would become improper.

As indicated in Chapter 2, the standard selection of matrix X in the two-

level fractional factorial design would make the matrix (XTX) nonsingular.

Therefore, a diffuse prior would not cause any problem in obtaining the posterior

distribution in the fractional factorial experiment design case.

3. Notice that

m* = (E- +XX) (E-lm+XTy)

(E- XTX) 1 (E-1m + XTX)

= (Ip -+ )m +1

where ( = - 1 + XTX) XTX.

(a) if the prior is very weak, i.e. E - 1 is very "small", then the posterior mean

m* would put more weights on the data obtained from the experiments

(b) if the prior m is "unbiased", then the posterior estimator m* is unbiased

4. Suppose we are interested in the estimation of the responses with input matrix

X0, and thus we denote

Yo = Xo0 + 6o

Then the distribution of the responses yo is

Yo .,/ (Xom*, 02 (I + Xo(V*)X0))
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A.2 Unknown Error Variance a 2

In this section, we consider the case in which the parameter cr2 is unknown. For

simplicity, we assume that the prior distribution of UT2 is

a) =df

IF (ý )
exp

a

2a J (A.4)

which is the inverse Gamma distribution with parameter a, d > 0. As indicated

earlier, given oa,2 the prior distribution of / is |/3ka r N(m, V). Thus, by Eq.(A.4),

the joint prior of (0, a,2) is

f)d
f(0, of (2=r)PV

2r(•)

/ d+p+2 exp

(or ) 2 exp (/3 - m)T V- (/ - m)

where IV! denotes the determinate of matrix V. Hence, the marginal prior distribu-

tion of p is

(a + (/3 m)TV-l(/3 m)) 2
-

Finally, we have

f(YlI a, /3) = ( (y - X/)T(y - X/3)

Therefore, we have the posterior distribution:

f(/, oa,2 y) oc f(y l0, ax) f(1Y, CYo)
c (a)-"exp (Y - XP3)T(y - XP)

d+p+2

X (02) 2

S() n+d+p+2
(o.2) 2 ex

exp( (p - m) T V-l (' -_ m) +
2a2

(P - m*) (V*)- 1 (0 - m*) + a*
2cr2
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that is equivalent to

f(0, ,21y) =

d+nT

( 2 _nd+p+
2 ) 2

where

m* = (V - 1 + XTX) - 1 (V-'m + XTy)

V* = (V - 1 +XTX)- 1

a* = a + mTV-lm + yTy - (m*)T(V*)-l(m*)

Finally, we consider the estimation distribution of the response yo = Xo0 + Eo at an

(r x p) matrix Xo. Notice that

yo2 a AN (Xom*, U2 (I, + XoV*XT))
d*

- 2 exp - 2o,2

Therefore, the posterior distribution of the response yo is

(a*) dr (n+d+r
f(Yo1 ) ( 2

II, + XoV*XoTil (1) r (n4d)

which is a student t distribution.

-d+n+r

(a*+(yo-Xom*)T(Ij+XoV*XT)- (yo-Xom*)) 2

(A.6)
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