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Abstract
I have been interested in how the nervous system processes complex

motion patterns such as expansion, rotation, and contraction. The analysis
of these types of stimuli is thought to be important for the analysis of self-
motion and the motion of objects in the environment. Anatomical,
physiological, and psychophysical approaches were all used in an attempt
to understand these processes. The four chapters break down as follows:

Chapter 1) This is a review of the literature on cortical area MSTd, a
region of the brain thought to be important in the analysis of complex
motion patterns. This article starts with an overview of the anatomy and
physiology of this area before a discussion of the possible roles this region
may play in visual motion processing. The view taken in this discussion is
that MSTd is likely to be involved in a number of different functions, possibly
including egomotion, object motion, vection, and retinal slip.

Chapter 2) Our lab has proposed that MSTd is important in the analysis
of object motion in the environment. Our hypothesis is that this region
extracts information about motion pattern from the visual scene and
largely ignores the features and cues which define this motion. To test this
idea, we recorded from single units in MSTd and obtained tuning curves
using motion patterns defined by different features and cues. I found that
the preferred complex motion for a particular neuron was independent of
the features and cues (i.e. form) of the inducing stimulus.

Chapter 3) Multiple single-unit recording studies in both MT and MSTd
have reported clustering of neurons according to preferred tuning. I
decided to explore this organization using the double-label 2-deoxyglucose
method. The evidence supports a columnar functional organization to both
MT and MSTd, with units tuned for expansion and contraction maximally
separated in a mosaic of columns of altering specificity.

Chapter 4) There are many more units in MSTd tuned to expansion than
to rotation. To see if this anisotropy in response distribution had perceptual
consequences, we compared perceived average dot speeds in random-dot
complex motion patterns. We found that dots in expansion stimuli appeared
to move about 25% faster than the same speed dots in a rotating pattern. The
magnitude of this illusion in various variations of this experiment
compared well with reported response characteristics of MSTd cells.
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Chapter 1: Cortical Area MST and Optical Flow: A Review

Introduction

The purpose of this article is to review what is known about the medial

superior temporal (MST) area of the macaque monkey. The first section is

dedicated to a discussion of the anatomy and physiology of this cortical area.

The remainder of the article is a discussion of the various roles that MST

may be playing in visual information processing. Particular emphasis is

given to reviewing the literature of ego-motion (direction of heading)

representation and pattern motion perception. In addition, we will consider

strategies thought to be used by other species to solve these problems. The

scope of the discussion will be quite broad, drawing on studies from

physiology, psychophysics, and computational neurobiology. In the spirit of

systems neuroscience, an attempt will be made to integrate all three

approaches. We will propose that the function MST plays is likely to be quite

generic and that this region could potentially be involved in many

perceptual processes.

Anatomy and Physiology

MST is located medial and anterior to area MT on the floor and anterior

bank of the superior temporal sulcus (STS) of the macaque. The long axis of

this region is oriented mediolaterally and has a length of approximately 4-5

mm along this direction (Desimone and Ungerleider, 1986; Saito et al, 1986).

Anatomical tracer studies have demonstrated connections with visual

polysensory areas in posterior prestriate, parietal, temporal, and frontal

cortex (Boussaoud et al, 1990). By far its heaviest input is from area MT,
anatomically implicating MST in the processing stream believed to analyze

visual motion. Heavy lateral connections to area FST in the fundus of the

STS have been established, although the significance of these connections

and the role that FST is playing in the hierarchy of motion processing has
yet to be determined. Other local projections within the STS include
reciprocal connections to polysensory association areas (Desimone and
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Ungerleider, 1986; Boussaoud et al, 1990). These regions are thought to be

involved in the convergence of information from several sensory modalities

and facilitate tasks which require integration of these signals. A

descending connection from MST to the lateral terminal nucleus of the

accessory optical system has been identified (Maioli et al, 1989). The AOS

has been solidly established as an important area for the processing of self-

motion in birds (Frost et al, 1990) and rabbits (Simpson, et al 1988) and we

will later discuss the possible functional significance of this projection in

primates. Forward connections from MST include those to posterior

parietal cortex (Boussaoud et al, 1990), in particular to areas LIP and VIP.

Ongoing investigations by workers in our lab have provided strong evidence

that these regions are involved in representing external space in coordinate

frames progressively independent from the projection of the optical array

onto the retina (Andersen, 1989). Although the perception of motion can be

dissociated from that of spatial displacement (for a review see Nakayama,

1985) they are clearly related under normal perceptual conditions and the

connection of MST to these posterior parietal regions may well be related to

this association. Another forward connection has been established between

MST and the frontal eye fields. As will be discussed shortly, MST has been

implicated as a step in the sensory-motor loop involved in smooth pursuit

eye movements. Given that the frontal eye fields have been implicated in the

initiation of eye movements, this projection is conceivably part of this same

system. In general, MST gets its inputs from prestriate visual cortex, has

intermediate connections with parietal areas, and projects forward to the

frontal eye fields and areas in the rostral STS (Boussaoud et al, 1990).

MST was originally thought to be a single functional region based on

early anatomical studies, but later investigations with single unit recording

suggested that there are at least two or three functional subdivisions (Wurtz

et al, 1988; Newsome et al, 1988; Komatsu et al, 1988). Under one established

classification, MST has been divided into a dorsal (MSTd), a ventral (MSTI),
and an intermediate region (MSTi). Somewhat confusingly, different
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groups have disagreed about whether to pool data collected in MSTi with

that in MST1 or MSTd.

A crude sort of retinotopy has been established across these regions. The

most dorsal and ventral sections independently represent the central visual

field, while the intermediate region covers the periphery (Tanaka et al,
1993). In terms of functional anatomy, some clustering of response

selectivity has been reported by several different groups (Tanaka et al, 1993;

Saito et al, 1986; Lagae et al, 1994). Lagae has gone so far as to propose a

columnar organization to this selectivity. In his conception, each isotuning

column contains units tuned to a single motion pattern, e.g. expansion,

contraction, or rotation. According to his findings, response selectivity

gradually shifts moving orthogonal to the long axis of the isotuning

columns. For example, progressing across these columns selectivity may

shift from cells tuned to expansion, to rotation, to contraction, to the opposite

direction of rotation, and finally back to expansion. In this scheme, columns

for expansion and rotation are maximally far apart, as are the columns for

the two directions of rotation. This cycle is thought to repeat every 800-900

microns.

Response Selectivity

Given the widely held belief that both MST and MT are involved in the

processing of motion information, it is important to be able to distinguish

between the two regions based on physiology (Lagae et al, 1994). One of the

most obvious differences between the two areas is that MST has much

larger receptive fields than MT. The diameter of an MT receptive field is
approximately equal to the distance from the fovea to its receptive field

center. There is no such rule for neurons in MST, where receptive field

sizes can be as large as 100 degrees across in diameter and whose median

size is somewhere between 20 and 40 degrees, depending on the type of
stimulus used to map the receptive field. In terms of comparing their
responses to motion patterns, both regions respond well to stimuli

containing unidirectional (linear, or translational) motion, expansion,
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contraction, and rotation. However, unlike MST cells, MT cells are not

responding to expansion, contraction, and rotation per se but to the local,

nearly linear motion signals which make up these patterns. MST cells as a

population give significantly weaker responses (in terms of firing rate) to

linear motion, expansion, and deformation than MT cells. However, if

activity is normalized based on responsiveness to linear motion, MST

responds better to rotation and less to flicker, compared to MT (Lagae et al,

1994). The same study reported that, with regards to selectivity along the

expansion/contraction axis, MST cells are more directionally selective. This

increased selectivity is reflected in the finding that MST cells respond, on

average, to fewer motion types than MT cells and that they are more likely

to show an inhibitory response to a stimulus in the anti-preferred direction

(Lagae et al, 1994). In MT, responses to such elementary flow components

(EFCs) as divergence (expansion/contraction), curl (rotation), and

deformation depend on the spatial location of these stimuli in the cell's

receptive field, but in MST positional invariance to EFCs in a significant

percentage of units has been reported by several groups (Lagae et al, 1994;

Graziano et al, 1994). Finally, studies probing the subunit structure of units

in these two areas have shown that MST cells often have their excitatory

and inhibitory regions of their receptive fields overlap, while MT maintains

a center/surround spatial separation (Tanaka et al, 1986).

As mentioned above, MST has been divided into different subregions

based on differences in response characteristics and proposed function.

MST1 and MSTd should be considered as two distinct cortical areas. MSTd

prefers large, textured, motion stimuli (Tanaka et al, 1993; Tanaka et al,
1989ab; Saito et al, 1986; Komatsu et al, 1988; Wurtz et al, 1988) and has

neurons broadly tuned with respect to speed. Cells respond well to stimuli

with speeds as low as 1 degree/second and gradually increase their

responses until an amplitude plateau is reached at speeds of about 20

degrees/second (Komatsu et al, 1988). Most of the cells in MSTd are

directionally tuned with respect to translational motion, but preferred and

anti-preferred directions commonly reverse with stimulus size, indicating
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that, unlike MT cells, these units are not selective for the spatial-temporal

fourier energy of the stimulus (Komatsu et al, 1988).

Probably the most distinguishing characteristic of cells in MSTd is their

selectivity for the elementary flow components of rotation, expansion, and

contraction (Tanaka et al, 1989ab; Saito et al, 1986; Orban et al, 1992). Single

unit recordings in the anaesthetized, paralyzed macaque have

demonstrated greater selectivity for isotropic (real) expansion and rotation

compared to axial expansion and rotation. With axial expansion, all

features in the stimulus move orthogonal to a motion border which bisects

the stimulus. The features on the two sides of this border have their motion

vectors pointed 180 degrees away from each other. Therefore, in these

displays there are only two directions of motion in the image, moving in

opposite directions. Axial rotation, which is the same things as shear, has

similar motion components as axial expansion, but in this case the velocity

vectors on either side of the motion border are oriented parallel to it. This

preference for isotropic patterns is interesting, although little attention has

been given to it in terms of its possible functional significance.

Early studies in MST that first reported selectivity for EFCs used as a

stimulus generator a slide projector with a zoom lens projecting an image

consisting of randomly placed dots (Tanaka et al, 1989). The image could be

made to expand, contract, or rotate, depending on the proper manipulation

of the lens. Several stimulus attributes, in addition to the global motion

pattern present in the display, were available for cells in MSTd to potentially

respond to. These included a radially oriented speed gradient - the speed of
each feature (dot) in the stimulus was a linear function of its distance from
the center of the stimulus. Additionally, when zooming the lens to create
the expansion pattern, each dot changed its size in the display, another
possible cue that MST cells could be selective for, independent of global
motion. Finally, the features in all these stimuli had an acceleration
component to their motion vectors oriented along the radial axis of the
image. It was shown that none of these cues in isolation, with the exception
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of global motion, gave a tuned response in the cells recorded from (Tanaka

et al, 1989). Speed gradient, in conjunction with the spatial arrangement of

velocity vectors in the image, had a facilitory role in response selectivity,

although the effect was modest.

Positional Invariance

To say that a unit is selective for a global motion pattern such as

expansion or rotation, it is necessary to demonstrate that this property

emerges independently from selectivity to translational motion. For

example, by appropriately placing a subregion of an expanding stimulus

over the receptive field of a unit tuned specifically to translation, a brisk

response can be elicited that exhibits all the properties of being directionally

selective. However, moving the stimulus within such a neuron's receptive

field will change the selectivity of the unit, even reversing it, so that it now

prefers the opposite type of global motion. So, to say that a unit is selective

for a particular EFC, we must demonstrate that its response is positionally

invariant with regards to the spatial placement of the EFC within the

receptive field. The invariance established at the two spatial locations need

not be reflected in the width or the height of the tuning curve, only with

regards to the direction of maximal response, i.e. the preferred motion

pattern. Approximately half of the cells in MSTd demonstrate this type of

selectivity (Saito et al, 1986; Tanaka et al, 1989; Lagae et al, 1994) and this

invariance is a distinguishing characteristic when identifying this region

based on response properties. Tuning invariance has also been observed for

MSTd cells with respect to speed (Lagae et al, 1994) and with respect to cue,
feature, and form (see Chapter Two of this thesis).

Single, Double, and Triple Component Selectivity

Several investigators have characterized cells in MSTd based on the

number of global motion types (EFCs) the cell is selective for. Selectivity,
used this way, is defined as a unit responding significantly differently to

stimuli on opposite sides of the stimulus space. For example, we say that a
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cell is selective for translational motion leftward if the cell fires

significantly more when presented with leftward motion than rightward

motion. Selectivity in MST can be determined separately for linear motion,

divergence (expansion/contraction), and curl (rotation). In this way, units

are characterized as being either single, double, or triple component,

depending on the number of motion types to which these units are sensitive.

To a rough approximation, the population of cells in MSTd is equally

distributed into thirds when divided in this way (Duffy and Wurtz, 1991b).

Single component cells respond exclusively to either expansion, contraction,

one direction of rotation, or translation (linear) motion. Cells of this class

exhibit the greatest direction selectivity, are most likely to show significant

inhibitory responses, have the greatest degree of positional invariance with

respect to stimulus placement in their receptive fields, and have the

greatest tendency for their excitatory and inhibitory subregions to overlap

(Duffy and Wurtz, 1991b).

There is a significant amount of disagreement about the response

characteristics of double component cells. Graziano, et al (1994) found cells

selective to the full range of EFC combinations, while another group found

no evidence of cells selective for translational motion in combination with

any other EFC (Duffy and Wurtz, 1991a). Lagae, et al (1994), agreed with

Graziano, et al (1994) with regards to the existence of cells selective both to

translational motion and an EFC, but found no cells selective for either

expansion/contraction paired with a rotation. This disagreement is an

important one because our lab has argued that the presence of this type of

double component cell really represents a population of cells tuned to

intermediate directions of global motion that appear perceptually as spirals

(Graziano et al, 1994). As will be discussed below, the existence of cells

tuned to spiral motion patterns is relevant to the way MST may be

processing optical flow information. At the present, we have no way of

reconciling these conflicting claims.
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The triple component units, those cells responding to three types of

global motion, as a population had the least amount of directional

selectivity, the smallest likelihood of having significant inhibitory responses

to anti-preferred stimuli, the least positional invariance, and exhibited the

least likelihood of having their excitatory and inhibitory subregions overlap

(Duffy and Wurtz, 1991ab). Statistical analysis of response trends between

single, double, and triple component cells indicate that this distinction is an

arbitrary one. A continuum of selectivity for various combinations of motion

types exists in the population of MSTd cells, and no clustering occurs in the

parameter space defined by component responsiveness.

Graziano, et al (1994) developed this idea in depth and proposed that

rather than multiple-component cells being independently selective for

multiple component types, there is one "preferred" global motion stimulus

for each cell. For example, consider an observer moving forward through

the environment while making a smooth pursuit eye movement leftward.

The global motion pattern projected onto his retina will be determined by

the vector addition of a rightward linear motion field due to leftward eye

rotation and an expanding motion field produced by forward translation. A

subpopulation of multiple-component cells will be maximally selective for

this particular complex vector field. However, this selectivity is not

complete, and presentation of the component motion fields alone

(translation or expansion) would also activate this cell, although not drive it

maximally. Although selective for a single complex motion pattern, such a

unit would be classified as double component.

An EFC that we have not discussed much is deformation. Very few cells

in MST have been found that are selective to this type of motion (Lagae et al,
1994). As will be discussed later, the absence of such units argues against

this region playing a direct role in analyzing structure-from-motion.
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Figure vs. Field Cells

Some reports have divided MST cells into those with "figure" selectivity

and those with "field" selectivity (Saito et al, 1986; Tanaka et al, 1989). These

studies contain the first discussion of the optical flow vs. object motion

distinction that we will explore in greater depth later in this review. This

distinction was made using translational motion only, not exploring figure

vs. field selectivity with stimuli containing other EFCs such as expansion

and rotation. Figure cells were characterized as preferring the

translational movement of small dots or edges across the cell's receptive

field. Movement of extended fields of dots in such cells elicited poor

responses. Field cells exhibited opposite characteristics and frequently

reversed their preferred tuning direction for translational motion with

changes in stimulus size. It is not clear whether this figure/field distinction

reflects two distinct populations of cells, or whether, like the component

number classification previously discussed, is arbitrary and there is a

continuum of selectivity. There is evidence that the cells in these two classes

are not distributed evenly throughout MST and that field and figure cells

are primarily localized in MSTd and MSTI, respectively (Komatsu et al,
1988).

Disparity lTning

A property of MSTd cells that has received recent attention is their

disparity tuning (Roy and Wurtz, 1990, 1992). 90 percent of cells tested in

MSTd were sensitive to the disparity of the moving stimulus. Like cells

found in MT, this disparity tuning was generally relative to the plane of

fixation, indicating that these cells are not sensitive to absolute depth.

Surprisingly, 95 percent of these cells were near/far cells, as described by
Poggio, et al (1988), being broadly tuned for either far or near disparities.

This is in contrast with studies in MT which showed a much higher

proportion of cells with "tuned near" and "tuned far" selectivity. Apparently,
there is a convergence of disparity channels in the projection from MT to
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MST, accounting for this partial loss of selectivity. However, some specificity

is clearly maintained, unless the broad disparity tuning found in MST is

recreated de nova in this region. Because of the broad disparity tuning of

these units, this area cannot be involved in the fine disparity system, used

in such behaviors as threading a needle. The observed tuning

characteristics are consistent with those postulated for the "coarse"

disparity system involved in such activities as guiding vergence eye

movements. 60 percent of the MSTd cells tuned for disparity give differential

responses (in terms of amplitude) to linear motion depending on the

disparity of the invoking stimulus, but maintain their selectivity for a single

motion direction across the different disparities. However, 40 percent of the

cells had their directional selectivities reverse, a finding thought to be

relevant (see below) with regards to the possibility that this area is

registering self motion through the environment.

Smooth Pursuit

MST has been implicated as one of the nodes of the smooth pursuit

control loop. Many cells preferentially fire during pursuit in a particular

direction, even across a dark background. Because the great majority of

cells in this region don't start firing until after pursuit behavior has begun,

it is unlikely that this area is involved in the initiation of pursuit activity

(Newsome et al, 1988). However, both the initiation and maintenance of

pursuit have been shown to be impaired following lesions to the STS known

to include MT and MST. In the studies reporting this deficit, the monkey is

trained to initiate pursuit with a saccade to a moving target. It is a deficit in

representing this target motion that is thought to account for the

impairment of pursuit initiation and not a direct motor impairment.

Consistent with this, saccades to stationary targets were unaffected.

Therefore, there was no deficiency in representing information about

relative position, as the deficit was specific to making saccades to moving

targets. As discussed above, this information about target location in space

is likely represented in posterior parietal cortical regions, where lesions are
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known to impair saccades towards stationary targets. With regards to

pursuit maintenance, the deficit following lesions to MT/MST was an

inability to adequately maintain accurate target fixation. The systematic lag

of pursuit behind target motion suggests that the gain of the system

registering retinal slip was compromised by these lesions. In these cases,

catch-up saccades in the correct direction were made, offering further

evidence that the system encoding retinal positional error remained intact

(Yamasaki and Wurtz, 1991).

The functional distinction between MST1 and MSTd is particularly

evident when considering their respective roles in smooth pursuit.

Microstimulation of MST1, but not MSTd, produces an acceleration of

pursuit towards the side of the stimulation (Komatsu and Wurtz, 1988).

Units in the two subregions also respond quite differently during periods of

pursuit when the target is temporarily extinguished. During smooth

pursuit, if the target disappears for short periods of time (200 msec), pursuit

can be successfully maintained through the gaps. Interestingly, MSTd cell

with pursuit activity continue to respond during this "wink" but MSTI units

decrease their activity during the same interval (Newsome et al, 1988).

Although this could be explained on the basis of greater temporal averaging

in the responses of MSTd cells, experiments where the target was stabilized

on the retina provided similar results. Based on these findings, it has been

proposed that MST1 has an on-line role in the smooth pursuit control loop:

that of detecting the retinal slip of the target and sending this information

forward to a motor center so that compensation can be made for target

motion. MSTI may partially share this task with area MT, as both areas

display similar response characteristics during smooth pursuit. It is

believed that this error signal is registering target motion per se, rather

than positional error, which is carried out by a separate saccade system in

parietal cortex. Possibly, projections from the STS to the dorsal lateral pons

(DLPN), an area implicated in the motor aspects of pursuit, may be
important for transmitting this pursuit signal.
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MSTd has been postulated as being somewhat outside of this loop, with

its function limited to registering the consequences of pursuit activity.

Given that these cells continue to fire during periods when no visual

stimulus is providing an input (during "winks"), the smooth pursuit signal

must be extra-retinal, perhaps an efference copy of the motor signal used to

drive the pursuit. The cells in MSTd with this property also possess a

directionally tuned visual response for large field motion with a selectivity

opposite to that of the preferred pursuit direction. These two signals

therefore summate when pursuit of a target occurs over an illuminated,

textured background, demonstrating ideal response characteristics for a

cell presumed to be involved in monitoring pursuit (Wurtz et al, 1988;

Newsome et al, 1988; Komatsu et al, 1988). The authors of these studies

proposed that this pursuit related activity is sent on to higher cortical

centers like 7a for further processing.

Possible Functional Roles of MST

Now that we have covered the fundamental anatomical connectivity and

physiological response profiles of MST neurons, we will discuss the possible

functional roles that these cells might play. Our discussion will mostly be

limited to a consideration of MSTd, as this area has been the most studied.

As a starting point, we will take for granted that these units' preference for

large translational and radial stimuli is a distinguishing feature that

needs to be taken into account when considering the function of this region.

The extra-retinal smooth pursuit signal will also need to be taken into

account before a complete functional description is made. An inherent

conceptual difficulty of this approach is that any particular behavioral or

perceptual phenomenon under consideration may not be under the control

of any one region of the brain but may be the consequence of several regions

working together. Also, it is very likely that MST is involved in multiple

perceptions and behaviors that we think of as being functionally distinct.

With these caveats behind, let's move forward.
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Optical Flow

Since its discovery about a decade ago, MSTd has been thought to play an

important role in processing optical flow. This proposal was motivated by

the large receptive fields of these neurons as well as the "flow-like" patterns

that these units are selective for. This selectivity has generally been

considered in the context of using these large-field motion patterns to obtain

information about observer movement in the environment, such as

direction of heading (DOH). We will see that the processing of optical flow

information is relevant for other neural phenomena as well, such as

vection, postural stability, and structure from motion. Because of this, we

will first provide a brief introduction to optical flow independent of the uses

primates make of these stimuli.

Optical flow can be defined very generally as spatial-temporal changes

in the optical array and how these changes evolve over time. In this

formulation, the source of these changes, whether observer movement or

movement within the environment, has intentionally been left out. The

optical array is not, as is often believed, the projection of the three

dimensional world onto the retina (this is properly referred to as the retinal

array). The optical array is a formal convention that is independent of

observer orientation. Similarly, optical flow is independent of observer

motion other than translation through the environment. Importantly, the

optical array and optical flow are not effected by either head or eye rotations.

For convenience, we can think of the optical array as the two dimensional

projection of the visual world onto any reference surface that is independent

of eye and head rotation, but depends on the translational movement of the

observer through the environment. Traditionally, the surface of a sphere,
whose center is the nodal point of the eye, has been used as this reference.

The retinal array and retinal flow are influenced by eye and head rotation,
because the reference plane in these two cases is the retina which, being
fixed relative to the orbit, moves with the eye and head. Information about
the three dimensional structure of the environment, as well as observer
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translation relative to this environment, is available from the optical flow

(at least theoretically), as we will see shortly. In addition, important

information about observer eye and head movements is present in the

retinal flow. When the eye and head are stationary, optical and retinal flow

patterns are identical. With rotation, a uniform translational motion field is

added on top of the optical flow pattern to produce the retinal flow. The

problem is that only the latter signal is directly available for the nervous

system to process, and it is not immediately obvious how to separate out the

different components of motion present, so that this information can be

used in a behaviorally relevant way. This task has been formalized as

involving a decomposition of retinal flow into an exterospecific (containing

information about the structure of the environment) and propriospecific

(containing information about observer eye and head motion) components

(Koenerink and van Doom, 1981).

The behavioral effects of optical flow have been well established,

including eliciting the optomotor response, compensatory postural

adjustments, head bobbing in pigeons, and locomotion in lobsters (Pailhous

et al, 1990; van Esten et al, 1988; Fluckiger and Baumberger, 1988; Gielen

and van Asten, 1990). There is much evidence that the geniculo-striate

pathway is important for transferring this information along to extra-

striate visual areas like MT and MST, although evidence from cortically

blind patients offers support for an alternative colliculus-pulvinar-parietal

pathway (Mestre, 1992). Another question is the form in which the nervous

system represents flow information. In the computational and

psychophysical literatures, flow has been represented as a positional

velocity field, with the motion of each image feature encoded with the proper

instantaneous direction, position, and speed. Under natural conditions,
with time this velocity field generally changes, depending on alterations in

the environment and in observer motion. We say that when the velocity field
changes over time that the image is evolving and consequently components

of acceleration as well as other cues are added to the visual stimulus. For
computational, psychophysical, and physiological purposes we often want to
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be able to produce stimuli where the instantaneous velocity field is

presented without additional cues, in order to study its processing in

isolation. This can be done, for example, by presenting the system under

study with just two successive image frames, as three frames are obviously

required to represent information about acceleration. Alternatively, with

the random dot displays used in our lab to study MSTd (Graziano et al, 1994;

see Chapter Two of this thesis), we simulated the approach to a vertical

plane but removed all cues except the positional velocity field. Components

of acceleration were eliminated by displacing the dots every frame in

accordance with the same vector field. Although the velocity field produced

is consistent with an approaching plane, because the velocity field does not

change with time the plane remains a fixed simulated distance away from

the observer.

If the nervous system only has access to the velocity field and does not

process higher order information such as acceleration, or if such a system

is deprived of these cues in the stimulus, ambiguities in the optical flow

arise. The general belief that the human visual system is poor in detecting

acceleration makes the former situation highly relevant. One such

ambiguity that has received considerable attention is that the instantaneous

velocity field produced by rectilinear (straight) translation in the presence of

eye rotation is identical to curvilinear motion with the eyes stationary.

Being able to resolve this ambiguity is important behaviorally; therefore

information about acceleration is needed to make this distinction based on

flow information alone (Warren et al, 1991; Longuet-Higgins, 1986).

Alternatively, other modalities (vestibular input, an extra-retinal signal for

eye movement) could also resolve these ambiguities.

Patterns of retinal flow can be quite complex, particularly in animals not

limited to a terrestrial setting. These types of patterns are all effective

stimuli for units in MSTd. The simplest case occurs when the observer

makes a head or eye movement with no observer translation and no motion
in the environment. In this situation, the retinal flow is a homogeneous
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array of velocity vectors all with the same orientation and length. The

pattern of flow is completely independent of environmental structure,

including relative depth. Recti-linear translation parallel to the line of

sight, in the absence of eye rotation, produces either expansion for forward

motion (all velocity vectors pointed away from the direction of heading), or

contraction for backward motion. The spatial arrangement of the velocity

vectors, as well as their orientation, is independent of environmental

structure and is determined entirely by observer translation. However, the

lengths of these vectors varies depending on the layout of the environment,

e.g. those vectors closer to the observer have greater magnitude than those

further away, for the same retinal eccentricity. For the special case of recti-

linear movement orthogonal to the line of site (with no eye rotation), a

translational pattern of flow similar to that described for eye rotation

results, but the magnitude of the vectors is a function of environmental

layout.

Under natural conditions, we generally track features in the

environment while moving forward. If the feature is exactly in the direction

that we are heading, or if the feature is very far away (the horizon), no eye

rotation is required to maintain fixation and a pure expansion flow pattern

is produced. However, if the feature we are fixating is nearby (a mark on the

sidewalk in front of us), we induce a retinal flow pattern determined by

adding the motion vectors that would have been produced separately from

the translation and the rotation. Adding the radial flow field to the

rotational flow field produces a spiral pattern of flow, assuming some depth

variation is present in the image. The exact pattern of the spiral (ratio of

expansion/contraction to rotation) is determined by the structure of the

environment. As the depth variation in the environment approaches zero,
the instantaneous velocity field approaches that of a pure radial (expansion)

pattern, appearing like a pure observer translation. Because of this, we have

a situation where the optical flow can be ambiguous if the image flow is not

allowed to evolve with time or if only the instantaneous velocity field is

considered. Finally, because our movement trajectories are commonly not
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perfectly straight, we often produce hyperbolic flow patterns during periods

of curvilinear motion. Even more complex flow patterns are possible, as

when, for example, a monkey is swinging through a tree, moving his eyes

and head, all independently. Although it is mathematically trivial to predict

these flow patterns by adding the different motion contributions separately,

going in the opposite direction is much more difficult, and even ill-posed,

especially when higher order information such as acceleration is deprived.

When there is movement in the environment, such as a tree blowing in the

wind, this further distorts the flow pattern, at least locally. We can see that

there is a tremendous amount of potential information present in the global

motion pattern falling on the retina, but it is a nontrivial task to disentangle

all this conflicting information.

Direction Of Heading Determination

Gibson (1950) was the first to recognize that information about the

direction of observer translation could be determined from an examination

of the optical flow. He correctly identified the global focus of expansion in

these patterns as corresponding to the direction of heading. This is true for

all recti-linear movement, independent of whether or not there are

simultaneous rotations of the eye or head. Unfortunately, the nervous

system does not have direct access to optical flow, and the focus of

expansion with respect to retinal flow, to which the observer does have

direct access, only corresponds to the direction of heading when there is no

simultaneous eye or head rotation. Because MSTd responds to the types of

flow patterns produced by observer translation, this region has been

implicated as the location where direction of heading computations are

processed (Judge, 1990). Many workers in MST have labeled it the "ego-

motion" center, and we will address the strengths and weaknesses of this

proposal before considering alternative roles that this cortical area might

play. For convenience, we will use the label ego-motion to refer specifically

to direction of heading determination and distinguish this function from

related issues such as the sensation of vection and the motor
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compensations related to ego-motion such as postural stabilization. These

additional phenomena will be considered subsequently.

The determination of direction of heading from optical flow has received

considerable attention over the past 15 years, particularly in the

computational and psychophysical literatures (Prazdny et al, 1980; Poggio et

al 1991). Far less attention has been given to the issue of ego-speed, possibly

because this parameter is unavailable from optical flow in the absence of

information about the absolute depth of environmental features (Larish and

Flach, 1990). The problem of determining direction of heading can be

formalized as follows: The observer has six potential degrees of freedom for

movement, three rotational and three translational. Alternatively,

Chasles's theorem states that every movement can be decomposed into a

translation and a rotation around a single axis in a unique manner. These

two formulations are formally equivalent; four degrees of freedom are used

to determine the proper axis in the latter description of the problem. Cues

from multiple modalities, including vestibular, auditory, and

somatosensory, may be instrumental in facilitating the determination of

these parameters, but this discussion will be limited to information

provided by retinal flow, perhaps in combination with an extra-retinal

signal about eye rotation. Furthermore, in the analysis that follows, we will

assume that any rotational component (about the vertical axis) of the flow is

a consequence of eye movement and that the head is fixed relative to the

shoulders. All the mechanisms discussed that consider an extra-retinal

signal about eye rotation could trivially be extended to include an efference

copy signal for head rotation.

As alluded to previously, the task of determining direction of heading for

the case of recti-linear translation without eye or head rotation is trivial, at

least conceptually: identify the global outflow of expansion. Whether or not

the nervous system has components capable of detecting this feature in the

flow is another question-and this may not be necessary as other potential

cues about heading direction are also available. However, in the case of
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translation with eye rotation, some decomposition of the different flow

components is necessary before the global focus of outflow, invariantly

represented in the optical flow field, can be recovered from the retinal flow

(Regan and Beverley, 1992). Before we can consider whether the response

characteristics of MST cells are appropriate for ego-motion representation,

we need to examine the effect of manipulating the informational content

present in flow stimuli both on navigational performance and MST single

unit activity. We can then attempt to correlate how these input variables

effect psychophysical performance with how they effect response selectivity

in MST. A close relation between the two would suggest a functional link.

Computation models of DOH determination will also be reviewed, in order

to assess whether the response characteristics of neurons in MSTd are

appropriate for carrying out this task.

Psychophysical Studies

Early studies had concluded that subjects are quite poor at determining

direction of heading based on optical flow alone, with or without eye

rotation. However, in the 1980s several groups working independently

determined that heading accuracy under a wide range of conditions is

approximately 1-2 degrees (Warren et al, 1988), sufficient for the

behaviorally important task of obstacle avoidance, e.g. smashing into trees

while running. Similar results were obtained even for the more complex

case of curvilinear movement (Warren et al, 1991; Turano et al, 1994). One

study (Regan and Beverley, 1982) reported heading judgments as accurate

as 0.03 degrees for rectilinear translation based on detecting the maximum

of divergence in the flow field, but it is now widely agreed that this probably

was a consequence of static positional cues in their displays that are not

available under naturally occurring situations. Although many of these

studies used evolving flow displays with other cues present besides the

instantaneous velocity field, high performance was maintained even when

acceleration was removed from the stimuli (Warren et al, 1991). When the

global orientation of the velocity vectors was kept intact, but the length of
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these vectors was randomized (a "direction" field), heading judgments

remained accurate, but not when the length of these vectors was left

unaltered and the vector orientations were randomized (a "speed" field)

(Warren et al, 1991). Interestingly, units in MSTd display a analogous

response behavior, showing strong selectivity for direction fields but not for

speed fields (Tanaka et al, 1989). Other studies showed that even when

considerable noise is added to the stimuli, heading determination remained

robust (van den Berg, 1992). In addition, reducing stimulus exposure time

had little effect on performance down to 150 msec, much less time than is

supplied by the average intervals between saccades. These studies have

provided strong support that optical flow is used to determine direction of

heading under the limitations imposed under naturally occurring

conditions.

Probably the most relevant perceptual data concerning direction of

heading determination and the possible necessity of an extra-retinal

smooth pursuit signal comes from separate papers by Warren (1988ab; 1990)

and Royden, et al (1992). Warren claims human performance is highly

accurate for simulated approaches to a horizontal plane, a vertical plane,

and a cloud of dots. This was true even when subjects tracked a feature

(through smooth pursuit eye movements) that was away from the direction

of heading. However, if the rotational component to the retinal flow was

added directly to the visual stimulus on the screen, simulating the effects of

eye rotation, performance dropped for the approach to a vertical plane, but

remained high for the two other conditions. Note that in both the actual and

simulated eye rotation sets of conditions, retinal flow was identical. Any

performance change had to be a consequence of extra-retinal information

about eye movement. Warren concluded that subjects could determine

direction of heading from optical flow alone, with or without eye rotation, as

long as depth variation was present in the stimulus.

Royden, et al (1992) confirmed many of Warren's findings, but obtained

much poorer performance in environments containing depth variation
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under the condition of forward translation plus simulated tracking eye

movements. He concluded that an extraretinal signal is required to

determine direction of heading, even when the environment contains

variations in depth. A possible way of reconciling these differences is to

consider the pursuit speeds used by the two groups of investigators. Warren

used pursuit speeds in the range of 0.3 to 1.2 degrees/sec while Royden used

speeds as high as 5 degrees per second (van den Berg, 1993). Perhaps the

visual system, using information contained in retinal flow alone, can

determine direction of heading when the distortions due to rotation are

small compared to the signal from observer translation. With greater

angular rotational velocities, an extraretinal signal would be required to

facilitate this process. Further complicating the story, another group (van

den Berg, 1992) concluded that we can determine direction of heading from

retinal flow alone as long as there are features very far away from the

observer to use as a reference. For these very distant features, retinal flow

depends almost entirely on observer rotation, not on translation,
remembering that the rotational component of the flow is independent of

feature distance. In this study, performance under simulated rotation

conditions was poor for the approach to a cloud of dots whose most distant

points were relatively near to the subject. It would be interesting to

investigate more quantitatively how the signals from translational and

rotational flow interacted under more varied experimental conditions. One

study of interest (van den Berg, 1992) looked at direction of heading

judgments in the presence of noise added to the veridical flow signal. These

results showed that an extra-retinal signal becomes more important as the

amount of noise in the display increases. We conclude that under optimal

conditions direction of heading computations can be carried out by the

human visual system based on optical flow alone but that an extraretinal

signal is required as conditions deteriorate either because of a lack of depth

variation in the stimulus, noisy conditions, or high rotational eye velocities.

A somewhat analogous situation exists in the psychophysical literature

with regards to localizing visual targets in space. When the extraocular
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muscles of the observer are partially paralyzed, subjects have a hard time

identifying target location in the dark, but have no trouble in the light

(reviewed by Matin, 1986).

Cutting (1992) has taken the stance that Gibson's early approach to ego-

motion, emphasizing the importance of optical flow, has resulted in

misguided attempts to extract this information, seemingly at all costs, from

the pattern of retinal flow which is immediately available to the visual

system. He argues that no such recovery process is necessary, and that

information available in retinal flow is sufficient for recovering direction of

heading. He proposes that we use assymetries in the retinal flow field, such

as motion parallax, to guide successive eye movements towards the

direction of heading. His proposal has several deficiencies. Warren

demonstrated that we can accurately recover direction of heading from

displays that contain no motion parallax. Additionally, both Warren and

Royden conclusively showed that repeated periods of smooth pursuit

followed by a saccade to a new environmental feature were not required for

accurate navigation.

Models for Determining DOH

Demonstrating that observers can determine direction of heading from

retinal flow without an extra-retinal smooth pursuit signal does not provide

an algorithm for how this might be done. Knowing the algorithm used by

the visual system to recover DOH would be instrumental in determining

whether or not MST is an appropriate candidate for this function.

Despite the non-equivalence of the outflow focus and DOH under

conditions of eye rotation (with respect to retinal flow), it is common in the

psychophysical and computational literature for authors to defend Gibson's

approach. The claim is made that under conditions of eye rotation the

nervous system must first decompose the flow into translational and

rotational components before using this singularity for navigational

purposes. What exactly is meant by this decomposition is not at all clear.

Neurons respond to stimulus features, such as (potentially) the global focus
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of expansion. If eye rotation is present, this cue is not a reliable indicator of

heading direction. While many of the models discussed below, including

those based on differential invariants and differential motion, claim to

decompose flow, they are really just extracting a feature from the flow field

that, unlike the focus of expansion, is invariant to rotation. If a particular

region of the brain is determining direction of heading in this manner, we

would expect its neurons to respond to these invariant properties rather

than the global focus of expansion. Support for these models cannot be

considered as vindicating Gibson's hypothesis, as the flow properties being

extracted are not derived from, nor dependent on, the stimulus component

he proposed. We will consider one model, which uses an extra-retinal

signal in combination with the global focus of expansion, that can

legitimately be considered a decomposition scheme consistent with

Gibson's proposal.

Some models for determining DOH only have relevance in the artificial

intelligence community. For example, discrete models rely on measuring

the locations and displacements of a small number of points to set up a

system of equations to recover the 6 parameters (3 rotational, 3

translational) that will uniquely describe observer motion. Four to seven

points in two successive frames are generally sufficient with this class of

model (Warren and Hannon, 1990). These algorithms are obviously non-

biological, but are useful in setting lower limits on the amount of

information required for these computations. They are notoriously prone to

noise as they rely on extremely accurate measurements of displacement

and position. Another class of models that has been popular in the

computational community is characterized by a least squares search for

possible surface layouts and observer motions that are consistent with the

observed flow. Although these models are generally resistant to noise and

degrade gracefully, they often depend on severe assumptions about surface

layout in order to narrow the parameter space searched. Recently, T. Poggio

proposed an algorithm that takes advantage of Green's theorem to detect

the expansion component of optical flow in a positionally invariant way.
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Although this model is robust to noise and its implementation is

biologically plausible, he does not offer a way to recover direction of heading
once these types of flow fields are detected (Poggio et al, 1991).

A second class of models based on computing the differential invariants

(Koenderink and van Doom, 1981; Koenderink, 1986; Regan and Beverley,
1982) divergence (div), curl, and deformation (def), recognize that these

properties of flow fields are invariant with respect to eye rotation. This is

because the effect of eye rotation on retinal flow is to add a constant velocity

vector on top of every velocity vector representing the optical flow. Spatial

derivatives like div, curl, and def, which are dependent only on differences

between vectors, are unaffected by such a homogeneous transformation.

One of the appeals of this class of model is that information about the

structure of the environment is also available from these operations, and

many structure from motion algorithms have been shown to use these

operators successfully. Unfortunately, for purposes of ego-motion

representation this dependence on environmental structure turns out to be

a liability. Although these operators are invariant with respect to eye

rotation, they do not possess this property with regards to environmental

layout. For example, Regan and Beverley (1982) have proposed that we

determine direction of heading by detecting the maximum of divergence in

the optical flow field, which is not the same as the focus of expansion.

Although the maximum of divergence is invariant with respect to gaze

direction and eye rotation, it is rarely in the direction of heading. Even if (as

they claim) observers are very sensitive to this flow feature, it is not clear

how they could use this information to extract information about self

motion. In addition to this difficulty, these models are sensitive to noise and

require dense flow patterns with smooth depth variations over which to take

spatial derivatives. Perceptual experiments discussed above show high

levels of performance under noisy conditions, sparse displays, and with

environmental layouts such as clouds that preclude the taking of spatial

derivatives (Warren et al, 1988). Furthermore, units in MSTd have been
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shown to be ineffective in extracting these differential invariants from more

complex flow patterns (Orban et al, 1992).

Several models which rely on differential image motion to recover DOH

have received considerable attention (Rieger et al, 1985; Hildreth, 1992).

Differential motion, which includes both edge parallax and motion

parallax, occurs during observer translation when two environmental

features which occupy nearby locations in the optic array are at different

depths. The magnitudes of the velocity vectors associated with these two

features depend on their depth, with image points located closer to the

observer having a greater retinal velocity for the same eccentricity. If no

head or eye rotation is occurring, the orientation of these two vectors is

identical, and they point along the direction of heading. However, with a

rotational component to the flow, these two vectors are no longer pointed in

the same direction, and neither point in the direction the observer is

translating. However, if a new vector is created by subtracting these two

vectors from one another, this new vector is oriented such that the direction

of heading falls somewhere along an extension of its axis. Two such

subtraction vectors at different spatial locations uniquely determine the

direction of heading by the intersection of their axes of orientation. This

procedure can be repeated across the optical array, creating a new

positional vector field, whose focus of expansion is aligned with the

direction of heading.

Recently, a related model using the affine coordinate system in place of

the Cartesian has been proposed (Beusmans, 1993) which also relies on

local variations in depth to recover direction of heading. Affine flow is zero

for the approach to a vertical plane; it is easy to show that the entire class of

differential motion models fail in environments without depth variation.

This is consistent with our previous discussion of the ambiguities present

in the positional velocity field representing the approach to a vertical plane.

Another problem with differential motion algorithms is that they recover

only the axis of translation. They do not indicate the translational direction
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along this axis and therefore whether the observer is receding or

approaching from the scene. Information about the relative depth of

features in the optic array can provide this information. This class of
models is appealing because several groups (Regan et al, 1982; Warren et al,
1988) have shown depth variation in the stimulus improves heading

performance when extra-retinal information about eye rotation is absent.

As discussed below, to date little sensitivity to differential image motion has

been demonstrated for units in MSTd.

An important consideration, under emphasized in the literature, is the

fact that we have direct access to optical flow information under a number

of situations which leave the eyes stationary relative to their orbits. If these

events are frequent enough to effectively guide behavior, further discussion

of various decomposition schemes is unnecessary. It has already been

mentioned that eye rotation is non-existent when looking in the direction of

heading and when fixating on any distant feature. However, such moments

of stability also occur for short periods of time immediately following

saccades and may even occur briefly during pursuit. If these periods are

long enough for the nervous system to detect the focus of expansion and

occur frequently enough to provide a behaviorally sufficient sampling rate,
we have a very simple solution to our problem. More work needs to be done

comparing the frequency and duration of these rotation-free periods to the

minimal time required to detect the outflow focus.

MST and direction of heading

One of the strongest indications that MST may be involved in ego-motion

analysis is the presence of an extra-retinal smooth pursuit signal that is

independent of visual input. All the previously discussed models recovered

direction of heading from retinal flow information alone. However,
consideration of the psychophysical literature indicates that an extra-

retinal eye signal plays an important role in factoring out the flow
contribution of eye rotation under non-optimal visual conditions (see above.)
From a computation point this task is trivial. Because the effect of eye
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rotation on the flow field is invariant to environmental structure, an extra-

retinal signal can unambiguously represent the component of the flow field

that eye movements contribute. By subtracting this representation from that

of the retinal flow field, the nervous system is left with a representation of

the optical flow field independent of eye movement. This information is then

ready to be fed forward to a network which localizes the focus of expansion

in this recovered field. At this point, direction of heading can be

unambiguously determined, but the coordinate system that this singularity

is represented in remains retinal. Its location on the retina changes with

eye, head, and trunk movements. Positional information about these body

parts will have to be taken into account before the direction of heading can

be represented in a coordinate system that is behaviorally useful to guide

navigation. We are left with a two step process, one step to factor out head

and eye motion and a second to factor out head and eye position. How this

latter process is thought to be accomplished in posterior parietal cortex has

been investigated by other workers in our lab (Andersen, 1989). Given that

MSTd has been shown to respond to the type of flow patterns produced by

both observer rotation and translation, and given the existence of an extra-

retinal signal for smooth pursuit eye movement present in this region, it is

not surprising that MST has been implicated in ego-motion. It has yet to be

determined how the extra-retinal signal effects the tuning properties for

visual stimuli, an interaction which, if consistent with a mechanism for

determining direction of heading, will firmly establish MST as an ego-

motion center. These experiments are currently under investigation in our

lab. It would also be worthwhile to look for an eye and/or head position

signal in MSTd, independent of the smooth pursuit signal, that would

facilitate the required coordinate transformation. Given that there is a

strong projection from MSTd to posterior parietal cortical area known to

integrate such eye and head (and potentially trunk) signals, MST may well

not be involved in this latter process.

Psychophysics has shown that spatial integration of motion signals is

important in direction of heading determination. Performance remains



Chapter 1: Cortical Area MST and Optical Flow: A Review

high under very sparse viewing conditions and large amounts of local

noise, as long as the global pattern of the velocity field remains intact (van

den Berg, 1992). In addition, the focus of expansion need not be present in

the display for accurate heading judgments to be made (Warren, 1992).

Subjects even perform well when the direction of translation is off the

screen. These considerations rule out a local algorithm where the nervous

system recovers DOH by directly detecting the singularity in the optical flow

where the velocity signal is zero. Information over a large spatial extent is

pooled in making this determination and the global pattern of the velocity

field appears important. This is consistent with the response

characteristics of MSTd cells. Responses are brisk to random dot stimuli

even under very low density conditions and when the focus of expansion

falls outside of the receptive field. In addition, MST cells respond well to

flow-type stimuli that have the magnitude of their velocity vectors, but not

their orientation, randomized. Direction of heading judgments are also

robust with these "direction fields" fields (Tanaka et al, 1989). Both MSTd

response selectivity and ego-motion judgments fall off in "speed fields"

where the speed gradients associated with the flow stimuli are maintained

but the orientations of these vectors are randomized. As discussed above,

MSTd cells have a preference for isotropic radial stimuli over axial motion

pattern fields (Tanaka et al, 1989). As movement through the environment

produces isotropic patterns and not axial ones, this selectivity again

supports a role in MST processing optical flow, although not specifically for

the function of determining direction of heading.

As mentioned above, 40 percent of MST cells tuned to disparity reverse

their directional selectivity for linear motion with changes in relative depth

(Roy et al, 1992). The investigators who documented this finding proposed

that cells with this tuning behavior would be ideal candidates for

registering self-motion. They pointed out that when translating forward

and fixating a feature away from the direction of heading, objects in the line

of site behind the fixation point move opposite to the direction of pursuit,

while those in front of the fixation point move in the same direction, but at a
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greater velocity. Cells which reverse their tuning with changes in disparity

would be ideally constructed to register this stimulus. However, how this

information could then help recover direction of heading is not clear. It is

also not clear if the range of distances over which disparity is known to be

detected is sufficient to be helpful in this process, but it remains a

tantalizing possibility. Finally, on more theoretically grounds, Lisberger, et

al (1978) argue that cells with large receptive fields, and not retinotopically

organized ones such as those found in MT, are required for a "sensory-

motor interface." An ego-motion center would appear to belong to this class

of detector, and the large receptive fields of MSTd cells would support its

candidacy.

Most groups, including ours, have shown a significantly higher

percentage of MST cells preferring expansion patterns than any of the other

radial motion types (Graziano et al, 1992; Tanaka, et al 1989). One

investigation by Orban's group (Lagae et al, 1994) found more rotation cells

than those tuned for expansion, but this was probably a sampling error. The

apparent disproportionately large number of cells tuned to expansion is

consistent with the frequency that this type of optical flow pattern occurs

under natural conditions. Backward motion is a relatively rare occurrence,

and we would expect that a region processing ego-motion information

would be underrepresented with cells tuned to this motion type. It can be

argued, however, that expansion may be environmentally more relevant as

a stimulus, independent of its role in determining direction of heading. For

example, as discussed below, looming objects generally pose a much more

impending threat that receding ones. The over representation of expansion

cells may reflect the relevancy of this type of motion pattern for a completely

different process. It is important to re-emphasize that to claim an area is

processing optical flow is not to say that the area is recovering direction of

heading. Many other functions, which we will come to shortly, potentially

have flow stimuli as their inputs.
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A strong case can be made for MST having little role in the

computations that recover direction of heading from optical flow. A great

deal has been made about the positional invariance of these cells with

respect to their preferred tuning (Orban et al, 1992; Saito et al, 1986; Tanaka

et al 1989; Duffy et al, 1991). Positional invariance does not come cheaply in

terms of creating this type of response selectivity with inputs from

unidirectional motion detectors such as those found in MT. Although the

amplitude of the response to the preferred stimulus pattern is affected by

the location of the stimulus center in the receptive field, the response profile

is fairly flat with respect to this placement. For a region of the brain

supposedly involved in recovering direction of heading, we would expect

that the location of the center of flow to have a large effect on the way these

units respond. Although this does not rule out a coarse coding scheme to

represent this information in a distributed way, clearly MSTd cells in

isolation are not coding direction of heading.

An interesting possibility exists that the large degree of positional

invariance observed in MSTd has to do with the choice of stimuli. In every

study that examined this feature of MSTd cells, stimuli without any depth

variation (and therefore without differential motion) were used.

Psychophysical studies (discussed above) have shown that direction of

heading judgments toward surfaces such as vertical planes, which have no

depth variation, are degenerate cases and that performance under such

situations is often impaired. Maybe if MST cells were presented with

stimuli such as clouds of dots or horizontal (ground) planes that do contain

differential motion, less positional invariance would be observed. Our lab is

currently investigating this interesting possibility.

In many species, the selectivities of neurons in regions of the brain

thought to be involved in analyzing optical flow are often restricted to a

limited number of cardinal directions. For example, in the rabbit accessory

optical system (AOS), the preferred tuning of these unidirectional motion

detecting units is restricted to the three axes which correspond to the
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orientations of the semicircular canals of the inner ear. Although the

orientation of flow field lines can vary continuously, depending on the

movement of the rabbit, the limited selectivity range of units detecting this

motion effectively decomposes the flow into three separate channels. The

same approach is taken in several other species. Single unit recording in

the fly lobula plate has demonstrated that cells tuned to global motion

patterns respond preferentially to horizontal and vertical motion, but not to

intermediate directions (Egelhaaf et al, 1988). Three distinct channels tuned

to linear motion corresponding to the orientation of the semicircular canals

have been reported in the flocculus of the pigeon (Wylie et al, 1993ab; 1991).

Because the eyes of many organisms are oriented laterally, the flow

patterns projected onto their retinas consist of parallel fields of velocity

vectors, rather than the radial type patterns observed by animals which

have their eyes situated more anteriorly. It might be expected that higher

primates would take a similar decompositional approach, with a channel

specificity appropriate for the type of flow patterns they are faced with.

Computational models of ego-motion which use spatial derivatives to

decompose the scene into deformation, divergence, and curl (rotation) apply

this approach. A simple implementation of such an algorithm might

postulate units selective for these components of the flow. If the divergence

component of the flow could be extracted from more complex stimuli, MST

cells would directly represent an aspect of flow independent of head and eye

movement. Graziano, et al (1994) ruled out such a channel hypothesis for

MSTd by finding cells selective to spirals, which contain components of both

curl and divergence. In addition, several groups have demonstrated that

single cells in MST are selective for both radial type stimuli and linear

motion patterns, arguing that a decomposition is not being performed along

this dimension either. Furthermore Orban, et al (1992) reported that MST

cells could not extract the elementary flow components (EFCs) of expansion,
curl, and deformation from more complicated stimuli that contained a

mixture of these elements. For example, when a cell tuned for expansion

had a field of rotational flow added transparently on top of this stimulus, the
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cell's response became detuned. Although these findings cannot rule out

MST having a role in direction of heading determination, they do rule out a

potentially economical way of decomposing the optical flow that has

apparently been exploited by other species. The fact that Old World monkeys

do not use such a strategy may simply reflect the greater computational

difficulty of decomposing the more complex flow fields that they are exposed

to as a consequence of anterior eye placement and capacity for smooth

pursuit eye movements.

Erickson, et al (1991) presented findings in MSTd which are also

problematic for assigning this area an ego-motion registering role. They

showed that units in this region responded to patterns of motion moving in

the environment, but not to the equivalent retinal motion produced by

making a smooth pursuit eye movement over the pattern. This seems to

suggest that MST cells are analyzing environmental motion and not

movement of the observer through the environment. They found that the

same was true for MST1, but not for V4 or MT, which responded identically,
regardless of how the retinal motion was produced. If MST is specialized

for ego-motion representation, we would have expected the opposite result.

It would be interesting to see if the same distinction holds for the rotational

and expansional components of flow. If translating the monkey through

space fails to activate these units, despite presenting similar motion

patterns on the retina as those effective in previous single unit recording

studies, it would be difficult to assign an ego-motion role to this cortical

area.

Another puzzling property of MSTd cells is that although their receptive

fields generally include the fovea, the center of these fields is often

eccentrically placed. This is significant, considering that the focus of

expansion of the retinal flow during translation is in the direction of gaze,
and not eccentrically positioned. The only time this is not the case is when

the eyes are stationary in their orbits. If MST cells are involved in analyzing

optical flow, it might be expected that the centers of their receptive fields
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should be located at, or very close to the fovea. The suggestion, made above,
that perhaps judgments of direction of heading are only made during the

short intervals when angular orbital velocity is zero, may explain this

eccentric placement. Also important to reconcile is the absence of a

vestibular signal in these cells. Given the importance of vestibular

information in guiding locomotion, it is hard to understand why MST is not

taking advantage of this information. Maybe the function of MST is limited

to processing ego-motion information available from visual cues and feeds

this information forward to a cortical region where different modalities

related to DOH are integrated.

Although it has been paid less attention in the literature, something

should be said with regards to MST's potential for representing information

about ego-speed. MSTd units generally start responding significantly at

stimulus speeds of approximately 1 degree/sec and gradually increase their

response amplitudes with stimulus speeds up to 20 degrees/sec. Rarely is

band-pass speed tuning observed, where response drops off after a certain

velocity is exceeded. This broad tuning (Tanaka and Saito, 1989; Saito et al,
1986) would make it difficult for this region to accurately encode speed,
although it cannot be ruled out that the information is present in a

distributed manner.

Recently, a neural network model was trained to recover direction of

heading from optical flow, even in the presence of eye rotations (Lappe and

Rauschecker, 1993). The network received no extra-retinal signal and was

able to extract information about observer motion based on retinal flow

alone. This model had only two layers. The input layout was inspired by the

physiology of area MT; the units had relatively small receptive fields tuned

to two dimensional unidirectional motion. After training, the output layer

took on many of the receptive field properties as cells in MSTd. Receptive

fields were large and tuned to all combinations of radial motion as well as

translational motion. Interestingly, all of these units were of the triple

component type. Each unit responded, to some extent, to translation,
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expansion/contraction, and rotation. Unlike area MST, no single or double
component units arose as a result of the training process. Also, although
these triple component units exhibited some degree of positional invariance

in their tuning, there were boundaries within their receptive fields where

their motion pattern selectivity reversed, e.g. the units responded to

expansion in one part of their receptive fields but reversed their selectivity to

that of contraction in another part. Their model depends on these reversals

to encode heading direction. Although some cells in MST exhibit this

property, we have found that they are the rare exception (unpublished

observation). Interestingly, under noisy conditions and as the depth

variation in the input stimulus decreased, performance of the model

deteriorated, consistent with human performance when extra-retinal

information is not available. They observed that their output units became

less positionally invariant, with respect to amplitude of response, as the

depth of the input stimulus was reduced. As mentioned above, our lab is

currently investigating the effect of varying depth (as reflected in

differential image motion) on the response properties of cells in MSTd.

In light of the objections raised above with regards to the suitability of

MST in computing direction of heading, are there regions of the brain that

are better candidates for this function? In several species, the accessory

optic system (AOS) has been implicated in this role. Unfortunately, the

physiology of this region has not received much attention in primates. This

research is particularly needed in the primate because animals in which

this system has been studied in detail are exposed to very different flow

patterns because of lateral eye placement.

The AOS has been extensively studied in birds (Frost et al, 1990). This

literature contrasts the ego-motion role of the AOS with that of the

tectofugal system, which is thought to be involved in the analysis of object

motion in the environment. Cells of this latter neural system are

directionally selective for the movement of small stimuli. These cells have a
double opponent organization to their receptive fields, meaning that they
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prefer opposite directions of motion in their centers and surrounds.

Surround motion in the same direction as that of preferred motion in the

center inhibits the response. Therefore, wide-field motions, such as those

present in flow stimuli, activate these cells very poorly. The AOS, in

contrast, responds poorly to small stimuli and prefers large, textured

motion patterns. Furthermore, cells in one of the component nuclei of this

system, the nBOR, have binocular receptive fields and respond best to

opposite directions of motion in the two eyes (Wylie et al, 1993; Wylie and

Frost, 1993); they therefore respond best to optical flow created while moving

forward in the environment. These cells have no inhibitory surround.

Similar cells have also been studied in the AOS of the turtle (Rosenberg and

Ariel, 1990). The AOS has also been studied extensively in rabbits (for a

review see Simpson et al, 1988). The rabbit AOS has three components, the

medial, lateral, and dorsal terminal nuclei. The dorsal terminal nucleus

(DTN) prefers unidirectional motion along the horizontal axis while cells

that comprise the other two areas prefer near-vertical motion. Cells in all

three nuclei have large, contralateral receptive fields and prefer large,

textured stimuli, consistent with their proposed role of analyzing flow. In

all regions of the AOS studied to date, these directional cells prefer speeds

in the range of 0.5 degrees/sec, about the speed of environmentally induced

flow stimuli.

A direct projection from MST to the AOS has been demonstrated in the

macaque (Maioli et al, 1989). Possibly, these two areas work in conjunction

to encode heading direction. A particularly appealing theory suggests that

MST evolved in animals to deal with the type of flow patterns that arose

with anteriorly placed orbits and vergence eye movements. More

investigation of the primate AOS is clearly called for. Unfortunately, these

studies are difficult because of the relatively small size of these nuclei in the

monkey.

Many of the cells in the dorsolateral pons of the macaque have receptive

field properties similar to those in MT and MST, from which they get
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projections. Their receptive fields are generally broad and are directionally

tuned. Some units prefer large, textured stimuli, while others prefer the

translational movement of small objects (Suzuki et al, 1990). To our

knowledge, these cells have not been tested for selectivity to radial stimuli

like expansion and rotation. Cells from the dorsolateral pons then project to

cerebellar areas known to be important in such eye movement related

behaviors as the optokinetic reflex. Given their known involvement with

smooth pursuit and the selectivity of at least a population of their neurons to

wide-field stimuli, this region should not be ruled out from being involved

with visually guided navigation.

Both the AOS and the pontine systems project to the cerebellum. In a

series of careful studies conducted on the Purkinje cells of the pigeon (Wylie

et al, 1993; Wylie and Frost, 1991, 1993), neurons were found that

preferentially responded to the types of flow produced by descent, ascent,

roll, and yaw movements of the bird. These authors propose that, in the

pigeon, both the AOS and the cerebellum play a role in analyzing flow

information and that they represent different stages along the flow

processing pathway. Most AOS cells are monocular and it is not until the

cerebellum that motion signals are integrated from the two eyes. Studies in

other animals have also found cerebellar neurons selective for flow-like

stimuli in the frog (Ansorge and Gusser-Cornhis, 1977), rabbit

(Ghelarducci et al, 1975), and monkey (Waespe and Henn, 1981). Clearly a

complex network of subcortical structures is in place for analyzing optical

flow, and any proposed role for MST cells should be considered in this

context.

What about other cortical areas that could potentially be involved in

processing self motion? Albright (1989) reported that MT cells representing

the periphery of the visual field have more cells tuned to motion along a

centrifugal (away from the fovea) orientation than any other direction. As

centrifugal motion is induced by forward locomotion and this is the most

frequently observed type of observer translation, this centrifugal bias is
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consistent with MT analyzing motion from this source. A similar

organization in tuning bias is observed in cells within the cat suprasylvian

cortex (Clare Bishop area and the PLLS) (Nawrot and Blake, 1993).

Although it may be unlikely that MT can extract direction of heading

information in isolation, it may be performing some initial processing of the

flow signal for this purpose.

Other candidate regions for processing self motion are areas of parietal

cortex. There are reports in the literature on "parietal visual neurons"

possessing directional selectivity that is opponently organized along

meridians. These cells respond to features moving either towards or away

from the fovea and investigators (Steinmetz et al, 1987) have suggested that

such units play a role in analyzing optical flow. Although it cannot be

determined from this study whether cells in this region were receiving

projections from MST, it is not unlikely given the area from which they

were recording. Neurons from area 7a, which is known to receive a

projection from MST, have been reported with a similar selectivity for

motion towards or away from the fixation point (Motter and Mountcastle,

1981). Like MST, neurons in this area have been shown to respond, in a

positionally invariant way, to rotational stimuli (Sakata et al, 1986). In yet

another region of cortex, cells in the rostral polysensory area have been

shown to be tuned to both expansion and contraction (Bruce et al, 1981;

Hikosaka et al, 1988). The convergence of information from several sensory

modalities in this region may provide a forum for the integration of diverse

cues about ego-motion. Finally, vestibular cortex, which is thought to play a

role in the sensation of vection, may play a vital role in understanding the

way we navigate through the environment.

In conclusion, given that many cortical and subcortical regions possess

response properties appropriate for the analysis of optical flow, we should

not assume that this role is exclusively subserved by MST. It is conceivable

that MST is not involved at all, or only plays a part in recovering DOH from

optical flow. The processing of optical flow information for purposes of



Chapter 1: Cortical Area MST and Optical Flow: A Review

navigation arose very early phylogenetically (the fly can perform these
determinations) and it is quite possible that cortical centers, if involved at
all, may well have evolved on top of, and supplement, a pre-existing more
primitive system. The known connection between MST and the AOS

supports this notion.

Vection

Vection is another perceptual phenomenon that has optical flow

patterns as its input. Vection is the sensation of moving relative to the

environment and although classically thought of as a visual/vestibular

interaction, can also be induced by changes in the acoustic surround and by

tactile motion (Andersen, 1986). Vection is believed to be intimately related

to motion sickness, which is thought to be induced by a mismatch of

vestibular and visual information. It is likely that the determination of

direction of heading and the experience of vection are related. For example,
psychophysical studies have shown that differential motion, arising from

depth variations in the inducing stimulus, is important in some types of

vection (Telford et al, 1992), as well as for direction of heading perception.

Similarly, the maximum of divergence of the positional vector field

representing flow is not thought to be important for either inducing vection

or recovering heading direction (van Esten et al, 1988). Also, the minimum

velocity conditions required to induce vection are similar to those for

detecting flow and motion in general, arguing against two completely

separate motion processing systems (Andersen, 1986). However, there are a

number of studies which show an independence between the two systems.

For example, the corrections made for ego-motion in order to accurately

represent the motion of objects in the environment occurs independently of

the sensation of vection (Brenner, 1993).

Linear vection is the sensation of translating through the environment,
circular vection is the sensation of rotating about the vertical axis

(orthogonal to the ground), roll vection is the sensation of rotating about the
line of sight, and pitch vection is the sensation of rotating around the
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horizontal axis. Given that the patterns of visual stimulation that will

trigger all these types of vection have been shown to effectively drive MST

cells, (they are the same set of stimuli relevant for direction of heading

determination), it is not unreasonable to suggest that MST has a role in

vection perception. Although early reports suggested that vection was more

effectively induced by stimulation of the visual periphery, later studies

showed the sufficiency of presenting the inducing stimuli foveally

(Andersen and Braunstein, 1985; van Esten et al, 1988; Telford et al, 1992).

This is consistent with the observation that a majority of MSTd neurons

include the fovea within their receptive fields. Additionally, the relative

scarcity of MST cells tuned to rotation compared with translation and

expansion may explain why the perception of roll vection is generally so

weak. Furthermore, whether a flow stimulus is perceived as being part of

the foreground or background is relevant to its effectiveness in inducing

vection (Telford et al, 1992). MST cells broadly tuned to disparity might be

employed to help make this distinction if this region was involved in this

processing.

Despite these arguments, there is a good deal of evidence that activity in

MSTd does not correlate well with the perception of vection. The visual

stimuli used in our lab, although at times producing the impression of an

object moving towards the observer, never induced a sense of vection in

humans. Despite this, these stimuli drove the units we studied in MSTd

quite vigorously. Although it is impossible to determine what the monkey

was experiencing during recording sessions, in ignorance we will assume

that their perceptions are similar to our own. Additionally, psychophysical

experiments have demonstrated that the induction of vection using

centrally placed stimuli requires that the display contain depth cues

provided by differential motion (i.e. motion parallax) (Telford et al, 1992). We

have already reviewed MST's apparent insensitivity to such cues. Some

studies have shown that, besides differential motion, vection is sensitive to

deformation in the inducing stimulus (van Asten et al, 1988). This
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observation again argues against MST, which has been shown to have very

few units specifically sensitive to this type of motion (Lagae et al, 1994).

The ratio of cells tuned to expansion versus contraction in MSTd is quite

high. Because of this, if MST were encoding linear vection, we would expect

that latencies for inducing forward vection might be shorter than for

inducing backward vection. The opposite has actually been observed

(Andersen, 1986). Finally, the dynamic response profiles of MST cells and

vection onset are not well matched. The time elapsing between stimulus

initiation and vection is generally about 2 seconds (Fluckiger and

Baumberger, 1988), a much longer period of time than the approximately

80-120 msec delay between stimulus onset and MST response.

It has been proposed that motion information is processed independently

by two separate pathways, a geniculo-striate pathway and a retino-tectal

pathway. This latter system has been thought to be involved in "blind sight"

in cases where, despite destruction of striate cortex, some visually induced

behaviors can still be elicited. Some workers have raised the possibility that

this alternative system carries the inputs for vection perception. However, a

study examining human stroke victims (Straube and Brandt, 1987) with

lesions in primary visual cortex showed that these patients did not

experience vection when presented with stimuli in the blind portion of their

visual fields. As the alternative retino-tectal pathway, consisting of an

ascending projection to the pulvinar nucleus and then extrastriate cortex,

was intact, it was concluded that this latter system was not involved in

transferring visual information responsible for vection. A second group of

patients, with lesions to vestibular cortex, also did not experience vection,

despite having an intact primary visual cortex and normal perception for

object motion.

The balance of evidence reviewed above suggests that the same pathway

is involved in both processing direction of heading information and the

sensation of vection. However, vection is likely realized much later in this

processing stream than either object motion or ego-motion, possibly in
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vestibular cortex. It is unlikely that MST serves as more than an early

processing center for this perceptual phenomenon.

Postural Stability

Postural stability is clearly related conceptually to both vection and ego-

motion and may serve as a sort of link between these two processes. Both

vection and ego-motion are both clearly sensory in nature while postural

stability can be thought of as a subconscious motor function that receives

input from one or both of these systems. Obviously other sensory systems,

particularly the vestibular, play a role in maintaining postural stability; we

will limit this discussion to those aspects of postural stability influenced by

optical flow stimuli and therefore potentially mediated by MST. Although

we are restricting our scope to visual processing, we include under the

heading of postural stability any non-voluntary action, including the

optomotor response, affected by changes in the optical array.

Optical flow has shown to have many motor consequences, including

head bobbing in pigeons, locomotion in lobsters, and compensatory postural

adjustments in humans (Pailhous et al, 1990; van Asten et al, 1988;

Fluckiger and Baumberger, 1988; Gielen and van Asten, 1990). It is thought

that many of these behaviors are "hard-wired" into the nervous system and

involve rather low level processing mechanisms. Postural changes as

extreme as falling have been elicited in infants on the basis of visual motion

stimuli alone. With age, these types of responses are generally attenuated,

suggesting a higher order modulation of these systems through experience.

Is MST an appropriate candidate for the low-level sensory input

processor to these systems? Psychophysical studies on humans have been

ambiguous in their conclusions about the response characteristics of the

perceptual part of this network. Some groups report that postural responses

to optical flow are invariant with respect to environmental structure (van

Asten et al, 1988), consistent with the response profile of MSTd cells (see

Chapter 2). However other groups (Fluckiger and Baumberger, 1988) have
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found the opposite. Consistent with the relative lack of speed tuning of this

cortical area, postural responses are invariant with respect to velocity (van

Asten et al, 1988). However, this same paper reported that motor responses

were dependent on the texture of the inducing stimulus, in conflict with

unit selectivity in MST. In terms of an association between ego-motion and

vection, yet another investigation (Gielen and van Asten, 1990) showed a

dependency of vection on fixation direction, a finding inconsistent with

similar experiments on ego-motion perception. In addition, optical flow can

influence subconscious motor behavior even with an interruption of the

geniculo-striate pathway (Mestre et al, 1992), perhaps through the

colliculus-pulvinar-parietal pathway.

It is not clear from these studies the extent of the interaction between the

systems processing vection and ego-motion or whether either function is

processed in MST. As the data is equivocal, it is hard to make any firm

conclusions with regards to the role MST plays in inducing postural

changes. However, it is reasonable to assume that several different motor

systems are involved because the behavioral consequences of presenting

flow stimuli are so varied, e.g. from inducing smooth pursuit eye

movements with the optokinetic response to changing stride length during

walking. Given MST's selectivity for optical flow type stimuli, we tentatively

propose that MST is part of the visual pathway involved in processing the

sensory component of these postural responses, but that other areas are

likely to be important. How close MSTd lies to the sensory-motor interface of

these systems is difficult to say. It is also quite possible that several parallel

pathways are involved and that the role MST plays may be only facilitory,
and not essential.

Retinal Slip

Another possible role that MST plays, suggested by its anatomy and

physiology, is of detecting "multi-dimensional retinal slip." Retinal slip has

long been recognized to help drive smooth pursuit. When smooth pursuit

motor activity is insufficient to keep a feature perfectly foveated, the
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projection of that feature moves on the retina. This causes cells which are

sensitive to linear motion (such as MT cells and many MST cells) to

respond and presumably feed a signal into the smooth pursuit system to

adjust motor activity in the proper direction to correct for the slip. As an

observer moves through the environment and tracks a feature, a radial

pattern (generally a spiral) of flow gets projected onto the retina. As long as

the feature remains perfectly foveated, the center of outflow for this radial

pattern is in the direction of gaze. But if pursuit activity is not accurate in

keeping this feature foveated, the spiral retinal flow pattern will "slip" on

the retina. Given that MST is sensitive to radial flow patterns, this area may

detect this slip and feed an appropriate error signal into the smooth pursuit

control system. However, this hypothesis suffers from at least one of the

same weaknesses as the ego-motion proposal: cells in MST have

considerable positional invariance in their response characteristics, a

seeming liability for both of these functions. Despite this, some coarse

coding scheme could still accurately represent this information, albeit in a

distributed fashion.

If MST is involved in detecting "multi-dimensional" slip, it would

explain why the majority of MST receptive fields have the peak in their
response sensitivity away from the fovea. As the center of the radial flow
pattern moves away from the fovea, it drives these eccentrically placed

receptive fields more vigorously. This increased activity could then be fed
into the smooth pursuit loop as an error signal. A potential difficulty with
this theory is the recent finding that lesions to MSTI, and not MSTd, effect
smooth pursuit. However, these studies took place under conditions where
the monkey was otherwise stationary while tracking a moving object in the
environment. The type of retinal slip registered under these conditions is of
a small object being displaced on the retina. Our proposal involves the slip
of radial motion patterns across the retina and is most relevant during
observer translational movement. This is the first time, to our knowledge,
that such a possibility has been suggested. Although, at present, it is a
tentative idea at best, it deserves future consideration. Certainly
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involvement with this activity would not preclude MST from contributing to

other types of visual information processing.

Object Motion vs. Flow Segmentation

The heavy backward projection from MST to MT makes it possible that

MST cells are responsible for the receptive field surrounds of MT neurons.

Given the wide-field selectivity of a large percentage of cells in MSTd, it is

likely that only MT cells without inhibitory surrounds are contributing to

their receptive fields. An interesting network arises out of this potential

specificity of connections: MT cells without surrounds are sending

connections forward to MST to create units selective for large-field motion.

These units then feed backwards to produce the receptive field surrounds of

a second population of MT cells.

This network would be ideally constructed to separately parse motion of

objects and motion produced as a consequence of observer movement. To

imagine how this would occur consider the following situation: A monkey

is moving in a straight line through the forest. For the sake of simplicity,

assume that he is looking straight ahead and that his eyes are fixed in his

orbits, and his head is immobile relative to his shoulders. An expanding

pattern of flow is evolving on his retina due to his translation in the

environment. His surroundings, in a spatial (observer independent)

coordinate system, are stationary except for a cheetah that is crossing the

monkey's path. How can the monkey disentangle which retinal motion is a

consequence of his own movement and which is a consequence of the

cheetah's movement? Equivalently: How can the monkey distinguish

proprioperceptive from exteroperceptive components of retinal flow? From a

computation point of view, such a system might take advantage of the fact

that the types of retinal flow patterns that occur as a consequence of self

motion through a rigid environment are fairly constrained. The recognition

that these motion patterns are fairly stereotypical is what originally

motivated many workers in MST to suggest that this region is analyzing
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flow: the selectivities of units in this area are well matched with these

constrained arrangements of the velocity field.

If an object is moving in the environment, most likely part of the optical

flow pattern provided to an observer detecting this event will violate a

rigidity constraint; i.e. a pattern of motion will occur that is consistent with

no possible combination of observer motion and rigid environmental layout.

In general, the majority of the velocity field is compatible with having a

single proprio-specific origin (i.e., arising as a consequence of observer

motion), while small image patches are inconsistent with this source.

These local violations of rigidity correspond to motion of objects in the

environment.

Under some situations, the majority of retinal flow reflects

environmental movement rather than observer translation. This may not

pose a problem as long as the flow from this object motion is not itself

consistent with flow produced from a single set of observer motion

parameters through an equivalent stationary environment. This is

generally the case when multiple objects are moving independently. For

example, if one were to be standing amongst a flock of birds which took off

in flight, a considerable amount of motion would be presented to the

observer. However, because no possible combination of observer translation

and rotation could simultaneously be consistent with producing all of this

varied motion, the nervous system (at least in theory) should not be fooled

into assigning this flow a proprio-specific source. In contrast, looking out

the window of a stationary train while another train passes stimulates

large portions of the retina with motion that is consistent with observer

translation, despite being produced by the movement of an external object.

Due to a failure to veridically parse flow information into extero-specific

and proprio-specific components, this situation gives rise to the well known

illusion of the observer's train moving.

Designing an ego-motion system from scratch, we might build into it the

assumption that the largest part of the optical flow field consistent with the
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rigid translation and rotation of an observer will be considered as observer

induced and be used in direction of heading computations. Through an

unspecified process of spatial integration, inconsistencies in the flow field

(do to object motion) could be smoothed over to obtain a complete

representation of the flow field produced by observer movement. Because

areas of optical flow containing object motion generally have greater

discontinuities in their velocity vector fields than regions where the

environment is rigid, signal smoothing preserves more information

contributed by observer translation than object motion. This process is

important for the perception of object motion as well, because the

contribution to the flow from objects moving across the visual scene is

affected by their own motion through space as well as the motion of the

observer. To recover the former component, observer induced flow needs to

be accurately represented in order to subtract its contribution.

MST is an ideal candidate for this spatial averaging process. As

discussed above, these cells respond to the global motion pattern present in

the display and tend to ignore local inconsistencies in these patterns. Once

motion information reaches this region, these local fluctuations are

smoothed over and cannot be recovered. Under this model, MSTd is, in

essence, recovering what the flow pattern would have looked like had there

been no object motion (like the cheetah in the example above) in the scene.

In area V1, with their units' smaller receptive fields and lesser degree of

spatial averaging, the details of the flow field are preserved. In a simple

implementation of this model, MT would be where the representations in

MST and V1 converged, with the units in MT sensitive to differences in the

two representations. V1 would contribute to the activity in the receptive field

centers while MST would provide the input for the surround. In this

conception, MT would be "real motion" cells which represented that portion

of the flow contributed by objects moving in the environment.

A problem with this proposal is that MT cells with surrounds do not

quite have the required behavior. Although motion in the surround in the
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same direction as that in the center of the receptive field does suppress

these cells' responses (Born and Tootell, 1992), a stationary stimulus in the

receptive field center will not drive the unit, regardless of the motion

presented to the surround. In more jargony terms, what is needed for such

a subtraction to occur is a "double opponent" type organization to the

receptive field. Such cells have been found in MSTI (Tanaka, et al 1993).
They respond poorly to large, moving, textured stimuli, but well when a

stationary object is presented on top of this field. These studies were done

with homogeneous fields of linear translation (unidirectional motion). It

would be worthwhile to try these same studies using radial stimuli for the

background.

It may well be that such a clear-cut segmentation of various flow field

representations into discrete regions will not be possible and that only by

considering the dynamic interactions of these regions operating together

will a full understanding of this process be understood. However, we believe

this is a reasonable framework for considering the issues involved.

To sum up, a possible function of area MST is to represent a smoothed

flow field so that it can be ignored, to allow for detection of moving objects in

the environment. MSTd's spatial integration characteristics and the

specificity for the type of large field motion patterns that are produced by

observer movement are essential for this task. The second essential

component of this model is the necessity for some type of subtraction

process whereby the flow contributed by object motion is extracted. Cells

possessing "double opponent" selectivity would be ideal for this role.

Reference Copy

An extension of the idea presented in the previous section of
"representing the flow so as to ignore it" comes from a proposal in the

psychophysical literature in a study of the Filehne illusion (Wertheim,
1987). This well known perceptual effect is as follows: When a subject makes
a smooth pursuit eye movement in darkness a small, stationary object
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presented away from the fovea appears to move in the opposite direction as
pursuit. The traditional explanation for this illusion is that an efference

copy, extra-retinal signal for pursuit eye movement, feeds into a perceptual

correction system that has insufficient gain to compensate for the fact that

the environmentally stationary target is moving on the retina. The

observation that this effect does not occur in the light suggested to the

investigators that visual information, in the form of flow induced by eye

rotation, feeds into this same correction system and augments the extra-

retinal signal. This combined sensory and motor input they call a

"reference signal." Supporting this proposal, they determined that the

extent a visual reference could attenuate, and even reverse, the Filehne

illusion positively correlated with the optokinetic potential of the stimulus.

Consequently, a background pattern composed of low spatial frequency

luminance components (high optokinetic potential) resulted in the target

appearing to move in the same direction as smooth pursuit, creating a
"reverse Filehne" illusion. They concluded that "Retinal images not only

generate retinal signals, they can also affect or generate reference signals

and thus contribute to, or even determine, their own perceptual

interpretations."

The proposal of the previous section is largely an extension of this same

idea, to include radial flow patterns produced during observer translation.

The fact that MSTd contains extra-retinal smooth pursuit activity adds

further weight to the hypothesis that MST contains such a "reference

signal." There is good evidence that this self/environment distinction is a

relatively low level one and that it is hard wired into the human perceptual

system. 16 week old infants can distinguish between retinal motion

produced by their own movements in the world and the movement of things

in their surroundings (Kellman et al, 1987). Other areas of cortex may be

involved in similar processes. For example, single unit recording studies in

macaque polysensory cortex have located cells which fire in response to

unexpected motion in the visual scene but ignore the self-initiated

movement of the monkey's arm into the receptive field (Hietanen and
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Perrett, 1993). Apparently, an efference copy for limb movement is being

sent to this cortical region and could be playing a similar role as the extra-

retinal eye signal present in MSTd.

Structure From Motion

Optical flow is important in recovering information about the static

structure of the environment. Because MST is selective for flow-like stimuli,

this region may be important in this context.

Moving through the environment provides us with a tremendous

amount of information about its structure. For example, moving ones head

from side to side when one eye is closed will help recover an impression of

depth that normally does not exist under monocular conditions. If instead

of moving the head back and forth, an eye is rotated instead, no such effect

is achieved. Why? With a pure rotation, every feature in the stationary

environment moves over the retina with the same velocity (with regards to

both direction and amplitude). With lateral motion, although the directions

of all the velocity vectors making up the optical flow field are identical, their

magnitude is determined by each feature's distance from the observation

point. Nearby objects move over the retina with relatively high velocities;

objects at infinity do not move at all. For more complex translations, the

situation becomes more difficult to visualize. As long as there is no

rotational component to observer movement, the depth of a feature plays no

role in determining the direction of its motion over the retina, but the speed

of this motion is affected by distance from the observer. If rotation is present

as well as translation, both speed and direction depend on the movement of

the observer and the distance of the feature. The aspects of the flow that are

dependent on the depth structure of the environment constitute motion

parallax. A related phenomenon occurs when objects move relative to the

stationary observer. If these objects contain depth, the displacement of each

feature making up the retinal projection of that object depends not just on

its trajectory in space, but on its distance from the observer. Features of the

object further away from the observer move more slowly across the retina
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than ones nearby. Rather than giving the impression of a distorting shape,
the nervous system somehow compensates for this and each feature

appears to move with the same velocity. Like motion parallax, this

differential motion provides information about the depth structure of the

objects that are moving.

The capacity of the nervous system to extract relative depth information

from the optical flow (Nakayama, 1985) is a phenomenon called structure

from motion (SFM). We should emphasize that only relative depth

information is available from optical flow, not absolute distances. To recover

distance, relative speed between observer and objects is required. Along

with the other roles that MST may be playing with regards to optical flow,

we should consider the possibility that it is involved in SFM processing as

well.

This possibility is unlikely. Although lesions of the STS in the region of

MST have been shown to impair tasks that involve structure from motion

(SFM), these lesions have damaged MT as well (Regan et al, 1992). The large

receptive fields of units in MST are inappropriate for both the analysis of

local differences in flow and the accurate spatial representation required

for SFM computations. While the presence of cells tuned for the differential

invariants of divergence and curl are well documented, Orban's group

(Lagae et al, 1994) has noted that the relative scarcity of units tuned for

sheer and deformation argues against a structure from motion capacity.

More direct evidence against MSTd playing a role in SFM comes from

single unit recording studies that have revealed a lack of selectivity to the

depth structure in the stimulus. Displays of approaching clouds and

approaching planes drive MST cells equally well and no more subtle

differences in response selectivity to these different conditions has been

reported so far. Finally, models which propose an ego-motion role for MST

will be hard pressed to integrate SFM computations into this same region.

Direction of heading determination, to be robust, must be insensitive to

environmental structure, an observation which demonstrates the
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fundamental incompatibility of the two functions. It is much more likely

that SFM information is processed in area MT, whose center-surround

organization provides a reasonable mechanism for retinotopically

representing differential motion in the optic flow (Masud et al, 1989).

Time To Collision

Yet another important piece of information, time to collision (TTC) is

buried within the optical flow. This is somewhat surprising since neither

information about observer translation speed nor absolute distances to

objects can be determined based on flow alone (Nakayama, 1985). Behavioral

studies have indicated that subjects judge TTC on the basis of the

parameter tau, which is the ratio of the angular extent of target size over

the rate of change of its angular extent (Cavallo, 1988). The accurate

measurement of tau has been shown to be important in behaviors such as

catching a baseball. In a study that tested subjects in a paradigm that

involved driving a vehicle, accuracy of TTC estimation increased with

visual field size, binocular vision, higher speeds and driving experience

(Cavallo, 1988). With regards to the neural network recovering this

parameter, theoretical arguments (Regan and Hamstra, 1993) argue for a

system sensitive to isotropic expansion, but not other forms of expansion. To

an approximation, MST cells have this selectivity. As reviewed above, MST

neurons respond poorly to axial expansions and increase their selectivity as

the number of unidirectional motion directions defining the motion

patterns increases (Tanaka et al, 1989).

Psychophysical experiments have dissociated the perception of rate of

expansion from TTC estimation (Regan and Hamstra, 1993). These studies

determined that TTC thresholds are much higher (by two orders of

magnitude) than thresholds for detecting rate of expansion. Unlike TTC

thresholds, the ability to detect rate of expansion obeys a sort of Weber's law,
with sensitivity to fractional differences in expansion rate being

approximately fixed across all speed ranges. It is not clear from the



Chapter 1: Cortical Area MST and Optical Flow: A Review

available data which of these two stimulus aspects MST cells are more

related to, but this would not be difficult to test.

Time to collision neurons have been identified in the nucleus rotundus

of the pigeon (Wang and Frost, 1992). Besides being selective for objects on a

collision course with the bird's head, the maximum firing rate of these cells

always occurs a certain fixed time from collision, independent of the

angular extent of the object. This is not true for cells in MST, where the

firing rate is affected by the angular extent of the object. Finally, unlike cells

in MSTd, nucleus rotondus cells gave poor responses to large stimuli

occupying a substantial portion of the visual field. Although we can not rule

out the possibility that MSTd is encoding TTC in a less specific way than the

collision cells in the pigeon, the response dependency on absolute stimulus

size makes it unlikely.

Collision Detectors

Although encoding time to collision requires considerable response

specificity, the requirements of a "collision cell" are less severe. These

detectors signal the approach of an object on a collision course with the

observer, but do not need to accurately represent the time to that event. Such

units would be useful in low-level avoidance behavior. Recently, it has been

proposed that Orthopteran DCMD neurons are sensitive to such

approaching targets (Rind and Simmons, 1992; Simmons and Rind, 1992).

Unlike cells tuned to expansion in MSTd, these units are not sensitive to the

global motion pattern of the stimulus but detect more local features of the

approaching object. Two cues present in looming stimuli are thought to be

important in DCMD selectivity - the acceleration of image edges and the

increase in edge length. These neurons are apparently not independently

selective to divergence in the velocity field; no difference in response is

observed between two fixed length edges whether they are moving towards

or away from one another. Because DCMD units are specific for local
stimulus attributes, positional invariance with regards to stimulus position
within the receptive field is readily obtained. It is not believed that these
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cells encode tau because, like MST cells, their response is dependent on

stimulus size as well as rate of expansion (Rind and Simmons, 1992).

DCMD cells respond well to expanding solid square stimuli but show

less sensitivity for square outlines. In a study recently completed in our lab,
we probed MST cells with similar patterns and obtained equally vigorous

responses to each of these stimulus classes (see Chapter Two of this thesis).

To account for their results, DCMD workers postulated the presence of

separate channels to detect light/dark and dark/light transitions. The

activities present in the two channels are at some point subtracted from one

another. This explains the poor response of these cells to square outlines.

The lines making up the edges of these stimuli consist of spatially adjacent

dark/light and light/dark transitions. Real world stimuli more generally

approximate the "solid square" case where these transitions within an

object are relatively spatially separated. The purpose of this subtraction is so

that randomly textured stimuli, composed of approximately equal

dark/light and light/dark transitions, give a negligible response. In this

way, specificity is obtained for detecting approaching objects as opposed to

registering the approach of a surface because of the insect's own flight

trajectory. MST cells lack this sort of specificity, and may well play a more

generic role in representing motion pattern, as discussed next. In looking

for "collision cells" in the primate, it may be worthwhile to consider

subcortical areas of the brain serving as the sensory processors of this

behavior, which is likely phylogenetically old.

Motion Pattern

Psychophysical studies have shown that correctly representing object

motion through space, independent of self-motion, depends on detecting the

size of the image of the target, the expansion or contraction of the object, and

differences between the motion of the images on the two retinas (Brenner et

al, 1993), all of which MST is sensitive to. It is easy to see that any rigid

object that turns and/or rotates in depth will potentially introduce

expansions, rotations, spirals, and translations into the flow. Consistent
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with these considerations, sporadically over the past decade investigators

have raised the possibility that MST is involved in the analysis of the motion

patterns objects generate as they move through space (Duffy et al, 1991).

Graziano, et al (1994) developed this idea further, proposing a "motion

pattern" hypothesis for the function of MSTd. They argued that these units

are generically tuned for complex motion patterns in the environment and

potentially can represent such stimuli as a rotating windmill, the

expansion produced by a drop of water in a pond, and the complex motion

generated by a monkey rotating an object in his hands. Selectivity to such

varied stimuli is also a useful way of segmenting the environment into

separate objects and surfaces moving in complex ways. This ideal has

good theoretical appeal. Although area MT has been shown to be selective

for local unidirectional (linear) motion, it is not clear how these local

signals could be integrated into a cohesive perception of say, a cheetah

running across a forest. It is possible that this integration is somehow

occurring within MT itself, although how this would occur is not at all

clear. Given that the heaviest forward connection of MT is to MST, this

latter area would be an obvious choice for a location to "pool" local

unidirectional motion cues into a unified percept. More complex motion

patterns, such as a bird in flight, could be represented in MST by combining

activities across several units tuned to different components of this motion.

This "motion pattern" hypothesis does not preclude MSTd from playing a

role in analyzing optical flow for the purpose of representing ego-motion.

The retinal patterns produced as a consequence of observer motion can

potentially be included within a very generic conception of motion pattern.

In the final section of this review, we will discuss the plausibility of object

motion and self-motion being processed within the same cortical system.

It has been standard practice to consider the response selectivity of units

in MSTd in light of the computational and psychophysical literatures on

ego-motion representation. The pattern motion literature, although not as

rich, may also offer important insights into the physiology of this region.

There are at least three possible general architectural frameworks with
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regards to a network that processes "motion pattern" information. The first

is that such a system does not exist separately from a network of local

motion detectors. The "pooling" referred to above would be an emergent

property of a network of local motion detectors, such as those present in MT,
and no explicit integration of signals need occur. Put simply, under this

scheme the perception of motion pattern is no more than the perception of

its component parts.

The second possibility is that the systems for processing local and

pattern motion are completely independent. Characteristics of the two

networks, such as detection thresholds and dynamic properties, would most

likely be unrelated, except by chance. In other words, the characteristics of

one system could not be predicted based on knowledge of the other. The final

possibility is that the two networks are along different stages of the same

pathway. As local information would be lost at the integration stage, such

an arrangement would place the local unidirectional motion detectors prior

to the motion pattern center. This is exactly what the anatomy and

physiology for MT/MST suggests, and we consider this last alternative the

most likely.

It may be argued that, based on single unit recording studies which

found evidence for such integrative motion detectors in MSTd, that the issue

of whether the nervous system contains a "motion pattern" system is a

mute point. However, finding cells in the brain that respond to a particular

stimulus does not mean that the organism necessarily has access to this

information. In addition, the unit may be responding to an unexpected

aspect of the stimulus. For example, there exist directionally selective cells

in area V1 which are driven quite vigorously (and in a directionally

selective way) by the complex flow patterns of expansion, rotation, and

contraction. An expansion stimulus may drive such a cell quite well, while

a contraction stimulus placed in the same spatial location gives no

response. The experimenter might conclude that he had found cells in V1

tuned specifically to expansion. However, based on their equally vigorous
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responses to small patches of linear motion, it is not believed that individual

V1 cells are directly representing these global motion patterns. The

apparent selectivity for expansion was a consequence of the unit detecting

motion over a small patch of this stimulus. Similarly, if the role of MSTd is

limited to ego-motion perception, its units might still respond to the types of

motion objects create while rotating and translating in depth, while not

being directly involved with the representation of such information. The

approach of our lab (see Chapter Two of this thesis) has been to define these

complex motion patterns in a number of different ways. We believe that the

form/cue invariance in preferred tuning we observed in MSTd argues in

favor of a general role for this area in presenting complex motion patterns

(CMPs). We will review psychophysical studies which are relevant to

determining the level of interdependence between local unidirectional and

pattern motion processing and attempt to reconcile this data with the

anatomy and physiology. Pattern motion is sometimes referred to as

"relative motion", stressing the fact that the perception of CMPs depends on

detecting differences in component local motion orientation. We will argue

that the two concepts are not identical and making this distinction is

important for relating the psychophysical literature with the physiology of

MST.

There is some perceptual evidence from human studies that a relative

motion system does not exist. Two groups (Braddick and Holliday, 1991;

Werkhoven and Koenderink, 1991) observed that the motion patterns of

expansion, contraction, rotation, and shear do not "pop out" in displays that

contain distracters. In these experiments, small patches of motion pattern

are located randomly across a display. All these individual stimuli are

identical, except for one stimulus which contains pattern motion of a

different type. For example, in a display containing several regions of

expansion pattern motion, one example of rotation is embedded. The task of
the subject is to find this exception in a reaction time paradigm. As
additional distracters are added, this task becomes increasingly more

difficult. However, the relation between number of distracters and task
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completion time is an indication of how the information contained in the

stimuli is processed. If the visual system can analyze this information from

different spatial locations in parallel, search time increases much more

slowly than if a "serial search" of each target is required. Stimulus

attributes such as disparity, color, and spatial orientation have been shown

to be processed in parallel as the exception will "pop out" from the field of

distracters. Significantly, linear (unidirectional) stimuli also possess this

property. A small patch of horizontally moving dots will be distinguished

amongst a field of vertical distracters with a search time reflecting parallel

processing of this information. However, as already mentioned, relative

motion patterns do not possess this property. Search time for a rotating

pattern in the presence of expanding distracters indicates that the human

nervous system has to individually examine each pattern sequentially. This

is true of all possible exception/distracter combinations of relative motion

(expansion, contraction, two directions of rotation, shear, deformation). The

authors of these studies argue that the human visual system lacks a

network that specifically can process information about motion pattern.

They argue that a selective attention mechanism is used to integrate these

signals across local, unidirectional detectors (such as those found in MT).

To help clarify this line of reasoning, consider an example from

engineering: A group of scientists have placed temperature sensors at

different depths in the ocean. A readout of this information is available,

giving instantaneous information about each of these different

measurements. The temperature sensors process this information in

parallel, because of separate systems responsible for each measurement.

However, if a scientist needs information about temperature gradients

across the different depths, he has to take the individual measurements

and perform the required calculations by hand. If this scientist had arrays

of such temperature detectors all across the ocean, he would have to

calculate each of their gradients by hand, one at a time. If instantaneous

measurements of these gradients were simultaneously required for all the

arrays, an alternative system would have to be found. To accomplish this,
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each set of temperature measurements from an array could feed into

separate computers that would do these computations, and display each

gradient on a readout. Now the scientist could have immediate access to

both individual temperatures and gradients from different parts of the

ocean. Both these measurements would, in essence "pop out."

The analogy with linear detectors/pattern detectors and MT/MST should

be clear. The fact that pattern motion does not "pop out" would argue

against a specialized neural system, such as MST, playing a role in pattern

motion perception. Instead, some attentional mechanism could be

postulated to somehow pool this information from its distributed form in

MT, just as the scientist in the scenario above had to calculate temperature

gradients by hand. However, there is a potential weakness in this analysis.

It needs be remembered that MT, but not MST, has a clear retinotopic

organization. In the former region, arrays of linear motion detectors

separately analyze local areas of the optical array. The large receptive fields

in MST (which at times can cover the majority of the visual field) would

prevent simultaneous computations of motion pattern in different parts of

the visual field. Keeping this in mind, it would be reasonable to propose that

while this region is involved is processing relative motion information, it

can only handle one pattern at a time. Referring back to our analogy with

the oceanographer, if he could afford only one computer rather than several

to compute gradients, he would have to process the information across

temperature arrays in a serial manner, despite having a system

specifically dedicated to this task. If this is a valid analogy of how MST is

processing motion pattern information, we would expect this area to show

strong attentional effects. An interesting experiment would be to record

from this region, while the monkey performed the "pop out" task for motion

pattern outlined above. We would expect that a cell selectively tuned for the

pattern of the exception stimulus to start firing as the monkey located this

target.
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Another possible objection to the proposal that the primate visual system

contains a region specifically involved in motion pattern processing comes

from psychophysical experiments on the perception of motion behind

apertures. If a square rotates behind an aperture, such that the square's

corners are not visible throughout the rotation, no coherent perception of

rotation is achieved, and the stimulus appears to consist of non-rigid

motion. Similarly, if a line is rotated around an axis perpendicular to the

observer's line of sight, subjects are poor at locating its center of rotation

when the ends of the line are not visible (Shiffrar, 1991). The center of

rotation always appears to be located along the line, regardless of its actual

location. Subjects do not appear to use global or high-level rigidity

constraints in their interpretation of the global rotational motion present in

these stimuli. It is important to recognize that the veridical interpretation of

these stimuli is unambiguously specified if spatial pooling of information in

accordance with some rigidity constraint is imposed. Intuitively, one might

expect that "motion pattern" units with large receptive fields and

considerable spatial integration, such as those proposed for MST, would be

constructed to veridically represent rotation behind apertures. Since,
instead, the perception of rotation seems constrained by the local

information available to local motion detectors such as those present in MT,
it seems unnecessary to postulate another cortical area to represent this

motion pattern.

The fact that some cells in MT can successfully integrate information

from differently oriented features that fall within their receptive fields

(Stoner et al, 1992) but that additional integration fails to occur for more

complex patterns is interesting, but still leaves open a role for an area such

as MST to pool this information together, without imposing any additional

satisfaction of constraints. The phenomena discussed above with regards to
rotation behind apertures merely put limits on the spatial integration
capabilities of a motion pattern system, rather than ruling out its existence.
These psychophysical findings do suggest that the response selectivity of
cells in MST may well be largely determined by the pattern of connectivity
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between MT and MST, rather than arising de nova from local interactions

within MST itself. The failure to properly pool together the local signals

present in these stimuli into a single rigid percept apparently reflects a

failure to unambiguously represent the local motion of the line segments,

do to the aperture problem in MT. The veridical representation of the

motion of the corners of the square (or the ends of line segments), when

visible, does not suffer from this problem because motion signals are

available from nearby features containing at least two orientations. At least

in theory, assuming rigid motion, the unambiguous linear motion of an

object can be recovered by measuring the local motion of two differently

oriented features and, through a process of constraint satisfaction, recover

the motion of the object uniquely consistent with both these measurements

(Hildreth et al, 1987). It should be pointed out that some additional

integration of motion information may be occurring in MST, but that lines

and squares rotating behind apertures provides a particularly challenging

problem. It would be interesting to attempt to correlate the

coherence/independence of these patterns with single unit activity in MST.

If the systems for detecting local unidirectional motion and pattern

motion were completely independent, speed discrimination thresholds for

these motion types would be the same only by chance. Psychophysical

studies have shown that the thresholds for looming, rotation, and linear

motion are all similar (Sekuler et al, 1992). How can these results be

explained in light of our proposal that MST is specialized for analyzing

pattern motion? It should be remembered that, as well as being selective for

radial motion, the majority of units in MST are selective for linear

translation as well. These cells are selective for the motion of an object

moving across an observer's field of view. Although this is an example of

unidirectional motion, we should still consider this a subtype of "pattern"

motion because the perception is dependent on the integration of local

motion signals, in this case all oriented in the same direction. This is

consistent with what is known about the population of cells in MSTd. While
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there are cells tuned to radial type patterns, more than half of the cells in

this region respond to the unidirectional motion of large patterns.

Rather than thinking of MST as a relative motion center, its role in

pooling together local signals should be emphasized, which is why we refer

to it as a "pattern" motion integrator. Psychophysical experiments which

attempt to infer the existence of a relative motion system comparing linear

and radial stimuli miss this distinction. The result that speed

discrimination thresholds for translation, rotation, and expansion are

similar does argue against distinct channels for processing unidirectional

and relative motion. However it does not argue against a system specialized

for pattern motion integration. This is completely consistent with single

unit recording studies in MST, which have found both radial and linear

motion tuning, even within the same unit. One study showed that

superimposing (transparently) a linear motion field over an expanding

random dot pattern generates an illusory shift in the perceived focus of

expansion in the direction of the linear motion (Duffy et al, 1993). Although

this argues that linear and radial motion channels are not independent, it

does not argue against a "pattern" motion center.

Sekuler, et al (1992) argue that detection sensitivities for motion patterns

can be predicted from sensitivities to the component local linear motions

that make up the stimuli. However, different predictions should be made,
depending on whether or not a separate system is available for analyzing

relative motion. If such a pattern motion system does not exist, they argue

for a simple pooling rule: Perceptual performance should increase with the
square root of the number of independently processed motion elements. If
there is a separate channel for such pattern motion processing, a complex

pooling rule should be used to predict relative motion speed sensitivities
from unidirectional thresholds. With complex pooling, relative motion
sensitivities increase linearly with the number of unidirectional motion
signals responsible for the global percept. Since their perceptual data
demonstrated that the simple pooling scheme is more consistent with
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observed performance, the investigators favored a "common channel"

model. Implicit in the design of these studies was the local vs. pattern

distinction we have tried to emphasize. However, it should be pointed out

that these pooling predictions are based on an ideal pattern motion system

and that actual performance is likely to fall short of this. Rather than

arguing against pattern motion sensors per se, we believe these findings

instead put limitations on the performance of these detectors. As

emphasized in the previous discussion of the perception of rotation behind

apertures, if the response characteristics of units in MST are largely

determined by the pattern of connectivity with MT rather than arising de

nova in MST through local interactions, it is not surprising that their

information content is limited by the local motion signals encoded in this

earlier representation. We believe that both of these studies severely

constrain possible mechanisms for generating response selectivity in MST.

The story becomes even more complicated when considering the results

of perceptual fatigue studies (Regan, 1986; Regan and Beverley, 1978).

Investigations that have compared relative and unidirectional motion

channels using this approach have concluded that there are separate

channels for expansion, contraction, rotation, and linear motion. The basic

paradigm is as follows: Human subjects are exposed for an extended period

of time with one type of motion stimulus, e.g. expansion. After this

conditioning they are immediately asked to detect some component of

motion in a test stimulus. The amount of motion in this stimulus is varied

so that assessment of a detection threshold can be made. This threshold can

then be compared with thresholds for this motion type in the absence of a

conditioning period. The results show that different pattern motion

channels can be fatigued separately. An expanding stimulus elevates

motion detection thresholds for expansion but not for rotation, linear

motion, or contraction. A similar independence exists for each combination

of motion types, suggesting an independence of the channels representing

these different stimuli. Based on somewhat different considerations using a



Chapter 1: Cortical Area MST and Optical Flow: A Review

masking paradigm, another group (Freeman and Harris, 1992) has also

argued for the presence of separate relative motion processing systems.

The findings above are difficult to reconcile with our previous discussion

of the coexistence of linear and radial specificity within the same MST

units. To make things worse, double and triple component units have been

characterized in our lab, as well as in others, demonstrating considerable

mixing of motion pattern signals within the same units. A possible

explanation is that partial segregation of these channels still exists in MST,
as indicated by the presence of single component cells that are selective for

a single stimulus type. Perhaps the results of these fatigue experiments can

be explained by the contribution of this subclass of units on perception. We

should mention that although conflicting with published data from our lab

(Graziano et al, 1994), Lagae, et al (1994) reported finding no double-

component cells that responded to both global divergence

(expansion/contraction) and curl (rotation), suggesting an independence of

these channels.

To sum up, we believe the existing evidence from psychophysics is

consistent with a role for MST in pooling together local motion signals into

coherent percepts. As such, it is an appropriate candidate for a region

analyzing, among other stimuli, the motion of objects in the environment.

The representation of these motion patterns, in terms of imposing

constraint satisfactions such as rigidity, is largely determined by the local

motion representation present in MT. In MST some segmentation of motion

pattern into separate channels is preserved, but there is considerable

interaction between these information streams.

Some single unit recording studies (Tanaka et al, 1989ab) obtained poor

responses in area MST to stimuli smaller than 20 degrees. This would seem

to make MST an unlikely candidate for the general analysis of motion

pattern within the environment, as objects rarely subtend this large a
visual angle. These results are likely a consequence of the anaesthetized

conditions under which these experiment were conducted. Working under
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awake, behaving conditions, we have recorded brisk responses using

stimuli as small as 5 degrees in diameter (unpublished observation).

Stimuli even smaller than this may effectively drive MSTd units if the

monkey is trained to attend to these patterns, such as in a discrimination

task. Although not studied systematically, the presence of "rotation in

depth" (rotation about the axis orthogonal to the line of sight) units reported

by some workers offers further support for a motion pattern theory.

In a recently completed study by our group (see Chapter Two of this

thesis), we tested the motion pattern hypothesis by generating CMPs using

a number of different feature types. Besides the traditional random dot

patterns employed in previous MST investigations, we recorded from the

awake, behaving monkey using stimuli that more resembled objects moving

in the environment, e.g. rotating and expanding squares. We also used cues

other than luminance borders to produce "second-order" or non-fourier

motion. Previous studies had given only a cursory consideration to feature

invariance with regards to MST. These earlier studies looked at the effect of

luminance boundary polarity (white stimulus on black background vs.

black stimulus on white background) as well as varying the spatial texture

of the stimuli. Consistent with our results, a relatively high degree of

insensitivity to these parameters was reported.

Our experiments indicate that the preferred motion pattern for a

majority of cells in area MST is not dependent on the features that define

the motion. When statistically significant differences in preferred tuning

existed, the magnitude of these differences tended to be small, compared

with the range of preferred tunings present in the population. In general,
the more robust the neuron's response to motion pattern, the smaller these

differences were. Other parameters of the tuning curves, e.g. response

height, did vary depending on the features used to define the motion pattern

of the stimulus. Apparently, in terms of stimulus selectivity, MST extracts
information related to the motion pattern of the stimulus, ignoring other

stimulus attributes. We have proposed an analogy between MSTd and the
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inferotemporal region (area IT) to describe this finding (Graziano, et al

1994; see Chapter Two of this thesis).

Area IT has long been thought to analyze the spatial organization of

stimulus features. In this region, investigators have reported the existence

of "face" cells "toilet brush cells" and the like. Form/cue invariance has been

reported in area IT as well (Sary et al, 1993). These investigators recognized

that the perception of shape is invariant with respect to location in space,

size, and the cues which define the shape. Using cues based on differences

in luminance, motion, and texture, they found in IT a physiological

correlate of this perceptual invariance. The neurons ignored aspects of the

stimulus unrelated to spatial structure. We have discussed evidence that a

analogous specificity for motion pattern has been delegated to area MST.

The outputs of these two regions converge in parietal cortex, perhaps to pool

together information from these different processing streams.

The form/cue invariance present in areas IT and MST suggests that the

functions these two cortical regions play are potentially quite broad.

Furthermore, the information represented in the motion pattern (MST) and

spatial pattern (IT) pathways is, to a large extent, orthogonal. The

significance of form/cue invariance in visual information processing was

well expressed in Stoner et al (1992) with reference to the representation of

linear motion: "The direction and rate at which an object moves are not

normally correlated with the manifold physical cues (for example,
brightness, and texture) that enable it to be seen. As befits its goals, human

perception of visual motion largely evades this diversity of cues for image

form; direction and rate of motion are perceived in a fashion that does not

depend on the physical characteristics of the object." The reason this quality

has emerged repeatedly in the brain is because of the computational

efficiency is affords. As an analogy, consider our system of mathematics.

We have one system to manipulate any kind of quantity, whether it be

number of dogs, birds, or golf balls. The numerical computations we

perform on these things do not depend on what the numbers are
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representing. Imagine having to use a different set of mathematical rules

for every type of thing in the world. By breaking any analysis down into

orthogonally separate parts, we can avoid elements of redundancy. If the

brain had a separate system for the motion analysis of squares, circles,

triangles, and what not, the brain would be prohibitively large. Thus,

motion analysis occurs independently of the cues/features used to define

this motion. Looked at from the opposite point of view, knowing that the

brain exploits this strategy, we can design experiments that attempt to

discover which axis of the stimulus "attribute space" the region is sensitive

to.

By finding axes along which no differential response is detected, we

further narrow our understanding of which stimulus characteristics are

being represented. This notion of attribute orthogonality is commonly

referred to in terms of "labeled lines." In this conception, perceptual

systems are thought of as being broken down into separate channels. Each

channel can be thought of as a separate axis in a multidimensional

attribute space. This space is defined prior to the introduction of any

particular stimulus. Every possible stimulus that we can perceive falls

somewhere in this space. It is the combination of activity in each of these

channels which determines where in the space the stimulus lies and what

is perceived. By having these axes as independent (orthogonal) as possible,

we not only reduce redundancy, but prevent interference between different

processing domains which need to remain distinct. The orthogonality of

MST and IT selectivity is an excellent example of exploiting this strategy.

These concepts have received attention in the psychophysical literature.

One investigation (Stoner et al, 1992) determined that coherency rules with

respect to plaid stimuli depend on component contrast and spatial

frequency content but are independent of the cues that define these

components. The rules underlying plaid coherency are thought to be the

same as those used by the nervous system to parse local motion signals up

into objects. Another study (Berkeley et al, 1994) demonstrated that the well
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known perceptual illusion of the tilt aftereffect persisted despite the

conditioning and test stimuli having their oriented contours defined by

different cues. Interestingly, the relative saliency of these cues was found to

be important, but cue invariance was reported as long as saliency was

controlled for. Single unit recording studies in area V1 of the macaque have

demonstrated that these neurons are form/cue invariant in their selectivity

for image contours (Albright et al, 1989) and in MT for local linear motion

signals (Albright, 1992). This independence held for bandwidth and

preferred tuning, but not for response amplitude. The average difference in

preferred tuning direction using different stimulus cues did not vary from

zero, and no more than 30 percent of the differences were outside the range

of +- 45 degrees. This is similar to our findings in MST for motion pattern

(see Chapter Two of this thesis).

We have suggested that MST is representing motion pattern and is

effective at extracting this attribute from diverse groups of stimuli. We have

discussed this selectivity in terms of the concept of "labeled lines" and

"form/cue" invariance. The fact that objects moving in the environment can

produce similar patterns of motion on the retina as are produced by

observer translation has been discussed. We believe that a consideration of

the available evidence leaves it an open question whether or not MST is

representing motion from these two different sources. We will now look at

this issue from another point of view: What is the evidence that these two

types of motion are processed together in brain? If the evidence is strongly

against coprocessing, we can further develop models and design

experiments in the context of distinguishing between two mutually

incompatible functions.

Ego-motion vs. Object Motion

In the discussion above of the significance of the back projections from

MST to MT, considerable attention was paid to the importance of
distinguishing motion in the environment from motion as a consequence of
observer translation/rotation relative to the environment. Other authors,
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both in the psychophysical and computational literatures, have emphasized

the importance of being able to separately extract this information for

survival (Swanston et al, 1987; Hildreth et al, 1992). Hildreth (1992) in a

paper which refines Rieger's differential motion model for direction of

heading determination, discusses the importance of discounting motion in

the environment before doing DOH computations. She stresses

discontinuities in the velocity field as being important in object

segmentation, an important first step in determining which environmental

motion to discount. A different approach to this same issue is a series of

models under the heading Focal/Ambient theory. Advocates of this

distinction argue that there are two modes of processing visual

information. "Focal" processing is involved in the analysis of local features

in the environment, such as the shape or motion of an object. "Ambient"

information processing involves the analysis of the visual scene as a whole,

ignoring local features of this environment. The type of calculations

thought to be used in ego-motion representation would fall under this latter

category.

The focal/ambient distinction has some theoretical and intuitive appeal.

For example, while analyzing optical flow data, local disruptions of the flow

field, as caused by object motion, need to be ignored before DOH

computations are made. During object motion analysis, these local

disruptions need to be isolated from the rest of the flow data before this local

information can be processed. In terms of our own exploring of the visual

scene, there is a clear trade-off between processing focal and ambient

information. When carefully studying part of the world, say when reading a

book, vigilance with regards to the rest of the visual scene is compromised.

In addition, there is psychophysical evidence that these two types of

behaviors may use different anatomical regions or the same region in a

different mode (Andersen, 1986). If such a distinction is valid with regards

to object motion vs. global optic flow analysis, it may be difficult to place both

of these functions in area MST. However, this would not necessarily rule

out both object motion and ego-motion having MST in common. It is quite
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possible that MST is a common point in both processing streams and that

later these two pathways diverge. The Focal/Ambient distinction merely

requires a separation of function at some stage in processing. This need not

even be a spatial segregation; it is possible that a single brain region is

doing both types of processing, but at different times.

There is some evidence that object motion and optical flow are processed

in common. Blurring the visual scene (equivalent to a low pass filter) effects

response latencies for object motion, postural balance, and self motion

equally, suggesting a shared common pathway (Straube et al, 1990).

Similarly, patients with minimal cortical visual functions for object motion

perception (Riddoch phenomenon) also have reduced visual self-motion

perception. These studies do not necessarily argue for complete

coprocessing of information from these two modalities, but do imply that

there is some commonality in their streams of analysis. Another study by

Kruk and Regan (1983) found that the ability of pilots to land a plane was

correlated with speed discrimination for looming objects. Interestingly,

thresholds for object motion have been found to be raised during periods of

perceived self-motion, whether self-motion was induced by visual,

vestibular, or somatosensory stimulation (Probst et al, 1986; Wertheim,

1981). These last two studies argue for a fairly close association with

regards to processing ego-motion and object motion.

Much evidence also exists for a certain degree of independence between

the processing streams for ego-motion and object motion. One human

perceptual study (Brenner, 1991) concluded that the speed of the

background, independent of whether the observer thought that he was

moving relative to the scene as a whole, affected the perceived speed of an

object moving over this background. Apparently this correction for

background motion is a local phenomenon and does not depend on a global

representation of observer motion, such as that obtained from ego-motion

processing. Nakayama (1985) in a review of human visual information

processing discusses the possibility of having two separate motion-analysis
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systems. In one conception of this idea, the AOS is identified as analyzing
averaged motion over the whole visual field, while a cortical system is used
to examine local regions of the environment. If this hypothesis is to believed,
area MST would be a likely candidate for object motion perception and the
AOS for self-motion perception. The fact that MST sends projections to the
AOS may explain some of the psychophysical interactions between object
and self-motion perception. In addition, we have previously discussed that
some exchange of information is required between these two systems, if
only to indicate which parts of the velocity field should be disregarded for
their respective functions.

These ideas have a precedence in research on lower animals. A number
of studies investigating the behavior and physiology of the fly's visual
system indicate that this animal has two separate networks for analyzing
the motion of objects and self-motion (Egelhaaf, 1988; Egelhaaf and Borst,
1993). The two systems differ in their interocular interactions, dynamic
properties, as well as their spatial and temporal integration characteristics.
Because of their different response properties, these two systems are not
thought to interact much under natural conditions. Some authors have
proposed that the fly is capable of detecting three distinct types of motion
present within the retinal flow (Egelhaaf and Borst, 1993): large-field motion
such as that produced from course deviation; image expansion occurring
when the animal approaches an obstacle; and the relative motion of an
object against a background. Separate neural networks specializing in the
analysis of each of these motion types have been postulated to control the
respective behaviors of course stabilization, landing behavior, and the
fixation of objects. Note that in our consideration of the primate visual
system, we have lumped together the first two perceptual/motor systems
into a single ego-motion network. Recording studies on the fly have
identified separate neurons selective for these different motion types. Global
motion signals are thought to be represented in the horizontal cells present
in the lobula plate while figure cells are believed to be sensitive to the motion
of small objects.
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The bulk of evidence from modeling, psychophysics, and studies of lower
animals seems to be in favor of at least a partial separation for the
processing of object and self motion. The exact nature of this independence
is not clear. In the extreme case, there would be completely independent
systems for the processing of these information types, perhaps diverging as
early as the retina into geniculo-striate and AOS streams. Alternatively, the
two pathways could diverge much later, with the final representations of
ego-motion and object motion occurring in distinct cortical regions.
Allowing for even greater coprocessing, a single cortical region such as
MST could be thought of as a generic "pattern motion" detector with the self
versus object motion distinction never being made explicit, but rather
present in the distributed representation of this area. Several other roles for
MST were also discussed including vection, structure from motion, and
"reference signal." The available evidence cannot rule out a role for this
region in processing such "optical flow" related information, although
evidence was discussed (for example, with regards to vection) arguing
against MST being the final stage in this process. We believe it is likely that
MST is a least part of the processing stream involved in recovering data
encoded in the positional velocity field of optical flow. As such, it is prudent
at this juncture to characterize MST as a generic "pattern motion"
integration center which can send this information to other regions for
further processing, as required. Unfortunately, the cues which help to
distinguish between the various motion sources have not been well worked
out. Or rather, they have been well worked by our perceptual system, but our
cognitive systems have yet to figure out how this process occurs. Because
these cues may be fairly subtle, physiologist should work on making their
stimuli more ecological when studying phenomena such as ego-motion and
object motion.
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ABSTRACT

Several groups have proposed that area MST of the macaque monkey has a

role in processing optical flow information relevant to the analysis of self

motion. We propose that this cortical region may also be important in

analyzing the complex motions that objects undergo as they move through

the environment. Under this more general conception, MST is involved in

the generic function of motion pattern representation, with its units

responsible for "pooling" local motion signals sent forward from area MT

into a more unified representation. A prediction of this hypothesis is that the

preferred motion pattern for a particular neuron should remain invariant

with regards to the features and cues which define this motion. Accordingly,
we were interested in determining the diversity of stimulus classes over

which these cells can extract information about complex motion patterns

such as expansion, contraction, and rotation. To characterize the responses

of MST cells, we recorded from 190 cells in the awake behaving monkey. We

probed the receptive fields of these neurons with stimuli consisting of

different classes of features and cues, but with the same panel of motion

pattern types. Gaussian shaped tuning curves were constructed for each

experiment based on the differential responses. The different classes of

stimuli included coherently moving random dot patterns (190 cells tested),
solid squares (184 cells tested), outlines of squares (119 cells tested), a square

aperture moving in front of an underlying stationary pattern of random dots

(119 cells tested), a square composed entirely of flicker (119 cells tested), and

a square of non-fourier motion (50 cells tested). When a unit responded well

to multiple stimulus classes, most cells ignored the spatial differences
between stimuli, at least with regards to their preferred tuning. Although

the magnitude of response often varied between classes, in those cells that

responded strongly to multiple classes of stimuli, the orientations of the
tuning curves were similar. The stronger the responses, the more similar
the tuning curves. To perform our analysis, we introduce a novel index of
response strength which employs techniques from statistical hypothesis
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testing. Although preferred tuning direction remained remarkably

invariant across stimulus classes, the amplitude and width of the response

curves often varied considerably. In particular, the presence of flicker in the

stimuli inhibited cell responsiveness. Also, the presence of stationary

features within the patterns appeared to suppress a cell's response to the

moving elements in the display. Despite these qualifications, MST is able to

extract information about motion type for a wide range of stimuli, making it

an appropriate candidate for analysis of environmental motion, as well as

motion introduced by observer translation.

INTRODUCTION

Two pathways for visual information processing in extrastriate cortex

have been identified (van Essen and Maunsell, 1983). One stream, the "what"

pathway, which sends information ventrally into the temporal lobe, appears

to be involved in processing the spatial pattern of the visual scene. The other

stream, projecting dorsally into posterior parietal cortex, has been described

as the "where" pathway and is involved in localizing objects in space and the

related task of processing the motion present in an image. The best studied

area with regards to this latter task is area MT, located on the posterior bank

and floor of the superior temporal sulcus (STS), whose cells have been

shown to respond to simple linear (translational) motion (Maunsell and van

Essen, 1983ab; Albright, 1984). MT sends a heavy projection forward to area

MST, an adjacent cortical region located on the floor and anterior bank of the

STS. Area MST (medial superior temporal region), which is also believed to

play an important role in the motion processing hierarchy, has been
functionally segmented into at least two distinct regions, a ventral lateral
one (MSTI) and a dorsal one (MSTd) (Desimone and Ungerlieder, 1986; Saito,
et al, 1986; Ungerleider and Desimone, 1986ab; Komatsu and Wurtz, 1988).
The cells in MST1 have been shown to have relatively small receptive fields (4
degrees), rather similar in size to those found in area MT at the same
eccentricity and also similar in terms of their preferrence for translational
motion. Cells in MSTd, on the other hand, have rather large receptive fields
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(>40 degrees), are often bilateral in their expanse, and generally include the

fovea. These cells are specific not only for large-field translational motion

but for stimuli that have expanding, contracting, and rotating elements

(Sakata et al, 1985; Saito et al, 1986; Tanaka et al, 1986, 1989; Tanaka and

Saito, 1989). Patterns of this type are sometimes referred to as elementary

flow components, or EFCs, in recognition of the fact that even more elaborate

motion patterns can be considered as linear combinations of these basic

flavors. Our lab's previous investigation in MST showed that some units in

this region have even more complex response characteristics, in many cases

demonstrating a preference for spiraling motion pattern over either

expansion, contraction or rotation (Graziano et al, 1994).

Because these complex motion patterns are built up from local regions of

approximately straight motion, large EFC stimuli can effectively drive many

units in MT lacking inhibitory surrounds. What distinguishes a large

proportion of MSTd cells, besides the increased size of their receptive fields,
is that their specificity for motion pattern is largely invariant with regards

to the placement of the stimulus within the receptive field (Duffy and Wurtz,
1991ab; Graziano et al, 1994). We refer to this property as positional

invariance. This invariance is with respect to preferred tuning; this property

is less pronounced with respect to response amplitude and tuning width.

Tuning invariance with respect to EFCs is never found within MT, where
even minor positional shifts in the placement of the these stimuli will
dramatically alter (even reverse) a unit's preferred tuning (Lagae et al,
1994).

The types of motion pattern MST cells respond to have been associated
with the full field patterns projected onto the during locomotion, as first
characterized by Gibson (1950). This suggests a role for MST in processing
ego-motion and determining direction-of-heading. Many computational and
psychophysical studies have shown that, by analyzing these flow field
motion patterns, the parameters of observer rotation and translation can be
recovered (Andersen, 1986; Prazdny, 1980; Warren and Hannon, 1990). The
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well documented positional invariance of MST units is puzzling - we would

expect that stimulus placement should have a dramatic effect on unit

response selectivity if direction of heading were being represented in a

straight forward way. For example, in the absence of head and eye rotation,
the global focus of expansion in the optical flow field is located in the

direction of heading (DOH). If the nervous system used optical flow to guide

navigation, we would expect neurons performing DOH analysis to be

sensitive to the placement the focus of expansion. It is also unlikely that

positional invariance emerged by chance - the connectivity required for this

property to emerge is most non-trivial and has yet to be worked out.

An alternative proposal for MST, introduced in a previous paper

(Graziano et al, 1994) makes an analogy between MST and area IT in the

temporal lobe. Where IT is thought to analyze spatial pattern information in

the image, MST could analyze motion pattern information. Cells in IT have

been found that are selective for such complex spatial patterns as toilet

brushes and faces (Gross et al, 1972; Desimone et al, 1984). This selectivity is

maintained regardless of stimulus placement within the unit's large

receptive field (Schwartz et al, 1983; Desimone et al, 1984). The positional

invariance in cell tuning for both IT and MST suggests a functional

connection between the two areas. It should be pointed out that the possible

"pattern" motion and "ego-motion" roles for MST are not mutually exclusive

and that both types of information could potentially be processed in this one

region.

Most experiments studying area MST have used random dot stimuli with

different types of global motion (expansion, contraction, translation motion,
etc.) to probe the response properties of these cells. In the current

investigation we have extended this approach to include stimulus types

whose motion pattern is established by features other than random dots,
such as object edges, and then compare these responses and tuning curves

across classes. We also explore the effect of using cues other than
luminance edges to define these features through stimuli created using
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"second-order" or non-fourier motion. These experiments will help to

establish how general are the feature-types MST uses to extract motion

pattern. This work is partially motivated by studies of "form/feature/cue

invariance" recently demonstrated in MT, V1, and IT (Albright, 1992;

Albright and Chaudhuri, 1991). It is also relevant to the discussion of

"labeled lines" of information processing in cortex.

METHODS

Animal preparation

Two Rhesus monkeys were used for these experiments. The first monkey

we studied (89-1) provided data from a single hemisphere; the other

hemisphere was used for an unrelated experiment. We collected data from

both hemispheres of a second monkey (90-2). The first set of pilot

experiments were done with 89-1 and initially involved optimizing

parameters such as stimulus size, type, speed, etc. Only data comparing the

tuning curves of solid squares and random dots was collected from this

monkey. Many more experiments were done with 90-2 than with 89-1.

Because the results were similar in the two monkeys, the data was pooled

for the purpose of analysis. Units located in MSTd were tentatively identified

based on their location in the chamber and depth relative to the dura. In

each of the three chambers recorded from, we mapped out both MSTd and

MT based on the tuning characteristics of cells in these regions. Particularly

helpful in distinguishing of MSTd from MT was the former cells' large

receptive fields and positional invariance with respect to stimulus location

in the receptive field. If we were not sure that a unit was within MSTd, we

excluded data recorded from this neuron from further study. Based on these

initial criteria, 190 cells were considered for this analysis, 119 from 90-2 and

71 from 89-1. All recordings were carried out under awake, behaving

conditions. A fixation task (see below) was used to maintain a stable retinal
image of the stimulus. A scleral search coil and an acrylic skull cap were
implanted into the monkey five days before training on the fixation task
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began. Training and subsequent behavior were reinforced by depriving the

monkeys of fluid before each session and then giving drops of apple juice

upon correct task completion. Following mastery of the behavior, a second

surgery was performed to provide a craniotomy that allowed chronic access

to the brain for recording purposes. Around the craniotomy, a plastic

chamber was attached to allow fixation of a Narashige microdrive which

permitted fine control of electrode position. For these experiments we used

varnish coated tungsten electrodes in conjunction with a guide tube to

protect the electrode as it passed through the dura. All three chambers

attached to the two monkeys were placed vertically for a superior approach

to MST, avoiding striate cortex. Recording sessions lasted 4-8 hours, 5 days a

week, typically collecting data from 0-5 cells per day. Each day, the monkey

would perform anywhere between 500-2000 trials. The animals were given

ample rest periods during each recording session. Because we were

confident of our identification of area MST based on approximate location

and response properties, we chose not to sacrifice the monkeys for purposes

of anatomy. These monkeys went on to become subjects in subsequent

investigations.

Fixation task and data collection

The animal was placed 57 cm away from a wide-field, tangent screen,
projection monitor, which readily allowed stimuli as large as 40 degrees in

diamter to be presented to the monkey. Trials were initiated by the

appearance of a green (0.1 degree) fixation point directly ahead of the

animal. The monkey was required to fixate the target and pull a lever within

600 msec of target onset. After a three second period which included the

presentation of two stimuli as well as an intervening gap, the fixation point

dimmed and the monkey was required to release the lever to receive a
reward. Throughout the trial, eye position was monitored. If eye speeds

exceeded 15 degrees/sec (as in a saccade), the trial was terminated without a

reward. Software monitored eye position every 35 ms and the SD of eye

position was always less than 10 min. of an arc for both animals. Data
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collection was controlled by a PDP-11 computer and stimulus presentation

was controlled by an PC-compatible 386 computer.

Stimuli

We were interested in studying the extent to which the brain extracts the

global motion of a stimulus, and accordingly we used a variety of different

stimulus features to create these motion patterns.

The different visual stimuli used can be divided into different types and

classes. A stimulus's class refers to whether its features are composed of

random dots, lines (empty square), edges (solid square), aperture borders, or

flicker. A stimulus's type refers to the motion pattern these features

undergo relative to one another, namely whether they expand, rotate,
contract, or spiral. An "experiment" refers to the set of data collected using

the whole range of stimulus types from a single stimulus class. In an

experiment, each unique stimulus was repeated 6-12 times for each unit.

The trials for different classes and stimulus types were randomly

interleaved. Justification for using these particular stimulus classes is

given in the following section.

To understand what is meant by stimulus type it is necessary to

understand the concept of a spiral space (Figure 1), originally formulated in

Graziano, et al (1994). We construct this space with expansion and

contraction on opposite sides of the same axis and with the two directions of

rotation on opposite sides of the orthogonal axis. A stimulus whose image

features have their motion vectors pointed 180 away from the center of the

display (expansion) is represented straight up in this space (0 degrees);

contraction is represented straight downward (180 degrees). Going from

expansion to contraction is equivalent to rotating the velocity vectors of the

features by 180 degrees. If, instead, these vectors are rotated 90 degrees,
global rotation in either direction is obtained. For example, rotating the
velocity vectors of the stimulus features 90 degrees clockwise results in
clockwise rotation of the entire stimulus. Spirals result from intermediate

rotations, such as the 45 degree rotations we used in these experiments.
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Spirals contain elements of either expansion or contraction along with

either direction of rotation, giving four basic types of spiral pattern. Using

this representation, a continuous space is formed, with expansion, rotation,
and contraction being discrete cardinal locations within this "spiral" space.

A stimulus "movie" is composed of 60 consecutive image frames lasting

a total of 1 second. Appropriate displacement of image features between

frames gives the impression of continuous motion. Six classes of stimuli

were used, four of which are represented in Figure 2. The "Random Dot"

class consists of dots with limited life-times (333 msec or 20 frames) that

have constant, straight trajectories throughout their path. At the end of a

life-time, the dot is assigned a new random location within the 20 degree

diameter stimulus circle and given a trajectory and speed appropriate for its

new location. The dots were relocated asynchonously, to avoid a coherent

flickering of the stimulus every 333 msec. If the dot moved outside the

bounds of the display window, it was immediately assigned a new, random

location within the display and a new trajectory. The limited life-time of the

features making up these patterns and the constant reshuffling of the dots

virtually eliminates pattern artifacts. Each random-dot display contained

exactly 150 dots per frame, preventing any fluctuation in overall stimulus

luminance with time. For all stimulus types (patterns) the speed of each dot

was a linear function of its distance from the center of the display, in this

case given by the formula S = 0.2 x r, where S is in (distance units)/sec and r

is in distance units. During each dot life-time the velocity of the dot is held

constant, eliminating any element of acceleration or curvature from its
path. The direction of motion for each dot is determined by the type of global

motion desired; i.e. expansion requires each dot to be moving directly away

from the center of the stimulus. Because the speed of each dot is not altered

by this transformation, all stimulus types have the same speed distributions.

Two other stimulus classes, Solid Square (SS) and Empty Square (ES)
were created by having the corners of the squares obey the motion rules
established for the random dot stimuli. However, while the dots of the RD
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class have limited life-times and straight paths, the corners of the squares

present in the other five classes are visible for the entire movie and have

acceleration and curvature consistent with their trajectories being updated

every frame. The Aperture (AP) stimulus was created by moving a virtual

window, identical in spatial extent and motion pattern to the squares from

the ES and SS classes, over a stationary background of random dots of

unlimited life-time. The background is hidden except where the square

aperture window exposes the random dot background underneath. The

spacing between the dots remains constant, and the dots themselves have no

motion, other than to be exposed or occluded with time, depending on the

motion pattern specified for the aperture.

The Flicker (FL) stimuli were identical to the SS stimuli described above,
except that instead of the interior of the square being a homogeneous gray, it

consisted of random pixels turning on and off every frame, creating a

shimmering interior to the square. Dot density was adjusted so that the

luminance contrast of the square against the background was the same as

the Solid Square case. For the ES, SS, FL, and AP classes the minimum size

of the square is 5 degrees of visual angle as viewed by the monkey. This

occurs for the first frame of an expansion pattern and the last frame of a

contraction pattern. Maximum diameter is 20 degrees.

The "Non-Fourier" stimulus was produced by creating a 20 degree

square field of pixels that each have a 50% probability of being on or off. Pixel

polarity does not change from frame to frame unless the imaginary border

of a square obeying motion rules identical to those established for the

squares described above passes over the pixel in question. Where this occurs,
the polarity of the pixel reverses every frame that the virtual square border is

over the pixel. In this class, motion pattern is not defined by luminance cues

but by flicker in the stimulus. Note that this is not the case for the FL class,
which despite containing flicker within the interior of the stimulus also

possesses a square luminance border defining the motion pattern.
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In the discussion that follows, an experiment refers to data recorded

using a single class (RD, SS, ES, FL, AP, or NF) of stimuli for each of the

eight motion types (expansion, contraction, rotation, etc.) in multiple repeats

(usually around eight) of each stimulus. Figure 1 shows two superimposed

tuning curves obtained by sampling either eight or sixteen directions in

spiral space. As demonstrated in this figure, during preliminary

experiments we determined that using eight stimulus directions gave

similar response profiles as sixteen directions. We chose to sample at the

lower density to save recording time. Therefore, a single experiment has

around 64 trials (eight sets of eight). Sometimes less data was collected when

we were unable to hold the cell or when the monkey would not cooperate

with the behavior. We performed up to six different experiments on each

cell. To speed data collection, in each trial two one second stimuli were

presented, separated by a one second gap, during which the monkey had to

continue fixating. Opposite directions of motion were presented in each trial;

e.g. expansion, followed by contraction. The stimuli were all generated off-

line before the experiments and displayed during the trials at a refresh rate

of 60 Hz.

STIMULUS JUSTIFICATION

How different are the six stimulus classes that we are comparing? If the

stimuli are too different, we would not expect a selective cell to exhibit

similar responses for the different classes. On the other hand, if the stimuli

are too close, the fact that they demonstrate similar tuning behavior is a

trivial result. The purpose of this investigation is to test the selectivity of area

MST cells for the global motion properties of a stimulus. We designed our

stimulus classes using spatial features that have been investigated in

previous neurophysiological work, namely random dots, aperture borders,
unipolar edges, and bipolar edges. We also used both luminance cues and

flicker cues to define these features. Although the fourier spectra across the

five stimulus classes with luminance boundaries are quite different, they do

share some similarities in their distribution of power; this is to be expected
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given that we intentionally kept the global motion pattern constant across

classes. It may be objected that since the power spectra share similarities,

the results presented below with regards to form/feature invariance are not

too surprising. However, for some classes the differences are much greater

than the similarities, e.g. RD vs. NF. In addition, because of non-linearities

in the motion processing pathway, it may be difficult to predict unit

responsiveness based purely on analysis of stimulus power spectra. For

example, it has been reported that two thirds of MST neurons reverse their

selectivity for translational motion direction with changes in stimulus size

(Wurtz et al, 1988; Newsome et al, 1988; Komatsu et al, 1988). A cell which

prefers leftward over rightward motion of a small dot may prefer the

rightward motion of a large field of dots. Clearly, this could not have been

predicted from the power spectra of the stimuli. Furthermore, from a

theoretical perspective, the features of a stimulus which allow the nervous

system to distinguish self-motion from object motion are likely related to

cues that are not represented in the fourier energy spectra of the stimulus

(Larish et al, 1990). If units in MST are selectively processing one of these

motion sources and attempting to disregard the other, these neurons may be

sensitive to such stimulus aspects. We are left with having to fall back on

more descriptive comparisons of the different classes.

Early investigations in MST made preliminary observations with regards

to texture and shape invariance in MST tuning (Tanaka et al, 1989; Tanaka

et al, 1986). These studies showed that manipulating qualities of the

stimulus such as contrast polarity (Saito et al, 1986) and texture affected the

amplitude of the response to some extent but had little effect on overall

selectivity for motion pattern. It was also demonstrated that, unlike the

finding with regards to translation motion, sensitivity for EFCs was

independent of the size of the stimulus (Duffy et al, 1991). Stimulus speed

also has little influence on preferred tuning. These early studies suffered

from two important limitations. At the time of these investigations, the

conceptual framework of "spiral" space had yet to be introduced, and the

continuity of motion pattern selectivity progressing from expansion to
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rotation to contraction was not understood. As a consequence, the sort of

tuning curves we will construct from our data, which recover fairly precise

estimates of preferred tuning direction, were not available. Previously, cells

were characterized as being selective for expansion, contraction, rotation, or

some combination of these motion types. As a consequence, large shifts in

tuning would have been missed because of this coarse characterization. By

evenly sampling spiral space with eight stimuli located 45 degrees apart in

this space (8 X 45 = 360) and fitting the differential responses elicited by these

stimuli to a gaussian function, preferred tuning direction can often be

confidently recovered to within a few degrees. This allows us to quantitate

more subtle shifts in tuning across stimulus class and stimulus location in

the receptive field (Graziano et al, 1994). The second limitation of the earlier

studies was the choice of stimulus classes. The range of features and cues in

this investigation are much more diverse.

The random dot class is a sort of "gold standard" for work in MST and its

inclusion in this study was important for comparison purposes. Random dot

stimuli have the advantage of not containing any form cues. These stimuli,

with some legitimacy, have often been considered as simulating optical flow

patterns. Several aspects of these stimuli make them incompatible with the

motion of a single object. This is evident when considering the expansion

stimulus. The dots in this display move outward from the center of the

pattern, consistent with the motion of an object towards an observer.

However the circular boundary of this stimulus, beyond which dots are no

longer visible, is stationary. Thus, the pattern remains exactly the same size.

As this luminance boundary is readily visible due to the relatively high

density of dots within the stimulus, the observer does not get the impression

of a single approaching circular object. Instead, each dot appears as an

independent feature in the visual scene. Although the dots are moving

uniformly and with a motion consistent with either observer or

environmental motion, they are not perceptually grouped into a single object.



Chapter 2: The Representation of Motion Pattern in Form/Cue Invariant MST Neurons

A second distinguishing feature of these RD stimuli is that they do not

evolve within the course of their presentation. In other words, if a random

frame of the image sequence making up the RD movie were examined, it

would be impossible to tell whether this frame came from the beginning or

end of the sequence. Furthermore, if the instantaneous velocity fields

representing the motion pattern of the image were compared at the start

and end of the sequence, they also would be indistinguishable. This is

because there is no element of acceleration in any part of the pattern. This is

accomplished in part by using dot life-times which are finite. The effect

when viewing the stimulus is that of approaching a vertical textured

surface which never gets any closer to the observer. Motion and

displacement are effectively dissociated. Much psychophysical evidence

exists suggesting that such pure "velocity fields", despite giving rise to some

ambiguities, are sufficient in many cases to allow observers to recover

direction of heading (Warren et al, 1988). For these reasons, we think of this

stimulus class as being "flow-like" because it captures aspects of global

motion pattern sufficient for ego-motion while leaving out stimulus

attributes which may be important in the perception of moving objects in the

environment.

The stimuli from the other five classes do evolve with time and contain a

definite form. For these classes, the edges of the squares defining the motion

pattern are displaced from frame to frame. In each case there is an element

of acceleration to the motion of these features. Unlike the RD class, the size

of these stimuli changes over time. Viewed monocularly, the motion of the

ES and SS stimuli is indistinguishable from the motion of real objects in the

environment. The features move uniformly and are perceived as belonging

to a single object. Only the edges of the stimuli contain any information

about the motion pattern of the stimulus, because the interiors of these

squares are homogeneous. Exactly the opposite is the case for the Random

Dot stimulus class, where no information about motion pattern is contained
in the stationary stimulus boundaries. Including both the ES and SS classes
was motivated by looming detectors in other species which respond well to
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SS type stimuli but poorly to ES stimuli. One such example is the locust

DCMD cell (Simmons et al, 1992). Apparently, in this species there are

separate channels for the representation of light/dark and dark/light

transitions. At the motion pattern integration center, these two channels are

mutually inhibitory and, as a consequence, the DCMD cells respond poorly to

ES-type patterns, which have a close spatial juxtaposition of light/dark and

dark/light luminance edges.

The time-averaged luminance boundaries for the flicker (FL) stimulus

class are identical to those of the SS class. Only the interior of the stimulus

has been changed. Where the SS class is a homogeneous gray, the interior of

the flicker appears to "shimmer" because of individual pixels rapidly

turning on and off. Studies performed in our lab comparing response

properties of MT and V1 cells have shown a decreased response of units in

MT to flicker compared to that of directionally selective units in V1 (Qian

and Andersen, 1994). A similar trend is seen when moving up from MT to

MST (Lagae et al, 1994). Neither of these studies explored what effect this

suppression would have on any motion signals also present in the image.

Since the signal from the luminance edges was identical for the SS and FL

classes, by comparing the responses to these two classes we could get an

idea of the extent of this interaction. We initially thought that such an

interaction would be small as the perceptual saliency of global motion in the

FL stimuli appeared similar to that of the SS and ES classes.

Similar reasoning motivated our decision to investigate the AP stimulus

class. Here the luminance contrast is approximately the same as for the SS

and FL classes. Like the SS class, all information contributing to motion

pattern is present at the luminance boundaries of the stimulus. Unlike the
SS class, which has no information regarding motion present in the interior
of the stimulus, the aperture class has clearly visible stationary features

that present a "no motion" signal which is in conflict with information
provided by the luminance boundaries. To our knowledge, the effect of such a
signal on motion processing in other areas of cortex has not been explored,
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although it would be interesting to investigate this with translational motion

in area MT. If these stimuli drive MST cells poorly, we will have evidence
that the presence of non-moving features can provide active inhibition of

motion signals. Perceptually, this might seem to be the case; unlike SS, ES,
and FL classes, these patterns do not produce the impression of a single

object in motion.

In the previous five stimulus classes, luminance boundaries provided

cues through which local motion signals are represented. In the Non-

Fourier class we investigated the effect of using "second order" motion

signals to define motion pattern. Traditional motion energy models cannot

account for the detection of such second-order motion by the nervous system.

A study by Albright (1992) showed that units in MT can respond to

translational motion defined by this cue reasonably well, and we were

interested to see if this was also the case in MST. It should be pointed out

that these stimuli, like the AP class, have stationary features in the displays

that might suppress the motion signal present in these patterns.

ANALYSIS
Extensive use of regression and hypothesis testing was made in

analyzing the data. Some of these techniques are strictly valid only when

linear models are considered. Because much of the time the curves we fit

are nonlinear in their parameters, e.g. gaussians, the probabilities

calculated are approximations. However, for large N, the various indexes

used approximate actual probabilities.

For the majority of neurons, only a subset of the six experimental classes

gave differential responses to different motion patterns. For the remainder,
the response profiles were essentially flat. As we were interested in

comparing the tuning curves obtained from the different stimulus classes,
we wished to exclude those experiments where further analysis would not

be productive. A crucial stage of the analysis involved fitting the data for

each experiment to a gaussian function. However, we could not get the
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models to converge to anything reasonable when the tuning curves were

close to being flat. In addition, comparing the preferred tuning of a flat

response profile is meaningless. A reasonable way of excluding data would

be to perform an ANOVA on each experiment class, looking at the effect of

stimulus type (motion pattern) on cell firing rate. Those experiments where

the variance associated with differences among stimulus type was not

significant could then be excluded from analysis. The problem with this

approach is that it was too sensitive, and very few experiments could be

excluded at the (p<0.05) confidence level. The exclusion process we settled on

involved regressing the data in each experiment to the horizontal line

(response = constant) and then testing the hypothesis that the observed data

was generated by a cell with a response profile adequately reflected by this

model. We will refer to this as the flat model. This would be the appropriate

model for the data in the case that stimulus type had no consistent effect on

cell responsiveness. After regressing the raw data to the flat model, we

obtained the residual variance. This variance is composed of two

components, one part being a within stimulus type variance associated with

the intrinsic variability of the data collected, obtained according to the

formula:

Se N-n (

where s2 is an unbiased estimate of the within trial variance, N is the total

number of trials from the experiment, n is the number of stimulus types, yij

is the firing rate of the jth repeat of the ith stimulus type, and yi. is the mean

firing rate for the ith stimulus type (recall that stimulus type refers to the

global motion pattern of the stimulus in spiral space.) The remainder of the
variance is called the "lack of fit" variance. It is equal to the total variance

less the within trial variance. This value is large when determined for the
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flat model for cells responding preferentially to different directions of spiral
motion. It represents the lack of fit in the data for the model that cannot be
explained after the variance associated with randomness in cell response is
factored out.

The quotient obtained by dividing this "lack of fit" variance by the within

trial variance is distributed according to an F distribution with 7 and N - 8
degrees of freedom, where N is the total number of trials for the experiment

(usually N is around 80). By determining where this quotients lies on the

appropriate F curve, this value can be converted into a probability that is an

unbiased measure of how well the data fits the proposed model. The larger

this value, the better the fit. This probability measure will be referred to as

the Flat Index (FI). It has a minimum value of 0 and a maximum value of

1. Note that the variance quotient is large (and the Flat Index small) when

either the lack of fit is large or the within trial variance is small.

Figure 3 shows data from eight representative experiments with data

sets reflecting a range of flat indexes (FI). As described below, we will use

this same technique to test the goodness of fit for the gaussian models we

recover for these same data sets. The FI represents the probability that the

observed lack of fit from the flat model can be explained by chance. We chose

to be very conservative and only excluded from further analysis those

experiments where the observed lack of fit would have occurred at least 95%
of the time by chance (i.e. a FI of greater than 0.95), assuming the flat model

was valid. Because the data was later to be subjected to a second round of

screening, we didn't wish to eliminate too many experiments at this first

stage.

The experiments passing the above test were then fitted to a general

gaussian function with four parameters - floor, amplitude, mean, and width

according to the general formula:

y = a + b *exp - (x- c) ld

103



Chapter 2: The Representation of Motion Pattern in Form/Cue Invariant MST Neurons

where the dependent variable, y, is firing rate, and the independent variable,
x is stimulus direction. The four parameters fitted are "a" which is the floor

of the gaussian function, "b" which is the amplitude, "c" which is the mean,
and "d" which reflects the width. The choice of using the gaussian model to

fit the data was made for two reasons. In our previous paper on MST

(Graziano et al, 1994) we used the gaussian model to fit response profiles of

MST cells with considerable success. As can be seen in the final frame of

Figure 3, when a unit in MST gives a strong response, the profile

approximates a gaussian quite well. Secondly, three of the four gaussian

parameters effectively characterize relevant dimensions of a neuron's

representational capacity. Amplitude of response may well be related to

saliency, width to discriminability, and mean to selectivity. The statistics

package Systat was used to obtain these fits, along with confidence intervals

for each parameter. Mean square error was used for the loss function.

Hypothesis testing was performed as for the "flat" model above, this time

using the "best fit" gaussian model in place of the flat model. As before, a

lack of fit index was calculated by subtracting the within trial variance from

the total variance, then dividing by the within trial variance. Where this

quotient fell along the appropriate F distribution recovered the probability

that the observed lack of fit could have occurred by chance.

We needed to come up with an index to reflect unit differential response

strength. Directional indexes that only take into account average preferred

and anti-preferred responses suffer from ignoring aspects of the response

profile provided by intermediate stimulus directions. Additionally, it is

desirable for an index of response strength that reflects the within-type

response variability of the data. The smaller this variability, the greater the

representational power of a unit for a particular stimulus attribute. What

was desired, in essence, was an index of "gaussianness" which would

reflect both response amplitude and variability. In this way, the
"robustness" of the signal could be quantitated. To do this, we needed to
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compare the observed data against some appropriate "flat" set of data. To

obtain this, we determined the average firing rate across all trials for each

individual experiment and then adjusted (by shifting) the data for each trial

so that the average firing rate for each stimulus direction was identical for

all eight directions sampled within a particular experiment (Figure 4). In

this way, the data was "flattened." The rational for this transformation is

that within trial variance remains unchanged, allowing meaningful and

powerful comparisons to be made that are extensions of the hypothesis

testing used above. Based on the model parameters obtained from regressing

the original data to a general gaussian function, we calculated the lack of fit

statistic introduced above for each experiment twice, once on the original

data and once on the flattened data. From these two scores, the log of the

ratio of the two probabilities was calculated. In all cases, the lack of fit of the

gaussian model to the un-normalized data was appropriately small, and not

significant. In most cases, the lack of fit for the flattened data was larger,

particularly when the area under the model gaussian curve was large. This

Gaussian Index (GI) agrees well with subjective assessments of the

"gaussianness" of the data as seen in Figure 3 and is an excellent measure

of response robustness. This figure shows experiments representing a

range of GIs. Note that GIs are not calculated for the first two experiments;

in these cases the flat index was above the threshold exclusion criteria of

0.95. We will see in the results section that a cell's flat index and the

gaussian index are related empirically.

RESULTS

The basic findings of this study are evident in Figure 5. This plot shows

tuning curves from a single cell where each of the six stimulus classes gave

significant responses. This cell is tuned for expansion, and this property

holds regardless of the features and cues used to define the motion patterns.

For the Aperture class, although response to expansion remains strong,
selectivity for stimulus pattern is somewhat less than for the other classes; a

significant response to clockwise-rotating apertures was also recorded. Note
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the different scales on the axes for the six plots in this figure and that

response amplitude and width does not possess the same degree of

invariance as preferred direction. This unit was somewhat unusual in

responding strongly to all six stimulus classes. A more representative cell is

shown in Figure 6, which depicts tuning curves for a unit also tuned for

expansion. Responses to FL, AP, and NF stimuli were on the order of 10

times weaker with respect to amplitude than to RD, ES, and SS. However,

except for the Non-Fourier class where little selectivity is observed, a

preference for expansion is maintained. This invariance with respect to

feature was generally observed for all the MSTd neurons that were recorded

from.

Although data from individual neurons gave strong support to the idea

of form/cue invariance in MSTd, we wanted to quantitate and formalize

these findings over a population of MST units. We also wanted to compare

response strength across stimulus class and see how this property was

related to degree of positional invariance. Because our analysis of tuning

invariance depends on quantitating response robustness, we will examine

this latter analysis first.

Response Strength and Experiment Screening

A total of 781 experiments were performed on these cells (639 on cells

from 90-2 and 142 from 89-1). These broke down as follows: 190 Random Dot,
119 Empty Square, 184 Solid Square, 119 Flicker, 119 Aperture, 50 Non-

Fourier. Many of these experiments were eliminated from further

consideration due to their lack of differential responsiveness to motion

pattern type, as indicated by a flat index greater than 0.95, leaving 158 (83%)

Random Dot, 116 (97%) Empty Square, 152 (83%) Solid Square, 57 (48%)

Flicker, 36 (30%) Aperture, 26 (52%) Non-Fourier. The percentage of ES

experiments passing this test is deceptively high compared with the RD and

SS classes. This is a consequence of experiments with the RD and SS
patterns being the only stimulus classes investigated in 89-1. This monkey's

responses in MST were not as vigorous as those in 90-2. Although we have
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no good explanation for this, we cannot rule out differences in visual acuity;

neither monkey's vision was tested. If only 90-2's data is considered, the

proportion of experiments that remained after screening via the flat index

for the RD and SS classes is in line with the 83% found for the ES class.

Allowing for this, the six stimulus classes can be divided into two groups, a

"vigorous response" group made up of the RD, ES, and SS classes, and a

"weak response" group made up of the remaining stimulus classes. This

distinction is clear in examining Figure 7, which looks at the distribution of

flat index by class. This same segregation will be a reoccurring theme in the

analysis that follows.

Data sets from experiments with a flat index less than 0.95 were fit to

gaussian curves. Using the "best-fit" parameters for a general gaussian

model, we calculated the lack of fit statistic for each experiment as detailed

above in Methods. The lack of fit of the gaussian model was not statistically

significant for any of the data sets examined. After calculating this same

statistic on the data set normalized for mean response rate ("flattening" the

data) as outlined above, a gaussian index (our measure of response

strength) was calculated for each experiment. If this measure of response

robustness did not exceed 0.1, the experiment was discarded from further

analysis. A 0.1 threshold value was chosen as it represents the point where

the raw data set and the flattened data set are equally likely to have been

produced by a unit whose underlying response characteristics were that of

the gaussian model obtained through regression. Figure 8 looks at the GI

index distribution as a function of stimulus class. The separation of the

stimulus classes into two groups based on response strength that was seen

for the flat index is also seen in this graph. The difference between the two

stimulus groups is actually underrepresented due to the disproportionate

number of experiments in the poor responding group that were screened out

before this round of analysis. If the flat index screening hadn't eliminated a

substantial number of the FL, AP, and NF experiments, the distribution of

their GIs would have been shifted downward. Table 1 presents a summary
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of the screening, showing the number of experiments for the six classes
passing each round of elimination.

We wanted to assess the empirical validity of our construction of the
gaussian index as a measure of response robustness. An independent
assessment of this property is the accuracy with which the gaussian
parameters can be estimated for an experiment. If a given visual input
produces a response in a particular unit that varies widely from trial to trial
(high intra-type variance) the confidence with which data from such an
experiment can be fitted is low, or equivalently, parameter confidence
intervals large. As explained in Methods, these intervals for the four
gaussian parameters estimated for each regression were calculated. Figure

9 shows the half-width of these confidence intervals for preferred tuning

direction (gaussian mean) plotted against the gaussian index calculated for

the same data set. A strong correlation is seen between the two scores: a

high GI predicts a high level of confidence in the estimation of the fitted
parameters. The confidence intervals for the other three parameters
followed a similar relation (data not shown). As a general trend, higher

gaussian indexes correlated with increased confidence in parameter

estimation. This trend was strongest for the RD data set and weakest for the
AP data set. As a general observation, the size of these confidence intervals

was larger for the FL, AP, NF classes than for the other three classes,
consistent with the less vigorous responses of MST units to this former
group of stimuli.

Figure 10 is a scatter plot of the gaussian index against the flat index.
The figure shows a strong negative correlation between the two indexes.
Given either the flat index or the gaussian index for a particular
experiment, the other score can be predicted with a high confidence. This
suggests that the two measures are reflecting the same aspect of the data. In
other words, an increase in the "non-flatness" of the data is associated with
a predictable increase in the "gaussianness." This is significant for two
reasons. This figure justifies our assumption that the variability of the firing
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rate as a function of motion type can be captured by modeling the response

profile after a general gaussian function. It also justifies our first round use

of the flat index to eliminate experiments from further consideration. Had

we been able to fit curves for these excluded data sets, we would expect the

gaussian indexes to be very low and would have excluded them from

consideration based on the GI score. As can be seen from the figure, a GI of

0.1 corresponds approximately to a flat index of 0.9, justifying our higher

choice of 0.95 for first round elimination.

As well as looking at population distributions, we were interested in

comparing response strengths between experimental classes for individual

cells. Figure 11 contains box plots showing the distribution of log ratios of the

Gaussian Indexes between stimulus classes for individual units. The ratio

of the GIs for the two experiments being compared is a measure of the

relative robustness of the responses to the two stimulus classes. A unit in

question can more precisely represent the global motion of a stimulus when

the stimulus features associated with a greater GI defines the motion. The

stars above the plots in Figure 11 show log ratio distributions whose means

differ significantly from zero. In each graph, one of the six comparisons is

between the same class, and is therefore zero in all cases, e.g. comparing RD

vs. RD. This data is only shown for reference. As can be seen from Figure 11,
as a population MST cells responded well to the Random Dot, Solid Square,

and Empty Square classes and less well to the other three classes. Within

these two groups, the responses were very similar, although often

statistically different. For example, the RD class gave the most robust

responses by this criteria, an effect that, although statistically significant, is

small when comparing RD to the SS and ES classes. Particularly interesting

is the poor response of the Flicker stimulus compared with the Solid Square,
as the mean luminance contrasts and low spatial frequency structure for

these two stimuli are identical. An examination of the significance of this

follows in the discussion. The stimulus classes in order of increasing

response strength are as follows: AP, FL, NF, ES, SS, RD.
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Preferred Stimulus Pattern

Figure 12 shows the distributions of the fitted gaussian mean

parameters for each stimulus class. This parameter reflects the preferred

stimulus type for the unit. The length of the vector in each box corresponds

to the number of units with preferred tuning direction in that range. The

boxes are arranged as per the representation of "spiral space" discussed

above. As has been observed in other studies of area MST, there is a

predominance of cells tuned for expansion. This was true across all

stimulus classes. For the Aperture class, no units tuned to CCW rotation or

contraction were found and for the NF class no cells were found tuned to CW

rotation. This is likely a consequence of insufficient sampling because of the

small number of units that gave significant responses to these stimulus

classes.

Pairwise analysis of the data from different experimental classes will

emphasize comparing the means of the fitted gaussians for the different

experiments done on a single cell. A total of six different stimulus classes

(Random Dot, Empty Square, Solid Square, Flicker, Aperture, Non-Fourier)

were used, although in few of the cells were the responses to all six classes

significant enough to reach this stage for comparison. To quantify tuning

invariance, we made pairwise comparisons of the gaussian means. 15

unique (30 total) potential pairwise comparisons were possible between the

different classes for a single unit. These comparisons, along with the

number of comparisons made are as follows: (RDvsES:105 RDvsSS:126

RDvsFL:35 RDvsAP:18 RDvsNF:19 ESvsSS:93 ESvsFL:32 ESvsAP:17

ESvsNF:19 SSvsFL:31 SSvsAP:16 SSvsNF:17 FLvsAP:10 FLvsNF:9 APvsNF:2).

Table 2 shows the percentage of cases, for each comparison, where the fitted

means of the classes under consideration fell outside each others 95%

confidence intervals. Table 3 shows the average difference in preferred

tuning between each of these stimulus classes. Clearly, those comparisons

involving classes which gave poor responses tended to show larger average

differences in gaussian means. Figure 13 is a series of box plots comparing
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the differences in these fitted means for each of the fifteen comparisons. In

each case, except the comparison of AP and NF (where the N number is

only 2), the difference is centered around zero. In no case was the difference

between any two stimulus classes significantly different from zero (paired T-

test, p<0.05).

In line with the idea of feature invariance, we postulated that any

difference between preferred tuning directions was a consequence of the

noise in the data used to fit the curves. If this was the case, experiments

where the responses to the stimuli were more robust would be expected to

have smaller differences between their preferred tuning directions. Figure

14 shows the magnitude of these differences as a function of the sum of the

gaussian indexes of the experiments whose preferred tuning directions are

being compared. As discussed above, at total of 30 (15 unique) such

comparisons are possible, each of the six stimulus classes being involved in

five comparisons (we are not considering comparing a stimulus class with

itself, which obviously always has a difference of zero). Note that the long
axis of the "wedge" shaped data is along the x-axis, indicating that the

distribution is centered around zero. The variance associated with the

difference in preferred tuning direction is large at small GI sums but small

with high GIs. This is exactly what is expected with a stochastic distribution

of the data around zero, with the GIs as a reflection of the randomness of the

data. This is strong evidence for the invariance of preferred tuning direction

across different stimulus classes.

Other Model Parameters

Although in studying form/cue invariance the preferred tuning direction

has been given particular attention, we also examined the relative
magnitudes of the other three gaussian parameters. Amplitude of response

(i.e. cell firing rate in the preferred tuning direction) is often considered to be
related to the perceptual saliency of the stimulus being represented. The
distribution of the amplitude parameter of the fitted curves as a function of
stimulus class is shown in Figure 15. Not surprisingly, this plot looks
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similar to Figure 8, which shows the distribution of GIs by class. Both

response amplitude and GI reflect response strength, although the GI is a

more sophisticated measure. As has been seen previously, the six classes of

response can be divided into either strong responding or weak responding

classes. A similar analysis was performed for the width of the gaussians

(sigma) in Figure 16 and for the floor (estimate of firing rate in anti-

preferred direction) in Figure 17. The data indicates that the width of the

response curves is somewhat greater, on average, for the FL, AP, and NF

classes, although this rarely reached statistical significance. However,
looking at Figure 16, it is clear that the range of tuning widths is much

greater for these classes. The magnitude of the floor parameter is similar

across stimulus classes, except the Flicker class, where it is somewhat

elevated. The reason for this is that a subpopulation of MSTd cells responded

strongly to all types of motion pattern defined under the Flicker class. An

example of such a unit is shown in Figure 18. Here the responses to flicker

stimuli are compared to the responses for the random dot class. However,
this tonic elevation in response was not observed in the majority of cases,
and in some instances the opposite effect was observed - tonic inhibition. In

the majority of cases, the response to the different stimulus patterns for the

flicker class was generally weak, with some response selectivity for

stimulus type.

A final observation has to do with the dynamics of response decay after

the stimulus has been turned off. Some investigators have reported a sub-

population of MSTd cells that has a particularly slow drop-off of response at

the end of a trial, forming a sort decaying "tail" in the spike histograms. We

observed a similar phenomenon in this investigation for some cells.

Furthermore, the extent of this "tail" varied with stimulus class.
Considering only those classes which gave consistently vigorous responses,
ES had the slowest decay rate, followed by SS and then RD. Figure 19 shows

raw spike trains and response histograms for two cells showing this effect.
Although the effect was often subtle, a clear trend over many cells was
evident. Also interesting was the fact that the tail was largest for stimulus
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patterns somewhat away from the preferred tuning direction (e.g. 45 degrees

or so in spiral space).

Positional Invariance

For a few cells that we were able to hold for an extended period of time,

the battery of experiments was repeated with the stimuli positioned at a

different location in the unit's receptive field. Because MSTd receptive fields

can be quite large, in some cases the center of the stimulus could be moved

as far as 50 degrees still elicit a strong response. The property of positional

invariance with respect to tuning direction has been noted in several labs,

including our own (Graziano et al, 1994). In our previous investigation in

MST, units were tested for this property over ranges of only about 20 degrees,

due to limitations of the display device. The large screen used in this study

allowed us to position the stimulus over much larger differences in visual

angle. Figure 20 shows one such case where both positional and form/cue

invariance were simultaneously tested in the same unit. Data was

separately collected for stimulus placement in three corners of the neuron's

receptive field, with these three locations forming the apexes of an

equilateral triangle. Each stimulus location was 50 degrees of visual angle

away from the other two. In each location, tuning curves for all six stimulus

classes were obtained. To a large extent, stimulus specificity in terms of

preferred response direction was maintained independent of both stimulus

class and location.

DISCUSSION

This study has demonstrated form/cue invariance in macaque area

MSTd, supporting the idea that this region generically represents complex

motion patterns in the environment, such as those produced by moving

objects. Previous studies of area MST have given only a cursory

consideration to feature invariance. These studies looked at the effect of

luminance boundary polarity (white stimulus on black background vs.

black stimulus on white background) as well as the spatial texture of the
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stimulus (Saito et al, 1988). Consistent with our results, they found a
relatively high degree of insensitivity to these parameters. However, these

studies looked more at response amplitude than tuning direction and

sampled only a few directions in spiral space. In addition, the range of

feature types that we investigated in this study far exceeded those of

previous work. Finally, our stimulus cues included second-order motion or

"non-fourier motion" in one of the classes. This is the first time, to our

knowledge, that non-fourier motion has been studied in MST.

One group (Tanaka et al, 1989ab) has obtained poor responses in area

MST to stimuli smaller than 20 degrees. This would seem to make MST an

unlikely candidate for the analysis of movement within the environment, as

objects rarely subtend this large a visual angle. These earlier results are

likely a consequence of recording under anaesthetized conditions. Working

with the awake, behaving monkey, we have recorded brisk responses using

stimuli as small as 5 degrees in diameter (unpublished observation).

Stimuli even smaller than this may potentially drive units if the monkey is

trained to attend to these patterns, such as in a discrimination task.

Although not studied systematically, the presence of "rotation in depth"

(rotation about the axis orthogonal to the line of sight) units reported by

some workers offers further support for a motion pattern theory, as this

type of motion pattern cannot be produced by self-translation in a stationary

environment. In the present study, we tested this motion pattern hypothesis

by generating complex motion patterns using a number of different feature

types. Our choice of features and cues is discussed above in a separate

section.

Neural Coding

We were interested in comparing across stimulus classes the gaussian

tuning curves modeling the response profiles of MST cells tuned to complex

motion patterns. Certain assumptions guided this approach, in particular

that selectivity for stimulus pattern is encoded as the mean firing rate of a

neuron. Although this idea is not new and has received broad support, this
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assumption has not received universal acceptance. Therefore, before
discussing our data, we will explicitly lay out the conceptual frame-work for
neural coding which motivated this study.

The four parameters of the general gaussian model describe (with

regards to a particular stimulus class) a unit's preferred tuning, its

amplitude of preferred response, its tuning width, and its background
response. As demonstrated in this study and our previous one (Graziano et

al, 1994), a continuum of response selectivity exists in MST such that all

directions in "spiral space" are (Graziano et al, 1994). Because the tuning of

MST cells is fairly broad, any particular stimulus will drive units whose
preferred tuning lies within a range of directions around the stimulus

pattern. Complex motion patterns can be distinguished by identifying the

population of cells giving the strongest response to the stimulus. Therefore,
motion pattern is encoded in the differential activity of separate populations

of cells distinguished by their preferred tuning. In this framework,
stimulus saliency is partially related to the magnitude of the response. By
decreasing the motion signal in a stimulus, for example by decreasing
luminance contrast, the activity of all units selective for this signal will fall
off. With such changes in stimulus saliency, the location of the peak in the
population response profile will remain unchanged. However, the
difference between the activity of units that are tuned to the preferred
stimulus compared to those tuned to the anti-preferred direction will have
decreased. Accordingly the signal to noise ratio falls with luminance
contrast, and precision in motion pattern representation decreases.

The third parameter of a gaussian model, tuning width (variance, or
sigma), reflects the specificity of a particular unit for motion pattern.
Neurons with broad tuning curves respond significantly to a wide range of
motion patterns. In terms of population coding, when tuning curves are
narrow fewer units are required to represent a stimulus pattern with a
given level of confidence. A final consideration: If noise to added to a
stimulus, depending on how the specificity of the units is constructed, the
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amplitude of the response in the preferred direction may remain the same,
but the non-preferred responses may increase in magnitude. Like

decreasing luminance contrast, the effect is again to flatten out the tuning

curve, but since the floor of the response is raised, rather than the

amplitude lowered, the area under the curve increases. Therefore,
amplitude of preferred response is potentially a poor measure of saliency.

In this study, we recovered multiple tuning curves from the same unit,
but used different stimulus attributes to define the motion pattern for each

of these curves. Systematic differences in these curves between stimulus

classes presumably reflect variations in how the motion signal is

represented. Our principle prediction, based on the model for neural coding

presented above, was that if MST is generically representing motion

pattern, preferred stimulus type should remain invariant across stimulus

class. Secondly, we would expect to see some correlation of response

strength with the saliency of the perception.

Tuning Invariance

Our experiments indicate that the preferred motion pattern for a

majority of cells in area MST is not dependent on the features that define the

motion. When statistically significant differences in preferred tuning

existed, the magnitude of these differences tended to be small, compared

with the possible range of preferred tunings. As a population, the more

confident we were with the gaussian models we obtained from the data, the

smaller these differences were. Other aspects of the tuning curves, i.e.

response height, did vary depending on the features used to define the

motion type of the stimulus. It would be reasonable to suggest that these

differences reflected differences in stimulus saliency. From our data, it is

evident that the stimulus classes RD, ES, and SS gave more robust responses

than FL, AP, and NF. Subjectively, the strength of the motion associated
with RD, ES, and SS is much greater than with AP and NF, although a
future study needs to be done to quantitate this. The poor response to FL is
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somewhat puzzling, given the apparently strong motion signal associated

with this stimulus.

The SS and FL stimuli are identical in terms of their time-averaged

luminance contrast. The only difference is that whereas the square in SS is

a homogenous gray, FL contains a square composed of flickering dots. The

tuning curves obtained from the SS class were, on the whole, much more

robust than those obtained using the FL class. A "motion opponency" stage

in the processing of motion signals may explain this result (Qian and

Andersen, 1994). In a natural scene, motion borders have a large amount of

random energy on top of the "true" motion energy associated with

movement of the border. This is the case whenever a motion boundary is

occluding or uncovering background features. This random spatio-temporal

energy is viewed as noise by a motion detection system. Much of this noise

can be filtered out by a process of "motion opponency", whereby motion

signals are smoothed in a local region of image space. The 3-D fourier

spectrum of the flicker stimulus possesses a considerable background of

energy in random directions as well as a "true" motion signal present at the

luminance edges. Apparently, for the case of the FL class, the noise signal is

overwhelming the motion signal and, after the opponency stage, very little

signal is left for MST cells to detect. The opponency stage has been proposed,

by other workers in our lab, to be located at area MT, although it may be

occurring in stages from V1 up through MST. Based on a motion-opponency

model, Qian and Andersen (1994) predicted for area MT that the greater a

cell's direction selectivity, the stronger the motion opponency, and the

weaker the cell's response to flicker. This same prediction should hold for

MST cells, whose major inputs are from MT units. We have yet to analyze

our data to see if a cell's response to the Flicker stimuli is correlated in any

way with motion pattern specificity.

Although this explanation is reasonable, it doesn't account for our

perception of the FL stimuli. Casual observations comparing SS and FL

classes suggest similar perceptual saliency to their motion patterns. If MST
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processes motion pattern and a stimulus class fails to elicit a tuned
response in this region, we should have difficulty perceiving motion patterns

defined with these features. To resolve this difficulty, we postulate an

attentional mechanism. Since the monkey is simply trained to fixate

straight ahead during the experiment, he is unlikely to be attending to the

patterns which are presented. This is not true of human observers who are

examining these stimuli. We predict that if the monkey was trained to

discriminate motion pattern during the recording paradigm, that responses

to these Flicker patterns would rival those of the Solid Square. If this turns

out not to be the case, this would be a convincing blow to the motion pattern

hypothesis.

Weak responses were also observed for the Non-Fourier patterns.

Although there are some differences in the way the stimuli were designed,
studies with non-fourier translational motion in MT showed much more

vigorous responses. Albright (1992) reported that the response in MT to non-

fourier patterns was approximately half that obtained with luminance

defined motion. This difference may be related to the increased suppression

of flicker in MST compared with MT (Lagae et al, 1994). It is likely that

much of the second-order motion signal is lost in the process of spatio-

temporal smoothing that accompanies noise suppression.

For the case of the Aperture class, given that the luminance contrast

borders of these stimuli were similar to those of the ES and SS classes, the

fact that MST responds poorly to this stimulus class is interesting. The

presence of stationary features (in this case random dots) in the stimulus

may be actively suppressing the motion signals provided from the square

luminance borders. The interiors of the SS and ES classes contain no

motion signals at all, because of an absence of texture. Using these two

classes, a strongly tuned response to was obtained, presumably based on the

differential motion of the four luminance edges. We suggest that the weak
responses elicited with the aperture class argues for MST having a role in
perception of object motion and against this region being involved in the

118



Chapter 2: The Representation of Motion Pattern in Form/Cue Invariant MST Neurons

processing of ego-motion. Consider the case of an observer moving forward

across a field, with a mountain range in the distance. With his eyes fixated

on the horizon, these far off features have essentially no retinal motion.

However, features more peripheral, such as the ground over which he is

walking, define motion vectors consistent with forward locomotion.

Therefore, in developing an egomotion system it would be important that

null motion signals from stationary retinal features would not suppress

responses from other motion sources. On the other hand, we would expect

an object motion system to have opposite characteristics. The fact that the

velocity field varies continuously in regions defining objects is important in

scene segmentation. The aperture stimuli used in this investigation could

not correspond to any real world object because the motion defined by the

luminance edges of the square is not matched by any motion of the internal

features. For a system representing object motion, this inconsistency would

be important to detect. The poor responses to the Aperture class are

consistent with the nervous system being sensitive to such stimulus

qualities. Perceptually, the Aperture class does not give the impression of a

moving object, unlike the SS and ES classes. Therefore, there is agreement

between the perception and the relative activity in MST.

Unfortunately, the Random Dot class presents a challenge to this

formulation. The internal features of these stimuli are consistent with rigid

object motion, while the edges (defined by a luminance border) are

stationary. For the case of rotation this is not a problem, because the

circular border of the stimulus cannot supply a motion signal. With normal

object expansion and contraction the stimulus should change size, unlike

ther Random Dot patterns. Our perceptions are in agreement with this

analysis: while the rotating random dot pattern looks like a single, rigid

object, the expanding and contracting patterns do not give the impression of

an approaching or receding object. The fact that MST responds well to this

stimulus class is difficult to explain, assuming a selectivity for object

motion.
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Although the correlation of saliency with response amplitude is unclear,
whenever robust tuning curves could be established for the same unit

across multiple stimulus classes, the preferred tuning direction was

similar. Apparently, in terms of stimulus selectivity, MST abstracts

information related to the spatio-temporal pattern of the stimulus, ignoring

other attributes. In our lab's previous paper on MST, we introduced an

analogy with the inferotemporal region (area IT) to express this idea

(Graziano et al, 1994). Area IT has long been thought to represent the

spatial organization of stimulus features. In this region, investigators have

reported the existence of "face cells", "toilet brush cells", and the like (Gross

et al, 1972). We have discussed evidence that a specificity for motion pattern

has exists in MST. The outputs of IT and MST converge in parietal cortex,
perhaps to pool together information from these different processing

streams. The information represented in these two pathways is, to some

extent, orthogonal, as we have demonstrated for motion pattern in this

study. This notion was well expressed in (Stoner et al, 1992) with reference

to the representation of translational motion: "The direction and rate at

which an object moves are not normally correlated with the manifold

physical cues (for example, brightness, and texture) that enable it to be seen.

As befits its goals, human perception of visual motion largely evades this

diversity of cues for image form; direction and rate of motion are perceived

in a fashion that does not depend on the physical characteristics of the

object." This property of processing systems in the brain is referred to a

form/cue invariance. The reason this quality has emerged repeatedly in the

brain is because of the computational efficiency is affords. As an analogy,
consider our system of mathematics. We have one system to manipulate

any kind of quantity, whether it be number of dogs, birds, or golf balls. The

numerical computations we perform on these things do not depend on what

the numbers are representing. Imagine having to use a different

mathematical set of rules for every type of thing in the world. By breaking
any analysis down into orthogonally separate parts, we can avoid elements

of redundancy. If the brain had a separate system for the motion analysis of
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squares, circles, triangles, and what not, the brain would be prohibitively
large. Thus, motion analysis occurs independently of the cues/features used
to define this motion. Knowing that the brain exploits this strategy, we can
design experiments that attempt to discover which axis of the stimulus
"attribute space" a region is sensitive to. By finding axes along which no
differential response is detected, we further narrow our understanding of
which stimulus characteristics are being represented.

This notion of attribute orthogonality can be thought of in terms of
"labeled lines." In this conception, perceptual systems are segmented into
distinct processing channels. Each channel can be considered a separate
axis in a multidimensional attribute space. This space is defined prior to
the introduction of any particular stimulus. Every possible stimulus that we
can perceive falls somewhere in this space. It is the combination of
activities in each of these channels which determines where in the space
the stimulus is represented and what is perceived. By having these axes as
independent (orthogonal) as possible, we not only reduce redundancy, but
prevent interference between different processing domains which need to
remain distinct.

These concepts have received attention in the psychophysical literature
(Stoner et al, 1992; Berkeley et al, 1994). Single unit recording studies in
area V1 of the macaque have demonstrated that these neurons are
form/cue invariant in their selectivity for image contours (Albright et al,
1989) and in MT for local linear motion signals (Albright, 1992). This
independence holds for bandwidth and preferred tuning, but not for
response amplitude. The average difference between stimulus classes in
preferred tuning direction did not vary from zero, and no more than 30
percent of the differences were outside the range of +/- 45 degrees. This is
similar to our findings in MST for motion pattern. These authors
suggested, as we have, that amplitude is related to attribute saliency. Cue
invariance has been reported in area IT as well (Sary et al, 1993). These
investigators recognized that the perception of shape is invariant with
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respect to location in space, size, and the cues which define the shape.

Using cues based on differences in luminance, motion, and texture, they

found in IT a physiological correlate of this perceptual invariance. The

neurons ignored aspects of the stimulus unrelated to spatial structure.

We believe the results of this investigation favor a direct role for area

MSTd in the processing of object motion. The available evidence cannot rule

out a role for this region in processing "optical flow" related information.

Rather, it is likely that MST is a least part of the processing stream

analyzing optical flow. As such, it is prudent at this juncture to

characterize MST as a generic "pattern motion" integration center.
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LEGENDS
Table 1: Number of experiments analyzed for each stimulus class at each

round of elimination. Numbers in the first column are the total number
of experiments that data was collected for. Experiments were excluded
from further consideration at two sequential stages. At the first stage,
only those experiments with a Flat Index (FI) < 0.95 were regressed to a
gaussian model with subsequent calculation of a gaussian index (GI) for
that data. If an experiment's GI > 0.1, it was used in future
comparisons. The right two columns give averages of the flat index and
gaussian index for all experiments in which they were calculated. The
GIs fro FL, AP, and NF classes would have been even lower had not a
substantial number of these experiments been eliminated at the
previous round. RD = Random Dot; ES = Empty Square, SS = Solid
Square, FL = flicker, AP = aperture; NF = Non-Fourier, AP = Aperture,
FI = Flat Index, GI = Gaussian Index.

Table 2: Percentages of preferred tuning directions statistically different
between stimulus classes. A particular comparison is represented by the
intersection of a row and a column labeled with the classes being
compared. Numbers in the cells are the percentage of instances where
the fitted means of two experiment's tuning curves fell outside each
others 95% confidence intervals obtained during regression. Only
experiments where both the GI exceeded 0.1 were used for this
comparison. RD = Random Dot; ES = Empty Square, SS = Solid Square,
FL = flicker, AP = aperture; NF = Non-Fourier, AP = Aperture.

Table 3. Average stimulus class differences in preferred tuning. This table
is in the same format as Table 2. Numbers in boxes formed by the
intersection of a columns and a row represent the average observed
difference in preferred tuning direction between stimulus classes for
individual units. Numbers are all positive because absolute values of
these differences were taken. If feature invariance did not occur in MST,
these averages would all be distributed around 180 degrees. Thus, a
considerable degree of invariance is indicated. Note that numbers are
smaller when comparisons are made between classes that generally
provided strong response profiles (RD, ES, SS).

Figure 1: Spiral space explained. In this representation,
expansion/contraction are on opposite sides of the vertical axis, while the
two directions of rotation are on opposite sides of the orthogonal axis.
Intermediate orientations between these cardinal axes represent spiral
patterns. Expansion (straight up) is assigned an angular value of 0
degrees by convention, with the angles increasing as one moves
clockwise in this space. Distance from the origin is a measure of firing
rate; angle reflects the type of motion pattern. Data from the two curves
displayed on this polar plot was obtained from the same cell using the
same stimulus class (Random Dot). With one curve we sampled the
space every 22.5 degrees (sixteen points), the other curve every 45 degrees
(eight points). Each point plotted represents the average firing rate for
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that stimulus type (motion pattern) pooled from repeated, randomly
interleaved trials. Note the similarity of the two curves obtained at the
two sampling frequencies. The lines emanating from the origin
represent the preferred tuning directions recovered from this data after
regression to gaussians. This particular unit was tuned to a spiral
containing elements of both expansion and clockwise rotation. The
similarity of tuning curves for the two sampling densities motivated us
to use the lower sampling frequency so that more data could be collected
per recording day.

Figure 2: Four of this six stimulus types that we used for our investigation.
A shows representative motion vectors for a spiral stimulus that is
midway between expansion and counter-clockwise rotation
(corresponding to an angular location of 315 degrees in spiral space).
Note that the path of these dots has no curvature, the local motion of the
dots being linear. The lengths of these vectors increases with distance
from the center of the stimulus. In B, C, and D we show representative
motion pattern stimuli at two points in time. As the squares represented
are both rotating and getting larger with time, their motion pattern is
also that of a spiral. In the Aperture class, the texture elements making
up the interior of the square do not move with the edges of this stimulus.
The spacing and placement of these texture elements remains
unchanged. For the square stimuli, maximum spatial extent is 20
degrees, minimum spatial extent 5 degrees. Although the patterns are
all represented as black against a white background, on the screen the
polarity was actually opposite. The luminance contrast of the Aperture
and Solid Square classes were actually more similar than they appear in
this figure. Two additional classes, Flicker and Non-Fourier were also
used in this investigation, but the nature of these stimuli prevented a
convenient static representation.

Figure 3: Raw data demonstrating various Flat and Gaussian indexes.
Moving across and then down, the data increasingly takes on a more
gaussian shaped profile. The variance within stimulus types also
decreases. No GI was obtained for the first data set because the Flat
Index exceeded 0.95. The second frame shows data from an experiment
near our threshold criteria for exclusion based on the Flat Index.
Multiple data points within a particular graph for the same tuning
direction represent repeated trials. The horizontal axis label,
"NORMDIR", stands for "normalized direction" and represents the
direction in spiral space of the stimulus that gave the response indicated
by the ordinate value. Before curves could be fit to the data, the data was
shifted so that the peak of the gaussian was centered at approximately
180 degrees. This facilitated regression in an analysis package, "Systat",
that did not provide for circular statistics. Therefore, it was not the case
that the units in the six experiments represented in this figure all had
there preferred tuning direction near 180 degrees (contraction). After
regression, the parameters recovered were shifted in the opposite
direction by an equivalent amount.
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Figure 4: Process of Normalization. A) The upper frame shows the raw data
from one experiment (i.e. one stimulus class, multiple motion types).
This graph is identical in form with those described above in Figure 3.
The horizontal axis represents the motion pattern of the inducing
stimulus, in angular units of spiral space. The ordinate represents the
magnitude of that response (in spikes/sec) to the stimulus. B) The bottom
frame shows the consequence of "flattening" the data, as outlined in the
text. The within trial variance as well as the mean firing rate with
respect to the entire data set remains constant, but the average firing
rate is now the same across all stimulus directions. By statistically
comparing the top and bottom data sets we achieved as measure of
"gaussianness."

Figure 5: Comparison of tuning curves from a single unit for the six
stimulus classes. This comes from one of the few cells (B10800) where
the Flat Index and Gaussian Index criterion were both met for all six
experimental classes. The location of each data point in these polar plots
reflects both the magnitude of the response and the stimulus type used to
elicit the response. Distance away from the origin indicates response
strength in unit spikes/second while the angle is a function of the
stimulus motion pattern inducing this activity. This particular unit is
tuned for expansion. Note the similarity in the curves in terms of both
orientation and shape, although there is some variation with the
aperture class. In this case, tuning specificity is less pronounced and
this unit responds fairly strongly to apertures containing clockwise
rotational movement (equivalent to 90 degrees in spiral space.)

Figure 6 Same information present in Figure 5, but for unit B08200. This
unit is also tuned for expansion. Note that the scale of the radius axis is
different for each of the plots. Accordingly, responses to the FL, AP, and
NF classes are on the order of ten times weaker than those to the RD, SS,
and ES classes. The response to the Non-Fourier stimuli was not well
tuned at all; little selectivity in activity is demonstrated. This is likely a
function of the poor signal to noise ratio associated with the low firing
rates obtained from these stimuli. This general behavior was typical of
the units that we found.

Figure 7: Flat Index distribution by class. This is a box plot showing the
distribution of Flat Indexes divided according to stimulus class. Each of
the six plots should be viewed as a sort of compact histogram with a
gaussian shaped distribution. The solid black squares indicate the
means of this distribution. The short horizontal lines bisecting the
vertical rectangles represent the median of the distribution. The vertical
rectangle includes 75% of all index scores. The "whiskers" attached to
both ends of these rectangles extend out to include 90% of the data. The
six stimulus classes fall fairly neatly into two different groups. The FL,
AP, and NF classes, with high Flat Index scores, are placed in a "poor
responding" group, while the remaining three classes generally elicited
more vigorous responses as reflected in their lower LI distributions. RD
= Random Dot; ES = Empty Square, SS = Solid Square, FL = flicker, AP =
aperture; NF = Non-Fourier, AP = Aperture, FI = Flat Index.
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Figure 8. Gaussian Index distribution by class. This box plot shows the
distribution of gaussian indexes divided according to stimulus class.
The notation of the graph is identical to that of Figure 7 above. Each plot
should be viewed as a sort of compact histogram providing information
about the general form of the distribution. The solid black squares
indicate the means for each distribution. The short horizontal lines
bisecting the vertical rectangles represent the medians. The vertical
rectangle includes 75% of all index scores. The "whiskers" attached to
both ends of these rectangles extend out to include 90% of the data. The
six stimulus classes fall fairly neatly into two different groups. The FL,
AP, and NF classes, with low Gaussian Index scores, are placed into the
"poor responding" group while the remaining three classes establish a
"strong responding" category. RD = Random Dot; ES = Empty Square, SS
= Solid Square, FL = flicker, AP = aperture; NF = Non-Fourier, GI =
Gaussian Index.

Figure 9: Uncertainty in estimated preferred tuning direction versus
gaussian index. 95% confidence intervals were obtained for the means
(preferred response direction) obtained for the general gaussian
function fit to each experimental data set. If the Gaussian Index reflects
the variability in the data, it would be expected that there would be an
inverse correlation between this index and the uncertainty with which
preferred tuning direction can be recovered. These scatter plots of the
half-width of the 95% confidence intervals against Gaussian Index
demonstrate that such a relation holds. High indexes are associated
with small confidence intervals, indicating low levels of uncertainty
with regards to parameter estimation.

Figure 10: Scatter Plot of Gaussian Index vs. Flat Index divided into
experimental classes. The distribution of each plot suggests an intimate
relationship between the two measures. Given one index for a particular
experiment, the other index can be predicted with a high degree of
certainty. This association increases our confidence that the Gaussian
Index is an adequate reflection of the differential responsiveness of the
data set.

Figure 11: Box plots showing the distribution of the log ratios of Gaussian
Indexes between experiments done on the same unit with different
stimulus classes. A value of zero indicates that the GI's for the data
from the two experiments were equal. This was obviously the case when
a data set was compared against itself; these cases are shown only as a
point of reference. A positive value indicates that expl of the expl/exp2
pair shown on the x axis had the higher Gaussian Index. Accordingly,
from this data it is clear that the RD class, on average, gave stronger
responses than any other experimental group. Note also that the SS, ES,
and RD stimuli consistently sported higher GIs than the NF, AP, and FL
stimuli. Stars above a plot indicate that the mean of this distribution was
significantly different from zero (paired TTest, p<0.05).

Figure 12: Distribution of preferred tuning directions (gaussian means) by
stimulus class. These distributions were not evenly spread out over
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spiral space. An over representation of units tuned to expansion was
observed. A second, smaller peak, for contraction also is evident. For
purposes of this analysis, spiral space was divided into 8 equally sized
wedged pieces, as shown in each of the six plots. These diagrams are
laid out in a similar fashion to the polar plots in preceding figures. A
response profile was characterized as being centered around
"expansion", for example, if the preferred tuning recovered for this
experiment was between -22.5 degrees (same as 337.5 degrees) and 22.5
degrees. Each box, representing one of the eight direction types, contains
a vector whose orientation points in the direction of spiral space being
considered, and the length of the vector reflects the number of units with
this tuning preference. A similar distribution is seen for each stimulus
class. The inconsistencies with regards to the FL, AP, and NF classes
are likely a consequence of the small numbers of units for which tuning
curves were obtained.

Figure 13: Box Plots showing the distribution of the differences between the
fitted means (preferred tuning directions) for curves obtained using
different stimulus classes. In this case, the sign of these differences has
been preserved. The x axis shows the two data sets being compared, the y
axis reflects the distributions of these differences. In the convention we
have adopted, a positive differences indicates that the shift in preferred
tuning from expl to exp2 was clockwise, a negative difference counter-
clockwise. The filled square represents the population mean for this
shift; the top, bottom, and line through the middle of the box correspond
to the 75th percentile (top quartile), 25th percentile (bottom quartile), and
50th percentile (median) respectively. The whiskers on the bottom extend
from the 10th percentile (bottom decile) and 90th percentile (top decile).
The comparison of one experimental type against itself is obviously zero
and this data is shown only for reference.

Figure 14: Differences in preferred tuning direction as a function of
Gaussian Index. Based on the hypothesis that MST selectivity is
invariant with regards to the form, feature, and class defining motion
pattern, we predicted that any variation in preferred tuning between
classes was largely a function of the inherent variability in the data.
Because gaussian index reflects response robustness, we predicted that
these tuning differences would be smaller when calculated between
experiments with high GIs. In this figure, by plotting these differences
in preferred tuning against the sum of the GIs of the experiments
compared, it can be seen that this is the case. For each plot, five types of
potential comparisons are made, with the title of the plot indicating the
stimulus class in common for each of these comparisons. For example,
the graph at the upper left makes comparisons RD-ES, RD-SS, RD-FL,
RD-AP, and RD-NF.

Figure 15: This box plot shows distributions, broken down according to
stimulus class, for the gaussian amplitude parameters recovered from
the experimental data sets. The amplitude is a measure of the response
strength of a unit to its preferred stimulus pattern. The RD, ES, and SS
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classes consistently demonstrated greater response amplitudes than the
other three classes. This diagram actually underrepresents this trend
because many nearly flat sets of data obtained from FL, AP, and NF
classes was eliminated before this round of analysis through a high Flat
Index score. RD AMP = Random Dot amplitude, ES AMP = Empty
Square amplitude, SS AMP = Solid Square amplitude, FL AMP = Flicker
amplitude, AP AMP = Aperture amplitude, NF AMP = Non-Fourier
amplitude.

Figure 16. This box plot shows distributions, broken down into stimulus
class, for the gaussian parameter sigma (width, or variance) recovered
from experimental data sets. The variance is a measure of the response
selectivity of a unit to its preferred stimulus pattern. Higher values for
this parameter describe broader tuning curves. The distribution of this
parameter was somewhat wider for the FL, AP, and NF classes, but the
means of these distributions were similar.

Figure 17: This box plot shows distributions, broken down into stimulus
class, for the gaussian floor parameters. The floor is a measure of the
response of a unit to its anti-preferred stimulus pattern and is often
close to the baseline firing rate of the neuron. The distribution of this
parameter was somewhat wider for the FL, AP, and NF classes, but the
means of these distributions were similar. An explanation for the slight
upward shift in the distribution of the FL class is described in the text.

Figure 18: Responses of MST units to the Flicker stimulus class. For a
subclass of neurons in this region, the response to the FL stimulus class
was always well above the background firing rate of the cell, even for the
anti-preferred tuning direction. A) Raw spike data and spike histograms
for unit B11000. Pictures above the data represent the stimulus pattern
which elicited the responses underneath. The responses to the RD and
FL classes are compared. For the FL class, note that both responses in
the preferred and anti-preferred directions are shifted upward. B) Polar
plot of this data, comparing the tuning curves.

Figure 19: Three cells demonstrating the response "tail" following the
extinguishing of the stimulus. Vertical lines in the plots indicate
stimulus on and off times, as labeled in the figure. The response decay
constant is fairly large for these cells, particularly with regards to the ES
class. This aspect of the response was true for about half of the cells
investigated. Interestingly, the effect appears strongest in the responses
to patterns somewhat away from the preferred tuning direction of the
unit.

Figure 20: Three sets of polar plots showing tuning response invariance
with respect to both stimulus feature and location within the receptive
field. This data was recorded from a cell (B11300) with a particularly
large receptive field. This allowed for placement of the stimuli at three
spatial locations, each 50 degrees apart from one another, forming the
corners of an equilateral triangle. Data from each polar plot was
obtained from a different spatial location. Although response amplitude
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varied considerably over feature classes and stimulus location, the
overall orientations and widths of these 18 tuning curves was
remarkably similar. Some shifting in preferred tuning is noticed with
stimulus location, but this is generally small (<50 degrees) considering
the large displacements involved.
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ABSTRACT
The superior temporal sulcus (STS) of the macaque monkey contains

multiple visual areas (Ungerleider & Desimone, 1986). Neurons within

these regions have been shown to respond selectively to wide-field, complex

motion patterns such as expansion, contraction, and rotation. Units driven

by these stimuli are believed to be located within cortical areas MST. Single-

unit recording studies in this region have provided evidence for a

systematic spatial organization with respect to neuronal specificity. Cells

with similar tuning properties were found clustered together into columns

or slabs extending through multiple cortical layers. In this study, we use a

double-label 2-deoxyglucose technique in an attempt to directly visualize

this functional organization. This investigation is unique in that it is the
first time the double-label method has been attempted in the awake

behaving animal. Two monkeys were used, both of which viewed expansion
during one labeling period and either contraction or rotation in the other.
Two different functional arrangements of neurons have been proposed for
this region. The stimulus pairs chosen were designed to help decide
between these two proposals. The pattern of activity visible on the
autoradiograms suggests a periodic arrangement of columns with
alternating stimulus selectivity, with units tuned for expansion and
contraction being maximally separated within this mosaic. Although the
region of interdigitating stimulus specificity was clearly visible on the floor
and posterior bank of the STS, single unit mapping, cytochrome staining,
and myelin staining we unable to unambiguously assign borders to the
various cortical regions within the STS. Despite this, we believe the evidence
firmly supports partial overlap of MT with the region of differential
labeling. However, although there is evidence to support MST overlapping
the residual portion of the area, this remains to be firmly established.

INTRODUCTION
Considerable evidence has accumulated supporting the modular

organization of mammalian cortex. In the 1950s, Mountcastle, working in
cat somatosensory cortex, reported that units specific for different sensory
sub-modalities such as light touch and deep touch were clustered according
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to response selectivity (Mountcastle, 1957). Neurons with similar response
profiles were encountered while advancing a recording electrode

perpendicular to the cortical surface, but when the electrode was advanced
tangentially, specificity gradually shifted. This organization appeared to be

columnar, with the axis of the iso-tuning columns oriented perpendicular

to the surface of the cortex and extending through most cortical layers.

The tendency for neurons of like specificity to cluster has been observed

throughout cortex. In area V1 (cat areas 17, 18) a columnar organization

appears to be present with regards to orientation selectivity, ocular

dominance, and direction selectivity (Hubel & Wiesel, 1962; Blasdel, 1992;

]Berman et al, 1987; Bartfeld et al, 1992; Redies et al, 1990). Furthermore,
functional NMR, optical imaging, single unit recording, and 2-deoxyglucose

studies have all reported a similar architecture, strongly arguing against

the possibility that these effects are artifacts associated with a particular

technique. How the functional maps for these three stimulus dimensions

are organized relative to one is only beginning to be understood (Blasdel,
1992). Within a single stimulus domain, it is clear that response specificity

changes in a gradual and systematic way moving across cortical columns.

Segregation of neurons by preferred tuning along a single stimulus

dimension has also been observed for auditory frequency in the inferior

colliculus (Serviere et al, 1984; O'Neill et al, 1989) and odor in olfactory

cortex (Skeen, 1977), to name just two examples. Regardless of the cortical

region considered or the particular technique employed, functional

columns of 0.2 - 0.5 mm form a mosaic that extends through most layers of

the cortex, with a tendency to see coarser columnar organization
downstream from primary sensory cortex. It is likely that this organization

plays an important role in cortical function.

In this study, we examined the columnar organization of cortical
regions in the superior temporal sulcus (STS) thought to be involved in
processing visual motion information (for a review, see Albright, 1993). In
primates, analysis of visual motion first occurs in area V1, where
directional tuning has been found in a large number of units. Output from
these neurons feeds into what has been described as the "where" cortical
processing stream, that is thought to be involved in analyzing positional
and motion cues (DeYoe et al, 1988). The STS contains several anatomic
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regions which are thought to be intermediate processing stations in this
system. The most studied of these regions is area MT, which receives a
direct projection from V1, has small receptive fields, and contains neurons
which display directional selectivity (Maunsell et al, 1983; Albright, 1984;
Raiguel et al, 1993). A columnar arrangement with regards to directional
selectivity has been proposed for both primary visual cortex (Berman et al,
1987) and area MT (Albright, 1984).

The area receiving the strongest projection from area MT is the adjacent

cortical region, MST. While MT occupies part of the anterior bank and
fundus of the STS, MST has been identified just anterior, on the floor and
upper bank of the sulcus (Desimone et al, 1986; Ungerleider et al, 1986;
Nawrot et al, 1989). MST itself has been divided, mostly on physiological
criteria, into at least two subdivision, a lateral (MSTI) and a dorsal (MSTd)
area. MSTI typically has neurons with eccentrically placed receptive fields
which give directionally tuned responses to translational motion stimuli
(Tanaka et al, 1993; Komatsu et al, 1988; Wurtz et al, 1988). The size of these
units' receptive fields is approximately that of an MT cell at an equivalent
receptive field eccentricity. Area MSTd, in contrast, consists of units with
large (>20 degree) diameter receptive fields that generally include the fovea
and often extend into the ipsilateral receptive field (Saito et al, 1986;
Graziano et al, 1994; Tanaka et al, 1989ab; Duffy et al, 1991ab). Like cells in
areas MST1 and MT, the majority of neurons in MSTd are directionally
tuned for straight (i.e. translational) motion. However, many units in MSTd
are also tuned for more complex motion patterns such as expansion,
rotation, and contraction. In addition, unlike some units in MST1 and MT,
neurons in MSTd do not have inhibitory surrounds and generally respond
best to wide-field "optical flow" motion stimuli. Making the physiology even
more complicated, it is common for neurons in MSTd to be tuned
simultaneously for both translational and complex motion. For example,
units have been found that prefer both upward motion to downward motion
and expansion to contraction (Graziano et al, 1994).

The types of stimuli most effective in driving MSTd units are similar to
the motion patterns produced on the retina as the result of observer
movement through the environment. Since first proposed by Gibson, it has
been recognized that this "optical flow" contains the necessary information
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for recovering direction of heading. It has also been proposed that analysis
of these complex motion patterns is important for the representation of
object motion in the environment (Graziano, et al 1994). For example, units
tuned for expansion may be important in representing the flight of an
approaching object or the pattern of ripples produced after dropping a stone
in water. Furthermore, much psychophysical evidence exists suggesting
that we extract expansion and contraction in the visual scene at a very
fundamental level (Regan, 1986; Freeman et al, 1992). Given the special

status afforded to the analysis of complex motion patterns, we were
interested in determining how this stimulus attribute was represented in
the functional anatomy of MSTd. Previous single-unit studies have reported
"clumping" of neurons in this region according to response selectivity
(Duffy et al, 1991a). One group has shown physiological evidence for units

tuned for expansion, contraction, and the two directions of rotation
segregated into separate cortical columns (Lagae et al, 1994). In their
model, columns for expansion and contraction are maximally separated, as
are columns for clockwise and counter-clockwise rotation.

We decided to test this hypothesis directly by using the double-labeled 2-
deoxyglucose method (2-DG). The deoxyglucose technique relies on the
assumption that there exists a positive correlation between the average
activity of neurons in a localized region of tissue and the rate of glucose
utilization (Theurich et al, 1984; Sokoloff et al, 1977; Friedman et al, 1987;
Sokoloff, 1977). After injecting a radioactive analog of glucose (14C-
deoxyglucose) into the organism at the start of a stimulus period, neurons
involved in maintaining the neural state induced by the stimulus take up
more label than the same neurons without the stimulus present. For
example, cells in V1 orientation columns tuned to vertical contours
transport more labeled glucose when vertical compared to horizontal lines
are displayed. This differential glucose uptake can be visualized by slicing
the tissue into thin sections and then exposing the sections to film sensitive
to the appropriate isotope. Iso-orientation columns in V1 have been
visualized in this way as a periodic mosaic of differentially labeled columns
or slabs (LeVay et al, 1975; Redies et al, 1990; Singer, 1981; Albus et al, 1984;
Schoppmann et al, 1981; Albus, 1979; Humphrey et al, 1980).
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The standard 2-DG technique described above has several inherent
limitations. For example, the pattern of differential label uptake recorded in

the autoradiograms may not reflect the effect of the stimulus presented to
the animal but instead represent intrinsic background variability in the

glucose utilization across local regions of cortex. The cytochrome oxidase

blobs of primary visual cortex are a classic example of this - even after

enucleation, 2-DG label will preferentially be taken up in these

metabolically more active regions (Wong-Riley, 1979). Although this

problem can be partially solved by using both a control and an experimental

group, another problem remains. It is difficult to determine which aspect/s

of the stimulus are giving rise to the pattern of labeling reported in these
studies. For the case of V1 orientation columns described above, the

columnar labeling pattern may unintentionally reflect the anatomical

organization of units specific for the color, spatial frequency content, or size

of the inducing stimulus.

The double-label 2-DG technique offers an elegant solution to these
problems. By using two different metabolic isotopes whose labeling patterns
can be recovered independently, two different stimulus conditions can be
compared within the same organism, allowing each specimen to serve as
its own control (Friedman et al, 1989; Redies et al, 1987). If only one stimulus
dimension (e.g. color, direction of motion, spatial frequency, etc.) is different
for the two stimulus periods, differences in the labeling patterns must be a
consequence of changing the single stimulus aspect manipulated. If the
region of the brain examined has a columnar organization with respect to
the stimulus dimension varied between exposures, these differences appear
as areas of interdigitation in images where the labeling patterns of both
exposures are simultaneously visible (e.g. see difference images in
METHODS). Any correlated pattern of labeling in the two images reflects
either intrinsic base-line variability in metabolic activity or differential
specificity for a stimulus dimension along which the two stimulus patterns
are identical. Therefore, we predict that if regions within the STS have a
functional organization with respect to complex motion patterns, these
areas should appear as regions of interdigitation when the monkey views
the appropriate motion patterns during the two labeling periods.
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Two macaque monkeys were used for this experiment. In one animal
(macaque 92-1), the two labeling periods compared counter-clockwise
rotation and expansion. For the other animal (macaque 92-2), expansion
and contraction patterns served as the stimuli. As discussed above, one
study (Lagae et al, 1994) suggested that expansion specific and contraction
specific cell clusters are maximally separated, with rotation tuned units
interspersed between these two types of columns. Comparing motion

patterns which activate units that are maximally spatially separated
should produce labeling patterns which are 180 degrees out of phase in the
two exposures. If their model is correct, the two labeling patterns should
show a greater correlation for expansion/rotation than for
expansion/contraction pairing. A unit without specificity for complex
motion but tuned to translational (linear) motion would be expected to give
strong responses to our stimuli if the receptive fields of these neurons
overlapped an approximately linear portion of our patterns. This would
occur for cells with fairly small receptive fields viewing a peripheral part of
the stimulus. A substantial portion of area MT meets these criteria and we
therefore expected differential labeling in this region as well as in MST.

METHODS

Stimuli

The motion patterns used in this study were essentially identical to those
developed by Graziano, et al (1994), except that our stimuli were much
larger (40 degrees). Briefly, these stimuli are limited life-time random dot
motion patterns (Figure 1), displayed at a refresh rate of 60 Hz. Every screen
refresh cycle, the positions of the dots on the display are shifted, consistent
with the global motion being simulated. Each frame contains 200 dots
within the circular window of the display. Each dot remained on the screen
for 333 msec (20 frames) before being randomly reassigned a new position
within the display window and a new trajectory consistent with its new
location. The dots were relocated asynchronously, to avoid a coherent
flickering of the stimulus. If the dot moved outside the bounds of the display
window, it was immediately assigned a new, random location within the
display and a new trajectory. The speed of each dot was a linear function of
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its distance from the center of the display, given by the formula speed = 0.2 *
(distance from the center of the stimulus), the units being arbitrary. During
each dot life-time the velocity of the dot was held constant, eliminating any

element of acceleration or curvature from its path. The direction of motion
for each dot was determined by the type of global motion desired; i.e.

expansion requires each dot to be moving directly away from the center of

the stimulus; rotation results from rotating each of the expansion

component motion vectors 90 degrees and contraction from rotating the dots

another 90 degrees in the same direction. Therefore, one motion type could

be transformed into another without any change in the overall velocity

distribution - only the global organization of these local motion

components changes. Graziano, et al (1994) demonstrated that patterns

designed in this way produce strong, tuned responses in MSTd, showing

that selectivity is for global motion pattern. Because most artifacts were

eliminated, we were confident that any differential labeling demonstrated

for the different patterns could not reflect differential selectivity for a

stimulus dimension other than motion pattern.

Recording and Lesioning

Because we expected the motion stimuli to activate several areas within
the STS, it was important to be able to distinguish MSTd from nearby

cortical areas. One approach we used to roughly delineate this region
involved mapping out the relevant area of the STS by single-unit recording.
Units located in MSTd were tentatively identified based on their location in
the chamber and depth relative to the dura. MSTd and MT were mapped out
based on the tuning characteristics of cells in these regions. Particularly
helpful in distinguishing MSTd from MT was the former cells' large
receptive fields and positional invariance with respect to stimulus
placement in the receptive field. After the approximate outlines of MSTd
had been established, 100 micro-amp lesions were made around its
periphery that could be visualized in histological sections. Only the second
of the two monkeys used (macaque 92-2) was explored with these
techniques, and recording/lesioning was only performed on the hemisphere
that was not subsequently flattened. The flattened hemisphere was left
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intact, because of concern that mapping this region with micro-electrodes
might interfere with the quality of the sectioned tissue.

The details of the awake/behaving recording procedure have been
reported elsewhere (Graziano, et al 1994). All recordings were carried out
under awake, behaving conditions. A fixation task, described below, was
used to maintain a stable retinal image of the stimulus. A scleral search
coil and an acrylic skull cap were implanted in the monkey five days before
training on the fixation task began. Training and subsequent behavior were
reinforced by depriving the monkeys of fluid before each session and then
giving drops of apple juice upon correct task completion. Following mastery
of the behavior, a craniotomy was performed allowing chronic access to the
brain for recording purposes. Around the craniotomy, a plastic chamber
was attached to facilitate fixation of a Narashige microdrive, which

provided fine control of electrode position. For these experiments, we used
varnish-coated tungsten electrodes in conjunction with a guide tube to
protect the electrode as it passed through the dura. The chamber was
placed vertically for a superior approach to the STS, avoiding striate cortex.
Recording sessions lasted 4-6 hours, 5 days a week, typically collecting data
from 0-5 cells per day. Each day, the monkey would perform anywhere
between 500-2000 trials. The animals were given ample rest periods during
each recording session.

The animal was placed 57 cm away from a wide-field, tangent screen,
projection monitor, which readily allowed stimuli 40 degrees in diameter to
be presented in front of the monkey. Trials were initiated by the appearance
of a green (0.1 degree) fixation point directly ahead of the animal. The
monkey was required to fixate the target for 500 msec after which the he
was exposed to a three second stimulus period during which two complex
motion patterns of the type described above were presented. A one second
gap, when only the fixation point was visible, was sandwiched in between
the two presentations. The center of the stimuli corresponded to the fixation
point. Throughout the trial, eye position was monitored. If eye speeds
exceeded 15 degrees/sec (as in a saccade), the trial was terminated without
a reward. Software monitored eye position every 35 msec and the SD of eye
position was always less than 10 min. of an arc. Data collection was
controlled by a PC-compatible 486 computer and stimulus presentation was
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controlled by a PC-compatible 386 computer using a Number Nine board as
a display card.

A similar behavioral paradigm was used on the monkey 92-2 during the
2-DG labeling period. However, to maximize the amount of time that the
monkey viewed the visual stimulus, the fixation point and motion pattern
remained on the screen as long as the monkey maintained fixation. Every 3
seconds of fixation, the monkey received an additional fluid reward. Failure
to maintain fixation was followed by a 0.5 second "fixation-off" period before

the monkey was allowed to reaquire the target and initiate the next
stimulus presentation cycle. Macaque 92-2, the first monkey used, was

required to pull a lever in addition to maintaining target fixation. This

monkey's behavior was monitored by a PDP-11 computer.

2-DG double labeling

For each of the two labeling periods, a different stimulus was presented

to the animal. For the case of macaque 92-1, during the initial 3H-2DG
labeling period, a counter-clockwise motion pattern was presented. During
the second period (14C-2DG labeling), the monkey viewed an expansion
pattern. For the experiment with macaque 92-2, an expansion pattern was
used as the first stimulus, followed by contraction during the second period.

The time course of the labeling experiments was a follows. The monkey
viewed the first pattern for five minutes before the injection of the first label,
to make sure he would consistently perform the behavior before we
committed to the procedure. After five minutes, the first label was injected
via an IV line and flushed with normal saline. After 45 minutes, the second
label was introduced and we changed the stimulus the monkey was
viewing. After a 10 minute exposure to this second pattern, the monkey was
sacrificed via a pentobarbital overdose and the brain was prepared for
storage.

For each of the stimulus periods, the monkey was exposed to the
appropriate motion pattern over 85 percent of the 55 minute experimental
period. At no point were there significant gaps of time when the monkey
would not perform the fixation-task behavior. Post-mortem processing of
the specimens involved perfusion with formaldehyde followed by removal of
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the brain from the cranium. These two steps were completed within five
minutes of pentobarbital infusion. The two hemispheres were separated,
with one half of the brain frozen intact in dry ice, and the other half was
flattened before freezing.

800 times more 3-H isotope was used than 14-C labeled compound, for
reasons which will be discussed below under the image processing
procedures.

Image Processing

The principle challenge with the double label technique is to recover
images from autoradiograms which reflect the label distribution of just one
isotope (Friedman et al, 1989; Friedman et al, 1987; Juhler et al, 1987).
Obtaining an independent 14-C exposure is relatively simple. Exposing the
tissue samples on color film results in the different isotopes activating
different layers on the color film. This is because the deeper layers are

shielded by the more superficial ones and the low energy beta emissions
from the 3-H can only expose the superficial emulsion. By using a yellow
filter, which transmits light the same wavelength as the deepest film layer,
an isolated image of the 14-C labeling pattern is obtained.

Obtaining a pure 3-H image is technically more difficult. Any film
which is sensitive to 3-H emissions is also sensitive to the emissions from
14-C. Many groups have circumvented this problem at the level of the auto-
radiogram by using a set of radioactive standards along with image
subtraction techniques to digitally recover a clean image of the uptake
pattern (Friedman et al, 1989; Friedman et al, 1987; Juhler et al, 1987). The
approach we decided on was to load the animal with much more 3-H signal
than 14-C signal (800:1 ratio) and use special x-ray film sensitive to both
isotopes. Because so much more 3-H signal is present in the tissue, this
isotope largely overwhelms the 14-C contribution.

The images were scanned into a PC-compatible computer and digitized
using standard techniques. The raw data was transferred to a Macintosh
recognizable format and the images were edited in Adobe Photoshop. This
software was useful for blurring out unwanted tissue artifacts such as rips
in the tissue as well as filtering out scratches in the films. These edited
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images were imported into NIH Image where sequential image slices were
averaged together in order to improve the signal to noise ratio. In the
unflattened section only two or three images could be pooled in this way,
owing to gradual shifting of the columnar pattern in sequentially slices. In
the flattened sections, because the cutting was done perpendicular to the
columnar pattern, the 2-DG patterns remained in alignment through
multiple layers of cortex, allowing large numbers of images to be averaged
together.

In regions of the brain where a columnar organization was evident, we
were interested in determining the relationship between the labeling

patterns visible on the two autoradiograms. This was done by digitally

subtracting the gray-level 14-C image from the 3-H image. The resulting
images had intermediate density values (appearing gray) in regions of
tissue where the two labeling patterns were in register. For this subtraction

process to work properly, the two images had to be equated with regards to
average pixel luminance and contrast range. Interdigitating white and
black columns in the difference image meant that the labeling patterns of
the two images were out of phase. An "absolute value" difference image was

computed in the same way, except that the pixel values resulting from this

process reflected the degree of closeness of the corresponding pixels in the
two images. Pixels of the same value were black on the screen. Lighter
areas on this image were regions where the pixel values had poor
correspondence.

Histology

Selected regions of tissue were subjected to cytochrome oxidase
(Seligman et al, 1968; Wong-Riley, 1979) and myelin staining (Gallyas, 1979).
Staining patterns obtained using these techniques were digitized and
processed using the methods described above for the autoradiograms.

RESULTS
The most striking feature evident on both sets of autoradiograms was

the preponderance of labeled columns in several diverse regions of cortex.
We found patchy distributions of labeling in auditory cortex, throughout
regions of the inferior parietal sulcus, in areas V2 and VP, as well as in the
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STS. These columns were oriented orthogonal to the surface of the cortex
and extended through most its thickness, although labeling was densest in
the middle layers. These columns were generally 0.2 - 0.5 mm in diameter,
although the spacing between the columns varied more widely. In general,
the columnar organization was better defined on the 14-C images than on
the 3-H, which is consistent the 3-H images being somewhat underexposed,
and probably does not reflect anything about the underlying distribution of
units sensitive to the two patterns.

Although columnar labeling was found in diverse areas of cortex, the
uptake patterns for the 14-C and 3-H exposures were closely matched in all
regions examined, except for parts of the floor and posterior bank of the STS.
The significance of interdigitating versus superimposed columns will be
taken up in the discussion. Within the STS, extensive regions of patchy
labeling were evident for both sets of films. Figure 2 shows four images of
the floor and posterior bank of the STS. Frames A and B show exposure
patterns for the 14-C and 3-H isotopes, respectively. Frame C is the
difference image obtained from the previous two patterns, while Frame D is
the "absolute value" difference image, as described in the METHODS
section. These images were obtained from monkey 92-2, where expansion
and contraction patterns were compared. From these images it is evident
that the region of interdigitation is limited to a fairly well defined area.
Beyond this region, patchy labeling continues to be discernible, but the
patterns of activity superimpose.

The upper border of the autoradiograms of Figure 2 represents the
anterior border of the STS floor. The anterior bank was cut away from this
section for purposes of flattening and mounting. Figure 3 shows
autoradiograms from anterior bank sections for the two isotopes along with
the difference image. The magnification was the same as for the posterior
sections, making it apparent that the columns in this bank were less well
defined, larger, and relatively well superimposed. Note that the top of
Figure 2 and the bottom of Figure 3 were contiguous in the uncut brain,
although this is not obvious looking at the two sections because of the way
the two halves were dissected. (Because of the angle taken by the blade
during cutting, a rim of white matter remained at the parameter of the cut
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edge.) It is evident that a shift to more diffuse and less well interdigitated
columns gradually occurs moving anterior within the floor of the sulcus.

The region of column interdigitation has an interesting topography and
does not correspond to the borders of any single anatomical area within the
STS. Because of this, distinguishing the border between the different areas
was a primary concern. Figure 4 was taken from a paper by Desimone and
Ungerleider (1986) where the cortical areas within the STS were mapped for
three monkeys using a combination of single-unit recording and
histological techniques. Their diagram is in a similar orientation as the
tissue in Figure 2, although in their map the anterior bank remains
attached. Based on these three maps, it seems likely that the interdigitated
area cannot correspond exactly to the borders of MT, although it is likely
that area MT partially overlaps this region. The roughly circular patch
devoid of label and adjacent to the anterior edge of the interdigitating
pattern provides a useful landmark. Based on previously published maps of
this region (Figure 4), this area likely represents the far peripheral
representation of MT (MTp). Because the motion patterns that the monkey
viewed were limited to the central 20 degrees of the visual field, far
periphery representations wouldn't be expected to be labeled by either
isotope. It is significant to note in Figure 2 that a columnar pattern is
absent in this region not just for the difference image, but for the separate
isotope images as well. This contrasts with other areas in the STS
surrounding the interdigitated section that are labeled by the individual
isotopes but which cancel out in the difference image. These latter regions
most likely contain units whose receptive fields overlap the stimulus but
whose units lack a functional organization along the stimulus dimension
sampled by the two pattern types. Given that little 2-DG uptake occurred at
all in this oval patch, it is reasonable to propose that this reflects the
retinotopy of the region rather than response specificity. Furthermore, it
would be highly unlikely to find an island of motion insensitive cells in the
STS surrounded by regions giving vigorous responses to these patterns. We
believe that this region corresponds to area MTp, an area known to contain
units with receptive fields centered in the far periphery and that
immediately borders area MT (Ungerleider et al, 1986).
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Looking at the three maps of Figure 4, MT should be placed in the area of
cortex immediately adjoining the region devoid of label and towards the
posterior bank. Based on the Ungerleider sketch of this region, the lateral,
medial, and anterior regions bordering the unlabelled tissue would be the
various subdivisions of MST. If these assumptions are valid, the difference
map showing interdigitated columns in these regions demonstrates a clear
functional organization for complex motion pattern in both MT and MST.
With respect to the various subdivisions within MST, the region lateral to
the unlabelled area could reasonably be assigned MST1 and the region
medial, MSTd. Figure 5 shows the same images in Figure 2, with the
approximate anatomical borders overlaid. Note that the pattern of
interdigitation present in the difference image of Figure 2C undergoes a
transition in the region that we have proposed as the MT/MST border. In
Figure 2D, this transition is even more dramatic, and reinforces the
possibility of multiple anatomical areas included within the region of
interdigitation. The part of the interdigitated region labeled MT on the
"absolute value" image is distinguished by dark, narrow, winding bands
interspersed amongst the lighter patches. The interdigitating pattern
within the area we have designated MST lacks these bands. By the
convention established in the METHODS section, these darkened areas
represent regions of tissue where the labeling pattern was similar for the
two isotopes.

Note in Figure 5 that the lateral and posterior borders of MT are
incomplete. The most foveal representation of MT is expected to lie along
this border, extending beyond the interdigitating region. We would expect
the most foveal region of MT to lie outside the area of interdigitation because
the portion of the stimulus sampled contains motion not even
approximately translational. The functional organization observed in
regions of MT somewhat away from the fovea likely reflects a specificity for
the approximately linear motion signals towards the outside of the stimuli.
Also, because foveal MT receptive fields are small, the number of dots
within each receptive field at any time is relatively small and might provide
a poor stimulus with which to drive these cells.

According to the borders established in Figure 5, the tissue anterior to
these sections (Figure 3) contains areas of MST with more eccentrically
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placed receptive fields. The weaker labeling and lack of interdigitation
observed in the anterior bank sections could be a combination of more
]peripherally located receptive fields in this region, and therefore weaker
stimulation by the foveally placed stimuli, and a gradual loss of functional
organization in the anterior regions. The relative contributions of these two
e.ffects would be impossible to distinguish without extensive single-unit
mapping of this region - a process likely to disrupt the integrity of the
tissue and the 2-DG labeling pattern.

Figure 6 shows a horizontal section of the STS that allows visualization
of both MT and MST. This tissue came from the right, unflattened
hemisphere of macaque 92-2, the same monkey examined in the flattened

sections of Figures 2, 3, and 5. Frames A and B show the distributions of 14-

C and 3-H label, respectively. Frame C is the difference image obtained from

the previous two pictures. Note that the columnar pattern in all three of
these images is much more in evidence towards the posterior regions of the

sulcus. The posterior bank is at the top of each frame. Significantly, the

difference image shows no signs of columnar interdigitation on the

anterior bank of the section. The region of differential labeling extends from
the posterior bank across most of the extent of the sulcus floor, and ends
just posterior to the bend where the anterior bank meets the floor. This is
consistent with the labeling patterns obtained in the flattened sections.

We had hoped to make a more definitive statement regarding
anatomical borders. In particular, we had hoped to distinguish MT from
MST and other neighboring regions based on the greater density of myelin
within the former area. Ungerleider and Desimone (1986) have reported
that a heavily myelinated region on the floor and posterior bank of the STS
corresponds to the foveal projections of V1 and V2 to the STS. Using single
unit recording in conjunction with electrolytic lesioning, they identified this
area as MT. Injections into peripheral V1 and V2 were transported to a
lighter myelin staining region directly adjacent to MT, towards the anterior
bank, a region they identified as MTp. In our case, myelin staining of
sections cut parallel to the cortical surface of the STS did not adequately
demarcate the borders of interest.
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The second method we attempted to delineate cortical areas was limited
single-unit mapping on the side of the unflattened (right) hemisphere. As
described in the METHODS section, lesions were created around the
periphery of what we had identified physiologically as MSTd. Even on
unstained sections, these lesion points were readily identifiable on the floor
and bottom part of the anterior bank of the STS. Unfortunately, because the
sections from the two hemispheres were cut completely differently and
because of possible asymmetries between hemispheres, little insight into
the subdivisions of the flattened sections was achieved. Ideally, the lesions
would have been placed in the hemisphere that was flattened, but we were

concerned that this would have significantly damaged the tissue.

Based on recent reports that area MT can be distinguished from

neighboring regions within the STS based on its cytochrome oxidase levels

(Tootell and Taylor, 1995), the tissue was also stained for this enzyme.

Unlike myelin, the pattern of cytochrome oxidase was consistent between

layers (Figure 7). In addition, the same layers contained both strong

deoxyglucose and cytochrome oxidase signals, allowing the two patterns of
labeling to be compared. As seen in Figure 7A, the region tentatively

identified as MT based on the retinotopic arguments given above, stained
darker for this marker than the areas believed to represent MTp and MST1,
lending some support to our boundary assignments. The border between
MT and MSTd could not be distinguished using this method, as the tissue
in both regions contained high cytochrome oxidase activity. The proposed
boundaries are seen most clearly in Figure 7B, where the pixel values of
Figure 7A are thresholded.

All the results discussed so far have been for macaque 92-2. The labeling
patterns recovered from the other monkey (macaque 92-1) where not nearly
as distinct (Figure 8). The images from these samples contained a number
of artifacts as a result of tears in the tissue that are visible in the figure.
Nevertheless, from the difference image it is clear that the pattern of
interdigitation is weak compared with the previous monkey. We suggest
that this is a consequence of the stimuli used and reflects the functional
organization of the region. The degree of interdigitation is consistent with
units driven by expansion and rotation lying closer together than units
tuned for expansion and contraction. We would expect that if the two
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stimuli used were the two directions of rotation, a high degree of
interdigitation would have been recovered, similar to that seen for macaque

92-2 (Lagae et al, 1994).

DISCUSSION
We have shown evidence that units tuned to complex motion patterns

such as expansion, rotation, and contraction are organized into distinct

cortical columns that contain cells of similar tuning along this stimulus

dimension. Area MT contains the largest part of the interdigitating region,
but we have provided evidence from cytochrome stains and retinotopic

maps that some of the columns are present in MST as well. The pattern of

interdigitating columns observed in the difference images obtained from

the autoradiograms provides evidence that this section of cortex is

important in processing information about motion pattern. Since changing

only a single stimulus aspect in the two labeling periods resulted in

different, anatomically distinct, populations of cells labeled, it is reasonable

to conclude this reflects something fundamental about the organization of

information processing in the STS.

2-DG autoradiograms must be interpreted carefully. Exposing an

animal to a stimulus during a labeling period and then concluding that the

pattern of activity on a single autoradiogram reflects specificity for a

particular stimulus attribute is unwarranted. For example, in the present

study we observed a columnar labeling pattern in regions as diverse as

auditory cortex and visual area V2. The columnar organization may reflect

local differences in basal metabolic activity, such as that observed in V1
blobs. This may well be the explanation for the strong columnar labeling

that we observed in V2 - the similarity between 2-DG patterns and

cytochrome oxidase patterns in V2 has been previously noted (Tootell et al.,
1983). Alternatively, the labeling pattern may reflect a columnar
organization for units tuned to a stimulus dimension other than the one
expected. For example, if a hypothetical cortical region with cells arranged
into columns based on specificity for stimulus size were exposed to the 40
degree stimuli used in this study, they would demonstrate a periodic
labeling pattern.
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Using two labels and varying the stimuli for the two exposure periods
along only one dimension eliminates these inherent problems. Differential
labeling reflecting intrinsic local differences in metabolic activity is
eliminated in the difference image, because this contribution to the overall
pattern should reasonably be assumed constant over the two stimulus
periods. Furthermore, since the stimuli presented during the two time
segments differ only in a single quality, labeling patterns reflecting other
aspects of the stimuli (size, spatial frequency, color) should also be
eliminated after subtracting the two images.

Direction Columns

Several previous investigations by other workers have reported

clustering of directionally selective cells in visual cortex. Single unit studies
in areas 17 and 18 of the cat have shown cells of similar directional

selectivity organized into 300 micron clusters (Swindale et al, 1987; Payne et

al, 1981; Tolhurst et al, 1981). At least one group has suggested that this

organization is likely to be columnar (Tolhurst et al, 1981) based on detailed
mapping with a large number of penetrations. Directional preference tends
to change smoothly and gradually moving across primary visual cortex,
interrupted by occasional 180 degree reversals in specificity. The presence of
frequent 180 degree reversals suggests that (at least in primary visual
cortex of the cat) the axis of directionality rather than directional preference
per se is organized systematically.

More directly relevant to this study are reports of directional selectivity
in the superior temporal sulcus. Based on single-unit mapping of this
region, Albright, et al (1984) have reported a clustering of units with similar
response selectivity in area MT. Similar to the arrangement in V1 for
orientation, Albright found that, moving tangential to the cortical surface,
direction preference changes gradually, with periodic 180 degree reversals
in specificity. Other workers have made similar observations more
informally (Zeki, 1978; van Essen et al, 1981; Maunsell et al, 1983; Baker et al,
1981). Consistent with the occasional reversals in direction preference,
Albright proposed that the representation of motion axis in MT is more
systematic than direction of motion. He suggested that cells with similar
motion axes are organized into continuous slabs of cortex aligned normal
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to the pial surface, based on the observation that vertical penetrations had
the most gradual shifts in axis preference. Albright estimated that 180
degrees of axis representation extends over 400-500 microns of cortex. This
size correlates well with the size of orientation and direction columns in
area V1.

The current study generally supports Albright's proposed functional
organization for MT. Because the stimuli are large compared with the size
of an MT neuron's receptive field, the motion is essentially linear in the
aperture of space viewed by the unit. Therefore, our stimuli should
effectively drive units in MT. The component motion vectors are essentially
perpendicular to one another for the case of expansion and rotation and are
oriented 180 degrees apart for expansion and contraction. Albright
postulates two systems of functional organization within MT. One system
alternates with a periodicity of 360 degrees, with opposite directions of
motion maximally spatially separated (See Figure 11 of Albright et al, 1984).
However, to account for the reversals in stimulus selectivity he observed,
some regions of opposite direction preference need to be placed adjacent to
one another. This results in a second system organized around axis of
directionality, with a 180 degree periodicity. Depending on which of these
two systems predominates, a different labeling pattern in the difference
image would be predicted. If MT is predominately organized by axis of
directionality, expansion/contraction patterns should drive one population
of cells and rotation patterns the other population. Therefore, pairing
expansion/rotation for the two labeling periods should give the widest
possible column separation on the difference image, while
expansion/contraction should produce a lesser degree of interdigitation
(more overlap) because cells selective for these patterns are less spatially
distinct. The images obtained from this study show the opposite pattern of
labeling, arguing that the functional anatomy has an organization
dominated by the 360 degree, motion direction architecture. Our results are
consistent with those obtained in the anaesthetized macaque by Tootell and
Born (1991) using translational motion patterns and double-label injections.
They found that an interdigitating mosaic of columns was best obtained
using patterns oriented in opposite directions.
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A point of disagreement between our results and Albright's data is the

shape of the isotuning columns. He proposed a "slab-like" arrangement of

units with similar selectivity, while our images suggest a cylindrical
system of isotuning columns. A possible way of reconciling the 2-DG and

single-unit recording data takes into account the band vs. interband

distinction reported in MT (Born et al, 1992). During a single-label 2-DG

experiment, if a monkey is exposed, during a single labeling period, to wide-

field patterns sampling a full range of motion directions, it might be

predicted that area MT would be homogeneously labeled. Surprisingly, the

distribution of label is patchy, suggesting a system of columnar

organization distinct from that organized around directionality (Born et al,
1992). The areas of high 2-DG uptake were called "band" regions and the

surrounding regions designated "interband." It was determined that the

units in interband regions were directionally selective but contained

inhibitory surrounds and therefore responded poorly to the wide-field

motion patterns presented during the labeling period. Because large motion

stimuli were used in the current study, the pattern of labeling observed

likely reflects the presence of direction columns only within band regions.
We should point out that the autoradiogram patterns cannot be explained

purely on the band/interband distinction alone because without the

directional organization the difference images would show a homogeneous

gray rather than the observed interdigitating mosaic. However, the

presence of band/interband regions superimposed onto Albright's proposed

iso-tuning slabs could result in the cylindrical labeling pattern recorded in
our images.

Functional Organization of MST

Despite taking several approaches to delineate the MST/MT border, we
were unable to obtain a completely satisfying map of this region. Figure 5
shows our best attempt based on previous reports about the retinotopic
organization of this area. Although the data from the myelin staining was
noninformative, the pattern recovered from the cytochrome oxidase sections
had similarities with the 2-DG images. Most strikingly, the region which
we designated MTp based on retinotopic arguments turned out to be a
cytochrome oxidase poor area. Why an anatomical region representing the
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peripheral part of the visual field should be relatively deficient in this
enzyme is not clear, but the fact that MTp can be potentially distinguished
from surrounding regions based on this marker provides an additional
argument for considering this region anatomically distinct from MT. As a
proposal for future studies, making an HRP injection into peripheral V1/V2
should result in axonal transport of this enzyme into the region we have
tentatively called MTp.

We have placed MSTI on the strip of cortex just lateral to MTp, consistent
with its location in other studies. The receptive field size and tuning
properties of units in MST1 for motion stimuli are similar to those found in
MT; the two areas differ physiologically largely with respect to their
responses during smooth pursuit (Wurtz et al, 1988; Newsome et al, 1988;
Komatsu et al, 1988). Like neurons in MT, MSTI cells view only a small

portion of the large patterns used in this investigation and therefore many

are being driven largely by a translational motion signal. Both regions also
contain a subpopulation of neurons with inhibitory surrounds, although
whether MST1 contains an analogous band/interband organization is not
known. The pattern of MST1 interdigitation evident in the difference images
possibly reflects both directional and band/interband functional
organization. The pattern of cytochrome oxidase staining is consistent with
this strip being anatomically distinct from MT - enzymatic activity drops
off quickly at the border between these two regions, although levels remain
higher than in neighboring MTp. It is interesting to note that the frequency
content of the labeling pattern appears to change at what we have assigned
the MT/MST1 border, offering further support for the distinctness of these
two regions.

The case for placing MSTd in the region just medial to MTp is less
convincing. Like the adjoining tissue in MT, the cytochrome oxidase activity
is high along this strip. The pattern of interdigitation is somewhat different
than that observed in MT, but this is not particularly compelling. It is
known that units in this area contain cells with large receptive fields that
would allow them to analyze wide-field complex motion patterns. Although
it has been well established that many units in MSTd are specifically tuned
for complex motion patterns, many neurons in this region are selective for
wide-field linear motion stimuli, either in isolation or in combination with a
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selectivity for a complex motion pattern (Duffy et al, 1991; Graziano et al,
1994). From physiology experiments, it is known that units in MSTd tuned
exclusively for linear motion can be driven by complex motion patterns,
although they are not specifically tuned for these patterns. Because of this,
the pattern of labeling observed in MSTd would be expected to reflect not just
specificity for complex motion patterns, but also inadvertent labeling of
units responding to the component translational motion signals from
which these more complex patterns are built. Single unit mapping studies
do not exhibit this limitation, because tuning specificity can be established
by moving the stimulus pattern around within the receptive field of the unit
(Lagae et al, 1994).

Significance of cortical columns

The images obtained in this study lend further support to the belief that
mammalian cortex is organized into anatomical columns that are
composed of functionally discrete subunits (for a review, see Tootell et al,
1993). We saw evidence of columnar organization throughout diverse
regions of the brain, including auditory cortex, somatosensory cortex, and
visual cortex, although we found a systematic representation of motion
pattern only on the posterior bank and floor of the superior temporal sulcus.
We observed no such pattern in area V1, most likely because the dot
densities in our stimuli were too low to effectively stimulate the small
receptive fields in this region.

Finding a systematic representation of motion direction and complex
motion pattern in the STS argues that these visual qualities are extracted by
the nervous system at a fundamental level of image processing. The
presence of units specifically tuned for these stimulus qualities has already
been established, but seeing a well-ordered functional organization provides
additional evidence that the nervous system analyzes the visual world along
these stimulus dimensions.

What is gained by building the cortex from functional subunits
containing neurons of similar specificity? One possibility involves efficiency
of establishing connections between different neurons. If it is valid to
assume that neurons with similar response profiles and receptive field
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locations make similar types of connections, by spatially clustering these
regions much less information is required to specify the correct connectivity
pattern. Clustering changes the scale at which connections need to be
specified, making the coding coarser. Establishing and specifying
connections in terms of neuronal clusters is obviously more efficient than
having to organize these connections at the scale of individual neurons.
Furthermore, the accuracy of the projections is less important. A neuron
arising from a cell body in one area of cortex need only to find its way with a

precision comparable to the size of a cortical column. In addition, since
selectivity appears to change gradually across neighboring columns, even

greater tolerance in accuracy of connectivity is allowable. A neuron trying

to find its way to an orientation column in V1 containing units tuned to

vertical contours that misses by a small amount will connect with neurons
of similar selectivity.

Mitchison (1992) has argued that dividing the brain up into different

anatomic regions and further breaking up these regions into discrete

functional subunits minimizes wiring volume. Brain size is likely an
important variable to minimize for both reasons of metabolic efficiency and

portability.

Another reason for maintaining a systematic organization according to
unit specificity is that anatomical spatial relationships offer a dimension
for encoding information. As an analogy, the meaning of a word in a
sentence is partially determined by its position. Imposing order through a
columnar organization is a way of bundling similar types of information
together - like a well conceived filing system. From the point of view of
establishing representations of the world in a manner that is readily
decodable by other brain regions, such a well-ordered structuring of
selectivity is clearly advantageous. To see why this is the case, consider the
task of an observer attempting to reconstruct an organism's perceptual
experience based on viewing the pattern of cortical activity. This task is
obviously facilitated by having units of similar specificity clustered together.

Besides enabling efficient specification of connectivity, clustering units
of similar specificity together also facilitates the formation of local circuits
via the dendritic processes of projection neurons and the processing
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provided by local interneurons (Tootell et al, 1993). The fact that the size of a

typical cortical column corresponds well with the horizontal branching
expanse of a projection neuron is unlikely to be coincidental. This

formulation of a cortical column as a partially self-contained information

processing module has considerable intuitive appeal. Clustering together

neurons that are functionally related allows for the shortest possible

connection paths and the greatest processing speeds.

Finally, Shadlen and Newsome (1994) have argued that the intrinsic

noisiness of a single neuron's rate code requires redundancy to smooth out

this variability. Clustering neurons of similar specificity into cortical

columns is an efficiency way of introducing this redundancy without

further increasing the complexity of the wiring.

Final Comments

To our knowledge this is the first time a double-label 2-DG experiment

has been performed on an awake, behaving animal. The advantages of

using conscious organisms for 2-DG studies are numerous. First, there is

always the concern that the response profiles of cells may change under

anesthesia, making generalizations to the awake animal tenuous.

Specifically, cortical activity has been shown to be surpressed under the

influence of anesthesia and the metabolic rate throughout the gray matter

becomes more uniform (Sokoloff, 1977; Sokoloff et al, 1977). The resulting

decrease in signal/noise ratio is obviously not desired, especially in studies

where this is already a problem.

However, the disadvantages of using awake specimens are not

insignificant. Because the animal must perform at least a fixation behavior,
the possibility for non-compliance on the day of the labeling is a real

concern. Once an animal is injected with radioactive tracer, failure to

reliably perform the behavior necessitates sacrificing the organism without

achieving meaningful labeling. In addition, the presence of a conscious,
incompletely immobilized, monkey with radioactive label requires special
handling procedures. Lastly, extra time is required to train the animals on
the behavior to the point where performance is reliable for a one hour
period.
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The advantages of the double-label method over experiments with a
single label have been enumerated above and in other studies (Friedman et
al, 1989; Redies et al, 1987). Briefly, using two isotopes allows each animal to
serve as its own control. The main challenge with these experiments is in
recovering pure images that are specific for one isotope or the other, by
either exploiting differences in isotope half-life (18-F vs. 3-H) (Redies et al,
1987; Schoppmann et al, 1981; Redies et al, 1989; Friedman et al 1989; John et
al, 1986) or in the energy of their emissions (3-H vs. 14-C) (Redies et al, 1990;
Altenau et al, 1978). As discussed in METHODS, the choice of 3-H and 14-C
results in unwanted cross-contamination of the 3-H film by 14-C activity on
the unshielded x-ray film. Our approach was to use a 800:1 ratio of 3-H to 14-
C. The 3-H signal effectively overwhelmed the 14-C contribution because its
relative activity was so much greater. We believe that this method is cleaner
and less time intensive than other solutions to this contamination problem,
which have included image processing techniques in conjunction with the
use of radioactive standards.

In conclusion, using the 2-DG double labeling technique we have
demonstrated the presence of a columnar organization in areas of cortex
sensitive to complex motion patterns such as expansion, rotation and
contraction. We were able to visualize this organization in terms of a
difference image showing alternating peaks in label activity. This
interdigitation was more perfect for expansion/contraction than
expansion/rotation, suggesting that units driven by expansion and
contraction patterns are maximally separated across the surface of the
cortex. Unfortunately, the exact borders of the regions on the floor of the STS
could not be assigned with complete confidence based on the anatomical
methods we employed. We have argued, based on retinotopy, cytochrome
labeling, and pattern of periodic labeling evident on difference images, that
the area of interdigitation partially overlaps both regions MT and MST.
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LEGENDS
Figure 1: Stimuli used in this study. Random dot patterns of rotation (A),

expansions (B), and contraction (C). Monkey 92-1 viewed pattern A
during the first labeling period and pattern B during the second. Monkey
92-2 viewed pattern B for the first labeling period followed by pattern C.
Details of how these stimuli were constructed are provided in the text.

Figure 2: Autoradiograms and difference images of the posterior bank and
floor of the STS. Frame A shows the distribution of the 14-C label, Frame
B the 3-H label. Frame C is the difference image and Frame D is the
"absolute value" difference image.

Figure 3: Autoradiograms and difference images of the STS anterior bank.
Frame A shows the distribution of the 14-C label, Frame B the 3-H label.
Frame C is the difference image.

Figure 4: Maps of the STS showing multiple cortical areas. This diagram is
taken from Figure 1 of Desimone & Ungerleider (1986). Their maps were
constructed using a combination of single unit recording and myelin
staining.

Figure 5: Same images as in Figure 2, but with proposed anatomical
borders overlaid. See text for details on how these maps were
constructed.

Figure 6: Cross sections of the STS, including areas MT and MST.
Autoradiograms come from the unflattened (right) hemisphere of
macaque 92-2. "A" shows the exposure for the 3-H label, "B" for the 14-C
label, and Frame "C" is the difference image. The posterior bank is
towards the top of each frame. Note on the difference image that the
region of interdigitation ends just before the anterior bank.

Figure 7: Cytochrome stain of the STS floor and posterior bank. Section
shown matches the autoradiograms of Figures 2 & 5. Frame "A" shows
the gray-level representation of the staining pattern. Frame "B" is
equivalent to the previous image, except that the pixel intensities have
been thresholded to help establish borders more clearly. Frame "C"
shows cytochrome staining pattern with the proposed outlines of the
relevant cortical regions from Figure 5.

Figure 8: Autoradiograms of the SIS floor and posterior bank. Sections are
from macaque 92-1, where expansion and rotation were compared.
Frame A shows the 14-C labeling pattern, Frame B the labeling pattern
for 3-H. Frame C is the difference image. Note that the pattern of
interdigitation is weak for reasons discussed in the text. A large tear in
the tissue partially distorts all three images.
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Chapter 4

A Novel Speed Illusion Involving Complex
Motion Patterns Related to Cortical Area
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ABSTRACT

Single unit recording studies in area MSTd of the macaque have reported

the existence of cells tuned to complex motion patterns such as expansion,

rotation and contraction. By a factor of about 2:1, more cells with selectivity

for expanding patterns have been found than those tuned for either

direction of rotation. We wanted to see if this anisotropy of response

selectivity had perceptual consequences, assuming that the same

asymmetry in tuning distribution was present in human subjects. Using

random dot stimuli well-controlled in terms of the speeds of the features

defining these motion patterns, we found that when local motion vectors are

organized into a global motion pattern consistent with expansion, their

perceived speeds appear greater than when organized into a rotation

pattern. In displays where the number of motion directions used to define

the patterns was reduced, the magnitude of the illusion decreased.

Similarly, the strength of the effect diminished as dot density was reduced.

In patterns where only wedge-shaped segments of the stimuli were left

exposed, the difference in perceived speed between expansion and rotation

increased with the angular extent of the stimulus. Stimulus placement

relative to the fixation point had little effect on the persistence of this

phenomenon -- expansion patterns appeared to contain elements of greater

speed, independent of stimulus eccentricity. These results correlated well

with the response profiles of units in MSTd and argue against a local

explanation for this perceptual illusion, suggesting that the global motion

pattern of the stimulus, per se, is responsible. We hypothesize that the

illusion is due to the disproportionate number of expansion cells in MSTd,
and the results are discussed in the context of speed perception models. To

our knowledge, this is the most direct demonstration to date of a perceptual

phenomenom linked to MSTd physiology.
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INTRODUCTION

Cells in the dorsal part of the medial superior temporal region (MSTd) of

the macaque monkey have been found that respond to motion stimuli

containing elements of expansion, contraction, and rotation (Graziano,

Andersen, & Snowden, 1994; Sakata, Shibutani, Kawano, & Harrington,

1985; Sakata, Shibutani, Ito, & Tsurugai 1986; Saito, Yukie, Tanaka,

Hikosaka, Fukada, & Iwai, 1986; Tanaka, Hikosaka, Saito, Yukie, Fukada, &

Iwai (1986); Tanaka, Fukada, & Saito (1989); Tanaka & Saito, 1989). There is

also strong psychophysical evidence for a system in primate cortex

processing these types of complex motion patterns (Freeman & Harris, 1992;

Regan, 1986; Spitz, Stiles, & Siegel, 1993). It has been proposed that such

pattern selectivity may be important in the tasks of ego-motion

representation and the analysis of object motion in the environment.

MSTd is thought to be part of the motion processing stream that courses

dorsally in cortex from V1 to MT to area MST (Boussaoud, Ungerleider,
Desimone, 1990). V1 and MT both contain units tuned to linear motion

(Albright 1984; Hubel & Wiesel, 1962; Livingstone & Hubel, 1988; Maunsell &

Van Essen, 1983a,b) and the selectivity of MSTd cells to more complex

motion patterns is thought to be built up from these more simple inputs. It

is likely that motion direction and speed discrimination are processed

together in the same cortical pathway. Recent studies (Pasternak &

Merigan, 1994) have showed that lesions to the fundus of the superior

temporal sulcus (STS) known to effect both areas MT and MST have raised

both speed and motion direction detection thresholds for noisy stimuli.

The distribution of units in MSTd tuned to different motion patterns is

biased in favor of expansion. Many more cells are tuned to stimuli

containing expansion than either clockwise or counter-clockwise rotation,
by a ratio of about 2:1 (Duffy & Wurtz, 1991; Graziano, et al. 1994; Saito, et al.

1986; Tanaka & Saito, 1989). The one exception to this general observation

was reported by Lagae, Raiguel, Xiao, and Orban (1994), where more cells

tuned to rotation than expansion were found. Given the consensus
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established by the other groups, we agree with their suggestion that the

discrepancy is a consequence of the anatomical clustering of neurons with

similar response selectivies in MSTd. Because this latter study involved

relatively few penetrations, its population estimates were particularly

vulnerable to sampling bias.

Given this strong anisotropy in response selectivity, it would be

reasonable to expect perceptual consequences. A priori, lower

discrimination thresholds for either speed or direction discrimination

might be anticipated for motion stimuli containing elements of expansion.

HIowever, Sekuler (1992) found little evidence for this and concluded that

speed detection thresholds were similar for linear motion, expansion, and

contraction and could be predicted on the basis of sensitivities to the local

motion signals that made up these stimuli.

In this study we take a different approach and compare perceived speed

differences between stimuli containing expanding or rotating global motion

signals. (This was originally motivated by the informal observation during

a MSTd single unit recoding study that the random dots present in

expansion patterns appeared to have a greater speed than those in rotation

patterns even though the patterns had identical speed distributions.)

Although the following psychophysical study uses human subjects while

the physiology studies showing a preponderance of expansion units were

cdone in the macaque, we believe that the cross-species generalizations have

legitimacy. Whether MSTd has a role in ego-motion or object motion

representation, expansion is arguably a more biologically relevant motion

pattern than either contraction or rotation and it is not surprising that

these units are over-represented. We also believe that this perceptual

phenomenon is of interest, independent of this specific explanation.

GENERAL METHODS

'The following conditions were adhered to unless otherwise specified for

a particular experiment. Stimuli were generated and data collected on a
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Macintosh computer with a 13 inch color Trinitron monitor. In all cases

subjects viewed the stimuli 24 inches (61 cm) away from the display in a

moderately lit room. In many cases the size of the stimulus was a circle of

diameter 200 pixels. At the viewing distance used, this corresponded to a

viewing angle of 7.63 degrees. The random-dots comprising each stimulus

were plotted into a virtual square with dimensions 200x200 pixels. To obtain

a circular stimulus presented on the screen, a circular mask was used to

limit those pixels visible. A square stimulus was considered undesirable

because of transiency problems evident in rotation patterns as dots rotate off

the edge of the stimuli. Using a circular mask eliminated this problem for

the case of rotation. With the expansion stimuli, dots could still move off the

boundary of the visible display before living out their full life-times, a

problem which is discussed and controlled for below under Experiment 6.

Other masks were employed, in particular, in Experiment 5, where double

wedges of various angular extents were applied.

Each dot was a square pixel that extended over a visual angle of 0.038

degrees per edge. Unless otherwise indicated, each pixel that was "on" to

define a dot in the stimulus was a small black square against a white

background. This arrangement eliminated persistence artifacts associated

with bright moving features over a dark background. The fixation point was

a filled circle of diameter 5 pixels (0.2 degree at the viewing distance). The

refresh rate of the video card was 60.0 Hz. Each refresh cycle generated a

software interrupt signal that caused the animated sequence of the

stimulus, or "movie", to advance by one frame. Accordingly, a one second

movie consisted of 60 consecutive image frames. To conserve memory, if the

stimulus lasted longer than one second, it was started over from frame 1, in

a. loop. In each stimulus, the life-time of the dots was constrained to a

limited number of frames (generally 12). Once a dot had persisted for this

period of time, it was randomly assigned a new starting position, trajectory,
and speed, consistent with the global motion pattern of the stimulus (see
below). For the first frame of a movie, a random age was assigned to each

dot, ranging from 0 to one frame short of being extinguished. This caused
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dots to "die" asynchronously and prevented a global flicker of the pattern

with a periodicity determined by the life-time of the dots. If the dot left the

virtual square defining the stimulus boundary, it was given a new random

location within the stimulus, whether or not it had completed its entire life

cycle. This prevented any fluctuation in dot density across the pattern from

frame to frame. Note that premature dot "death" does not necessarily

correspond to a dot moving outside the visible portion of the stimulus. It was

generally the case that only a portion of the virtual square pattern was

visible, as a result of applying an occluding "window" or mask over the

movie.

For each paradigm, except that of Experiment 7 where this variable was

specifically manipulated, dot density was the same for all the experiments.

-100 dots in the 200x200 virtual stimulus square were shown at any one

point. This meant that 1 out of 400 pixels were "on" at a time. Because

various masks were used, not all of these pixels were visible. For example,

when a 200 pixel diameter circular window was applied, 78.5% (31416 out of

a possible 40000 pixels) were visible to the observer. Under this condition, an

average of -78 dots were visible each frame.

In most of the stimuli, the speed of each dot was proportional to the

distance of its starting point from the center of the pattern. In terms of the

motion of individual dots, there was no component of local acceleration in

the signal. Not only did individual dots not deviate from their linear

trajectories during a life-time, the speed of the dot was also constant. This

is, of course, inconsistent with the movement of features on real objects

expanding and[ rotating in the world. The "no acceleration" constraint was

imposed to allow precise matching of local velocity vectors between stimuli

with different motion patterns. For example, to go from a random dot

display with local motion vectors organized into a global expansion (i.e. all

velocity vectors pointed away from the center of the stimulus) to global

rotation, all that needs to be done is to rotate each of these local vectors by 90

degrees (Graziano, et al. 1994). Figure 1 shows why this is the case. Clearly
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the average speed of the dots for the patterns in "A" and "B" are perfectly

matched -- to transform one pattern into the other, a rotation of 90 degrees of

each local motion vector is all that is required. Furthermore, on average,

the same distribution of velocity vectors is present in the two patterns, only

the spatial organization of these vectors has changed, allowing for a precise

balancing of signals. Although both curvature and acceleration were absent

from the local :motion of the individual dots, this was not noticeable because

the life-time of each dot was kept brief. If dot life-times become too long this

no longer holds. For example, in the case of rotation, without curvature the

clots would move progressively away from the center of the stimulus, giving

the perception of an expanding spiral. The same problem would occur if dot

speed were allowed to increase, as the phenomenon is directly dependent on

the amount of spatial displacement. Dot life-times and speeds in this study

were well beneath the point where this effect becomes noticeable.

A two alternative forced choice (2AFC) paradigm was used in all of our

experiments. Subjects initiated each trial by pressing the "space" bar on a

computer keyboard. They were told not to press this key until they were

looking at the fixation point. Eye position was not monitored, as the effect

seems largely independent of this behavioral variable. Head position was

also not fixed, allowing for greater comfort for the subject. Although we

insisted that the participants maintain a fixed viewing distance (24 inches),

this variable in pilot studies was shown to have little effect on the outcome of

the experiments. Following trial initiation, the first stimulus appeared at

the center of the display. The center of the stimulus and the fixation point

were transparently superimposed. This first movie was followed by a one

second gap, where only the fixation point remained on the screen. This gap

was followed by the second stimulus, which was presented in the same

manner as the first. After the presentation of the second stimulus, both

fixation point and movie were extinguished. At this point, the subject had to

decide which stimulus had dots moving at the greater average speed.

Participants were urged to ignore all aspects of the stimulus except the

average speed of the whole patterns. They were also discouraged from

201



Chapter 4: A Novel Speed Illusion Involving Complex Motion Patterns

formulating their judgments on the movement of individual dots. Based on

this comparison of average speed, either '1' or '2' was pressed on the

Ikeyboard to register the choice, depending on whether the first or second

stimulus had dots with greater perceived speed. Subjects were encouraged

to take breaks from the task if they felt themselves becoming fatigued.

(Generally a few training trials were allowed prior to data collection. At no

time was any feedback given to the subject about performance. For

Experiments 2-7, four or five subjects were used, 2-3 naive observers as well

as the two authors. For the first experiment, 3 additional naive participants

were employed.

For each experiment, a "standard" expansion stimulus appeared as one

of the two movies for comparison in each trial. The other movie in a trial

was chosen from a set of "test" rotation patterns with dot speeds equal to 70,
80, 90, 100, 110, 120, and 130 percent of those present in the standard movie.

]In half of the trials the standard movie appeared first while in the

remaining half one of the test patterns appeared first. All trials in an

experiment were presented in a psudorandom order. By plotting the

frequency with which each rotation pattern appeared moving faster than

the standard expansion pattern as a function of the actual rotation to

expansion speed ratio, an equivalence point could be recovered by fitting the

data to a logit function and obtaining the 50% judgment point. In a few

cases, this point lied outside the range of speeds tested and an extrapolation

was required to obtain an assessment of the perceptual equivalence point.

Because of the 2AFC design of the experiment, exact 95% confidence

intervals for the data points could not be established. It is not possible to

produce a binomial confidence interval that will satisfy the strict definition

of a confidence interval, namely one that will have the specified probability

P of containing the unknown but fixed parameter p. For example, if the

actual probability of a particular event is zero, any confidence interval

established for such a point must necessarily include zero within its

bounds, making the concept of a "95%" or "99%" confidence interval
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senseless. This problem arises because the observed probabilities for each

data point can only take on discrete values. Although probability estimates

for binomial data don't follow a normal distribution, they approach this

form for large N, and by using a "continuity correction" confidence intervals

were estimated by the standard methods (Snedecor & Cochran, 1989).

The broken curves bracketing the solid regression lines in Figures 4, 6, 8,
and 9 represent the 95% confidence bands for the data. They were obtained

by fitting a curve (using the logit function) to the upper and lower bounds of

the 95% confidence intervals, respectively, associated with the data points.

The dotted drop-lines extending downward from these curves bracket the

solid drop-line associated with the function (also a logit function) obtained

from the "best guess" data points. This technique will be used throughout

this paper to get an estimate of the uncertainty associated with measuring

each equivalence point. An effect will be considered "significant" if this

interval does not include the "no effect" condition.

Experiment 1

Rational/Methods

Two basic stimulus patterns were used in this paradigm, which

demonstrated the basic finding of this investigation. The stimuli used are

shown in Figure 1. In this case, a 200 pixel circular mask was used to

restrict viewing to a round window. The standard movie was an expanding

dot pattern with dot life-times of 12 frames, or 200 msec. Dot speed for a

particular pixel in the standard stimulus was established according to the

formula: speed = k*(distance from the origin). In all cases, k was fixed at

0.02, which meant that the speed of a dot at the very edge of the stimulus

window was 2 pixels/frame or 4.6 deg/sec. In the unlikely event that a dot

happened to appear in exactly the center of the display, its velocity would be

zero throughout its life-time. The velocity field which resulted is equivalent

to that of an approaching circular object with a flat surface normal to the

line of sight. However, because the velocity field did not change over time,
the simulated distance of this object remained unchanged, as did the size of
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the stimulus, i.e. the stimulus did not evolve. As discussed above in General

Methods, by rotating each velocity vector defining the expansion by 90

degrees to the left, a counter clockwise rotating pattern was achieved

without altering the average speed distribution. These rotation patterns had

an angular velocity of 68.7 degrees/sec. Rotation stimuli of various average

speeds, both slower and faster, were also created to complete the set of "test"

patterns, as discussed above. It should be pointed out that when we refer to

a distribution of velocity vectors as being "identical" we mean statistically

identical and not literally so. Because every dot for each pattern is randomly

assigned a location, we do not literally rotate the exact same set of vectors in

transforming one stimulus pattern into another. However, because the

number of these random events is large in constructing these stimuli, we

were not concerned that stochastic fluctuations in the average speed

represented would have any effect on the results.

Results

Figure 2 shows what the performance curves would look like if there

was no effect of motion pattern on perceived dot speed. The fraction where

the rotation stimulus was judged "faster" is plotted against the ratio of

Rotation Speed to Expansion Speed. The series of logit functions shown in

the graph represent the performance of the same ideal observer if

progressive amounts of noise was added into his perceptual system. The

less noise added, the steeper the slope at the inflection point. A step function

(not shown) which takes a jump from 0 to 1 at a speed ratio of 1.0 (physical

equivalence) represents the case of ideal subject performance with no added

noise. The horizontal line extending from the vertical axis bisects this axis

at the 50% judgment point. By following this line over to the performance

curve and then down to the abscissa, the point of perceptual equivalence can

be recovered. For the "no effect" case depicted in this figure, this is of course

a speed ratio of 1.

Figure 3 shows the actual experimental results. Each frame in this

figure shows data collected from a single subject. The authors served as two
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of the subjects, the remaining six were unpaid volunteers naive as to the

purpose of the study. To varying extents, each subject's psychophysical

curve is shifted rightward from the "no effect" case. In each graph, the

perceptual equivalence point (shown in the lower right corner of each

frame) was greater than unity, indicating that all eight subjects perceived

the dots in the expansion pattern moving faster than those in the rotation

pattern. The bars drawn for each data point represent 95% confidence

intervals. Figure 4 shows the data from the eight subjects used in Figure 3

pooled into a single curve. From this last plot, it is seen that the equivalence

point for the set of subjects as a whole was a speed ratio of 1.21. In other

words, the dot speed for the rotation pattern needed to be increased 21%

before the perceived speed was the same as for the expansion pattern.

Experiment 2

tational/Methods

We decided to systematically explore which aspects of the stimuli were

responsible for the speed illusion documented in the first experiment. There

were at least two components to the global organization of the velocity

vectors defining the previous patterns. The original patterns had both a

direction and speed gradient. In these movies, the speed of each dot was a

linear function of its distance from the center of the display. In this second

experiment, we eliminated this aspect of the stimulus, giving each dot a

fixed speed, regardless of location. Two representative velocity fields from

these patterns are shown in Figure 5. The speed of each dot was the same

as a dot in the patterns from Experiment 1 located 71 pixels away from the

center of the display. In this way, the average speed of the dots in the two

experiments was approximately the same, although this was a relatively

unimportant detail since these different types of patterns were not directly

compared. We call these new stimuli "direction fields" to distinguish them

from the "velocity fields" explored previously. This terminology was used in

an MSTd physiology study by Tanaka, et al. (1989). This group probed the
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response profiles of MSTd units to both direction fields and velocity fields

and achieved nearly equally vigorous responses.

Results

Figure 6 shows the data organized into the same plot format as the

previous experiment. For brevity, although discrete data points from all

four subjects are plotted, the curve from this figure was obtained by pooling

data across all subjects. The speed ratio equivalence points for individual

subjects were bg = 1.14, nq = 1.18, eg = 1.28, yz = 1.18. As seen from the plot of

the pooled data, the overall equivalence point was a speed ratio of 1.19 and

this effect was significant. In this case, dot speeds for the rotation pattern

had to be, on average, 19% faster than the dot speeds for the expansion

stimuli to appear to move at the same speed. Although the illusion was

slightly less for the direction field compared to the velocity field in

Experiment 1 (1.19 compared with 1.21, with overlapping confidence

intervals), in each case the curves deviated significantly from veridical

expectations. We concluded that the speed gradient contributed relatively

little to the illusion, which is consistent with MSTd cells responding only

slightly less to patterns where this component had been removed (Tanaka,

et al., 1989).

Experiment 3

Rational/Methods

Tanaka, et al. (1989) showed that the responses of MSTd cells to complex

motion pattern trailed off as the number of local motion directions defining

these patterns decreased. In the extreme case, that of axial expansion and

rotation, only two directions of motion are present and responses evoked are

quite weak. We predicted that if activity in MSTd was accounting for the

illusion documented above, the strength of this effect should be smaller for

stimuli which largely fail to activate this region. The patterns used are

diagrammed in Figure 7. Frame A shows an example of axial expansion

and rotation used for this study. Within a stimulus, all dot speeds are equal
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and only two directions of motion are represented in each pattern. As in the

other experiments, the expansion stimulus was used as the standard in the

2AFC task. To transform the expansion pattern into a rotation pattern with

identical velocity distributions (but not identical spatial organization) the

expansion stimulus was effectively bisected orthogonal to its long axis. The

left half of the stimulus was then placed on top of the right half, creating the

axial "rotation."

Because of the way these patterns were constructed, the expansion

stimulus was 100 pixels wide and 100 pixels high while the rotation pattern

was 200 pixels wide and 50 pixels high. Because the shape of the two pattern

types was not identical and their motion borders differed in length, an

unwanted variable was introduced that could potentially effect the

perception. To control for this, we created axial expansion and rotation

patterns like those in Frame B. In these stimuli, the expansion patterns

were oriented horizontally and the rotation patterns were square. By

pooling the data from these two stimulus sets, the confounding effect of

stimulus dimension was eliminated (this assumes there is no interaction

between the two possible effects.)

Results

Unlike the stimuli in the first two experiments, no consistent effect of

motion pattern on perceived average speed was evident. Figure 8A shows

the individual data and a pooled tuning curve for the five subjects where

stimuli like those of Figure 7A are compared. The individual subjective

equivalence points were bg = 1.09, dk = 1.01, nq = 1.12, eg = 0.84, yz = 1.12. The

equivalence point obtained from pooling this data was 1.03, a much smaller

effect than that reported above for the isotropic patterns. Furthermore, the

range of equivalence points bracketed by the 95% confidence bands includes

the "no effect" case. Figure 8B shows pooled data obtained from trials

comparing the stimuli of Figure 7B. The individual subjective equivalence

points were bg = 0.98, dk = 0.89, nq = 1.04, eg = 0.84, yz = 0.89. The pooled

equivalence point in this condition was 0.94 and again the "no effect" case
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was included within the range bracketed by the confidence bands. Figure

8C plots the result of pooling data shown in frames A and B. The individual

subjective equivalence points in this final case were bg = 1.04, dk = 0.95, nq =

1.08, eg = 0.84, yz = 1.00. The equivalence point obtained by averaging over all

five subjects was 0.99, indicating that the speed illusion previously obtained

for isotropic patterns was not present for axial patterns. Consistent with

implicating units in MSTd with the "speed illusion," axial

expansion/rotation stimuli, which poorly activate this region, failed to elicit

the speed illusion. We conclude that the presence of a wide range of

directions in the original patterns used in Experiment 1 is responsible for

the speed illusion. Note that this experiment also suggests that centrifugal

organization (away from the line of sight) of motion vectors, per se, does not

contribute to the phenomenon. Despite possessing more centrifugally

oriented local motion signals in the axial expansion displays compared to

rotation, the perceived dot speed was the same. We examine this issue

further in the next experiment.

Experiment 4

Rational/Methods

Two competing hypotheses could explain the data obtained from the first

two experiments. One possibility, discussed in the Introduction, suggests

that the disproportionate number of pattern motion detectors in MSTd

tuned for expansion compared to rotation is the basis for this illusion.

Alternatively, a similar anisotropy with regards to local motion detectors

could equally explain the results. Albright (1989) has reported that neurons

in area MT tuned for local linear motion oriented away from the fovea

(centrifugally) are over-represented. Because of this, we would expect that

the expansion patterns would activate more units in MT than stimuli with

any other distribution of local motion signals. If this were the case, an

anisotropy with regards to complex motion pattern detectors in MSTd need

not be invoked to account for the illusion.
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To distinguish between these two alternatives, we altered the

experimental paradigm so that rather than presenting the two stimuli

being compared sequentially, they were presented together, side by side,
with an intervening gap of 48 pixels (1.83 degrees). In the center of this gap

the fixation point was presented. By placing the stimuli in the periphery, on

average the patterns all had the same number of centrifugally oriented

local motion vectors. Consequently, the expansion and rotation patterns

positioned at these eccentric locations should equally activate the population

of MT cells. Because this task was much more difficult, due to the

eccentrically placed stimuli, we showed the movies for a full 3 seconds

(actually showing the same one-second movie repeated 3 times without an

intervening gap). Subjects pressed "1" or "2" depending on whether the

movie to the left or right of fixation, respectively, appeared to have faster

moving dots.

Results

Figure 9 shows the results for this experiment, using data pooled over

four subjects. The individual subjective equivalence points were bg = 1.20, nq

=: 1.30, eg = 1.39, yz = 1.23. The overall effect was somewhat larger than that

observed in the first two studies, with the equivalence point from the pooled

data established at 1.27, significantly above the "no effect" condition. We

conclude that the anisotropy in area MT cells favoring centrifugally

oriented linear motion detectors could not explain the illusion.

Experiment 5

MIethods/Rational

Based on the results of comparing axial patterns in Experiment 3, we

predicted that by extending the range of local motion directions which

dlefined the motion patterns, we should expect to see an increasing

rightward shift in the perceptual equivalence speed ratios. To test this
hypothesis, we constructed double "wedge" patterns as shown in Figure 10.

We used the same rules established for the stimuli in Experiment 1 (the
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"velocity fields") for the movement of the random dots, but instead of

applying a circular mask over the square virtual dot patterns, two wedge

shaped masks were used instead. Wedge pairs were centered around the

vertical line through the center of the display and the two wedges were

oriented 180 degrees away from each other, with the rounded edges of the

wedges oriented up and down. The 2AFC task was run with the expansion

pattern as the! standard compared against various rotation patterns with

different dot speeds. This was repeated for wedges of angles 30, 60, 90, 120,

150, and 180 degrees. A wedge pair of 180 degrees is equivalent to two semi-

circles and therefore was identical to the circular patterns of Experiment 1.

For this data point, we used the previously collected data rather than repeat

the identical study. Only wedges of the same size were compared with one

another.

RIesults:

Figure 11A. shows the pooled data collected from five subjects. The six

curves were obtained by regressing data collected from showing each of the

six wedge sizes separately. Rather than show the entire curve, a small

portion of the X axis has been expanded to show the shift of equivalence

points more clearly. Figure 11B shows this data organized into a different

format. In this plot, subjective equivalence ratio is plotted as a function of

stimulus wedge size. A clear trend is evident in both these graphs: the

larger the area of the stimulus exposed, the more a subject's judgment of

greater speed magnitude favored the expansion pattern. Two-way ANOVA

was performed[ on the entire data set, and a significant effect of wedge size

on the equivalence point was established (p<0.05).

For small wedge sizes, a reversal of the illusion was seen for some

subjects -- the rotation patterns were more frequently judged as possessing

greater average speeds. We attribute this as arising from the phenomenon

of "temporal capture" (Treue, Snowden, & Andersen, 1993). Dots in a

rotation pattern will have, on average, shorter life-times because they may

disappear prematurely off the two long side edges of the stimulus. In
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comparison, dots in the expansion pattern may only disappear prematurely

at the much shorter top and bottom edges of the stimulus. This effect is

reduced as wedge width increases and the effect of motion pattern on

perceived speed quickly dominates. Although the trend in the data reflects

two competing effects, the results are consistent with an increasing effect of

global motion ]pattern with an increase in the distribution of motion vectors

that define these patterns. This is also consistent with data from Tanaka, et

al (1989) which demonstrated an increase in response strength for MSTd

neurons with increasing number of local motion signals that define the

stimulus patterns used to probe these units.

Experiment 6

IRational/Methods

We were concerned, given the results of the previous study, that we had not

adequately controlled for dot transiency in our earlier experiments. For

example, in Experiment 1 where a circular mask was used, the average

life-time of dots in the expansion patterns is slightly less than for the

rotation patterns. This is because dots near the periphery of the stimulus

can move off the edge of the expansion but not the rotation stimuli.

Although this difference in average life-time was small, because shorter

average dot life-time produces greater perceived average speed, we were

concerned that this could account for at least part of the illusion. To see if

this was the case, we repeated the original experiment using dots with very

short life-times -- four frames. As dot life-time is reduced, so is the number

of dots prematurely disappearing off the edge of the stimulus. Another

option for dealing with this transiency problem would have been to restrict

the starting locations for each dot so that their entire path remained within

the stimulus window. Unfortunately, this introduces other artifacts, such

as differences in dot density near the periphery of the stimuli.

We decided to extend this study to include patterns with dot life-times of

6, 8, 12, and 16 frames, to see if we could establish a consistent trend. If

differences in dot life-time between the expansion and rotation displays
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were accounting for the speed illusion, we would expect to see this effect to
become larger at longer dot life-times. Life-times much longer than 16

frames were rejected in order to avoid pattern distortions of the type

discussed in the General Methods section. The 2AFC task was again

employed, as usual using a single expansion standard pattern compared

against rotation patterns of varying dot speeds. Only stimuli possessing the

same dot life-times were compared.

Results

Figure 12A. shows data from five subjects for each of the dot life-time

conditions. A curve is fit to the pooled data for each life-time. Frame B takes

the subjective equivalence ratios for each set of patterns and plots them as a

function of dot life-time. To our surprise, the shorter the dot life-time, the

greater the magnitude of the illusion, the opposite of what would be

expected if temporal capture were accounting for the effect. Two-way

A•NOVA was performed on the entire data set, and a significant effect of dot

life-time on the equivalence point was obtained (p<0.05). It is clear that

whatever effect differential transiency is having on the perceived speed of

dots near the periphery of these patterns, it is small compared with the

overall effect of global motion. Not surprisingly, those sets of patterns with

shorter life-times appeared to have dots moving considerably faster than

those patterns with longer life-time. However, this was not important

because the patterns being compared always had the same dot life-times.

Why patterns of shorter dot life-time gave a stronger effect will be

considered in the Discussion.

Experiment 7

Rational/Methods

We pursued the line of reasoning in Experiment 5 in a slightly different

direction. Rather than varying the area of the stimulus exposed as was
done in the previous study, we systematically ran a series of experiments

with different dot densities. 2, 4, 8, 16, 32, 64, 128, and 256 dots were used with
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patterns that were otherwise identical to those employed in Experiment 1.

At low dot densities, problems associated with stochastic fluctuations in

average speed potentially became an issue. To avoid this problem, the

random number seed for the program generating the stimulus patterns

was saved and reused before each movie was created. As a consequence, the

initial spatial location of the random dots was identical for the patterns

being compared.

Based on results from Experiment 5 which suggested a positive

relationship between the range and number of local motion directions

present in the patterns and the magnitude of the illusion, we predicted the

difference in perceived speed would increase with the number of dots in the

display. Because the dots were repositioned every 12 frames, the number of

motion directions represented in the stimulus patterns over the duration of

the movie was greater than the number of dots present at any one time on

the screen. For example, in the 2-dot condition approximately 2*(60

frames)/(12 frames), or 10, different motion directions were sampled over

the course of a 1 second movie.

Results

Figure 13 shows that the results were consistent with expectations. The

magnitude of the illusion is considerably less for the two and four dot

conditions than for the remaining cases. Frame A of this figure shows a

series of eight curves, one for each dot density, for data pooled over four

subjects. Frame B plots individual equivalence points for each subject along

with a line connecting data points obtained from pooling this data. A clear

positive correlation between dot density and the magnitude of the illusion is

evident in this plot . Two-way ANOVA was performed, and a significant

effect of dot density on the subjective equivalence point was established

(p<0.05). The results are consistent with the rest of the data collected in this

study: the illusion is directly correlated with the strength of the global

motion pattern present in the stimulus.
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DISCUSSION

In the Introduction we suggested that the reason local features defining

expansion motion appear to move with greater speed than features defining

rotation motion was because of the over-representation of expansion

detectors in MSTd. We predicted that the magnitude of the perceptual effect

would be well. correlated with MSTd selectivity. In each experiment we

]performed, the results were consistent with expectations. Reducing the

number of local motion directions defining expansion and rotation in

Experiment 3 (down to two directions in the case of axial

expansion/rotation) deminished the illusion, consistent with the poor

responses reported when these patterns were used to drive MSTd units.

Removing the speed gradients from the patterns, thus reducing them to

"direction fields", had little effect on the speed illusion, consistent with the

strong responses these patterns produce in MSTd neurons. The centrifugal

bias of MT direction selectivity was effectively eliminated as a potential

explanation for the illusion, as demonstrated in Experiment 4, where

moving the patterns away from the fovea actually slightly increased the

magnitude of the subjective speed difference between motion patterns.

Additionally, the axial expansion patterns used in Experiment 3 contained

a disproportionate amount of local motion signal with a centrifugal

orientation compared with the axial rotation patterns and no effect was

reported. These axial patterns also do not activate MSTd neurons well. We

conclude that the speed illusion reported here is closely related to MSTd

activity and that it is generated by the global arrangement of a wide range of

motion directions.

We also found that reducing dot density in the stimuli had the effect of

reducing the magnitude of the illusion. Unfortunately, there is no good

corresponding physiological data on this issue. With regards to the effect of

dot density on MSTd unit response profiles, lower dot densities than those

used in this study still strongly stimulated cells (Duffy & Wurtz, 1991).

However, because the stimuli they used were 100 degrees in diameter, the
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number of dots in the displays was never less than 25 at one time. It is not

clear how these same units would have responded to the much smaller

stimuli used in this investigation with many fewer dots.

Does the Primate Visual System Possess Complex Motion

Pattern Detectors?

An assumption of this study is that the primate cortex possesses

mechanisms specifically sensitive to complex motion pattern. This study

further provides evidence for such a mechanism by showing an effect of

complex motion pattern on perceived speed. As discussed above,

]Experiments 3 and 4, in particular, make it difficult to attribute the speed

illusion to the functioning of a system of local linear detectors. Along

similar lines, Graziano et al (1994) proposed that MST cells are similar to

IT cells in being selective for patterns, but in the case of MST the selectivity

is for patterns of motion rather than static patterns. Both areas

demonstrate positional invariance with respect to pattern selectivity - the

stimulus specificity is relatively insensitive to stimulus placement within a

unit's receptive field. The receptive fields in both areas are very large and

include the fovea, indicating that single cells generalize for patterns over a

large extent of the visual field. And finally, both areas use inputs from

areas analysing visual information at a much more local, rudamentry

level. Thus, just as area IT has detectors for faces, area MST has detectors

for expansions, rotations, and spirals.

The possible existence of a specialized motion pattern network remains

far from resolved in the psychophysical literature. Two groups (Braddick &

Holliday, 1991; Werkhoven & Koenderink, 1991) observed that the motion

patterns of expansion, contraction, rotation, and shear do not "pop out" in

displays containing distracters. One possible interpretation of this data is

that the human visual system lacks a specialized motion pattern system.

Instead, a selective attention mechanism is used to integrate patterns

distributed across local, unidirectional detectors (such as those found in

MT). However, pop-out results can be interpreted in a number of ways. For
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example, the large receptive fields and lack of a retinotopic organization to

area MSTd is consistent with a system that, although specialized for

analyzing complex motion patterns, cannot pre-attentively process multiple

motion patterns that are spatially separated.

Experiments looking at speed discrimination thresholds for complex

motion patterns have reinforced the possibility that the primate visual

system lacks a specialized network for detecting these stimuli. These

studies have shown that the thresholds for looming, rotation, and linear

motion are all similar (Sekuler, 1992), providing evidence against separate

processing channels for these different motion types. Consistent with these

patterns having a distributed representation at the level of local detectors,

thresholds for complex motion patterns were what would have been

predicted based on the simple pooling of local, linear motion signals.

Finally, a recent illusion reported by Duffy & Wurtz (1993), where a

translational velocity field superimposed over an expansion pattern shifts

the perceived focus of expansion in the direction of translation, argues for a

lack of separation between channels that process expansion and linear

motion.

On the other hand, a significant number of studies support the

possibility of a complex motion network. Data from adaptation experiments

(Regan, 1986) suggests the presence of independent channels tuned to

linear motion, expansion, and rotation. Regan was able to develop stimuli

which selectively increased perception thresholds for one pattern type

without effecting the others. Consistent with a "low-level" processing of

complex motion pattern, studies in infants (Spitz, et al., 1993) have showed

that the capacity to integrate the information contained within nonuniform

velocity fields into coherent motion patterns develops as early as 7 months of

age. Masking studies (Freeman & Harris, 1992) indicated that the detection

of expansion in a stimulus is unaffected by the presence of rotation,
suggesting at least two independent channels for processing complex

motion patterns. However, these studies are difficult to reconcile with data

216



Chapter 4: A Novel Speed Illusion Involving Complex Motion Patterns

from a physiology study (Orban, Lagae, Verri, Raiguel, Xiao, Maes, & Torre,
1992) which showed that such masking detunes MSTd cells.

Much of this controversy can be resolved by considering that many

MSTd cells have multiple components to their selectivity. For example,
many cells have been found that are tuned not just for expansion, but some

direction of translational motion as well. Similarly, cells tuned for such

combinations as contraction and clockwise rotation have been found as

well. Although we believe that this region is involved in the representation

of complex motion pattern, it is not surprising that a lack of independence

has been found in these channels, given the mixing of signals known to

occur at the level of individual units.

Since the speed illusion we reported in this paper cannot be explained by

a local linear motion system, it provides further evidence for the existence of

a complex motion pattern system.

Other Speed Illusions and Perceptual Anisotropies

Although more attention has been paid to the directionally selective

mechanisms of velocity perception than to speed, the literature is scattered

with reports of various speed illusions. Watamaniuk, Grzywacz, & Yuille

(1993) noticed that increasing the density of features in translational

random-dot stimuli led to increases in the apparent speed of the dots. This

illusion was particularly strong when the increase in density occurred

during continuous viewing of the stimulus, with a smaller effect reported

once dot density was no longer changing. Along similar lines, Thompson

(1982) reported that sine-wave gratings appear to move faster when they

contain higher contrast. This same study found no dependency of speed

perception on spatial frequency content but did find evidence that the

orientation of the grating affected perceived speed. Another study also using

drifting sinusoidal gratings found that these stimuli appear to move more

slowly in the periphery than foveally (Johnston & Wright, 1986). As

mentioned before, Treue, et al. (1993) reported that decreasing the dot life-

times of stimulus features defining motion patterns causes an increase in
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the perceived velocity of these features. This effect was evident even when

flickering dots which were not moving were interposed amongst the

moving dots. Increasing the flicker rate of these stationary dots appears to

increase the speed of the dots that are moving, even though the life-times of

this moving group remain constant, a phenomenon which they call

"temporal capture."

The only speed illusion we could find that involved rotating stimuli was

in a report by Vicario & Bressan (1990) documenting the perception of

rotating wheels on vehicles undergoing forward translation. They found

that subjects consistently overestimate the angular velocity of the wheel

relative to the forward velocity of the vehicle. This illusion creates the

impression of the wheels partially "slipping" relative to the surfaces with

which they are in contact. This is interesting, because given the results of

this study, it might be expected that subjects underestimate the speed of

rotating objects in general. It would be worthwhile to create random-dot

displays of linear (translational) motion with identical speed distributions

as the dots in rotation and expansion displays and compare estimated speed

magnitudes.

There are numerous reports of perceptual distortions in the human

motion processing system. Thresholds for the detection of coherent motion

in displays with low signal-to-noise ratios are generally higher along the

vertical meridian, particularly for motion moving either upward or

downward (van de Grind, Koenderink, van Doom, Milders, & Voerman,

:1993). Another study (Raymond, 1994) reported that although foveal motion

sensitivity was isotropic, a small but significant (about 0.1 log units)

difference in sensitivity in favor of centripetal motion was observed at

eccentricities between 5.0 and 12.5 degrees out from the fovea. This was true

for the entire horizontal meridian and the inferior half of the vertical

meridian. Motion sensitivities for the superior portion of the vertical

meridian were isotropic (i.e. identical for all motion directions.) Consistent
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with the previous study, motion thresholds were generally higher along the

vertical axis.

The phenomenon reported in the current study cannot be explained by

any combination of the above factors, because the effect was invariant with

regards to stimulus placement relative to the fovea. This is important

because it shows a dependence of perceived speed on the global organization

of the motion vectors that compose the stimulus. While detection thresholds

and discrimination thresholds have traditionally been examined to probe

the working of the nervous system, this investigation shows that systematic

differences in perceived speed magnitude can also reveal information about

the internal processing of the visual system.

Number of Cells and Perceived Speed

Although it seems plausible that a larger number of MSTd cells tuned to

expansion compared to rotation would lead to expanding stimuli being

perceived as moving faster than rotating ones, a real explanation of the

illusion requires a computational model that relates MSTd cell activities to

the perceived global pattern speeds. Unfortunately, such a model does not

yet exist. Nevertheless, we would like to speculate on the types of

mechanism that might lead to the illusion.

One possible explanation for the effect we reported is that differences in

the proportion of units tuned to rotation and expansion could lead to

different rates of fatigue for these two channels. Fewer units conceivably

could leave a channel more susceptible to fatigue. In a pilot study, this

explanation was ruled out by demonstrating that stimulus exposure time

had little effect on the magnitude of the speed illusion. We tried exposure

times of both one half and two seconds, bracketing the one second stimulus

time used in this study.

Many models for local translational velocity computation have been

proposed in the past (Horn & Schunck, 1981; Hildreth, 1984; Heeger, 1987;

Grzywacz & Yuille, 1990; Simoncelli, 1993). These models cannot adequately
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predict our speed illusion because, as we have demonstrated, the illusion is

a global phenomenon depending on the overall arrangements of many

different directions of motion and it disappears when the global patterns we

used are viewed through narrow, wedge-shaped apertures. However, if we

assume that the computation of global pattern speed involves similar steps

as in some physiologically-inspired local translational velocity models

(Heeger, 1992; Heeger, 1993), our speed illusion could be explained. A key

element in these motion models is a normalization step at which the output

of a specific translational motion mechanism is divided by the sum of

outputs of all the translational motion mechanisms. We could generalize

this procedure to the case of global pattern speed computation by assuming

that the output of the expansion (or rotation) mechanism is normalized by

the outputs of all global motion mechanisms present in MSTd. It is also

reasonable to assume that the signal strength of a given global motion

mechanism before normalization is proportional to the number of MSTd

cells tuned to that global motion type. Because there are more MSTd cells

tuned to expansion than rotation, the output of the expansion mechanism

after normalization would remain stronger than the rotation mechanism.

This could be the physiological basis of the speed illusion reported in this

paper.

A complication to the above explanation comes from the result of our

Experiment 6, which indicates that the magnitude of the speed illusion

increases under conditions of shorter dot life-time. To explain this effect, we

assume that decreasing dot life-time disproportionately reduces local

translational motion signals relative to global motion signals. This is

because of the expected greater spatial and temporal integration

capabilities of the latter system, which pools data over larger spatial and

temporal windows. The observed effect of dot life-time on the speed illusion

can be explained by interpreting perceived speed as the result of competition

between a local and a global speed estimation process. At a local level, an

estimate of speed is obtained for each dot based on its individual motion.

This signal is based only on the local trajectory of the feature and is
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independent of the global arrangement of velocity vectors. V1 and MT are

likely sites for such a local speed estimation. The global speed estimation

may be assumed to be performed in MSTd where the overall arrangement

of many local velocity vectors is taken into account. We do not know the

nature of the operation that combines the outputs of the two regions but the

known two-way connections between MSTd and MT might provide the

necessary circuitry. The illusion's dependence on dot life-time suggests that

under environmentally relevant conditions, where features are not so

transient, the effect would be much reduced. We could not test stimuli with

dot life-times extending beyond 0.25 seconds (16 frames) because of

distortions, discussed in General Methods, introduced into our patterns.

A biological function of the proposed interaction between local and global

motion estimation processes could be a gradual refinement of both

processes. Knowledge of the global motion patterns could refine local

motion estimation by providing better motion constraints than the

commonly used uniform translational motion assumption. Improved local

motion estimation could in turn refine global motion computation which

receives locally computed velocity fields as input. It would be interesting to

test this idea in an integrated model of simultaneous local and global

motion computation.
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LEGENDS
Figure 1: Stimuli used in Experiment 1. Frame A shows an example of counter-

clockwise rotation while Frame B is an example of expansion. Each arrow is a
motion vector that represents the direction and magnitude of individual dots
making up these patterns. Note that the length of these vectors increases moving
outward from the center of the stimuli. As explained in the text, transforming one
pattern into the other simply involves rotating each local motion vector by 90
degrees in the appropriate direction.

Figure 2: Series of ideal performance curves. The x-axis represents the actual speed
ratios of a set of test rotation patterns to a fixed standard expansion pattern. The
y-axis represents the fraction of trials in which a test rotation pattern is judged
moving faster than the standard expansion pattern. If the two types of motion
pattern being compared appear to move equally fast when their actual speeds are
the same, the point of inflection of the logit function representing performance
would be at a speed ratio of unity, as shown for the curves in the figure. The
abscissal location of this point for real data shifts to the left or right depending on
the subjective judgment of relative speed. The ordinal location of the inflection
point is constrained by the general form of the logit function to be always at 0.5.
The slope of the curve is inversely correlated with a particular subject's ability to
consistently judge differences in speed.

Figure 3: Individual subjects' data from Experiment 1. Each plot shows the
psychophysical performance curve for a different observer. In each case the point of
perceptual equivalency is shifted to the right, indicating that each subject tended to
judge dots in expansion patterns as moving more quickly. Error bars represent
95% confidence intervals.

Figure 4: Performance curve obtained from pooling data from Experiment 1 across
subjects. broken curves are 95% confidence bands, as described in the text.

Figure 5: Stimuli compared in Experiment 2. These patterns are identical to those
used in the previous paradigm, except that the radial speed gradient has been
removed and speeds of all dots in a particular stimulus are identical.

Figure 6: Data collected using stimuli lacking a speed gradient. The rightward shift
of the equivalence point is comparable to that obtained with patterns containing a
speed gradient. Data from each of the four observers is plotted. This data was
pooled for the purpose of obtaining the solid regression line. Broken flanking
curves represent 95% confidence bands, as described in the text.

Figure 7: Stimuli used in Experiment 3. The patterns shown in Frames A and B
represent examples of axial rotation and expansion, with only two directions of
motion defining these global motion patterns. For a particular stimulus, the speed
of all the dots was identical. The solid dot in the center of each pattern represents
the fixation point.

Figure 8: Comparison of axial expansion and contraction. Frame A shows
performance curves using stimuli like those in Figure 7A while Frame B uses
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stimuli like those in Figure 7B. Frame C pools these previous two data sets. The
difference in perceived speed between expansion and rotation disappears when
axial patterns are compared.

Figure 9: Effect of moving stimulus patterns away from the fovea. The rightward
shift of the inflection point is again consistent with expansion appearing faster. The
effect was slightly larger than when the patterns were viewed foveally.

Figure 10: Stimuli used in Experiment 5. These patterns were created identically to
those shown in Figure 1 except that a double wedge-shaped mask was applied.

Figure 11: Effect of using patterns of different wedge-size. Each curve in Frame A
was obtained by pooling data across the five subjects tested. The six curves
correspond to the six wedge sizes used. The 180 degree double wedge was
identical to the stimuli used in Experiment 1 (a full circle). Frame B plots the
subjective equivalence points for each subject as a function of wedge size. The
solid line connects data points of the pooled data.

Figure 12: Effect of dot life-time on the magnitude of the illusion. Each curve in
Frame A was obtained by pooling data across the five subjects tested. The five
curves correspond to the different dot life-times. The 12 frame condition was
identical to the stimuli used in Experiment 1. Frame B plots the subjective
equivalence points for each subject as a function of dot life-time. The solid line
connects data points of the pooled data set. Both ways of depicting the data show
a clear relation between dot life-time and magnitude of the speed illusion, with the
effect increasing at short life-times.

Figure 13: Effect of dot density on the location of the subjective equivalence point.
Each curve in Frame A was obtained by pooling data across the four subjects
tested. The four curves correspond to the different dot life-times. Frame B plots
the subjective equivalence points for each subject as a function of wedge size. The
solid line connecting points of the pooled data set shows a generally upward slope.
Beyond the 4-dot case, this increase largely plateaus.
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