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THESIS ABSTRACT

The most ubiquitous source of polycyclic aromatic hydrocarbons (PAHs) to the

environment is incomplete combustion. This study generated a high-resolution historical

record of pyrogenic PAH emissions since pre-industrial times from anoxic aquatic

sediments, allowing for detailed comparison with energy consumption data. We show

that an increase in PAH concentrations over the last decade may be due to a rise in

emissions from diesel-powered vehicles. Compound-specific radiocarbon measurements

demonstrated unequivocally that the proportion of PAHs derived from fossil fuel

combustion has increased substantially during the 2 0 th century. 13C and A14C

measurements were also used to constrain the relative importance of combustion versus

in situ production as sources of perylene. In addition, a comparison of the down-core

concentration and isotopic profiles of black carbon (BC) generated by a combination of

chemical and/or thermal oxidation methods highlighted the limitations of these methods

when applied to sedimentary matrices. Finally, parallel lead and cesium isotopic records

revealed two new potential stratigraphic markers in North American sedimentary records.

26Pb/207Pb profiles show a distinct peak in the mid-19 th century, while a 137 Cs peak was

found to coincide with the 1986 Chernobyl accident.
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CHAPTER 1

GENERAL INTRODUCTION

Combustion processes are responsible for a great part of the environmental

contamination observed nowadays. If combustion reactions involving hydrocarbons and

02 were 100% efficient, CO 2 and water vapor would be the only products emitted into the

atmosphere. However, burning of modern (wood) and fossil (e.g., oil and coal) organic

matter for power generation, manufacturing, domestic heating, land clearing and

transportation are usually incomplete and release a vast array of contaminants to the

atmosphere, such as the carbon based black carbon particles (BC) and polycyclic

aromatic hydrocarbons (PAHs). While most of the initial regulations concerning

combustion aimed at reducing inorganic emissions (COx, NOx and SO), a new standard

on the permissible amount of particulate matter smaller than 2.5 gm in diameter (PM2.5)

was adopted by the United States Environmental Protection Agency in 1997 (15 gg m -3

and 65 tg m -3 for annual and 24-hour standard, respectively) (EPA, 1997). The presence

of fine aerosol particles in the atmosphere can have hazardous health effects as they are

too small to be stopped in the upper respiratory tract and can penetrate into the lungs

(Pedersen et al., 1980; Samet et al., 2000).

The carcinogenic and mutagenic properties linked to PM2. 5 are mostly related to

PAHs associated with them (Prado and Lahaye, 1982; Busby et al., 1988). This group of

compounds encompass suspected carcinogens and mutagens such as benzo[a]pyrene

(Denissenko et al., 1996), which are commonly identified in the exhaust of gasoline and

diesel vehicles (Westerholm et al., 1988; Benner Jr. et al., 1989), emissions from coal and

oil fired power plants (Masclet et al., 1987), residential heating (Ramdahl et al., 1982),

municipal and medical incinerators (Davies et al., 1976; Colmsjo et al., 1986; Lee et al.,

2002) and wood burning (Freeman and Cattell, 1990; Jenkins et al., 1996; Fine et al.,

2001). Although there are natural sources of PAHs (e.g., natural forest fires, volcanic

17



eruptions and oil seepage), anthropogenic inputs are predominant and by far the most

important to air pollution. Because of their diverse inputs and association with fine

particles, combustion-derived PAHs (pyrogenic PAHs) are ubiquitous in the

contemporary environment. Atmospheric transport spreads these compounds to remote

locations such as Arctic ice (Kawamura and Suzuki, 1994) and snow (Masclet et al.,

2000), high altitude lake sediments (Fernmindez et al., 1999) and deep-sea sediments

(Ohkouchi et al., 1999).

Sedimentary records show good correlation between PAH concentration profiles

and energy consumption associated with industrialization. Classic studies conducted in

the 1970s and 1980s along the east coast of the United States showed that PAH

concentrations began to increase gradually around 1880, coincident with the onset of the

Industrial Revolution, and reached a maximum in the 1950s (Hites et al., 1980a;

Gschwend and Hites, 1981) when coal usage was still high (EIA, 2000). Due to the

substitution of coal with cleaner burning fuels in the early 1960s, PAH concentrations in

sediments show a steady decrease from then onwards (Gschwend and Hites, 1981).

Because most of the historical records of PAH found in the literature were generated

before the 1990s, this trend towards lower concentrations was assumed to persist into the

present. However, recent studies reveal that PAH inputs are no longer decreasing. In

2000, Van Metre and collaborators reported that PAH emissions were increasing again in

certain areas of the United States and suggested that this new rise in PAH paralleled the

increase in automobile usage in the watersheds studied. In contrast, results by Schneider

and collaborators (2001) from Lake Michigan revealed constant PAH inputs since the

1980s. Most importantly, these studies indicated that the declining trend in PAH inputs

that began in the 1970s has at best stabilized. This new rise in PAHs concentration is in

contrast to current declining trend of other organic contaminants, such as polychlorinated

biphenyls (PCBs).

It is often assumed that the majority of pyrogenic PAHs found in the environment

have a fossil fuel origin. However, unregulated combustion of modern biomass such as in

incineration of domestic wastes, charbroiling, land clearing, forest and grass fires and

18



residential home heating (Schauer et al., 1996) are all potential sources of PAHs. Because

these activities are not regulated, it is important to establish the proportions of pyrogenic

PAHs derived from both fossil and modem sources. The half-life of radiocarbon makes it

an ideal tracer to discriminate fossil fuel organic matter (A14C= -00l7o) from those

containing modem biomass (A14C > 0%o). For example, Cooper and collaborators (1981)

conducted one of the earlier studies to use bulk radiocarbon measurements to

discriminate the contribution of specific sources of particles to urban air. This study

showed that a large portion of the atmospheric particles collected in Portland, OR during

the winter derived from burning of wood (39-70%) for residential heating. Measurement

of the radiocarbon content of individual molecules was impaired by analytical

capabilities until the late 1990s, when Eglinton and collaborators (1996) successfully

demonstrated the use of a preparative capillary gas chromatograph (PCGC) for isolation

of compounds in enough quantity for radiocarbon determination by accelerated mass

spectrometry (AMS).

The main goal of this thesis was to construct a historical record of pyrogenic PAH

emissions from fossil fuel and biomass sources since pre-industrial times. We aimed at

determining the extent to which the proportion of fossil fuel derived pyrogenic PAHs has

varied and to evaluate which PAHs represent the most effective tracers of modern and

fossil combustion sources. In addition, we evaluated the potential sources of perylene, a

PAH of unknown precursor and three methods for isolation of black carbon through

comparison with the well defined PAHs. A general outline of this thesis is as follows:

Chapter 2 comprises an extensive literature review of recent findings on the

formation, dispersion and fate of combustion derived PAHs to the environment. Because

PAHs can be produced during the combustion of any type of organic matter (fossil or

otherwise), the biggest challenge in regulating atmospheric emissions of this group of

carcinogens relies on estimating the relative contributions of their major sources. Chapter

2 also reviews some of the traditional methods for inferring sources of PAHs to the

environment (historical records and diagnostic ratios) and describes two techniques that
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have recently been applied to source apportioning (stable carbon isotopic composition

and radiocarbon measurement).

In Chapter 3 we construct a high-resolution record of past changes in PAH

deposition in the New England area. We revisited the Pettaquamscutt River, Rhode Island

- a site of pioneering studies on sedimentary PAH (Hites et al., 1980b) - where we

collected several sediment freeze-cores. The results obtained for the PAH fluxes reveals

remarkable structure in the profile that allow for detailed comparison with historical

records of energy consumption. They also showed that the steady decrease in PAH

concentrations that began in the 1950-60s has reverted in this region since the mid-1990s.

We show evidence that (a) the major source of PAH to this area has consistently been

combustion processes, (b) that the relative abundance of PAHs has varied over time, and

(c) use historical information on energy consumption to conclude that the recent increase

in PAH concentrations may be due to a rise in emission from diesel-powered vehicles.

Chapter 4 reviews the use of 210Pb for calculating sediment accumulation rates

and displays the first known record of a Chernobyl 137Cs peak in sediments from North

America. This chapter evaluates different methods for calculating 210Pb chronology and

checks them against the independent varve counting. The highly refined depth-age

relationship was paramount to understanding historical trends in this work and is used

throughout this thesis.

Chapter 5 addresses the use of the anthropogenic lead archaeostratigraphy

(ALAS) calibration curve (Hurst, 2000) to estimate the changes in isotopic fingerprint of

gasoline additives and separate them from contributions from other sources of Pb. While

this approach was not fruitful, we unveiled a large mid-19th century peak in 206Pb/207Pb

ratio (most likely resultant from intense mining and smelting of lead ores in the Upper

Mississippi Valley district) that we believe could be useful as a stratigraphic marker for

sedimentary records from the Northeastern United States.

In Chapter 6, we describe the procedure utilized for combining sediment samples

from four sediments cores and isolating individual PAHs for subsequent compound-

specific radiocarbon and stable carbon analysis. Utilizing the data obtained by these
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analysis we construct a molecular 14C record of combustion-derived PAH and determine

how the proportion of fossil fuel derived PAHs has varied since pre-industrial times. We

compare records from a suburban (Pettaquamscutt River) and a remote site (Siskiwit

Lake) and evaluate which PAHs serve as the most effective tracers of fossil and modem

combustion sources. Chapter 7 examines the down-core record of concentration,

radiocarbon and stable isotopic composition of perylene and total organic carbon in the

two aquatic systems investigated in Chapter 6. Perylene is a parent PAH found virtually

in every sedimentary system investigated. This compound is thought to be produced in

situ from an unknown precursor, but can also be produced by the incomplete combustion

of fossil and modem biomass. By utilizing a combination of 6813C and A14C measurements

on perylene and total organic carbon, we were able to discern the importance of fossil-

fuel derived perylene to the sedimentary profile of this PAH.

Chapter 8 compares the concentration and radiocarbon results obtained for PAHs

to that of sedimentary black carbon. Because there is still no agreement within the

scientific community as to what fraction of the black carbon continuum each published

analytical procedure quantifies, we compare down-core profiles of black carbon

generated by a combination of chemical and/or thermal oxidation methods. The results

obtained illustrate the complexity of BC determinations and highlight the benefits of

comparing BC results to that of a better-defined combustion product.

Chapter 9 concludes the thesis by summarizing the results obtained at each step

and suggesting future research directions.

Throughout this thesis, the following compounds will be abbreviated as follows:

phenanthrene (Phen), anthracene (Anth), fluoranthene (Fla), pyrene (Py),

benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene (BbF),

benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), benzo[e]pyrene (BeP),

dibenz[a,h]anthracene (DBA), indeno[1,2,3-c,d]pyrene (IP), benzo[g,h,i]perylene

(BghiP) and coronene (Cor). Total PAHs is calculated as the sum of these 14 compounds.
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CHAPTER 2

LITERATURE REVIEW

COMBUSTION-DERIVED PAHS IN THE ENVIRONMENT

1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous contaminants in the

environment. They are found in measurable concentrations even in remote locations such

as Arctic ice (Kawamura and Suzuki, 1994) and snow (Masclet et al., 2000), high altitude

lake sediments (Fernmdndez et al., 1999) and deep-sea sediments (Ohkouchi et al., 1999).

The sources and environmental fate of PAH have been the subject of extensive studies

due to the toxic properties of some of their homologues. Compounds such as

benzo[a]pyrene have been shown to be potent carcinogens and mutagens in various

laboratory experiments (IARC, 1983), and their concentrations and sources are

consequently closely monitored.

PAH reach the environment by several different pathways. These compounds are

present in unburned petroleum (petrogenic PAH) and can be released directly to the

environment both by human activities (oil spill) and natural processes (oil seepage). Even

though oil spills attract a lot of attention from the media and public in general, due to the

visible and acute effects that they produce, they usually do not significantly contribute to

the PAH concentration inventory. Diagenetic processes are also suspected to generate

certain PAH (e.g. perylene) from biogenic precursors (Laflamme and Hites, 1978; Tan

and Heit, 1981), although conclusive evidence for this mechanism is still lacking. In

general, biosynthesis is considered a localized source, with little impact on global

concentrations. The most prominent and ubiquitous source of PAH to the environment is

the incomplete combustion of modern (wood) and fossil (petroleum and coal) biomass.

Several studies published in the 1970s laid the groundwork for apportioning the

sources of PAHs to the environment. The historical record approach was used in 1975 to
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constrain the sources of heavy metals (Pb, Zn and Cd) and PAHs to Lake Constance,

Germany. Both groups of pollutants were shown to be present in low concentrations prior

to 1900, at which point their content increased toward the top of the sediment column,

reaching a maximum at about 1965. The good agreement among the profiles of different

compounds suggested a common input source. The authors concluded that increased

consumption of coal in Europe after 1900 could account for the delivery of both groups

of pollutants to the study area (Muiller et al., 1977). A few years later, Lee and

collaborators (1977) analyzed soot produced by the combustion of wood, coal and

kerosene and compared the PAH distribution obtained for these samples to that of

ambient samples from Boston, MA and Indianapolis, IN. The authors observed that

combustion of wood and kerosene typically produced less alkylated PAHs than

combustion of coal. By comparing the plot of alkylated PAHs from the source samples

to that of particulate matter from Indianapolis and Boston, they concluded that

combustion of coal was the most likely source of PAHs to Indianapolis, while burning of

wood and kerosene could explain the distribution of PAHs encountered in Boston. The

first attempt at characterizing the global distribution of PAHs in sediment and soils was

conducted by Laflamme and Hites in 1978. The results obtained for a variety of samples

collected worldwide showed similar qualitative pattern of parent PAHs, although

absolute concentrations varied markedly. Their study revealed that higher concentrations

of PAHs were encountered closer to urban centers versus remote sites, leading them to

suggest that combustion processes were responsible for the widespread distribution of

similar assemblages of PAHs.

A great deal has been learned about the sources and fate of PAHs since these

classic papers were published. This review outlines some of the most recent findings on

the formation, dispersion and fate of combustion derived PAHs to the environment.

Because one of the challenges in regulating atmospheric emissions of this group of

carcinogens relies on estimating the relative contributions of their major sources, the

second part of this article will evaluate the traditional methods for inferring sources of

PAHs to the environment, namely historical records and diagnostic ratios, and describe
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two new techniques that have recently been applied to source apportioning (stable carbon

isotopic composition and radiocarbon measurement). Throughout the text, the following

abbreviations will be used: phenanthrene (Phen), anthracene (Anth), fluoranthene (Fla),

pyrene (Py), benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene

(BbF),benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), benzo[e]pyrene (BeP),

dibenz[a,h]anthracene (DBA), indeno[1,2,3-c,d]pyrene (IP), benzo[g,h,i]perylene

(BghiP) and coronene (Cor). The structures of these compounds, as well as that of retene

(1-methyl-7-isopropyl-phenanthrene) are displayed in Figure 1.

2. FORMATION

Much effort has been placed in understanding the experimental conditions that

favor efficient combustion, so as to minimize the formation of products of environmental

and health concern (Frenklach et al., 1984; Macadam, 1997; Palotds et al., 1998; Ritchter

and Howard, 2000). During combustion, the organic compounds present in the fuel are

fragmented into smaller unstable molecules (free radicals) that can react, through a

number of different chemical pathways, to produce the first aromatic ring (Ritchter and

Howard, 2000). Further reaction of this aromatic ring with small molecules (2-3 carbons;

e.g. C2H2 - acetylene) leads to growth of the aromatic system and formation of larger and

more stable multi-ring structures (Figure 2). It is well established that mechanisms of

formation of PAHs and of soot are closely intertwined (Macadam, 1997; Wal et al., 1997;

Ritchter and Howard, 2000) with high molecular weight PAHs (-500-1000 amu)

functioning as molecular precursors of soot particles (Ritchter and Howard, 2000). In

general, an inverse correlation is seen between the amount of PAHs and soot in flames,

where a decrease in PAHs concentration is linked to the start of soot formation (Prado

and Lahaye, 1982). A limit to the amount of PAHs produced and emitted during

combustion is imposed by either the incorporation of high molecular weight PAHs into

the solid phase (soot) and/or their destruction by direct burnout (Prado and Lahaye, 1982;

Macadam, 1997). The later process corresponds to the pyrolytic oxidation of PAHs to CO

and CO2. Under fuel-rich conditions OH' radicals are usually the main oxidant
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responsible for this convertion, while under fuel-lean conditions 02 dominates (Ritchter

and Howard, 2000).
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Figure 1. Structure of selected PAHs. Highlighted compounds comprise the
Environmental Protection Agency (EPA) list of 16 priority PAHs.
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There is general agreement that similar qualitative mixtures of PAHs are

produced regardless of the type of fuel used (Ramdahl et al., 1982; Jenkins et al., 1996).

Parent PAHs with 3-, 4- and 5-rings dominate emissions from both wood burning and

vehicle exhaust (Figure 3), as larger molecules have higher tendency to be incorporated

into soot particles (Ritchter and Howard, 2000). But while the assemblage of PAHs

emitted by different sources apparently varies only slightly, burning conditions can

significantly influence the amount of each PAH produced, so that the relative proportion

of PAHs from a single fuel source may vary widely (e.g., combustion of white pine and

eucalyptus wood, Figure 3) (Ramdahl et al., 1982; Masclet et al., 1987; Jenkins et al.,

1996).
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Figure 2. Schematics of formation of PAHs and soot particles during combustion, based
on Ritchter and Howard (2000). PAH growth pathway presented was proposed by
Frenklach and collaborators (1984).
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2.1 Type of fuel

The type of fuel burned seems to directly influence the growth mechanism of

PAHs and therefore, the amount of these compounds released by the combustion process.

Laboratory experiments have shown that benzene flames produce 100 times more

polycyclic aromatic compounds than aliphatic fuels (ethylene, methane) for the same

carbon to oxygen ratio (C/O) and temperature (Ritchter and Howard, 2000). Results from

the combustion of 11 different fuels on a gasoline engine showed that a 10% increase in

the aromatic content of the fuel elevated the emissions of BaA, BaP and BghiP by -20%

(Pedersen et al., 1980).
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Figure 3. Distribution of PAHs produced by the combustion of 6 different fuels. Data
from white pine (Fine et al., 2001), eucalyptus (Schauer et al., 2001), municipal
incinerator (Colmsj6 et al., 1986), gasoline and heavy-duty diesel engine (Rogge et al.,
1993) and coal power station (Masclet et al., 1987).
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Other studies have also demonstrated good correlation between the amount of

individual PAHs in fuels and their emission by automobiles. Experiments conducted in

Sweden using four different fuels in a gasoline engine showed a linear correlation

(r 2=0.72) between the initial concentration of PAHs in the fuel and the amount of PAHs

in the exhaust (Westerholm et al., 1988). The same general trend was observed in

California for vehicles running on gasoline (Marr et al., 1999), although the magnitude of

the PAH emissions varied greatly between studies. While Marr and collaborators (1999)

reported that about 3 gg of an individual PAH was emitted per mg of that compound in

the fuel (Figure 4), Westerholm and co-authors found that emission factors varied from

compound to compound (approximately 1 g mg -' for Chry and triphenylene, 7 gg mg -'

for Py and 40 g mg -' for BaP). The non-zero intercept encountered in both studies

indicated that PAHs were emitted regardless of their presence in the original fuel, mainly

because large PAHs can be fragmented during combustion. Therefore, PAH emissions do

not necessarily have to resemble the original fuel. A recent study addressing the

partitioning of PAHs between the gas and particulate phases has given a good example of

the difference in PAH assemblage between original fuel and emission from a motor

vehicle. While the gasoline used on the experiment contained large PAHs, such as BeP

and perylene (6.8 and 2.8 mg g, respectively), the tailpipe emissions by the catalyst-

equipped vehicle was virtually devoid of these compounds (Schauer et al., 2002).

Automobile emissions encompass a mixture of PAHs derived from several

compartments including: a) PAHs initially present in the fuel; b) PAHs formed during

combustion; c) PAHs accumulated in the lubricating oil; and d) PAHs accumulated in the

exhaust system (Acres et al., 1982; Pruell and Quinn, 1988; Marr et al., 1999; Schauer et

al., 2002). For example, unburned and burnt fuel were shown to accumulate in motor oil,

raising the amount of PAHs from undetectable in fresh oil to substantial amounts in used

oil (e.g., 190 g g-1 Phen, 650 g g-i methyl-phenanthrene and 50 g g-l Chry) (Pruell

and Quinn, 1988). The type of engine (spark ignition, diesel), age of the vehicle, presence

of a catalytic converter, vehicle speed and cold versus hot starts are factors that affect

PAH emissions (Pedersen et al., 1980; Acres et al., 1982; Rogge et al., 1993; Maricq et
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al., 1999; Schauer et al., 2002). Some studies suggest that the increase in PAH

concentration observed in the air of large cities is directly correlated to the increasing

number of diesel vehicles (Rogge et al., 1993; Miguel et al., 1998; Kim et al., 2001). In

agreement with that, exhaust emissions from motor vehicles measured in the Caldecott

Tunnel in northern California during the summers of 1996 and 1997 demonstrated that

PAH concentrations in the truck-influenced tunnel were higher than in the light-duty

tunnel, even though the latter had two-times more traffic than the former (Marr et al.,

1999). Uncombusted fuel can also contribute significantly to PAH emissions from diesel

engines (Williams et al., 1989).

25

n-

0)

cm 20

0
- 15c

0
a)
.to
.E
0 1010

Qc)0

.0 5
r
m
D.

0
0.0

BghiP
0

PPy
oo.----

. ..--- -'~' P

BbF Chry BaA ....-- 
BF *0 **~.. ... Fla

Ip - a.--

* BkF

DBA
......... I ' I ' I ' I · I'

0.5 1.0 1.5 2.0 2.5

Concentration of PAH in gasoline (mg kg-')

3.0 3.5
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Marr et al. (1999).

Residential heating is also an important source of PAHs to the atmosphere,

especially in the winter months. Atmospheric studies conducted in several urban and
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rural locations in the state of New Jersey concluded that 98% of BaP present in the winter

derived from residential wood burning (Harkov and Greenberg, 1985). In addition, total

PAH concentrations of approximately 20 mg per kg of dry wood burnt have been

measured for small residential stoves in Norway (Ramdahl et al., 1982). Combustion in

residential wood stoves and fireplaces is commonly incomplete because of insufficient

access to air and slow, low-temperature burning conditions. In fact, data indicate that BaP

emissions from residential wood combustion are 6 times higher per BTU than emissions

from residential coal burning, 400-fold greater than gasoline combustion and about 9,000

times greater than emissions from residential oil furnaces (Harkov and Greenberg, 1985).

These differences in emission factors are quite significant given that the sources of

energy for residential heating have varied significantly over time in the USA.

Consumption of natural gas for residential heating increased from 26% of the total in the

1950s to 51% in 2000, while consumption of fuel oil and wood decreased from 22% to

9.8% and from 10% to 1.7%, respectively, in the same period (EIA, 2003). The use of

coal for residential heating has not been significant since 1973 when consumption

dropped to 1.2% (from 34% in 1950) (EIA, 2003). This suggests that residential heating

has probably become a smaller contributor of PAHs to the atmosphere in the last 50

years. However, while consumption of wood for residential heating has decreased in the

last 50 years, the elevated PAH emissions generated by this source may be responsible

for a significant portion of the current levels of atmospheric PAHs observed during the

winter in cold regions.

A number of studies have attempted to characterize the emissions generated by

the combustion of different types of biomass. Some of the data available in the literature

include pine, oak and eucalyptus (Schauer et al.), red maple, red oak, paper birch, white

pine, eastern hemlock, balsam fir (Fine et al., 2001), barley, corn, rice, wheat, almond,

walnut, ponderosa pine and douglas fir (Jenkins et al., 1996), among others. It has been

observed that PAHs emission factors can vary by 2 orders of magnitude depending only

on the type of vegetation burnt (Jenkins et al., 1996). Other parameters such as moisture

content, burning conditions, whether or not the fire is stoked, and even the type of
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arrangement of the wood in a pile can results in different yields of these compounds

(Jenkins et al., 1996; Simoneit, 2002). This large variability underlines the importance of

burning conditions on the products generated by combustion (Ramdahl et al., 1982;

Jenkins et al., 1996).

2.2 Amount of Oxygen

PAHs are produced by the incomplete combustion of organic fuels. Therefore, a

rise in the amount of excess oxygen leads to a more efficient combustion process to the

point where oxygen is not limiting and combustion is complete. The importance of

excess air during combustion is shown repeatedly in laboratory experiments. For

example, burning of a coal sample in a fluidized bed at fixed temperature (850°C) and air

flow (860 L h-1) produced elevated amounts of PAHs when 5% excess air was used, but

concentrations dropped an order of magnitude when 20% excess air was applied (Mastral

et al., 1998). Similar results have been obtained for vehicle engines, wood fires and

residential oil burners. A 7% decrease in excess air in residential oil burners (from 24 to

17%) produced a 10-fold increase in the amount of soot generated. When excess air was

lowered from 17% to 13%, soot formation increased by an additional factor of 10 (Prado

and Lahaye, 1982). Residential burning of wood also shows greater PAH emissions under

oxygen starved conditions. Combustion of spruce in a small residential wood stove was

shown to produce an order of magnitude less PAHs when air was not limiting (Figure 5)

(Ramdahl et al., 1982). In engines and natural fires the amount of air is measured as a

ratio of that to fuel (A/F). Because leaner mixtures (high A/F) supply higher quantities of

oxygen, more efficient combustion can occur, resulting in lower emissions of PAHs. In

general, PAH emissions by automobile engines decrease with an increase in the amount

of air supplied, up to the point of lean misfire (A/F = -17.5) when PAHs emissions

increase sharply (Pedersen et al., 1980; Acres et al., 1982). Interestingly, PAH

concentrations were also shown to rise when the percentage of excess air injected during

the combustion of coal samples in fluidized bed was elevated from the optimum 20% to

40% (Figure 5) (Mastral et al., 1998). The latter study showed that independent of the
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amount of excess oxygen, 3-, 4- and 6-ring PAHs were always produced in higher

quantities than 5-ring compounds (Mastral et al., 1998).
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Figure 5. (a) Emission of PAHs during burning of spruce in a residential wood stove
under normal (flaming) and air starved conditions. Modified from Ramdahl and
collaborators (1982); (b) PAH distribution by number of rings as a function of the
percentage of excess air during coal combustion in fluidized-bed. (3-ring = acenaphthene
+ fluorene + Anth), (4-ring = Py + BaA + Chry), (5-ring = BkF + BaP), (6-7-ring =
perylene + DBA + Cor). Modified from Mastral and collaborators (1998).

2.3 Temperature

The molecular distribution of PAHs has also been linked to the temperature at

which these compounds are formed. Low temperatures, such as in forest fires and

cigarettes are thought to generate mixtures enriched in alkyl-substituted PAHs, whereas
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higher temperatures may favor production of parent compounds (Figure 6) (Blumer,

1976; Laflamme and Hites, 1978). While studying the effects of engine conditions on the

emission of PAHs from diesel combustion, Jensen and Hites (Jensen and Hites, 1983)

showed that as the temperature of the engine exhaust decreased the concentration of

alkylated PAHs increased relative to parent compounds. However, the proportion of alkyl

substituted to parent PAH is not the only property affected by the temperature of

combustion. Varying temperature conditions were shown to increase the amount of total

PAH emissions by 1000-fold at a municipal incinerator plant in Sweden. During a normal

day of operation (Tuesday to Friday) the incineration plant emitted - 10 ng m '3 of each

individual PAH, while on a cold start up day (Monday) concentrations were measured at

- 10 gg m -3 (Colmsjo et al., 1986). Mastral and collaborators (1999) have also shown that

during automobile waste tire combustion in a fluidized-bed the quantity of PAHs emitted
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Figure 6. The relative abundance of PAHs as a function of the number of alkyl carbons at
different temperatures of formation (Blumer, 1976).
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is a direct function of the temperature achieved. For a fixed 20% excess oxygen and 860L

h-I air-flow the amount of total PAHs was reported to vary from 4477 gg kg-' (at 650°C)

to 390 g kg-' (at 750°C) and 32198 jig kg-' (at 850°C). Higher temperatures in this

system seem to favor more rapid exit velocities of the flue gas from the reactor, leading

to shorter time for PAH oxidation reactions to occur.

In summary, the amount and composition of PAH emitted by a single source can

vary greatly according to the combustion conditions (temperature, oxygen levels). It is

therefore extremely difficult to anticipate the assemblage and quantity of PAHs emitted

knowing only the type of fuel (Ramdahl et al., 1982; Colmsjo et al., 1986; Jenkins et al.,

1996).

3. ENVIRONMENTAL FATE

The environmental fate of PAHs is primarily controlled by their physicochemical

properties, although natural processes (e.g. biological degradation), concentration of

oxidizing pollutants (e.g., NO, 03, OH' radicals), temperature and light intensity are also

important factors (Kamens et al., 1988; Matsuzawa et al., 2001). For example, Kamens

and collaborators have shown that BaP adsorbed to wood soot has longer half-life in a

cool (-10°C), dry (2 g m -3 H 20) and dark (light = 0.4 cal cm -2 min- ) environment (half-

life = 6 h), such as during winter in high latitudes, than under warm (20°C), humid (10 g

m -3 H20) and bright (light = 1 cal cm -2 min - ) conditions (half-life = 0.5 h), such as in the

tropics. Similar trends in persistence were also reported for BaA, Chry, BbF, BkF, IP,

BghiP and retene (Kamens et al., 1988).

Pyrogenic PAHs are emitted into the atmosphere either in the gas or particulate

phases and their deposition is strongly dependent on the partitioning between these

compartments. Some of the factors that can influence partition include (a) vapor pressure

of the PAH; (b) amount of fine particles in the atmosphere; (c) ambient temperature; (d)

PAH concentration (Yamasaki et al., 1982; Baek et al., 1991a).

Removal of PAHs from the atmosphere can occur by either wet or dry deposition

and measurement of both is necessary in order to assess total removal. Wet deposition of
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PAHs is relatively simple to evaluate since it is a function of rain and snow precipitation,

which can be measured easily (Golomb et al., 2001). Typically, PAHs present in the gas

phase dissolve within clouds and into raindrops (Offenberg and Baker, 2002), while

PAHs bound to particles are washed out from the atmosphere through this process. Dry

deposition results from the direct fallout of PAHs adsorbed to large particles and this

mechanism is greatly dependent on the size of these particles (Windsor and Hites, 1979;

Baek et al., 1991a). For example, using lgm and 10gm as the diameters of small and

large PAH-bearing particles, it was calculated that the small particles could be

transported for -1300km before settling to the surface, while the larger ones would settle

much closer to the source, -13 km (settling velocity = 6 x 10-5 m sec1, particle density =

2 g m -3, height = 20m and wind = 4 m sec 1) (Windsor and Hites, 1979). Measurement of

dry deposition rates is complicated by uncertainties related to the velocity of deposition

of atmospheric particles, which is a function of the prevailing atmospheric conditions,

such as wind speed and humidity (Golomb et al., 2001).

The size of the particles can directly impact the assemblage of PAHs they carry

with them. Urban aerosols range in size from a few nanometers (nm) to several

micrometers (im), with particles less than 2.5 gm usually referred to as fine (Seinfeld

and Pandis, 1998). Polluted areas tend to have a bimodal distribution of sizes with peaks

in the 0.05 to 0.12 gm (mode I) and 0.5 to 1.0 gm (mode II) size ranges (Venkataraman

and Friedlander, 1994). Laboratory studies have shown that the size distribution of

automobile soot (diesel and gasoline) ranges from a few nm up to 0.3 gm, with mean

diameter of about 0.1 gim (Kim et al., 2001). Measurements inside tunnels have also

concluded that over 85% of the soot emitted by vehicles is smaller than 0.2 gtm

(Venkataraman et al., 1994). Measurements of PAHs associated with size-segregated

aerosols in Boston, MA showed that 5-ring PAHs (BaP, BeP, benzofluoranthenes and

perylene) were predominantly associated to particles in the 0.1-2 gm size range (Allen et

al., 1996). These samples demonstrated an inverse correlation between the molecular

weight of the PAH and the size of the particles with which they were associated. Lower

molecular weight PAHs (3- and 4-ring) were found mostly associated with larger
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particles (0.5 to 6 gm), while coronene was present mainly in the 0.01 to 1 m range

(Allen et al., 1996). Similar fractionation of PAHs with particle size was reported for

samples collected in Chicago (Offenberg and Baker, 1999). Interestingly, recent

measurements in the Caldecott Tunnel (San Francisco, CA) reported that gasoline-

derived PAHs existed in the ultrafine size mode (0.05-0.26gm), while diesel-derived

compounds were found to vary between 0.26-4 gm (Marr et al., 1999). The size

distribution of diesel particles found in this study is noteworthy as it is thought that

particles ranging in size from 0.1 to 2.5 m are less efficiently removed from the

atmosphere and tend to have longer atmospheric residence times than finer and coarser

particles (Seinfeld and Pandis, 1998).

Total scavenging ratios (gas + particle) can vary among individual PAHs by more

than 3 orders of magnitude, but in general they are greater for the less volatile compounds

(Offenberg and Baker, 2002), which are more likely to be associated with particles. That

is in agreement with dry deposition being the main mechanism of removal of PAH from

the atmosphere (Gschwend and Hites, 1981; McVeety and Hites, 1988; Golomb et al.,

1997; Offenberg and Baker, 2002) and to the high dry to wet PAH flux ratios (e.g. 9:1)

usually observed (McVeety and Hites, 1988). Due to their hydrophobic nature (log Kow =

3 to 8), PAHs deposited onto aquatic systems will tend to associate with settling particles.

The strong adsorption of PAHs onto particles (soot in special) can reduce their

bioavailability, slowing their biodegradation rates and preserving them in the sediments

(McElroy et al., 1989; McGroddy et al., 1996). Some of the factors that can further affect

the environmental distribution and fate of PAHs are discussed below.

3.1 Physicochemical properties

The structure and physical properties of PAHs can greatly impact their volatility,

solubility, sorption and decomposition behaviors (Schwarzenbach et al., 2003). PAHs

range from slightly soluble in water (naphthalene) to extremely insoluble (DBA), and

from very volatile (naphthalene) to semi-volatile (perylene) (Table 1). Typically, the

higher the mass of the compound the lower its vapor pressure and water solubility.
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Because of the effect that mass has on these parameters, PAHs also show a decrease in

vapor pressure and water solubility with increasing alkyl substitution (Boehm and Quinn,

1973; Garrett et al., 1998).

Table 1. Physical and chemical data for 15 individual PAHs.

Compound

Naphthalene
2-Methylnaphthalene
Phenanthrene
Anthracene
Pyrene
Fluoranthene
BaA
Chrysene
BaP
BeP
BbF
BkF
Perylene
BghiP
DBA

No.
Rings

2
2
3
3
4
4
4
4
5
5
5
5
5
6

MW

128
142
178
178
202
202
228
228
252
252
252
252
252
276

S
(ng L-)a

31
25

1.10
0.045
0.132
0.26

0.011

0.0038
0.004

0.0015
0.0008
0.0004
0.00026

Log
KOWa

3.37
3.86
4.57
4.54
5.18
5.22
5.91
5.86
6.04

5.80
6.00
6.25
6.50

Vp
(Pa)a

10.4
9

0.02
0.001
0.0006

0.00123
2.8x10-5
5.7x10-7

7.0x10 -7

7.4x10 -7

Carcinogenic
Activityb

low
low

strong

5.2x10 -8

1 .4x10-8

6 278 0.0006 6.75 3.7xlO-1
MW = molecular weight; S = water solubility;
coefficient; Vp = vapor pressure
aMackay, 1992
b Budzinski et al., 1997

strong
Kow = octanol-water partition

The distribution of atmospheric PAHs between gas and particulate phase is

mostly determined by the vapor pressure of the compound. It is usually reported that

PAHs with 3-4 rings are present in the atmosphere mainly in the gas phase (Phen, Fla,

and Py), equal concentrations in the vapor and gas phases are found for Chry and BaA,

and PAHs with 5- or more rings are mostly evident in the particle phase (Yamasaki et al.,

1982; Fraser et al., 1998). These findings are consistent with the measured vapor

pressures of these compounds. Nevertheless, variations on the distribution of PAH

between the gas and particulate phases are present in the literature. Measurements in a

Baltimore tunnel reported 3-ring PAHs mostly in the gas-phase (-90%), while Fla and Py
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were evenly distributed between the particle and vapor phases (Benner Jr. et al., 1989). In

contrast, analysis of ambient and tunnel air in Los Angeles showed the majority of Fla

and Py (99% and 98.8%) and some BaA and Chry (42% and 44%) in the vapor phase, but

PAHs larger than Chry were found preferentially adsorbed to particles (Figure 7a) (Fraser

et al., 1998). Partitioning between the gas and particle phases is also a function of the

number of particles available in the atmosphere. It has been observed that because small

quantities of particulate matter are produced during combustion of kerosene (Figure 7b),

PAHs emitted by this process tend to partition preferentially to the gas phase (Oanh et al.,

2002). In contrast, the abundance of particles generated by the combustion of wood

enables even small compounds (Fla) to partition to the particle phase (Schauer et al.,

2001).

I IGas-phase Particle phase
100-
80-
60-
40 -
20 -
0-

0
OL· 100-

.M 80 

a 60-
0
o 40-
o 20-

O0

I a. Urban Air

b. Kerosene

100
80
60
40
20
0

Phen Anth Fla Py BaA Chry BkF

c. Eucalyptus

BbF BeP BaP

Figure 7. Partitioning of selected PAHs between the gas and particulate phases (a)
distribution in atmospheric air in Los Angeles, CA (Fraser et al., 1998); (b) emission
during combustion of kerosene in a cookstove (Oanh et al., 2002); and (c) emission by
the combustion of eucalyptus in a fireplace (Schauer et al., 2001).
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Solubility (S) in water is another property that defines the environmental fate of

PAHs. PAHs are hydrophobic, meaning they have a higher tendency to associate with

particles than to dissolve in water (as measured by the octanol-water partition coefficient,

Kow, Table 1). Although PAHs tend to have low water solubility, the difference in S

among individual PAHs is significant enough to have an impact on their distribution in

the environment. For example, sediment trap studies conducted in the Mediterranean Sea

showed a decrease in total PAH fluxes from 200 m in the water column to 2000m, and

from there to the underlying sediments (Lipiatou et al., 1993) (Figure 8a). While the

profile of benzofluoranthenes did not vary significantly with depth, that of Phen showed a

marked decrease in flux. The authors suggested that because Phen is more soluble than

the benzofluoranthenes, it can partition into the dissolved phase and be susceptible to

Flux (ag.m 2.dA1 )
0.0 0.2 0.4 0.6 0.8 1.0

Flux /

0.1 1

6

4

2

Accumulation

10 100

1000

1000

C100 CrC

r
1-

10

1

Figure 8. (a) Flux of Phen and benzofluoranthenes in sediment traps and surficial
sediment from the Mediterranean sea (Lipiatou et al., 1993); (b) recycling ratios of PAHs
in Lake Superior (calculated as the ratio between flux through the water column and
accumulation in the sediments) versus their aqueous solubility (Baker et al., 1991).
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degradation in the water column. Their results agree with previous study conducted in

Lake Superior that showed a positive correlation between solubility and recycling of

PAHs in the water column (Figure 8b) (Baker et al., 1991).

3.2 Biodegradation

It is well documented that low molecular weight PAHs (such as naphthalene) are

more likely to undergo microbial degradation than higher molecular weight compounds

(Cerniglia and Heitkamp, 1989; Budzinski et al., 1998). Typically, susceptibility to

biodegradation decreases as the number of fused rings in the PAH increases. Microbial

degradation experiments have also demonstrated that alkyl substituted PAH degrade

more slowly than parent compounds. For example, Heitkamp and collaborators

(Heitkamp and Cerniglia, 1987) reported faster degradation rates for Phen than for 2-

methylnaphthalene (Figure 9) in sediments from a pristine and an oil-exposed ecosystem.

Experiments using crude oils have yield similar results (Garrett et al., 1998). Because

sediments are usually the final destination of PAHs in the environment, extensive

research has been conducted on the aerobic degradation of sedimentary PAHs (Bauer and

Capone, 1988; Cerniglia and Heitkamp, 1989; Yuan et al., 2001) and potential pathways

for bacterial oxidation of several compounds have been reported (Cerniglia and

Heitkamp, 1989). Interestingly, prior exposure to PAHs seems to enhance the capacity of

a microbial population to degrade these compounds (Bauer and Capone, 1988).

Apparently, microbial communities can adapt to metabolize a compound after prolonged

exposure to it (Cerniglia and Heitkamp, 1989). The faster degradation rates reported for

certain PAHs in previously exposed sediments therefore result from the selection and

proliferation of microbial communities capable of degrading these compounds (Bauer

and Capone, 1988).

Until the late 1980s it was assumed that PAHs deposited in anoxic sediments

were not affected by biodegradation (Cerniglia and Heitkamp, 1989; Rothermich et al.,

2002). However, microbial mediated transformations of PAHs in anaerobic environments

are now known to occur under denitrifying and sulfate reducing conditions. Marine
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surface sediments incubated under denitrifying conditions have resulted in degradation of

PAH from 3- to 5-rings. As in aerobic degradation, the more soluble, lower molecular

weight PAHs (acenaphthene and Phen) degraded faster than less soluble, higher

molecular weight compounds (BaA and BaP) (MacRae and Hall, 1998). Moreover, when

the biodegradation rate of compounds of the same size is compared, it becomes clear that

the microbial community preferentially degrades the most soluble isomer (e.g, Phen was

shown to degrade faster than the less soluble Anth). The main reason for the preferential

biodegradation of more soluble compounds is presumed to be the preference of

microorganisms to assimilate substrates from the water phase (MacRae and Hall, 1998).

That implies that particle-bound pyrogenic PAHs, which are less available to dissolution

than PAHs derived from petroleum spills (Farrington et al., 1983; McGroddy et al., 1996;

Gustafsson and Gschwend, 1997) are also less susceptible to degradation by

microorganisms. In fact, treatment of PAH contaminated sediments dredged from

Milwaukee Harbor showed that PAH sorbed onto coal-derived particles underwent

minimal biodegradation, while those sorbed on clay/silt particles were readily

biodegraded (Talley et al., 2002). Another example of the greater susceptibility of

unbound hydrocarbons to weathering and degradation was given by Jones and

collaborators (1986). Monitoring of two sites in the Humber Estuary (UK) after the

spillage of 6000 tones of a Nigerian light crude oil showed that 12 months after the

accident most of the oil-derived hydrocarbons had been weathered (biodegraded and

water washed). As a result, non-alkylated (combustion-derived) PAHs predominated in

the sediments over alkylated PAHs (typical of petrogenic sources). That is noteworthy as,

in general, parent PAHs are preferentially biodegraded over alkylated species. The fast

disappearance of alkylated petrogenic PAHs over combustion-derived parent PAHs

corroborated the idea that particle-bound species are not readily available for partitioning

into the dissolved phase, which greatly affects their biodegradability and renders them

persistent in the environment (Jones et al., 1986).
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Figure 9. Rate of biodegradation of several PAHs in an estuarine system exposed to oil
(Heitkamp and Cemrniglia, 1987).

Degradation of petrogenic PAHs under sulfate reducing conditions was

demonstrated recently for sediments from San Diego Bay (CA), Boston Harbor (MA) and

Tampa Bay (FL) (Coates et al., 1997; Hayes et al., 1999; Rothermich et al., 2002). Lower

molecular weight PAHs were shown to degrade faster than larger molecules (4- and 5-

ring) during the one year monitoring of the concentration of PAHs in sulfate reducing

sediments from the Boston Harbor (Rothermich et al., 2002). On the first 105 days of the

experiment there was no apparent degradation of 4- and 5-ring PAHs, but concentrations

of these compounds decreased with continued incubation. After 338 days, Py had

decreased 13%, BaA 9%, Chry 25% and BaP 24%, compared to fluorene 67% and Phen

58%. Sediments poisoned by molybdate to inhibit sulfate-reducing bacteria showed no

significant change in PAH levels during this time (Rothermich et al., 2002). Although

laboratory experiments show relatively fast degradation of selected PAHs, their fate is

greatly dependent on the environmental conditions at the site of deposition. For example,
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samples taken 30 years after the West Falmouth oil spill in Massachusetts still show

elevated levels of polycyclic aromatic hydrocarbons in the marsh sediments (Reddy et al.,

2002a). Although the microbial community at this site could have adapted to

anaerobically degrade the oil, the abundance of organic-rich plant remains may quickly

reduce the pool of electron acceptors necessary for anaerobic degradation. It is thought

that in this situation PAH composition in the sediments may persist unchanged

indefinitely (Reddy et al., 2002a).

3.3 Photodegradation and Chemical Oxidation

PAHs present in the atmosphere are susceptible to both chemical oxidation and

photochemical alterations (Baek et al., 1991b). PAHs can react with atmospheric ozone

(03), NOx, SOx and OH' radicals to form products sometimes more toxic than the PAH

precursor, as in the case of nitro-PAHs. The half-life of a individual PAH can range

widely depending on the ambient conditions. Exposure of soot-bound PAHs to air

containing 10 ppm of NOx showed that individual PAHs exhibit different half-lives that

can range from 7 days (BaP) to 30 days (Phen and Cor). However, when these samples

were exposed to ambient laboratory air (230 days) or to air containing Sppm SO2 (99

days) they did not react significantly (Butler and Crossley, 1981). Experiments using

wood smoke from a residential stove and gasoline soot from an internal combustion

engine also demonstrated rapid degradation of PAHs exposed to sunlight, 03 and NO2 in

an outdoor smog chamber (Kamens et al., 1988). PAHs were shown to degrade at a much

faster pace during sunlight than at night, suggesting photoinduced decay is a more

important factor than chemical oxidation. After 5 hours of sunlight, BaP concentrations in

the wood smoke had declined 4-fold, whereas no degradation was observed during the

following hours of darkness. PAH decay resumed the next day when sunlight was again

available (Figure 10). Similar results were obtained for PAHs bound to gasoline soot. The

authors concluded that sunlight had greater influence on the rate of decay of PAH than

either 03 or NO2 (Kamens et al., 1988).
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Figure 10. Degradation of BaP present in gasoline and wood soot over a 30-h period of
outdoor sunlight and darkness. Modified from Kamens and collaborators (1988).

Photochemical reactions can thus act rapidly and have important effects on the

fate of PAHs. Experiments with crude oils have shown that alkyl substituted PAHs

photodegrade at a faster rate than parent compounds (Ehrhardt et al., 1992; Garrett et al.,

1998). Garrett and collaborators observed a significant increase in the extent of

photooxidation of Phen, dibenzothiophene and Chry with increasing alkyl substitution

when crude oils were irradiated for 48 h with a 55W UV light. Among the 3 parent

compounds studied, Chry showed greater photodegradation than either Phen or

dibenzothiophene (Garrett et al., 1998). The degree to which a compound is susceptible

to photolytic reactions is dictated, among other things, by its absorption spectrum and by

the nature of the particle to which it is absorbed (Schwarzenbach et al., 2003). PAHs

absorb light over a wide range of wavelengths () and, in general, linear PAHs can

absorb over a wider range and up to higher wavelengths than their angular isomers. For

example, the absorption spectrum of Anth ranges from -200-390 nm, compared to -200-

350 nm for Phen (Figure 11) (Pretsch et al., 1989; Schwarzenbach et al., 2003) and this
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difference in susceptibility to photodegradation can markedly change the relative

proportion of these compounds during atmospheric transport (Gschwend and Hites,

1981). Laboratory simulations have shown that BaA, BaP, and alkylated Phen, Fla, Py

are photoreactive under UV-visible conditions (290 to 600 nm) so these compounds can

be removed from aerosols during atmospheric transport. In contrast, Chry and BeP are

more photostable and tend to persist reasonably unchanged during atmospheric transport

(Sim6 et al., 1997).

6 . . . .

4 ............... .............................. .........

t:~ ~~~~~~~~~~a. 1OX 3 4 --- ----.......................... ..................... ........_a.(<
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................... . . .. I ....
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Figure 11. Absorption spectra of (a) anthracene and (b) phenanthrene.

The association of PAHs with soot is thought to protect these compounds from

transformations in the atmosphere and in the water column (Lipiatou et al., 1993; Tolosa

et al., 1996). Indeed, PAHs adsorbed onto fly ash have shown less susceptibility to

photodegradation than pure compounds. For example, approximately 90% of Py present
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in a dilute solution degraded after 7.5 h of exposure under a 275-W sunlamp, while only

13% of Py adsorbed to fly ash photodecomposed after 24 h under similar light

(Korfmacher et al., 1980). Similar results were obtained for Anth and BaP, but Phen and

Fla showed greater resistance to photodegradation. Fla present in solution

decomposedonly 10% when exposed to illumination for 9.5 h and no photodegradation

was observed when this compound was adsorbed on fly ash (Korfmacher et al., 1980).

Laboratory experiments have also found that the characteristics of the particle can

influence the fate of atmospheric PAHs. After determining the half-life of 18 individual

PAHs in 16 different substrates, Behymer and Hites (1988) concluded that most particle-

bound PAHs can undergo some degree of photolysis and that the type of particle can

influence greatly the extent of photodegradation suffered by the compound. When

Standard Reference Material (SRM) 1650 from the National Institute of Standards and

Technology (NIST) was exposed to a 900-W light source, Py remained fairly stable

towards photodegradation (half-life = 9.24 + 0.53 h) compared to BaP (half-life = 1.63 +

0.48 h) (Matsuzawa et al., 2001). This later study concluded that the propensity of

individual PAHs adsorbed to diesel soot to undergo photodegradation was BaP > Phen >

Py, Chry, Fla (Matsuzawa et al., 2001). In contrast, experiments with fly ash showed that

after approximately 24 hours under a 275-W light source BaP and Py had undergone

similar photodecay (10% and 13%, respectively) (Korfmacher et al., 1980), thus further

emphasizing the influence of the substrate. It has also been observed that when NIST

SRM 1650 is mixed with extracted soil (SRM 1650/soil = 5/95) the rate of

photodegradation of BaP and Phen are reduced (Matsuzawa et al., 2001). Under these

conditions shielding of light by the soil is apparently the most important factor.

4. SOURCE APPORTIONMENT

Several different methods are reported in the literature for apportionment of the

sources of PAHs encountered in the environment. Some of these methods include the use

of historical records (Heit et al., 1988; Latimer and Quinn, 1996; Gevao et al., 1998; Van

Metre et al., 2000; Schneider et al., 2001; Lima et al., 2003), source diagnostic ratios
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(Colombo et al., 1989; Yunker et al., 1996), principal component analysis (Yunker et al.,

1999; Dickhut et al., 2000), multiple linear regression (Simcik et al., 1999), chemical

mass balance (Gordon, 1988; Christensen et al., 1999; Zheng et al., 2002; Li et al., 2003),

stable carbon isotopic composition (O'Malley et al., 1994; McRae et al., 1999; Okuda et

al., 2002a) and more recently, the radiocarbon content of specific PAHs (Currie et al.,

1997; Reddy et al., 2002b; Reddy et al., 2003). Because of the extent of this topic, we

will refrain from discussing the 3 statistics based methods.

4.1 Source diagnostic ratios

Source diagnostic ratios such as the sum of methyl-phenanthrenes and methyl-

anthracenes to phenanthrene (MPhen/Phen), fluoranthene to pyrene (Fla/Py) and 4,5-

dimethyl-phenanthrene to the sum of methyl-phenanthrenes and methyl-anthracenes

(4,5-MPhen/EMPhen) have been extensively applied in differentiating between pyrogenic

and petrogenic PAH sources (Gschwend and Hites, 1981; Prahl and Carpenter, 1983;

Colombo et al., 1989; Lipiatou et al., 1993; Budzinski et al., 1995; Pereira et al., 1999;

Readman et al., 2002; Yunker et al., 2002). Other ratios such as the and 1,7-

dimethylphenanthrene to 2,6-dimethylphenanthrene (1,7-DMPhen/2,6-DMPhen) are

thought to indicate the relative contribution of pyrogenic PAHs derived from biomass

burning (higher 1,7-DMPhen) versus fossil-fuel combustion (higher 2,6-DMPhen)

(Benner Jr. et al., 1995). Table 2 shows a brief summary of the ratios commonly applied

in source apportioning and their range.

Pioneer work by Youngblood and Blumer (1975) suggested that the distribution

of alkylated versus parent PAH in sedimentary environments could be used to distinguish

between high temperature versus low temperature sources of these compounds.

Laflamme and Hites (1978) applied this concept to samples collected worldwide in an

attempt to distinguish between pyrogenic and petrogenic PAHs. The EMPhen/Phen ratio

has been widely since in apportioning sources of PAHs to the environment (Hites et al.,

1980; Gschwend and Hites, 1981; Prahl and Carpenter, 1983; Lipiatou et al., 1993;

Ohkouchi et al., 1999; Pereira et al., 1999). Petroleum-derived PAHs are usually heavily
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alkylated. However, diesel engines and wood combustion can also emit EMPhen in

higher proportions than Phen, easily exceeding the YMphen/Phen range commonly cited

for combustion sources (Prahl and Carpenter, 1983) (Table 2 and Figure 12).

Experiments on diesel burning as a spill clean up countermeasure have reported no

obvious dominance of parent PAHs over alkylated homologues (Wang et al., 1999). In

addition, it has been suggested that an elevated contribution of alkylated PAHs

(especially methyl-phenanthrenes) can either be attributed to petrogenic sources or to

exhaust emissions from heavy-duty diesel trucks (Rogge et al., 1993).

Table 2. Commonly applied values for selected PAH source diagnostic ratios.

Ratios Automobile Coal Wood Crude oil Combustion Petroleum
3.3 - 33 a

CMPhen 0.5 - 1c 2 - 6"_MPhen 0.25e 0.33a 2 -5.9c
Phen 3.1 - 5.6 e

Phen
PAnth 3 a 3a 50a < 10f > o1 0 f
Anth

Fla 0.6 1.4 la 0.6- 

BaA 0.28a a 0.93
Chry 02 1.11 + 0.79 _ 0.06 - 0.4

Chry 0.52 + 0.06 b

BbF b 3.70 + 0.92 +
BkF 1.26 0 .17 b 0.16b

BaP 0.07 1.19a 2.27a

BP 01.48 + 1.52 0.3 - 5
BeP 0.88 + 0.13 0.03b .9b

-_ _0.03_ 0 .1 9 b

IP .b 1.09 + 0.28 
BghiP 0.33 0.06 0.03b 0.05b

0.01 -
4,5MP 0.3e la 

EMP 38.5 e
0e

a (Gschwend and Hites, 1981); b

d (Youngblood and Blumer, 1975); e
(Dickhut et al., 2000);
(Garrigues et al., 1995);

c(Prahl and Carpenter, 1983);
f (Budzinski et al., 1997)

The notion that 1,7-DMPhen/2,6-DMPhen can be used as a tool to discern

between PAHs derived from biomass burning versus fossil-fuel combustion (Benner Jr. et
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al., 1995) has also been recently challenged by studies on the aerobic degradation of

crude oils (Budzinski et al., 1998; Mazeas et al., 2002). After incubating a sample of

Arabian light crude oil for 7 days under oxic conditions, 2,6-DMPhen was shown to be

the most easily degradable dimethylphenanthrene isomer (20% remaining after 7 days),

while 1,7-DMPhen was 3-times more resilient (60% remaining after 7 days) (Budzinski

et al., 1998; Mazeas et al., 2002). If 2,6-DMPhen is preferentially lost by biodegradation

in sediments, then the 1,7-DMPhen/2,6-DMPhen ratio will result in answers that are

biased towards a biomass burning signature.

Other source diagnostic ratios are based on the relative stability of individual

PAHs. Linear or predominantly linear PAHs (Anth, BaA, BaP, DBA) and those

containing a 5-membered ring (Fla, BbF, BkF, IP) are less stable than their clustered

isomers of similar molecular mass (Blumer, 1976; Yunker and MacDonald, 1995). It is

thought that during the combustion process a greater proportion of the less stable isomer

is produced, so the relative abundance of unstable to stable PAHs of similar molecular

mass could give an estimate of the origin of these compounds. Budzinki and

collaborators (1995; 1997) have demonstrated through thermodynamic calculations that

the Phen/Anth ratio is strongly dependent on the temperature of combustion. Phen/Anth

was reported to vary from 5.6 at 1000 K to 8.3 at 700 K, up to 49 at 300 K. Because

petrogenic PAHs are formed at lower temperatures than combustion derived PAHs, the

authors suggested that the Phen/Anth ratio was a robust way of discerning the sources of

sedimentary PAHs between petrogenic (Phen/Anth >10) and pyrogenic (Phen/Anth <10)

PAHs. However, care should be taken as emissions from diesel engines and municipal

incinerators have been shown to produce Phen/Anth signatures that could be mistaken for

a petrogenic input of PAHs (Figure 12). Budzinski and collaborators also suggest that the

use of various ratios can enhance the capability of discerning between petrogenic and

combustion sources and propose that a plot of Phen/Anth versus Fla/Py could help

distinguish sources with more accuracy. Plotting of Phen/Anth values against Fla/Py for a

number of environmental samples is reported to accurately distinguish between areas

contaminated by pyrogenic and petrogenic PAHs. Nevertheless, when literature values of
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Figure 12. Comparison between commonly cited source diagnostic ratios and primary
sources of PAHs. a (Fine et al., 2001); b(Jenkins et al., 1996); (Schauer et al., 2001);
d(Oanh et al., 2002); e (Marr et al., 1999); f (Williams et al., 1986); g (Wang et al., 1999);
h(Wang et al., 1997); i (Reddy, 1997); (Colmsjo et al., 1986); k (Masclet et al., 1987);
'(Jensen and Hites, 1983); m (Khalili et al., 1995); n (Schauer et al., 2002).
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Phen/Anth and Fla/Py for primary sources of PAHs are plotted against each other (Figure

13) no obvious trend emerges. Independent of the source, the majority of the Phen/Anth -

Fla/Py pairs plot in the region stipulated as pyrogenic.

I I ' II ' I ' ! 
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Figure 13. Cross plot of the Phen/Anth and Fla/Py ratios for primary sources of PAHs.
Petrogenic sources encompass diesel fuel, gasoline, crankcase and crude oil, while
pyrogenic sources include combustion of wood, gasoline, diesel, kerosene and garbage
(Colmsjd et al., 1986; Nishioka et al., 1986; Williams et al., 1986; Pruell and Quinn,
1988; Benner et al., 1990; Rogge et al., 1993; Khalili et al., 1995; Jenkins et al., 1996;
Wang et al., 1997; Marr et al., 1999; Wang et al., 1999; Fine et al., 2001; Schauer et al.,
2001; Oanh et al., 2002; Schauer et al., 2002).

The accurate use of diagnostic ratios depends primarily on the uniqueness of the

fingerprint of the sources. While ratios can be somewhat helpful in distinguishing

petrogenic from combustion-derived sources, the diversity of fuels and combustion

conditions discussed previously are likely to produce variations in ratios from a single

source, hindering the identification of biomass versus fossil fuel combustion inputs.

Additionally, PAHs can be transformed by atmospheric processes and diagnostic ratios
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measured in atmospheric and sediment samples can differ greatly from those reported for

the original sources (Schauer et al., 1996). As a rule, source diagnostic ratios should be

used with care and in the context of the study area.

4.2 Historical records

The use of sedimentary records to apportion the sources of PAH relies on accurate

information on the type and quantity of fuels used through time. Historical data shows

that wood burning was the main energy source utilized until the late 1800s when it was

surpassed by coal combustion (www.eia.doe.gov/emeu/aer) (Figure 14). The

consumption of coal peaked in 1910 at 82 % and proceeded to decline as petroleum use

ascended. By 1950, petroleum was the main fuel used in the USA, but coal still

accounted for approximately 35% of the total. Natural gas replaced coal as the second

most important energy source by the end of the 1950s, and in the early 1970s, natural gas

utilization was 50% higher than coal burning. However, in the early 1980s consumption

of coal and natural gas became nearly identical at 20%. These trends in energy

consumption have been widely used as reference for assigning sources to PAHs archived

in marine and lacustrine sediments (Grimmer and Bohnke, 1975; McVeety and Hites,

1988; Gevao et al., 1998; Van Metre et al., 2000; Lima et al., 2003; Yunker and

Mcdonald, 2003), soils (Jones et al., 1989; Wild et al., 1990) and peat (Sanders et al.,

1995).

In general, sedimentary records have shown good correlation between PAH

concentration profiles and energy consumption associated with industrialization. A

typical profile of total PAHs (e.g., Siskiwit Lake, Figure 15) shows a gradual increase in

concentrations beginning around 1880, coincident with the onset of the Industrial

Revolution, to a maximum in the 1950s (Gschwend and Hites, 1981) when coal usage

was still high. Because of the substitution of coal with cleaner burning fuels, such as oil

and natural gas, a steady decrease in PAH concentrations is usually observed from the

1960s onwards (Gschwend and Hites, 1981; EIA, 2003). The stricter emission controls

that came into effect in the 1960s, and the use of catalytic converters in the 1970s (Acres
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et al., 1982) most likely contributed to the steady decline in sedimentary PAH

concentrations usually observed during this period despite the fact that overall energy

consumption continued to increase (Figure 14). Since most of the historical records of

PAH found in the literature were generated before the 1990s, the assumption that PAH

concentrations continued to decline persisted for over 2 decades. However, in 2000, Van

Metre (2000) reported that PAH emissions were increasing again in certain areas of the

United States. Based on the analysis of sediment cores from locations experiencing

diverse population growth since the 1970s, it was shown that all 10 sites studied

exhibited a recent increase in pyrogenic PAH concentrations. The rise in PAH paralleled

the increase in automobile usage in these watersheds, implying a link between PAH

inputs and urban sprawl. Contrary to these findings, relatively constant PAH inputs were
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Figure 14. Historical data on the consumption of fuels for energy production in the USA.
Modified from www.eia.doe.gov/emeu/aer. Hydroelectric power contributes less than 4
% of the total and is not shown.
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observed since the 1980s in cores collected in Lake Michigan (Figure 15) (Schneider et

al., 2001). While these studies seem to disagree on the current trend in PAH inputs,

neither has reported a continual decrease in PAH concentrations. This indicates that the

declining trend that began in the 1970s has, at best, stabilized.

A recent study conducted in the anoxic sediments of the Pettaquamscutt River

basin, Rhode Island, reported that PAH concentrations were in the rise again and

suggested that diesel consumption was the most probable source of this increase (Lima et

al., 2003). This high-resolution historical record showed that between 1983 and 1996 the

flux of total PAHs remained relatively constant (210 ±+12 ng cm -2 yr1), in agreement with

0 300 600

Concentration Total PAHs (ng g-')

900 0 1500 3000 4500 0 3000 6000 9000

Figure 15. Historical records of total PAH concentrations. Siskiwit Lake sediments
exemplifies a typical PAH profile as depicted in the 1980s (McVeety and Hites, 1988).
PAH record from Lake Michigan shows constant concentrations from the 1980s into the
late 1990s (Schneider et al., 2001), while in the Pettaquamscutt River PAH
concentrations show an increase in the second half of the 1990s (Lima et al., 2003).
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Lake Michigan sedimentary PAH record (Schneider et al., 2001). However, between

1996 and 1999 the flux of total PAHs to the Pettaquamscutt River sediments rose by 48%

(57% from the 1983-1996 mean) (Figure 15). This increase in PAHs flux was said to

outpace the growth in population (13.4 %) and in number of vehicles (14 %) in that area

during that time interval, but correlated well with an increase in fuel utilization for

transportation (gasoline by 7% and diesel by 20%). The authors suggested that traffic of

heavier vehicles, which use diesel' as fuel, and not passenger automobiles, was most

likely responsible for the increased PAH load to southern Rhode Island. This study

highlighted the valued utility of high-resolution sampling and detailed historical data on

the apportioning of sources of PAHs to the environment.

4.3 Stable carbon isotopic composition

O'Malley and collaborators (1994) were the first to measure the carbon isotopic

composition of individual PAHs from environmental samples. Compound-specific

isotope analysis (CSIA) allows the determination of isotopic signatures of individual

compounds and was initially developed to help reconstruct biogeochemical processes

(Hayes et al., 1989). This technique has been widely employed for the discrimination of

the sources of hydrocarbons encountered in modern and ancient sediments (Freeman et

al., 1990; Rieley et al., 1991). Measured 13C/12 C ratios are reported in the delta ()

notation, in permil (%o), relative to the Pee Dee Belemnite standard:

S13C(%O) = ( 3C/ 12C)sample -_1) * 1000 (1)
(13C1 12 C)PDB

O'Malley and collaborators (1994) have suggested that the isotopic composition

of PAHs present in environmental samples is not altered by weathering processes.

Evaluation of the effects of evaporation, photodecomposition and microbial degradation

of PAH standards under controlled laboratory conditions revealed no significant

Diesel engines produce 1 to 2 orders of magnitude more soot and associated PAH than a
comparable gasoline engine.
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alteration of the isotopic composition of individual compounds (OMalley et al., 1994).

Similar results were obtained for the aerobic biodegradation of an Arabian crude oil

sample (Mazeas et al., 2002). During this experiment, the stable carbon composition of

methyl-phenanthrenes remained reasonably constant after 16 days of biodegradation,

indicating that bacterial degradation did not induce isotopic fractionation in petrogenic

PAHs. Since fractionation due to weathering is also not expected to change the 813C of

PAHs, the isotopic composition of these compounds have been used to distinguish among

sources contribute to PAH burdens in sediments (O'Malley et al., 1996), soils (Lichtfouse

et al., 1997; Hammer et al., 1998) and aerosols (Ballentine et al., 1996; Okuda et al.,

2002b).

Carbon isotopic measurements of individual PAHs showed different 813C values

for an automobile exhaust and a wood soot sample (O'Malley et al., 1994). In general, the

automobile soot exhibited more 13C-depleted (i.e., "lighter" or more negative 813C

values) for 3- and 5-ring compounds (Phen, Anth, benzofluoranthenes and BaP) versus 4-

ring PAHs (Fla, Py, BaA and Chry). However, BaA present in the wood soot sample was

13C-enriched relative to Fla and Py (Figure 16). When assessing the possible PAH

contributions to the sediments of Conception Bay, Newfoundland (Figure 16), the authors

relied on the similarity of 813C values between the environmental sample and that of

wood soot to suggest that wood burning was the most likely source of PAHs to that

system. On a later contribution, O'Malley and collaborators (1996) combined the isotopic

composition and molecular abundance of 4- and 5-ring PAHs to calculate the

contribution of crankcase oil, wood and car soot to the sediments of the St. John's

Harbour, Newfoundland. The results obtained for that site suggested that 20-50% of the

PAHs encountered in the sediments could be derived from crankcase oils versus 50-80%

from wood burning and automobile soot. However, the relative importance of the two

combustion sources could only be implied by the mixing curves. Recently, a 3-

endmember model was used to calculate PAH contributions from wood burning, gasoline

and diesel engine vehicle emissions to the Malaysian air (Okuda et al., 2002b).

Measurement of haze and non-haze air samples showed comparable PAH 513C values,
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implying that a single source was responsible for PAHs present in the atmosphere.

Results obtained from the 3-endmember model demonstrated that automotive exhaust

was the most likely source of the PAHs found in smoke haze events in Malaysia (65 to

75% contribution). This study also showed that even though wood burning contributed

25-35% of the PAHs found in the Malaysian atmosphere, their presence was not

correlated to haze events (Okuda et al., 2002b).

The use of compound-specific carbon isotope characterization of PAHs as a

source apportioning technique relies on the premise that combustion-derived compounds

retain the isotopic signature of their original precursors. It is thought that the range in

8' 3C values of PAHs generated during pyrolysis is correlated to the isotopic signature of

the source. However, the initial samples analyzed by O'Malley and collaborators

(O'Malley et al., 1994) demonstrated that the isotopic composition of PAHs generated by

wood burning varied with ring size, with 3- and 5-ring PAHs being more 13C-depleted

than 4-ring compounds (Figure 16). Similar variations were observed for PAHs derived

from automobile exhaust, despite inherent differences in combustion conditions between

these two processes (Figure 16). The effects of temperature of formation on the 813C of

PAHs were addressed by McRae and collaborators (1999), who determined the isotopic

composition of PAHs derived from coals of different ranks and process conditions. The

authors observed that the 813C values of individual PAHs became more 13C-depleted with

increasing temperature of formation. For relatively mild conversion processes, such as

low temperature carbonization where the major aromatics are alkyl-substituted 2±+3 ring

PAHs, the isotopic signatures were similar to those of the parent coals. However, the

resultant PAHs became more 13C-depleted in going to high temperature carbonization,

gasification and combustion. For example, PAHs produced by high temperature

fluidized-bed pyrolysis (900°C) were approximately 4%0 more depleted than PAHs

produced by low temperature carbonization. Isotopic composition also seemed to

correlate with the molecular size of the PAH, with 813C becoming more depleted with

increasing number of rings. Because coal is characterized by low molecular weight PAHs

(2-3 rings) McRae and collaborators reasoned that at low temperatures these compounds
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are not affected by the combustion process and maintain their original 613C signatures.

However, larger molecular weight PAHs formed during combustion most likely result

from condensation reactions, which can select against the formation of 3C - 12C bonds,

generating more 3C-depleted PAHs. The authors concluded that the 813C of coal-derived

PAHs was mainly controlled by the specific ring-growth process acting during

combustion. At low temperatures of formation PAHs maintain 613 C signatures similar to

their source, but as the temperature increases and more condensation occurs they become

more 13C-depleted. It is possible that the different temperatures achieved during the

combustion of coal, wood, gasoline and diesel may allow for a wide enough range in

813C that can help further constrain the environmental sources of combustion-derived

PAHs, but this has yet not been achieved.
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Figure 16. Isotopic composition of individual PAHs in three potential contamination
sources and in sediments from the St. John's harbour, Newfoundland (O'Malley et al.,
1996). Mphen = methyl-phenanthrene and Bfla = benzofluoranthenes.
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4.4 Radiocarbon Measurements

Measurement of the radiocarbon (14C) content of organic compounds is a

powerful tool in assessing contributions of modem and fossil carbon in environmental

matrices. Radiocarbon is produced naturally in the atmosphere by collisions between

cosmic-ray neutrons and 14N (N 7 + n0 -* 
14C6 + 1H1). This labeled carbon is readily

oxidized to 14CO2 in the atmosphere and incorporated into plant biomass by uptake

during photosynthesis. While a plant is alive, it is constantly utilizing 14CO2 and its

biomass is in approximate equilibrium with atmospheric concentrations that reflect

contemporary levels of 4C. When the plant dies, this incorporation process stops and the

radiocarbon present in the biomass decays away with a half-life of 5730 years. This long

half-life makes 14C measurements suitable for discriminating between modem (14C-rich)

and fossil fuel (14C-free) carbon since the latter forms over geologic (i.e. multimillion-

year) time scales. This creates two well-defined end members that can be used to

apportion the sources of combustion derived PAHs. Moreover, any isotopic fractionation

during or post-PAH formation should be small relative to the signal of interest.

The radiocarbon approach has been successfully applied in distinguishing modem

from fossil carbon in a number of studies (Cooper et al., 1981; Dasch, 1982; Hawthorne

et al., 1992; Lichtfouse and Eglinton, 1995; Eglinton et al., 1997; Reddy et al., 2002c;

Reddy et al., 2003). Cooper and collaborators (1981) conducted one of the earlier studies

to use radiocarbon measurements to assess the contribution of specific sources of

carbonaceous particles in urban air. This study showed that a large portion of the

atmospheric particles collected in Portland, OR during the winter derived from burning of

wood (39-70%) for residential heating. A similar study reported that 20% of the fine

atmospheric particles collected in the winter in Denver, CO derived from fireplaces

(Dasch, 1982). The use of radiocarbon to apportion sources of a specific compound class

was reported in 1995 (Lichtfouse and Eglinton, 1995). 14C measurements were used to

assess the origins of n-alkanes extracted from a cultivated soil in France. The n-alkane

fraction was shown to contain 34% modem and 66% fossil carbon, demonstrating the

clear fossil fuel contamination of that site (Lichtfouse and Eglinton, 1995).
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Analytical constrains prevented the determination of the 14C content of individual

compounds until the late 1990s. The low natural abundance of 14C ( 1 in 1012) requires

that a large amount of carbon ( 50 g) be isolated for measurement by accelerator mass

spectrometry (AMS). In addition, environmental matrices are highly complex and

accurate isotopic measurements can be affected by co-eluting peaks and the presence of

an underlying unresolved complex mixture (UCM). Isolation of individual compounds

became possible with the advent of automated preparative capillary gas chromatography

(PCGC), described and tested by Eglinton and collaborators (Eglinton et al., 1996a). This

technique allows the isolation of sufficient quantities of a specific compound through

repetitive injections of a mixture on a modified capillary gas chromatograph. The purified

individual compound can then be submitted to 14C determination (after combustion to

CO2 and reduction to graphite) by AMS.

The use of compound-specific radiocarbon measurements for discerning sources

of PAHs was first demonstrated by Eglinton and collaborators (1996b) and Currie and

collaborators (1997). Two recent contributions by Reddy and collaborators (Reddy et al.,

2002b; Reddy et al., 2003) highlight the potential of this approach. The first study

evaluated the variability of the 14C signature of individual PAHs in four National Institute

of Standards and Technology (NIST) Standard Reference Materials (SRM) (Figure 17)

(Reddy et al., 2002b). The results obtained for SRM 1941 (Baltimore Harbor) showed

that most of the PAHs analyzed carried a fossil signature (expressed in terms of fraction

modern 2 - fM). Perylene was the exception, yielding more modern 14C values, suggesting

that some portion of this PAH had been produced naturally by in situ diagenesis (Figure

17a). PAHs isolated from SRM 1944 (New York Harbor) were also mostly derived from

fossil sources (Figure 17b). However, the 14C content of BghiP in this sample was

slightly more modern than perylene, implying a combustion source for the latter and

posing a question on the feasibility of using BghiP as a marker for emissions from

automobiles (Currie et al., 1994). Chrysene yielded the least modern 14C values in SRMs

2 Calculated based on pre-bomb values of 1950 being modem (fM=l). Carbon fixed later than this
date incorporates bomb-derived 14C, giving rise to fM>l1, while utilization of fossil carbon
results in fM=0.
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1941 and 1944, while in SRM 1649a (Urban Dust) pyrene had the lowest 14C abundance.

The fact that all the PAHs extracted from an urban dust sample collected by the NIST in

the Washington DC area in 1976-1977 contained low 14C abundance implies that

combustion of fossil-fuel was the predominant source of these compounds to that region

at that time. In all three SRMs, the radiocarbon content of individual PAHs correlated

well with values obtained for black carbon and were consistently less modem that the

total organic carbon. On a separate contribution, Reddy and collaborators (2003) used

radiocarbon measurements in individual PAHs as a way to calculate the relative

contribution of two combustion sources to the amount of PAHs found in household soot.

It was observed that soot produced by the combustion of creosote-impregnated softwood

in household stoves and fireplaces was enriched in PAHs and it was uncertain whether

these compounds were derived from the creosote or from the wood. The authors

measured the 14C of individual PAHs and used a mass balance approach to calculate the

relative contribution of each source, knowing that because creosote is a distillation

product of coal tar it should have no 14C and wood should contain contemporary values

(fM > 1). It was estimated that 54 to 70% of the PAHs had been generated from the

combustion of the wood and the remaining had originated from creosote. If a single

marker, such as retene (for the combustion of wood) had been used they would have

overlooked the 50-70% contribution from creosote that the molecular-level 14C analyses

provided. This study also showed that retene had higher 14C-abundance that any other

PAH, which is in agreement with its formation from the pyrolytic convertion of abietic

acid (present in the resin of softwood) during combustion of softwood. This finding also

confirmed the usefulness of retene as a molecular marker for tracing the combustion of

softwood.
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Figure 17. 14C abundance of individual PAHs, black carbon and TOC in (a) SRM 1941a,
(b) SRM 1944, (c) SRM 1649a (Reddy et al., 2002b), and (d) wood produced in a
residential heating stove (Reddy et al., 2003). Ret = retene, Pery = perylene, and BC =
black carbon.

Some of the approaches reviewed in this paper are likely to generate biased

results when sources specific to a study area are not taken into consideration. For

instance, determination of the radiocarbon content of PAHs in Brazil may be biased

towards a modem signature due to the unconventional blend of gasoline used in that

country. In the city of So Paulo, the largest and most industrialized region of Brazil,

approximately 62% of the motor vehicles are fueled with gasohol (gasoline + 22%

hydrated alcohol derived from sugar-cane), 8% with diesel and 30% with ethanol (also

derived from sugar-cane) (De Martinis et al., 2002).
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5. CONCLUSIONS

Some of the factors that affect the production, emission and fate of combustion

derived PAHs have been outlined in this review, along with a brief discussion of several

of the commonly applied methods for apportioning their sources in the environment. The

similarity in the assemblage of PAHs produced by different combustion processes makes

the apportionment of sources a difficult task. In addition, burning conditions can

significantly influence the relative proportion of PAHs from a single source, adding to the

complexity of estimating the relative contributions of the major sources of pyrogenic

PAHs. Arguably, the combined utilization of 14C and 613C measurements of individual

PAHs, when placed into a historical context such as in sedimentary records, could render

the most information on the sources of this group of contaminants to a specific site.

However, such approaches require that the study site be chosen carefully, as perturbations

to the sediment column (e.g., bioturbation and excessive sediment focusing) can impair

reliable chronology. A great deal can be learned about the sources and signatures of

combustion derived PAHs by applying a combination of methods to annually laminated

sediments. Because the distribution of PAHs is so variable, it is important to examine

PAHs on a compound-by-compound basis, paying greatest attention to the most toxic

PAHs.
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ABSTRACT

A high-resolution record of polycyclic aromatic hydrocarbon (PAH) deposition in
Rhode Island over the past - 180 yr was constructed using a sediment core from the
anoxic Pettaquamscutt River basin. The record showed significantly more structure than
has hitherto been reported, and revealed four distinct maxima in PAH fluxes. The
characteristic increase in PAH flux at the turn of the 20th century was captured in detail,
leading to an initial maximum prior to the Great Depression. The overall peak in PAH
flux in the 1950s was followed by a maximum that immediately preceded the 1973
Organization of Petroleum Exporting Countries (OPEC) oil embargo. During the most
recent portion of the record, an abrupt increase in PAH flux between 1996 and 1999 has
been found to follow a period of near constant fluxes. Since source-diagnostic ratios
indicate that petrogenic inputs are minor throughout the record, these trends are
interpreted in terms of past variations in the magnitude and type of combustion processes.
For the most recent PAH maximum, energy consumption data suggests that diesel fuel
combustion, and hence traffic of heavier vehicles, is the most probable cause for the
increase in PAH flux. Systematic variations in the relative abundance of individual PAH
in conjunction with the above changes in flux are interpreted in relation to the evolution
of combustion processes. Coronene, retene, and perylene are notable exceptions,
exhibiting unique down-core profiles.
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1. INTRODUCTION

Sediment cores can provide an excellent means to evaluate and reconstruct

historical records of contaminant inputs to the environment (Grimmer and B6hnke, 1975;

Goldberg et al., 1977; Hites et al., 1977; Schneider et al., 2001). One important class of

organic contaminants that has been the focus of many studies is the polycyclic aromatic

hydrocarbons (PAH). These suspected carcinogens and mutagens (IARC, 1983;

Denissenko et al., 1996) are released into the environment primarily by the incomplete

combustion of fossil fuels (petroleum, natural gas, and coal) and burning of vegetation

(Tan and Heit, 1981). Other sources of PAH include petroleum spills, oil seepage, and

diagenesis of organic matter in anoxic sediments (Blumer and Youngblood, 1975;

Youngblood and Blumer, 1975; Venkatesan, 1988). Although most combustion-derived

(pyrogenic) PAH are deposited close to their source, atmospheric transport can carry

significant amounts of these compounds to remote locations, such as high altitude lake

sediments (Fernandez et al., 1999), deep-sea sediments (Laflamme and Hites, 1978), and

Arctic ice (Kawamura and Suzuki, 1994) and snow (Masclet et al., 2000), rendering these

contaminants ubiquitous in the contemporary environment.

Sedimentary records have shown good correlation between PAH concentration

profiles and energy consumption associated with industrialization. Initial studies of PAH

in sediment cores collected along the east coast of the United States revealed a gradual

increase in PAH concentrations beginning around 1880, coincident with the onset of the

Industrial Revolution, to a maximum in the 1950s (Hites et al., 1980; Gschwend and

Hites, 1981) when coal usage was still high (EIA, 2000). The substitution of coal with

cleaner burning fuels, such as oil and natural gas, is often quoted as an explanation for the

steady decrease in PAH concentrations from the 1960s onwards (Gschwend and Hites,

1981). The increasing use of catalytic converters in motor vehicles (Acres et al., 1982)

and stricter standards for gas mileage efficiency implemented after the Organization of

Petroleum Exporting Countries (OPEC) oil embargo of 1973 (Doniger et al., 2002) most

likely also contributed to the decline in PAH deposition in the 1970s and 1980s. While

most of the historical records of PAH found in the literature were generated before the
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1990s, the trend towards lower concentrations seen in the 1970s and 1980s was assumed

to persist.

Contrary to these projections, recent studies reveal that PAH inputs are no longer

decreasing. In 2000, Van Metre et al. reported that PAH emissions were increasing again

in certain areas of the United States. Based on the analysis of sediment cores from

locations experiencing diverse population growth since the 1970s, Van Metre et al.

reported that all 10 sites studied exhibited a recent increase in pyrogenic PAH

concentrations. The rise in PAH closely parallels the increase in automobile usage in

these watersheds, implying a link between PAH inputs and urban sprawl. In contrast,

Schneider et al. (2001) did not observe a similar trend in PAH concentrations in cores

collected in Lake Michigan. Instead, their results suggest relatively constant PAH inputs

since the 1980s. Importantly, neither of these studies indicate a continual decrease in

recent PAH inputs in the United States, indicating that the declining trend that began in

the 1970s has, at best, stabilized.

As part of a study to develop historical records of combustion, we investigated

past changes in PAH deposition in the New England area. We chose to revisit the

Pettaquamscutt River, Rhode Island and build upon pioneering studies on sedimentary

PAH (Hites et al., 1980; Gschwend and Hites, 1981) to construct a PAH record at quasi-

annual resolution spanning the pre-Industrial era to the end of the 20 h century. This

location is suitable for this type of study for several reasons: (i) it is relatively remote

from major point sources, such as power plants, (ii) it receives PAH mostly via

atmospheric deposition, (iii) it has a small catchment area, which minimizes the residence

time of the PAH, and (iv) it experiences rapid sediment accumulation and minimal post-

depositional mixing, allowing for preservation of vertically expanded, high-fidelity

historical records. The record generated is used here to closely examine past changes in

PAH input and composition and to further evaluate the relationship between urbanization

and PAH emission. To this end, we show that (a) the major source of PAH to this area

has consistently been combustion processes, (b) several distinct maxima in PAH

concentration occur in the record, including the most recent increase in the late 1990s, (c)
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the relative abundance of PAH varied over time, and (d) the recent increase in PAH

concentrations may be due to a rise in diesel consumption.

2. EXPERIMENTAL SECTION

2.1 Study Area

The Pettaquamscutt River is located in South Kingston, southern Rhode Island, in

close proximity to Narragansett Bay (Figure 1). The Pettaquamscutt "River" is actually a

9.7 km long estuary that has a small drainage area (- 35 km2) (Orr and Gaines, 1973),

which is dominated by oak tree forests, wetlands and open waters (Urish, 1991). In 1991,

only 27 % of the watershed was comprised of residential land (Urish, 1991). This

percentage has increased in the past decade due to the construction of new developments

in the area, but there are no recent estimates of land use for residential purposes.

The bottom waters and surface sediments of the Pettaquamscutt River are highly

anoxic and have remained so for the past 1700 + 300 years, since the marine flooding of

this glacial valley (Orr and Gaines, 1973). Two remnant kettle lakes (upper and lower

basin) show stable water-column stratification created by the flow of freshwater from the

Gilbert Stuart Stream over brackish waters (- 27 %0) derived from tidal influx through the

Narrows (Gaines and Pilson, 1972). The oxic/anoxic transition zone is presently at 3.5-6

m in the lower basin, below which a sulfide-rich layer (6 to 20 m) is observed (O'Sullivan

et al., 1997). The lack of oxygen in the bottom waters prevents macrofaunal bioturbation

of the sediments, leading to the preservation of undisturbed sediment sequences that are

ideal for the purpose of historical reconstruction.

2.2 Sampling

Seven sediment cores were collected in the deepest part (20 m) of the lower basin

(Figure 1) in April 1999. A rectangular aluminum freeze corer (30 x 8 x 165 cm) filled

with dry ice and methanol was used for sampling, so that each core consisted of two large

rectangular sides of frozen sediment. After collection, the sides were wrapped in

aluminum foil, kept in dry ice, and transported back to the laboratory where they were
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stored in a chest freezer (-18 C). X-radiographs of the frozen slabs showed varved

sediments and confirmed the absence of benthic animal borrows. In the present work, we

report results from the slab that showed the highest number and most distinct laminations.

The frozen sediment was sectioned at 0.5 cm intervals using a compact tile saw equipped

with a diamond wafering blade (0.63 mm thickness). Approximately 90 % of each

sample was placed in a pre-combusted glass-jar, air-dried, homogenized with a mortar

and pestle, and stored for further PAH and other geochemical analyses. The remaining

portion of each sample was set aside for future trace metal measurements.
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Figure 1. Map showing site of collection of sediment cores.
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2.3 Sediment Dating

Dry sediment (1-2 g) was gamma counted for 210 Pb (46.5 keV), 214 Pb (351 keV)

and 137Cs (661 keV) using a high purity germanium detector (Canberra model GCW

4023S) with a closed-end coaxial well. The activity of each sample was calculated in

disintegrations per minute per gram of salt-free sediment (dpm.g-1), with sample masses

corrected for salt content (12-30 % dry weight) assuming a pore water salinity of 27 %o

(O'Sullivan et al., 1997). Counting errors for total 21Pb and 21 4 Pb were propagated to

unsupported 210Pb (210Pbuu p = 210Pb total- _ 214pb) and ranged from 4-20 % of the activity

(±+1a), with a mean error of 8.4 %, or 0.97 dpm g-1. Counting errors for 137Cs ranged

from 5.8-40 % of the total activity (1(), with a mean error of 18.2 %, or 0.04 dpm.g .

Sedimentation rates were calculated using the constant rate of supply (CRS)

model developed by Appleby and Oldfield (1978). This model assumes constant rate of
210Pb fallout from the atmosphere (2oPbunsup) which results in a rate of supply of 210Pb to

the sediments that is independent of variations in sedimentation rates.

2.4 PAH Extraction and Analysis

Dry sediment samples (0.5-1.5 g) were spiked with PAH internal standards

(fluorene-dlo, phenanthrene-dio, pyrene-do1 0 , chrysene-d 2 and benzo[b]fluoranthene-d 2)

and extracted by pressurized fluid extraction (Dionex ASE 200) using a mixture of

acetone and hexane (1:1) at 1000 psi and 100 °C. The extracts were reduced in volume by

rotary evaporation, exchanged into hexane, and treated with activated copper to remove

elemental sulfur. Each extract was then separated into two fractions by silica column

chromatography (6 g of 100-200 mesh fully-activated silica gel topped with 0.5 g of

sodium sulfate). The first fraction containing alkanes and PAH was eluted with 30 mL of

hexane/dichloromethane (2:1). The second fraction containing the remaining polar

material was eluted with 30 mL of dichloromethane/methanol (1:1) and archived for

further studies. The first fraction was then concentrated, spiked with 9,10-

dihydrophenanthrene, and injected onto an Agilent 6890 Plus GC System interfaced to an

Agilent 5973 Network mass selective detector operating at 70 eV in selective ion
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monitoring (SIM) mode. Analytes were separated with a DB-XLB capillary column (60

m length; 0.25 mm diameter; 0.25 gm film thickness), and parent PAH were quantified

using the mass and area of the corresponding internal standard and the linear term of a 6-

point calibration curve generated with standard solutions prepared from the National

Institute of Standards and Technology (NIST) Standard Reference Material 2260

(Aromatic Hydrocarbons in Toluene). For quantification of the alkylated PAH series, the

response factors of the parent PAH were applied (UNEP, 1992). Concentration and fluxes

of individual PAH were calculated relative to the salt-free mass of each sample.

To assess the precision and accuracy of our measurements, we analyzed four

aliquots of NIST Standard Reference Material 1941 la (Organics in Marine Sediment), one

with each batch of 20 samples. Our results were generally within + 14 % of certified

values (dibenz[a,h]anthracene showed the poorest results at + 40%), and precision was

always better than 5 %. Average recovery of the standards spiked into each sample prior

to analysis was 84.9 + 9.9 % (79.1 8.7 % for fluorene-d 0 , 81.4 + 10.0 % for

phenanthrene-dwo, 98.3 + 10.5 % for pyrene-d0, 83.4 + 10.2 % for chrysene-d 12 and 82.6

+ 10.2 % for benzo[b]fluoranthene-dl 2). The method detection limit was defined as three

times the standard deviation of seven replicate extractions of a background level sample

from the core (70-70.5 cm) (Glaser et al., 1981). The detection limit for parent

compounds was between 0.7-5.2 ng g-l, with an average of 2.5 ng g-1. Blanks (n = 4)

were run with each batch of 20 samples, and concentrations of individual PAH were

always below the method detection limit.

Total PAH (PAH) concentrations were computed as the sum of the following

fifteen compounds: fluorene (Flu), phenanthrene (Phen), anthracene (Anth), fluoranthene

(Fla), pyrene (Py), benz[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene

(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), benzo[e]pyrene (BeP),

dibenz[ah]anthracene (DahA), indeno[123-cd]pyrene (IP), benzo[ghi]perylene (BghiP)

and coronene (Cor).
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3. RESULTS AND DISCUSSION

3.1 210Pb Dating

Sedimentation rates were calculated from the unsupported 210Pb activity and used

to determine the year of deposition of each sediment layer, shown with an envelope of

uncertainty ( 1) in Figure 2. The validity of this dating method was checked by

comparing the 210Pb chronology to the profile and historical fallout of 137Cs.

The activity profile of 37Cs shows a broad subsurface maximum with highest

activity in 1965 + 1, which closely corresponds to the time of maximum deposition of

1 3 7 Cs in the United States (1963-1964) from nuclear weapon testing (Robbins et al.,

2000). Increased activity is detected down to 24 cm (1952 + 1), matching the initial

atmospheric occurrence of 37Cs (1952) (Carter and Moghissi, 1977). The smaller and

more surficial (7 cm) 137 Cs peak corresponds to a date of 1987 ±+ 1, which is consistent

with fallout resulting from the accidental release of radioactivity that followed the 1986

Chernobyl reactor fire in the former Soviet Union (Carter and Moghissi, 1977). The

presence of the Chernobyl peak was not expected at this location because this peak is not

commonly seen in North America, even though it is often observed in European cores

(Wieland et al., 1993; Reiser et al., 1997). For example, the 137Cs derived from the

Chernobyl accident was not detected in recent sediment records from Florida (Robbins et

al., 2000), Massachusetts (Spliethoff and Hemond, 1996), and other locations in the

United States (Van Metre et al., 1997). The presence of this unusual signal, in addition to

a good correspondence between the broad 13 7 Cs peak and penetration depths to maximum
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fallout (1964) and onset (1952) dates, testifies to the fidelity of the Pettaquamscutt River

sediments, and hence their suitability for high-resolution geochronological investigations.

A more rigorous discussion of the chronology at this site, incorporating varve and pollen

counting, as well as 14C measurements in total organic carbon, will be the subject of a

separate contribution.

'Cs (dpm g )
0.0 02 0.4 0.6 0.8

Year of Deposition
1900 1920 1940 1960 1980 2000

I I I ' I ' I ' I ' I I I ' I ' I I I ' I

Figure 2. 137Cs activity (closed circles) and year of deposition (calculated using
unsupported 210Pb, open circles) plotted versus the sediment depth. Samples correspond
to 0.5 cm thick sediment slices. Year of deposition is shown with a +1 envelope of
uncertainty.

Sediment resuspension and redistribution can modify the record of atmospheric

deposition of allochthonous constituents such as 210Pb and PAH. Deep basins tend to

exhibit high sediment accumulation rates due to advection from the basin periphery, a

process called sediment focusing (Crusius and Anderson, 1995). PAH accumulating at

these locations can exceed the vertical flux associated with atmospheric deposition. To

account for this overestimation, focusing factors can be calculated by integrating the
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unsupported 210Pb over depth and dividing the result by the expected 210Pb inventory

from regional atmospheric fallout (Kada and Heit, 1992; Crusius and Anderson, 1995).

Since the atmospheric deposition of 210Pb is relatively uniform in the northeastern United

States (Graunstein and Turekian, 1986), we used the 2 10Pb deposition inventory measured

in New Haven, CT (38.6 dpm.cm '2) for our calculations (Turekian et al., 1983).

Vertically integrated unsupported 210Pb calculated for the Pettaquamscutt River

sediments yield an inventory of 51.6 dpm.cm 2 , which corresponds to a focusing factor of

1.3. Thus, sedimentary inventories do not greatly exceed the amounts expected from
210Pb fallout alone.

3.2 Variations in Abundance and Flux of PAH

The compound specific high-resolution PAH profiles generated for the

Pettaquamscutt River (Figure 3) show more structure than previously reported for this or

any other location, probably as a result of the fine sampling scale undertaken in this

study. The concentration profiles for most of the PAH analyzed follow the general pattern

displayed by phenanthrene, pyrene and benzo[a]pyrene (Figure 3). Coronene, retene and

perylene, also shown in Figure 3, are the exceptions to this pattern and will be discussed

separately. In general, low and constant levels (< 10 ng g-') of phenanthrene, pyrene and

benzo[a]pyrene are observed for the section of the core that comprises most of the 19 th

century. Concentrations then start to increase near the turn of the century (- 1890), and

reach a first maximum in the early 1930s before decreasing slightly from that point until

1945. A major rise in PAH is observed from 1945 to a maximum in 1960. During this

period the concentration of phenanthrene increased 185 %, with an average rise of 86 %

for the total PAH (PAH). The decrease in concentration that followed is also

noteworthy. Between 1960 and 1965, the amount of individual PAH diminished by an

average of 41 %, returning to values existent in the late 1940s. The profiles show a third

peak in PAH concentration that is smaller and less well defined, centered in 1974. This

feature was not distinguished in previous studies at the Pettaquamscutt River sediments

(Hites et al., 1980), presumably due to coarser sampling. A steady decrease in
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concentrations followed the 1974 maximum before stabilizing around 1983 and

remaining relatively constant until 1996. The constant concentrations observed on this

last portion of the profile resemble that described by Schneider et al. (2001) for the same

period. The most recent sediment sections corresponding to deposition between 1996

and 1999 reveal an abrupt and substantial increase in concentrations of phenanthrene,

pyrene and benzo[a]pyrene (mean increase in XPAH = 42 %, Figure 3). This trend is

consistent with work of Van Metre et al. (2000) that showed increasing PAH

concentrations at several locations in the United States during this time interval.

Since sedimentation rate at the Pettaquamscutt River has changed over time and

concentration values vary as a function of sediment dilution, it is more meaningful to

assess changes in PAH levels in terms of depositional flux. We combined measured PAH

concentrations with in situ densities and sedimentation rates to calculate PAH fluxes
2 -1(ng.cm- 2.yr-), which were also corrected for sediment focusing (Figures 3 and 4,

histograms of Figure 4 will be discussed later). The flux profiles still largely resemble the

concentration record, but now we can take advantage of the high temporal resolution of

our core to calculate the rate at which PAH deposition fluxes changed over several

distinct time intervals. XPAH flux remained largely constant (0.23 ±+ 0.17 ng cm '2 yr-1)

during pre-Industrial times (1822-1842), while a small, but statistically significant
2 -22increase in PAH flux (0.06 ng cm -2 yr-2, n = 16, r2 = 0.817) is observed in the

subsequent period (1842-1887). The slope of the XPAH flux curve changed abruptly in

the following 9 years (1887 to 1906) to a near-linear increase at 2.7 ng cm -2 yr -2 (n = 8, r2

= 0.992). This increase is followed by another distinct change in the flux rate (9.2 ng cm -2

yr 2, n = 11, r2 = 0.983) leading to the 1934 maximum. After a brief subsequent decrease,

EPAH flux rose again between 1940 and 1959 at a rate of 14.2 ng cm -2 yr-2 (n = 9, r2 =

0.973), and individual PAH fluxes attained values between 1.4 - 98.1 ng cm -2 yr . An

extremely abrupt decrease in XPAH flux (- 30 ng cm -2 yr -2) followed before recovery to a

third maximum in 1974 that, to our knowledge, has not been previously reported. In ten

years (1965-1974), the flux of XPAH increased 20 % at a rate of 5.9 ng cm -2 yr-2 (n = 5, r2

= 0.776). The decline that followed was presumably due to stricter standards for gasoline
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mileage efficiency implemented after the OPEC oil embargo (Doniger et al., 2002).

Between 1983 and 1996, XPAH flux remained relatively constant (206.7 ±+ 11.9 ng cm -2

yr1; R.S.D. = 5.7 %), in agreement with work by Schneider et al. (2001), but in the short

period between 1996 and 1999, the flux of XPAH rose by 48 % (57 % from the 1983-

1996 mean), at a rate of 48.1 ng cm-2 yr' 2 (n = 3, r2 = 0.881). This increase in flux is 3.4

times faster than the rate of change observed between 1943 and 1959 leading to the

overall PAH maximum, and the 1999 IPAH flux value is only 1.5 times lower than that
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maximum. To verify if this abrupt increase in flux reflects a new trend in the PAH record,

the data obtained for the top portion of the core were analyzed using a two-phase linear

regression model incorporating parametric bootstrapping (Efron and Tibshirani, 1993).

The statistic results confirmed that the recent increase in PAH delivered to

Pettaquamscutt River sediments constitutes a new trend in the PAH historical record.

The most recent increase in sedimentary XPAH flux far outpaces the growth in

population (13.4 %) and number of vehicles (14 %) in the region around the

Pettaquamscutt River during this time interval (Census, 2000; Lovesky, 2001). Even

though these increases were roughly the same, the amount of fuel used for residential

heating and for transportation did not grow in the same direction. Energy use for home

heating decreased (coal by 50 %, wood 39 %, petroleum 11 % and natural gas 11 %),

while use of fuel for transportation increased (gasoline by 7 % and diesel by 20 %) in the

area (EIA, 1999). Although natural gas consumption for heating of commercial facilities

outpaced energy consumption associated with transportation, combustion of natural gas is

not considered a major producer of PAH (NAS, 1972). There are three major roads

(Routes 138, 1 and A) in the watershed of the Pettaquamscutt River. It is reasonable to

assume that larger particles produced during fuel combustion, and which tend to

accumulate close to the source (Windsor Jr. and Hites, 1979) contribute the majority of

the PAH load seen in the sediments. PAH from engine exhaust reach the Pettaquamscutt

mainly by atmospheric transport and not by runoff. One indication of the negligible

contribution of the latter to our samples is the absence of an unresolved complex mixture

(UCM) usually associated with PAH introduced via urban runoff. Long-range

atmospheric transport is also a viable mechanism, but it may only contribute minor

amounts of PAH since deposition strength decreases with distance from the source

(Gardner and Hewitt, 1993). Combustion of gasoline and diesel thus appear to be the

most plausible source for the increase in sedimentary PAH in recent years. It is extremely

difficult to distinguish PAH contributions from these two sources; nevertheless, the larger

rise in diesel consumption between 1996 and 1999 seems probable as the cause of the rise
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in pyrogenic PAH contributions. Diesel engines also produce 1 to 2 orders of magnitude

more soot (and associated PAH) than a comparable gasoline engine (Mauderly, 1992)

and while we are currently lacking standard values for soot emissions by diesel vehicles

(Hwang et al., 2001), it seems likely that traffic of heavier vehicles using diesel as fuel,

and not passenger automobiles, is responsible for the increased PAH load to this region.
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Figure 4. Flux record of total PAH (sum of 15 parent PAH, excluding perylene) in
ng cm 2 yr'1 (left), and variation from the mean relative abundance of individual PAH
over selected time intervals (right). Error bars correspond to one standard deviation (+±1()
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3.3 Compositional Variations in Pyrogenic PAH

Assessments of isomer ratios or relative abundances are the classic methods for

apportioning sources of PAH to the environment (Youngblood and Blumer, 1975; Lee et

al., 1977). Ratios of parent PAH to their alkylated homologues are commonly used to

differentiate between pyrogenic and petrogenic contributions, with the former being

relatively depleted in alkyl-substituted PAH (Youngblood and Blumer, 1975). We used

the compilation of source-diagnostic ratios of the phenanthrene and pyrene series by

Gustafsson and Gschwend (1997) to evaluate the relative importance of pyrogenic and

petrogenic contamination pathways to the Pettaquamscutt River. Sediments dominated by

PAH from combustion processes show the sum of methyl-phenanthrenes and methyl-

anthracenes to phenanthrene ratio between 0.5 - 1, and the sum of methyl-pyrenes and

methyl-fluoranthenes to pyrene of about 0.4. As can be seen in Figure 5, combustion

processes have been the main contributors of PAH to this site since the early 1900s. It is

also apparent that the increase in IPAH flux observed in recent years was not the result

of petrogenic inputs.

While pyrogenic processes dominate PAH inputs and even though the

concentration and flux profiles of individual PAH (Figures 3a, 3b and 3c) follow that of

the EPAH (Figure 4), the relative abundances of individual PAH (compared to EPAH) in

the Pettaquamscutt River have varied significantly and systematically over time. For

example, despite their structural similarities, the abundance profiles of phenanthrene and

anthracene have distinct characteristic features (Figure 6). The relative abundance of

anthracene decreased from maximum values (- 10 %) in the early 1800s before leveling

off at approximately 2 % in 1900, whereas the percent abundance of phenanthrene

decreased only slightly in the 1800s, peaked in the 1950s and stabilized at approximately

6.5 % in the 1980s. Figure 6 shows no evidence of a decline in the abundance of 3-ring

PAH relative to higher molecular weight compounds at the top of the core, as would be

expected if diagenesis were affecting these samples (MacRae and Hall, 1998). Contrary

to the behavior of 3-ring PAH, the relative abundance of 5-ring compounds such as
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benzo[a]pyrene (Figure 6c) increased after the turn of the century. The mean relative

abundance of benzo[a]pyrene increased from 3.6 ±+ 1.6 % between 1822 and 1884 to 7.9

±+ 0.5 % between 1895 and 1999. Gevao et al. (1998) also reported historical variations in

the relative abundance of individual PAH in sediments collected in the United Kingdom.

Although only 3 individual PAH (anthracene, benzo[a]pyrene and benzo[ghi]perylene -

not shown) investigated in this study show similar trends to those presented by Gevao et

al., both studies indicate that the relative abundance of individual PAH has changed over

mz 192/ phenanthrene
0 1 2 3 4 5 6

mz 216 /1 pyrene
0 1 2 3 4 5

Figure 5. PAH source-diagnostic ratios taken from Gustafsson and Gschwend (1997)
(Gustafsson and Gschwend, 1997). (a) sum of methyl-phenanthrenes and methyl-
anthracenes to phenanthrene, and (b) sum of methyl-pyrenes and methyl-fluoranthenes to
pyrene.
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time, which is in contrast with reports of no change in contribution of specific PAH with

depth (Pruell and Quinn, 1985). It is also interesting to note that the relative abundance of

coronene (Figure 6d) was highest in the 1920s, while its concentration reached a

maximum in 1932 (Figure 3d). Coronene is generally associated with emissions from

vehicle exhaust (Masclet et al., 1986), but these peaks in relative and absolute abundance

significantly precede the time period (1960-1975) when motor vehicle emissions were

likely greatest. Our work implies that coronene may not necessarily be a good marker for

emissions from vehicle exhaust, as also stated by Freeman and Cattell (Hayes et al.,

1989) after finding elevated amounts of this compound in emissions from bush fires. The

exact origin of the 1932 maximum in coronene abundance remains unclear.

Abundance (%)
0 5 10 15 20 0

Abundance (%)
5 10 15

Abundance (%)
4 80
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Figure 6. Down-core relative abundance (relative to SPAH) of selected individual PAH.
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Some interesting features in the PAH profile become apparent when the relative

contribution of each compound is averaged over the depth of the profile and the

deviations from the mean are then plotted. This is shown in Figure 4 for selected time

intervals corresponding to key features of the ZPAH record. During the early portion of

the record, corresponding to pre-Industrial times (1822-1842, Figure 4g), three-ring PAH

(fluorene, phenanthrene and anthracene) and coronene were the only compounds above

their down-core mean abundances. The fact that 3-ring compounds show higher values in

the deeper portion of the core indicates that degradation, which tends to act faster on low

molecular weight PAH than on higher-ringed homologues (MacRae and Hall, 1998), has

not significantly altered the PAH distribution in these sediments. In the late 1880s, Rhode

Island switched from an agrarian and commercial economy to an industrially-based

economy (Conley, 1986), and coal usage increased in relation to wood consumption

(EIA, 2000). This change in energy sources could arguably have altered the assemblage

of emitted PAH at the turn of the century. During this time period, the relative abundance

of 3-ring compounds shifted to values below their mean, while 5- and 6-ring PAH values

increased (Figure 4f). Benz[a]anthracene was the only 4-ring PAH whose relative

abundance rose above the mean between 1890-1907. At the first PAH maximum,

spanning the Depression years (1929-1940) (Figure 4e), the pattern of relative

abundances of individual PAH was comparable to that of the turn of the century (Figure

4f). During both periods, coal was the most important energy source (EIA, 2000) and

apparently dominated the PAH loading and assemblage. The interval corresponding to

the overall PAH maximum (1950-1959) reveals a marked shift in PAH abundance

distribution compared to the prior maximum. Compounds that had abundances below

their mean between 1929 and 1940 switched to higher values during 1950-1959, and

vice-versa. For example, with the exception of benzo[a]pyrene and

dibenz[a,h]anthracene, the distribution of 4-, 5- and 6-ring PAH completely inverted.

Phenanthrene was the only 3-ring PAH whose relative abundance increased above its

mean value. The reason for such dramatic and systematic variations in relative abundance
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of individual compounds could reside in a change of energy source. During the

Depression years, coal was the main fuel used, while between 1950 and 1959 petroleum

was the dominant energy source (EIA, 2000). In comparison, the abundance of individual

PAH for the periods of 1950 - 1960 (Figure 4d) and the third EPAH flux maximum of

1965-1974 (Figure 4c) appears similar, despite distinct historical accounts of shifts in

energy usage. In the 1950s, petroleum and natural gas replaced coal as the main energy

source. In a period of 10 years coal consumption decreased 20 % in the United States,

while petroleum and natural gas increased 63 % and 128 %, respectively (EIA, 2000).

The mixture of fuels used in 1950-1960 and 1965-1974 was clearly very different;

nonetheless, we see similar trends in PAH abundances in the sediment.

In the 1960s, stricter emission controls came into effect in the United States and

after 1975 vehicles started to be fitted with catalytic converters (Acres et al., 1982).

These actions most likely resulted in the change in PAH assemblage observed between

the time periods 1965-1974 (Figure 4c) and 1974-1996 (Figure 4b), as well as in the trend

towards lower PAH fluxes between 1974 and 1996 (Figure 4). Finally, despite the most

recent abrupt increase in PAH concentrations (Figure 3), the relative distribution of

individual PAH remains the same as the prior interval (Figures 4b and 4a). PAHs with 4-

and 5-ring still show relative abundances above their mean, while 3- and 6-ring PAH

show the inverse trend.

3.4 Retene and Perylene

Retene and perylene were not considered in the calculation of EPAH and relative

abundances discussed above. These compounds do not follow the general pattern of

anthropogenic PAH seen in Figures 3a, 3b and 3c, and their sources remain uncertain.

Retene (1-methyl-7-isopropylphenanthrene) has been proposed as a tracer for the

combustion of soft wood (Ramdahl, 1983). This compound is also formed by the natural

degradation of abietic acid present in coniferous resins (Tan and Heit, 1981; Simoneit and

Mazurek, 1982; Tavendale et al., 1997), and is present in extracts of algal and bacterial

organic matter (Wen et al., 2000). The most striking feature of the Pettaquamscutt River
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sedimentary profile of retene is a maximum in concentration in ca. 1870 (Figure 3e),

which was also observed by Hites et al. (1980). Shipbuilding was conducted on the

margins of the Pettaquamscutt River, but the timing of this activity (1813 to 1847) and

the type of wood used for ship building (hardwoods such as oak, chestnut and

buttonwood) (Tootell, 1963) are not consistent with such a large increase in retene

concentration. The flux of retene increased 7.7 fold between 1842 and 1870 (from 1.9 to

14.6 ng cm -2 yr ), and may be due to a period of intense deforestation in that region. The

White Pine forests of the northeastern United States were nearly depleted by 1870

(Anonymous, 1999) and wood as an energy source was scarce enough to encourage the

transition to coal. Notably, the return in retene flux after 1870 to early 19 th century values

occurred just as the flux of other PAHs began to increase (Figure 3).

The origin of perylene has also been subject of considerable debate. The literature

cites emissions from automobiles (Blumer et al., 1977) and municipal incinerators

(Davies et al., 1976), as well as in situ diagenesis of marine and terrestrial organic matter

(Venkatesan, 1988) as potential sources of perylene. Recent radiocarbon evidence

indicates that both fossil-fuel combustion and modern biomass can be important

contributors of perylene to sedimentary settings (Reddy et al., 2002). The concentration

profile of perylene in the Pettaquamscutt sediments (Figure 3f) differs markedly from that

of the pyrogenic PAHs (Tan and Heit, 1981). Concentrations of perylene were relatively

constant from 1822 to 1890, increased 5-fold by 1927, and decreased back to 1890s

values by 1945. The timing of this abrupt decrease is coincident with the construction of

the Middlebridge Bridge (Figure 1) (Gaines, 1975), which could mean that a reduction in

saltwater intrusion and possibly smaller influx of marine diatoms that may act as a source

of perylene precursors, was responsible for the decrease in perylene (Venkatesan, 1988).

The elucidation of the true precursors of perylene is beyond the scope of our present

work, but in the Pettaquamscutt River, the concentration profile of perylene seems to be

related to the influence of tidal waters from the Narragansett Bay. The most recent

portion of the perylene record resembles a profile of a product from in situ diagenesis,

with low concentrations at the surface and increasing values at depth. It is worth noting
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that, the shape of the profile presented here does not resemble that previously shown by

Hites et al. The latter authors show a ten-fold increase in perylene concentrations on the

top portion of the core, constant values until 1895 and a dip in concentrations between

approximately 1875 and 1855. Our core was taken in the Lower Basin of the

Pettaquamscutt while that used by Hites et al. (1980) derived from the Upper Basin.

These two basins differ distinctly in sedimentary organic carbon contents and

hydrological regimes (Urish, 1991), therefore differences in perylene profile are not

surprising.

4. SUMMARY

The excellent temporal resolution afforded by the Pettaquamscutt River sediments

allowed us to observe structure in the sedimentary PAH record that had been previously

overlooked, as well as to more quantitatively define past changes in flux. For example,

the timing and rates of change in PAH flux at the turn of the 20t h century and

accompanying subsequent PAH maximum are better constrained, including identification

of a new peak in PAH levels immediately preceding the 1973 OPEC oil embargo. Our

data reveal relatively constant PAH fluxes between 1978 and 1996, and an abrupt

increase trend from 1996 and 1999. This trend is in agreement with the findings of

Schneider et al. (2001) and Van Metre et al. (2000), respectively. Energy consumption

records suggest that combustion of diesel fuel, and therefore traffic of heavier vehicles, is

responsible for this recent increase in PAH fluxes. This finding is contrary to Van Metre

et al., who associated the increase in PAH to greater utilization of passenger automobiles

linked to urban sprawl. Irrespective of their source, increasing PAH fluxes may also

indicate that emissions of other important combustion-related species, such as NOx and

black carbon (soot) have increased. Coronene, retene and perylene exhibit profiles that

are distinct from the other PAH. Of particular note, coronene fluxes reach a maximum in

1932, casting doubt on the validity of this PAH as a marker for vehicle exhaust

emissions.
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The remarkable short-term variability in PAH flux and composition evident in the

Pettaquamscutt River record implies that sedimentary records of these compounds serve

as a rich source of information on past combustion processes. An immediate question is

whether the trends evident in this study reflect local phenomena, or whether they are a

manifestation of more regional combustion activity. Unfortunately, detailed historical

PAH records are not common in the literature. There is a need to identify and develop

historical records from other sites with suitable temporal resolution in order to assess the

geographic reproducibility of the present observations.
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CHAPTER 4

CHRONOLOGY AND RECORD OF 137CS RELEASED

BY THE CHERNOBYL ACCIDENT

Abstract - Cesium-137 derived from the explosion of the Chernobyl reactor in 1986 was
preserved in anoxic sediments from a coastal environment in southern Rhode Island.
Although the radioactive plume was detected in surface air samples at several locations in
the US, this is the first known record of a Chernobyl 37Cs peak in sediments from North
America. The inventory of Chernobyl 137CS that was preserved in the Pettaquamscutt
River is small compared to European counterparts and should only be detectable for the
next 15-20 years. However, the presence of two 37Cs peaks (1963 and 1987) identifies a
well-dated segment of the sediment column that could be exploited in understanding the
decomposition and preservation of terrestrial and aquatic organic matter. Different
methods for calculating the 210Pb chronology were also evaluated in this study and
checked against the independent varve counting. The end result is a detailed chronology
of a site well suited for reconstruction of historical records of environmental change.

1. INTRODUCTION

On 26 April 1986, during a test to determine how long the turbines would spin

after a loss of electrical power supply, a flaw in design and a series of operator actions

caused the Chernobyl-4 reactor to explode. The initial release of fission products to the

atmosphere was followed by a second explosion, which allowed air to flow into the core

and caused the graphite moderator to burst into flames (Hohenemser et al., 1986; Mould,

2000). The nine-day fire that followed was held responsible for the main release of

radioactivity into the environment. Roughly all of the xenon gas, 20% of the cesium and

iodine, and about 5% of the remaining radioactive material in the reactor was set free by

the accident, accounting for a total of more than 8 x 1018 Bq (1 becquerel = 1

disintegration per second) of fission products released into the atmosphere (Mould, 2000;

www.world.nuclear.org). While most of the released material was deposited close to the
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site of the accident in northern Ukraine, southern Belarus and Russia's Bryansk region

(Stone, 2001), strong winds carried the plume towards Finland and Sweden (ApSimon

and Wilson, 1986; Mould, 2000). By May 2, the plume had reached the UK and Japan,

and by May 6, Canada and the United States (Ayoama et al., 1986; Smith and Clark,

1986; Mould, 2000). Although 137Cs was detected in the atmosphere in several regions of

the United States following the accident (Larsen et al., 1986; Feely et al., 1988; Holloway

and Liu, 1988), there is no known record of a Chernobyl 137Cs peak in recent sediments

from Florida (Robbins et al., 2000), Massachusetts (Spliethoff and Hemond, 1996),

California (Fuller et al., 1999) or other locations in the country (Van Metre et al., 1997).

Significant levels of 37Cs first appeared in the atmosphere in the early 1950s as a

result of above ground nuclear weapons testing. The number of nuclear detonations

peaked in 1962, resulting in a maximum in 137Cs fallout in 1963, when the Test Ban

Treaty was instated (Carter and Moghissi, 1977). As a consequence of the treaty, little

radioactive fallout was observed in the late 1960s and 1970s in the northern hemisphere.

Because 37Cs deposition reflects the history of nuclear tests, this artificial radionuclide is

commonly used as a chronostratigraphic marker to constrain records (Anderson et al.,

1988; Ritchie and McHenry, 1990; Spliethoff and Hemond, 1996; Appleby, 2001).

Following the 1986 Chernobyl accident, the atmospheric concentration of 137Cs in Europe

remained approximately 4-times higher than the 1963 levels for a few months (Cambray

et al., 1987) and a number of investigations reported the presence of Chernobyl-derived
137Cs in sediment traps (Buesseler et al., 1987; Wieland et al., 1993) and in surficial

sediments from Denmark (Ehlers et al., 1993), Netherlands (Zwolsman et al., 1993),

Switzerland (Dominik and Span, 1992; Gunten et al., 1997; Albrecht et al., 1998) and UK

(Gevao et al., 1997). At these locations, elevated activities of sedimentary 37Cs imply

that the 1986 peak can serve as a valuable marker for several decades (13 7Cs half-life = 30

years).

As part of a study to develop historical records of combustion, we collected

sediment cores from an estuarine anoxic basin site in southern Rhode Island and

generated detailed 20Pb, 137Cs, and varve chronologies. The anoxic nature of this
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environment inhibits bioturbation, creating undisturbed laminations that are ideal for

sediment dating. Here, we revisit the 2l0Pb models used for dating recent sediments,

demonstrate a good correlation between radiometric models and varve counting, and

show that 37Cs derived from the Chernobyl accident was preserved in sediments from a

site in the Northeastern USA.

2. EXPERIMENTAL

2.1 Study Area

The Pettaquamscutt River, also known as the Narrow River, is located in

Washington County, southern Rhode Island (Figure 1). This estuary is approximately 9.7

km long, ranges from 100-700 meters in width (Boothroyd, 1991) and has a small (35

km2 ) drainage area (Orr and Gaines, 1973). The Pettaquamscutt can be morphologically

divided into two basins and a channel. The upper basin is 13.5 m deep at its maximum

and receives input of freshwater from the Gilbert Stuart Stream. The lower basin is

deeper (19.5 m), has a larger area and is confined to the north by a shallow sill (less than

1 m deep) and to the south by a long narrow channel that connects it to its salt-water

source, Rhode Island Sound. The bottom waters and sediments of the upper and lower

basins are permanently anoxic, mostly due to a stable salinity-dominated stratification of

the water column (Gaines and Pilson, 1972). As a result, no bioturbation of the surficial

sediments is observed and annually laminated layers are well preserved (Figure 2).

2.2 Sampling

Freeze-cores were collected in the deepest part of the lower basin (Figure 1) in

April 1999 (Lima et al., 2003). Unlike gravity coring, which can disturb the surficial

sediments and lead to compaction of sediment layers, freeze coring allows for recovery of

intact sediment-water interfaces (Shapiro, 1958). Consequently, this sampling technique

is ideal for high-resolution records of aquatic sediments, and especially those containing

high amounts of siliceous tests that render sediments flocculant (Koide et al., 1973). Prior
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to lowering into the water, an aluminum corer (30 x 8 x 165 cm) was filled with a slurry

of dry ice and methanol. The corer was lowered slowly to approximately two meters

above the sediment-water interface, allowed to drop rapidly into the sediment, and left

there for about 10-15 minutes so that a thick slab of sediment froze onto the metal surface

Figure 1. Map showing the boundaries of the watershed of the Pettaquamscutt River (RI)
(dotted line) and the location of the site of sediment freeze-core collection. Modified after
Lima et al. (2003).
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of the corer. After collection, the sediment slabs were separated from the corer, wrapped

in aluminum foil, kept in dry ice, and transported back to the laboratory where they were

stored in a chest freezer (-18 °C).

X-radiographs of the frozen slabs showed laminated sediments and confirmed the

absence of benthic animal burrows (Figure 2). Here, we report results from the slab that

showed the most distinct and the highest number of laminations. Prior to sampling the core,

a 10-cm wide sub-section of the slab was cut lengthwise to be made into thin sections for

subsequent varve counting. The frozen sediment was subsequently sliced at 0.5 cm

intervals using a compact tile saw equipped with a diamond wafering blade, while the slab

was kept frozen by regular applications of liquid nitrogen. The samples were placed in pre-

combusted glass-jars, air-dried, homogenized with a mortar and pestle, and stored until

radiometric measurements and geochemical analyses were performed.

2.3 Varve Counting

Sediment pieces (6 cm x 4 cm) were taken from the 10-cm wide sub-section saved

for varve counting, dehydrated and embedded with Spurr resin (1969), following the

procedure of Pike and Kemp (1996). The resulting slabs of sediment/resin were mounted

on glass slides and thin-sectioned using standard petrographic techniques. Thin sections

were scanned under cross-polarized films using a flat bed scanner with transparency

capabilities in order to produce tag image file (TIFF) digital images with resolutions of

1440 dpi (Figure 2) (De Keyser, 1999). The images were imported into Adobe

Photoshop®, lamination boundaries were marked with the "path" tool and the exported

paths were processed using an algorithm that counts and measures the thickness of each

lamination (Francus et al., 2002). The resulting data files for each sediment piece were

overlain to produce a continuous record of varve thickness, number, and depth. Because

some of the laminae were disturbed during processing, we compiled data from freeze cores

taken in 1999, 2002, and 2003 to fill in the gaps and produce a master varve chronology for

the lower basin. This multiple-core chronology is superior to that from a single core
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because it enables the identification of laminae that may have been disturbed in the original

core (Lamoureux, 2001).

-1954

-1938

-1-cm

Figure 2. Composite image of 2 0th century laminations from the lower basin of the
Pettaquamscutt River. Laminae deposited by historical hurricanes (1954, 1938) are
marked with arrows and help constrain the varve chronology. The width of the
composite has been exaggerated 2x; scale bar = cm.

2.4 Radiometric Dating

Aliquots of dry sediment (1-2 g) were measured for 210Pb, 226Ra and 1 3 7 Cs by

direct gamma counting using a high purity germanium detector (Canberra model GCW
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4023S) with a closed-end coaxial well. 2Pb was measured by its emission at 46.5 keV,

and 226Ra by the 351 keV emission of its daughter isotope 214Pb (with a correction for

losses of the intermediary gaseous isotope 222Rn). 137Cs was measured by its emissions at

661 keV. Detector efficiency was determined by counting a National Institute of

Standards and Technology (NIST) traceable mixed liquid gamma standard (Isotope

Products Labs) and a certified 210Pb standard (Physikalisch Technische Bundesanstalt -

PTB). The background corrected counts were then analyzed with the GESPECOR

software, which uses Monte Carlo simulations to correct for self-absorption and

coincidence-summing effects. Excess, or unsupported 210Pb was calculated as the

difference between the measured total 210 Pb and the estimate of the supported 21 0Pb

activity given by the parent nuclide (210Pbexc = 210Pbtotal - 21 4 Pb). Counting errors for 13 7 Cs

ranged from 5.8 to 40% of the total activity (±1a) and those for total 20Pb and 2 1 4 Pb were

propagated to 210Pbexc, which ranged between 4-20% (c). Minimum detectable activity

was calculated at 0.004 Bq for 137Cs and 0.040 Bq for 210Pbexc.

2.5 Total Organic Carbon Concentration and Radiocarbon Content

A Fisons 1108 elemental analyzer was used to measure the total organic carbon

(TOC) content of the samples. To remove inorganic carbon, about 2 mg of dry sample

was weighed into a silver capsule and acidified with HCl under vacuum. The samples

were then dried in an oven at 50°C, folded, placed inside tin capsules (for better catalysis

of the oxidation reaction) and analyzed. Samples were run in triplicate and all reported

weight percentages represent the mean + one standard deviation. Carbon content was

determined through a 5-point calibration curve of a sulfanilamide standard (0.05 to 0.50

mgC). Sub-samples of the dry sediment were submitted to the National Ocean Sciences

Accelerator Mass Spectrometry (NOSAMS) facility where they were analyzed for

radiocarbon (14C) and stable carbon isotopic composition (813C1 ) according to established

procedures (McNichol et al., 1994). 14C values are expressed as A14C2, which is the

I 813C (((13 12 13 12
1'3 C (%o) = ((( C/ C)sam e/( C/ C)PDB)-l)100lOOO; where PDB = Pee Dee Belemnite carbonate standard.

2 
14C (%o) = (%modern*e -1)*1000, where k = 14C decay constant and t = calendar age.
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measured 14C concentration normalized to pre-industrial atmospheric values reported in

permil (%o) (Stuiver and Polach, 1977). Routine precision for 613C and A14C

measurements at NOSAMS are -0.1 and 5%o, respectively.

3. 21°Pb AGE MODELLING

Since its introduction in the early 1970s, the use of 210Pb as a dating technique has

become established as the best means of deriving sedimentation rates and ages of recently

deposited sediments. 210Pb enters aquatic systems by direct precipitation or by run-off

from the catchment area. The total amount of 210Pb present in lake sediments represents a

mixture of that formed within the sediment from the decay of 226Ra deposited by soil

erosion (supported 210Pb), and that formed in the atmosphere by the decay of 222Rn

(unsupported or excess 210Pb, 210Pbexc). The activity of supported 210Pb is estimated by

measuring the activity of either 214Pb or 226Ra, while the activity of 210Pbexc is determined

by the difference between the total and the supported 210Pb (21OPbexc = 210 Pbtotal - 214Pb).

The decay of this atmospherically derived 210Pb provides a measure of the rate of

deposition of the sediment column. In the absence of sediment mixing, two models are

commonly used to derive age-depth correlations in sedimentary profiles. The constant

rate of supply (CRS) model (Appleby and Oldfield, 1978) assumes that sedimentation

rate and sediment compaction change throughout the core and automatically corrects for

these parameters, while the constant initial concentration (CIC) model (Goldberg, 1962;

Krishnaswamy et al., 1971) assumes that sedimentation rate is constant in the area under

study and requires that the depth of the sediment column be corrected for compaction

before the method be applied. Both models assume no post-depositional migration of

210Pb and a constant flux of 210Pbexc at the sediment-water interface.

Concentration and flux relate to each other by the equation:

FC =- (1)
r

where r is the mass accumulation rate. By assuming a constant flux of 210Pbexc at the

sediment-water interface and constant sedimentation rate, the CIC model fixes the

concentration of 2 Pbexc at the surface. If no physical processes alter the amount of
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210Pbxc in the surface sediments, the activity of 210Pbexc declines down the sedimentary

profile according to its natural radioactive decay:

C(x) = C(0) * exp(-At) (2)

where C is the 210Pbexc concentration per mass of dry sediment (Bq kg-) at the sediment-

water interface (C(o)) and at depth x (C(x)), A is the decay constant of 2 10Pb (0.03114 yr'l),

and t is the age of the sediment at depth x. Because the age of the sediment is a function

of sedimentation rate (R) (cm yr-1) and depth (x) (cm), equation 2 takes the form:

C(x) = C(0) * exp(-- * x) (3)
R

From this point, there are at least three different ways of calculating

sedimentation rate using the CIC model. Graphically, the semi-logarithmic plot of
210Pbexc concentration against depth is predominantly linear and the mean sedimentation

rate is taken from the ratio of the decay constant of 21Pb to the slope of the line. If

compaction plays an important role in the study site, such as in the Pettaquamscutt River

sediments, the slope of this line decreases towards the top of the core as a result of

reduced compaction at the surface, assuming no physical mixing and no change in

accumulation rate has taken place. The effects of compaction can be eliminated from the

CIC model by expressing depth in terms of cumulative dry mass of sediment (m)(g cm-2):

Dry bulk density (DBD)(x)= (1-0(x))*psed (4)

m = X(DBD(x)*T (x)) (5)

where ¢(x) is the porosity at depth x; Psed is the density of the sediment at depth x and T is

the thickness of the sediment layer. Equation 3 now takes the form (Hughen et al., 1996):

C(x) = C(O) * exp(- - * m) (6)
r

r, the mass accumulation rate (g cm-2 y-l), is calculated by the ratio of the decay constant

of 210Pb to the slope of the line of the semi-logarithmic plot of 210Pbexc concentration

against cumulative dry mass, and sedimentation rate as a function of depth is calculated

by (Hughen et al., 1996):
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rR r (7)
(1- 0)*Psed

A third way of calculating sedimentation rate with the CIC model is by simply

applying equation 2 to the data. C(o) is the 210Pbexc concentration per mass of dry sediment

(Bq kg-l) at the sediment-water interface and C(x) is the 21Pbexc concentration of the layer

under investigation, so t, the age of the sediment at depth x, can be calculated for each

depth. Because this method does not fit a regression line through the data, calculated

sedimentation rates vary with depth and yield scattered results.

In the CRS model, the initial concentration of 210Pbexc and the sediment

accumulation rate vary with time, but their product remains constant and equals the flux

of 210Pbexc that reaches the sediment-water interface. The constant flux assumption

implies a constant residue of 210Pbexc within the sediment column. Equation 2 then takes

the form:

A-x) = AO) * exp(-At) (8)

where A(x) is the residual 210Pbexc in the core below depth x (Bq m-2), and A(o) is the entire

210Pbexc inventory below the sediment-water interface. The residual 210Pbexc for each

sediment layer is calculated by multiplying 210Pbexc concentration (C(x)) by cumulative

dry mass (m). The age of each sediment layer can be calculated by rearranging equation

8,

t =-ln(() (9)
A AX)

and the mass accumulation rate at time t from (Appleby, 2001):

,A*A
r =C (10)C

For a more extensive discussion of applications of CIC and CRS models and derivation

of mathematical equations, refer to Appleby (2001), Turner and Delorme (1996) and

Eakins (1983).
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4. RESULTS AND DISCUSSION

4.1 Sediment Properties

Water content, density and porosity are some of the basic parameters necessary

for dating sediments. Most studies assume a sediment dry density between 2.3 and 2.7 g

cm -3 throughout a core. However, dry densities measured at 2-cm intervals using a 2-mL

specific gravity bottle for the Pettaquamscutt River sediments ranged from 1.58 to 2.29 g

cm -3 (Figure 3, Table 1), well below the commonly assumed values. These low values

reflect the composition of the sediments, which are dominated by diatom frustules (45 to

65%) and organic matter, with small amounts of pyrite and clastic material and no

cm ) TOC (wt.%) %Water(W)

2.5 6 8 10 12 75 80 85 90 95
' . I I I . , I I I I I ' I

Porosity (0)
0.88 0.92 0.96

o a
0 A

] iEAt

A A
AA

ALA

A

/ LZ
/xz

, I i I , I . I I I * I * I I

I I I I

0-
0

0
0
0
0

0
0

0
0
0
0
0

0
00
0

0
0

0
0

0
0

0
0

0
0
0

0
0
0
0

I . I . I

Figure 3. Down-core profile of

water content (W), and porosity

dry sediment density (Psed), total organic

(0) in the Pettaquamscutt River.

carbon (TOC),

113

1.5

Psd (g

2.0

0

10

20

- 30
E
-

Q 40

50

60

70

I

0
0
0

0
0
0
0
0
0

0

0
0

0

0
0

0
0

0
0
0
0

0

0I[][]c
0

%o

[]
n]

[]
[]

[]

I

0]

0

0O
]

.C[]]

0

10

20

30 

'0
=r

40 ,,
o3

50

60

70

-3 

. . - - - - - -



carbonates (Orr and Gaines, 1973). The down-core profiles of sediment dry density and

organic carbon content (Figure 3) show a slight inverse correlation below 25-cm. The

organic carbon content varied from an average of 8.1 + 0.7% in surface layers to 9.8 +

0.8% below 30 cm, and increases in organic carbon content were frequently associated

with declines in sediment density.

Table 1. Values obtained for selected sediment properties, radiometric determinations and
210Pb chronology calculation using the CRS model are listed below.

Mid-point
depth (g
(cm)

0.5
2.25
4.25

5.25

6.25
7.25
8.25
10.25
12.25
14.25
16.25
17.25
18.25
19.25
20.25
22.25
24.25
26.25
30.25
34.25
38.25
42.25
44.25
46.25
48.25

Psed W
cm-3) (%)

2.3 93
2.3 92
2.2 90

1.9 90

1.9 90
2.0 89
2.0 87
2.1 88
1.9 87
1.9 87
1.9 87
1.9 86
1.9 86
1.9 85
1.9 84
2.0 83
2.0 85
2.0 84
1.7 84
1.8 83
1.7 82
1.8 82
1.7 81
1.6 82
1.6 81

Porosity

0.967

0.961
0.961
0.955

0.943

0.939
0.933
0.943
0.935
0.924
0.922
0.926
0.922
0.912
0.912
0.898
0.913
0.916
0.910
0.895
0.893
0.884
0.874
0.883
0.879
0.872

DBD
(g cm-3)

0.08
0.09
0.10

0.11

0.12
0.14
0.11
0.14
0.15
0.15
0.14
0.15
0.17
0.17
0.19
0.17
0.17
0.18
0.18
0.19
0.19
0.22
0.20
0.19
0.20

m
(g cm 2

0.04
0.18
0.37

0.48

0.59
0.72
0.84
1.09
1.37
1.67
1.97
2.11
2.27
2.44
2.63
2.99
3.33
3.68
4.40
5.15
5.93
6.76
7.18
7.58
7.97

21°pbexc
2 10

Pbexc

error Inventory
(Bq kg') (Bqm -2)

550 ± 20
470 ±+ 29
370 ±+ 22

470 28

280 ±+ 13
375 ±+ 27
310 ± 25
300 ±+30
217 ± 15
220 ± 23
179 ±+ 12
195 ± 11
158 ± 15
135 9

149+ 11
112 + 11
125 + 8
93 ± 11

96 ± 16

47 ±+9
23 7
8+3
7+3
-2.7
-4.6

10287
9334
8541

8104

7677
7261
6833
6069
5333
4678
4090
3816
3535
3287
3029
2549
2146
1772
1093
555
282
154
123

CRS
(cm y)

0.76
0.69
0.73

0.49

0.72
0.45
0.60
0.46
0.52
0.44
0.50
0.41
0.41
0.45
0.33
0.41
0.32
0.34
0.19
0.19
0.20
0.28
0.26

137(C-
Model

± + error
Date (Bg kg-l)

1999
1995
1992

1990

1988
1987
1985
1981
1977
1972
1968
1966
1963
1961
1958
1953
1947
1941
1926
1904
1882
1863
1855

<DL
DL

< DL

<DL

3 +±1
6±1
5 25_2
<DL
<DL
11+±2
16+±2
21± 2
25±+2
14±+2
11 + 1
4 +±1
<DL
<DL
<DL
<DL
< DL
< DL
< DL
< DL
< DL

DL = detection limit = 0.004Bq
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Porosity () was calculated from the weight percent of water in the sediments,

following equation by Bemrner et al. (1971):

0> W * sed(
W * sed + (1 - W)Pwater

where W is the weight percent water, Psed is the dry density of the sediment, and

Pwater is the density of the pore water (pwater = 0.9997; assuming a salinity of 27 %o and

temperature of 10°C for the pore water (OSullivan et al., 1997). The porosity in the

Pettaquamscutt River sediments ranged from 0.965 at the surface to an average of 0.883

below 30 cm (Figure 3, Table 1). Although this is only a 8.5% decrease over 30 cm, the

ratio of volume of solids to volume of pore water [(1-¢)/] increases by almost a factor of

3. This variation indicates that the bottom layers of the core are undergoing continuous

compaction due to the weight of overlying sediments, so that the thickness of a one-year

increment is larger at the surface (8 mm at 6.7-cm) than in deeper layers (2 mm at 54.5-

cm) (Figure 2).

4.2 Varve Counting and 210Pb Chronology

A key assumption in varve counting chronologies is that two seasonally

controlled laminae are deposited annually and sediment ages can be calculated by

counting each couplet. Predominantly biogenic layers form as phytoplankton remains

from the spring/summer bloom settle out of the water column. These biogenic layers

appear dark under cross-polarized light due to the small amounts of birefringent minerals.

During the fall/winter, productivity is much lower and clastic material from the

watershed dominates the input to the sediment surface. Such clastic layers appear bright

under cross-polarized light. Examination of the thin sections from the upper sediment

column of the lower basin of the Pettaquamscutt River showed that this pattern of

deposition occurs annually, allowing construction of a precise varve chronology.

Additional constraints to the varve chronology come from occasional coarse-grained (fine

sand) winter laminae. These layers are deposited as large hurricanes rework the material

from the surrounding watershed. The good correlation between coarse-grained layers and
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the two largest hurricanes to hit Rhode Island in the twentieth century (1954, 1938,

Figure 2) supports the accuracy of this varve chronology.

Radiometric results obtained for the Pettaquamscutt River sediments are shown in

Figures 4 to 7 and Table 1. The down-core profile of 214Pb activities is nearly uniform

with depth, while total 2Pb activities decrease exponentially until 214Pb-supported levels

are reached at approximately 42 cm (Figure 4a). The resulting 2 10Pbexc profile (Figure 4b)

follows closely the exponential shape of the total 21 0Pb, attesting to the good preservation

of these sediments. Indeed, if the surficial sediments were physically disturbed (either

during recovery of the core or due to rapid bioturbation), the 2 Pbexc distribution would

be uniform within the mixed layer.
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Figure 4. a) Down-core profile of 4Pb activities is nearly uniform with depth, while total
210Pb activities decrease exponentially until supported levels are reached at 42 cm; b)
Resulting 210Pbexc profile (exponential fit) is consistent with the lack of rapid bioturbation
of the sediments.
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Discrepancies among the three different methods for CIC calculation and the CRS

model were checked against the independent varve counting (Figure 5). The different

ways of determining age-depth correlations using the CIC model yield contrasting results.

Compaction is an important process in the sediments of the Pettaquamscutt River,

consequently the CIC chronologies generated by neglecting compaction (e.g., calculating

age from the slope of the plot of 210Pbexc concentration against depth and from equation 2)

did not agree well with the varve counts. The former CIC method underestimated

sedimentation rates for layers above 30 cm resulting in ages older than the varve

chronology, while the latter CIC method resulted in scattered values. The CIC model

calculated from the slope of the plot of 2 1 0Pbexc concentration against cumulative dry mass

yield results similar to those generated by the CRS. However, for a given sediment depth,

the model ages from the CIC model were slightly older than those from the CRS,

probably because this CIC model does not account for the possibility of small changes in

mass accumulation rate. For instance, sediments deposited at the peak of 37 Cs deposition

(18.25 cm) were assigned a date of 1958 by the CIC model and 1963 by the CRS model,

the latter date being in good agreement with the historical fallout of 37Cs. If the

sedimentation rate at the Pettaquamscutt River were constant, then both 210Pb models

would have produced identical results. Instead, the results obtained by the CRS model

followed the varve chronology more closely than the CIC model, as expected for an

environment that has undergone changes in sedimentation rate. Land use changes within

a watershed tend to modify the rate of sediment transport to nearby lakes and rivers. In

1995, only 22.7% of the watershed of the Pettaquamscutt River was comprised of

residential land (Hubeny and King, 2003). Although there are no recent estimates

available for land use for residential purpose, this percentage is likely to have increased

in the past decade due to new urban developments in the region.

The good age agreement obtained between the varve counts and 210Pb dates

calculated by the CRS model (e.g., within 2 years for the sand layer deposited by the

1954 hurricane, 3 years for the 1938 hurricane and 9 years at 1860, Figure 5) allowed the

extension of the sediment chronology beyond the limit of the 210Pb method (100-150
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years). The deposition dates adopted for the Pettaquamscutt River sediments are a

composite of these two dating techniques. The CRS model ages were used for the

uppermost 34-cm (1904), while the varve chronology was applied for sediments

deposited below between 1900 and 1735 (35-70 cm).
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Figure 5. Chronology results obtained by the CRS model and by three different forms of
applying the CIC model were checked against the independent varve counting (m =
cumulative dry mass in g cm 2).

4.3 137Cs and 14C Profiles

The sedimentary profile of 137Cs (Figure 6) in the Pettaquamscutt River shows

good correlation with the history of atmospheric deposition of radionuclides derived from
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nuclear weapons testing. The first detection of 13 7 Cs in the sediment core (22.25 cm)

corresponds to 1953, which closely matches the early 1950s increase in total fission

yields from the explosions (Carter and Moghissi, 1977). The yield and number of nuclear

detonations per year peaked in 1962, resulting in extensive deposition of radionuclides in

the Northern Hemisphere in 1963 when the Test Ban Treaty was signed (Carter and

Moghissi, 1977; Appleby, 2001). The elevated amount of radioactivity released in the

1960s was preserved in the Pettaquamscutt River sedimentary record in the form of a

sharp 13 7 Cs subsurface maximum with highest activity in 1963, as well as increased

amounts of radiocarbon (14C) in the total organic carbon (TOC) (Figure 6). Nuclear

weapons tests roughly doubled the levels of 14C in the atmosphere (Levin and Kromer,

1997), raising the A14C of CO2 to values greater than +900 permil (%0) (Levin et al.,

1985), the so-called "bomb spike". The incorporation of bomb-14C into terrestrial and

aquatic plant biomass through photosynthetic carbon fixation is manifested in the

sedimentary record as an increase in A14C in the TOC (Figure 6). The relative timing of

the 37Cs peak and the rapid A 14C rise is primarily determined by the pathways by which

these radionuclides are incorporated into the sediments. 13 7Cs deposited in aquatic

systems by direct dry and wet fallout quickly sorbs onto settling particles, reaching the

sediments in a matter of months (depending on the water column depth) (Santschi et al.,

1988; Wieland et al., 1993). The rate at which atmospheric 14C signals propagate into

sedimentary TOC depends on the relative contributions from different organic carbon

sources (e.g., terrestrial vs. marine) and the residence times for carbon in each reservoir.

The similar timing of the rise in A14C and 137Cs (Figure 6), together with the relatively

depleted stable carbon isotopic composition (613C) of the TOC throughout the core (-24.1

± 0.5%o, n = 37) suggests that terrestrial OC plays a significant role in the amount of

"pre-aged" organic carbon deposited in the Pettaquamscutt River sediments. However,

the fact that the A14C profile of TOC does not exceed 0%, typical of atmospheric "bomb

14C,, (Levin and Hesshaimer, 2000), implies that recent material is being diluted by relict

terrestrial OC from sedimentary and fossil sources.
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The down-core profile of 3 7 Cs also reveals a smaller peak in activity closer to the

surface 2 0 Pb-dated at 1987. The timing of this peak is consistent with fallout resulting

from the release of radioactivity that followed the 1986 Chernobyl reactor fire in Ukraine.

Elevated surface air concentrations and ground deposition of radionuclides due to the

Chernobyl accident were reported throughout the Northern Hemisphere, in locations as

far apart as Japan (Ayoama et al., 1986), Switzerland (Santschi et al., 1988), and Sweden

(Devell et al., 1986). At some European sites, the deposition of Chernobyl 137Cs provided

another datable horizon in the sediments, characterized in some cases by an even greater
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Figure 6. Radioactivity released by nuclear bomb testing in the 1960s was preserved in
the Pettaquamscutt River sedimentary record in the form of a sharp 37Cs peak and
increased amounts of radiocarbon in the total organic carbon (A14C TOC). A smaller and
more surficial peak in 137Cs activity dated at 1987 is consistent with fallout resulting from
the Chernobyl accident.
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inventory than that resulting from the bomb tests (Dominik and Span, 1992; Ehlers et al.,

1993; Callway et al., 1996; Gevao et al., 1997). Several studies reported the passage of

the Chernobyl plume over the United States (Bondietti and Brantley, 1986; Larsen et al.,

1986; Dibb and Rice, 1988; Feely et al., 1988). Surface air measurements conducted by

the Environmental Measurements Laboratory (EML) following the announcement of the

reactor explosion revealed simultaneous appearance of elevated radioactivity in both the

eastern and western US (Larsen et al., 1986). Monitoring of 37Cs concentrations from 6

May to 29 May showed comparable surface air concentrations at 8 sites (Larsen et al.,

1986), suggesting that the portion of the Chernobyl plume that arrived in the US was

homogeneous in composition. The closest EML monitoring sites to the Pettaquamscutt

River were New York City (NY) and Chester (NJ). The total fallout of 137Cs at these

locations in May 1986 was -41 Bq m -2 and -68.5 Bq m -2, respectively, and rainfall was

responsible for -90% of the deposition (Larsen et al., 1986). The higher efficiency of

rain events in removing 37Cs from the atmosphere relative to dry fallout was also

demonstrated by 137Cs accumulation rate measurements in Switzerland (70-80%

efficiency for rain versus 20-25% for dry fallout) (Santschi et al., 1988), where the

amount of 137 Cs deposited varied by at least one order of magnitude depending on the

volume of precipitation (Dominik and Span, 1992). Because rain removes 137Cs

efficiently from the atmosphere, the ratio of 137Cs deposited by wet fallout to the amount

of precipitation that fell in May 1986 is fairly similar in both New York City (12440 Bq

m 3) and Chester (13880 Bq m-3). To our knowledge there is no data on the surface air

concentration or deposition of 37Cs available for the state of Rhode Island following the

Chernobyl accident. However, it is possible to estimate the total amount of 137Cs

deposited in the Pettaquamscutt River using the volumetric concentrations of 37Cs

calculated for New York and Chester and the amount of rain that fell in the Kingston area

in May (4.77 cm; (NOAA, 1986)). While this exercise gives a range in 137Cs

accumulation between 59.4 Bq m -2 and 66.2 Bq m -2, the decay-corrected Chernobyl 137Cs

inventory in the Pettaquamscutt River sediments is only 22.5 Bq m -2. Therefore, even if
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only a third of the Chernobyl 137Cs washed out by local rain reached the sediments of the

lower basin of the Pettaquamscutt River, the undisturbed nature of this depositional

environment was able to record it.

Another line of compelling evidence in support for the Chemrnobyl origin of the

surficial 137 Cs peak derives from a sediment freeze-core collected in 1987 in the lower

basin of the Pettaquamscutt River (Figure 7). After slicing the sediment at 2 cm intervals,

137Cs and 210Pb were measured by direct gamma assay at the Liverpool University

Environmental Radioactivity Research Center. The down core profile of 137Cs obtained

for the 1987 core shows an increase in activity at 1 cm that correlates well with the

Chemrnobyl 37Cs maximum that we observed in this study. Deposition of the Chernobyl

13 7 Cs peak was not yet complete when the 1987 core was collected, which is reasonable

considering that settling particles can reside in the water column for months before

reaching the sediments (Santschi et al., 1988). However, the good agreement between

cores collected 11 years apart strengthens our belief that the elevated 137Cs activities

observed in the Pettaquamscutt River sediments at depths dated -1987 are the first record

of Chemrnobyl 137 Cs deposition in North American sediments. This peak in 137Cs may not

be recognizable in other locations of the United States because the fallout was strongly

dependent on local rainfall, among other things. The similarity of profile shapes for the

1987 and 1998 cores also indicates that diffusion and resuspension of 37Cs are not

significant in this system. If resuspension were a substantial process in the

Pettaquamscutt River, higher 37Cs activities would be observed at sediment layers

younger than the maximum deposition (1963 and 1987). Furthermore, if diffusion were

an active process, 137Cs deposited in 1963 would have diffused into adjacent layers of

lower activity and Figure 6 shows that this is not the case. The presence of two 137Cs

marker points (1963 and 1987) in the Pettaquamscutt River segregates a portion of the

sediment column that could prove valuable in the understanding of processes of

decomposition and preservation of terrestrial and aquatic organic matter. This

information is often lacking and can be useful in determining long-term diagenetic
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processes. Although the 1987 137Cs peak has low activity, it should still be detectable in

this environment for the next few decades.
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Figure 7. The 37 Cs profile obtained for a core collected in 1987 in the Pettaquamscutt
River (Mecray et al., 1991) showed a rise in activity that correlates extremely well with
the Chernobyl 137 Cs maximum observed in this study.

5. CONCLUSIONS

The anoxic and laminated sediments of the Pettaquamscutt River display the first

known record of a Chemrnobyl 137Cs peak in sediments from North America. The

inventory of activities of this peak is small compared to European counterparts, but

reasonable considering the reduced amount of radioactivity that reached the US. The

Chernobyl 13 7 Cs activities measured in the sediments are three-times lower than the
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calculated wet deposition for this area, demonstrating that rainfall alone could have

produced the observed peak in 37Cs. Although this peak may only be detectable for the

next few decades, the presence of two 37Cs marker points (1963 and 1987) identifies a

segment of the sediment column that can potentially be used to evaluate the importance

of compaction and decomposition and preservation of organic matter. Different methods

for calculating the 210Pb chronology were also evaluated in this study and checked against

independent varve counting. In the case of the Pettaquamscutt River system, the CRS

model provided results that matched the varve counting more closely and was applied for

the most recent portion (100 years) of the core. The absence of sediment mixing by

benthic organisms was consistent with the exponentially decreasing trend of the 210Pbexc

profile, making this site well suited for reconstruction of historical records.
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CHAPTER 5

Pb-ISOTOPES REVEAL A POTENTIAL NEW STRATIGRAPHIC MARKER

Abstract - A high-resolution record of Pb deposition in Rhode Island over the past 250
yr was constructed using a sediment core from the anoxic Pettaquamscutt River basin.
The sedimentary Pb concentration record shows the well-described maximum associated
with leaded gasoline usage in the United States. Diminished Pb variability during
recorded periods of local industrial activity (1735 to 1847) supports the greater
importance of regional atmospheric lead transport versus local inputs. The Pb isotopic
composition at this site shows a clear maximum in anthropogenic 26Pb/207Pb in the mid-
1800s. Similar peaks have also been observed in sediments from Chesapeake Bay and the
Great Lakes, suggesting a common source. Possible causes for this event include mining
and smelting of Pb ores in the Upper Mississippi Valley district, which accounted for
almost all Pb production in the United States in that period. The timing of this event can
provide an important stratigraphic marker for sediments deposited in the last 100 to 200
years in the Northeastern USA. The down-core profile of anthropogenic 206Pb/207Pb
provides a classic example of how changes in the mixture of ores for production of
tetraethyl lead caused a regional-scale shift in the sedimentary record, and suggests that
coal could have played a significant role in Pb emissions post-1920.

1. INTRODUCTION

Anthropogenic lead has been introduced into the environment since refinement of

lead-bearing sulfide ores and production of silver by cupellation were developed about

5000 yr BP (Settle and Patterson, 1980). Natural processes like volcanic eruptions and

rock weathering release Pb to the environment (Nriagu, 1978), but are insignificant

compared to high-temperature processes such as utilization of leaded gasoline additives,

non-ferrous metal smelting, coal combustion, steel and iron manufacturing, and cement

production (Nriagu and Pacyna, 1988). Because the main mechanism of Pb dispersion is

atmospheric transport, anthropogenic Pb contamination is widely distributed in the

environment and has been detected in polar ice caps (Hong et al., 1994; Rosman et al.,

1997), peat bogs (Shotyk et al., 1998; Weiss et al., 1999), remote ponds (Shirahata et al.,
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1980), corals (Shen and Boyle, 1987) and aquatic sediments (Graney et al., 1995).

Because crustal material is in general more radiogenic than coals and ores, studies

commonly rely on the difference in isotopic composition among sources to discern the

influence of natural and anthropogenic inputs to a system.

While variations in Pb isotopic ratios are frequently used to apportion sources, the

concentration profile of anthropogenic Pb can corroborate sediment chronologies.

Determination of accumulation rates and subsequent dating of sediments is vital in

reconstructing historical records. Depending on the time scale of interest, the natural

radionuclides 4C (half-life = 5730 yr), 210Pb (22.3 yr), 228Th (1.9 yr) or 23 4 Th (24 days)

can be used in determining sedimentation rates in freshwater and marine environments

(Koide et al., 1973; Robbins and Edgington, 1975; Anderson et al., 1988; Spliethoff and

Hemond, 1996; Shotyk et al., 1998; Fuller et al., 1999). Even though 210Pb chronologies

become unreliable after approximately 100 years, this radionuclide is still the most

widely used for dating sediments for contamination studies, which usually focus on the

last 100-200 years. To validate 2Pb dates, independent chronological evidence is used

whenever possible. Radionuclides derived from nuclear weapons testing (e.g., 137CS,

239+24°Pu) are the most reliable markers since their widespread deposition follows the

well-documented history of atmospheric fallout (Anderson et al., 1988; Spliethoff and

Hemond, 1996), but other chronological markers can also be employed. For example, the

increase in abundance of ragweed (Ambrosia) pollen grains is interpreted to define the

period when deforestation, agricultural development, or intense urbanization took place

(Bruland et al., 1975). However, since this transition occurred at different times in

different regions, the depth-age relationship is only valid within a narrow geographic

area. In contrast, the appearance of certain organic contaminants (e.g., polychlorinated

byphenyls - PCBs) and the peak in Pb utilization occurred simultaneously in most of the

United States and both can be used as relative markers in sediments from a variety of

regions (Latimer and Quinn, 1996; Van Metre et al., 2000). Unfortunately, as with 37Cs

(peak in 1963), these chemical markers are only useful for sediments deposited in the last
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60 years (Latimer and Quinn, 1996). There is, therefore, a hiatus in chronological

markers for records that span between 100 to 200 years.

In this paper, we report a large mid-19th century peak in 206Pb/207 Pb ratio in anoxic

sediments from the Pettaquamscutt River, Rhode Island, and note that a similar feature

has been reported for sediments from the Great Lakes (Graney et al., 1995), Chesapeake

Bay (Marcantonio et al., 2002), and possibly in corals from Bermuda (Reuer et al., 2003).

We argue that the most likely source of radiogenic Pb during that period was mining and

smelting of lead ores in the Upper Mississippi Valley district and suggest that this event

could be useful as a stratigraphic marker for sedimentary records in the Northeastern

United States that span more than 100 years.

2. EXPERIMENTAL

2.1 Study Area

The Pettaquamscutt River is located in Washington County, southern Rhode

Island, in close proximity to Narragansett Bay (Figure 1). This 9.7 km long estuary has a

small drainage area (- 35 km2) (Orr and Gaines, 1973) and is dominated by oak forests,

wetlands, and open waters (Urish, 1991). The main perennial freshwater source to this

system is the Gilbert Stuart Stream, contributing about 34% of the annual total.

Groundwater seepage and smaller brooks account for the remaining 66% of the

freshwater inflow (Urish, 1991). The flow of freshwater from the Gilbert Stuart Stream

over brackish waters (- 27 %,) from tidal influx from Narragansett Bay through The

Narrows (Gaines and Pilson, 1972) creates water-column stratification. The stable

stratification results in permanent bottom water anoxia in the upper and lower basins. The

lack of oxygen in the bottom waters prevents the survival of macrofauna and consequent

bioturbation of the sediments. As a result, the surface sediments of the Pettaquamscutt

River are well preserved, displaying undisturbed laminations that are ideal for historical

reconstruction (Lima et al., 2003).
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2.2 Sampling

Sediment cores were collected in the deepest portion (20 m) of the lower basin of

the Pettaquamscutt River (Figure 1) in April 1999. A rectangular aluminum freeze corer

(30 x 8 x 165 cm) filled with dry ice and methanol was used for sampling, so that each

core consisted of two large rectangular slabs of sediment as the smaller sides were not

preserved during separation from the metal corer. After collection, each side was

wrapped in aluminum foil, kept on dry ice, and transported back to the laboratory where

they were stored in a chest freezer (-18°C). X-radiographs of the frozen slabs showed

varved sediments and confirmed the absence of benthic animal burrows. In the present

work, we report results from the slab that showed the highest number and most distinct

laminations. The frozen sediment was sectioned at 0.5-cm intervals using a compact tile

saw equipped with a diamond wafering blade (0.63-mm thickness). Approximately 10%

of each frozen sample was dipped into 10% HCl (trace-metal grade) to remove any outer

contamination by the tile saw blade, placed in a previously cleaned polyethylene jar,

dried in an oven at 60°C, homogenized, and stored for further lead analysis. The

remaining 90% of each sample was used to construct a high-resolution record of

polycyclic aromatic hydrocarbon deposition (Lima et al., 2003).

2.3 Sediment Dating

Dry sediment samples (1-2 g) were analyzed for 210Pb (46.5 keV), 21 4 Pb (351

keV), and 137Cs (661 keV) by a high purity germanium detector (Canberra model GCW

4023S) with a closed-end coaxial well, following storage in sealed containers for 3 weeks

to allow radioactive equilibrium of 214 Pb with 210Pb. Sedimentation rates were calculated

using the constant rate of supply (CRS) model (Appleby and Oldfield, 1978) and

validated using the 37 Cs fallout peak. Since 210Pb chronology becomes unreliable after

about five half-lives (t1 /2 = 22.3 years), sediment layers older than 100 years were dated

by varve counting (see Chapter 4). The varve and 210Pb time scales agree within 2 years

at 1960 and within 9 years at 1860 (Figure 2). The sediment chronology in the

Pettaquamscutt River is discussed in detail in Chapter 4.
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Figure 1. Map showing the site of collection of sediment cores and
watershed of the Pettaquamscutt River (RI). Modified after Lima et al.
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2.4 Lead Concentration Analysis

Dilute acid leaches are commonly employed to extract metals from sediment

matrices. In the case of Pb, this technique removes only the fraction sorbed onto ferro-

manganese oxides, mineral surfaces, and organic debris, leaving behind Pb present in the

mineral structure of silicates (Shirahata et al., 1980), which possesses a distinct isotopic

composition as determined by HF digestions (Graney et al., 1995). For the

Pettaquamscutt River samples, we followed the dilute acid leach procedure described by

Graney et al. (1995), which preferentially extracts the exchangeable component of the

total Pb. Briefly, dried sediment samples were weighed into 1.5 mL polypropylene vials

and 1 mL of 1.75 N HC - 1 N HNO3 solution was added. The acid-sediment mixtures

were homogenized using a vortex mixer, placed in an ultrasonic bath for 90 minutes, and

allowed to react overnight to ensure efficient leaching of the samples. Subsequently, the

leachates were separated by centrifugation, and an aliquot of each sample was diluted

with 5% HCl for Pb concentration measurements. Pb measurements from a previous

study on Pettaquamscutt River sediments were used as a baseline for estimating dilutions

(Goldberg et al., 1977). Pb content was determined by isotope dilution ICP-MS using a

VG Fison Plasmaquad 2+ instrument and the well-characterized Oak Ridge National

Laboratory 204Pb spike (Wu and Boyle, 1997). Analytical precision for this instrument is

reported at better than 2 % (Wu and Boyle, 1997), and replicate analysis of one of the

samples (depth = 27 cm) yield a 4 % precision (2o, n=28). The raw lead data was

corrected for background, procedural blank, and 204Hg interferences before Pb

concentrations were calculated. In general, the procedural blank accounted for less than

0.1% of the Pb concentration of all samples and 204Hg for less than 0.8% of the 204Pb

counts. The resulting total lead concentration in the extract was calculated according to

the formula:

C -Aspspike VC ] spike Rmeasured R- spike (1)
Csamplspike Vspe Rura -

natural g sample natural measured
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where A is the abundance of 2 04Pb in the spike (Aspike) and in nature (Anatural); C is

concentration; V is the volume of the spike (Vspike) and sample (Vsample) used in the final

dilution; R is the ratio of 208Pb to 204Pb in the spike (Rspike), in nature (Rnatlural) and

measured in the sample (Rmeasured).

2.5 Lead Isotopic Measurements

Elevated salinity and organic content, such as those present in the Pettaquamscutt

River samples (Gaines, 1975), can interfere with the measurement of Pb isotopic ratios.

To remove the organic carbon fraction (9 to 10%), between 20 and 150 gl of each HCl-

HNO3 leachate was combusted overnight in an acid-cleaned quartz beaker at 450°C. The

samples were redissolved in 6N HCl, transferred to a 3 mL Savillex PFTE beaker,

reduced to dryness, and redissolved in 1.1 N HBr (Reuer et al., 2003). Pb was separated

from the brackish matrix (pore water salinity - 27 %o) using Teflon microcolumns loaded

with Eichrom AG-lx8 (chloride form, 200-400 mesh) anion exchange resin (Reuer et al.,

2003). Following the column separation with HBr and HCl, the eluted sample lead was

dried, redissolved in 0.5N HNO 3, and lead isotope ratios were determined on the MIT

Micromass IsoProbe multiple collector ICP-MS (MC-ICP-MS). The instrument operating

parameters, mass bias corrections, and tailing corrections are provided in Reuer et al.

(2003). Briefly, MC-ICP-MS mass discrimination was determined by addition of a lead-

free thallium spike to each sample (assuming exponential mass bias), and a secondary

correction was calculated by repeated analysis of a 32 nM solution of National Institute

of Standards and Technology Standard Reference Material 981 (Natural Lead). Two

procedural blanks were calculated for each column series (n=14), and tailing corrections

were determined by daily analysis of the monoisotopic 2 9Bi. Most importantly, the

uncertainty associated with the MC-ICP-MS isotope ratio analysis is small (250 ppm for

206Pb/207 Pb, 2) relative to the isotopic variability observed throughout the

Pettaquamscutt River sediment core (73000 ppm for total 206Pb/207Pb), and this

measurement technique provides a consistent and rapid method for stratigraphic analyses.
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3. RESULTS AND DISCUSSION

Both Pb content and isotopic ratios were evaluated in the Pettaquamscutt River

sediments (data is listed in Appendix 2). The record of Pb concentrations shows little

evidence of extensive contributions from local sources and excellent agreement with

leaded gasoline usage in the US (Figure 3). The evaluation of the Pb isotopic record was

divided into 2 periods: pre and post-1920 (Figure 4). The earlier record shows a distinct

increase in 206Pb/20 7Pb values with peak in 1842, which coincides with the highest

production of Mississippi Valley ore. In comparison, the post-1920 record follows mostly

the consumption of Pb in gasoline, with smaller contributions by combustion of coal.

3.1 Lead Concentration

The total leachable Pb record for the Pettaquamscutt River sediments (Figure 3)

between 1930 and 1987 correlates (R2=0.64) with the consumption of Pb in gasoline in

the United States (Nriagu, 1989). Lead concentrations were constant and low (< 20 gg g-

') throughout most of the 18th century. Total leachable lead values began to increase

around 1830, reached a maximum in the late 1970s, and decreased continuously in the

following decades. To assess the possible sources of Pb input to this system, it is

necessary to distinguish the natural contribution from surrounding soils (background)

from the anthropogenic fraction on the total Pb leached from the samples. The

anthropogenic Pb concentration is obtained by subtracting the leached background lead

from the total leachable:

[Pb]Anthrop = [Pb]Total - [Pb]Background (2)

We assumed that the average Pb concentration in the oldest sediments of the core (58-

70cm, 1735-1800, 13.2 ±+ 1.4 ppm, n = 13) was a reasonable estimate of [Pb]Background. It is

possible that the bottom layers of the Pettaquamscutt core may not represent the true

[Pb]Background as ice layers and peat bogs show that atmospheric deposition of lead to
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remote locations dates from Roman times (Hong et al., 1994; Shotyk et al., 1998).

Nonetheless, even if the true [Pb]Background were 50% lower than our mean estimate of 13.2

ppm, the calculated [Pb]Anthrop reaching this system after 1800 would change by less than

15%.

Total Leachable Pb Concentration (ppm)

0 30 60 90 120 150 180 210 240
' , I , I , I I I I I I I I I I I

70

0 30 60
Consumption

90
of Pb in

120 150 180 210 240
gasoline (1000 metric tonnes)

Figure 3. Down-core profile of total leachable Pb concentration (filled circles) in the
Pettaquamscutt River, and estimate of consumption of Pb in gasoline (solid line) in the
USA (Nriagu, 1989).

To assess the influence of local sources to the Pettaquamscutt River, we evaluated

the changes in the flux of Pb to the sediments over time. We combined measured total
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leachable Pb content (gg.g-1) with sediment accumulation rates (g cm-2 yr - l) calculated

using the CRS model to determine Pb fluxes (Ig cm -2 yr-l), which were also corrected for

sediment focusing (Lima et al., 2003). The Pb flux remained largely constant (0.47 +± 0.17

jig cm -2 year-; n = 23) from 1735 to 1847. During this period, the two economic

activities that could have released measurable amounts of Pb to the watershed were

shipbuilding and wool spinning and dying. The Saunder's family shipyard was in

operation on the west side of the river (Tootell, 1963) between 1813 and 1847, while the

Shady Lea Mill, which most likely used lead-based dyes as part of textile manufacturing,

operated on the Silver Spring Pond from before 1832 until 1952 (Greenwood, 2002) (Fig.

1). The constancy in Pb flux to sediments deposited prior to 1847 supports the

interpretation that direct local sources played a small role in the delivery of Pb to the

Pettaquamscutt River. However, between 1852 and 1916 the Pb flux slowly increased
ggC-2 -22=(rate=0.02 gg cm 2 year , n= 16, r2 =0.68), probably associated with increasing US lead

ore production (USGS, 1998) and coal utilization (EIA, 1999). The increase in Pb at the

turn of the 20 th century was followed by another distinct change in the flux rate that

culminated in the 1975 maximum. In fifty years (1922 - 1975), the flux of Pb increased 4-

fold (rate=0.10 jg cm 2 year 2, n=19, r2=0.91) due to the consumption of leaded gasoline

by automobiles. Tetraethyl lead (TEL) was first added to commercial gasoline in 1923 to

suppress pre-ignition and to improve its octane rating (Nriagu, 1989). By 1950, most

gasoline in the USA contained TEL (Rhue et al., 1992) and consumption continued to

increase until a peak was reached in the 1970's (Fig. 3). Studies estimate that between 50

and 75% of all the Pb added to gasoline was subsequently emitted into the atmosphere in

the form of fine particles (Facchetti, 1989; Wu and Boyle, 1997; Cadle et al., 1999). The

introduction of cars equipped with catalytic converters, which could not use leaded

gasoline (TEL poisons the catalyst), and a better understanding of the risks of Pb

exposure, initiated the phase-out of leaded gasoline in the mid-1970s. The 3.5-fold

decline in Pb flux seen in our record after 1975 can be directly attributed to the reduction

in TEL usage in the USA, which in the 1990s had declined to less than 10% of its peak

value (Wu and Boyle, 1997).
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3.2 Lead Isotopic Record

Stable lead isotopic ratios are invaluable tools in distinguishing anthropogenic Pb

sources to the environment (Chow et al., 1975). The natural abundance of 208Pb, 206Pb

and 207 Pb are determined by the decay rate of their parents (232Th half life = 13.9 b.y.,

238U = 4.5 b.y. and 235U = 0.7 m.y., respectively), while the non-radiogenic 204Pb is found

in fixed quantities and is usually used as a reference isotope (Brown, 1962; Faure, 1986).

When a lead ore or a coal deposit is formed, the daughter Pb is removed from the parent

isotopes and its isotopic composition remains unaltered in time. As a result, lead ores and

coals formed at different geological times exhibit contrasting isotopic compositions that

can be used to apportion anthropogenic sources. Lead present in crustal material (dust,

soil) continues to change isotopic composition over time due to the parent radionuclides

still being present and usually shows a more radiogenic signature than Pb ores (Faure,

1986; Chiaradia and Cupelin, 2000). Therefore, the Pb isotopic composition of a sample

reflects the concentration of U and Th and the age and geological history of the source

material (Brown, 1962). Because of the small fractional mass differences between the

isotopes of lead, fractionation during environmental and industrial processes is minimal

relative to primary differences in isotopic composition of the sources (Doe, 1970), hence

emissions can be traced back to their sources.

Several temporal trends can be distinguished from the isotopic composition of Pb

in sediments of the Pettaquamscutt River (Figure 4a). In general, the total leachable

26pb/207Pb ratio remained constant from 1735 to 1815 (1.211+0.001), whereas an

isotopic transition began from 1815 to 1820. The total leachable 206Pb/207Pb increased

toward a maximum in -1842 (2°6Pb/2° Pb=1.263) according to our chronology, after

which the ratio decreased towards less radiogenic values. The 30-year interval between

the appearance of the more radiogenic 26pb/20 Pb ratios (-1815), the well-defined apex

(-1842), and the 50-year gradual evolution towards less radiogenic values indicates that

the source of this peak may have been short lived. The third major trend observed in this

profile is a steady decrease in the 206Pb/207Pb ratio from 1922 to 1964. This decrease can

be attributed to the introduction and widespread utilization of TEL in gasoline, which had
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a non-radiogenic signature during this period. The trend towards lower 206Pb/20 Pb ratios

reversed in the late 1960s and by 1983 the Pb isotopic composition of the Pettaquamscutt

sediments was more radiogenic than in the previous 80 years. Elevated total leachable

206Pb/207Pb persisted until the late 1980s when values reached a plateau with a subtle

downward trend.
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Figure 4. Down-core profiles of (a) total leachable 206Pb/207 Pb in the Pettaquamscutt
River (filled circles); (b) anthropogenic 206Pb/207Pb in the Pettaquamscutt River,
Chesapeake Bay (open triangles) (Marcantonio et al., 2002), Lake Erie (stars) (Graney et
al., 1995), and Bermuda corals and seawater (filled squares) (VWron et al., 1994; Hamelin
et al., 1997; Reuer et al., 2003).
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As with Pb concentration, the isotopic composition of sediment leachates is a

mixture of anthropogenic and natural lead (not present in the mineral lattice), and these

components must be differentiated to constrain anthropogenic sources. The isotopic

ratios of anthropogenic lead are calculated using the mixing equations proposed by

Shirahata (1980):

R~o ~ (RrotaI x [CTota, ]) - (RBackground X [CBackground ]) (3)
gAnthrop C ( 3)

[ CTota I] - [ CBackground ]

where R and C denote the isotopic ratio and concentration of total leachable, background,

and anthropogenic lead. We assumed that the average Pb isotopic composition in the

oldest sediments of the core (58-70cm, 1735-1800, 26pb/207Pb = 1.211 0.001) was

representative of the background natural Pb component, RBackground Equation 3 shows the

dependency of the anthropogenic isotopic ratio of Pb on concentration measurements.

This is particularly critical when the total leachable and the background Pb are close in

value. Sensitivity tests show that if the [Pb]Background were 50% higher or lower than our

13.2 ppm estimate, the 206Pb/207Pb isotopic composition of the anthropogenic Pb would

change by only 0.001. An additional line of support for the validity of the assumed

RBackground is that between 1735 and 1800 the average total 206Pb/207Pb remained constant

at 1.211 + 0.001 (n = 13), a value that lies within the range accepted for upper continental

crust (Othman et al., 1989). Therefore, the average isotopic composition of sediments

deposited prior to 1800 is a reasonable estimate of [Pb]Background. It is noteworthy that the

anthropogenic 206Pb/ 207Pb profile in the Pettaquamscutt River sediments closely

resembles the total 206Pb/207Pb (Figures 4a and 4b), confirming that the majority of the Pb

present in this system was released by human activities. Appendix 2 lists values for

[Pb]Total and [Pb]Anthrop for each sediment layer analyzed.

3.2.1 Constraints on the Sources of Pb Prior to 1920

The large increase in 206Pb/207Pb ratio that occurred after 1800 (Figure 4a) is not

unique to the Pettaquamscutt River. When the anthropogenic component of the Pb

present in Lake Erie (Graney et al., 1995) and the Chesapeake Bay (Marcantonio et al.,
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2002) are plotted against time of deposition, a peak in radiogenic 206Pb/207Pb is evident

(Figure 4b). Graney et al. (1995) also observed a high 206Pb/207Pb maximum of 1.34 at

approximately 1863 in Lake Michigan and a 206Pb/207Pb peak of 1.65 at 1895 in Lake

Ontario, but these peaks are not as well defined as the maximum in Lake Erie. The timing

of the radiogenic 206Pb/207Pb peak does not coincide amongst all sites and is discussed

later in the paper.

The fact that unusually elevated 2 06Pb/ 207Pb values are observed in five separate

locations suggests a common source. It is widely accepted that atmospheric transport is

the dominant pathway of anthropogenic Pb to the environment (Schaule and Patterson,

1981; Sturges and Barrie, 1989). The mean residence time of Pb rich aerosols in the

atmosphere is about 10 days (Settle and Patterson, 1991), sufficient for Pb to be

distributed over long distances by prevailing winds (Sturges and Barrie, 1989). The

identification of lead derived from mining and smelting operations in distal repositories is

quite common. For example, Rosman et al (1997) observed diminished 206Pb/207Pb ratio

between 600 B.C. and 300 A.D. in Greenland Ice, suggesting the isotopic reduction

resulted from contemporaneous Spanish mining operations. It is therefore possible that

atmospheric dispersion mechanisms are responsible for the appearance of the mid-1800s

maximum in radiogenic 206Pb/ 207Pb throughout the Northeastern USA.

The Mississippi Valley includes the oldest and most productive lead mines in the

US history (Ingalls, 1908). The vast majority of the lead produced in the USA from 1830

to 1870 came from the Upper Mississippi Valley zinc-lead district, with a peak in

production around 1845 (Figure 5a) (Ingalls, 1908; Heyl et al., 1959; USGS, 1998).

Because ores were abundant in the 19th century, the large amounts of Pb dust emitted due

to poor furnace design and smelting procedures were not a concern. It is estimated that

2% of the lead ores smelted between 1750 and 1880 were emitted into the atmosphere as

aerosol fumes (Murozumi et al., 1969), and the development of tall stacks during this

period expanded the range of the impact of lead emissions (Nriagu, 1998). The release of

lead fumes to higher altitudes could have favored the transport of fine, lead-rich particles

(Pacyna, 1987) over long distances by prevailing winds. Determining specific back-
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trajectories for events that happened over 100 years ago is both difficult and beyond the

scope of this study. However, a 50-year composite mean of vector wind generated for the

United States through the NOAA-CIRES Climate Diagnostic Center webpage

(www.cdc.noaa.gov/cgi-bin/Composites) (Figure 6) shows the Pettaquamscutt River is

located downwind from the Great Lakes, which are in turn downwind from the Upper

Mississippi Valley mining region. This transport pattern is in good agreement with recent
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back-trajectory analysis showing polycyclic aromatic hydrocarbons were transported to

Massachussetts by air masses that originated in the Great Lakes region (Golomb et al.,

2001). Therefore, it is not surprising that the anthropogenic fraction of the 206Pb/ 207Pb in

the Pettaquamscutt River prior to 1900 correlates well with the production of Upper

Mississippi Valley ore (Figure 5b). The Chesapeake Bay, however, could have received

larger amounts of Pb from the Tri-State and SE Missouri mining regions than from the

Upper Mississippi Valley, but production in these districts began after 1848 and 1864,

respectively (Brockie et al., 1970; Snyder and Gerdemann, 1970) and did not reach

maximum production until the 1900s. Hence, we conclude that the small broad peak in

anthropogenic 2 06Pb/207Pb observed in the Chesapeake sediments (Figure 4b) is most

likely derived from Upper Mississippi Valley ore particles that reached mid-Atlantic

states.

Figure 6. Vector wind composite mean from January to December (1948 to 1998)
calculated using the NCEP/NCAR Reanalysis program (see www.cdc.noaa.gov/cgi-
bin/Composites/printpage.pl) shows that the Pettaquamscutt River is located downwind
from Lake Erie, while the Chesapeake Bay receives a higher contribution of winds from
the southwest. Location of Tri-State, SE Missouri and Upper Mississippi mining districts
were based on Brockie et al. (1970), Snyder et al. (1970), and Heyl (1970), respectively.
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Another potential source of Pb to the atmosphere in the 1800s was coal. The first

records of coal used as an energy source in the United States is noted in 1850 (EIA,

2001). Coal contains measurable quantities of Pb and carries distinct isotopic signatures

from lead ores, and were therefore considered in the source analysis for the 1842 peak.
206 Pb/207Pb values for several coal deposits and Pb ores mined in the United States were

gathered from the literature (Figure 7). Any data point whose 206Pb/207Pb and 208Pb/207Pb

ratios were higher than the most radiogenic value encountered in the Chesapeake Bay,

Pettaquamscutt River, or Lake Erie sediments was selected as a possible candidate.

Assuming the same origin for the anthropogenic 206Pb/207Pb peak in all three systems,

Upper Mississippi Valley ores are the most probable source. All coals included in the

analysis, even those from the Mississippi Valley region (Chow and Earl, 1972), were not

radiogenic enough to produce the -1842 Pb peak. The individual peaks in radiogenic Pb

observed in Lake Michigan and Lake Ontario (Graney et al., 1995) are not as well

defined as the peak in Lake Erie and were not considered in this analysis.

The relative importance of the Upper Mississippi Valley region and coal

combustion as sources of lead to the Pettaquamscutt River in the 19th century can be

addressed by means of a ternary mixing model. The following equations were used to

calculate the mixing lines shown in Figure 8:

RMix (R 1 *CI *X 1)+(R 2 *C 2 *X 2 )
CMix

CM = (* ClX)+ (C 2 * X 2) (5)

X1 +X2 =1 (6)

where RI, R2 and Rmix are respectively the 206Pb/207Pb isotopic ratio of end-member 1,

end-member 2 and of the mixture of 1 and 2, C is concentration and X is the fractional

contribution of each end-member in 10% increments. To calculate proportions we

assumed Pennsylvania coal (Chow and Earl, 1972) was representative of the coals

combusted in the 1800s. Even though several types of coal may have been combusted
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simultaneously, Pennsylvania was the largest producer of US coal at that time (EIA,

2003). The gradual increase in Pb input from smelting of Upper Mississippi Valley ore

and subsequent predominance of coal combustion is shown in Figure 8.
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Figure 7. Isotopic composition of different coals (Chow and Earl, 1972) and Pb-
producing regions in the USA (Russell and Farquhar, 1960; Cannon et al., 1962; Brown,
1965; Heyl et al., 1966; Brown, 1967; Zartman and Stacey, 1971; Fletcher and Farquhar,
1982; Deloule et al., 1986; Ayuso and Foley, 1987; Thompson and Beaty, 1990; Wilber
et al., 1990; Sanford, 1992; Goldhaber et al., 1995; Millen et al., 1995; Leach et al., 1998;
Bouse et al., 1999; St. Marie and Kesler, 2000). The areas defined by the highest values
obtained for the Chesapeake Bay (closed triangle) (Marcantonio et al., 2002),
Pettaquamscutt River (closed circle) and Lake Erie sediments (Graney et al., 1995)
(closed squares) delimit the possible sources of the - 1842 maximum to these locations.
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Prior to 1815, soil dust delivered over 90% of Pb contributions to the

Pettaquamscutt River, but by 1833 this contribution had decreased to 71% and smelting

of Pb ores was responsible for over 20%. In 1842, smelting emissions were responsible

for 48% of the Pb reaching Rhode Island. The decline in Pb contributions from smelting

of ore was accompanied by the rise in coal combustion. At the turn of the 2 0 th century,

contribution from smelting had decreased to 5% and coal was responsible for 65% of the

Pb input. Before the introduction of leaded gasoline in 1923, most of the Pb reaching the

Pettaquamscutt watershed derived from coal combustion (80%), with soil dust

contributing most of the remaining portion.
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1 / concentration (ppm)
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Figure 8. Application of ternary mixing model for Pettaquamscutt River (closed circles),
Lake Erie (stars) (Graney et al., 1995) and Chesapeake Bay data (open triangles)
(Marcantonio et al., 2002) comprising 1735 to 1920. Marks on mixing lines correspond
to 10% increments and dashed lines correspond to 50% mixing.
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The end-members chosen for Figure 8 are capable of explaining the trend in

isotopic composition observed at Lake Erie and, to a lesser degree, the Chesapeake Bay.

Pb isotopic composition changes in Lake Erie sediments have been attributed to inputs

from coal combustion and smelting operations in the region (Ritson et al., 1994) and

Figure 8 is successful in representing possible end-members. The good correlation

between Pb sources to the Pettaquamscutt River and Lake Erie attests to the validity of

the atmospheric pathways shown in Figure 6. The mixing diagram on Figure 8 also

agrees with the suggestion of Marcantonio (2002) that Pb present in sediments deposited

prior to 1923 in the Chesapeake Bay was predominantly derived from a mixture of coal

combustion and natural background. However, the isotopic composition of coals (Figure

7) cannot explain the small rise in total 2 06Pb/207Pb observed in -1861 (Figure 4b), which,

we believe, resulted from small contributions of Pb from the Upper Mississippi Valley

mining district.

There is compelling evidence that Upper Mississippi Valley ore processing was

responsible for the Pb isotopic maximum observed in the mid-1800s in the

Pettaquamscutt River, Lake Erie and Chesapeake Bay, although the timing of occurrence

at these locations seems different. In this study, the 2Pb chronology generated for the

laminated anoxic sediments is in excellent agreement with the varve count time scale

(Figure 2, Chapter 4). The resulting model age yields a historical record of anthropogenic
2 6Pb/207Pb that mirrors the production of Upper Mississippi Valley ore (Figure 5b),

asserting the fidelity of the Pettaquamscutt chronology. In addition, the down-core profile

of total leachable Pb concentration correlates extremely well with estimates of

consumption of lead in gasoline in the USA (Figure 3). We believe that the Pb isotope

peaks in the Great Lake cores and the Pettaquamscutt River sediments all occur at -1845

and that the seeming disagreement in timing is due to the uncertainty of the 210Pb time

scales. While the appearance of the 206Pb/207Pb maxima in the laminated sediments of the

Chesapeake Bay is in moderate agreement with the Upper Mississippi Valley production

record, part of the discordance between the time of occurrence of the former and the

radiogenic 206Pb/207Pb peak in the Great Lakes could be due to the dynamic nature of
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these sediments. For example, the region sampled by Graney and collaborators in Lake

Erie (East Basin) is heavily influenced by the erosion of shoreline bluffs, which comprise

58% of the natural particulate flux to the lake (Ritson et al., 1994). The difference in

timing of the peaks in the different cores highlight the difficulty in obtaining accurate

ages estimates in the mid-1800s. Having a chronological marker, such as the peak in

2)6Pb/2Pb would greatly improve correlations amongst cores in the Northeastern US.

3.2.2 Constraints on the sources of Pb after 1920

The isotopic composition of the most recent portion of the Pettaquamscutt River

sediment record is unlikely to be explained by mixing of natural sources, ore smelting

and coal combustion, as was the case for the period between 1735 and 1920. The

206Pb/207Pb ratio of lead aerosols decreased from 1.22 in 1900 to -1.15 in 1965 in the

United States (Lambert et al., 1991), at which point it was strongly influenced by the

isotopic composition of lead ores used in gasoline (Chow et al., 1975). Motor vehicle

exhaust became an indisputable source of Pb emissions after the introduction of TEL as

an anti-knock agent in gasoline in 1923. However, the isotopic composition of TEL

varied over time (Hurst, 2002) and the use of a constant value on a mixing diagram

would be unreasonable. The anthropogenic lead archaeostratigraphy (ALAS) calibration

curve (Hurst, 2002) could potentially be used as a way to estimate the changes in isotopic

fingerprint of gasoline additives and separate it from contributions from other sources of

Pb. The ALAS method assumes that the major lead additive producers combined Pb ores

in making lead alkyls, and thus the average stable isotopic composition of leaded gasoline

was uniform on a given year. Figure 9 illustrates the time variation in 206Pb/207Pb ratio in

leaded-gasoline according to the ALAS model. The Pb isotopic composition of TEL was

relatively constant between 1923 and 1965 (1.165 ± 0.009), but started increasing rapidly

from the late 1960s to the late 1980s due to the introduction of southeast Missouri Pb ores

in the mixture. The high-resolution sampling of the Pettaquamscutt River core is

exceptional at recording the rapid temporal increase in 206Pb/207Pb ratios post-1970. The

sharp increase in anthropogenic ratios observed in both records after 1968 clearly reflects

149



the introduction of southeast Missouri type Pb into gasoline additives (Figure 8), a

phenomena first observed in soils and aerosols of California (Chow et al., 1975;

Shirahata et al., 1980).
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Figure 9. Anthropogenic 206Pb/207Pb profile for the Pettaquamscutt River (closed circles),
Chesapeake Bay (open triangles) (Marcantonio et al., 2002) and Bermuda corals and
surface water (closed squares) (ron et al., 1994; Hamelin et al., 1997; Reuer et al.,
2003). The solid line represents annual average 206Pb/207Pb values for industrial US
emissions according to the ALAS model (Hurst, 2002).

The systematic variation in isotopic composition of gasoline additives described

by the ALAS model can be observed in sediments of the Pettaquamscutt River,

Chesapeake Bay, and in corals from Bermuda (Figure 9). However, there is not complete

agreement between the records and ALAS. There is growing evidence that the isotopic

150

.Q

-0.
r-C%1

(D
0

.)a-(D

0)0

0
L.
c
4-
C

- - - - - - - - -

I I I I 



values of TEL were not uniform throughout the country (Kaplan, 2003) and, therefore,

the ratios reported in the model may not reflect the actual leaded gasoline input signature

to all locations. For example, in our record the difference in 206Pb/207Pb ratios between

the Pettaquamscutt River sediments and the ALAS model suggests the presence of

another important supply of Pb. Another logical source of anthropogenic Pb in the 20 th

century is the combustion of coal, which has remained a major energy resource since its

introduction in the mid-1800s (EIA, 2000) and was considered the second largest source

of Pb emissions in 1968 (Chow and Earl, 1972). If we assume that TEL and coal

emissions constituted the most significant portion of the Pb input to Rhode Island until

1970, the fractional contribution of each source can be quantified by means of the

following mixing equations (Gobeil et al., 1995; Weiss et al., 1999):

RAnthrop = (Rgas * Xgas) + (Roal * Xcoal) (7)

Xgas + Xcoal = 1 (8)

where R is the isotopic ratio for the coal source (Rcoal), the anthropogenic component

measured in the sample (RAnthrop), and for leaded-gasoline (Rgas) as given by the ALAS

model; and X is the fractional contribution of each source. To use the above mixing

equations, we calculated the most likely coal isotopic signature (Rcoal) for each horizon

between 1924 and 1970 taking into account the percent contribution of major coal-

producing states (EIA, 2003) and 206Pb/207Pb ratios published in the literature (Chow and

Earl, 1972). Until 1970, practically all of the coal production in the US came from east of

the Mississippi (EIA, 2001), with Pennsylvania, West Virginia, Kentucky and Illinois

sharing the primary role. The Pb isotopic composition of coals is known to vary from

1.183 (Illinois) to 1.252 (Kentucky), but when the percent contribution from each state is

considered (from EIA, 2003) values for coal emissions only vary between 1.202 (1920s)

and 1.207 (1970s). If we use this calculated isotopic composition of coal emissions and

Rgas values from the ALAS model in equations 7 and 8, the result is coal combustion

contributing more to the Pb isotopic composition of the Pettaquamscutt River sediments

(61.7 + 8.7% between 1927 and 1969) than Pb from automotive sources. This result

contrasts sharply with the notion that leaded gasoline combustion was an overwhelming
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source of atmospheric lead aerosols during that period, with coal burning responsible for

the second largest emissions (Murozumi et al., 1969; Chow and Earl, 1972; Chow et al.,

1975; Nriagu, 1989). In order to reconcile these different scenarios for anthropogenic Pb

inputs to the Pettaquamscutt River between the 1920s and the 1970s, the 206Pb/ 207Pb

values used in the ALAS model would have to be higher. The same reasoning can be

extended to the discrepancy between 206Pb/207Pb ratios in US aerosols and the ALAS

curve (Hurst, 2003). While the ALAS model is a valuable technique to age-date gasoline

spills, it does not seem to function as a reliable end-member to apportion the contribution

of leaded gasoline to environmental samples.

Lead isotope ratios have varied significantly since the elimination of alkyl lead

from gasoline in the United States (Bollhffer and Rosman, 2002). The introduction of

unleaded gasoline and the enforcement of stricter emission regulations brought about by

the Clean Air Act of 1970 generated a decrease in emission of particles and consequent

lowering of atmospheric Pb concentrations. As a result, the relative influence of pollutant

sources other than the previously overwhelming leaded gasoline increased (Bollh5fer and

Rosman, 2002). This change in relative proportions makes it challenging to identify

sources and produces greater isotopic unevenness of the signal. The variability existent

after 1980 is well illustrated in Figure 9, which shows a good agreement between the

anthropogenic 206 Pb/207Pb profiles of the Pettaquamscutt River and the Chesapeake Bay,

but a difference between those and the Bermuda coral record. The isotopic signature of

the two continental sites remained invariant from 1982 (1.204) to 1996 (1.201),

indicating that industrial sources emitted Pb with a homogeneous signature. The Bermuda

corals, on the other hand, show a significant shift in 206Pb/207Pb values (1.199 in 1982 to

1.175 in 1996) that may be explained by less radiogenic Pb transported from Europe

and/or Africa. Although the island of Bermuda acts as a local source of lead (Shen and

Boyle, 1988), the bulk of the contamination observed in the coral sampling site derives

from seasonal long-range transport. Over the winter, predominantly North American air

masses reach Bermuda, while in the summer and early fall western

Mediterranean/African easterlies dominate (Wolff et al., 1986; V6ron et al., 1994; Huang
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et al., 1996). Prior to the phase-out of leaded gasoline in the USA in the early 1970s,

atmospheric Pb concentrations in Bermuda air in the winter were significantly higher

than in the summer (5.5 ng m 3 and 2.5 ng m -3, respectively for 1982-1983) (Wolff et al.,

1986), suggesting a link between aerosol concentrations and Pb pollution in North

America. Since the drastic decrease of vehicle Pb emissions in the USA, Pb

concentrations in Bermuda decreased by an order of magnitude (Huang et al., 1996), and

the stable lead isotopic composition of rainwater also changed dramatically. Rainwater

samples collected from 1989 to 1990 reflected the less radiogenic isotopic signature

(average 206Pb/207Pb = 1.140 ±+ 0.028) of western European industrial lead emissions

(V6ron et al., 1998), instead of the more radiogenic Mississippi Valley type ores used in

the USA. On the whole, the relative importance of inputs by the easterly trade winds to

surface waters of the Sargasso Sea seem to have increased from less than 10% in the

early 1980s to approximately 50% in the early 1990s (V6ron et al., 1998). This change in

sources can also be seen in the evolution of 2 06Pb/207Pb profiles at the JGOFS BATS

(Joint Global Ocean Flux Study Bermuda Atlantic Time Series) station (Shen and Boyle,

1988; V6ron et al., 1993; V6ron et al., 1998).

4. CONCLUSIONS

A high-resolution record of Pb contamination in the Pettaquamscutt River showed

an unusual peak in 206Pb/207Pb ratios in sediments deposited in the mid-1800s. Similar

radiogenic signals observed for sediments from the Chesapeake Bay and Lake Erie were

evaluated for possible sources. Mining and smelting of Pb ores in the Upper Mississippi

Valley district dominated the US production during that period, and were most likely

responsible for the observed signals. The 206Pb/207Pb peak provides three stratigraphic tie

points for an age model - onset (-1815), maximum (-1842), and termination (-1898) -

and the timing of this event is such that it could become an important marker for

sediments deposited in the last 100 to 200 years in the Northeastern US. Also, the

Bermuda coral record indicates that the influence of Pb production in the Upper
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Mississippi Valley district could potentially have reached the western North Atlantic

Ocean (Fig. 4b) (Vron et al., 1994; Hamelin et al., 1997; Reuer et al., 2003). The coral

record is not of adequate length to include to the -1842 radiogenic 206Pb/207Pb peak, but

the profile of Pb isotopic composition prior to 1900 follows closely the trend observed for

the Pettaquamscutt River. The good agreement between these two records could indicate

that corals within the North Atlantic subtropical gyre were also affected by Pb

contributions from mining in midwest North America, thus extending the estimated range

of this anthropogenic source. In addition, the Pb isotopic composition of the

Pettaquamscutt River provides a classic example of how the change in mixtures of ores in

the production of TEL caused a regional-scale shift in 206Pb/ 207Pb in the sedimentary

record, and suggests that coal could have played a significant role in Pb emissions post-

1920.
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CHAPTER 6

APPORTIONING SOURCES OF PYROGENIC PAHs USING

RADIOCARBON MEASUREMENTS

1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental

contaminants that include suspected carcinogens and mutagens, such as benzo[a]pyrene

(Denissenko et al., 1996). These compounds are widespread and can be found in

measurable concentrations in remote locations such as Arctic ice (Kawamura and Suzuki,

1994) and snow (Masclet et al., 2000), high altitude lakes (Fernamndez et al., 1999) and

deep-sea sediments (Ohkouchi et al., 1999). PAHs can be released directly to the

environment by human activities (oil spills) and natural processes (oil seeps), and some

can be generated by diagenetic processes from biogenic precursors (e.g. perylene)

(Laflamme and Hites, 1978; Tan and Heit, 1981). However, the most prominent source of

PAHs to the environment is the incomplete combustion of modern (wood) and fossil

(e.g., petroleum and coal) carbon. Recent sediment-based studies from a variety of

locations in the United States have shown that the fluxes of PAHs are at least constant or

potentially increasing (Van Metre et al., 2000; Schneider et al., 2001; Lima et al., 2003).

This is contrary to the case for most other environmental contaminants (such as

polychlorinated biphenyls), which show decreasing fluxes to sediments. Because of the

potential harm associated with emissions of PAHs to the environment, it is essential to

understand and apportion the sources of these compounds for better source control and

pollution abatement.

Classic studies on PAH apportionment in coastal and marine sediments have

relied on ratios of individual compounds or groups of compounds and molecular

fingerprints (e.g., retene for combustion of softwood) to distinguish PAHs derived from
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petroleum and derivatives (petrogenic) from those derived from combustion (pyrogenic).

For example, Youngblood and Blumer (1975) suggested that the distribution of alkylated

versus parent PAHs in sedimentary environments could be used to discriminate between

these two modes of formation. Since then, the sum of methyl-phenanthrenes and methyl-

anthracenes to phenanthrene (MPhen/Phen) has been widely used in apportioning

sources of PAHs in environmental samples (Hites et al., 1980; Gschwend and Hites,

1981; Prahl and Carpenter, 1983; Lipiatou et al., 1993; Ohkouchi et al., 1999; Pereira et

al., 1999). However, while ratios can be helpful at discriminating between a fresh oil

contamination (higher alkyl/parent ratio) (Wang et al., 1997) and a pyrogenic source,

typically they cannot distinguish between combustion of fossil and modem biomass.

Measurements of the radiocarbon (14C) content at the bulk, compound class, and

molecular level have been successfully applied in separating modem from fossil carbon

in a number of studies (Cooper et al., 1981; Dasch, 1982; Hawthorne et al., 1992;

Lichtfouse and Eglinton, 1995; Eglinton et al., 1997; Reddy et al., 2002b; Reddy et al.,

2003). The basis of this approach relies on the incorporation of modem levels of 14C by

biota during photosynthesis. Because of its half-life (5730 years), 14C can help apportion

the sources of pyrogenic PAHs by creating two well-defined end members: combustion

of modem biomass (14C-rich) and combustion of fossil fuels (14 C-free due to radioactive

decay). Cooper and collaborators (1981) conducted one of the earlier studies to use

radiocarbon measurements to discriminate the contribution of specific sources of particles

to urban air. This study showed that a large portion of the atmospheric particles collected

in Portland, OR during the winter derived from burning of wood (39-70%) for residential

heating. The latter results were based solely on bulk basis, not benefiting from the

information encoded at the molecular-level. Molecular-level radiocarbon analysis was

impaired by analytical capabilities until the late 1990s, when Eglinton and collaborators

(1996a) successfully demonstrated the use of a preparative capillary gas chromatograph

(PCGC) to isolate highly pure compounds in quantities sufficient for radiocarbon

determination by accelerator mass spectrometry (AMS).
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The use of compound-specific radiocarbon measurements for discerning sources

of PAHs was first demonstrated by Eglinton and collaborators (1996b) and Reddy and

collaborators (2002a). These initial studies revealed that PAHs in surface sediments near

urban centers were primarily due the combustion of fossil fuels. However, a recent

contribution by Reddy and collaborators (2003) that investigated household soot showed

that biomass could be a significant source of PAHs. Soot produced by the combustion of

creosote-impregnated wood in household stoves was enriched in PAHs and there was

some debate whether these compounds were derived from the creosote or from the

combustion of the wood. The authors measured the 14C content of individual PAHs and

used a mass balance approach to calculate the relative contribution of each source based

on the premise that because creosote is a distillation product of coal tar it should contain

no 14C and wood should contain contemporary values (fM > 1). By doing so, they

estimated that 54 to 70% of the PAHs had been generated from the combustion of the

wood and the remaining had originated from the creosote. If a single marker, such as

retene (for the combustion of wood) had been used they would have overlooked the 50-

70% contribution from creosote that the molecular-level 14C analyses revealed.

In this study, we construct molecular 14C records of combustion-derived PAH to

determine how the proportion of fossil fuel derived PAHs has varied since pre-industrial

times. We compare records from a suburban (Pettaquamscutt River) and a remote site

(Siskiwit Lake) and evaluate which PAHs serve as the most effective tracers of fossil and

modern combustion sources.

2. EXPERIMENTAL SECTION

2.1 Study Area

2.1.1. Pettaquamscutt River - Suburban Site

The Pettaquamscutt River is located in South Kingston, southern Rhode Island

(Figure 1). This 9.7 km long estuary ranges in width from 100 to 700 meters and has a

small drainage area (- 35 km2) dominated by oak forests, wetlands and open waters (Orr
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and Gaines, 1973; Boothroyd, 1991). Glacial outwash sediments overlay bedrock of the

Rhode Island Formation type, characterized by sandstones, conglomerate, schist and

graphite (Hermes et al., 1994). The Pettaquamscutt River can be geographically divided

into two remnant kettle lakes (upper and lower basin) and a channel (Figure 1). The lower

basin is delimited to the north by a shallow sill (less than 1 meter deep) and to the south

by a 6.4-km long channel that connects it to the main source of salt water to this estuary,

the Rhode Island Sound (Gaines, 1975). This basin contains the deepest point of the

Pettaquamscutt River system at 19.5 m. In contrast, the upper basin is shallower (13.5 m

Figure 1. Location of the Pettaquamscutt River and adjacent roads.
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at maximum depth) and receives input of freshwater from the Gilbert Stuart Stream

(Gaines, 1975), calculated to contribute -50% of the total freshwater to this system

(Kelly and Moran, 2002). The remaining 50% is attributed to small streams and to

groundwater input (Kelly and Moran, 2002). The flow of freshwater from the Gilbert

Stuart Stream over waters derived from tidal influx creates a strong pycnocline (at 3.5-6

m in the lower basin) that maintains stagnant and anoxic bottom waters in these basins

(Gaines and Pilson, 1972; Hodel and Menezes, 2000). The lack of oxygen inhibits the

existence of benthic macrofauna that can bioturbate the sediments, leading to the

preservation of undisturbed sequences that are ideal for the purpose of historical

reconstruction (Lima et al., 2003).

2.1.2. Siskiwit Lake - Remote Site

Siskiwit Lake is a remote lake located on the archipelago of Isle Royale in the

northern portion of Lake Superior (Figure 2). Isle Royale became a National Park in 1940

and was designated an International Biosphere Reserve by the United Nations in 1981.

Isle Royale is remote from major urban and industrialized centers, over 98% of its land is

designated wilderness, it contains few sources of combustion and no roads are present

(www.isle.royale.national-park.com; McVeety and Hites, 1988). More than 50 lakes are

located on Isle Royale, of which Siskiwit Lake is the largest. Siskiwit Lake has an

approximate area of 16.8 km2, is 11.1 km long and has a maximum depth of 46 m. This

system is 17 m higher and 0.6 km inland from Lake Superior, which prevents exchange

between these two water bodies. Contaminants previously measured in the sediments of

Siskiwit Lake include combustion-derived compounds such as dioxins (Czuczwa and

Hites, 1986) and PAHs (McVeety, 1986; McVeety and Hites, 1988). Atmospheric

deposition is thought to be the only source of contamination to Siskiwit Lake nowadays

(McVeety and Hites, 1988). However, Isle Royale was nearly completely cleared and

settled by fisherman and miners in the 19th century, resulting in the disappearance of

more than half of the original plant and animal species. In addition, copper mining was

active in the island during the 1800s. Although most of the ventures did not take
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significant quantities of ore, the Siskowit Mining Company extracted 95 tons of refined

copper ore in a six-year period, starting in 1849 (www.nyx.net/-sjhoward/IsleRoyale).

Records of early 19th century forest fires in Isle Royale were found during the 1847

General Land Office Survey (www.usgs.nau.edu/globalchange/isroy.html). However,

the largest fire in its recent history occurred in 1936, burning roughly 80% of the Siskiwit

Lake watershed (McVeety, 1986).

Figure 2. Geographic location of Siskiwit Lake.

2.2 Sampling

Seven freeze-cores were collected in the deepest part (20 m) of the lower basin of

the Pettaquamscutt River (Figure 1) in April 1999. All the sides were x-rayed and the

slab that showed the highest number and most distinct laminations was used to define a

high-resolution record of PAHs content and distribution over the past 200 years (Lima et
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al., 2003). The high-resolution record helped to determine the amount of sediment

needed to build a 14C record of individual PAHs. Four sediment slabs were selected for

the compound-specific radiocarbon study based on their integrity and number of

identifiable features on the x-radiographs. These features were used to align the four

cores, which were then sectioned at 0.5-cm intervals using a compact tile saw equipped

with a diamond wafering blade (0.63-mm thickness), while maintained frozen by

applications of liquid nitrogen. Each 0.5-cm sample (n = 554) was placed in a previously

combusted glass-jar, freeze-dried and homogenized with a mortar and pestle. Because

the cores were aligned before sectioning, dried samples of equivalent depth could be

combined. These samples were then stored for compound-specific A 4C and 6813C and

other geochemical analyses.

Due to logistical challenges a simpler sampling procedure was undertaken in

Siskiwit Lake. Seven gravity cores ( 4 inches in diameter) were collected in 1998, sliced

at 2-cm intervals, placed into plastic freezer bags, sealed and chilled on ice before

transport back to the lab. Sediment samples were later transferred to previously

combusted glass jars and freeze-dried.

2.2.1. Sediment Dating

Sediment chronology calculations for the Pettaquamscutt River have been

detailed elsewhere (Chapter 4). Briefly, 21 0Pb, 2 14 Pb and 137CS were measured in dry

samples by direct y-counting using a high purity germanium detector. The constant rate

of supply (CRS) (Appleby and Oldfield, 1978) model was applied to the calculated

excess 2 10Pb (210PbExcess = 2 1 0PbTota - 214Pb) and the results obtained were compared to the

independent varve chronology. The good age agreement (e.g., within 2 years at 1960 and

within 9 years at 1860) between the CRS model and the varve counts allowed the

extension of the sediment chronology beyond the limit of the 210Pb method (100-150

years). The resulting chronology is then a composite of these two dating techniques, with

210Pb ages used for the uppermost 34-cm (1904-1999), and varve ages applied for

sediments deposited prior to that (1900-1735 for 35-70 cm). Because the depth-age
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evaluation was performed for a single core, 137Cs measurements were conducted on

samples from the composite horizons to verify if the stratigraphic resolution had been

preserved. The results obtained show a 1-cm shift in the depth of maximum fallout of
137Cs, from 18.25 cm to 19.25 cm (Figure 3), corresponding to a 2-year difference in

chronology between the combined cores and the original high-resolution record of PAHs.

This difference is within the range of resolution of 210 Pb-ages, hence no correction was

applied to account for this small shift.
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horizons differs from that of the original core by

Sediments collected in Siskiwit Lake were also dated by 210Pb. Excess 2 0Pb was

measured at 2-cm intervals and showed that 21Pb supported levels were reached at

approximately 10 cm for all seven cores (Figure 4). Even though an apparently intact

sediment-water interface was observed at the time of collection, 210Pb measurements
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revealed that the upper portion of the sediment cores had been lost during sampling. A

plot of the natural logarithm of the excess 210Pb against depth (cm) for one of the cores

showed no obvious slope inflections characteristic of a change in sedimentation rate or

the surficial mixing previously reported by McVeety (1986). Therefore, we used the

constant initial concentration (CIC) model (Krishnaswamy et al., 1971) to estimate that

the top 8-cm of sediment of that core had been deposited over 43 years. Neither

compaction nor sediment focusing were taken into account during these calculations.

However, the calculated sedimentation rate (0.18 cm yr - l) was in close agreement with

values reported by McVeety (1986; 1988) (0.19 cm yr-1) for that location. We then
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Figure 4. Total 210Pb activity in seven cores collected in Siskiwit Lake. Supported levels
are achieved at 10-cm for all cores.
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assumed that 21Pb achieved supported levels within 100 years of deposition and reasoned

that because these levels were observed 10 cm from the top, the surficial layer of the

sediment column was dated at 19541. As a result, we estimated that approximately 44

years (8-cm) of the sediment record were not retrieved by the gravity coring procedure.

Because 2Pb supported levels were reached at approximately 10 cm for all seven cores,

we presumed that a comparable amount of sediment was lost from the upper most portion

of all seven cores.

2.4 Total Organic Carbon Determinations

A Fisons 1108 elemental analyzer was used to measure the total organic carbon

(TOC) content of the samples. To remove the inorganic carbon fraction, about 2 mg of

dry sample was weighed into a silver capsule and acidified with 20 gL of HC1 2N. The

samples were then dried in an oven at 50°C, wrapped, placed inside tin capsules for better

catalysis of the oxidation reaction, and analyzed. TOC concentrations were calculated in

relation to the whole sediment and organic carbon/organic nitrogen (Corg/Norg) ratios were

calculated on an atomic basis. No significant difference was observed when Corg/Norg and

Corg/Ntotal (not acidified) were compared for a couple of samples. Samples were run in

triplicate and all reported weight percentages represent the mean one standard

deviation. Concentration of carbon and nitrogen were determined through a 5-point

calibration curve (0.1 to 1 mg) of a sulfanilamide standard. Instrumental blanks were run

after sets of 12 analyses, yielding carbon blanks better than 0.004 mg and nitrogen blanks

better than 0.005 mg.

2.5 Extraction, Purification and Combination of PAH Fractions

Sediment from each 0.5-cm interval was extracted by pressurized fluid extraction

(Dionex ASE 200) using a mixture of dichloromethane and methanol (9:1) at 1000 psi

and 100 C. The extracts were concentrated to approximately 10 mL using a Zymark

If 10 cm = 100 years and the core was collected in 1998, then 10cm = 1898. Given that sedimentation
rate was calculated at 0.18 cm yr1, then 0 cm = 1954. Because 1998-1954 = 44 years and sedimentation
rate = 0.18 cm yr-, we estimate that we lost 8 cm of the top of the core during sampling.
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TurboVap evaporator and subsequently treated with activated copper to remove

elemental sulfur. Because the Pettaquamscutt River samples were extremely rich in

extractable organic compounds, the extracts were air-dried on combusted sand prior to

charging on a silica column for separation (as exchanging the original solvent mixture to

hexane proved unsuccessful). This step was not necessary for the Siskiwit Lake extracts.

Each 0.5-cm interval total lipid extract was separated into four fractions on a column

packed with 100-200 mesh fully activated silica gel. The first fraction containing alkanes

was eluted with hexane; the second containing PAHs was eluted with toluene/hexane

(1:1); the third and fourth fractions were eluted with 2% formic acid in dichlomethane

and 2% formic acid in methanol, respectively. All but the second fraction were archived

for future studies.

After extraction and purification on a silica column, the PAH fractions were

concentrated and further combined into coarser depth intervals to obtain sufficient

amounts of individual PAHs for 14C analysis. Eight depth-age intervals were defined for

the Pettaquamscutt River extracts, taking into account the expected concentrations of

each compound and the estimated time of deposition. Because atmospheric weapons

testing conducted in the early 1950s and 1960s practically doubled the amount of

radiocarbon in the atmosphere (the so-called "bomb spike"), the horizons can be divided

into pre- and post-bomb. Three horizons cover the post-bomb portion of the core: H1

(1999-1982), H2 (1981-1962) and H3 (1960-1931). The pre-bomb sections contain

horizons deposited after the onset of heavy industrialization, H4 (1929-1898) and H5

(1896-1873), and prior to significant industrial activities, H6 (1871-1842), H7 (1840-

1768) and H8 (1764-1735). PAH extracts from these eight horizons were further

separated into ring classes by high-pressure liquid-chromatography (HPLC) following

procedure described by Wise and collaborators (1986) and modified by Reddy and

collaborators (2002a). This HPLC procedure also allowed us to separate pure perylene

(98% purity or greater) from four of the eight horizons. That is noteworthy as the

concentration of perylene greatly increases with depth, surpassing any other parent PAH

(Lima et al., 2003), therefore perylene can limit the amount of extract that can be
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separated by preparative capillary gas chromatography (PCGC). The HPLC procedure

isolated PAHs into two ring classes: 3+4-ring and 5+6-ring PAHs. The resulting 16

HPLC fractions (8 horizons x 2 ring classes) were subjected to two-dimensional PCGC

for isolation of individual PAHs.

Because PAH concentrations were lower in the Siskiwit Lake sediments, the

extracts were combined at a coarser resolution. Four horizons were defined: H1 (1954-

1926), H2 (1915-1882), H3 (1871-1837) and H4 (1826-1793). These four horizons were

also subjected to ring-class separation by HPLC, as described above.

2.6 Two-Dimensional Preparative Capillary Gas Chromatography (2D-PCGC)

Automated preparative capillary gas chromatography (PCGC) is a technique that

allows the isolation of specific compounds through repetitive injections (100) of a

mixture on a modified capillary gas chromatograph. This method was described and

successfully tested by Eglinton and collaborators (1996a) for isolation of individual

organic compounds in sufficient quantities for radiocarbon determinations (>50 Rg C).

PAHs present in the Siskiwit Lake extracts were further isolated using this one-

dimensional PCGC system. Because the Pettaquamscutt River extracts were extremely

rich in biogenic organic compounds, a sizable number of interfering compounds were

still present in the PAH fractions, even after the intensive silica column and HPLC

cleanup. This hindered the isolation of pure individual compounds by one-dimensional

PCGC.

In order to separate the PAHs from other organic compounds and isolate

individual PAH isomers (such as phenanthrene and anthracene) from each other, we

utilized a 2D-PCGC system (Figure 5). This instrument works in the same manner as the

1D-PCGC, with the advantage that incompletely separated components can be diverted

from the first GC and fully resolved on the second GC equipped with a different

stationary phase (Table 1), eliminating undesirable compounds in the process. In the

system used in this study, a HP 7683 auto-injector and a multi-column switching system

(Gerstel MCS 2) are connected to the first HP 6890 series gas chromatograph, and a
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Gerstel preparative fraction collector (PFC) is located at the end of the second GC.

Similar to a D-PCGC, 1% of the effluent from the GC column is directed to a flame

ionization detector (FID), so that compound separation and variations on retention times

can be evaluated. The retention time windows corresponding to components of interest

are transferred from the first GC to a cryogenic trap system (CTS), where the compounds

are retained before introduction into the second GC. After separation on the second

column, individual compounds are directed to the PFC for collection in cryogenically-

cooled U-tube traps. Of the seven traps present in the PFC, six are used to collect

compounds of interest and the 7th trap (waste trap) receives the remainder of the mixture.

After isolation, the trapped PAHs were transferred from the U-tubes to 2-mL glass vials

by addition of 1 mL of dichloromethane. Approximately 50-100 gL of each extract was

transferred to a GC vial for determination of purity, concentration and stable carbon

isotopic composition (section 2.7), while the remaining portion was purified (section 2.8)

for subsequent radiocarbon determination.

I- lI
MultColumn
Switch Box

(CIS)

Gas Chromatograph
(CTS)

Figure 5. Schematic of a two-dimensional
PCGC).

preparative capillary gas chromatograph (2D-
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Table 1. Chromatographic conditions used in the first and second GC of the 2D-PCGC
system for separation of individual PAHs.

Column GC1 and
Temperature Program

DB-35ms
60 m x 0.53 mm i.d. x 0.50 gm-film

60°C (15 min hold) to 180°C at
20°C min -', and then from 180°C to
320°C at 5°C min-' (15 min hold)

DB-1
60 m x 0.53 mm i.d. x 1 gm-film

80°C (1.5 min hold) to 240°C at
20°C min-', and then from 240°C to

325°C at 5°C min' (9 min hold)

Column GC2 and
Temperature Program

DB-1
60 m x 0.53 mm i.d. x 1 gm-film

80°C (40 min hold) to 180°C at
20°C min', and then from 180°C to
320°C at 4.5°C min-' (4 min hold)

DB-35ms
60 m x 0.53 mm i.d. x 0.50 gm-film

120°C (38 min hold) to 240°C at
20°C min', and then from 240°C to
325°C at 4°C min-' (15 min hold)

2.7 Isotope ratio monitoring gas chromatography mass spectrometry (irm-GC/MS)

The 861 3C values of individual PAHs were determined in triplicate on a Finnigan

Delta Plus isotope ratio mass spectrometer with attached Finnigan GC combustion III

interface and Hewlett-Packard 6890 GC. Compounds were separated on a CP-Sil 5CB

capillary column (50 m length, 0.25 mm diameter, 0.25mm film thickness) and isotope

ratios for the PAH peaks were calculated relative to CO2 reference gas pulses. The ratio
13C/12C for the sample (RSample) is expressed in the delta (8) notation in permil (%o), which

relates it to the internationally employed standard Pee-Dee Belemnite (RpDB):

813C = (Rsample / RPDB-1) * 1000 (1)

The standard deviation for replicate measurements of individual PAHs was better than

0.6%o and usually within 0.3%o. Replicate measurement of PAH standards of known 613C

composition (3 to 6 rings) yielded precision and accuracy better than 0.3%o. The stable

carbon isotopic composition of bulk samples (TOC) were determined by automated on-

line solid combustion interfaced to the same irm-MS just described.
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2.8 Radiocarbon Measurements and Data Reporting

Individual PAHs were transferred to pre-combusted quartz tubes (7 mm I.D. x 20

cm) where the solvent was evaporated under a gentle stream of nitrogen and then copper

oxide (50 mg) was added. Each tube was then evacuated on a vacuum line, sealed, and

combusted at 850°C for 5 hours. The carbon dioxide produced by the combustion of the

samples was isolated from water and other gases through a series of cold traps on the

vacuum line and quantified with a manometer. The samples were submitted to the

National Ocean Sciences Accelerator Mass Spectrometry facility (NOSAMS) where

-95% of the purified carbon dioxide was reduced to graphite, pressed and analyzed for

14C according to established procedures (McNichol et al., 2001) (General Statement of

14C Procedures at www.nosams.whoi.edu) and the remaining 5% was used for 813C

measurements. In this chapter, radiocarbon data are reported as the permil deviation from

the absolute international standard 14C activity (Aabs) defined as 95% of the 4C activity of

the original Oxalic Acid standard (HOxI), in the year 1950, corrected for fractionation

effects and radioactive decay between 1950 and the year of measurement (Stuiver and

Polach, 1977):

A14C = (ASanple / Aabs,-1) * 1000 (2)

Routine precision for 613C and A14C measurements at the NOSAMS facility are -0.1%o

and 5-7%o, respectively. However, AMS performance is more limited for samples smaller

than 100 g C (Pearson et al., 1998) and the uncertainties for such small samples are

closer to 20%o. Error associated with measurement of small samples of individual PAHs

are listed in Appendix 4 and range from 1-12.8%o. The process of purification of

individual compounds requires extensive wet chemical and instrumental laboratory work.

NOSAMS corrects the reported data for blanks associated with combustion of samples to

CO2 and with graphitisation conducted at the facility, but little is known about possible

blanks associated with the entire cleanup procedure. Recent investigations conducted by

Mollenhauer (unpublished results) display little variations in A14C values for analysis of

alkenone samples of different size (Figure 6). Mollenhauer's algal culture samples

covered a large range in mass (> 2 mg to < 50 pg C), showed alkenone A 14C values close
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to the dissolved inorganic carbon (DIC) of the water and no obvious trend with sample

size. The standard deviation of these nine alkenone samples was 17%o, consistent with

blank values encountered by NOSAMS for combustion of samples to CO2 and

graphitisation. Identical samples processed at the NOSAMS facility and at the Fye

laboratory at WHOI showed coincident results (Figure 6), indicating that the cleanup

procedure did not introduce a recognizable blank.
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Figure 6. A 14C values for analysis of alkenone samples of different mass (> 2 mg to < 50
pg C) show no obvious trend with sample size (Mollenhauer - unpublished results).
Samples located in the shaded area are processed as small samples by NOSAMS.

Some of the samples submitted to NOSAMS had just enough carbon for

radiocarbon determination, so a 13C value was assumed by the facility. Whenever that

was the case, the reported A 4C values were later corrected for the 513C value measured at

174

___ -

I ' 2' ! - "-'I I I 1 I - I I

X V



the Organic Mass Spectrometry facility at WHOI, using the following formula (see

www.nosams.whoi.edu):

FM(ne-w) = FM(NOSAMS) * [(1 + 0.001 * 813 CNOSAMS) / (1 + 0.001 * Cnew)] (3)

where 813CNOSAMS is the 6l3C value assumed by NOSAMS; FM(NOSAMS) is the fraction

modem value reported by NOSAMS and b13Cnew is the correct b13C value for that sample

(measured at the Organic Mass Spectrometry facility at WHOI). In addition, because the

Pettaquamscutt River samples have a known geochronological age, determined from the

210Pb and varve chronologies (Chapter 4), we can further correct the A 4C values for any

in situ 14C decay (half-life = 5730 yr) since the time of deposition, to yield the values that

the samples had when first deposited in the sediments. This age correction is done by

applying the following formula (Stuiver and Polach, 1977):

A1 4 C(corrected) = [(FM(new) * (e 950- x ) - 1] * 1000 (3)

FM(corrected) =- (A1 4 C(corrected) + 1000)/(1000 * e*(x 1950)) (4)

where x = year of deposition and X= 14C decay constant (1/8267 yr-l).

Perylene was the only compound in high enough concentration at every horizon

for 14C determination. In certain instances, two or more horizons had to be further

combined to obtain sufficient amounts of an individual PAH for 14C analysis. That was

the case for phenanthrene (H1+H2 and H4+H5), benz[a]anthracene (H4+H5) and

fluoranthene (H6+H7+H8). In addition, some samples were lost either during pre-

treatment (benzo[b+k]fluoranthene H6+H7+H8) or during 14C measurement procedure at

NOSAMS (benzo[b+k]fluoranthene HI, benzo[b+k]fluoranthene H3, chrysene Hi). In

general, individual PAH concentrations for samples from the bottom three horizons (H6,

H7 and H8) were too low for a reliable 14C measurement. The NOSAMS facility is

capable of handling samples with as little carbon as 25 g C. However, because several

of our samples contained less than 20 gg C, we investigated the possibility of increasing

the amount of carbon in these samples with a standard of known 14C and 13C content. We

conducted three tests by mixing standards in known proportions to verify if a simple mass

balance could account for the 14C measured in the mixtures. The good agreement between
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calculated and measured A14C values for the mixtures (details in Appendix 3), led us to

adopt this procedure for 9 samples, namely fluoranthene H1, fluoranthene H6+H7+H8,

pyrene H1, chrysene H1, benzo[a]pyrene H2, benzo[e]pyrene H5, benzo[ghi]perylene

Hi, retene H7 and retene H8. The dilution of samples containing 2-20 pg C to a large

enough size to run on the accelerator mass spectrometer (AMS) induces an error that

increases with decreasing sample size (details in Appendix 3). The error associated with

diluting samples containing initially more than 10 gg C ranged from 10.2-34.7%o, while

the dilution of a 2 gg C sample (retene - H8) yielded a much higher error (159%o) (errors

are listed in Appendix 4).

3. RESULTS AND DISCUSSION

The down-core profiles of the abundance of 14C in individual PAHs extracted

from the sediments of the Pettaquamscutt River are plotted in Figures 7 and 8 and listed

in Appendix 4A. Results obtained for Siskiwit Lake are plotted in Figure 9 and listed in

Appendix 4B. Because the Pettaquamscutt River sediments yield a higher resolution

record of 14C abundance in individual PAHs than Siskiwit Lake, we will focus primarily

on the results obtained for the former throughout this discussion. Results obtained for

perylene and TOC are detailed in Chapter 7.

The A14C values obtained in this study are an average for the sediment layers that

were combined to obtain sufficient sample for compound-specific 14C analysis. Because

the concentrations of PAHs vary greatly with depth, we used the PAH concentration data

to calculate the weighted-average depth at which A 14C values for individual PAHs should

be plotted. This calculation was particularly important for plotting the A4C values

obtained for retene (H7 and H8) and fluoranthene (H6+H7+H8) since horizons 6 to 8

span a large gradient in PAH concentration (10-200 ng g-1 for Fla) and sources of

contrasting 14C content, based on energy consumption data (mainly wood for H7 and H8,

and some coal in H6). For example, if the A14C data for fluoranthene (H6+H7+H8) were

plotted at the average depth of the combined layers (56.5 cm - 1807) that would give the
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impression that combustion of coal was an important source of this compound in 1807.

However, the weighted-average depth for fluoranthene (H6+H7+H8) (50.5 cm- 1835)

places this A14C data point at a year of deposition coherent with the reported historical

consumption of coal and wood in the USA (www.eia.doe.gov/emeu/aer). To calculate the

weighted-average depth, the amount (ng) of a given PAH was calculated for each depth

interval that comprised the horizon of interested (concentration * mass of sediment

extracted). These masses were subsequently summed and the percent contribution of each

interval to the horizon of interest was calculated. Each percent contribution was

multiplied by its corresponding mid-point depth, and the sum of these results corresponds

to the weighted-average depth for the horizon (example in Table 2).

Table 2. Example of calculation of weighted-average depth using data acquired for retene

Mass sediment Concentration Mass of % Contribution Weighted-Depth Mid-Point Concentration
Year extracted (ng g Compound to Total in Average

(g) (ng) Horizon Depth (cm)
65 65.25 1761 1.39 50.6 70.5 13.4
66 66.25 1755 1.38 51.9 71.4 13.6
67 67.25 1750 1.41 71.8 101.2 19.2
68 68.25 1745 1.37 73.8 101.2 19.2 67.9a
69 69.25 1740 1.37 53.5 73.6 14.0
70 70.25 1735 1.37 79.2 108.8 20.7

Sum 526.7
(0.134*65.25) + (0.136*66.25) + (0.192*67.25) + (0.192*68.25) + (0.140*69.25) + (0.207*70.25)

Some interesting trends can be observed in Figure 7. First, most of the PAHs

isolated from sediments deposited after the turn of the 20t h century contain little to no

14C. This result is consistent with combustion of fossil fuels being the dominant source of

pyrogenic PAHs in contemporary sediments (Reddy et al., 2002a). Perylene, retene and,

to a lesser extent, phenanthrene are exceptions to this generalization. Perylene will be

discussed separately in Chapter 7. Excluding retene and perylene, phenanthrene is

consistently the most modern PAH analyzed, with A14C values ranging from -650% in

horizon 3 (-1948) to -800%o in combined horizons 1 and 2 (-1978). Phenanthrene was
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also the most modem PAH determined on a sample of household soot produced by the

combustion of creosote-contaminated softwood (Reddy et al., 2003). Although

phenanthrene can be produced by virtually any combustion process and is one of the most

abundant pyrogenic PAHs found in indoor and outdoor air (Hawthorne et al., 1992;

Naumova et al., 2002), its radiocarbon composition seems to be more heavily influenced

by combustion of modem biomass than any other pyrogenic PAH analyzed in the top five

horizons. Unfortunately, the concentrations of phenanthrene in horizons 6, 7 and 8 were

too small to be run by the NOSAMS facility, so we cannot confirm that this compound

has consistently retained a mixed 14C signature.

The A 4C values obtained for retene contrast markedly with results obtained for

other pyrogenic PAHs. Retene is derived from the thermal and natural transformation of

abietic acid 2 present in resins of coniferous wood and has long been proposed as a marker

of combustion of soft wood (Simoneit and Mazurek, 1982; Ramdahl, 1983). Several

studies have used retene as a tracer for biomass burning. For example, measurements of

retene in extracts of air particulate matter from Albuquerque, NM indicated that

residential wood combustion was the dominant source of PAHs to that area (Benner et

al., 1995) and the presence of retene in snow samples was used as evidence of boreal

forest fire residues in Greenland (Masclet et al., 2000). In addition to combustion of

softwood, retene can also be produced in situ by the diagenesis of abietic acid (Ramdahl,

1983). For example, Laflamme and Hites (1978) found remarkable amounts of retene and

pimanthrene (another component of pine resin) in soils from South Carolina and

associated their presence to the pine forest surrounding the sampling site. Analyses of soil

samples from a wooded area in Yosemite National Park in California yielded similar

results (Laflamme and Hites, 1978). Moreover, anaerobic incubation of sediments spiked

COOH COOH

2 Abietic Acid Dehydroabietic Acid Retene

Mechanism of formation of retene (Benner et al., 1995).
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with 6-d2-dehydroabietic acid reportedly produced small quantities of d-retene

(Tavendale et al., 1997). The radiocarbon results obtained for horizons 7 and 8 show

good correlation among retene, perylene and TOC (Figure 7). The similar 14C values for

these components could indicate that retene was produced in situ by the diagenesis of

abietic acid brought to the sediments as part of the TOC. The sedimentary profile of

retene (Appendix B, Figure 3) shows a maximum in concentration in the early 1800s,

which can be related to a period of intense deforestation in southern Rhode Island. It has

been reported that by 1870, the White Pine forests of the northeastern United States were

heavily depleted due to land clearing and utilization of wood as energy source
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(www.forestresources.com/novdec99.html). If the increase in retene concentration

observed in the early 1800s were related to a significant rise in combustion of wood in

the region adjacent to the watershed of the Pettaquamscutt River, then a concurrent

increase in concentration of other pyrogenic PAHs would be expected. However, while

retene concentrations rose 7-fold between 1774 and 1815, pyrene and total PAHs

concentrations increased less than 2-fold. The more likely scenarios for the origin of

retene in the sediments of the Pettaquamscutt River relate its increase in concentration to

intense deforestation of White Pine forests. Either abietic acid (or dehydroabietic acid)

was intensively eroded from soils due to land clearing and logging, and transformed into

retene in the anoxic sediments, or this transformation occurred in the soils prior to

erosion and transport. In either case, the Pettaquamscutt River data indicates that aside

from functioning as a marker for combustion of wood in aerosol samples, retene also has

the potential to be used as a tracer for land clearing in regions formerly covered by pine

forests. It is noteworthy that the radiocarbon results obtained for retene in horizons 7 and

8 of the Pettaquamscutt River sediments are 14C-poor compared to values reported by

Reddy and collaborators (2003) for household soot produced by combustion of softwood

in fireplaces. The difference in the A 14C content of retene between these two studies

probably results from the incorporation of significant amounts of bomb-14C by the wood

combusted to produce the soot analyzed by Reddy and collaborators, while our

measurements were conducted on retene deposited prior to the onset of nuclear weapons

tests.

In general, the 4C abundance of individual pyrogenic PAHs vary within 150%o of

each other at a given sediment horizon. This isotopic heterogeneity is clearly apparent in

horizon 3 (1940-1963), where compound-specific radiocarbon values vary from -970%o

for pyrene to -650%o for phenanthrene. In contrast, Al4C of TOC and perylene at the same

horizon were measured at -130 and -190%o, respectively. 4C abundances for structural

isomers usually lie within 60%o (Figure 8), in agreement with results obtained by Reddy

and collaborators (2003). In addition, the A 14C results obtained for individual PAHs in

this study provide a basis to evaluate certain compounds that are currently used as
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molecular tracers for specific combustion sources. For example, benzo[ghi]perylene has

been suggested as a marker for tracing automobile emissions that could compensate for

the phase-out of Pb in gasoline (Currie et al., 1994). Benzo[ghi]perylene present in the

sediments of the Pettaquamscutt River contains little to no 4C, consistent with its

suggested fossil source. Also, while fluoranthene and pyrene reflect a slightly greater

contribution of modem 14C between 1999-1982 (Hi) than in 1982-1963 (H2),

benzo[ghi]perylene became more 14C-depleted in the same period. In contrast,

benzo[ghi]perylene isolated from Standard Reference Material 1944 (New York/New

Jersey waterway sediment) was slightly more 4C-modem than perylene from the same

sample (Reddy et al., 2002a). These two studies illustrate the problem associated with

relying in one single compound for source apportionment.
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The A14C profiles of pyrene, fluoranthene and perylene (Figure 8) capture the

general trends in 14C abundance observed for PAHs present in the sediments of the

Pettaquamscutt River. In situ production is the dominant source of perylene in sediment

intervals deposited prior to 1950. In surficial layers, the concentration of naturally

produced perylene is small (Appendix B, Figure 3) and perylene derived from the

combustion of fossil fuels becomes an important fraction of the total, thus the trend

towards 14C-depleted values with decreasing depth observed in Figure 8. In contrast, the

4C contents of pyrene and fluoranthene have decreased significantly since the mid-

1800s. Prior to 1850, wood was the main source of energy in the United States, at which

point coal became responsible for 10% of the total energy production. By 1900, fossil

fuel combustion (coal + petroleum) had drastically increased and accounted for over 75%

of the total energy consumption (www.eia.doe.gov/emeu/aer). The accelerated release of

14C-free CO2 from burning of fossil fuels in the mid to late 1800s was responsible for a

dilution of atmospheric 14CO 2 , termed the Suess effect (Stuiver and Quay, 1981). While

this term is commonly used in referring to atmospheric CO2, one could argue that the

trend towards decreasing 14C abundance observed for fluoranthene and pyrene, due to the

increased use of fossil fuels, could also be referred to as the Suess effect.

14C-depleted values for PAHs deposited prior to 1875 indicate a large fossil

component at a time when fossil fuel usage was still low (<35%,

www.eia.doe.gov/emeu/aer). By applying a simple mass balance to fluoranthene 14C data

presented in Figure 8, it is possible to calculate the contribution of combustion of fossil

and modern biomass to each horizon (Table 3). We chose fluoranthene for this exercise

because it was the only pyrogenic PAH for which we had 14C data spanning the largest

time interval (1735-1998). The results obtained for the fractional contribution of modern

biomass to the fluoranthene A14C signatures are in good agreement with the amount of

wood burned for heating purposes in the USA from the 1960s to the present. However,

the 14C abundance in fluoranthene seems to underestimate the amount of wood burned in

the early 1800s. While our calculations point to wood burning contributing 35% of the

fluoranthene in the sediment, estimates of the consumption of wood during that time are
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much higher (95%) (www.eia.doe.gov/emeu/aer). Unfortunately, we have only been able

to acquire one radiocarbon data point for pyrogenic PAHs at the bottom of the

Pettaquamscutt River sediment core, where low concentrations prevent isolation of

sufficient mass for AMS analysis, so we cannot compare this result to others. It is

possible that, instead of underestimating the amount of wood burned in the early 1800s

our data may be pointing to a higher contribution of fossil sources to the New England

area in those early days, compared to other parts of the country. For example, Levin and

collaborators (1989) have shown that highly populated areas can produce localized Suess

effects of up to A14C = -100%o, particularly during the winter. More data is needed before

we can draw any firm conclusions one way or another. Nevertheless, the 14C abundance

in isolated PAHs seems to correctly describe the general pattern of energy consumption

in the last 100-150 years.

Table 3. Contribution of fossil and modern biomass burning to the PAH inventory over
the decades.

A14c A14c A14c Proportion b Consumption A 14C Fla
Horizon Year Fla Wood Fossilof Woodas if %Wood

(f0/ (ftra fqtr/ Fossil Wood Energy Source c Consumption

a Range in modem wood values estimated by (Klinedinst and Currie, 1999) and (Reddy et al.,
2003)
b A 4 CFla = (fWood*A14 CWood) + (fFossil*A14CFossil), food + fFossil = 1

c Calculated from data obtained at www.eia.doe.gov
d Value obtained for retene, a marker of combustion of biomass
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It is thought that the range in 813C values of PAHs generated during pyrolysis is

correlated to the isotopic signature of the source. Therefore, compound-specific carbon

isotopic composition could be used to apportion the sources of PAHs. Initial samples

analyzed by O'Malley and collaborators (1994) demonstrated that the isotopic

composition of PAHs generated by wood burning varied with ring size, with 3- and 5-

ring PAHs being more 3C-depleted than 4-ring compounds. The 613C results obtained

for individual PAHs from the sediments of the Pettaquamscutt River (Figure 9, Appendix

4 and 5) show no clear trend with ring size. However, pyrogenic PAHs were consistently

13C-enriched (-26 to -21.5%o) compared to perylene (-28.5 to -27.5%o). The two data

points obtained for retene fell within the range of 613C of pyrogenic PAHs. The effects of
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temperature of formation on the 613C of PAHs were addressed by McRae and

collaborators (1999), who determined the isotopic composition of PAHs derived from

coals of different ranks and process conditions. The authors observed that the 813C values

of individual PAHs became more 3C-depleted with increasing temperature of formation.

PAHs released by low temperature combustion processes showed 863C values similar to

those of their source, whereas PAHs produced by high temperature pyrolysis were

approximately 4%0 more depleted than PAHs produced at low temperature. The idea that

the different temperatures achieved during the combustion of coal, wood, gasoline and

diesel may allow for a wide enough range in 813C that can help further constrain the

environmental sources of combustion-derived PAHs is very attractive. However,

combustion of different fuels can yield similar mixtures of pyrogenic PAHs and the range

in 813C of the main energy sources (coal, petroleum and wood) greatly overlaps in the -30

to -20%o range (Hunt, 1996). Hence, the difficulty in relying solely on 813C

measurements to separate the contribution of PAHs derived from one combustion process

versus another.

The A'14C results obtained for the Pettaquamscutt River sediments co-vary with

data obtained for Siskiwit Lake (Figure 10). PAH concentrations are low at this location,

negating the determination of 14C abundance on individual compounds. Instead, 13

PAHs3 were combined for each horizon before 14C determination at the NOSAMS

facility. Although measured in coarser resolution, the A14C results obtained for Siskiwit

Lake are comparable to those acquired for the Pettaquamscutt River (Figure 10,

Appendix 4B). Because this location is approximately 55 km away from the nearest

populated area (McVeety and Hites, 1988), it receives a smaller load of PAHs derived

from combustion of fossil fuels than the Pettaquamscutt River, much in the way

populated areas show a larger and localized Suess effect (Levin et al., 1989). The smaller

contribution of fossil-derived PAHs to Siskiwit Lake is clearly illustrated in Figure 10. In

3 Total PAHs were calculated as the sum of phenanthrene, anthracene, fluoranthene, pyrene,
benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzoU]fluoranthene, benzo[k]fluoranthene,
benzo[a]pyrene, benzo[e]pyrene, indeno[123-cd]pyrene and benzo[ghi]perylene.
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addition, while perylene and TOC A14 C values in the Pettaquamscutt River indicate

significant fossil fuel contributions beginning in the early 1900s (details in Chapter 7),

the radiocarbon abundance of these species increased towards the present in the Siskiwit

Lake core and showed no trace of a Suess effect (Figures 10a and c). The higher 4C

abundance in pyrogenic PAHs from Siskiwit Lake attests to the reduced contribution of

fossil-derived compounds to this remote location prior to 1900. This implies that copper

mining operations active in Isle Royale from 1849-1855 did not contribute notable

amounts of 4C-poor PAHs to this system. Most likely, 19 th century colonization of the

island relied solely on combustion of wood, consistent with reports of disappearance of

more than half of its original plant species (www.nyx.net/-sjhoward/IsleRoyale). All
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pyrogenic PAHs deposited in the Pettaquamscutt River during the maximum period of

deposition in the 1950s (Figure 11) contained significantly less 14C than equivalent

compounds reaching Siskiwit Lake (Figure 10). For example, while pyrogenic PAHs

deposited in the Pettaquamscutt River sediments in 1900 show A14C values between -700

and -920%o, total PAHs deposited in Siskiwit Lake at that time were significantly more

enriched in 14C (-270%o). This reinforces our believe that the New England region may

have been more heavily affected by the early use of fossil fuels than other parts of the

USA.

In summary, radiocarbon measurement of PAHs at the molecular level has given

us new insights into the complexity of sources of these compounds. Our increasing

reliance on combustion of fossil fuel was clearly illustrated in the trend of individual

PAHs towards more negative A14C values, with the well-known Suess effect being easily

observed in the 14C composition of this class of compounds. The combination of

compound-specific radiocarbon measurements and down-core concentration profile

revealed the potential of using retene as a tracer for land clearing in regions formerly

covered by pine forests. 14C-poor values for PAHs deposited prior to 1875 indicate a

large fossil component at a time when fossil fuel usage was still low. Therefore, the 4C

content of fluoranthene was used to calculate the fractional contribution of modem

biomass to the PAH burden over time. The results obtained showed that either we are

underestimating the amount of wood burned in the early 1800s or our data is pointing to a

higher contribution of fossil sources to the New England area in those early days, versus

other parts of the country. Comparison between the data obtained for the suburban

Pettaquamscutt River and the remote Siskiwit Lake highlight that although atmospheric

processes transport and widely disperse combustion-derived PAHs, regions closer to

point sources receive higher contributions of these compounds. Even at the period of

maximum deposition of PAHs (1950), the 14C content of the compounds deposited in

Siskiwit Lake shows a significant contribution from non-fossil sources.
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CHAPTER 7

ISOTOPIC CONSTRAINTS ON THE SOURCES

OF PERYLENE IN AQUATIC SEDIMENTS

1. INTRODUCTION

Perylene is a non-alkylated polycyclic aromatic hydrocarbon (PAH) found widely

in marine (Aizenshtat, 1973; Wakeham et al., 1979; Louda and Baker, 1984; Pereira et

al., 1999) and lacustrine sediments (Laflamme and Hites, 1978; Wakeham et al., 1980;

Gschwend and Hites, 1981; Tan and Heit, 1981; Doskey and Talbot, 2000) and is thought

to derive mainly from two processes: in situ diagenetic alteration of an unknown

precursor and oxidative combustion of carbonaceous materials.

Most studies report that sediment records of perylene differ greatly from those of

typical anthropogenic PAHs (Hites et al., 1980; Tan and Heit, 1981; Silliman et al., 2001;

Lima et al., 2003). The latter are typically high in sediments deposited in the 1950s and

1960s and low in older sediments, while perylene abundances are low at surface and tend

to increase with depth. This increase in perylene concentration with depth reflects its in

situ production (Aizenshtat, 1973; Wakeham, 1977) by either a first- or second-order

reaction requiring anoxic conditions (Gschwend et al., 1983). However, there is still

debate as to whether the precursor of perylene is a terrestrial (Aizenshtat, 1973;

Laflamme and Hites, 1978) or a marine natural product (Wakeham et al., 1979; Hites et

al., 1980). After measuring perylene in marine sediments enriched in hydrocarbons

derived from higher plants, Aizenshtat (1973) hypothesized that its precursor was of

terrestrial origin. In contrast, Wakeham and collaborators (1979) found elevated amounts

of perylene in sediments from the Namibian shelf where land-derived inputs were

considered minor and suggested that an aquatic precursor was more likely for that

environment.
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In situ production is not the only source of perylene to environmental settings.

Perylene has been previously measured in a number of pyrogenic or combustion

products, such as automobile exhaust (Blumer et al., 1977; Rogge et al., 1993), burning

of soft and hardwoods (Fine et al., 2001), municipal incineration (Davies et al., 1976) and

combustion of waste tires (Mastral et al., 1999). In addition, a few studies have reported

good correlation between the down-core profiles of perylene and that of other PAHs

(Simcik et al., 1996; Pereira et al., 1999). For example, a study of sediment cores from

five sites in Lake Michigan showed that at four locations the profile of perylene

paralleled that of other PAHs, suggesting a pyrogenic source for this compound (Simcik

et al., 1996). Similar results were obtained for sediments collected in Richardson Bay,

CA. At that site, perylene concentration was low prior to 1900 and gradually increased

after the turn of the 2 0 th century. The authors related the rise in perylene concentrations

towards the surface of the sediment core to an increase in anthropogenic activities around

the Bay and suggested that combustion was the dominant source of perylene to that

environment (Pereira et al., 1999). In addition, recent radiocarbon evidence indicates that

both fossil-fuel combustion and modern biomass can be important contributors of

perylene to sedimentary settings (Reddy et al., 2002). Measurement of the radiocarbon

content of perylene extracted from two National Institute of Standards and Technology

(NIST) Standard Reference Materials (SRMs) showed contrasting results. Perylene

extracted from SRM 1941a (Organics in Marine Sediment; collected from Chesapeake

Bay) yielded a similar 14C value to that of bulk TOC and more modern than any other

PAH in the sample, suggesting in situ production. In comparison, the 14C content of

perylene extracted from SRM 1944 (New York/New Jersey Waterway Sediment) was

similar to the other PAHs of fossil origin, contrasting markedly with the bulk TOC

(Reddy et al., 2002). This study demonstrated unambiguously the dual origin of

sedimentary perylene.

In this study, we construct historical records of perylene and total organic carbon

(TOC) for sediments from a suburban (Pettaquamscutt River) and a remote (Siskiwit

Lake) environment. The concentration, radiocarbon and stable carbon isotopic
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composition of perylene and TOC present in these basins are evaluated. This exercise

underlined the difficulty of unveiling the unknown precursor of perylene. The

combination of 13C and A 4C of perylene and TOC at these two distinct sites helped us

discern with some confidence the importance of fossil fuels to the sedimentary profile of

this PAH.

2. EXPERIMENTAL SECTION

A full description of the sampling sites, collection and depth-age relationship of

the sediment cores were given in Chapters 4 and 6. Procedure for extraction and

calculation of concentration of perylene was given in Chapter 3. Chapter 6 describes the

procedure utilized for combining sediment cores and details the analytical methods

employed for stable carbon and radiocarbon isotopic measurements and data reporting.

Methods pertinent to TOC determinations are described below.

2.1 Total Organic Carbon Determinations

A Fisons 1108 elemental analyzer was used to measure the total organic carbon

(TOC) content of the samples. To remove the inorganic carbon fraction, about 2 mg of

dry sample was weighed into a silver capsule and acidified with 20 gL of 2N HCl. The

samples were then dried in an oven at 50°C, wrapped, placed inside tin capsules for better

catalysis of the oxidation reaction, and analyzed. Total organic carbon concentrations

were calculated in relation to the whole sediment and organic carbon/organic nitrogen

(Corg/Norg) ratios were calculated on an atomic basis. No significant difference was

observed when Corg/Norg and Corg/Ntotal (not acidified) were compared for a couple of

samples. Samples were run in triplicate and all reported weight percentages represent

the mean ±+ one standard deviation. These values were determined from a 5-point

calibration curve (0.09 to 1 mg) of a sulfanilamide standard. Instrumental blanks were

run after sets of 12 analyses, yielding carbon blanks smaller than 0.004 mg and nitrogen

blanks smaller than 0.005 mg.
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2.2 Isotope ratio monitoring gas chromatography mass spectrometry (irm-GC/MS)

The stable carbon isotopic composition of bulk samples (TOC) were determined

in triplicate by automated on-line solid combustion interfaced to a Finnigan Delta Plus

isotope ratio mass spectrometer. Isotope ratios were calculated relative to CO2 reference

gas pulses, standard deviation for replicate measurements was always better than 0.6%o

and usually within 0.3%o.

3. RESULTS AND DISCUSSION

The concentration, radiocarbon and stable isotopic composition of perylene in the

Pettaquamscutt River and Siskiwit Lake are evaluated and contrasted below. In addition,

the values obtained in this study are compared to previous work conducted in these basins

by Hites and collaborators (1980) and McVeety and Hites (1986; 1988). Diagnostic ratios

and isotopic measurements of TOC were also assessed in an attempt at better

understanding the possible sources of perylene to these systems.

3.1 Perylene

3.1.1 Concentration Constraints

The concentration profile of perylene in the Pettaquamscutt River and Siskiwit

Lake sediments differ markedly from that of other parent PAHs derived from combustion

sources (Figure 1, Appendix A and 1C). For example, the concentration of total PAHs1

in the Pettaquamscutt River was low until 1850s, increased steadily to a maximum in the

late-1950s, then declined until mid-1990s when this trend again reversed (Figure la). In

contrast, perylene concentrations were low in surface sediments (210 ng g-'), but increase

rapidly to an initial maximum in 1973 (2900 ng g-1), in a pattern typical of in situ

Total PAHs are calculated as the sum of fluorene, phenanthrene, anthracene, fluoranthene, pyrene,
benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene,
benzo[e]pyrene, dibenz[ah]anthracene, indeno[123-cdlpyrene, benzo[ghi]perylene and coronene (n =
15).
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production (Figure lb). Similar trends were observed by Hites and collaborators (1980)

in the upper basin of the Pettaquamscutt River (Figure la and lb - detail), and by

McVeety (1986) in Siskiwit Lake (Figure c and d - detail). These finding are

consistent with other profiles found in the literature (Tan and Heit, 1981; Silliman et al.,

2001) and reflect the differences in major sources of perylene versus other parent PAHs.

Even though the most recent portion (44 years - Chapter 6) of the Siskwit Lake

sediment record was lost during sampling, clear differences in PAH concentrations

between this remote site and the suburban Pettaquamscutt River are apparent.

Anthropogenic PAHs in the sediments of Siskiwit Lake show a steady increase starting in

the 1900s (Figure la and c), 50 years later than in the Pettaquamscutt River region. That

is not surprising considering Rhode Island was one of the first states to be industrialized

in the United States (Ingalls, 1908). Therefore, the early onset of increased PAH

concentrations in the Pettaquamscutt River versus Siskiwit Lake indicates that the former

felt the effects of combustion of fossil fuels earlier than other parts of the country due to

its proximity to the sources. The fact that the maximum in total PAHs occurs at about the

same time in both locations (late-1950s) (McVeety, 1986; McVeety and Hites, 1988)

emphasizes the importance of atmospheric processes in the transport and deposition of

these compounds.

The concentration profile of perylene seems to vary widely even within one

aquatic system. Perylene concentrations in the Pettaquamscutt River sediments increased

by an order of magnitude over a 25-year time interval (1973-1999), elevating its

proportion in relation to total PAHs from 3% to 37%. A much faster increase in perylene

concentrations with depth was observed by Hites and collaborators (1980) in the upper

basin of the Pettaquamscutt River (Figure lb-detail). In that study, perylene was shown

to increase from 100 ng g in the surficial sediments (1975) to 3600 ng g at 4-cm

(1962). While the maximum concentration obtained by Hites and collaborators (6000

ng g-l at 18-cm, 1915) resembles our results for the lower basin (6900 ng g-1 in 1900), the

shape of the two profiles is not similar (Figure lb). The earlier study found that after
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Figure 1. Concentration profile of total PAHs and perylene in the Pettaquamscutt River
(a-b) and Siskiwit Lake (c-d). Total PAHs were calculated as the sum of (Fluo, Phen,
Anthr, Fla, Py, BaA, Chry, BbF, BkF, BaP, BeP, DBA, IP, BghiP and Cor -
Pettaquamscutt River) and (Phen, Anthr, Fla, Py, BaA, Chry, BbF, BjF, BkF, BaP, BeP,
IP and BghiP - Siskiwit Lake). Smaller plots correspond to data obtained by previous
work at these basins. Hites and collaborators (1980) in the Pettaquamscutt River and
McVeety (1986) in Siskiwit Lake.
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increasing ten-fold on the top portion of the core, perylene concentrations remained

constant until 1895 and then proceeded to dip between 1875-1855. However, this dip in

concentrations is not observed in the perylene profile we obtained for the lower basin of

the Pettaquamscutt River. Since the upper and lower basin of the Pettaquamscutt River

differ in sedimentary organic carbon contents and hydrological regimes (Urish, 1991),

differences in the shape of the perylene profile are not surprising. Similar variations in

concentration and profile shape were observed between our measurements in Siskiwit

Lake and those reported by McVeety (1986). We consistently measured higher perylene

concentrations than those reported previously for sediment horizons of the same age.

Whereas McVeety reported approximately 10 ng g-l of perylene for sediments deposited

in 1950, our data was one order of magnitude higher (110 ng g). The differences in

record are yet more striking when sediments deposited prior to 1900s are considered (250

ng g-l versus 10 ng g-1 in 1895). Patchiness in the supply of the unknown precursor of

perylene and variations in depositional conditions may account for the differences

observed within one aquatic system. Finally, when the perylene record obtained for the

Pettaquamscutt River is compared to that from the Siskiwit Lake we observe that

perylene concentrations measured in the latter were consistently lower than those found

in the former. While perylene was measured at 2500 ng g- in the Pettaquamscutt River in

the early 1950s only 100 ng g-' were found in corresponding layers in Siskiwit Lake. The

differences in perylene concentration and profile shape encountered between sampling

sites and more specifically in cores collected at the same small enclosed aquatic system

(Siskiwit Lake) reveal the complexity of processes and factors that influence perylene

formation.

An interesting feature of the perylene record in the Pettaquamscutt River is the

abrupt shift in perylene concentrations (1927-1938) that parallels an abrupt change in

trend TOC content (Figure 2). As will be discussed in section 3.2, the decrease in TOC

concentrations after 1935 is attributed to a dilution of the organic carbon content by

higher amounts of clastic material, which yielded the elevated mass accumulation rate

(MAR) observed in Figure 2b. Because perylene is a minor constituent of the
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sedimentary organic matter, its accumulation in the sediments was not significantly

affected by the change in TOC MAR, only its concentration. The > 50% reduction in the

maximum concentration of perylene between the 1900s (-6900 ng g) and the 1970s

(2900 ng g-l) in the Pettaquamscutt River (Figure 2a) seems to be simply a reflection of

variations in sedimentation rate. When MAR is taken into account (Figure 2b), the

differences in maximum concentration of perylene are erased.
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Figure 2. (a) Down core profiles of TOC and perylene show a shift towards lower
concentrations between 1927 and 1935; (b) Mass accumulation rate (MAR) of TOC
increased after 1927, while the major rise in perylene MAR occurred in 1865; (c) Ratio
between perylene and TOC.
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A striking feature of the perylene profile in both Pettaquamscutt River and

Siskiwit Lake is that concentrations do not remain constant down-core, as would be

expected for a compound that is not significantly degraded and is produced in situ. This

trend towards decreasing concentrations after a peak in perylene concentration is

observed in some (Wakeham et al., 1980; Tan and Heit, 1981; McVeety, 1986) (Figure

lb), but not all environments (Gschwend et al., 1983). While Wakeham and collaborators

(1980) interpreted the decrease in perylene concentration with depth as a change in the

source of the organic material accumulating in the sediments of the Greifensee delta

(Germany), T'an and Heit (1981) had no explanation for its occurrence at Sagamore and

Woods Lake, NY. Perylene is not known to undergo diagenetic degradation or alteration

and has been found in significant amounts in sediments as old as the Lower to Middle

Jurassic (-200 Myr) (Jiang et al., 2000). Some of the variables that could control the in

situ production of perylene are (a) composition of the main source of organic carbon to

the sediments; (b) rate of supply of the unknown precursor; (c) constancy of depositional

conditions; (d) changes in the microbial community. As will be discussed in section 3.2,

the main source of organic carbon to the Pettaquamscutt is thought to be aquatic biomass

and that seems to have been the case for at least the past -200 years. In addition, Orr and

Gaines (1973) reported that the bottom waters of the Pettaquamscutt River have been

anoxic for about 1700 years, since the marine flooding of this glacial valley. Hence,

neither changes in the composition of the main source of organic matter nor changes in

depositional conditions seem to be responsible for the lower concentration of perylene at

the bottom of the core.

Silliman and collaborators (1998; 2001) have suggested that perylene formation

could be controlled by the intensity of microbial degradation rather than the presence of a

specific precursor. They hypothesize that perylene production is more efficient in low

TOC environments, because perylene-forming microorganisms may not be capable of

competing with other microbes when fresh labile TOC is available (Silliman et al., 2001).

These authors suggest that environments that favor preservation of TOC are not

conducive to perylene formation and give examples of environments where low TOC
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(2.2%) gives rise to high perylene/TOC ratio (34.5 ng mg- , (Silliman et al., 1998)) and

where high TOC (23%) is associated with low perylene/TOC ratios (Gschwend et al.,

1983) to substantiate their hypothesis. A change in the microbial community in the

sediments of the Pettaquamscutt River could certainly explain the shift from lower

perylene concentrations prior to 1865 to higher values thereafter. However, the TOC

content and perylene/TOC ratios obtained for the Pettaquamscutt River core do not agree

with Silliman's hypothesis of increased perylene production in low TOC settings. If that

were the case, the perylene/TOC ratio in the sediments of the Pettaquamscutt River

should vary inversely to the trend in TOC content. That is, a higher perylene/TOC ratio

would be expected prior to 1927 when TOC was on average 1.7% lower (Figure 2a and

2c). However, the calculated perylene/TOC ratio for this site is as high in 1868, when

TOC content was 10.3%, as in 1954, when it was 7.4%. Moreover, while the TOC

content in Siskiwit Lake is invariant at 8.2 + 0.5%, the perylene/TOC ratio for these

sediments varies from 13-30 ng mg-') (Figure 5). While we see no clear correlation

between TOC content and perylene concentration, it seems plausible that microbial

diversity may exert greater influence on the production of perylene than the source of

organic matter. This hypothesis is consistent with the occurrence of perylene in

environments dominated by aquatic and by terrestrial organic matter and with the highly

variable 613C results reported for this compound in the literature (e.g., -23.9 to -23.6%o

(Jiang et al., 2000); -27.7 to -23.6%0 (Silliman et al., 2000); -28.6 to -27.8%o this study).

3.1.2 Radiocarbon Constraints

Down-core compound-specific radiocarbon analysis (CSRA) enabled the

decoupling of perylene produced in situ in the sediments from that generated during

combustion and subsequently deposited in the Pettaquamscutt River. The results obtained

show that the A14C profile of perylene closely follows that of TOC in the deeper portions

of cores from both locations, suggesting a natural, in situ source. However, the

radiocarbon content of perylene present in surficial sediments from the Pettaquamscutt
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River (Hi and H2, shallower than 19-cm) diverges from that of TOC, indicating an

important contribution from fossil fuel combustion. If we assume that the down-core

profile of perylene in the Pettaquamscutt River derives from a mixture of combustion of

fossil fuel (A 4C = -1000 %o) and in situ production (A 4C = TOC values), we can

calculate the fraction of perylene derived from each end-member using a simple mixing

model. The results obtained (Table 1) show that the amount of perylene derived from

fossil sources was minor (less than 5%) prior to 1920, but 6.5-fold greater in surficial

sediments. This result can either be explained by an increase in recent years of the

importance of fossil fuel combustion as a source of perylene and/or by a slow "in-

growth" of perylene from diagenetic alteration of a 14C-modern precursor. One possible

scenario is that fossil fuel combustion is a significant source of perylene in surficial

sediments, when in situ production is at an early stage. As the amount of perylene

produced in situ increases with time, the 14C abundance of perylene can be shifted

towards values closer to its precursor and away from the small fossil contribution. While

this is a likely scenario, the mass accumulation rate of perylene (Figure 3) (which can

also be seen as its production record) indicates that there are uncertainties associated with

this model. Using the sediment horizon dated of 1973 as an example, the contribution of

perylene from fossil sources is calculated at - 18% at a time when the MAR of perylene

was already at its maximum (-200 ng cm-2 yr-1). That would mean that 18% of the

concentration of perylene deposited in sediments dated of 1973 (- 520 ng g-1) derived

from a fossil source. However, this value is twice as high as the concentration measured

for perylene in surface sediments. Irrespective of these scenarios, the 14C data implies

that in the last 30 years, combustion of fossil fuels has become an increasingly important

source of perylene to the sediments of the Pettaquamscutt River. The absence of the most

recent portion of the sedimentary record from Siskiwit Lake prevents further discussion

on the effects of combustion of fossil fuels on the recorded perylene profile.

Commonly, the contribution of fossil sources to the amount of perylene

encountered in sedimentary settings is evaluated by the ratio of a PAH attributed to a

pyrogenic source (e.g. pyrene) to perylene (Gschwend et al., 1983; Venkatesan, 1988)
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(Lipiatou et al., 1993). Ratios of pyrene to perylene between 0.8-15 have been measured

in different combustion sources, while values of 3-54 are encountered in aerosol samples

(Venkatesan, 1988). These high pyrene/perylene ratios in pyrogenic sources can be

attributed to 4-ring PAHs being consistently produced in higher quantities than 5-ring

compounds (Mastral et al., 1998). Our A 14C results show that the use of these intervals as

diagnostic indicators of the pyrolytic source of perylene in sedimentary settings should be

used with caution as in situ production can shift the pyrene/perylene ratio towards low

values. The 14C abundance of perylene in the Pettaquamscutt River reveals that even

when -20% of the perylene concentration is derived from pyrogenic sources the

pyrene/perylene ratio can be as low as 0.4 (Table 1).

Table 1. Fraction of the Pettaquamscutt River perylene derived from fossil
fuel combustion (considering A14C of TOC as the second end-member).

A4Depth A14C AI4C Fraction Average
Year TOC Perylene Fossil Fossil Pyrene / Perylene

(cm) (%0) M) ( % (%0) (%) Ratio in Horizon

1991 5 -3.7 -239.6 -1000 23.7 1.52
1972 14.5 20.3 -164.1 -1000 18.1 0.40
1947 24.5 -125.2 -186.3 -1000 7.0 0.50
1911 33 -132.2 -153.5 -1000 2.4 0.12
1885 39 -100.4 -115.5 -1000 1; .7 0.05
1858 45.5 -62.2 -107.2 -1000 4.8 0.03
1804 57 -88.2 -132.7 -1000 4.9- 0.01
1750 67 -95.2 -132.9 -1000 4.2 0.01

Average 3.6

Radiocarbon results obtained for perylene and TOC from Siskiwit Lake contrast

greatly with those reported for Pettaquamscutt River. Because Siskiwit Lake is some 55

km away from the nearest populated area (McVeety and Hites, 1988), it receives a

smaller load of PAHs derived from combustion of fossil fuels than the Pettaquamscutt

River. The smaller contribution of fossil-derived PAHs to Siskiwit Lake is illustrated in

Figure 3. While perylene and TOC A14C values in the Pettaquamscutt River indicate a

larger fossil contribution beginning in the early 1900s, the radiocarbon abundance of
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these species increased towards the present in the Siskiwit Lake core (Figure 3). Perylene

and TOC follow basically the same 14C trend, but we cannot rule out the influence of

fossil sources to the perylene content in recent years, as we have no data for the

uppermost portion of core. However, the higher 14C abundance in pyrogenic PAHs from

Siskiwit Lake relative to the Pettaquamscutt River (Chapter 6) attests to the reduced

contribution of fossil fuel derived compounds to this remote location. All pyrogenic

PAHs deposited in the Pettaquamscutt River in the 1950s contained significantly less 14C

than equivalent compounds reaching Siskiwit Lake (Chapter 6).

Perylene A14C (%o)

-300 -250 -200 -150 -100

2000
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1850

1800

1750
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TOC A14C

-200 -100

-- o -- Pettaquamscutt River 
0 Siskiwit Lake

....................................

Figure 3. Comparison of the 14C abundance in (a) perylene and (b) TOC in Siskiwit Lake
and in the Pettaquamscutt River.
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3.2 TOC

Results for percent of total organic carbon (TOC), percent of organic nitrogen

(Norg), Corg/Norg ratios, as well as 13C and A14C of TOC for the Pettaquamscutt River and

Siskiwit Lake sediments are plotted in Figures 2-7 and listed in Appendix 5. Measured

values of TOC, Norg, Corg/Norg, 613C and A14C for the combined horizons of the

Pettaquamscutt River followed closely the trends set by the high-resolution core, so the

following discussion will focus on the more detailed profiles for this system.

TOC and Norg contents in the sediments of the Pettaquamscutt River ranged from

6.8-11.2% (average = 9.1 + 1.1%, n= 71) and 0.65-1.35% (average = 0.94 ±+ 0.12%, n=

71) of dry weight, respectively. The lowest TOC content is found at a layer dated 1938

(27-cm) (Figure 2) and is related to a 17.5% shift in the average TOC content from 9.8 ±+

0.8 % prior to 1927 to 8.1 0.7 % for sediments deposited after that. The timing of this

decrease is coincident with the construction of the Lacey Bridge in 1934 (Figure 1,

Chapter 6) (Gaines, 1975), which could have caused a restriction in the seawater

intrusion, therefore lowering the influx of marine plankton to the lower basin. The Norg

content down-core also shows small variations that result in a Corg/Norg ratio profile

(Figure 4d) that can be divided into 3 parts: decreasing Corg/Norg from 1730s (10.8) to

1850s (9.2), a 50-year reversal towards higher Corg/Norg ratios (11.2 in 1900), and a

century-long Corg/Norg decline to the present (8.6 in 1999). The fluctuations observed in

Figure 4d fall in the transition range between aquatic (C/N = 4 - 10) and terrestrial (C/N >

20) organic matter (Meyers, 1997), yet the bl 3C profile does not show a concomitant shift

in one direction or another (Figure 4b). The constancy of b63C throughout the core (-25.4

to -23.0 %0, average = -24.1 + 0.5, n= 37) seems to imply that the mixture of sources of

organic matter to this basin has not changed significantly overtime. Similarly, Corg/Norg

ratios and 613C values in Siskiwit Lake were invariant at 17.5 ±+ 0.9 and -25.4 ±+ 0.2,

respectively, throughout the sedimentary record (Figure 5). A plot of Corg/Norg ratio

versus 613C of TOC indicates that the majority of organic matter in the Pettaquamscutt

River sediments is derived from algal biomass, while that present in Siskiwit Lake

contains higher amounts of terrestrial vegetation (Figure 6). Although many freshwater
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species are present in the lower basin of the Pettaquamscutt River throughout the year,

the vast majority of the cells at this site are brackish and marine species (Menezes, 2003),

in agreement with the position of our data in Figure 6. This plot also implies that the

decrease in TOC content in the 1930s was not related to a switch of organic matter source

to this system. More likely, the lower TOC content in recent years reflects a decrease in
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the amount of phytoplankton-derived mass that reaches the lower basin. A comparison

between the amount of organic carbon present in the sediment (Figure 2a) versus its mass

accumulation rate (MAR) (Figure 2b) shows that the recent reduction in %TOC can be

related to a dilution of aquatic biomass with clastic material. Pressures caused by an

increase in the local human population could account for the observed increase in

sedimentation rate in this region. If dilution rather than change in the main source of

organic matter to the sediments is the cause of the decrease in % TOC, then the down-

core shifts in Corg/Norg ratio could be due to differences in preservation of the terrestrial

and aquatic components over time. It is known that vascular plant tissues have a tendency

to gain N during microbial degradation (lowering the Corg/Norg), while plankton tends to

208

1960

1920

1880
(!)
>-.

1840

1800

I ZFJ



lose N during the process (elevating the C/N) (Hedges and Oades, 1997). Additional

work is required to better understand the organic carbon composition and preservation in

this system.
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Figure 6. Elemental and isotopic characteristics of organic matter produced by terrestrial
(C3 and C4 plants) and aquatic (marine and lacustrine) biomass, based on Meyers (1997).
TOC from Siskiwit Lake seems to contain higher amounts of terrestrial organic matter
than the Pettaquamscutt River.

Radiocarbon measurements can be valuable in deciphering the origin of the

sedimentary TOC. Determination of 4C content in tree rings of known age has shown

that atmospheric levels of 4CO2 were relatively constant prior to the 1800s (Stuiver and

Quay, 1981). Similar results were obtained for coral rings from Florida, which showed
A14Caverage A14C values equal to -51 2%o from 1800 to 1900 (Druffel and Linick, 1978).

Significant changes in the radiocarbon content of the atmosphere began at the turn of the
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20th century. It is estimated that a 20%o decrease in A 4C of atmospheric CO2 occurred

from 1890 to 1950, primarily due to emissions of 14C-free CO2 from combustion of fossil

fuels (the so-called 14C Suess effect) (Stuiver and Quay, 1981). However, the major

feature in the atmospheric 14CO2 content is the almost doubling in 14C levels between

1955 and 1963, resulting from radiocarbon production by atmospheric weapons testing

(Figure 7). After the Test Ban Treaty was signed in 1963 (Carter and Moghissi, 1977),

atmospheric 14CO 2 levels began to decline at a constant rate due to a combination of

uptake by the oceans and biosphere and dilution with 14C-free fossil fuel emissions.

Because atmospheric CO2 and dissolved inorganic carbon contain different amounts of

radiocarbon, terrestrial and aquatic organic matter incorporate contrasting amounts of 4C

that can be used to distinguish them (Pearson and Eglinton, 2000).

To further constrain the sources of TOC to the Pettaquamscutt River sediments,

we calculated the relative contribution of possible organic carbon sources to this site

using the measured A14C and 813C values for the TOC (Figure 4a and 4b, gray-filled

symbols). We assumed a simple mixing model among an aquatic, a terrestrial and a

fossil end-member:

A14CTOC = (fAqA 14CAq) + (fTerrA 14CTerr) + (fFossilA14CFossil)

13CTOC = (fAq 1 3 CAq) + (fTerr13 CTerr) + (fFossil 13CFossil)

fAq + fTerr + fFossil 1

where A14CTOC and 613CTOC are measured values for each horizon and fAq, fTerr and fFossil

are the unknown fractions of aquatic, terrestrial and fossil organic matter. A14C values for

the three end-members were taken from the literature. We used the radiocarbon record of

mollusk shells from Georges Bank, North Atlantic (Weidman and Jones, 1993) as the

aquatic end-member (A 14CAq). The terrestrial end-member was assumed to be a mixture

of 20% atmospheric CO2 (Levin et al., 1985; Levin and Kromer, 1997) and 80% soil

(Richter et al., 1999) (A 14CTerr) and a value of -1000%o was assigned to contributions

from combustion of fossil carbon (A14CFo55sil). For the purpose of this model, 613C values

for the three end-members were considered invariant through time. An average value for
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C 3 plants (-28%o) (O'Leary, 1988) was assigned to the terrestrial component (13CTerr), -

30%0 was used for fossil fuels ( 13 CFo s sil) (O'Leary, 1988; Hunt, 1996) and -21%o was

designated as representative of aquatic organic matter (13CAq) (Meyers, 1997). While the

carbon isotopic composition of petroleum can vary widely (-30 to -20%o) (Whelan et al.,

1993; Hunt, 1996), the 513C of the oil standard used by the US National Bureau of

Standards is -29.8%o (Hunt, 1996), thus our choice of value. The relative contribution of

the three end-members was calculated for each sediment horizon then averaged down-

core. The mean contribution of each end-member was used in the model curve shown in

Figure 7b. The use of a mean value for the fractional contribution of the sources implies
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that the amount of A14C in each compartment is the only parameter affecting the shape of

the A 4C profile of TOC. Appendix 6 lists the values used in the model, the results

obtained for each depth interval, as well as the calculated values plotted in Figure 7b.

This exercise reinforced the notion that aquatic biomass is most likely the dominant

source of organic matter to the lower basin of the Pettaquamscutt River sediments (57 +

4%). Terrestrial organic matter, defined as a mixture of a recently produced 14C-rich

fraction (land plants -20%) and an older portion (soil -80%), accounted for 36 + 5% of

the TOC, followed by combustion of fossil fuel (- 7 + 2%) (Figure 8).

Year of Deposition

1990 1980 1970 1960 1950
1 .U

0.8

C
0c:

0
. 0.6
O

.>0.4

'5 0.4
E
E
0

0.2

0.0

Figure 8. Estimative of the proportion of fossil, terrestrial and marine organic matter
present in the TOC of the Pettaquamscutt River sediments.
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4. CONCLUSIONS

The combination of historical sedimentary record and 513C and A14C

measurements for perylene and TOC provided some insight into the complexity of

sources of these compounds. Perylene seems to be highly sensitive to small variations in

depositional conditions, as cores collected in different regions of the same site show

contrasting concentrations and down-core profile. The results obtained in this study

suggest that variations in the microbial community in the sediments may explain these

variations. The combination of 13C and A14C of perylene and TOC helped us discern

with some confidence the importance of fossil fuels to the sedimentary profile of this

PAH. While combustion is a significant source of perylene in the suburban

Pettaquamscutt River, that does not seem to be the case for the pristine Siskiwit Lake.

Our results also suggest that commonly employed diagnostic ratios such as perylene/TOC

(for assessing in situ production of perylene) and pyrene/perylene (for assessing the

contribution of combustion of fossil fuels to the amount of perylene in the sediments)

should be used with caution. While in situ production can shift the latter towards low

values, no correlation was observed between TOC content and perylene.
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CHAPTER 8

EVALUATION OF BLACK CARBON ISOLATION METHODS THROUGH

COMPARISON WITH WELL-DEFINED COMBUSTION PRODUCTS

1. INTRODUCTION

Black carbon (BC) is a generic term used to describe a continuum of reduced

carbon species (Figure 1) remaining after incomplete combustion of modem biomass and

fossil fuels. In reality, the nomenclature used to define this highly condensed residue

depends on the process studied or method of analysis applied and includes soot,

elemental carbon, carbon black, char and charcoal. BC particles are ubiquitous in the

environment, having been measured in soils, sediments, atmosphere and snow from a

variety of locations (Smith et al., 1973; Griffin and Goldberg, 1981; Suman, 1986;

Suman et al., 1994; Rose, 1995; Glaser et al., 2000; Schmidt et al., 2001; Eglinton et al.,

2002; Masiello et al., 2002). These particles range from submicron in size (<1 gm) to

several mm (Figure 1) and their presence in the atmosphere can have hazardous health

effects. The EPA began to regulate emission of particles smaller than 2.5 gm (PM2.5)

(EPA, 1997) after it became apparent that they were too small to be stopped in the upper

respiratory tract and could penetrate into the lungs (Pedersen et al., 1980; Samet et al.,

2000). In addition to being directly hazardous to human health, recent studies have also

shown that BC plays an important role in the absorption of solar radiation (Kirkevafg et

al., 1999), biogeochemical cycling of carbon (Gustafsson and Gschwend, 1998; Masiello

and Druffel, 1998; Middelburg et al., 1999), and the bioavailability of organic

contaminants (McGroddy et al., 1996; Gustafsson et al., 1997; Accardi-Dey, 2003).

Emission inventories generally agree that, at present, volcanic activity and natural

vegetation fires are negligible sources of BC compared to the widespread combustion of

fossil fuels and anthropogenic burning of biomass (Suman et al., 1994). However, there is
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still no agreement on the relative importance of each of these two sources to the total

amount of BC emitted yearly. Estimates of annual BC emissions vary from 5.98 to 12 Tg

(1 Tg = 1012g) for biomass burning, and 6 to 7.96 Tg for fossil fuel (Penner, 1995; Cooke

and Wilson, 1996). Even though these are good first approximations of the order of

magnitude of BC emissions, they yield conflicting information as to the importance of

combustion of modem biomass and considerable uncertainty still remains regarding the

measurement and source apportionment of this species.

Size -

Plant 
Structure

Reactivity ,-

Atmospheric
Transport

Figure 1. Black carbon
slightly charred biomass,

Combustion Combustion
Residues Condensate

srtge8tey ~had _ Chwcoi s o

mm and - mm to Submicron
larger submicron

Abundant Significant Few None
presence

High ) Low

Short Short Long (up to
(meters) (m to Km) m to Km 1000s of Km)

Increasing Temperature

is a continuum of combustion products ranging from labile,
to highly refractory soot and graphite.

In order to constrain the biogeochemical cycle and global budgets of BC,

improvements are needed in its measurement, especially in sedimentary reservoirs, and in

the identification and apportionment of BC sources. Several techniques have been

explored for quantification and source apportioning of BC, including (a) characterization

of surface morphology (Griffin and Goldberg, 1981), (b) measurement of 813C (Cachier,

1989) and (c) measurement of A4C (Currie et al., 1983; Masiello and Druffel, 1998;
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Klinedinst and Currie, 1999; Reddy et al., 2002). However, BC is an operationally-

defined term, and there are still no certified reference materials to intercalibrate results or

consensus regarding a standard analytical method. Until a common ground for BC

quantification and characterization is achieved, assessment of its implications will remain

subject to considerable uncertainty.

In this paper, we evaluate three different methods for the isolation of BC from

sediments. We compare the down-core concentration and carbon isotopic trends of BC to

that of a well-defined product of incomplete combustion. Polycyclic aromatic

hydrocarbons (PAHs) are formed concurrently with BC during combustion, therefore the

distribution of these two species are closely related. Assuming BC and PAHs found in

sediments derive from a common source, the stable carbon (613C) and radiocarbon (A' 4C)

content of these fractions should be similar. We evaluate results obtained for PAHs and

BC from sediments from the Pettaquamscutt River, RI, a site with well-established

chronology and record of total PAHs (Lima et al., 2003). The results obtained illustrate

the complex scenario of BC determinations and highlight the benefits of comparing BC

results to that of a better-defined combustion product.

2. EXPERIMENTAL SECTION

A full description of the sampling site, collection and depth-age relationship of

the sediment cores were given in Chapters 4 and 6. Procedures for extracting and

calculating the concentrations and fluxes of PAH was given in Chapter 3. Chapter 6

describes the procedure utilized for combining several sediment cores in order to obtain

enough carbon mass for radiocarbon measurements, details the analytical methods

employed for stable carbon and radiocarbon isotopic measurements and data reporting,

and elaborates on 14C results obtained for individual PAHs and total organic carbon

(TOC). Methods pertinent to BC analysis are described below.
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2.1 Chemical Oxidation Method

The dichromate/sulfuric acid oxidation method developed by Wolbach and

Anders (1989) and modified by Masiello and collaborators (2002) was used to generate

an 8-point depth profile of the amount and radiocarbon content of BC (BCCheincal). This

method separates refractory BC from labile organic carbon and kerogen' by slowly

oxidizing the organic carbon with a dilute oxidant solution that can be controlled by

choice of temperature and duration of the reaction. Mass loss curves showed that

elemental C, reactive (marine) kerogen and mature (terrestrial) kerogen have markedly

different half-lives (610, 7 and 59 h respectively) (Wolbach and Anders, 1989).

Dried sediment samples (1.5 g) were weighed into Teflon centrifuge tubes (Nalge

PFE Oak Ridge Centrifuge tubes, 40 mL) treated with 6 N HCl to remove calcium

carbonate, rinsed with Milli-Q water and subsequently demineralized with a 50% HF -

10% HCl solution, by overnight agitation on an orbital shaker table. The samples were

then rinsed with Milli-Q water, air-dried and weighed, and repeatedly soaked in excess

oxidant (0.25 M Cr202-- 2 M H 2 SO4 at 23°C) and shaken for a measured length of time.

The chemically oxidized samples were centrifuged at 4000 rpm for 10 minutes, rinsed 4

times with Milli-Q water and dried to constant weight under vacuum. A more complete

description of this procedure can be found in Masiello and collaborators (2002).

2.2 Thermal Method

The thermal oxidation method applied in this study was developed and tested by

Gustafsson and collaborators (1997; 2001) for quantifying the amount of BC present in

sediment samples. BCTher,,al is defined as the reduced carbon content remaining in a

sediment sample after a 375°C thermal treatment for 24 hours (g C/g sediment). This

method involves the least amount of sample manipulation of all three methods evaluated,

and recent radiocarbon measurements conducted on three National Institute of Standards

and Technology standard reference material (NIST SRM 1941a - Organics in Marine

Sediment, NIST SRM 1944 - New York /New Jersey Waterway Sediment and 1649a -

Insoluble high molecular weight organic matter formed by condensation of diagenetic products.
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Urban Dust;) suggested that the 375°C thermal oxidation method could be valuable for

determining the BC content in aerosol and sediment samples (Reddy et al., 2002). In this

method, dried sediment (- 200 mg) was spread on a pre-combusted watch glass and

heated in a programmable oven (Fisher Scientific IsoTemp) for 24 hours under excess air

at 375°C. The oven temperature was ramped at 15°C/min to 300°C (held for 5 min) and

then ramped at 5°C/min to 375°C (held at 375°C for 24 hours). The remaining carbon, as

measured with an elemental analyzer (section 2.4) is operationally defined as BCThermal.

The 375°C-thermal oxidation method was used in two sets of samples from the

Pettaquamscutt River. First, a high-resolution profile of BCThermal content was generated

and subsequently a coarser-resolution 8-point depth profile was used to measure the

stable carbon isotopic composition and radiocarbon abundance of this fraction.

2.3 Chemical Oxidation/Thermal Method

This BC method encompass a demineralization step, the removal of hydrolysable

organic matter by chemical treatment using trifluoroacetic acid (TFA) and HCl, and the

thermal oxidation of the non-hydrolyzable organic matter by combustion at 375°C for 24

hours, with excess air. G6linas and collaborators (2001) developed this method as an

alternative to the thermal procedure in an attempt at reducing the potential formation of

condensation products that could overestimate the amount of BC present in a sample. A

more detailed description of each step of the method can be found in G6linas and

collaborators (2001). This method was used to generate a high-resolution profile of

BCChemical using sediment from the original core.

2.4 Carbon and Nitrogen Determinations

A Fisons 1108 elemental analyzer was used to measure the total organic carbon,

residual carbon (BC) and nitrogen content of the samples. To remove the inorganic

carbon fraction, about 2 mg of dry sample was weighed into a silver capsule and acidified

with 20 gL of HCI 2N. The samples were then dried in oven at 50°C, placed inside tin

capsules for better catalysis of the oxidation reaction, and analyzed. Total organic carbon
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concentrations were calculated in relation to the whole sediment and masses are reported

as percent weight (% wt.). Organic carbon/organic nitrogen (Corg/Norg) ratios were

calculated on an atomic basis. No significant difference was observed when Corg/Norg was

compared to Corg/Ntotal (not acidified). Samples were run in triplicate and all reported

weight percentages represent the mean. Concentration of carbon and nitrogen were

determined through a 5-point calibration curve (0.09 to 1 mg) of a sulfanilamide

standard. Instrumental blanks were run after sets of 12 analyses, yielding carbon blanks

better than 0.004 mg and nitrogen blanks < 0.005 mg.

3. RESULTS AND DISCUSSION

The three analytical procedures employed in this study for quantifying

sedimentary BC showed markedly different results (Figure 2-5, Appendix 7). A

comparison among the down-core profiles obtained using these methods for the

Pettaquamscutt River samples is shown in Figure 2. Stable carbon isotopic composition

(as 813C values) and radiocarbon content were measured for BC recovered by the

chemical and the thermal methods. These results are compared to values obtained for

individual PAHs in Figure 5. The amounts for BC recovered by each method, stable

carbon and radiocarbon values and residual nitrogen content are listed in Appendix 7.

The three analytical methods evaluated in this study for the quantification of

sedimentary BC resulted in noticeably different down-core profiles (Figure 2). When

these results are contrasted to the high-resolution record of total PAHs (Lima et al., 2003)

and their radiocarbon content, it becomes apparent that the BC particles isolated by the

chemical oxidation method better coincide with the well-defined combustion products

(PAHs). Because of the intrinsic details inherent to each BC isolation procedure, we will

discuss the results obtained by each method separately.
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Figure 2. Comparison between the down-core profile of total PAHs and black carbon
particles isolated by the chemical/thermal oxidation (GBC) (G61inas et al., 2001), thermal
(BCTheral) (Gustafsson et al., 1997) and chemical oxidation (BCChemical) methods
(Masiello et al., 2002).

3.1 Thermal Oxidation Method

The sedimentary BC record generated using the 375°C-thermal method did not

show any significant down-core trend or coincide with the profile of total PAHs (Figures

2 and 3). This result is in contrast to the remarkable correlation obtained by Gustafsson

and collaborators (1997) between the profiles of BC and pyrene for a sediment core from

Upper Mystic Lake (MA), which, like the Pettaquamscutt River, contains anoxic bottom

waters. Our samples showed no correlation between the high-resolution profile of total

PAHs and BCThemal quantity (Figure 2). BCThermal weight percent in the Pettaquamscutt
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River ranged from 0.43-0.68 %wt. for high-resolution down-core measurements to 0.25-

0.95 %wt. when samples were combined into coarser depth-intervals (Figure 3a). The

lack of agreement in BCThermal content for related samples was surprising and led us to

investigate some of the possible reasons for this variability.
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Figure 3. Black carbon content and nitrogen residue in sediment treated with the thermal
oxidation method. The modified thermal method utilized sulfurous acid instead of HC1
for removal of the inorganic carbon fraction (Accardi-Dey, 2003).

Two common criticisms of the thermal oxidation method are that it can either (a)

overestimate the amount of BC present in a sample by inefficiently removing natural OC

and promotting "charring" 2 of organic matter (G61inas et al., 2001) or (b) underestimate

the amount of BC by thermally oxidizing some BCThernal particles (Nguyen et al., 2004).

2 Charring = includes the incomplete removal of TOC and the condensation of TOC to form a more
resistant carbon material.
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Accardi-Dey (2003) extensively addressed these concerns and showed that (a) repeated

combustion of Boston Harbor sediment (1.3 ±0.1 wt % TOC and 0.10 ±+0.01 wt % Ntotal)

resulted in a Gaussian distribution of BCThermal content, ranging between 0.08 and

0.17%wt. (average = 0.12 _±0.02 %wt., n = 27), and (b) samples with similar TOC content

could yield varying BCThermal amounts due to incomplete removal of carbon. Accardi-Dey

observed that for a given pair of samples with similar TOC content, the one with highest

nitrogen amount was more susceptible to charring and suggested that residues of nitrogen

in combusted sediments could serve as a signal for the incomplete removal of N-

containing macromolecules (e.g., proteins). For example, approximately 20% of the

original nitrogen content in the Boston Harbor remained after the sediment was treated

with the 375°C-thermal oxidation method (nitrogen residue=0.02+0.01 %wt.). The

resulting C/N ratio of these particles was approximately 7, which is extremely low

compared to a C/N ratio of 60 +3 reported for diesel particulate matter (SRM NIST 1650)

(Accardi-Dey and Gschwend, 2002). Evaluation of the data acquired for the

Pettaquamscutt River shows that the average nitrogen residue was 0.09±0.01%wt Norg (n

= 22) for the high-resolution core and 0.07-+0.03%wt. Norg (n = 8) for the coarse

resolution samples, suggesting that charring had indeed occurred in these sediments

(Figures 3 and 4, Appendix 7). The C/N ratio measured for the BCThernmai particles from

the Pettaquamscutt River ranged from 7 to 10. These values are similar to those measured

by Accardi-Dey (2003) for sediments from the Boston Harbor and confirm that charring

probably occurred in our samples. Selected samples from the Pettaquamscutt River were

also measured for BCThermal and nitrogen residue by Accardi-Dey (2003) using a slightly

modified thermal method (using sulfurous acid for elimination of carbonates rather than

HCl), and yielded similar concentrations (Figure 3a and 3b). The 13 C-enriched values of

BCThermal compared to TOC (Figure 5b) in conjunction with elevated nitrogen residues in

combusted sediment, may imply that proteins present in the Pettaquamscutt River

sediments could be resisting thermal oxidation, as proteins are known to be 3C-enriched

compared to bulk TOC.
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Figure 4. Correlation between the amount of black carbon isolated from the
Pettaquamscutt River sediments by three different BC analytical methods and the amount
of nitrogen remaining in the treated sample. Solid trend line indicates the results obtained
by Accardi-Dey (2003) during addition experiments with Boston Harbor sediment.

Reddy and collaborators (2002) have provided radiocarbon evidence that the

375°C thermal method can isolate BC from marine sediments (NIST SRM 1941a and

NIST SRM 1944) without significant interference from organic carbon. In comparison,

the radiocarbon and stable carbon results obtained for BCThermal isolated from the

Pettaquamscutt River sediments follows the TOC trends more closely than the

combustion-derived PAHs (Figure 5a and 5b), suggesting that a fraction of the original

organic carbon was not oxidized. While the 14C abundance of the majority of the

pyrogenic PAHs analyzed has remained low since the 1950s, BCThermal shows an increase

in 4C abundance in the 1960s that correlates with the rise in atmospheric 14C due to

nuclear weapons tests (bomb-spike) (Levin and Kromer, 1997). This jump in the
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BCThermal 14 C content is a clear indication that a portion of the TOC initially present in the

sediment was not removed by thermal oxidation.

Several factors may contribute to the difference observed between the BCThermal

results for the SRMs and for sediments collected in the environment. Laboratory

experiments have shown that the percentage of carbon and nitrogen that survives the

thermal method is directly related to the size and morphology of the particulate organic

matter in the sediment sample. For example, Accardi-Dey (2003) added known amounts

of sodium citrate to pre-combusted sediment samples from the Boston Harbor and

observed that the percentage of sodium citrate that remained after the 375°C thermal

oxidation method decreased with decreasing crystal size (Figure 4). Accardi-Dey

concluded that this resulted from better oxygen access to small OC particles. Therefore,

the extensive grinding and sieving that SRMs undergo prior to certification could have

reduced the size of OC clumps, favoring oxidation and preventing charring by the

thermal method, thus promoting good correlation between A14C of PAHs and BCThermal in

the SRMs. The formation of authigenic minerals in sulfur-rich sediments, such as the

Pettaquamscutt River, may also encourage charring of organic matter as the latter can be

entrapped in the minerals and not be reached by available oxygen (Accardi-Dey, 2003).

However, determination of BCThermal in sulfur-rich sediments from the Black Sea did not

yield elevated BCThermnal values (0.197-0.815 %wt.) (Middelburg et al., 1999).

3.2 Chemical Oxidation Method

Accurate results from the chemical oxidation method are dependent on selection

of the appropriate length of oxidation for the samples of interest. To determine the

response of the organic carbon present in the Pettaquamscutt River sediment samples to

dichromate oxidation, we initially combined sediments from all 70 depth horizons into a

composite sample and ran triplicate aliquots through the chemical procedure (prior to

treating the samples of interest). To follow the oxidation process, eleven oxidation steps

were performed on these composite samples (at 0.25, 0.5, 1.5, 3.5, 8, 50, 101.5, 224, 400,

657 and 850 h), following the procedure outlined in section 2.1 and fully described by
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Masiello and collaborators (2002). Triplicate determination of the oxidation rate of TOC

from the Pettaquamscutt River sediments showed good reproducibility of the method

(Figure 6). Approximately 100 h of oxidation were required before sample mass stopped

decreasing significantly (Figure 6a). This is two times longer than the 50 h reported by

Masiello and collaborators (2002) for coastal marine sediments. Carbon loss, on the other

hand, stabilized at approximately 650 h (Figure 6b), similar to the 675 h reported by

Masiello and collaborators. The uncertainty for triplicate analyses was + 0.002 for % OC

and + 0.02 for % wt.. For the 8-point depth profile of BCChemical shown in Figure 2, about

Fraction Modern (FM)

0.0 0.2 0.4 0.6 0.8 1.0

613C ()

-28 -26 -24 -22 -20

2000

1950

1900

1850

1800

1750

A PAHs - - -- BC O-- BC, TOC
Chemical Thermal

Figure 5. Down-core profiles of the radiocarbon content (expressed as fraction modem)
and stable carbon composition of total organic carbon, BCThermal, BCChemical and
individual PAHs isolated from the sediments of the Pettaquamscutt River.
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1.5g of dried sample was demineralized and repeatedly treated with 0.25M Cr202-- 2M

H2 SO4 (23°C) for 650 h. The resulting residue was rinsed 4 times with Milli-Q water,

dried to constant weight under vacuum and analyzed for carbon and nitrogen content on

the elemental analyzer.
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Figure 6. (a) fraction of the demineralized sediment lost versus number of hours of
chemical oxidation; (b) fraction of organic carbon (OC) in the dry sediment sample
versus number of hours of chemical oxidation.

The down-core profile of BCChemical generated for the Pettaquamscutt River

sediments shows a significant correlation with pyrogenic PAHs (Figure 2). The amount

of BCChemical in these samples is lowest in the late 1700s (0.35 %wt.) and increases

steadily to a maximum between 1910 and 1950 (0.70 %wt.), following the classical
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profile of sedimentary PAH (Hites et al., 1980; McVeety and Hites, 1988). A typical

criticism to this chemical oxidation method is that (a) it may not completely oxidize the

OC present in a sample, thus overestimating the BC content of sediments, and that (b) the

several steps involved can result in loss of sample. Although care was taken during

sample manipulation, losses of BC are possible. Even after centrifuging the samples at

4000 rpm for 10 minutes, it is difficult to determine if micron-sized BC particles are not

being pipetted out with the dark/reduced dichromate solution.

The amount of BCChemical show no correlation (R2 = 0.04) with residual nitrogen

content (Figure 4) and show 613C values and radiocarbon contents that resemble those of

the well-characterized PAHs (Figure 5). Moreover, 613C values obtained for the

BCChemical plot within the same range as the pyrogenic PAHs. The low 14C abundance in

individual PAHs (excluding retene and perylene) from the Pettaquamscutt River

sediments is consistent with a dominantly fossil fuel combustion source (FM = 0.00-0.35).

While the 14C abundance of BCChemical isolated from the same sediment horizons were

significantly more modern than the PAHs (FM = 0.44-0.71), BCChemical particles show a

decrease in 14C abundance beginning in the 1850s that closely correlate with the onset of

widespread fossil fuel burning, in what is usually referred to as the Suess Effect. These

observations highlight the agreement encountered in the Pettaquamscutt River sediments

for pyrogenic PAHs and chemically isolated BC.

Although good correlation was obtained between the 14C abundance of BCChemical

and that of pyrogenic PAHs, if these two species truly derived from a common source

their radiocarbon content should be closer in value. Discrepancies in radiocarbon values

obtained for BCChemical and pyrogenic PAHs have been previously observed. Radiocarbon

measurements conducted on BC isolated from SRM 1649a by two thermal methods (FM=

0.065 +0.003 and 0.038 +0.012) and the chemical oxidation method in question (0.153

_+0.002) yielded contrasting results. In that study, the higher fraction modern measured

for BCChemical versus BCThermal suggested that the former was not efficient in removing

organic carbon, thus raising the fraction modern 3-fold. By applying a simple mass

balance to the radiocarbon content of BCChemical and BCThermal, using A 14C of TOC as a
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modem end-member and A14C of fluoranthene as the fossil end-member, it is possible to

calculate the fraction of organic carbon still present in each operationally defined BC

fraction (Table 1). The results obtained show that both BC isolation methods fail to

completely remove organic carbon from the samples. However, the chemical oxidation

method was on average 25% more efficient for the sediments of the Pettaquamscutt River

than the thermal oxidation method.

Table 1. Fraction of organic carbon remaining after oxidation by a thermal and a
chemical method.

1
4 C A 14 C BCThermal BCChemical

Horizon Year Flaa TOC 14 OC Remaining Al4 C OC Remaining
(%0) f (% C)b (o) (%)b

H1 1991 -912.2 -3.7 -195.1 79 -323.2 65
H2 1972 -945.6 20.3 -45.5 93 -398.9 57
H3 1947 -893.3 -125.2 -354.3 70 -567.0 42
H4 1911 -912.4 -132.2 -318.3 76 -496.0 53
H5 1885 -836.0 -100.4 -264.9 78 -418.1 57

a Appendix 4; discussion on significance of fluoranthene in Chapter 6
b A CBC = (oc,*A 4 Coc) + (fPAHI*ACPAH), foc +fpAH = 1

3.3 Chemical / Thermal Method

BC isolated by this method is usually referred to as graphitic black carbon (GBC)

(G61inas et al., 2001; Dickens et al., 2004), so we will keep to this convention when

discussing BC isolated by this method. The chemical/thermal method yielded

consistently the lowest down-core BC values in the Pettaquamscutt River sediments

(Figure 2). GBC values ranged from 0.06 %wt. to 0.24 %wt. throughout the core, with an

average C/N ratio of 36±10 (n=22). Similar low GBC results were obtained when this

method was used in a soil intercomparison exercise involving six different BC methods

and five international laboratories (Schmidt et al., 2001). It has been suggested that one

reason for the significantly lower BC amounts isolated by the GBC-method may be due

to the numerous manipulation steps inherent to the analytical procedure (Accardi-Dey,

2003). However, a different explanation may be that this method isolates only the most
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refractory portion of the BC spectrum - fossil graphitic black carbon derived from the

weathering of thermally metamorphosed rocks (Figure 1). In fact, Dickens and

collaborators (2004) isolated BC particles from sediments off the Washington coast using

the GBC method and found a trend of decreasing GBC flux with increasing distance

offshore. GBC recovered from these samples was highly depleted in 14C and because they

studied samples deposited prior to the onset of the industrial revolution, the authors

suggested that this fraction corresponded to graphite weathered from rocks rather than

from fossil fuel combustion.

GBC in the Pettaquamscutt River sediments was constant at 0.11±0.01 %wt.

between 1789-1898 and 1964-1999. However, these values doubled between 1898-1964

(0.20-+0.02 %wt.) around the time of maximum increase in PAH concentrations (Figure

2). If GBC isolated from this system were exclusively derived from the weathering of

rocks, it would be expected that the percent weight of this fraction would either (a) have

remained high (at 0.2 %wt) since the turn of the century due to increased weathering

caused by urban development or (b) have kept constant though time, unaffected by

urbanization. The bedrock formation underlying the Pettaquamscutt River is

predominantly Rhode Island Formation meta-sedimentary rock, consisting of sandstone,

conglomerate, schist and graphite (Hermes et al., 1994). Consequently, it is reasonable

that a portion of the BC present in the Pettaquamscutt River sediments is GBC. However,

the fact that the GBC profile is skewed towards higher values when PAH concentrations

are at their maximum does not fit this scenario and suggests an additional anthropogenic

source. Unfortunately, no 813C or A14C determinations were conducted of these GBC

particles due to the low yield of residual carbon achieved with this method. At present,

the doubling in GBC content observed between 1898-1964 remains unexplained.

232

- - - ~ ~ ~ ~ ~ ~ ~ ~ ~ _



4. CONCLUSIONS

Comparison of the quantity and isotopic composition of BC isolated by three

different methods from the sediments of the Pettaquamscutt River sediments illustrated

the difficulties involved in evaluating a portion of the carbon pool that is still

operationally defined. BC isolated by the dichromate/sulfuric acid oxidation method

showed the best down-core correlation with the historical trend of total pyrogenic PAHs.

Determination of the 14C abundance of BCChemical and individual PAHs supported the

quantification results. Although an unknown portion of the true BC quantity may have

been lost due to manipulation of the samples, the chemical oxidation method seems to be

a the most promising alternative for quantification of environmental BC in anoxic,

organic and sulfur rich sediments where the application of the less manipulative 375°C-

thermal method can give biased results.
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CHAPTER 9

CONCLUSIONS

The excellent preservation of laminated sediments of the Pettaquamscutt River

has allowed for the construction of a high-resolution historical record of pyrogenic PAH

emissions from fossil fuel and biomass sources since pre-industrial times. Our data

revealed relatively constant PAH fluxes between 1978 and 1996, followed by an abrupt

increase from 1996 and 1999. This trend agrees with other recent studies that showed

constant (Schneider et al., 2001) and increasing (Van Metre et al., 2000) concentrations

of PAHs in selected locations. However, contrary to these investigations we believe that

the recent increase in PAH deposition may be due to a rise in combustion of diesel fuel

associated with traffic of heavy-duty vehicles as opposed to increase in automobile usage.

Our historical reconstruction work also cast doubt on the validity of using coronene as a

marker for vehicle exhaust emissions, as this compound reach maximum concentration in

the Pettaquamscutt River sediments in 1932, preceding the time interval with highest

motor vehicle emissions (1960-1975).

Radiocarbon measurement of PAHs at the molecular level provided new insights

into the complexity of sources of these compounds. Results obtained for the

Pettaquamscutt River sediments show a clear trend of increasing contribution of fossil

fuel derived PAHs since the end of the 19th century. While most energy consumption

information report wood as the major source of energy at that time, early industrialization

and higher contribution of fossil sources to the Northeastern United States compared to

other parts of the country may explain these results. Comparison between the suburban

Pettaquamscutt River and a pristine remote site (Siskiwit Lake, Isle Royale) showed that

although atmospheric transport widely disperses combustion-derived PAHs, regions

closer to point sources receive higher contributions of these compounds. While the

majority of the PAHs present in the Pettaquamscutt River in 1950 were of fossil origin,
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those deposited in the Siskiwit Lake showed a significant contribution from burning of

modern biomass. This implies that geographic variability, even within short distances on

a global scale, may play a greater role than previously anticipated in dictating the

composition of sedimentary PAHs. Our 14C results have revealed that in addition to

functioning as a marker for combustion of wood in aerosol samples, retene also has the

potential to be used as a tracer for land clearing in regions formerly covered by pine

forests.

The down-core profile and radiocarbon abundance of pyrogenic PAHs were

further used to assess the results obtained for black carbon (BC) particles isolated by a

chemical and a thermal oxidation method. Because BC is operationally defined, it is

difficult to evaluate what portion of the reduced carbon continuum is isolated by a given

method. Since PAHs are produced during incomplete combustion, concurrently with BC,

the distribution of these two species should be closely related. We compared the

radiocarbon abundance of BC and PAHs in sediments based on the premise that they

derive from a common source. Our results indicate that both isolation procedures

probably overestimate the amount of black carbon present in the sediments. In general,

the chemical oxidation method yielded radiocarbon results that more closely followed the

PAH trend. Therefore, this method seems to be a good alternative for quantifying

environmental black carbon in anoxic, organic and sulfur rich sediments where the

application of the less manipulative 375°C-thermal method can give more biased results.

This study also yielded insight into the sources of perylene. The combination of

historical sedimentary records and 613C and A14C measurements for perylene and TOC

helped us discern, with some confidence, the importance of fossil fuel combustion to the

sedimentary profile of this PAH. We were able to verify that while combustion was a

significant source of perylene to the suburban Pettaquamscutt River in recent years that

was not the case for the remote Siskiwit Lake. Our results also suggest that commonly

employed diagnostic ratios such as perylene/TOC (for assessing in situ production of

perylene) and pyrene/perylene (for assessing the contribution of combustion of fossil

fuels to the amount of perylene in the sediments) should be used with caution. While in
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situ production can shift the later towards low values, no correlation was observed

between TOC content and perylene.

Finally, construction of a high-resolution record of Pb deposition in the

Pettaquamscutt River over the past 250 yr closely recorded the well-described maximum

associated with leaded gasoline usage in the United States. Evaluation of the Pb isotopic

composition of these sediments showed a clear maximum in anthropogenic 206Pb/207Pb in

the mid-1800s. We determined that mining and smelting of Pb ores in the Upper

Mississippi Valley district (which accounted for almost all Pb production in the United

States in that period) was the most likely cause for this isotopic maximum and suggest

that this event could be useful as a stratigraphic marker for sedimentary records from the

Northeastern United States.
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B. Re-plot of figures from Chapter 3 using revised sediment chronology
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Figure 3. Down-core profiles of selected PAH. Concentration (open circles) and flux
(closed circles) values were corrected for the salt content of the sediment. Fluxes were
additionally corrected for sediment focusing.
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mz 1921 phenanthrene
0 1 2 3 4 5 6

mz 2161 pyrene
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Figure 5. PAH source-diagnostic ratios taken from Gustafsson and Gschwend (1997)
(Gustafsson and Gschwend, 1997). (a) sum of methyl-phenanthrenes and methyl-
anthracenes to phenanthrene, and (b) sum of methyl-pyrenes and methyl-fluoranthenes to
pyrene.
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Figure 6. Down-core relative abundance (relative to ZPAH) of selected individual PAH.
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C. Concentration of PAHs in the sediments of Siskiwit Lake.

Depth
(cm)

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28

a Total PAHs

Concentration (ng gl)
Year Totala Perylene

1954
1943
1932
1921
1910
1898
1887
1876
1865
1854
1843
1832
1821
1810
1798

590
410
310
200
190
120
130
140
150
120
110
110
85
100
100

110
130
250
170
250
240
170
210
210
170
200
210
180
200
210

= sum of Phen, Anth, Fla, Py, BaA,
Chry, BbF, BjF, BkF, BaP, BeP, IP and BghiP
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APPENDIX 2

Pb concentration, stable Pb isotope data and age model for the Pettaquamscutt River
sediments.

Depth Age Total Pb conc. Anthropogenic Pb conc.
(cm) Modelpb/2 Pb 6Pb/2 Pb 2 pb/2°npb (ppm) 2 b/ 20pb206Pb/2°Tpb 206pb/2p b (ppm)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

1999
1997
1995
1994
1992
1991
1989
1987
1985
1983
1981
1979
1977
1975
1973
1971
1969
1966
1964
1962
1959
1956
1954
1951
1948
1945
1942
1938
1935
1931
1927
1922
1916
1911
1905
1901

2.464
2.461
2.461
2.463
2.460
2.460
2.463
2.461
2.458
2.467
2.462
2.459
2.454
2.459
2.459
2.457
2.455
2.456
2.456
2.456
2.457
2.458
2.460
2.460
2.460
2.461
2.459
2.459
2.460
2.461
2.463
2.464
2.464
2.465
2.466
2.467

1.203
1.200
1.201
1.204
1.201
1.201
1.204
1.205
1.205
1.205
1.205
1.201
1.201
1.202
1.202
1.198
1.193
1.192
1.190
1.192
1.192
1.192
1.195
1.195
1.195
1.196
1.192
1.192
1.192
1.193
1.196
1.197
1.196
1.197
1.197
1.198

21.438
21.291
21.237
21.350
21.313
21.303
21.063
21.555
21.339
21.358
20.974
21.298
21.256
21.085
21.257
21.172
21.105
21.152
21.020
21.020
21.041
21.064
21.131
21.038
21.168
21.141
21.142
21.065
21.125
21.062
21.122
21.151
21.131
21.146
21.160
21.153

62.2
59.2
49.8
66.2
78.8
61.5
85.8
108.6
109.0
118.5
150.2
186.8
153.1
175.8
139.7
153.3
163.9
142.0
154.2
124.5
127.8
127.2
99.5
130.4
95.0
101.0
102.5
80.4
98.3
92.7
91.3
94.4
82.5
84.6
87.5
69.2

2.460
2.456
2.454
2.459
2.456
2.455
2.460
2.458
2.455
2.465
2.461
2.457
2.452
2.458
2.457
2.455
2.453
2.454
2.453
2.453
2.455
2.455
2.457
2.458
2.457
2.458
2.456
2.456
2.457
2.458
2.460
2.461
2.461
2.462
2.464
2.464

1.201
1.197
1.197
1.202
1.200
1.198
1.202
1.204
1.205
1.205
1.204
1.200
1.200
1.201
1.201
1.197
1.191
1.190
1.189
1.189
1.190
1.190
1.193
1.193
1.193
1.194
1.189
1.188
1.189
1.190
1.193
1.195
1.194
1.194
1.195
1.195

21.436
21.246
21.161
21.326
21.285
21.264
20.993
21.570
21.324
21.347
20.928
21.287
21.238
21.056
21.237
21.146
21.075
21.122
20.980
20.969
20.994
21.020
21.082
20.991
21.122
21.095
21.097
20.990
21.075
20.998
21.067
21.103
21.071
21.090
21.109
21.084

48.9
45.9
36.5
53.0
65.5
48.2
72.6
95.4
95.8
105.2
136.9
173.6
139.8
162.5
126.5
140.0
150.6
128.7
141.0
111.2
114.6
114.0
86.3
117.1
81.8
87.7
89.2
67.2
85.1
79.5
78.1
81.1
69.2
71.4
74.3
56.0

247



Depth Age Total Pb conc. Anthropogenic Pb conc.
(cm) Model 2 8b/2 07 pb 206pb/ 207pb 2 6Pb/204Pb (ppm) 21 Ppb/207Pb 206Pb/207pb 2 6pb/2 Pb (ppm)

36 1898 2.467 1.198 21.185 69.7 2.464 1.195 21.124 56.5
37 1894 2.473 1.201 21.245 65.2 2.471 1.199 21.194 51.9
38 1890 2.478 1.205 21.356 57.3 2.477 1.204 21.329 44.0
39 1885 2.480 1.208 21.377 52.6 2.480 1.207 21.353 39.3
40 1882 2.484 1.212 21.449 49.6 2.486 1.212 21.450 36.3
41 1878 2.487 1.215 21.508 48.5 2.490 1.217 21.531 35.3
42 1873 2.489 1.219 21.602 49.1 2.493 1.222 21.660 35.9
43 1869 2.491 1.222 21.712 34.5 2.499 1.230 21.877 21.3
44 1865 2.494 1.226 21.778 34.1 2.503 1.236 21.989 20.8
45 1860 2.498 1.231 21.885 32.3 2.510 1.245 22.189 19.1
46 1857 2.498 1.235 22.045 32.2 2.510 1.252 22.464 18.9
47 1852 2.502 1.241 22.079 33.5 2.516 1.260 22.493 20.3
48 1847 2.513 1.253 22.291 30.2 2.539 1.286 22.950 17.0
49 1842 2.520 1.263 22.452 24.7 2.568 1.325 23.619 11.4
50 1838 2.515 1.257 22.365 22.8 2.564 1.320 23.634 9.6
51 1833 2.502 1.239 22.014 18.9 2.554 1.305 23.338 5.7
52 1828 2.490 1.225 21.770 17.3 2.524 1.273 22.833 4.0
53 1823 2.486 1.221 21.635 17.9 2.505 1.249 22.171 4.7
54 1820 2.481 1.215 21.544 24.3 2.481 1.215 21.544 24.3
55 1815 2.480 1.211 21.471 15.7 2.480 1.211 21.471 15.7
56 1810 2.480 1.212 21.475 15.9 2.480 1.212 21.475 15.9
57 1804 2.479 1.211 21.443 16.6 2.479 1.211 21.443 16.6

58 1799 2.479 1.208 21.401 14.7 2.480 1.211 21.446 13.2
59 1794 2.479 1.210 21.416 15.5
60 1789 2.478 1.209 21.391 12.5
61 1785 2.480 1.211 21.428 14.3
62 1779 2.480 1.211 21.447 14.4
63 1774 2.479 1.211 21.429 15.4
64 1768 2.480 1.212 21.450 13.0
65 1761 2.480 1.212 21.488 12.0
66 1755 2.480 1.212 21.504 12.2
67 1750 2.480 1.211 21.460 12.0
68 1745 2.478 1.209 21.432 13.5
69 1740 2.481 1.212 21.461 11.6
70 1735 2.480 1.212 21.496 11.3

248



APPENDIX 3

Procedure utilized for diluting a small (< 25 gg C) liquid sample with a standard of

known A14C and 613C, prior to combusting to CO2 and making graphite.

Several of our samples contained less than 20 gg C and NOSAMS needs at least

25 g C for a reliable radiocarbon determination. We investigated the possibility of

increasing the amount of carbon of a small sample with a standard of known A14C and

513C values by conducting three tests where standards of different 14C content were

mixed in specified proportions, to verify if a simple mass balance could account for the

14C measured in the mixtures. We prepared solutions of a 14C-modern (squalene), a 14C-

half-modem (heneicosanoic acid) and a 14C-free (n-quinquiphenyl) standard in iso-octane

(Table 1) and used a micro-syringe to draw the exact amounts needed for the test

mixtures.

Table 1. 613C and A14C values for the original standards.

Compound 3C A14C A14C (%) NOSAMS
(%0) (%0) Error Accession #

Heneicosanoic Acida -27.6 -385 8.2 OS - 39258
Heneicosanoic Acida -27.5 -397 8.7 OS - 39259 Half-modern

Squaleneb -22.3 -35.5 9.0 OS - 39260
Squaleneb -22.1 -35.3 8.8 OS - 39253 Modem

n-quinquiphenylc -26.5 -977 4.2 OS - 39276
n-quinquiphenylC -24.4 -992 1.0 OS - 39532 Fossil

a Aldrich lot # 10819JF. Concentration = 130 gg mL- ' (in hexane).
bAldrich lot # 05817AN. Concentration = 425 jig mL (in hexane).
c K&K Lab lot # 24987. Concentration = 175 gg mL- (in hexane).
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The expected 813C and A14C values for the test mixtures were calculated using a

simple isotopic mass balance:

A14 CMixture = (ttdl*A4 Cstdl) + (fStd2*A14 Ctd2) (1)

fstdl +fstd2 = 1 (2)

wherefstdl andfstd2 are the proportions of standard 1 and 2 and A14Cstdl and A14Cstd2 are

their radiocarbon composition, previously measured at NOSAMS. For the three tests

conducted, the 13C and A14C calculated and measured match to within 1.2 %0 and 8 %0 of

each other (Table 2). The good results obtained by the dilution experiment using

standards encouraged its application to compound-specific samples that, otherwise,

would not contain enough carbon for a 14C measurement.

Table 2. Calculated and measured 613C and A14C values for the three test mixtures.

'3C A'4 C A 4c NOSAMS
Test # Mixture (%) (%) Accession #

(~00)E(%r) Accession #

1.1 95 % fossil + 5 % modem -24.1 -941 2.9 OS - 37681
1.2 95 % fossil + 5 % modem -24.3 -940 2.1 OS - 37682

Average -24.2 -941
Calculated -25.3 -937
Difference 1.1%o 3.6%0

2.1 95 % modem + 5 % fossil -21.3 -76 12.8 OS - 37683
2.2 95 % modem + 5 % fossil -22.2 -74 10.2 OS - 37684

Average -21.8 -75
Calculated -22.3 -83
Difference 0.6%o 7.9%0

3.1 30 % modem + 70 % half-modern -23.3 -132 10.6 OS - 37685
3.2 30 % modem + 70 % half-modern -23.4 -140 8.6 OS - 37686

Average -23.3 -136
Calculated -23.8 -142
Difference 0.5%0 6.1%o

Prior to applying this procedure to the samples of interest, we estimated the error

associated with diluting samples containing 2-20 pg C to a large enough size to run on
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the accelerator mass spectrometer (AMS). Mass balance equations similar to (1) and (2)

were used to calculate the expected error:

MMixFmMix = MsampleFmsample + MstdFmstd (3)

MMix = MSample + Mstd (4)

where M= mass and Fm= fraction modem of the mixture, sample and diluent standard.

These equations were reformulated to:

Fmsample = RMixFmMix - (RMix -)Fmstd (5)

where RMiX = MMix/Msample is the dilution factor. The propagation of error then yields

(Pearson, 2000):

'2Fms = RMix G2Fm(Mix) + (1 - RMix)2 2Fm(Std) + (FmMix- Fmstd)2 (2P2)RMiX (6)

P = aJm/M is the precision with which quantities of carbon are measured using a micro-

syringe. Reproducibility of sampling a known volume was 0.8% (P = 0.008)

Fmstd 0.000 (14C-dead) or 1.0 (4C-modem)

GFm(Std) error in the diluent; considered to be the smallest error that we can measure on

a sample with that Fm. For a dead diluent, aFm(Std) = 0.0008 and for a modem

diluent, aFm(Std) = 0.003.

uFm(Mix) = error in the measured fraction modem; data from NOSAMS' small samples

were used to calculate an equation for the Fm(Mix) as a function of the

measured f, based on a range of sample sizes (McNichol, 2004). The

resulting error equations for each size range were:

25-50 pg a = 0.004 + 0.012*FmMix

75-100 pg a = 0.0035 + 0.008*FmMix

200-300 pg a = 0.002 + 0.007*FmMix

Using these parameters and considering the mixture of a 14C-modem standard to a

14C-dead sample and vice-versa, A14C errors in the final measurement were calculated

(Figure 1, Table 3). As shown in Figure 1, dilution of a modem sample with a fossil
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standard yields smaller errors if the starting sample mass is <10 gg C than dilution of a

14C-dead sample with a 14C-modem standard. In addition, larger A14C errors result from

the dilution of a sample to a sizeable final mass (100 gg C) than to a small mass (25 gg

C).

Table 3. Calculation of the error associated with diluting a modem sample with a 4C-
dead standard up to a final mass of 25 gg C. Values plotted in Figure lb, solid line.

Dilution
dMix MSample Mstd Fmsample Fmsd Factor

(RMi)

25 0 25 1 0 25.00
25 1 24 1 0 25.00
25 2 23 1 0 12.50
25 3 22 1 0 8.33
25 4 21 1 0 6.25
25 5 20 1 0 5.00
25 6 19 1 0 4.17
25 7 18 1 0 3.57
25 8 17 1 0 3.13
25 9 16 1 0 2.78
25 10 15 1 0 2.50
25 11 14 1 0 2.27
25 12 13 1 0 2.08
25 13 12 1 0 1.92
25 14 11 1 0 1.79
25 15 10 1 0 1.67
25 16 9 1 0 1.56
25 17 8 1 0 1.47
25 18 7 1 0 1.39
25 19 6 1 0 1.32
25 20 5 1 0 1.25
25 21 4 1 0 1.19
25 22 3 1 0 1.14
25 23 2 1 0 1.09
25 24 1 1 0 1.04
25 25 0 1 0 1.00

FmMix P

0.000
0.040
0.080
0.120
0.160
0.200
0.240
0.280
0.320
0.360
0.400
0.440
0.480
0.520
0.560
0.600
0.640
0.680
0.720
0.760
0.800
0.840
0.880
0.920
0.960
1.000

0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008

Gfm

(Mix)

0.0040
0.0045
0.0050
0.0054
0.0059
0.0064
0.0069
0.0074
0.0078
0.0083
0.0088
0.0093
0.0098
0.0102
0.0107
0.0112
0.0117
0.0122
0.0126
0.0131
0.0136
0.0141
0.0146
0.0150
0.0155
0.0160

Cfm

(Std)

0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003

Gfm

(Sample)

0.1232
0.1331
0.0710
0.0504
0.0402
0.0342
0.0302
0.0274
0.0253
0.0237
0.0225
0.0214
0.0206
0.0199
0.0193
0.0188
0.0183
0.0179
0.0176
0.0173
0.0170
0.0168
0.0166
0.0164
0.0162
0.0160

A'4C-
Error
(%)

123.2
133.1
71.0
50.4
40.2
34.2
30.2
27.4
25.3
23.7
22.5
21.4
20.6
19.9
19.3
18.8
18.3
17.9
17.6
17.3
17.0
16.8
16.6
16.4
16.2
16.0
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Figure 1. Error associated with diluting a small sample with a standard of known A14C.
(a) dilution of a 14C-poor sample with a modem standard; (b) dilution of a modem sample
with a 14 C-poor standard. Solid line corresponds to a final sample size of 25 gg C and
dashed line corresponds to a final sample size of 100 gg C.

Because of the large errors associated with diluting a 14C-dead sample to a large

enough size to run on the accelerator (25 g), mostly compound-specific samples

between 8-20 gg were selected for the dilution procedure. A list of the nine samples that

underwent dilution with a squalene solution is present in Table 4. After adding a known

amount of standard to the PAH of interest, the mixtures were analyzed on a GC-FID to

double-check the dilution factor. In the case of fluoranthene (Hi), pyrene (Hi) and

chrysene (H4), these GC-FID runs showed higher concentrations than when samples

were checked for purity (after being recovered from the PCGC U-tubes), the inverse

occurring for retene (H8). The total amount of carbon present in each liquid sample

(calculated using the FID trace) was in good agreement with the amount of carbon

measured by manometry in the vacuum line (Table 4). A14C values reported by NOSAMS
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for the diluted samples (Appendix 4) were corrected for the amount of standard added,

using the isotopic mass balance equations (1) and (2). An average A 4C value of-38.4%0

(n = 3) was used for the squalene standard used in the dilution. Propagation of errors

associated with diluting the samples was conducted using equation 6 and the following

parameters: Fm(Std) = standard deviation of triplicate A4C measurement of diluent

(0.0051), Fmstd = average of triplicate measurement of diluent (0.9678) and P = 1%. The

resultant values are listed on Appendix 4.

Table 4. Dilution factor, yield of carbon and calculated A14C for samples that underwent
dilution with a standard solution.

Sample
Amount

Std.
(jjg)

Area
Std.

Area
PAH

Amount
PAH
(4g)b

Amount
in Mix
(gg)

% Std
in

Mixd

Amount
Vacuum

Line (g)e

Line
FID

(Yield)

PAH
A14C
(%o)

ff~~~~~~~~~~~~i r - - -

Fluoranthene - Hi 11.9 396620 1234735 37.0 48.9 24.3 43.7 0.90 -914.4
Pyrene - Hi 13.9 7799489 1823290 32.4 46.3 30.0 42.6 0.92 -900.2

Fluoranthene 19.8 1490562 897634 11.9 31.7 62.4 32.0 1.01 -703.3
H6+H7+H8
Retene- H7 17.8 471265 541333 20.5 38.3 46.5 44.2 1.15 -133.1
Retene - H8 19.8 643785 72206 2.2 22.0 89.9 24.6 1.11 -269.4
Chrysene - H4 11.9 1507808 4089751 32.2 44.1 26.9 42.6 0.97 -949.1
BeP - H5 17.8 649832.8 453624 12.4 30.3 58.9 34.7 1.15 -935.0
BaP - H2 19.8 1064390 898456 16.7 36.5 54.2 40.7 1.12 -1047.7
BghiP- H1 17.8 461900 341307 13.2 31.0 57.5 35.4 1.14 -988.7

a gL added to mixture times concentration of the stock solution.
b (area PAH * amount std)/ (area std), assuming a RF = 1.
c Amount std + amount PAH, calculated from FID trace.
d Portion of the carbon submitted to 14C measurement that corresponds to added standard.
e Amount of carbon measured at the vacuum line by manometry.
f A14C values calculated for the PAH of interest using the isotopic mass balance

equations (1) and (2). Values reported by NOSAMS are listed in Appendix 4.
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APPENDIX 5

Characterization of sedimentary TOC ( 3C, % OC, % N, C / N ratio and A14C)

A. Measurements of 813C, % TOC, % Norg and CorgNorg ratio for Pettaquamscutt River
and Siskwit Lake sediments performed at the Organic Mass Spectrometry facility
at WHOI

Sample Hol

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Depth
rizon Interval

- 0-1

- 1 - 1.5

- 2 - 2.5

- 3 - 3.5
- 4 - 4.5
- 5 - 5.5
- 6 - 6.5

- 7 - 7.5

- 8 - 8.5

- 9 - 9.5
- 10- 10.5

- 11 - 11.5

- 12- 12.5

- 13- 13.5

- 14- 14.5

- 15- 15.5

- 16- 16.5

- 17- 17.5

- 18- 18.5

- 19- 19.5

- 20 - 20.5

- 21 - 21.5

- 22 - 22.5

- 23 - 23.5

- 24 - 24.5

- 25 - 25.5

- 26 - 26.5
- 27 - 27.5

- 28 - 28.5

- 29 - 29.5

Mid-point
Depth (cm)

0.5

1.25

2.25

3.25

4.25

5.25

6.25

7.25

8.25

9.25

10.25

11.25

12.25

13.25

14.25

15.25

16.25

17.25

18.25

19.25

20.25

21.25

22.25

23.25

24.25

25.25

26.25

27.25

28.25

29.25

Year

1998

1996

1995

1993

1992

1990

1988

1987

1985

1983

1981

1979

1977

1975

1972

1970

1968

1966

1963

1961

1958

1956

1953

1950

1947

1944

1941

1937

1934

1930

81
3 C (%O) TOC (%)

-23.9 + 0.19 9.2 ±+ 0.38

7.7 ±+ 0.04

-24.4 + 0.12 7.4 ± 0.57

7.4 ±+ 0.23

-23.0 + 0.03 8.9 ±+ 1.46

- 8.3 + 0.27

-24.0 + 0.05 7.5 ±+ 0.37

- 8.4 0.71

-24.4 + 0.06 8.0 +± 0.14

- 7.0 ±+ 0.32

-24.5 + 0.01 7.7 ±+ 0.20

- 8.1 0.11

-23.9 + 0.02 7.3 ±+ 0.17

- 8.6 ±+ 0.27

-24.5 + 0.03 8.1 ±+ 0.33

- 8.5 ±+0.16
-24.7 + 0.09 7.9 ±+ 0.33

9.3 ±+ 0.01

-24.8 + 0.06 8.6 ±+ 0.30

- 7.9 0.15

-23.6 + 0.05 7.4 + 0.16

- 7.6 ±+0.54
-23.9 + 0.08 7.4 ±+ 0.41

- 8.8 +± 0.23

-23.8 +0.14 9.1 0.09

- 9.2 + 0.24

-24.2 + 0.10 8.5 + 0.15

- 6.9 + 0.33

-24.6 + 0.35 8.8 + 0.51

- 9.2 + 0.41
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Non (%)
± la+ lc~

1.07 ±+ 0.08

0.94 ±+ 0.03

0.86 ±+ 0.08

0.77 ±+ 0.01

0.87 ±+ 0.16

0.94 ± 0.01

0.79 ±+ 0.02

0.91 ±+ 0.13

0.92 ±+ 0.00

0.78 ±+ 0.06

0.80 ± 0.05

0.86 ± 0.01

0.77 ± 0.05

0.91 ±+ 0.04

0.86 ±+ 0.03

0.92 ±+ 0.01

0.88 ±+ 0.09

0.94 ±+ 0.01

0.88 ±+ 0.04

0.87 ±+ 0.04

0.94 ± 0.12

0.76 + 0.01

0.72 ±+ 0.04

0.92 ±+ 0.09
0.89 ± 0.01

0.89 ±+ 0.02

0.87 ±0.01

0.65 ±+ 0.02

0.83 ±+ 0.08

0.91 ±+ 0.06

CoW / Noa
Ratio

10.0

9.5

10.0

11.2

12.0

10.2

11.1

10.7

10.2

10.5

11.1

10.9

11.0

10.9

11.1

10.8

10.6

11.5

11.3

10.8

9.1

11.7

12.0

11.2
12.0

12.0

11.4

12.3

12.4

11.8

S w - . s s j

=

---



Horizon Interval

30- 30.5

31 - 31.5

32 - 32.5

33 - 33.5

34- 34.5

35 - 35.5

36 - 36.5

37 - 37.5

38 - 38.5

39 - 39.5

40 - 40.5

41 - 41.5

42 - 42.5

43 - 43.5

44 - 44.5

45 - 45.5

46 - 46.5

47 - 47.5

48 - 48.5

49 - 49.5

50- 50.5

51 - 51.5

52 - 52.5

53 - 53.5

54 - 54.5

55 - 55.5

56 - 56.5

57 - 57.5

58 - 58.5

59 - 59.5

60 - 60.5

61 - 61.5

62 - 62.5

63 - 63.5

64 - 64.5

65 - 65.5

66 - 66.5

67 - 67.5

68 - 68.5

69 - 69.5

70- 70.5

Depth

30.25

31.25

32.25

33.25

34.25

35.25

36.25

37.25

38.25

39.25

40.25

41.25

42.25

43.25

44.25

45.25

46.25

47.25

48.25

49.25

50.25

51.25

52.25

53.25

54.25

55.25

56.25

57.25

58.25

59.25

60.25

61.25

62.25

63.25

64.25

65.25

66.25

67.25

68.25

69.25

70.25

Year

1926

1920

1915

1909

1904

1900

1897

1893

1888

1884

1881

1876

1872

1868

1863

1859

1855

1851

1845

1841

1837

1832

1827

1822

1819

1814

1808

1803

1797

1793

1788

1783

1778

1773

1766

1759

1754

1748

1743

1738

1733

51 3C (%o) OC (%)

-24.1 0.40 10.3 ±+0.11

- 11.1 ±+0.29
-24.8 + 0.09 10.7 ±+ 0.08

- 10.5 ±+ 0.06

-24.1 + 0.08 10.2 ±+ 0.23

- 9.8 +0.08

-24.4 _ 0.18 10.4 + 0.28

- 10.6 0.15

-23.9+ 0.21 9.2 _ 0.10

- 9.5 + 0.02

-23.6 _ 0.23 9.2 _ 0.19

- 9.2 + 0.69

-23.1 _ 0.03 9.2 + 0.11

- 10.3 + 0.16

-24.5 + 0.12 10.3 _ 0.28

- 10.7 + 0.32

-24.4 _ 0.23 10.8 + 0.01

- 11.3 0.67

-23.9 + 0.48 10.4 + 0.05

- 10.9 ±+ 0.21

-24.1 +0.17 10.6_ 0.01

10.3 ±+ 0.45

-25.2 _0.11 9.9 _± 0.17

- 8.7 ±+ 0.07

-23.9 0.15 8.7 ±+ 0.39

- 9.9 ±+ 0.28

-24.4 + 0.12 9.2 ±+ 0.22

- 8.5 ±+0.16
-23.4 _ 0.20 8.5 ± 0.18

9.7 ±+ 0.06

-23.5 _ 0.05 9.7 ± 0.17

- 9.5 ±+ 0.21

-24.1 _ 0.21 9.2 ±+ 0.44

- 8.3 _± 0.08

-23.7 + 0.08 8.6 ± 0.19

- 9.1 ±+0.02
-23.4+ 0.18 8.9 ±+ 0.32

- 9.6 ±+ 0.08
-24.3 0.10 9.1 ±+ 1.30

- 10.3 ±+ 0.40

-25.4 _ 0.44 10.0 ± 0.11
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Sample

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

Petta - TOC

N(%)

1.01 + 0.10

1.04 0.01

0.97 ±+ 0.01

0.97 ±+ 0.03

0.94 ± 0.01

0.87 ± 0.03

1.00 ±+ 0.03

0.98 0.01

0.93 ±+ 0.01

0.97 0.01

1.09 0.10

1.13 ± 0.04

0.99 ± 0.05

1.06 ± 0.03

1.12 ± 0.01

1.14 ± 0.02

1.13 ±+ 0.01

1.21 ±+ 0.04

1.13 ±+ 0.03

1.35 ±+ 0.15

1.12 ± 0.03

1.13 ± 0.16

0.99 0.01

0.87 ±+ 0.03

0.92 ±+ 0.07

1.13 ± 0.06

0.97 ± 0.07

0.85 ±+ 0.05

0.88 ± 0.06

0.99 ± 0.04

1.06 ± 0.07

0.95 ±+ 0.02

0.81 ±+ 0.02

0.79 ±+ 0.03

0.91 ±+ 0.04

0.83 ±+ 0.02

0.92 ±+ 0.01

0.91 ±+ 0.05

0.90 ±+ 0.12

0.98 ±+ 0.05

0.93 ±+ 0.04

C/N

11.9

12.5

12.8

12.6

12.7

13.2

12.2

12.7

11.7

11.5

9.9

9.5

10.9

11.3

10.7

11.0

11.1

10.9

10.7

9.4

11.0

10.7

11.6

11.7

11.0

10.2

11.1

11.7

11.3

11.4

10.7

11.7

13.2

12.2

11.0

12.7

11.4

12.3

11.8

12.3

12.6

===e==



Sample Horizon Interval Depth Year 613C (%O) OC (%) N (%) C / N

Petta- TOC HI 0- 9.5 5 1991 -23.1 ±+ 0.1 7.3 ±+ 0.20 0.85 ±+ 0.02 10.0

Petta- TOC H2 10- 19 14.5 1972 -24.1 ±+ 0.2 7.7 ±+ 0.42 0.84 ±+ 0.02 10.7

Petta- TOC H3 19.5 - 29 24.5 1947 -23.9 +± 0.3 7.9 ±+ 0.15 0.74 ±+ 0.01 12.5

Petta-TOC H4 29.5 - 36 33 1911 -24.1 ±+0.3 9.8 ±+0.05 0.87 ±+0.02 13.1

Petta - TOC H5 36.5 - 42 39 1885 -23.7 + 0.2 9.2 +± 0.01 0.84 + 0.01 12.8

Petta - TOC H6 42.5 - 49 45.5 1858 -23.9 + 0.1 9.9 + 0.25 0.95 ±+ 0.04 12.2

Petta - TOC H7 49.5 - 64 57 1804 -24.3 + 0.4 8.9 ±+ 0.07 0.79 ±+ 0.01 13.2

Petta - TOC H8 64.5 - 69.5 67 1750 -23.8 ± 0.2 8.9 +± 0.06 0.76 ±+ 0.01 13.7

Siskwit - TOC - 0 - 2 1 1948 - 8.7 + 0.01 0.54 ± 0.00 18.6

Siskwit - TOC - 2 - 4 3 1937 - 8.8 ±+ 0.01 0.55 ±+ 0.02 18.5

Siskwit - TOC - 4 - 6 5 1926 - 8.5 ±+ 0.09 0.54 +± 0.01 18.5

Siskwit - TOC - 6 - 8 7 1915 - 8.5 +± 0.05 0.55 ±+ 0.00 18.0

Siskwit - TOC - 8 - 10 9 1904 - 8.3 ± 0.02 0.56 ± 0.01 17.3

Siskwit -TOC - 10- 12 11 1893 - 8.2 +± 0.06 0.55 0.00 17.4

Siskwit - TOC - 12 - 14 13 1882 - 8.3 ±+ 0.07 0.54 + 0.01 17.9

Siskwit - TOC - 14 - 16 15 1871 - 7.7 + 0.08 0.51 ± 0.01 17.6

Siskwit - TOC - 16 - 18 17 1860 - 7.5 ±+ 0.30 0.49 ±+ 0.02 17.7

Siskwit - TOC - 18 - 20 19 1848 - 8.0 ±+ 0.10 0.53 + 0.00 17.6

Siskwit - TOC - 20 - 22 21 1837 - 7.1 +± 0.13 0.55 +± 0.02 15.1

Siskwit - TOC - 22 - 24 23 1826 - 8.4 ±+ 0.21 0.57 ±+ 0.01 17.3

Siskwit - TOC - 24 - 26 25 1815 - 7.9 ±+ 0.09 0.54 ±+ 0.01 17.2

Siskwit - TOC - 26 - 28 27 1804 - 8.4 +± 0.10 0.57 +± 0.01 17.1

Siskwit - TOC - 28 - 30 29 1793 - 8.3 ±+ 0.09 0.57 +± 0.01 17.1
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APPENDIX 6

A14C and 813C values used for calculation of the relative importance of combustion of
fossil fuel, aquatic and terrestrial biomass to the sedimentary TOC in the Pettaquamscutt
River sediments.

1941 -139.5 -24.4 -64.4 -21
1947 -134.1 -24.4 -65.3 -21
1950 -133.5 -24.0 -68.4 -21
1951 -133.4 -23.8 -71.5 -21
1952 -133.2 -23.7 -74.6 -21
1953 -133.0 -23.5 -71.7 -21
1954 -157.3 -23.7 -68.9 -21

-150
-150
-150
-150
-150
-150
-150

1955 -159.8 -23.8 -66.0 -21
1956 -162.4 -23.9 -59,7 -21
1957 -143.7 -24.0 -53.4 -21
1958 -125.1 -24.1 -47.0 -21
1959 -96.7 -24.0 -40.7 -21
1960 -68.2 -23.8 -34.4 -21
1961 -123.6 -23.7 -21.1 -21
1962 -75.7 -23.8 -7.7 -21
1963 -27.9 -23.9 5.6 -21
1964 -14.0 -23.8 19.0 -21
1965 -0.2 -23.6 32.3 -21
1966 13.6 -24.4 40.8 -21
1967 14.9 -24.6 49.3 -21
1968 16.3 -24.8 57.8 -21
1969 11.5 -24.8 66.3 -21
1970 6.8 -24.7 74.8 -21
1971 2.1 -24.6 75.2 -21
1972 -2.7 -24.5 75.7 -21
1973 -0.1 -24.4 76.1 -21
1974 2.5 -24.3 76.6 -21
1975 5.0 -24.2 77.0 -21
1976 7.6 -24.0 71.1 -21
1977 10.1 -23.9 65.3 -21
1978 6.5 -24.0 59.4 -21
1979 2.9 -24.2 53.6 -21

0
30
60
110
250
215
205
304
844
854
763
697
600
558
533
532
488
461
389
389
369
365
335
315
282

-150
-150
-150
-150
-150
-150
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

-28 -120.0 -1000 -30 0.08 0.29
-28 -114.0 -1000 -30 0.09 0.30
-28 -108.0 -1000 -30 0.08 0.33
-28 -98.0 -1000 -30 0.06 0.36
-28 -70.0 -1000 -30 0.05 0.36
-28 -77.0 -1000 -30 0.02 0.38
-28 81.0 -1000 -30 0.13 0.22
-28 100.8 -1000 -30 0.10 0.27
-28 208.8 -1000 -30 0.09 0.30
-28 210.8 -1000 -30 0.09 0.29
-28 192.6 -1000 -30 0.08 0.28
-28 179.4 -1000 -30 0.08 0.38
-28 160.0 -1000 -30 0.08 0.41
-28 151.6 -1000 -30 0.08 0.44
-28 146.6 -1000 -30 0.08 0.43
-28 146.4 -1000 -30 0.09 0.41
-28 137.6 -1000 -30 0.09 0.40
-28 132.2 -1000 -30 0.09 0.39
-28 117.8 -1000 -30 0.09 0.38
-28 117.8 -1000 -30 0.08 0.36
-28 113.8 -1000 -30 0.08 0.35
-28 113.0 -1000 -30 0.07 0.34
-28 107.0 -1000 -30 0.06 0.33
-28 103.0 -1000 -30 0.06 0.35
-28 96.4 -1000 -30 0.06 0.37

263

0.63
0.61
0.59
0.58
0.59
0.60
0.66
0.63
0.61
0.63
0.64
0.54
0.51
0.48
0.49
0.50
0.51
0.52
0.54
0.56
0.57
0.59
0.61
0.58
0.56

-150.8
-145.0
-139.3
-132.1
-118.4
-117.3
-52.8
-38.1
8.4
16.7
17.7
17.8
15.7
17.5
20.6
25.3
22.4
20.7
15.8
16.0
14.8
11.2
5.7
0.9
-4.7



Petta TOC Shells Atm Soil 0.2 Atm Fossil Proportions (%)

Year A4c 613C A14Ca A14Cc A14Cd 0.8 Soil A14C 813Cf Fossil Land Aquatic Model

1980 -0.7
1981 -4.3
1982 -0.7
1983 3.0
1984 6.6
1985 10.3
1986 13.9
1987 17.6
1988 21.2
1989 24.9
1990 21.8
1991 18.8
1992 15.8
1993 12.7
1994 9.7
1995 6.6
1996 3.6
1997 0.5
1998 -2.5

-24.3

-24.5
-24.4
-24.4
-24.3
-24.2
-24.2
-24.1
-24.1
-24.0
-24.0
-24.1
-24.1
-24.2
-24.2
-24.2
-24.3
-24.3
-24.4

47.7 -21
48.4 -21
49.1 -21
49.7 -21
50.4 -21
51.1 -21
49.4 -21
47.8 -21
46.1 -21
44.5 -21
42.8 -21
41.1 -21
39.5 -21
37.8 -21
36.2 -21
34.5 -21
32.8 -21
31.2 -21
29.5 -21

263 100
261 100
254 100
218 100
210 100
197 100
180 100
174 100
171 100
162 100
139 100
128 100
134 100
130 100
118 100
125 100
105 100

108.6 100
103.5 100

-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28
-28

132.6
132.2
130.8
123.6
122.0
119.4
116.0
114.8
114.2
112.4
107.8
105.6
103.0
96.4
132.6
132.2
130.8
123.6
122.0

-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30
-1000 -30

0.08
0.08
0.08
0.07
0.07
0.06
0.06
0.05
0.05
0.04
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.06
0.06

0.38
0.39
0.39
0.39
0.38
0.38
0.38
0.38
0.37
0.37
0.38
0.38
0.38
0.39
0.39
0.39
0.40
0.40
0.41

0.54
0.52
0.53
0.54
0.55
0.56
0.56
0.57
0.58
0.59
0.58
0.57
0.57
0.56
0.56
0.55
0.55
0.54
0.54

4.9
5.2
5.0
2.8
2.6
2.1

-0.05
-1.4
-2.6
-4.2
-6.7
-8.5
-9.0
-10.3
-12.1
-12.5
-14.9
-15.6
-16.9

Average
Stdev

a [Weidman, 1993 #753].
b Average value for aquatic biomass [Meyers, 1997 #760].
c Values in shaded area were measured in tree rings [Stuiver, 1981 #768]. Other data were

determined in atmospheric 14 CO2 [Levin, 1997 #508;Levin, 1985 #509].
d Soil data from [Richter, 1999 #765].
eAverage value for C3 terrestrial plants [OLeary, 1988 #356].
f Average value for petroleum [OLeary, 1988 #356]
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