SMA 6304 Factory Planning and Scheduling Lecture 24: Current Research

Stanley B. Gershwin

Copyright ©2002 Stanley B. Gershwin.

Outline

- Real-time scheduling
- Synthesis
- Loops
- Multiple loops
- Conclusions and future research

Class of Systems

- Reentrant flow
- M₄ Flexible, unreliable machines
 - Continuous material
 - Homogeneous, finite buffers
 - Constant demand rate
- M₃ No setups or batches

Dynamic Programming Formulation

Gershwin, 2000

- S(s,q) is the sth machine that type q parts visit.
- ullet Demand d_q
- ullet Operation time $au_{sq}=1/\mu_{sq}$
- ullet Availability e_i

$$ullet$$
 Feasibility: $\sum_{\{s,\,q|S(s,\,q)\,=\,i\}} \left(rac{d_q}{\mu_{sq}}
ight) < e_i$ for all i

Gershwin, 2000

- Control: $u_{sq}(t)$ is the instantaneous production rate of type q parts at stage s at time t
- ullet Cumulative production $P_{sq}(t)=\int_0^t u_{sq}(au)d au$

State:

 $\star x_{sq}(t) = P_{sq}(t) - d_q t$, surplus

 $\star \alpha_i(t) = 0$ or 1: repair state of Machine i

Dynamic Programming Formulation

Gershwin, 2000

• Constraints:

if
$$\alpha_i(t)=0$$
,

$$u_{sq}(t)=0;$$

if
$$lpha_i(t)=1, \ \sum_{\{s,\,q\mid S(s,\,q)\,=\,i\}} \left(rac{u_{sq}(t)}{\mu_{sq}}
ight) \leq 1; u_{sq} \geq 0.$$

Dynamic Programming Formulation

Gershwin, 2000

Dynamics:

$$rac{dx_{sq}}{dt}=u_{sq}-d_q$$

lpha: Markov process: exponential up- and down-times

• Constraints:

$$b_{sq} = x_{sq} - x_{s+1,q}$$

$$0 \leq b_{sq} \leq N_{sq}$$

Dynamic Programming Formulation

Gershwin, 2000

• Objective:

$$J = \min E \int_0^T g(b_{11}(s), b_{12}(s), ..., x_{K(\ell), \ell}(s)) ds$$

Solution

Surplus-Based Policy

- Solution is a control law of the form $u(x(t), \alpha(t), t)$.
- Impossible to determine exactly except in special cases.
- Impossible to determine numerically except in special cases.
- Strategy: Investigate special cases and extrapolate.

Special case

Bielecki and Kumar, 1988

- Single machine.
- Single part type.
- Constant demand.

 Problem: choose the production rate at every time instant to minimize inventory and backlog costs.

Special case

Solution:

- if x(t) > Z, wait;
- surplus x(t) ullet if x(t) = Z, operate at demand rate d;
 - if x(t) < Z, operate at maximum rate μ .

Special case

Real-time Scheduling

- The hedging point Z is the single control parameter.
- Z represents a trade-off between costs of inventory and risk of disappointing customers.
- Z is a function of d, μ , r, p, g_+ , g_- . A formula exists.
- There are no complete solutions for any more general case.

Other special cases

One machine, two types

- Type 1 has priority because of g.
- Complete solution available only when Z=0.

Other special cases

One machine, multiple types

- There is now a surplus vector x, and a hedging point vector Z. If Z=0,
 - * Rank order the parts
 - \star Drive x_1 to Z_1 .
 - \star Keep $x_1=Z_1$ and drive x_2 to Z_2 .
 - \star Keep $x_1=Z_1$ and $x_2=Z_2$ and drive x_3 to Z_3 .
 - ⋆ Etc.
- If $Z \neq 0$, the optimal solution is not known exactly, but it is known to be more complex.
- Approximation: use the same policy.

We now deal with only single part type systems, until the very end of the talk.

Other special cases

Two machines, one buffer, single type

- Exact optimal solution also impossible to obtain.
- Approximation: use the one-machine-one-part-type policy at each machine.

Other special cases

Two machines, one buffer, single type

Synthesis

(Gershwin, 2000)

Operating Machine M
 according to the hedging
 point policy is equivalent to
 operating this assembly
 system according to a finite
 buffer policy.

Synthesis

(Gershwin, 2000)

- ullet $oldsymbol{D}$ is a demand generator .
 - ★Whenever a demand arrives, D sends a token to B.
- S is a synchronization machine. \Box_{p}
 - ★ S is perfectly reliable and infinitely fast.
- FG is a finite finished goods buffer.
- B is an infinite backlog buffer.

Proposed control policy

(Gershwin, 2000)

To control

add an information flow system:

Proposed control policy

(Gershwin, 2000)

- \bullet B_i are *material* buffers and are finite.
- \bullet SB_i are *surplus* buffers and are finite.
- BB_i are backlog buffers and are infinite.
- ullet The sizes of B_i and SB_i are control parameters.
- *Problem:* predicting the performance of this system.

Single-loop systems

Problem Statement

- Finite buffers $(0 \le n_i(t) \le N_i)$.
- Closed loop fixed population $(\sum_i n_i(t) = N)$.
- Buzacott model (deterministic processing time; geometric up and down times). Repair probability = r_i failure probability = p_i .
- Goal: calculate production rate and inventory distribution.

Single-loop systems

Problem Statement

- Desire: a decomposition method similar to that for the line, which can be extended to multiple-loop systems.
- Difficulty: the correlation among buffer levels.
 - *A method exists (Frein, Commault, and Dallery, 1996) but is only accurate for large loops.

Single-loop systems

Ranges

- The range of blocking of a machine is the set of all machines that could block it if they stayed down for a long enough time.
- The range of starvation of a machine is the set of all machines that could starve it if they stayed down for a long enough time.

Ranges

Range of Blocking

- All buffer sizes are 10.
- Population is 37.
- If M_4 stays down for a long time, it will block M_1 .
- Therefore M_4 is in the range of blocking of M_1 .
- ullet Similarly, M_2 and M_3 are in the range of blocking of M_1 .

Ranges

Range of starvation

- If M_5 stays down for a long time, it will starve M_1 .
- Therefore M_5 is in the range of starvation of M_1 .
- ullet Similarly, M_6 is in the range of starvation of M_1 .

Ranges

Line

- The range of blocking of a machine in a line is the entire downstream part of the line.
- The range of starvation of a machine in a line is the entire upstream part of the line.

Tolio line decomposition

Loops

Tolio and Matta, 1998

- Needed because original decomposition does not carry enough information.
- However, more than two parameters per machine are needed.

Tolio line decomposition

Loops

- Each machine in the original line may and in the two-machine lines must have multiple failure modes.
- For each failure mode downstream of a given buffer, there is a corresponding mode in the downstream machine of its two-machine line.
- Similarly for upstream modes.

- The downstream failure modes appear to the observer after propagation through blockage.
- The upstream failure modes appear to the observer after propagation through starvation.
- The two-machine lines are more complex that in earlier decompositions but the decomposition equations are simpler.

Loops

- A set of decomposition equations are formulated.
- They are solved by an algorithm similar to the that of the original.
- The results are a little more accurate than earlier methods for lines.
- This decomposition can be extended to loops because we can include range information.

Loops

 Use the Tolio decomposition, but adjust the ranges of blocking and starvation accordingly.

Numerical results

Accuracy

- Many cases were compared with simulation:
 - ★ Three-machine cases: all throughput errors under 1%; buffer level errors averaged 3%, but were as high as 10%.
 - ★ Six-machine cases: mean throughput error 1.1% with a maximum of 2.7%; average buffer level error 5% with a maximum of 21%.
 - ★ Ten-machine cases: mean throughput error 1.4% with a maximum of 4%; average buffer level error 6% with a maximum of 44%.

Numerical results

Other algorithm attributes

- Convergence reliability: almost always.
- Speed: execution time increases rapidly with loop size.
- Maximum size system: growing each time we implement.

Loop decomposition Behavior M₂ M₃ M₄ M₄ M₄ B₃

- All buffer sizes 10. Population 15. Identical machines except for M_1 .
- Observe average buffer levels and production rate as a function of r₁.

Numerical results

Behavior

Usual saturating graph.

Loop decomposition

Numerical results

- When r_1 is small, M_1 is a bottleneck, so B_4 holds 10 parts, B_3 holds 5 parts, and the others are empty.
- As r_1 increases, material is more evenly distributed. When $r_1 = 0.1$, the network is totally symmetrical.

Loop decomposition

Numerical results

- When r_1 is small, M_1 is a bottleneck, so B_4 holds 10 parts, B_3 holds 5 parts, and the others are empty.
- As r_1 increases, material is more evenly distributed. When $r_1 = 0.1$, the network is totally symmetrical.

- Ranges of blocking and starvation are more complex, but possible to determine.
- Algorithm is an extension of single-loop algorithm.

Important features

- One invariant for each independent loop.
- Ranges of starvation and blockage need not be contiguous.

Range of Blocking

Current approach

- ullet To calculate the range of blocking for each machine M_i ...
 - \star (the set of machines M_j that could block M_i if M_j were down for a very long time)
- ullet we first determine the *domain* of blocking for each M_j
 - \star (the set of machines that M_j could block if it were down for a very long time)
- and then transpose the table.

Similarly for the range of starvation.

Range of Blocking

Example

• All buffer sizes = 10.

Range of Blocking

- Machine 1 fails for a long time.
- Buffers in the *domains* of blocking and starvation indicated.

Range of Blocking

- Machine 18 fails for a long time.
- Buffers in the *domains* of blocking and starvation indicated.

Range of Blocking

- Machine 14 fails for a long time.
- Buffers in the *domains* of blocking and starvation indicated.

Decomposition and algorithm

Levantesi PhD thesis, 2001

- Decomposition equations are identical to those of Tolio and Matta (1998).
- Algorithm:
 - ★ Phase 1: Determine ranges of blocking and starvation.
 - * Phase 2: Tolio and Matta DDX-type algorithm

Example

Current experiments

Current experiments

Multiple-loop systems

Algorithm has worked successfully for this system.

Multiple-Part-Type Decomposition

 We have made some progress with two-part-type systems with strict priority, controlled by the finite buffer policy.

Multiple-Part-Type Decomposition

Reentrant systems

We plan to study reentrant systems as multiple-part-type systems where when one part leaves, it retruns as another part type.

Conclusions and Future Research

Promising approach to production system design and production system control policy design.

- Comparison with simulation
- Numerical experimentation
- Optimization of buffer sizes
- Optimization of control structure
- Multiple part types with token-based control policies
- Real world implementation experiments