Queueing Networks

Two types of networks

known
 Open
 λ
 estimate
 L, W
 Closed
 L
 λ, W

Open networks

Examples

- internet traffic
- emergency room (Denardo)
- food court
- airport (arrive, ticket counter, security, passport control, gate, board plane)
- factory with serial production system and no material control after it enters

Open networks

Examples

Food Court

Closed Networks

Examples

- factory with material controlled by keeping the number of items constant (CONWIP)
- factory with limited fixtures or pallets

Jackson Networks

Benefits

Queueing networks are often modeled as Jackson networks.

- Easy to compute performance measures (capacity, average time in system, average queue lengths).
- Easily gives intuition.
- Easy to optimize and to use for design.
- Valid for a large class of systems ...
- ... but not everything. Storage areas must be infinite (ie, large enough so that blocking never occurs).

Open Jackson Networks

$$
\begin{aligned}
& \mathrm{K} \text { single-server stations } \\
& \mu_{\mathrm{i}}=\text { service rate at station } \mathrm{i}-\text { exponential } \\
& \alpha_{\mathrm{i}}=\text { arrival rate to station } \mathrm{i}-\text { Poisson }
\end{aligned}
$$

$$
\begin{aligned}
& P_{i j}=\operatorname{Pr}(\text { customer departing station i goes next to station } \mathrm{j}) \\
& \mathrm{P}_{\mathrm{i} 0}=1-\sum_{\mathrm{j}=1}^{\mathrm{K}} \mathrm{P}_{\mathrm{ij}}=\operatorname{Pr}(\text { customer exits system after station } \mathrm{i})
\end{aligned}
$$

Note:

1. customers are probabilistically indistinguishable
2. routing is memoryless
3. FCFS at each station
4. $P_{i 0}>0$ for at least one i

Example:

Solution to Open Jackson Networks

$\lambda_{i}=$ effective arrival rate to station i

$$
\left.\lambda_{i}=\alpha_{i}+\sum_{j=1}^{K} \lambda_{j} P_{j i} \quad \text { traffic equations (Flowin= } \text { Flowout }\right)
$$

$$
\lambda=\alpha+\lambda \boldsymbol{P} \quad \text { (row vectors) } \quad \lambda=\alpha(\boldsymbol{I}-\boldsymbol{P})^{-1}
$$

Let $\rho_{i}=\frac{\lambda_{i}}{\mu_{i}}<1$ $n_{i}=$ steady -state number of customers at station \boldsymbol{i} $\pi\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\boldsymbol{k}}\right)=$ steady - state probability

Product-form Solution:

$$
\begin{aligned}
\pi\left(n_{1}, \ldots, n_{k}\right) & =\pi_{1}\left(n_{1}\right) \ldots \pi_{k}\left(n_{k}\right) & \rho^{n}(1-\rho) & \begin{array}{l}
\text { is the probability of } \\
n \text { items in a single }
\end{array} \\
& =\rho_{1}^{n_{1}}\left(1-\rho_{1}\right) . . \rho_{k}^{n_{k}}\left(1-\rho_{k}\right) & & \begin{array}{l}
\text { M/M/1 queue. }
\end{array}
\end{aligned}
$$

$$
L_{i}=E\left[n_{i}\right]=\frac{\rho_{i}}{1-\rho_{i}}
$$

Comments

1) Jackson guessed solution and verified that flux out of state $\left(n_{1}, \ldots, n_{k}\right)=$ flux into state $\left(n_{1}, \ldots, n_{k}\right)$
2) Each station looks like its getting Poisson input, but it is not if there is any feedback in routing
3) If no customer overtaking is possible, then mean waiting time in system = sum of mean waiting times at the various stations in isolation
4) Product - form solution holds for multi - server stations

Closed Jackson Networks

Consider Open Jackson Network, but assume:

$$
\begin{array}{ll}
\alpha_{i}=0 & \text { no external arrivals } \\
\sum_{j=1}^{K} P_{i j}=1 & \text { no departures } \\
\sum_{i=1}^{K} n_{i}(0)=N & \text { initial customers } \\
\text { Then } \sum_{i=1}^{K} n_{i}(t)=N \text { for all } t
\end{array}
$$

Traffic equations $\lambda_{i}=\sum_{j=1}^{K} \lambda_{i} \rho_{j_{\mathrm{i}}}$ can only be solved up to a scale constant This gives relative throughout rates λ_{i}
Let $\rho_{\mathrm{i}}=\frac{\lambda_{\mathrm{i}}}{\mu_{\mathrm{i}}}$

Closed Jackson Networks Cont.

Traffic equations $\lambda_{\mathrm{i}}=\sum_{j=1}^{K} \lambda_{\mathrm{i}} \rho_{j_{\mathrm{i}}}$ can only be solved up to a scale constant
This gives relative throughout rates λ_{i}
Let $\rho_{\mathrm{i}}=\frac{\lambda_{\mathrm{i}}}{\mu_{\mathrm{i}}}$

Product Form Solution:

$$
\pi\left(n_{1}, \ldots, n_{K}\right)=\frac{\rho_{1}^{n_{1} \ldots \rho_{k}^{n_{k}}}}{C(K, N)}
$$

where normalizing constant is

$$
\mathrm{C}(\mathrm{~K}, \mathrm{~N})=\sum_{\substack{\left\{n: n_{1}+\ldots+n_{\mathrm{K}}=N\right\} \\ n_{i} \geq 0}} \rho_{1}^{n_{k}} \ldots \rho_{\mathrm{k}}^{n_{\mathrm{K}}}
$$

Buzen's Algorithm

$$
\text { Derive } C(K, N)=\sum_{\left\{x \geq 0: x_{1}+\ldots+x_{k}=N\right\}} \prod_{i=1}^{K} f_{i}\left(x_{i}\right)
$$

Goal:

${ }^{*}$ I changed notation $\boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\rho_{i}^{n_{i}}$

$$
c(k, n)=\sum_{\left\{x \geq 0: x_{1}+\ldots+x_{k}=n\right\}}{\underset{\pi}{i=1}}_{K} f_{i}\left(x_{i}\right)
$$

Step 2 : Develop a recursive relationship condition on $X_{K}=j$ and sum over j

$$
\begin{aligned}
& c(k, n)=\sum_{j=0}^{n}\left\lfloor\sum_{\left\{x \geq 0: x_{1}+\ldots+x_{k-1}+j=n\right\}} \sum_{i=1}^{K} f_{i}\left(x_{i}\right)\right\rfloor \\
& =\sum_{j=0}^{n} f_{k}(j)\left\lfloor\sum_{\left\{x \geq 0: x_{1}+\ldots+x_{k-1}=n-j\right\}} \prod_{i=1}^{K-1} f_{i}\left(x_{i}\right)\right\rfloor \\
& =\sum_{j=0}^{n} f_{k}(j) c(k-1, n-j)
\end{aligned}
$$

Buzen's Algorithm Cont.
Step 3: Initialization no customers $c(k, 0)={\underset{i}{i=1}}_{k}^{k}(0)=1$
1 node

$$
c(1, n)=\sum_{\left\{x_{1}=n\right\}} \prod_{i=1}^{1} f_{i}\left(x_{i}\right)=f_{1}(n)
$$

Step 4 : Fill in KxN matrix

Work your way down the columns, starting from top left
Let $\boldsymbol{u}_{\boldsymbol{i}}=$ utilization at station \boldsymbol{i}

$$
u_{i}=\frac{\rho_{i} C(K, N-1)}{C(K, N)}
$$

Throughout rate at station $i=\mu_{i} u_{i}$

Closed Networks
 Application
 Simple FMS mode

Copyright (c)2002 Stanley B. Gershwin.

Closed Networks

 Application

 Application
 Simple FMS mode

The production rate is

$$
\frac{C(M, N-1)}{C(M, N)} \mu_{m}
$$

and $\boldsymbol{C}(\boldsymbol{M}, \boldsymbol{N})$ is easy to calculate in this case.

