Production line behavior

Stanley B. Gershwin

Due Day 23

To do this problem, you must use the tools available on http://cell1.mit.edu/.

Consider a production line that has four machines with the same parameters: $r_i = .075$, $p_i = .009$, i = 1, 2, 3, 4.

- 1. Variation of N_i
 - (a) Assume $N_1 = \text{and } N_2 = 30$. Let N_3 range from 3 to 300, and plot the resulting values of \bar{n}_1 , \bar{n}_2 , and \bar{n}_3 on the same set of axes. Explain the shapes of the graphs, especially why numbers are increasing or decreasing, and their limits.
 - (b) **3 points** Now assume that N_3 =30, and let N_1 vary from 3 to 300. Again, plot \bar{n}_1 , \bar{n}_2 , and \bar{n}_3 . Explain again the graphs, and especially how they differ from the last set of graphs.
- Reliability optimization With all buffer sizes set to 30, consider the effect of varying the mean time to repair of Machine 1. It costs money to make Machine 1 easier to repair; in fact, it costs \$100/MTTR₁. Consider the following expression for profit for running the line for a given time period:

$$1000E - 2(N_1 + N_2 + N_3) - 10(\bar{n}_1 + \bar{n}_2 + \bar{n}_3) - \frac{100}{\text{MTTR}_1}$$

- (a) Is this function reasonable? Explain what each of the terms means, and why it belongs there.
- (b) What is the most profitable value of MTTR₁?
- (c) Does the answer make intuitive sense?