Philosophical issues

- 1. Mathematically, continuous and discrete random variables are very different.
- 2. *Quantitatively*, however, some continuous models are very close to some discrete models.
- 3. Therefore, which kind of model to use for a given system is a matter of *convenience*.

Philosophical issues

Example: The production process for small metal parts (nuts, bolts, washers, etc.) might better be modeled as a continuous flow than a large number of discrete parts.

Copyright ©2002 Stanley B. Gershwin.

- Spaces
- Continuous random variables can be defined
 - \star in one, two, three, ..., infinite dimensional spaces; \star in finite or infinite regions of the spaces.
- Continuous random variables can have
 - probability measures with the same dimensionality as the space;
 - \star lower dimensionality than the space;
 - \star a mix of dimensions.

Spaces

Dimensionality

Discrete approximation

Probability distribution of the amount of material in each of the two buffers.

Continuous Random Variables

cumulative distribution function (cdf) is

$$F(t) = P(X \le t)$$
 for all t

probability density function (pdf) is

$$f(t)=\frac{dF(t)}{dt}$$

$$\Pr(a \leq X \leq b) = \int_{a}^{b} f(t) dt = F(b) - f(a)$$

E[X] and *VAR*(X) are similar to discrete case, except you replace sums by integrals

$$\boldsymbol{E}(\boldsymbol{X}) = \int \boldsymbol{x} \boldsymbol{f}(\boldsymbol{x}) d\boldsymbol{x}$$

Example:

IQ test scores are normally distributed with μ = 100 and σ = 10

What is *P*(*X* > 125)?

$$= P \left(\frac{X - 100}{10} > \frac{125 - 100}{10} \right)$$

- = P(Z > 2.5)
- $= 1 P(Z \le 2.5)$
- = 1 .9938

= .0062

7

Example:

Manufacturing cycle times are normal with μ = 100 days and σ = 10 days

You want to quote delivery lead times (= delivery date - current date) so that you achieve 90% on-time delivery

Q: What delivery lead time should you quote?

Choose *x* so that *P*(*X* > *x*) = .1

Normal (or Gaussian) Distribution

X is a $N(\mu, \sigma)$ random variable

Fact: if *X* and *Y* are normal, so is *aX+bY+c*

Statistics books have tables for $Z = N(0,1) \frac{f(z)}{f(z)}$

Fact: if X is $N(\mu, \sigma)$, then $\frac{X - \mu}{\mu}$ is N(0, 1)

Central Limit Theorem

 X_1, \dots, X_n are independent and identically distributed with $E[X_i] = \mu \quad VAR(X_i) = \sigma^2$

X_i's are not normal!

Let
$$S_n = X_1 + ... + X_n$$

Central Limit Theorem for sum: if *n* is large, then S_n is approximately normal with mean *n* μ and standard deviation $\sigma\sqrt{n}$

Let
$$m_n = \frac{X_1 + \dots + X_n}{n}$$

Central Limit Theorem for mean: if *N* is large, then M_n is approximately normal with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$

10

Dice Graphs

11

Binomial distributions

Why are these distributions so similar?

Copyright ©2002 Stanley B. Gershwin.

Binomial distributions

Binomial for large N approaches normal.

7

Copyright ©2002 Stanley B. Gershwin.

Normal distribution has 3 uses

- 1) Models many physical processes
- 2) Sum of normal random variables
- 3) Sum or mean of many iid random variables