A random variable is a function that assigns a numerical value to each possible outcome of a probability experiment

Example 1: $X=$ the number that comes up on the roll of a dice
Example 2: $X=$ the number of heads in 3 flips of a coin

Outcome
(h,h,h)
(h,h,t)
(h,t,h)
(h,t,t)
(t,h,h)
(t,h,t)
(t,t,h)
(t,t,t)

Probability
.125
.125
.125
.125
.125
.125
.125
.125

## Value of $X$

$X=3$
$X=2$
$X=2$
$X=1$
$X=2$
$X=1$
$x=1$
$X=0$

## Random variables are either

- discrete: can only assume a finite set of values
- continuous: can take on any value within some interval of real numbers

Today: discrete random variables
Next Class: continuous random variables

The probability distribution of a discrete random variable $X$ is the possible values $\quad X_{1}, \ldots, X_{n}$ and corresponding probabilities $p_{i}, \ldots, p_{n}$ where $\sum_{i=1}^{n} p_{i=1}$

## Example 3:



Number of heads in 3 flips

## Mean =

$E[X]=$ expected value of $X$
$=$ mean of $X$
$=$ the average outcome
$=\mu_{x}$
$\mathbf{E}[\mathbf{X}]=\quad \sum_{i=1}^{n} x_{i} P\left(X=x_{i}\right)$
$\operatorname{Var}(x)=$ variance of $x$
$=\sigma_{x}^{2}$
$=E\left[\left(x-\mu_{x}\right)^{2}\right.$.
$=$ average squared deviation from the mean
$=\quad \sum_{i=1}^{n} P\left(X=x_{i}\right)\left(x_{i}-\mu_{x}\right)^{2}$

## Example 3: $X=$ number of heads in 3 flips of a coin

$$
\begin{aligned}
& E(X)=\sum_{i} x_{i} P\left(X=x_{i}\right)=1\left(\frac{3}{8}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right)=1.5 \\
& \sigma^{2}(x)=\sum_{i} P\left(X=x_{i}\right)\left(x_{i}-\mu_{x}\right)^{2}= \\
& =\frac{1}{8}(0-1.5)^{2}+\frac{3}{8}(1-1.5)^{2}+\frac{3}{8}(2-1.5)^{2}+\frac{1}{8}(3-1.5)^{2}=\frac{3}{4}
\end{aligned}
$$

Variance is in "squared" units, so we take square root

$$
\sigma(x)=\sqrt{\sigma^{2}(x)}=\text { standard deviation of } x
$$

The bigger $\sigma \Rightarrow$ the more spread out the distribution
$\Rightarrow$ the more uncertainty in the random variable

## Linear Functions of a Random Variable

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{aX}+\mathrm{b} \quad \text { ( } \mathrm{a} \text { and } \mathrm{b} \text { are known numbers) } \\
& E[f(X)]=\sum_{i} p_{i} f\left(x_{i}\right) \\
& E(Y)=\sum_{i} p_{i}\left(a x_{i}+b\right)=a \sum_{i} p_{i} x_{i}+b \sum_{i} p_{i} \\
& =a E(X)+b \\
& \operatorname{Var}(Y)=E\left(a X+b-\left[a \mu_{x}+b\right]\right)^{2} \\
& =E\left(a\left[x-\mu_{x}\right]\right]^{2} \\
& =\sum_{i} p_{i}\left(a\left[x_{i}-\mu_{x}\right]\right)^{2} \\
& =a^{2} \sum_{i} \boldsymbol{p}_{i}\left(x_{i}-\mu_{x}\right)^{2} \\
& =a^{2} \operatorname{Var}(x)
\end{aligned}
$$

## Binomial Distribution

## Each trial is

- a success with probability P
- a failure with probability 1-P
$\mathrm{X}=$ number of successes in $\mathbf{~} \mathbf{i n d e p e n d e n t ~ t r i a l s}$

$$
P(X=x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \quad x=0, \ldots, n
$$

$$
E(x)=n p \quad \operatorname{Var}(x)=n p(1-p)
$$

Example: $\mathbf{X}=$ number of heads in 3 tosses of a coin

$$
\begin{aligned}
n=3 \quad P=\frac{1}{2} & P(X=x)=\frac{3!}{x!(3-x)!}\left(\frac{1}{2}\right)^{3} \\
& P(X=0)=P(X=3)=\frac{1}{8} \\
& P(X=1)=P(X=2)=\frac{3}{8}
\end{aligned}
$$

Manufacturing application: $X=$ number of defective parts in a lot

## Two Random Variables

$$
X=x_{i} \quad \text { and } \quad Y=y_{i} \quad \text { with probability } \quad P_{i}
$$

$\operatorname{cov}(x, y)=\operatorname{covariance}$ of $X$ and $Y$

$$
\begin{aligned}
& =E\left[\left(x-\mu_{x}\right)\left(Y-\mu_{y}\right)\right] \\
& =\sum_{i=1}^{n} p_{i}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)
\end{aligned}
$$

if $X$ and $Y$ are independent then $\operatorname{COV}(X, Y)=0$
if $X$ and $Y$ tend to vary in the same direction, then $\operatorname{COV}(X, Y)>0$
if X and Y tend to vary in the opposite direction, then $\operatorname{COV}(\mathrm{X}, \mathrm{Y})<0$

$$
\begin{aligned}
& E(a X+b Y)=a E(X)+b E(Y) \\
& \operatorname{VAR}(X+Y)=\operatorname{VAR}(X)+\operatorname{VAR}(Y)+2 \operatorname{CoV}(X, Y)
\end{aligned}
$$

if $X$ and $Y$ are independent, then

$$
\operatorname{VAR}(X+Y)=\operatorname{VAR}(X)+\operatorname{VAR}(Y)
$$

$\operatorname{CORR}(X, Y)=$ correlation of $X$ and $Y$

$$
\frac{\operatorname{COV}(X, Y)}{\sigma} \in[-1,1] \text { is "NORMALIZED COVARIANCE" }
$$

