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1. Introduction 
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�Simulation: 

– The technique of imitating the behavior of some 
situation or system (Manufacturing, etc) by means 
of an analogous situation, model or apparatus, 
either to gain information more conveniently or….. 

�Simulator: 
– An apparatus or system for reproducing the behavior of 

some situation or system; ….., and gives the illusion .... 
of behaving like the real thing. 

The Meaning of Simulation Oxford English Dictionary 
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Model: 

� A simplified or idealized description of a system, 
situation, or process, often in mathematical 
terms, devised to facilitate calculations and 
predictions 

� a representation of an object, system or idea in a 
form other than that of the entity / system itself. 

� an abstraction and simplification of the real 
world. 

System Modeling 
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System Modeling -Functions of models 

� As an analytical tool 
� Analyze manufacturing systems 

� Evaluating equipment requirements 

� Design transportation facility 

� Ordering policy for an inventory system 

� As an aid for experimentation 

� For planning and scheduling 
� as an aid to thought 

� as an aid to communicating 

� for education and training 
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Classification of models 
� Physical models 

– analog models of continuous systems 

– iconic models e.g. pilot training simulators. 

� Analytical/Mathematical model Most scheduling systems 

– Representing a system in terms of quantitative relationships. 

� Static simulation models 
– Time does not play a role; e.g. Monte Carlo simulation. 

� Conventional simulation models 
– System as it evolves over time - therefore it is dynamic 

– Have I/O and internal structure; 

– Empirical 

– Stochastic, (can be deterministic for scheduling 

� Online simulation models 
– As conventional; but near -real-time; useful for decision support 

e.g. traffic flow. 

run rather than solved. 

application). 
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Classification of simulation models 
� Deterministic vs. Stochastic Simulation models 

– If no probabilistic components then it is deterministic 

– If random input components used then it is Stochastic. 

� Continuous vs. Discrete-event Simulation models 
– Discrete-event simulation concerns modeling a system as it 

evolves over time by a representation where state variables chan ge 
instantaneously at the event 

– Continuous simulation covers modeling over time by a 
representation where state variables change continuously with 

respect to time (e.g. using differential equations) 

� Combined Discrete-Continuous Simulation 
– For systems that are neither completely discrete nor completely 

continuos e.g arrival of a tanker and filling it. 
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Simulation models 

•For analytical work 
•For decisions or confirmation 
of decisions 
•Rapid model building 
•Manually intensive 
•Hard to maintain 

Conventional 
Simulation 

Model 

Dynamic 
(near-real-time) 

Simulation 
Model 

•Most suitable for 
scheduling 

•Uses near-real -time data 
•Fully automatic 
•Integrated with info. systems 
•No direct maintenance 

Auto model generationManual model generation 

planning and 
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Some basic definitions 
� System state variables 

– Collection of information needed to define what is happening in a system to a 

sufficient level at given point in time 

� Events 
– Exogenous e.g. order arrival; Endogenous e.g a machine down 

� Entities and attributes 
– Dynamic entity e.g. a customer, Static entity e.g. a machine. 

– An entity is defined by its attributes, e.g. quantity of a lot 

� Resources 
– Resource is a static entity that provides service to dynamic entity (a lot) 

� Activity and delay 
– Activity is a period whose duration is known; Delay is an indefinite duration 

caused by a combination of systems conditions 
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Four types of modeling structures 
� Event-Scheduling method 

– Events are scheduled by advancing the simulation clock exactly to the time of 

the next event. This is one of the most accurate structures . 

� Activity Scanning method 

� Three-Phase method 

� Process interaction method 
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Example: M/M/1 queue 

Server 
(machine)

i 

An arriving 
job (customer) 
(IID random 

arrival) 

Jobs (customer) 
in queue) 

Job being 
processed 
(customer 
in service) 

A completed job 
(a departing 

customer) 
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Next-event time advance mechanism in Event-Scheduling 
method of an M/M/1 queue 

ti = Time of arrival of ith customer 

Ai = ti - ti-1 = Inter arrival time = IID random variables 

Si = Service time of ith customer= IID ran. variable 

Di = Observed delay of ith customer in queue 

ci = ti + Di + Si = Completion time of ith customer 

ei = Time of occurrence of th event of any type 

Bt (or = “Busy function” defined as 1 if server is 

busy at time t and 0 if server is idle at time t 

i

) 
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Next-event time advance mechanism in Event-Scheduling 
method of an M/M/1 queue 

•Inter arrival times Ai , and service times Si 
have cumulative distribution functions Fa and 
Fs, which are determined by collections of 

actual past data and fitting distributions. (2. Input 

probability distributions) 

•Each value of ti is computed using 
generated values of Ai , using random 
observations from a specific distribution. (3. 

Generating Random Numbers and Random Variates) 
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Next-event time advance mechanism in Event-
Scheduling method of an M/M/1 queue 

e0 e1 e2 e3 e4 e5 

0 t1 t2 c1 t3 c2
A1 A2 A3 

S1 S2 

Real time clock 
Simulation clock 
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Next-event time advance mechanism in Event-Scheduling 

method of an M/M/1 queue 

•The simulation clock is advanced from each event 

to the next event based on the event times of the 

event list. 

•A machine starting to process is an activity and 

the end time is known from Si & Fa 

•When a customer (or a job) arrives and if the 

server is busy then it joins a queue and the end 

time is unknown. delay This is a 
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Discrete event simulation of an M/M/1 queue 

Job Arrival Service Start End Delay 

ti Si ci Di 
J1 0.4 2.0 0.4 2.4 0 
J2 1.6 0.7 2.4 3.1 0.8 

J3 2.1 0.2 3.1 3.3 1.0 

J4 3.8 1.1 3.8 4.9 0 

J5 4.0 3.7 4.9 8.6 0.9 

J6 5.6 2.8 

J7 5.8 1.6 

J8 7.2 3.1 
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Discrete event simulation of an M/M/1 queue 

e1=0.4 

e2=1.6 
e3=2.1 e7=3.8 

e8=4.0 
e10=5.6 

e11=5.8 
e12=7.2 

e4=2.4 
e5=3.1 

e6=3.3 
e5=4.9 

e13=8.6 

Time 

Q(t) 

0 

1 
2 

3 

Departures 

Arrivals 

B(t) 

0 
1 
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Expected average delay in M/M/1 queue 

From a single run of simulation of n jobs 

(customers), a point estimate for 

, expected average delay in queue of 

the n jobs (customers) is 

n 
D i 

D n 

n 

i 

� 
= = 1)( 

D n)( 
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Expected average number of jobs in M/M/1 queue 

Ti = Total time during the simulation in which 

of customers(jobs) is observed as length i 

Tn = Time to observe n delays in queue 

Q(t) = Number of customers in queue at time t 

qn = Average number of customers(jobs) in queue during 

n observations 

T 
iT i 

q n 
n 

i 
� 

= 

¥ 

= 1)( 
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Since 

T 
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We get 

Expected average number of jobs in M/M/1 queue 

the queue 
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Expected utilization of the machine in M/M/1 system 

un = Expected proportion of time the server 

(machine) is busy during n observations 

Since Bt is always either 0 or 1 

T n 

dttB 
u n 

T n 

� 
= 

)( 

0 
)( 

)( 
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Simple output from discrete event simulation 

Let take a case of the earlier table of arrival and service 
with the first 5 observation of completion (Tn =8.6) 

= (0 X 3.2) + (1 X 2.3 ) + (2 X 1.7) + (3 X 1.4) = 9.9 

Ti = 0 
and therefore 

and 
= [(3.3 -0.4) + (8.6-3.8) ]/8.6 

� 
¥ 

= 1i 
i T i 

q )n( 

u )n( 

for i >= 4 
= 9.9/8.6 = 1.15 

= 0.90 
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Discrete event simulation 

� These values are simple illustrations of 
statistics of discrete event simulation 
� Discrete-time statistics (e.g. average delay in queue) or 

� Continuous -time statistics (e.g. proportion of server busy time) 

� A very large number of other useful statistics 
could be obtained from each simulation run. 

� In addition very complex manufacturing 
systems could be modeled using this simple 
approach. 
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Discrete event simulation 

�However model MUST be 
verified and validated to add 
credibility to the results. (4. 

verification and validation) 

� Experimental runs should then be 
carried out using the 
model. 

validated 
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Discrete event simulation 

�However values of each experimental 
run are based on “sample” size of 1 (one 
complete simulation run) 
size of 1 is not statistically useful. 

�Multiple replications and confidence 
interval are therefore essential elements 
of simulation output data analysis. (5. 
Output data analysis) 

and sample 
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Probability & statistics and Simulation 

� Probability and statistics are integral part of simulation 
study 

� Need to understand how to model a probabilistic 
system 

� Validate a simulation model 

� Input probability distributions, 

� Generate / use random samples from these 
distributions 

� Perform statistical analysis of output data 

� Design the simulation experiments. 

14
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2. Input probability 
distributions 
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Randomness in Manufacturing 

� Process time 

� MTTR 

� MTTF 

� Inter arrival time 

� Job types or part mix 

� Yield 

� Rework 

� Transport time 

� Setup time 

� and so on 
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Using past data 

� Use past data directly in simulation. trace 
driven simulation. (Effective for 

� Use the sample data to define an empirical 
distribution function and sample the required 
input data from this distribution. 

� Use a standard technique (e.g. regression) to fit a 
theoretical distribution form to the sample data 
(e.g. exponential etc.), and sample the required 
data from it. 

This is 
model validation) 
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Steps in selecting Input probability distributions 

� Assess sample independence: 
– Must confirm the observations X1,X2,…Xn are independent using techniques such as correlation 

plot. 

� Hypothesizing families of distributions: 
– Without concern for specific parameters, we must select general family e.g. normal, exponential etc. 

� Estimation of parameters: 
– Use the past numerical data to estimate parameters. 

� Determine the best fit: 
– Use a technique such as probability plot or chi -square test and identify the most suitable distribution 

function 

� The last three steps are integral part of available 
software and therefore we may not have to 
manually carryout these steps 

16
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3. Generating Random 
Numbers and Random 

Variates 
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Status 

�Early simulation studies required 
random number generation and 
generation of random variates from the 
distributions, often manually coded in 
computers. 

�Most of the current simulation languages 
and simulators have built in features for 
this. 

17
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Random number generation for simulation 

� Built in feature should have the following: 

� Generate random numbers, uniformly distributed on 
U[0,1] that do not exhibit any correlation with each 
other. 

� Reproduce a given stream of random numbers exactly 
(i.e. Identical random numbers) for verification etc. 

� Have ability to generate large number of streams for 
multiple replications (i.e. Different streams are separate and 
independent generators.) 
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Random variate generation for simulation 

� Built in feature should also have the following: 

� Generate random variates. 

� This means: 
selected variable (e.g. MTTR) from the 
parameters of the desired distribution 
function (e.g. Gamma) using the IID U(0,1) 
random numbers with computational 
efficiency. 

Produce observations for each 

18
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4. Verification and Validation 
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Definition 

� Model verification: Building model right 

– Correct translation of conceptual simulation model in to a 
working program 

– Debugging 

� Model validation: Building the right model 

– Determine if the conceptual simulation model is an accurate 
representation. 

� Credible Model: Objectives using model 

– When the model is accepted by user / client and used for the 
purpose it was built 

fulfilled 

19
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� Errors arise from data, conceptual model, computer model, 
even computer system. 

� Test sub-models first, then complete model. 

� Common techniques 

– Static: a structured, walk -through technique. 

– Dynamic: run program under different conditions, then 
check if the output is reasonable. 

– Trace: Identify selected state variables (event list) after each 
event and check with manual calculations 

– Animation: observe animation 

Verification 
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What is Validation? 
� Valid if it’s output behavior is sufficiently accurate to 

fulfill the purpose. Absolute accuracy is not essential 
and it is too time-consuming and expensive. 

– check underlying theories, assumptions, approximation. 

– check model structure and logic, math and relationships 
(by tracing entities in all sub-models and main model). 

– Model should be validated relative to the measures in 
the objective. 

20
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�Data have to be validated: 

–difficult, time-consuming and 
costly to obtain relevant, 
sufficient and most importantly 
consistent and accurate factory 
data. 

Validation 
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A three step Validation process 

� Conventional simulation studies : 

– Step 1. Face validation: ask people 
knowledgeable / experienced 
system under study 

– Step 2. Empirically Test & compare with other 
models, e.g. analytical models 

– Step 3. Detail output data validation 
– (a) Confidence Intervals 

– (b) Correlated Inspection Approach 

about the 
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Confidence Intervals 

� Let Y1, Y 2, …Yn, be IID random variables with mean 
sample variance 

� It can be shown using central limit theorem that, when n is 
“sufficiently large”, approximate 100(1-aa ) percent 
confidence assuming a t distribution with (n -1) degrees 

of freedom) is given by the following: 

2 
)n(s 

yn 

n 

)n(S 
t),n(l 

2 

)2/1(,1n)n( aa ---U= 

n 

)n(S 
t),n(u 

2 

)2/1(,1n)n( aa --+U= 

)2/1(,1nt a--- )2/1(,1nt a--+ 

Shaded area = (1-aa ) 

and 

that an 
interval (
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� Assume we collect m independent sets of 
data from the system and n independent sets 
of data from the model. 

� Let Xj be the average of the observations of a 

desired variable (e.g. throughput) in the jth set 

of system data and UU j be the average of the 

observations in the jth set of model data of the 

same variable. 

Validation: Confidence Intervals approach 
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� If we assume the m sets of system data are 

homogeneous, then Xj’s are IID random 

variables with the mean µx. 

� If the n sets of simulation model data were 

generated using independent replications 

then UU j’s are IID random variables with the 

mean µy. 

Validation: Confidence Intervals approach 
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Validation: Confidence Intervals approach 

� One of the methods to compare the model 

with the system is by constructing a 

confidence interval for xx where 

� Let 

upper confidence interval end points of 

� If 

between 

significant at level 

mmmmxx yx -= 

),n(l aa ),n(u aa 

)](u),(l[0 aaaaˇ 

mm y mm x 

aa 

xx 

correspond to lower & and 

. 

, then the observed difference 

is said to be statistically and 
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Validation: Confidence Intervals approach 

� However, even though the difference is 

statistically significant, the model may still be 

a valid representation of the system to fulfill 

the objectives of the simulation. 

� On the other hand if 

observed difference between 

said to be statistically not significant at level 

and may be explained by sampling 

fluctuations. 

)](u),(l[0 aaaa˛ 

mm ymm x 

aa 

, then the 

is and 
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Validation : Correlated Inspection Approach 

� Statistics of the desired variable from the 
systems is compared with corresponding 
statistics 

Historical data 
from factory 

Historical data 
from factory 

Actual system 
(i.e., factory) 

Simulation 
model 

Output data 
from factory 

Model output 
data 

Compare 

of the model. 
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Validation : Correlated Inspection Approach 

� Suppose we want to validate the cycle time 
(e.g.makespan / duration from arrival to completion). 

� We make a number of observation of the 
factory cycle time Xj’s and for example, the 
inter arrival time of the jobs. 

� We then use the observed values of 

arrival time of the factory to drive the 

simulation model and obtain cycle time 

values UU j’s from it. 
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Validation : Correlated Inspection Approach 

� We compare jth set of system data Xj and 

simulation model data UU j where is an 

estimate for 

� We can look at the sample mean and sample 

variance of all 

on the validity of the simulation model to 

fulfill the objectives. 

mmmm yx -

mmmm yx -

YX jj -

the inter 

to make a judgment 
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5. Output data analysis 
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Transient and steady state behavior 

� Experimental observations for output analysis should 
be made at steady state, i.e. after a transient state of 
the stochastic simulation run. 

� Consider the output of the random variable UU i for 
i=1,2,…m. 

� Let a real 

number and II represents initial condition. 

� The transient distribution at discrete 

is different for each i and each set of II . 

)
i

Y(Pi
F Iy)Iy( £= 

)Iy(
i

F 

where y is 

time i 
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Transient and steady state behavior 

� If all y and any 

Initial condition II then 

state distribution. 

)y()Iy( Fi
F fi ¥fii 

)y(F 

Steady state 
(not necessarily normal density)Transient state 

Yi1 

Yi2 

Yi3 

E(Y i ) 

SS state =E(Y ) 

i
1 

i
2 

i
3 

is said to be steady 
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Random nature of simulation output 

� Let UU 1, UU 2, … UU i … UU m , be output of stochastic 
process from a single simulation run (e.g. UU i is 
throughput at th hour, m = number of observations ). 

� UU i’s are random variables & generally not IID. 

� If we carry out n independent replication (using n 
different streams) then we realize a set of random 
observations as shown below: 

y11 , . . . , y1i , . . . y1m 

y21 , . . . , y2i , . . . y2m 

. . . . . . . . . . . . 

yn1 , . . . , yni , . . . ynm 

i
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Output analysis 

� Observations from a single replication (row) are not 
IID. 

� However y1i , y2i ,...yni from n replications (column) are 
IID observations of the random variable, UU i for 
i=1,2,…m. 

� This is the basis of statistical analysis of the 

observations of yji . For example an unbiased 

estimate of 

n 
y 

i
y 

n 

1j 
ji

)n( 
� 

= = 

)i
Y(E 
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Confidence Interval of Output analysis - an example 

� Comparing two systems on a given measure of 
performance is done by forming a confidence interval 
for the difference in two expected values of 
example . 

� If the number of observations n1=n2=n then we pair 

with for j= 1,2,…n and 

’s are the IID random variables. Approximate 

percent confidence interval is: 

)j
Y(E 

Y j1 Y j2 YYZ j2j1j -= 

n 

)n(S 
tZ 

2 

)2/1(,1n)n( aa--– 

)1(100 aa-

Paired-t confidence 

Zj 

˛0 
for 

and check it for 

and define 

interval 
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Abstraction 

Experimentation 

Formal Results 

Implementation 

Simulation Model 

Recommendations 
Interpretation 

Real World System 

Steps in conventional simulation 
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Credibility Assessment in 
Simulation projects 

29
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Credibility Assessment Stages 
Quality Control of processes between phases 

�Credibility assessment will always be 
subjective because 

–modeling is an art 

–credibility assessment is situation-
dependent 

�Accuracy of assessment always relative 
to the objective of simulation, never 
absolute. 
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�Peer Assessment 
–Panel of persons who are 

� experts of the system under study 

� expert modelers 

� simulation analysts 

� familiar with simulation projects 

Credibility Assessment Stages 
Quality Control of processes between phases 
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� Verify formulated problem 

– to make sure it faithfully reflects the real problem. 

� Feasibility of simulation 

– is data available? Easy or costly to get? 

– are resources for simulation available? 

– cost-benefit: any time limit imposed to complete study? 

� The real system 

– are system’s boundaries well-defined? 

– have objectives of simulation changed with time? 

– counter-intuitive behavior accounted for? 

– any drift to low performance? 

Credibility Assessment Stages 
Quality Control of processes between phases 
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� Qualifying the conceptual model 

– are assumptions explicitly defined, appropriate? 

� Verifying the communicative model 

– use techniques such as walk -through, structural 
analysis, data-flow analysis (Whitner & Balci, 1986). 

� Verifying the programmed model 

– use standard software verification techniques. 

Credibility Assessment Stages 
Quality Control of processes between phases 
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� Verify experimental design 

– is random number generator accurate and true? 

– are statistical techniques for design and analysis of 
experiments appropriate? 

– initial transients accounted for? 

– have you ensured identical experimental conditions for each 
alternative operating policy? 

� Data validation (of model parameters and input data) 

– are they appropriate? current? unbiased? inter-dependent? 
complete? accurate? 

– are instruments for data measurement and collection 
accurate? 

Credibility Assessment Stages 
Quality Control of processes between phases 
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� Validating the Experimental Model 

– always compare the behavior of the model and real system 

under identical input conditions. 

– subjective and statistical validation techniques applicable 

only when data are completely observable. 

� Interpretation of simulation results 

– interpret numerical results based on the objective of the 

study. Judgment involved. 

� Documentation 

– Embed documentation into model development cycle. 

Credibility Assessment Stages 
Quality Control of processes between phases 
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�Presentation 
–communicating simulation results 
� translate the jargon so non-simulation people 

& decision-makers can understand 

–presentation techniques 
� integrate simulation results with a DSS, so 

decision-maker can appreciate the significance 
of the simulation results. 

Credibility Assessment Stages 
Quality Control of processes between phases 
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Wrap-up 
� We have looked at the simulation of a M/M/1 queue 

� We have discussed Input probability distributions 

� We talked about the Random Numbers and 
Random Variates 

� We discussed Validation techniques 

� We outlined output data analysis and confidence 
intervals 

� Life cycle and Credibility Assessment of 
simulation models 
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