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Abstract

The drive towards photonic integrated circuits (PIC) necessitates the development of new

devices and materials capable of achieving miniaturization and integration on a CMOS

compatible platform. Optical switching: fast modulation and add-drop switches, key

components in a PIC, were investigated. A MEMS-based approach was utilized to control

switching in planar ring resonator waveguide structures. A switch extinction ratio of 15

dB, switch speed of 60 ps and 1 mW operating power were demonstrated.

A metal-insulator transition material, V0 2, was identified as a material with potential for

enhancing the switch speed with speeds in excess of gigahertz rates with minimal device

footprint. Fundamental material transport properties and nonstoichiometry in V0 2 were

characterized. Nonstoichiometry as high as 5% was measured. A Frenkel defect model

was used to describe the behavior in V0 2 in which vanadium interstitials were attributed

to be the dominant ionic defect in the reducing regime. Frozen-in vanadium interstitials,

acting as shallow donors lying 20 meV below the conduction band in the semiconducting

phase, enhance the low temperature conductivity and free carrier concentration.

V0 2 was shown to exhibit an activated mobility in its semiconducting and "metallic"

phases with room temperature mobility estimated to be 5x10-2 cm2/Vs. Electrical switch

contrasts of of as high as -5000 and optical extinction ratios of approximately 16 dB

were demonstrated. Free carrier absorption due to shallow donor vanadium interstitials

was identified as a dominant absorption mechanism at near-IR wavelengths. Control of

the degree of nonstoichiometry was shown to influence the near-IR absorption effects.



To address the need for an integrated fast switch for data encoding, a thin film electro-

optic (E-0) modulator, based on barium titanate (BaTiO3) or barium titanate-strontium

titanate (SrTiO3) superlattices, was developed. Mach-Zhender E-0 modulators were

designed, fabricated with CMOS compatible processing steps and tested. Effective

electro-optic values as high as 73pm/V, 2.5 times better performance compared to

commercial bulk LiNbO3 technology was demonstrated, with device area less than

30,000 pm2

Thesis Advisor: Harry L. Tuller

Title: Professor of Ceramics and Electronic Materials
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Chapter 1: Introduction

1.1 Motivation

Integrated photonics, the field of integrating optical components on a single platform is

increasingly attracting wide interest from microprocessor designers and

telecommunication system developers driven by the ever increasing demand for larger

bandwidth.

In telecommunications the bandwidth demand is driven by the increase in data-intensive

applications, such as video, voice over IP (VOIP), etc. over the internet. Over long-haul

distances (distances > 100's kin), optical fiber communication is prevalent. Current

optical fiber communication employs wavelength division multiplexing to multiple

optical signals (wavelengths) within a single optical fiber (or waveguide). Wavelength

Division Multiplexing (WDM) is a technique of combining different wavelengths of light

(multiplexing) and transmitting them in a single waveguide. The light is then un-bundled

(de-multiplexed) at the receiver end.

Whilst long-haul communication is based on optical networks, metro area networks

(distance between 10's km to 100's of kin), MAN, and local area networks (few

kilometer distances), LAN, are based primarily on copper-based electrical signal

transmission. Copper based transmission of signals is limited by RC delays as well as

optical-electrical-optical (O-E-0) signal conversions. O-E-O conversion is limited by the

speed of electronic transistors. The maximum data rates in LAN and MAN networks

based on copper are 100's Mbits/s.

In logic applications, the Moore's Law driven increase in transistor count has led to

increasing data rates in global and local interconnects within a microprocessor. The state-

of-the-art microprocessor interconnects are facing many obstacles in keeping up with the

required data rates (several Giga bits per second) due to resistance-capacitance (RC)

delays and increasing fraction of side-wall scattering with decreasing interconnect line

widths [63].



The limitations placed by copper based signal transmission in both telecommunication

and microprocessors can be overcome by optical signal transmission, with the ability to

deliver high data bandwidth limited only by the speed of light.

In telecommunications, programs such as fiber-to-the-home (FTTH) are touted as much

needed solutions for removing the copper and O-E bottlenecks. A single optical fiber can

carry several hundred Gbits/s compared to 100's Mbits/s over copper [33]. In order for

programs such as FTTH to be realized, advances are needed in integrating various optical

components onto a single platform referred to as photonic integrated circuit (PIC). This

would allow direct optical interconnection between long-haul optical fiber networks and

MAN's and LAN's. Integration of optical components is a necessity for minimizing the

price/performance ratio of optical cross-connects and optical add-drop devices [53].

Assembly of discrete components to form add-drop or cross-connect leads to high cost

due to complex assembly and aligning processes [53]. On the other hand, integrated add-

drops and cross-connects are self aligned, and eliminate the cost of complex assembly

and alignment.

Currently, the optical components necessary for optical communication such as light

sources (laser), detectors, modulators, and switches are available as discrete components.

When building an optical signal processor box, these various components are assembled

as needed. The assembly can be complex, given the need to align components precisely.

Such complex assembly can be tolerated if the number of installations is only a few

hundred. However, with program like FTTH, millions of optical signal processors will be

needed, scaling directly with the number of households and end users. In this scenario,

components requiring complex assembly and alignment are not cost effective. The drive

to develop photonic integrated circuits is driven, in part, by this need to minimize cost of

assembly and installation of discrete component technology. Optical switching is a key

component requiring integration on a PIC. Optical switches have various applications on

a PIC. These are listed in Table 1, along with the required switching speed, a key

requirement for the switches.



Table 1 Application of optical switches in a typical photonic integrated circuit and the required

switching speeds [611.

Application Function Switch speed

Provisioning Add-drop a specific wavelength 1 - 10 ms

Packet Switching Switching a short packet of information 1 ns (duration of

packet: several bytes

Modulation Encode electrical l's and 0's 10 ps (bit duration)

An optical modulator is used to convert a digital electrical signal carrying l's and O's to

an optical signal. Modulators are based on intensity modulation, where peak intensity will

correspond to a 1 bit and minimum intensity corresponding to a 0 bit. Given that

information is generated at the speeds of 100's to 1000's of Mbits per second (Mbps), the

modulator operation needs to be in the 100's of Giga hertz frequency to Tera hertz

frequency range.

An optical modulator is in effect acting as a switch, switching an optical signal on and

off. In addition to modulating an optical signal, optical switches are needed in a photonic

integrated circuit (PIC) to turn on and off optical signals by re-directing or changing the

path of an optical signal based on an external command. In the most basic configuration,

a signal from an input channel is directed to one of two output channels. The device that

directs the optical signal to a particular output channel is the optical switch. A slightly

more complicated version is the optical add-drop multiplexer (OADM). In this case, a

specific wavelength signal can be added, or dropped from a particular waveguide or

channel, based on an external command. An OADM is a combination of several optical

switches.

Whilst an optical modulator acts like an optical switch, modulators cannot be used as

switches due to the fact that current modulator devices occupy large areas (order of few

millimeters) and many optical switches are needed on a PIC. On the other hand, current

available optical switches cannot be used for optical modulation due to the relatively low

switch speeds. Thus, both these devices need to be addressed separately.



In this thesis, materials and devices for add-drop multiplexers and optical modulation are

investigated.

1.1 Optical Switching

There are numerous designs described in the literature that are reported to carry out

optical switching functions with target application in add-drop multiplexing. The

switches available can be broadly classified into: mechanical (MEMS-based) switches,

thermo-optic switches, free-carrier induced absorption switches, and electro-optic

switches. The mechanical, thermo-optic and free-carrier based switches are described in

this section. Electo-optic switches are discussed in section 1.8

1.1.1 Mechanical Switches

Some of these designs involve tilting mirrors [1,20], cantilever-based moving waveguides

[52] and free standing mirrors supported by torsion beams [11]. The tilting mirror

approach of Lucent [1,20] is commercially used for large scale optical cross-connects.

This design requires 3-D alignment to optical fibres, and is therefore, not compatible with

planar PIC's. In addition the drive voltage for this design is 200V and switching times of

a few milliseconds. The design of Chen et al [11] is a free-space design where switching

is accomplished by electrostatic deflection of a door-like mirror with hinges. The area of

a single 2 x 2 switch occupies an area of several square millimeter which is not

compatible with large scale PIC's.

The cantilever-based waveguide switch [52] is a planar design which can switch between

eight output waveguides (1 x 8). The horizontal deflection of the cantilever is

electrostatically actuated. The drive voltage is approximately 70V and switch time is

approximately a millisecond.

1.1.2 Thermo-optic switches

Thermo-optic switches operate based on a temperature-change-induced change in the

refractive index. Silicon dioxide [16] and polymer [29] based switches are described in

the literature. These devices overall have large switch times, order of several

milliseconds, and require relatively large amounts of power, order of 100's of milliwatts



per switch. The slow switch speed and large power requirement render these types of

design unattractive for PIC's.

1.1.3 Free-carrier induced absorption switches

Free-carrier switches operate based on a change in the effective index [1], induced by a

carriers injected into the switch area or by a plasma dispersion effect [44], also induced

by carrier injection. These switches are usually based on silicon or other III-V

semiconductors such as GaAs. These designs are compatible with planar PIC's, but

require relatively large operating powers (several 100's of milliwatts) and device size are

also relatively large (just under 1 square millimeter).

1.1.4 Summary of Switch Designs

Several selective optical switch designs were discussed above covering largely three

different switch design types based on MEMS, thermo-optic and free-carriers.

While all of these devices are fabricated through conventional micromachining processes,

the MEMS-based approached mentioned thus far have several drawbacks due to their

large footprint (sizes of the order of millimeters) [11], fabrication complexity [11, 52],

and complex 3-D assembly [1, 20]. Furthermore, all of these devices require actuation

voltages of several 10's of volts and switching times are at best 1 ms. The thermo-optic

switches have relatively slow switching speeds and high operating powers. The free-

carrier based switches are unattractive due to their large device sizes and relatively high

operating powers.

Given the drawbacks of the designs reported in literature a different approach to OADM

switching is explored in this thesis. The key requirements for the OADM that will be

aimed for are summarized in Table 2.



Table 2 OADM switch device requirements.

Requirement Desired value

Extinction ratio: ratio between the on and offpower > 15 dB

Insertion loss: loss due to switch design As low as possible

Switch speed 100's ps

Operating power <1 mW

Drive voltage 5 V

Device footprint (area) <5000 pm2

1.2 Proposed approach to optical switching for OADM

In this thesis, two approaches are taken for optical switching in optical add-drop's. The

first approach involves using a MEMS-based electrostatic device to switch off and on an

optical ring resonator. The second approach involves a phase-transition based metal-

insulator transition optical switch.

Intrinsic wavelength switching is a unique characteristic of the MEMS-based switch.

Typically, wavelength-selective switching is achieved by demultiplexing the WDM

signal, switching the individual wavelength, and then remultiplexing the output signal.

The MEMS switch reported in this thesis reproduces the entire process with a single

element. This switch is ideally suited for creating reconfigurable integrated optical

circuits for a variety of optical networking purposes. Additional advantages of this

MEMS switch is its complementary metal-oxide-semiconductor (CMOS) compatibility,

small footprint, and low power consumption. These characteristics are all important to

achieve large-scale integration of optical switches into low-cost high-performance WDM

optical networks.



The second approach involves metal-insulator transition based switching. This design,

involves no macroscopic movement, like in the MEMS-switch. Instead, the ultra-fast

phase transition and the associated change in optical absorption coefficient are exploited.

1.3 MEMS-based switch

A variety of MEMS-based approached to optical switching as reported in the literature

were described earlier. As was pointed out, many the reported designs were not suitable

for photonic integrated circuits due to large area device footprint, non-2D compatible

design, large insertion losses, insufficient switch contrasts and lack of wavelength

selectivity. In this thesis, a planar wavelength selective switch with low drive voltages

and relatively small device footprint is developed.

This integrated wavelength selective optical switch was proposed by Watts [81]. This

design is based on ring-resonator filters developed by Little et al. [42, 43]. This design

involves a waveguide ring resonator that is side-coupled to a pair of bus waveguides as

shown in the schematic in Figure 1-1 [43]. An optical signal traveling in the "input"

waveguide can be completely transferred (switched) to the "drop" waveguide via the ring

waveguide provided the dimensions of the ring permit the particular wavelength being

switched to resonate in the ring. Resonance occurs when the circumference of the ring is

an integral multiple of the wavelength being switched. If the ring is off-resonance, i.e. the

circumference of the ring is not an integral multiple of the wavelength; the signal does

not interact with the ring and it simply continues down the input/throughput waveguide

uninterrupted.

In its "on" state, any wavelength will be switched from the input waveguide to the drop

waveguide provided there is ring resonator designed for each wavelength. In this case,
the switch will always remain "on". Some mechanism is needed to be able to control the

switching of the resonator, i.e. be able to switch the resonance on and off. A key

advantage of this filter design is that this is compatible with planar integrated photonics.

This filter can be made into an optical switch if the resonance can be turned "off' when

needed. An MEMS based switching mechanism is developed in this thesis, to render this

filter a wavelength selective optical switch.



It has been shown theoretically that if sufficient absorption is introduced into the ring,

switching of the optical signal into the drop port can be prevented. When there is

significant absorption in the ring, no resonance occurs within it. The signal in the input

waveguide will simply remain in the input waveguide. Figure 1-2 below shows how

increasing absorption in the ring leads to reduction in the amount of signal power

transferred to the drop port, thus preventing switching [81].
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Figure 1-1 Schematic showing the ring-resonator filter design by Little et al [42].

The wavelength selectivity of the switch is created by high index-contrast optical ring

resonator filters. The high-index contrast between the core and cladding materials allows

the rings to have a small radius (10 sm), and therefore, a large free spectral range (FSR),

with low bending loss [2]. A single-ring filter was selected for this initial device to

minimize complexity, however, the switching technique could be easily applied to multi-

ring filters that have improved optical filter performance.

The high-index core material used for the waveguides is silicon-rich silicon nitride with a

refractive index of 2.2. The waveguide core cross section is 1050 nm wide for the bus

waveguides and 1010 nm wide for the ring-resonator waveguides, both were 330 nm

thick. The cladding is 3 pm-thick silicon oxide on the bottom and air on the top and sides.

Optical modeling calculations carried out by Watts [81] predicts the effect of the

absorbing material on power throughput as a function of distance from the ring resonator.

These calculations were carried out for the case where the switch is integrated with

silicon-based waveguides. For the case of Si3N4 waveguides, the absorbing membrane

needs to be at least 1.2 pm away from the ring in the "off' state and less than 0.2 pm



away in the "on" state (Figure 1-2). These calculations were based on the assumption that

the absorbing material has a thickness of at least 0.2 pm.

The main requirements for the MEMS switch are:

- Actuation voltage no greater than 5 V

- Switching speed of at or below 1 ms

- Membrane displacement of- 1.2 pm

- Use of materials and micromachining techniques compatible with

integration of other optical devices in the optical signal processor.

Figure 1-2 Transfer of optical power between the throughput and drop ports of the ring-resonator

filter [81].

1.4 Metal-Insulator Transition Materials

Metal-Insulator Transition (MIT) materials are characterized by a sharp discontinuous

change in resistivity due to change in temperature. In the literature, there are several

reports of materials that exhibit this property, as summarized by Vest et al [80] and
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Figure 1-3. All the materials displayed in this figure are transition-metal oxides. The

underlying principles and physics governing the MIT effect depend on the specific

material. Of the oxides that exhibit the MIT effect, V0 2 is the more attractive, for several

reasons:

1. The transition occurs close to room temperature (68*C) compared to other

materials which show transitions at -165*C (e.g. V20 3) and +227*C (Ti20 3).

2. The transition in V0 2, accompanied by approximately 4 orders of magnitude

change in resistivity, is sharp, occurring apparently over approximately 2-3

degrees Celcius.

For these reasons, V0 2 was chosen for further investigation.

68C
V20.

Kojo
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Figure 1-3 Resistivity data showing the metal-insulator transition in

various transition metal oxides [80].

1.5 Structure and Properties of V02

VO2 is one of a number of the oxides of vanadium. While its existence range has not been

thoroughly characterized, x-ray measurements indicate a narrow existence range as

shown in the phase diagram in Figure 1-4 [82]. The existence ranges for different

vanadium oxides as a :function of oxygen partial pressure and temperature are show in
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Figure 1-5. It can be seen that V0 2 (area shaded in blue in Figure 1-5) exits over a fairly

narrow oxygen partial pressure range.

The MIT effect in V0 2 is accompanied by a change in crystal structure. The lower

temperature phase has a monoclinic (M) crystal structure with symmetry P2Ie. The lattice

parameters are a=5.743 A, b=4.517 A, c=5.375 A, with angles 90.00 x 122.60 x 90.00

[79]. Above the MIT transition temperature, the metallic phase has a body-centered-

tetragonal symmetry (P42/mnm) a=4.554 A, b=4.554 A, c=2.856 A. A schematic of the

two crystal structures is shown in Figure 1-6(a).

Other monoclinic polymorphs (M2 and M3) with different lattice spacing compared to

the M phase of V0 2 are known. These polymorphs are metastable phases, and are not

known to be stable at room temperature.

The speed of the phase transition from the semiconducting monoclinic to the metallic

tetragonal phase has been characteized in several reports. Cavalleri et al. determined the

phase transition speed via ultra-fast x-ray reflection measurements to be approximately a

few pico seconds [8,9].
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Figure 1-4 Phase diagram of the V-0 system. Reproduced from [82]
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Figure 1-5 Existence ranges of the various vanadium oxide phases as a function of oxygen partial

pressure and temperature [7].

V0 2 transforms at 680C from the monoclinic phase to the high temperature tetragonal

(rutile) phase. A schematic of the band structures in the tetragonal and monocilinic

phases proposed by Goodenough [25] is shown in Figure 1-6(b).
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Figure 1-6 A) Monoclinic structure represented by bold lines on the left side and tetragonal crystal

structure shown with bold lines on the right side. B) Schematic showing change in band structure

associated with change in crystal structure: left side is the semiconducting phase band diagram and

right side is the metallic band diagram. Taken from Cavalleri et al 191.

The vanadium atom, with configuration [Ar] 4s 23d3, is bound to each of two oxygen

atoms with configuration 1 s22s 22p4. Four electrons are taken up to fill the lower level

oxygen 2p shells, leaving one electron in the d-orbital of the V4* cation. The now closed

shell 0 2p levels are tightly bound, thus lying well below the Fermi level. The unpaired

electron on the vanadium cation occupies the lowest 3d level. The 3d levels experience

crystal field splitting, thereby dividing into 3 degenerate lower energy levels (t2g) and two

degenerate higher energy levels (eg). It is believed [8, 25, 83] that the interaction between

the c-axis vanadium atoms in the insulating state (M phase) leads to pairing-up of the

vanadium cations along this direction. This dimerization or formation of V4* - V4+ pairs

results in a further splitting of the 3 t2g levels, due to lowering in energy of one of the dl

orbitals. This separation in energy between one lower dil and the two higher energy

orbitals, d: and dl level, leads to a band gap of -0.7eV.

1.5.1 Electrical and Optical Properties

There are numerous reports of the electrical conductivity measurements and optical

transmission of V0 2 (of both bulk and thin films) near the transition temperature [80, 10,
79]. A comparison of some of the earlier work on single crystal V0 2 is shown in Figure



1-7. One notes significant variation in the values reported. The resistivity jump due to the

phase transition ranges from 102 to 105 . The absolute values of the resistivities also differ

significantly in the semiconducting phase, varying by as much as 102.

The effect of stoichiometry on the electrical properties is significant. Kimizuka et al [34]

reported the electrical resistivity change near the metal-insulator transition for single

crystal whiskers grown between oxygen partial pressures of 10-2.9 and 10 ~4. The

resistivity jump ranged from 104 for samples equilibrated at a PO2 of 10-2.9 atm to 101 at

the more reducing end. In addition, the absolute resistance and slope of the resistance

versus inverse temperature is higher in the semiconducting phase for samples grown at

the higher PO2, compared to those grown under the more reducing pressures. The

difference in room temperature resistance is approximately 103. An explanation for the

observed differences is not provided in the report by Kimizuka [34].

The conducting specie in V0 2 is the electron, with carrier concentrations approximately

1x108 carriers/cm 3 in the semiconducting phase at room temperature. The carrier

concentration was derived from Hall effect measurements on pressed powder samples of

V0 2 by Kitahiro et al [36]. From the Hall coefficient and conductivity measurements,

they derived a Hall mobility of 0.1 cm2/Vs. In a separate report, Kitahiro and Watanabe

[35] report a maximum thermopower value of -900 pV/K at room temperature. On

separate measurements carried out on sputtered thin films, Kwan et al [38] report a

maximum thermopower value of -500 pV/K at room temperature. The negative value

implies n-type carriers (electrons). In the report by Kwan et al, the simultaneous

measurements of electrical resistivity, thermoelectric power and Hall effect were

performed as a function of the oxygen partial pressure in the chamber during sputter

deposition. They also characterized the phases present in the thin films by measuring

lattice spacing using transmission electron diffraction. They observed a minimum in the

unit cell volume for films grown at an oxygen partial pressure of 1.3 mTorr. This

minimum is attributed to the stoichiometric condition. They speculate, based on a similar

observation by Magnelli in the TiO2 system, that there is an expansion in the unit cell

volume as one deviates from the stoichometric point. In the oxygen-deficient regime, the

lattice expansion in TiO2 is attributed to Ti ions occupying interstitial sites. In the oxygen



excess regime, metal vacancies are generated, leading to Coulombic repulsions between

neighboring oxygen anions, again leading to lattice expansion, compared to the

stoichiometric composition. Likewise, Kwan speculates that, given the similarity between

V0 2 and TiO2 in the variation of the unit cell volume with oxygen partial pressure during

deposition, the oxygen-deficient regime is dominated by vanadium interstitials and

oxygen-excess regime is dominated by vanadium vacancies.

Figure 1-7 Compilation of resistivity data for single crystal V02 from different authors by Vest et al

[80].

Several qualitative reports [10] of the effect of deposition conditions on optical properties

Of VO2 also exist. These studies were performed on sputter deposited thin films Of VO2

with the oxygen partial pressure and temperature varied during deposition. These results,

however, cannot be readily compared, as the reported percentage transmission depends

on film thickness, substrate, substrate thickness etc. Given the lack of normalized data,

such as absorption coefficient, comparisons between the different reports is not possible.

The index of refraction and loss (n and k) values were measured by Petit and Frigerio

[57]. One observes significant difference in the indices in the metallic and

semiconducting phases consistent with the phase change. It should be noted that the k



value (for example at 1550nm in the semiconducting phase), which is directly

proportional to the absorption coefficient, is relatively high and corresponds to an

absorption coefficient of approximately 104 cml. This value is similar to band-edge

(band-band) absorption in other semiconducting materials such as silicon and gallium

arsenide. This high absorption value could thus be due to the low band gap energy of

V0 2 in the low temperature phase which is reported approximately 0.7eV, corresponding

to a band edge at 1770nm.

1.6 Defect model

The defect mechanisms in V0 2 are not clearly understood. The only indication of a

possible defect mechanism is hinted at in the work of Kimizuka et al [34]. In their report,

the room temperature electrical resistance of quenched single crystal specimens is

observed to decrease for specimens grown at lower P0 2's within the V0 2 single phase

regime. This type of behavior is characteristic of n-type materials. TiO 2, which also has a

tetragonal crystal structure at high temperatures, is well known in the literature [38,66] to

be an n-type material with Ti interstitials dominant in the reducing (low P02) regime. At

"high" P02's, vacant Ti defects are the dominating species [38,66]. A similar model is

proposed for V0 2.

In oxide semiconductors, the defect behavior requires consideration of the reactions

involving reduction/oxidation, intrinsic lattice defect generation, instrinsic electron-hole

pair generation, and ionization of donors/acceptors. In this analysis, V0 2 is assumed to be

nominally undoped.

Assuming a model similar to TiO2 , the intrinsic Frenkel ionic disorder, assuming full

ionization, and the corresponding mass-action law are given respectively by:

nill <-> Vi +V(

KF =[V][V kF exp(%{F (2)
V

where [V'"']= the vanadium interstitial concentration, [Vv]= vanadium vacancy

concentration, KF = V0 2 Frenkel reaction equilibrium constant, kF = the pre-exponential



constant, AHF = V0 2 Frenkel reaction enthalpy, k = Boltzman's constant, T =

temperature.

The reduction reaction and its corresponding mass-action law are given by:

V + 20 + +V" + 4e'+ 0 2(g) (3)

KR = [V,"" ]n p0 2 = kRexp( )(4

where VvX = vanadium cation on a cation site, Oo = oxygen on an anion site, e =

electron, n = electronic carrier concentration, pO2 = oxygen partial pressure, KR = V0 2

reduction reaction equilibrium constant, kR = the pre-exponential constant, AHR = V0 2

reduction reaction enthalpy.

The oxidation reaction and its corresponding mass-action law are given by:

02(g) ++20 +Vv""+ 4h' (5)

K0 = [V"" ]p p(pO 2  = ko exp(-_) (6)

where h = hole, p = hole carrier concentration, Ko = V02 oxidation reaction equilibrium

constant, ko = the pre-exponential constant, AHo = V0 2 oxidation reaction enthalpy.

Electron-hole pair generation and the corresponding mass-action law are given by:

nill ++ e + h* (7)

KE np = kEexp(z~) (8)

where KE = electronic disorder reaction equilibrium constant, kE = the pre-exponential

constant, Eg = V0 2 bandgap.

Overall, the requirement for charge neutrality leads to:

4[VV"]+e' ++ h* +4[V**** ] (9)

Given the relatively small bandgap of V0 2, electronic defects are expected to dominate in

the near-stoichiometric regime. The stoichiometric composition occurs at the point at

which:



[Vl] ]=[V""] (10)

However, in the near-stoichiometric regime, charge neutrality is dominated by the

majority carriers and is given by:

n =p= K (11)

Combining this with equation 6 an expression for the vanadium vacancy generation can

be derived. This gives:

K (12)
[V]=- ~PO2

KE

Similarly, an expression for the vanadium interstitial concentration in this near-

stoichiometric regime can be found by substituting equation 12 in equation 2 which

gives:

[V] KF K 2 (13)
KO

Under high P0 2 conditions, the charge neutrality condition can be approximated

involving only holes and vanadium vacancies (see equation 5):

p ~ 4[Vv ] (14)

Substituting this into the mass-action expression for the oxidation reaction, equation 6

gives:

p = 4[V, ]~ (4KO)" 5 (pO2)115  (15)

The electron concentration in this regime can then be found by substituting this equation

in the expression for electronic disorder, equation 11, giving:

KE (P2)-1/5 (16)

(4KO)

The vanadium interstitial concentration, in the oxidizing regime, can then be found by

combining equation 15 with equation 2, which gives:



(17)4K

(4K0 ) 1 p 2

Using a similar treatment, the concentrations of the defects in the reducing regime can be

obtained. The relevant approximation for the reducing regime is:

n ~ 4[ (18)

A complete list of the defect concentrations in the three regimes is given in Table 3.

Log p0 2

Figure 1-8 Brouwer diagram for V0 2 based on the defect equations in Table 3.



Table 3 Defect equations in different regions of oxygen partial pressure for V0 2.



1.7 Application of Defect Model

The defect model presented in the table and figure above provide a framework for

characterizing the type and concentration of defects and their dependencies on

temperature and P0 2. The defect model can, in principle, be determined from an analysis

of the total bulk electrical conductivity as a function of the key variables. The total

electrical conductivity, defined below, is a summation of all the charge carrying defects

listed in Table 3.

C"total (Ziqcpi (19)

Where Z is the valence, q is the elementary charge, ci is the concentration, and p, is the

mobility of i specie.

As observed in Figure 1-8, each specie has a particular dependence on the oxygen partial

pressure and temperature within each defect regime. The electrical conductivity will,

therefore, also have a partial pressure dependence corresponding to the most conductive

defect specie in the particular oxygen partial pressure regime. Thus, electrical

conductivity measurements as a function of P0 2 and temperature can, in general, be used

to determine the defect regime of V0 2 and therefore, the dominant defect specie. In

addition, the activation energy for electrical conductivity can be extracted from the

temperature dependent measurements. The activation energy can, with the assistance of

the defect model, then be used to extract the energetics of the relevant defect reactions.

The type and magnitude of the conducting electrical specie can be determined from

thermoelectric power (TEP) measurements. In TEP measurements, the voltage induce by

an imposed temperature gradient is measured. The TEP coefficient is defined by:

dV (20)

dT

Where a = TEP coefficient, dV = induced voltage gradient, dT = temperature gradient.

The TEP coefficient for electrons is related to the carrier concentration by [37]:



a= k [InNc +H (21)
q _n kT

For holes, the corresponding equation is given by:

a k ~[I NV H] (22)
q p kT

where Nc and Nv are the density of states in the conduction and valence band

respectively, H is the heat of transport, k = Boltzman's constant, and q = elementary

charge. In oxide semiconductors, H, is usually small and can be neglected according to

Tuller and Nowick [77].

By independently deriving the carrier concentration from analysis of the TEP

measurements, the mobility of the conducting specie i, in equation 19, can then be

derived from a corresponding measurement of conductivity.

1.8 Electro-Optic Optical Modulation

Electro-optic (E-0) modulators play a major role in optical communications systems. An

optical modulator is used to convert a digital electrical signal carrying l's and O's to an

optical signal. Modulators are based on intensity modulation, where peak intensity will

correspond to a 1 bit and minimum intensity corresponding to a 0 bit. Given that

information is generated at the speeds of 100's to 1000's of Mbits per second (Mbps), the

modulator operation needs to be in the 100's of Giga hertz frequency to Tera hertz

frequency range. Given this required switching speed, modulation of electro-optic ferro-

electric crystals, specifically single crystal LiNbO3, is the current industry standard. The

intrinsic switching speed of LiNbO3 is of the order of picoseconds.

The integration of a modulator with light sources, waveguides and detectors is also a key

need for achieving photonic integrated circuits. This requires translation of bulk crystal

properties into the thin film form. LiNbO 3's present predominant use as E-O modulator

material is based on its ability to be grown as large, high quality single crystals. For

integration onto Si, and where the ability to grow large single crystals is unimportant,

KNbO3 and BaTiO3, have the potential for more desirable properties, such as much

higher electro-optic coefficients, higher data rates and/or lower operating voltages. In



particular, BaTiO 3 (BT) is a prime candidate due to its high electro-optic coefficient

(r42=820 pm/V compared to r33=30 pm/V for LiNbO 3). One of the expectations in the

drive towards integrated photonics is device miniaturization thus enabling large scale

integration. However, given the best electro-optic coefficient of LiNbO3, r33=30pm/V, the

modulation device size required is large; approximately 40mm in length, a dimension not

acceptable for large sale integration. Thus, a material with a higher electro-optic

coefficient, in thin film form, is needed and hence the emphasis on BaTiO3.

In order to utilize its high electro-optic coefficient, BT has to be grown epitaxially or

highly (001) oriented. In recent years, much progress has been achieved in growing high

quality epitaxial ferroelectric oxide films, including BaTiO3, onto Si for the purpose of

developing nonvolatile memory devices. The combination of a high electro-optic

coefficient, and the ability to grow high quality BT films, points to the feasibility of

integrating thin film optical modulators onto a Si-based device platform.

The electro-optic modulator is an intensity modulator, which works based on phase

shifting the signal from one arm of a Mach-Zhender structure by some angle $ compared

to the other arm. An applied electric field applied across the electro-optic material

induces a change in the real part of the refractive index:

n(E) = n -n3E *r (23)
2

where n(E) = electric field dependent real part of the refractive index, n = real part of

refractive index, E = applied electric field, and ryk = electro-optic tensor value. Given that

the wave velocity is inversely dependent on n, the waves in the two arms of the Mach-

Zhender structure will experience a relative phase shift resulting from the field-induced

index change in one of the arms. The phase change is given by:

2,rL (24)
$= n(E)

A

Where # = phase, L = device length, A = wavelength. For a rc phase shift, the voltage that

needs to be applied is given by:



Ad (25)
V =n3 yL"n 3rL

Where V= voltage applied.

A schematic of an intensity modulator based on the Mach-Zhender design is shown in the

Figure 1-9 below.

Figure 1-9 Schematic of the Mach-Zhender modulator configuration.

There are several reports in the literature on the development of BT-based thin film

modulators. Petraru et al [58, 59] fabricated a BT thin film modulator on MgO substrates

and demonstrated an effective electro-optic coefficient of 22 pm/V. BT films were

deposited by pulse laser deposition. Gill et al [23, 24] also fabricated BT based thin film

modulators on MgO. Their films were deposited by a metal-organic chemical vapor

deposition process (MO-CVD). Gill et al [24] report an effective electro-optic coefficient

of 50 pm/V in DC operation. Subsequent work by the same group demonstrated

significantly higher electro-optic coefficients. Tang et al [69-74] reported an effective

electro-optic coefficient of 360 pm/V in DC operation at 1561 nm.

A key objective in this section of the thesis was to develop an electro-optic modulator

with comparable or superior performance to those reported in the literature and to

demonstrate the ability to ultimately integrate such devices onto Si wafers.



Chapter 2: Objectives
As discussed earlier, the current available optical switch design for OADM applications

have several drawbacks which prevent ready use in photonic integrated circuits (PIC).

PIC's require device size that are compatible with large scale integration (area no more

than several square microns per switch), CMOS compatible fabrication processes,

minimal power consumption (less than 1 mW per device), minimal insertion losses and at

least 15dB extinction ratios. In addition, for reconfigurable OADM's switching speeds

faster than 1 ms are desired.

On the other hands, for modulation, the most important device requirement is speed. A

switching/modulation speed of pico seconds is desired. None of the current switches

designed for OADM applications can be used for modulation due to their limited

switching speeds. The only viable available option is switching/modulation based on

electro-optic ferro-electric materials. Therefore, two independent approaches are

undertaken: one for the slower switching function for OADM's and the other a fast

switch for optical modulation. Henceforth, the fast switch will simply be referred to as

the E-O modulator and the slower switch for OADM application will be referred to as a

switch.

2.1 Optical Switching

A ring resonator based optical switch design was identified as a possible solution to the

slower switching function. Despite the relatively slow switch speeds reported for MEMS-

based optical switches in the literature, the approach taken in this thesis will be MEMS-

based. The advantageous design of the ring resonator, having a small device size

(approximately 10's of microns), low insertion losses and potentially large extinction

ratios, coupled with appropriate design of the MEMS component of the switch will lead

to a successful switch design. The first switch solution investigated will be the MEMS-

based approach. As a potential enhancement of the MEMS switch design, an alternate

approach, utilizing the metal-insulator transition in V0 2 will be explored. The metal-

insulator transition in V0 2 is known to occur at pico second timescales. Thus, a V0 2

based switch can in principle provide one unified solution to both switching and



modulation. In order for the V0 2 switch to be realized, however, the properties of V0 2

need to be characterized.

2.1.1 MEMS-based switch

For the MEMS-based switch, the mechanical structure design is critical for the

performance of the ring resonator switch. To this end, finite element modeling will be

carried out to design and optimize the mechanical structure to meet the required

switching speed, operating power and device size. The optimized designs will be

fabricated and tested.

The main objective of the MEMS switch approach is to design a switch having switching

speeds faster than 1 ms, drive voltages close to 5 V, and device area no more than several

1000's um2. The designs then need to be fabricated using CMOS compatible materials

and process steps and tested, to prove the concept of MEMS-based optical switching of

ring resonators.

2.1.2 Vanadium Oxide Objectives

As discussed above, a review of the literature finds that the resistivity jump associated

with the MIT effect in V0 2 can vary by several orders of magnitude. Various authors

have made attempts to pinpoint the cause of the scatter in the data, but all of the reports

are qualitative in nature. The actual defect mechanism in V0 2 has not been

experimentally determined. As was mentioned in section 1.6, the defect mechanism is

speculated to involve vanadium interstitials in the reducing regime and vanadium

vacancies in the oxygen excess regime. No systematic studies have been performed to

establish the defect model for this system.

As was discussed in section 1.6 and 1.7, the electrical properties may be significantly

influenced by the oxygen partial pressure. The deviation from stoichiometry commonly

results in the generation of excess electronic carriers to compensate for resulting ionic

defects in a manner similar to excess carriers induced by extrinsic shallow donors or

acceptors. As a result, nonstoichiometric V0 2 can be expected to exhibit a considerably

higher free carrier concentration than the stochiometric composition and thereby have a

lower resistivity ratio between the metallic and semiconducting phases. For applications



in photonics, a high switch contrast (resistivity ratio between metallic and

semiconducting phases) is required. Therefore, determining the partial pressure of oxygen

at which V0 2 is stoichiometric, which in turn corresponds to the minimum free carrier

concentration, is desirable.

In this thesis, a quantitative defect model of V0 2 is developed by examining the

temperature and partial pressure dependent electrical conductivity, thermopower and

nonstoichiometry. Given that the higher temperature phase is metallic, the detection of

changes in conductivity due to stoichiometry changes is limited. An approach was

therefore developed to freeze stoichiometry to below the phase transition and characterize

the transport properties in the semiconducting phase. A unique contribution of this thesis

will be the direct correlation between non-stoichiometry, 6, in VO2- and the associated

electrical and optical properties. The extent of non-stoichiometry under controlled

conditions of temperature and oxygen partial pressure is experimentally determined with

the aid of coulometric titration measurements.

An additional key objective of this thesis is to establish the influence of non-

stoichiometry on carrier density and, in turn, the optical properties of V0 2 . The effect of

free carrier concentration on optical properties will be characterized by optical

transmission measurements.

2.2 Optical Modulator Objectives

Given the need for a fast switch and lack of any suitable switch design from OADM

solutions, barium titanate based materials will be explored in order to utilize their electro-

optic effect for optical modulation.

The objective in this part of the thesis is to develop a thin film electro-optic modulator

based on BaTiO3. Given the high degree of anisotropy in the electro-optic coefficient in

BT, its films need to be grown with controlled film orientation. The optimum orientation

is (001). The quality of the BT films will be characterized by measuring the electro-optic

effect. In order to characterize the electro-optic effect Mach-Zehnder (MZ) structures will

be fabricated. In addition to enabling the characterization of the electro-optic effect of BT

films, test of the MZ structures should demonstrate the concept of thin film optical



modulation. The overall goal in this part of the thesis is to demonstrate a working thin-

film electro-optic device.



Chapter 3: Experimental
This chapter consists of three main parts, covering:

1. Experimental work on the development of MEMS-based wavelength selective optical

ring resonator switches

2. Development of a barium titanate based thin film electro-optic modulator

3. Characterization of the transport properties of vanadium (IV) oxide.

3.1 MEMS-based Optical Switch

Switching of the optical ring-resonators described in the introduction was carried out

using a micro-mechanical structure designed for this purpose.. The key objectives were to

design an appropriate micro-mechanical structure, develop a fabrication sequence that

utilizes CMOS-compatible process and test the fabricated devices.

3.1.1 Optical Design Requirements

Optical design criteria were derived based on calculations prepared by Mike Watts in the

Ultra-fast Optics Group at MIT [81]. Key requirements included that the membrane

material should have a real refractive index as close as possible to the waveguide material

and that the imaginary index (related to the absorption coefficient) of the material should

be between 0.1 and 10. The waveguides used in optical ring-resonator were fabricated

from Si3N4 . The real index of the Si3N4 was 2.1.

For the case of Si3N4 waveguides, the absorbing membrane needs to be at least 1.2 pm

away from the ring in the "off' state and less than 0.2pm away in the "on" state (Figure

1-2). These calculations were based on the assumption that the absorbing material has a

thickness of at least 0.2 pm.

3.1.2 Mechanical Design Requirements

The mechanical structure chosen for the switch is an end-fixed beam (also referred to as

fixed-fixed beam). This structure is generally known to give symmetric deflection about

the center. The deflection of an end-fixed beam under a uniform electrostatic load is

described through the following equation [65]:
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where x = displacement of the mechanical structure, m = mass of the moveable structure,

b = damping coefficient, k = effective spring constant of structure, e = permittivity of the

region between the electrodes, A = overlap area of the (moveable) mechanical structure

and static electrodes, V = voltage, and go = initial effective gap between the two

electrodes. Given the static electrode was a back contact on the silicon substrate, go is

composed of the air gap and the dielectric layers (silicon oxide and silicon substrate)

between the moveable structure and the back contact.

The membrane was designed to pull-in at the extreme end of the mechanical deflection. It

is known that a fixed-fixed membrane deflected beyond 1/3 of the total displacement gap,

pulls-in [65]. The voltage required to pull-in a fixed-fixed beam is given by:

8kg (27)
*' 27&A

The design of the beams was carried out using a commercial FEM tool, Coventorware

[14]. The mechanical designs of the structures were optimized to minimize the pull-in

voltage [51]. The spring constant of the mechanical structure depends on its material

stiffness. A large stiffness value will lead to high drive voltages. On the other hand, too

low a spring constant will result in low natural frequencies, thus limiting the switch

speed. Aluminum (Young Modulus = 70 GPa) was chosen as the initial choice for the

mechanical structure.

3.1.3 Switch Fabrication

CMOS-compatible processing steps were used to fabricate the MEMS switch. The

waveguides and ring resonators were pre-fabricated by Tymon Barwicz [2] at MIT.

A schematic of the fabrication sequence is shown in Figure 3-1. A detail list of

processing steps is tabulated in Table 4.
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Metal (Al/TIN) - sputter - 250nm
Pattern and RIE (etch)

5poly-SI - LPCVD- 1...m

Metal release
Poly-SI sacrificial removal with XeF2

Pattern poly with RIE (etch)

substrate nitride ring

oxide cladding Al bridge

LPCVD poly-si (sacrificial)

Figure 3-1Schematic showing the fabrication sequence for fabricating the MEMS ring-resonator

switch.

3.1.4 Residual Stress Characterization

Control of the residual stresses in thin films is critical to the performance of mechanical

structures within MEMS devices. The fixed-fixed beams used in this design were

particularly sensitive to residual stresses. The residual stress of the active mechanical

component, Al or TiN, was characterized using a Tencor FLX curvature measurement

tool. This tool was used to measure the bow of the substrate before and after deposition

of the film. The stress in the film is then calculated using the Stoney formula for

calculating thin film stresses on substrates.

3.1.5 Optical Switch Testing

Testing of the fabricated optical switch was carried in the Ultra-fast Optics Group at

MIT. The test setup consists of a signal generator which is used to drive a tunable laser

source. The laser output is coupled through a polarization controller and onto a lens-

tipped optical fiber. The MEMS switch is mounted on a probe-station. Micro-probes are

used to contract the metal pads on the MEMS device. The optical fiber is aligned with the

input waveguide of one of the devices. The output from the drop or the throughput guide



is focused via a lens onto a mirror which can be switched to a CCD camera or to a photo-

detector. The photo-detector and signal generator and connected to a lock-in amplifier.

The spectral and temporal responses of the optical switch were characterized. The above

mentioned setup was used for testing the spectral response. For testing the temporal

response, the signal generator was used to drive a voltage source and the corresponding

change in the throughput and drop ports were measured at a fixed laser input wavelength.

Table 4 Detailed step-by-step list of the process steps for fabricating the MEMS optical switch.

Names within parenthesis refer to MTL's machine names.

1. Deposit Oxide on brand new wafers in a. Wafer clean (rcaICL)
ICL. b. Grow oxide (6C-LTO)

2. Deposit poly-silicon in ICL a. Wafer clean (rcaICL)
b. Grow poly (6A-Poly)

3. Pattern resist in TRL with contact mask a. HMDS coat (HMDS-TRL with
green cassette)

b. Coat wafers with resist (coater
with green chuck)

c. Pre-bake (pre-bake with green
cassette)

d. Contact aligner using EV 1 (EV1
with green chuck and mask
plate)

e. Develop resist (photo-wet with
green labware)

f. Postbake (post-bake with green
cassette)

4. Etch poly in ICL Dry etch poly with (AME5000
chamber B)
Strip resist in asher (asherICL)

5. Pre-metal clean before Endura sputter Piranha clean (premetal-
step #6 Piranha)

6. Sputter Al on Endura (Endura)
7. Pattern resist in TRL with contact mask. Same as step #3
8. Etch Al in ICL a. Wet Etch (TRL-Acidhood2)

b. Strip resist in asher (asherTRL)
9. Release Al structures in TRL a. Release structures by sacrificial

removal of poly-silicon (XeF2)



3.2 Vanadium (IV) Oxide

The following key experiments were performed to characterize the electrical transport,

thermodynamic and optical properties of V0 2:

1. Electrical conductivity and thermoelectric power as a function of temperature and

oxygen partial pressure

2. Non-stoichiometry, 6, in VO 2- by coulometric titration measurements

3. Optical absorption as a function of stoichiometry.

For electrical conductivity and thermoelectric power measurements, bulk specimens were

used. For optical absorption measurements, thin film specimens were used.

3.2.1 Sample Preparation

3.2.1.1 Bulk sample preparation and mounting

Bulk, polycrystalline samples, prepared for the electrical conductivity and thermoelectric

power measurements, were processed by conventional ceramic processing routes as

described in the following paragraph.

The bulk specimens were made by uniaxially pressing V20 3 powders (Alfa-Aesar purity

95%) into pellets 3/4" in diameter and 5 mm thick. Each as-pressed pellet was sealed

inside a plastic bag in preparation for cold-isostatic pressing (CIP). The cold-isostatic

pressing was performed at room temperature. The pellets were pressed to a pressure of

40,000 psi. The pellets were then sintered at 8500C for six hours in a 1000 ppm carbon

monoxide balance carbon dioxide atmosphere. The post-sintered phase is V20 3 .

The pellets were then diced into rectangular bars measuring 2-4 mm in width and

thickness and approximately 10 mm in length. The pellets were then prepared for 4-point

electrical conductivity measurements. The same samples were used for the thermoelectric

power (TEP) measurements.

The pellets were then electroded by applying platinum ink (Engelhard #6082 [18]) to the

specimen on lines spaced approximately 2-3 mm apart (see Figure 3-2). Platinum wire,

0.01 inch diameter, was then wrapped around each electrode to complete the contact. In



addition, to the 4 platinum wires, one additional platinum- 10% rhodium wire was

attached to the platinum wire at each end of the sample. This Pt-10%Rh/Pt junction

forms an S-type thermocouple used to measure sample temperatures during electrical

conductivity measurements and temperature gradients during thermoelectric power

measurements. Each lead was then fed through a %" 6-bore alumina rod. The end of the

alumina rod extending out from the flange sealing the end of the alumina sample tube

was sealed using silicone to prevent gas leaks through the open bores at the room

temperature end of the rod.

Pt leads wrapped around
painted Pt electrodes

Twisted thermocouple 2,3,4,5: Pt leads
junction 1,6 : Pt-10%Rh leads

1 2 3 4 5 6

Figure 3-2 Schematic of the bulk sample arrangement for electrical conductivity and thermoelectric

power measurements.

3.2.2 Thin Film Sample Preparation

3.2.2.1 V0 2 Film deposition - Pulse Laser Deposition

V0 2 thin films were grown using pulse laser deposition. Pulse laser deposition (PLD) is a

high vacuum physical vapor deposition process. The process is similar to sputtering, but

the ablation of the target is accomplished by using a laser (Lamda Physik COMPeX

ProTM laser operating at X=248 nm) instead of a plasma. The ablation of the target creates

a plume which deposits on the substrate. Films can be deposited at high temperature by

heating the substrate.

A schematic of the PLD setup used is shown in Figure 3-3. A set of focusing lenses is

used to focus the laser beam onto the target. The focusing lens is moved in such a way as

to raster the laser beam on the target. This rastering enables uniform wear of the target.
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Figure 3-3 Schematic of the pulse laser deposition system.

The substrates used for deposition of the V0 2 films were fused quartz substrates

(supplied by Finkenbeiner and Waferworld) and (100)-oriented single crystal magnesium

oxide (MgO) substrates. The substrates were cleaned in the following sequence: acetone,

distilled water, methanol, water, and iso-propylalcohol (IPA). The as cleaned samples

were then immediately loaded into the vacuum chamber and pumped down. The target

used for V0 2 film deposition was V205. The deposition conditions for growth of V0 2

films are listed in Table 5:

3.2.2.2 Electrode deposition for electrical characterization

Four 100 nm thick parallel platinum electrodes, deposited by sputtering, were used for

the characterization of the electrical conductivity of the V0 2 thin films. The electrodes

were 1.5mm wide. The spacing between each electrode was 3 mm. The outer electrodes

were used to apply current and the inner electrodes were used to measure the voltage

drop. Given that the electrode spacing is much larger that the thickness of the film, the

entire thickness of the film can be assumed to be part of the geometrical factor in the

expression for calculating electrical conductivity.



Table 5 Pulse laser deposition conditions.

Property Value

Base Pressure 2 x 10-6 Torr

Total Working Pressure 4 x 10~3 Torr

Deposition ambient Pure oxygen gas

Substrate Temperature 6000C

Fluence 5 J/cm2

Pulse rate 20 Hz

3.2.3 Physical Characterization

3.2.3.1 X-ray diffraction

X-ray diffraction was used to characterize the phase and structure of bulk and thin film

V0 2 samples. A Rigaku-300 [62] copper rotating anode source with 185mm spacing of

source-sample-detector was used. Cu Ka radiation was generated using an accelerating

voltage of 50kV and current of 300mA. For both the bulk and thin film measurements, 0-

20 reflection measurements were performed. For bulk measurements, the sample was

ground into a powder and pressed onto a roughened glass slide. A few drops of water

helped bind the powder together and prevented it from falling off when the glass slide

was mounted vertically during the x-ray measurement. For thin film samples, the

substrate was mounted using modeling clay.

In-situ measurements of the phase transition of V0 2 as a function of P0 2 were performed

at Alfred University by Scott Misture, one of our collaborators. The experimental setup is

described in detail in the paper by Dollan and Misture [15].



3.2.3.2 Electron Microscopy

Electron microscopy is a powerful tool for physical inspection of the microstructure of

materials. A Philips Field Emission Electron Microscope (XL30 FEG ESEM) was used

for microstructure analysis of the thin films.

3.2.4 Electrical Characterization

3.2.4.1 Bulk Conductivity

The DC electrical conductivity was measured in both bulk and thin film samples. In the

bulk measurements, the electrical conductivity was measured as a function of oxygen

partial pressure and temperature. The 4-point measurements (see Figure 3-2) help nullify

any contact resistance problems due to imperfect contacts. In this arrangement, current is

passed through the outer leads and the voltage measured between the inner leads. The

current, which ranged between 0 mA and 100 mA was applied in linear steps of 20 mA.

The slope of the voltage versus current plot gives the resistance of the sample at that

particular oxygen partial pressure and temperature. The electrical conductivity is then

obtained from:

1 (28)
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Where 1 is the spacing between the inner (voltage measuring) electrodes, A is the cross-

sectional area of the bulk sample and R is the slope of the voltage-current plot.

A zirconia-based oxygen sensor (closed-end tube) was placed next to the bulk sample, to

accurately measure the oxygen partial pressure. A schematic of the electrical conductivity

setup is shown in Figure 3-4.

3.2.4.2 Thermoelectric Power Measurements

Thermoelectric power (TEP) measurements measurement can be used to obtain insight

regarding the type of carrier and the magnitude of the carrier density. In this

measurement, a temperature gradient is imposed across the specimen and the



corresponding potential that develops is recorded. The slope of built-in-potential versus

temperature-gradient plot gives the thermopower coefficient.

The temperature gradient in the bulk samples was induced using resistance wire made of

Kanthal. A Keithley 2425 power source was used to apply a voltage between OV and 5V

in linear steps of 0.5 V. The electrical potential due the temperature gradient was

measured simultaneously with the temperature at the two ends of the bulk specimen.

Carrier densities were derived by evaluating the TEP data with the assistance of Eq. 21

by assuming values for the effective density of states and neglecting the heat of transport

factor. The heat of transport is usually small in semiconducting oxides and can be

neglected according to Tuller and Nowick [77]. A negative value of thermoelectric power

coefficient indicates n-type carriers while a positive value indicates p-type carriers.

3.2.4.3 Oxygen Partial Pressure Control

Control of the oxygen partial pressure were achieved by mixing gases, or by the use of an

oxygen pump. To obtain oxygen partial pressures great than 10- atm, pre-mixed tanks of

argon and oxygen were be used. To obtain lower oxygen partial pressures, mixtures of

carbon monoxide and carbon dioxide were used.

fumnace

Computer gggggggg

HP voft i ;leter!,,!I

EDC current source

Gas in sample TEP heater oxygen sensor Gas out

Figure 3-4 Schematic of the electrical conductivity setup for bulk samples.

However, with the least reducing CO/CO2 mixture available (10 ppm CO/balance C0 2)

the highest oxygen partial pressure obtainable is ~ lx 10- atm at 6000C. V0 2, however,

is stable only between 10~" and 10~ atm at this temperature. Therefore, to access this

interim regime, an oxygen pump was used.



The oxygen pump used was similar to that described by Stefanik [67]. The oxygen pump

is made of a 3/4" diameter zirconia tube open at both ends. A 1000 ppm CO/Balance CO 2

mixture was used as a carrier gas which was caused to flow through the zirconia tube.

The outside surface of the zirconia tube was exposed to air. The zirconia oxygen pump

tube was heated to 800*C in a separate furnace, upstream from the samples being

measured. Oxygen was pumped into this gas stream by applying a positive current

between the outer and inner surfaces of the zirconia tube. The rate of oxygen pumped is

controlled by the current applied. The oxygen sensor placed next to the measurement

samples, mentioned in section 3.2.4.1, was used as a feedback sensor. The closed-loop

system was controlled using a commercial PID controller (Omega CN825 controller -

[53]). In order to provide a high input impedance into this Omega controller, a separate

amplifier circuit was designed and assembled by David Bono, the Undergraduate

Laboratory Manager at MIT within DMSE. A schematic of the circuit is shown in Figure

3-5.

Figure 3-5 A schematic of the PID controller circuit.



3.2.4.4 Iso-Stoichiometric Electrical Conductivity

An important objective of this thesis was to systematically characterize the effect of

oxygen stoichometry on the properties of the low temperature semiconducting phase.

Based on the defect model discussed in section 1.6, the level of non-stoichiometry, 3,

determines the free carrier concentration. In this experiment, the degree of non-

stoichiometry was controlled by controlling the ambient at high temperatures, which was

then frozen-in at reduced temperatures. This enabled the characterization of the transport

properties in the semiconducting phase as a function of non-stoichiometry.

The high temperature electrical conductivity and thermopower measurements described

in section 3.2.4.1 and section 3.2.4.2 respectively, give information only about the effect

of non-stoichiometry on the high temperature metallic phase. To examine the effects of

non-stoichiometry on the low temperature semiconducting phase properties requires

quenching of bulk samples. However, quenching ceramic samples can be catastrophic

due cracking and failure from thermal shock. Due to the narrow P0 2 range over which

V0 2 , it was not possible to freeze high temperature nonstoichiometry down to room

temperature by cooling in a fixed P0 2 environment due phase changes. Evidence of this

can be seen, for example, in Figure 4-3. Therefore an alternate method of freezing the

non-stoichiometry is needed.

The approach, followed in this study, was to freeze in the high temperature stoichiometry

by sealing the speciment in a leak tight vessel and utilizing the buffering action of the

sample to maintain stoichiometry as the temperature is lowered.

If the sample is cooled, after being annealed, in a chamber whose oxygen content is fixed

(i.e. sealed from the ambient) and much smaller than that in the sample, during cooling

the sample will effectively not change its stoichiometry due the buffering action of the

sample. When an oxide is cooled from high temperatures, it will attempt to oxidize.

When the sample attempts to take in the oxygen from the region around it, the

equilibrium oxygen partial pressure in the chamber will decrease. However, there is only

a fixed amount of oxygen in the environment surrounding the sample. Therefore, the

oxide sample will maintain an equilibrium oxygen partial pressure fixed by its oxygen

content (stoichiometry). The initial high temperature stoichiometry can therefore be



maintained down to room temperature. Hence, the low temperature stoichiometry is iso-

stoichoiometric with the high temperature anneal condition. With this stoichiometry

freezing method, samples can be slow cooled and the failure of samples is avoided.

Furthermore, it makes it possible to measure the electrical properties as a function of

temperature at a fixed oxygen stoichiometry.

The experimental setup for iso-stoichiometry measurements consists of a quartz tube with

an electrical feed through and gas feeds. The bulk sample is mounted exactly as in the

bulk conductivity measurements described in section 3.2.4.1. The cold end of the alumina

rod is sealed with Varian Torr-Sealg (Varian part #9530001 [78]), a highly leak proof

seal. The sample is annealed at elevated temperature at a selected oxygen partial pressure

for 72 hr. After anneal, the gas inlet and outlet valves are closed, thus isolating the

interior from the exterior ambient. Once properly sealed, the sample is slow cooled, with

electrical conductivity measurements performed during cooling. A schematic of the iso-

stoichiometry measurement setup is show in Figure 3-6.
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Figure 3-6 Schematic of the iso-stoichiometry anneal and measurement setup.

3.2.4.5 Thin Film Electrical Conductivity

The DC electrical conductivity of the V0 2 thin films was measured with the aid of micro-

probes. A 4-point parallel electrode configuration was used, as described in section

3.2.2.2. The electrodes were 1.5 mm wide and the spacing between them was 3 mm. The



electrodes were deposited by DC sputtering from a platinum target. The thickness of the

electrode was 100nm.

The DC conductivity was measured by applying a specified current across the outer

electrodes and measuring the corresponding voltage drop across the inner electrodes. The

current was stepped linearly in increments of 2 mA in both polarities, up to a maximum

value of 10 mA. The voltages were plotted against the current values. The slope of the

voltage-current plot gives the sample resistance at that particular temperature. The

conductivity was then calculated using:

1_ (29)
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where the geometric constant, 1, the length of the electrodes was 8 mm, A, the cross-

sectional area is given by the product of the thickness of the film and spacing between the

voltage measuring electrodes. This latter value was 3 mm. Film thicknesses ranged

between 100 nm to 250 nm.

3.2.4.6 Coulometric Titration

Coulometric titration was used to measure the oxygen content in the V0 2 powder as a

function of P0 2. The amount of oxygen in an oxide material can be very accurately

measured by this technique. The oxide powder is sealed inside a zirconia crucible.

Oxygen can then be pumped into or out of this sealed crucible electrochemically by

applying a current/voltage between the inside surface of the crucible and outside surface.

The total charge passing through the zirconia crucible can be converted into the total

amount of oxygen pumped in or out. The number of moles of oxygen passing through the

zirconia crucible is given 30.

'' t2 V (30)
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where n = no. of moles of oxygen pumped, F = Faraday constant (96,485 C/mol), I

applied current, tj = start time, t2 = end time, V = "dead volume" (- 4.5 cc), R = molar gas

constant, T = temperature, P1 = starting oxygen partial pressure, and P2 = oxygen partial

pressure at end of pump cycle.



The experimental arrangement was very similar to that described by Stefanik [67]. A

schematic of the setup is shown in Figure 3-7. A small (- 5 ccl) crucible was electroded

with platinum ink (Engelhard #6082) on the inside and outside faces. The electrodes were

sintered at 800*C for 1 hr. Several layers of platinum ink were applied to ensure good

electrical contact with the zirconia crucible and to minimize contact resistance. A

separate zirconia disc was similarly electroded. 0.1mg of V20 5 powder was weighed and

placed inside an alumina crucible covered in platinum foil. The platinum foil served to

prevent reaction of the V0 2 with the alumina crucible. The powder containing alumina

crucible was place on top of the zirconia disc and covered with the zirconia crucible. The

disc was then sealed to the crucible using a glass sealant (Elan #13 [17]). The glass

powder was dispersed in water and applied to the joint. In order to ensure proper sealing,

the entire setup was heated to a 1000*C, which is above the glass transition temperature

of the sealant. Several layers of the sealant had to be applied to ensure good sealing.

Because V20 5 melts at 670*C, the crucibles were heated in a 1000 ppm CO/balance CO2

environment to prevent oxidation of the powder and subsequent melting.

The electrodes of the crucible and disc were contacted by platinum wire. These wires

served as electrical leads. The electrodes of the crucible were used for pumping oxygen

Computer Pt electrodes

Alumina crucible
EDC 520 VOx Pt foil on inside

current source nGasel Glass seal

H P voltmeter __Ysz

Figure 3-7 Schematic of the coulometric titration cell setup.

while the electrodes of the disc were used to measure the equilibrium voltage, and hence,
the oxygen partial pressure inside the crucible.



The coulometric titration measurements were carried out in air between 450*C-650 0C.

The inner and outer electrodes were shorted for 6 hrs before each run and left to

equilibrate for a further 6 hr. A controlled amount of oxygen was then pumped out of the

crucible by applying a current for 30 min. The titration cell was left to equilibrate for 120

min. The equilibrium oxygen partial pressure inside the crucible was measured with the

disc electrodes before the next pump cycle. This procedure was repeated until the oxygen

partial pressure inside the crucible was approximately 10-14 atm. This corresponds to the

oxygen boundary of the V0 2 phase field.

The total amount of oxygen pumped is then determined from the total amount of charge

passed. The total charge is give by I*t. From the total charge, the amount of oxygen

pumped can be calculated by after correcting for dead volume effects, using Eq. 30.

3.2.5 Optical Characterization - Transmission measurements

The effects of oxygen stoichiometry on the optical absorption were characterized using

optical transmission measurements. V0 2 thin films were deposited on fused quartz

substrates as described in section 3.2.2.1. The V0 2 samples were then annealed at

different stoichiometries using the iso-stoichiometry setup as described in section 3.2.4.4.

The optical transmission measurements were carried out using a Perkin-Elmer spectro-

photometer (model Lambdal9). This instrument consists of a broadband light source

which passes through a monochromator and photodetectors. The beam is then split into

two. One passes through the sample being measured, and the other is used as a

reference/control. When this measurement was carried out, a blank fused quartz substrate

was placed in the reference beam-line. The intensity ratio between reference and sample

being measured is recorded. This ratio is the fraction of light transmitted at a particular

wavelength. The samples were tested between 250 nm and 2000 nm.

The absorption coefficient was calculated assuming exponential decay in intensity, given

by:

I = I0 exp(-ad) (31)



where the ratio I/Io is the percentage light transmitted, a is the absorption coefficient, and

d is the thickness of the absorbing layer, which was assumed to be primarily the V0 2

film.

3.3 Barium Titanate Electro-Optic Modulator

3.3.1 Thin film Growth

Thin films of barium titanate (BT) were grown using pulse laser deposition. A schematic

of the PLD setup was shown earlier. The film properties, primarily the degree of

crystallization, film orientation/epitaxy are highly dependent on the deposition

conditions. Given the significant anisotropy of the electro-optic coefficient in BT, for

optimum modulator performance, the BT films need to be grown (001) oriented thereby

enabling the large r42 value to be utilized. The optimization of the growth parameters and

the characterization of the film quality and orientation were carried out by Jussi Hiltunen.

The optimum deposition parameters used for growing epitaxial BT films is given in

Table 6. The films were grown on (100) magnesium oxide substrates. The orientation of

the BT film could be controlled by varying the total oxygen working pressure. The out of

plane orientation of the film was varied between (100) and (001).

Table 6 shows the optimum deposition parameters that were used to grow epitaxial thin films of

barium titanate.

Property Value

Base Pressure 2 x 10~6 Torr

Total Working Pressure 1 mTorr to 15 mTorr

Deposition ambient Pure oxygen gas

Substrate Temperature 7000C

Energy per pulse 500 mJ/pulse

Pulse rate 5 Hz



3.3.2 Thin Film Characterization

The orientation and phase of the deposited films were characterized by x-ray diffraction.

A Rigaku 300 instrument with a rotating anode and 185 mm diffraction diameter was

used. Theta-2 Theta measurements where performed using this tool to characterize the

phase of the film. A Brueker D8 machine was used to characterize the epitaxy of the

films by varying the tilt (psi) and the rotation, phi angles.

3.3.3 Electro-Optic Modulator Design

A Mach-Zehnder configuration was used for the optical modulator. This is a standard

modulator design for phase shift or intensity modulators. Two different waveguide

structures were evaluated. One design was a BT-based ridge waveguide. The other was

using a SiN strip loaded design.

The Optimum waveguide dimensions were calculated using FimmWave [19], a

commercial mode solver, by Jussi Hiltunen.

3.3.4 Modulator Fabrication

To demonstrate electro-optic modulation in thin-film BT, waveguide devices were

fabricated. A strip-loaded design was chosen for the primary demonstration of E-0

modulation. This design involves the use of a patterned silicon nitride ("SiN") waveguide

(strip) with real index of refraction of 1.79 (and low absorption).

The strip waveguide design was preferred due to its ease of fabrication. An alternate

design involving direct patterning of BT was also investigated. However, due to

processing difficulties in obtaining smooth edge walls, this approach was abandoned. The

dry etch chemistry used (Ar/Cl 2) re-deposited residue on the side walls, resulting in the

non-uniform etch of edges (see SEM micrographs in results section).

A Plasmaquest PECVD deposition tool was used to deposit the SiN with a refractive

index of 1.79 (at 1550 nm). A high resistivity SiN is preferred in order to maximize field

penetration into the BT, thus, maximizing the electro-optic effect of the BT. The

deposition recipe was adjusted to obtain different stoichiometries of SiN.



The SiN deposited on BT films was patterned with standard Shipley OCG 835 positive

resist and etched with a CF4, 02, He, RIE chemistry. Minimum edge roughness and good

critical dimension (CD) control is essential for transmission of light along the strip

waveguides. From the SEM micrograph (Figure 4-31) of the etched waveguides, it can be

seen that the etched waveguide quality is sufficient (edge roughness was less than 10 nm)

for this application.

Two designs were fabricated. One design involved straight waveguides with waveguide

widths between 1 pm and 1 Opm and varying electrode spacings of 4-6pm. Mach-Zhender

structures were also fabricated with similar waveguide widths and electrode spacings

together with arm opening angles between 1* and 4*

Aluminum electrodes were sputter deposited and direct patterned with a wet chemical

etchant: PAN etch. The PAN etch is a mixture of phosphoric acid, acetic acid and nitric

acid.

The devices were then coated with resist and diced half thickness of the substrate and

then cleaved for testing. A smooth waveguide edge is needed to reduce coupling losses

during testing. The resist was dissolved away afterwards using acetone.

A D
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C SiN A BaTi
Al Mgo

Figure 3-8 Schematic showing the processing steps for fabricating the E-O modulator devices. A)
PLD growth of BT film. B) PECVD deposition of SiN waveguide layer. C) Pattern of SiN. D) Sputter
deposition of aluminum. E) Pattern and wet etch of aluminum.



3.3.5 Modulator Testing

A Schematic for testing of the E-O modulators is shown in Figure 3-9. The testing was

done in Prof. Lionel Kimerling's laboratory. The test setup includes a tunable laser

source, polarization controller, a probe-station and micro-probes for contacting the metal

electrodes, and CCD camera photodiode was measuring output light intensity.

The output of the laser source is coupled to an optical fiber which passes through a

polarization controller. The fiber tip was then aligned with the waveguide on the sample

being tested. At the output end, the light was coupled back onto an optical fiber which

was then channeled to the photodetector.

A DC voltage source was used to apply the electric field between the metal electrodes on

one of the arms of the modulator. The change in intensity at the output of the modulator

was measured as function of applied voltage.

A fiber coupled laser operating at 1550 nm wavelength was used as a light source in the

waveguide device measurements. The intensity was modulated with a chopper located

between two free space optical fiber connectors. The measurement setup was also

equippped with a fiber coupled polarization state controller. The correct polarization at

the input fiber was confirmed with the external polarizator before the actual waveguide

measurement. TE polarized light was end-fire coupled into the Mach-Zehnder waveguide

modulator from the lensed input fiber. Proper waveguide operation was verified by

imaging the modulator output intensity distribution with a microscope objective coupled

infrared camera. During the electro-optic measurements, a voltage sweep was applied

across the electrodes and the microscope objective collected light was directed to the

optical power meter instead of the camera. The intensity was read from the phase lock

amplifier that was frequency matched with the chopper.



e Mach-Zehnder Interferometer

" Electrode connected with
external voltage source (DC,
0~100 V)

Figure 3-9 Schematic of the E-O modulator test setup.
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Chapter 4: Results
In this chapter the results of the work on the three main topics covered in this thesis will

be presented. This includes MEMS-based optical switching of ring resonators, electrical,

optical and non-stoichiometry characteristics of V0 2 and barium titanate based electro-

optic modulators.

Ring resonators were discussed earlier to be highly attractive wavelength selective filters

capable of large scale integration for optical add-drop multiplexers. The ring resonator

design is an always "on" switch. A mechanism to switch "off' the resonator was desired.

To address this need a MEMS based approach was chosen. The results of fabricating the

MEMS devices, the optical resonator switch response and the results of development of

TiN for MEMS devices will be discussed further in section 4.1.

In section 4.2 the results from the characterization of the electrical and optical properties

of V0 2 under various oxygen partial pressures and temperatures and their effects on the

low temperature semiconducting phase will be displayed.

Section 0 covers the results of the design and fabrication of barium titanate based electro-

optic modulators.

4.1 MEMS-switch Results

4.1.1 Fabrication Results

Optical and scanning electron microscopy were used to visualize the fabricated MEMS

devices. A SEM micrograph of a typical MEMS switch and a close-up of the device near

the ring-resonator are shown in Figure 4-1.



Figure 4-1 SEM micrographs of a typical MEMS ring-resonator switch. A) Top view of entire

MEMS device on top of a ring resonator with anchors on either side of the beams and contact pad on

the left. B) Close-up of the MEMS structures near the ring resonator.

From the top view of the devices, it can be seen that the beams were not perfectly aligned

with the ring resonator. This was due to misalignment of the alignment marks of the

aluminum mask and the nitride waveguide layer during the contact lithography alignment

process step. One of the key optical requirements in the ring resonator design was that the

lossy/absorbing layer be at least I pm away from the throughput and drop waveguides.

The misalignment of the MEMS beams could contribute to optical loss in these

waveguides.



4.1.2 MEMS Optical Test Results

The spectral response, i.e. the variation in intensity as a function of wavelength in the

drop and throughput ports, with and without applied voltage on the MEMS bridge was

measured. The relative transmission was calculated and is plotted in Figure 4-2.
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Figure 4-2 Relative transmission in the throughput and drop ports of the optical ring resonator with

and without applied voltage to the MEMS structure. The relative transmission was measured as a

function of wavelength.

With no voltage applied, the beam remains displaced from the ring resonator, and the

switch is in its "on" state, such that the wavelength that is in resonance with the ring

resonator is coupled to the drop port. This can be seen in Figure 4-2. For example,

consider the switch response at the 1565nm resonance wavelength. At this wavelength,

with no voltage applied, optical power in the throughput port is transferred to the drop

port, evidenced by the minimum in the throughput port transmissivity and the peak in the

69



drop port transmissivity at this wavelength. The peaks and troughs at 1553nm and

1576nm correspond to resonances of higher and lower order respectively.

An essential requirement of the optical switch is the switching speed. To measure the

switching speed, the temporal response of the ring resonator switch was measured at a

fixed wavelength. The wavelength corresponded to one of the resonance wavelengths of

the ring resonator. For the temporal response measurements, a square wave cyclic voltage

was applied at 8 kHz drive frequency. The relative transmissivity in the throughput port

was measured as a function of time and the results are shown in Figure 4-3.

0.0 0.8 1.0

Time [ms]
1.5 2.0

Figure 4-3 Temporal response of the ring resonator. The relative transmission in the throughput port

is shown.

By examining Figure 4-3, it can been seen that the switching contrast in the throughput

port was approximately 0.7 dB The switch time, determined by the rise time of the

relative transmission from 10% to 90% of the full range, was approximately 60 ps for

switching the resonator "off'. The switch "on" time was approximately 10 ps.

4.1.3 TiN based mechanical beams

The optical switch devices fabricated with aluminum were observed to have significant

plastic deformation due to residual stresses. TiN was examined as a potential alternative.



TiN has a superior stiffness to density ratio (compared to aluminum and silicon - see

Appendix A for material properties), has non-stick surface properties and potentially

large failure strength given its high hardness value (as high as 24 GPa [56]).

TiN was deposited by reactive sputtering of a titanium target. TiN was deposited on

silicon substrates and on silicon-silicon dioxide-poly-silicon substrates.

Beams fabricated out of TiN were found to be significantly buckled after release, i.e.

following removal of the sacrificial poly-silicon layer by XeF 2. The deflection of beams

due to buckling was characterized by white light optical interferometry using a Zygo

optical microscope. This buckling was due to residual stresses originating from the

sputter deposition of TiN. The vertical deflection of a beam along its length was

measured using the Zygo interferometer and the results are shown in Figure 4-4.
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Figure 4-4 Results of residual-stress induced buckling in post-released fixed-fixed beams. A) Beam

deflection data pre- and post- anneal. B) Zygo deflection contour plot of a typical MEMS beam pre-

anneal and post-released. C) Contour plot showing beam deflection after anneal and release.

It can be seen from Figure 4-4B that the deflection at the center point of the beam was

approximately 2.5ptm.
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The residual stresses in TiN were controlled by annealing at high temperatures in a

nitrogen environment. The average stress in the thin film is shown as a function of

temperature in Figure 4-5.
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Figure 4-5 Stress evolution in TiN during annealing of as-deposited thin film on bare silicon wafer

substrate.

In Figure 4-5, it can be seen that the as-deposited film stress was approximately -800

MPa. Heating the film lead to an increase in the compressive stress up to 2000C which

was approximately maintained up to 5000C. Upon cooling, the stress decreased linearly

reaching a final room temperature stress level of approximately +50MPa.

The stress measurement was repeated on a film stack mimicking the actual device

fabrication. The thin film stack was comprised of silicon dioxide and poly-silicon on a

silicon substrate. The evolution of the stress during the anneal process is shown in Figure

4-6.
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Figure 4-6 Stress evolution during annealing of TiN sputter deposited thin film on silicon (substrate)-

silicon dioxide-poly-silcon stack.

Comparison of Figure 4-5 and Figure 4-6 shows differences in the room temperature

stress levels of TiN deposited on bare silicon wafer (Figure 4-5) and on silicon-silicon

dioxide-poly-silicon stack (Figure 4-6). The starting and final stress levels, as well as the

stress level at the highest anneal temperature, 500*C, are significantly different. These

differences were due to the differences in the composition of the underlying layers. The

stress measurement shown in Figure 4-5 was carried out on TiN films deposited on a bare

silicon substrate. The results shown in Figure 4-6 were carried out on TiN thin film

deposited on poly-silicon which was deposited on low-temperature chemical vapor

deposited silicon oxide grown on bare silicon substrate. This latter structure was more

representative of the actual device fabrication situation. Thus characterizing the stress of

the TiN on composite silicon oxide and poly-silicon thin films is crucial.

X-ray diffraction was used to characterize the phase and crystallinity of the as-deposited

and post-annealed TiN films. A typical x-ray spectrum is shown in Figure 4-7.
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Figure 4-7 Theta-2Theta x-ray spectrum of as-deposited and post annealed TiN thin film.

From the x-ray spectrum it can be seen that the as-deposited TiN has reacted to form

TiSi2. The diffraction peak at approximately 38* 2-theta in the as-deposited film indicates

crystalline TiN. However, this peak was barely observed in the post-annealed x-ray

spectrum. In the post-annealed film, a new peak appeared at approximately 480 2-theta.

This new peak was representative of TiSi2.

4.2 Vanadium (IV) Oxide

4.2.1 High Temperature X-ray Diffraction

In-situ x-ray diffraction studies were carried out on powder samples at 650*C between

oxygen partial pressures of 1011 and 10~18 atms. This measurement was performed by

Scott Misture at Alfred University. The results shown in Figure 4-8 show the

transformation of V20 5 powders to V60 13, V0 2 and V2 0 3 .
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Figure 4-8 High temperature in-situ x-ray diffraction spectrum taken between 5800C and 6500C in

A) 10Oppm CO/CO 2 gas mixture and B) 700ppm CO/CO 2 gas mixture.

When V20 5 powder was heated in a 100 ppm CO/CO2 mixture, the V205 phase was

found to transform to V6013 followed by transformation to V0 2 after being held at 650'C

for 390 min. In a repeat of the measurement in a 700 ppm CO/CO 2 mixture, the V0 2

transformed to V20 3. From the high temperature in-situ x-ray diffraction studies, it can be
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concluded that the phase transformation from V0 2 to V2 0 3 occurred between 1.3x10~15

atm and 2.7x10-" atm.

4.2.2 Thin Film X-ray Diffraction

X-ray diffraction was used to identify the phase of the PLD deposited thin films. A

typical x-ray diffraction spectrum of the V0 2 thin films is shown in Figure 4-9. The films

were deposited on fused quartz substrates heated to 600*C. The specific deposition

conditions were listed in the experimental section.

CVOX P59 2007-01-29 07.33.12PM.MDI] PLD thin film on FS 4&10mTorr 30k pulses

1500-

1000-

500-

10 20 3'0 40 0do
Two-Theta (deg)

Figure 4-9 A typical x-ray diffraction spectrum for a V0 2 thin film deposited on a fused quartz

substrate.

4.2.3 DC Electrical Conductivity - Bulk Samples

DC electrical conductivity measurements were performed on bulk, polycrystalline

samples of V0 2 between 1050*C and 850*C. These measurements were performed as a

function of oxygen partial pressure. Results of these measurements are shown in Figure

4-10.
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Figure 4-10 DC electrical conductivity of V0 2 as a function of P0 2 for a series of temperatures.

In this plot, the boundaries of the stability ranges of the different VOx phases are

indicated. An increase in conductivity can be observed as one goes from V20 3 to V0 2 at

the 1000'C isotherm. The conductivity is observed to be relatively independent of P0 2 in

the V0 2 regime

4.2.4 Thermoelectric Power - Bulk Samples

The thermoelectric power of bulk, polycrystalline samples was measured as a function of

oxygen partial pressure. These measurements were carried out together with the DC

electrical conductivity measurements described above. The temperature range of

measurement was 850*C to 1050"C. The thermoelectric power results are shown in

Figure 4-11. One notes that the TEP coefficient decreases with increasing P0 2 . This trend

was observed for both temperatures at which the TEP coefficient was measured. One also



notes the low magnitudes of the TEP (~10-35 pV/K), consistent with the high electrical

conductivities (-300 S/cm) measured under these circumstances.
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Figure 4-11 Thermoelectric power as a function of oxygen partial pressure for bulk V0 2 samples

measured at elevated temperatures.

4.2.5 Low Temperature Iso-stoichiometric electrical conductivity

measurements- Bulk V0 2

Iso-stoichiometric measurements were carried out by freezing-in the high temperature

stoichiometry using the iso-stoichiometry measurement setup described in section

3.2.4.4. This experiment permits the measurement of the low temperature semiconducting

phase transport properties as a function of the stoichiometry established under high

temperature oxygen partial pressure anneal conditions. The bulk samples were annealed

at 1000*C between oxygen partial pressures of 10-6 atm and 10-2 atm. Results of these

measurements are shown in Figure 4-12. Iso-stoichiometry temperature dependent

conductivity measurement over an extended temperature range above the phase

transformation temperature for a sample annealed at 1 000*C in a 1000 ppm 02 ambient is

shown in Figure 4-13. From this figure it can be seen that log a goes through a maximum

at approximately 1.5x1 03 reciprocal Kelvin which corresponds to approximately 600*C.



Thermoelectric power (TEP) measurements were made over the same temperature range

(see Figure 4-14). The TEP coefficient varied between -3 pV/K and -6 piV/K. The sign of

the TEP coefficient was negative, indicating electronic carriers. The TEP values

measured for this metallic-like higher temperature phase are consistent with values

observed for other metallic oxides such as (Lai..xSrx) 2CuO 4..y. [13]. It can be noted that the

TEP coefficient has a very weak temperature dependence, decreasing with increasing

temperature.
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Figure 4-12 Electrical conductivity vs reciprocal temperature of bulk V0 2 samples with frozen-in

stoichiometry.
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Figure 4-13 Temperature dependent electrical conductivity of a bulk V0 2 sample above the phase

transition withfrozen-in stoichiometry annealed in a 100Oppm 02 ambient.
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Figure 4-14 Temperature dependent of the TEP coefficient in a bulk V0 2 sample above the phase

transition withfrozen-in stoichiometry annealed in a 100Oppm 02 ambient.
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4.2.6 Low Temperature Thermoelectric power - Bulk

Thermoelectric power measurements were carried out on the bulk samples withfrozen-in

stoichiometry. Thermoelectric power gives a measure of the carrier type and density in

the material. A negative thermoelectric power coefficient indicates predominant n-type

carriers and a positive value indicates predominant p-type carriers. The thermoelectric

power measurements were carried out between 25*C and 1200C in air. These results are

show in Figure 4-15.
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Figure 4-15 Thermoelectric power measurements on bulk samples with frozen-in stoichiometry. The

oxygen partial pressures in the box on the right indicate the value used during the high temperature

anneal.

The thermal activation of the thermopower indicates that the carrier concentration is

thermally activated. This activation energy was calculated to be approximately 0.02 eV ±

0.001 eV for the 1000 ppm sampled. Compared to the conductivity activation energy,

0.16 eV ± 0.001 eV for the same sample, it can be clearly seen that there is a small

temperature dependent activation of electrons and a stronger temperature dependence of

the mobility. This thermally activated mobility indicates either a small polaron hopping

behavior or a trapped mobility behavior.



If this sample is modeled as exhibiting small polaron behavior, the carrier concentration

can then be calculated from the thermopower assuming the density of states in the

conduction band is equal to the vanadium cation density. Assuming a cation density of ~

1022 /cm3, the calculated room temperature carrier concentration is 5.64x1021

carriers/cm 3. The mobility can then be calculated using this carrier concentration and

equation 19. The calculated mobility is 4.7x10-5 cm 2Ns. This is a rather low mobility

value, but is consistent with typical mobilities observed for other materials exhibiting

small polar behavior [66].

This behavior can also be modeled like conventional semiconductor behavior, like

silicon. The carrier concentration in this case can be calculated assuming an effective

mass of 3*me giving an effective density of states of in the conduction band of 1.3x10' 9

/cm 3 . The carrier concentration and mobility thus calculated were: 7.33x10' 9 carriers/cm 3

and 3.66x10-2 cm2 Ns respectively. Therefore, it can be seen that assuming even the most

extreme conditions, the low mobility calculated demonstrates an activated mobility

mechanism.
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Figure 4-16 Log of carrier concentration vs reciprocal temperature in the semiconducting phase of

V0 2 for a sample annealed at 1000 ppm 02 andfrozen-in stoichiometry assuming an effective mass of

3*mo.



4.2.7 Low temperature conductivity and TEP - thin films

The electrical conductivity of thin films deposited by pulse laser deposition was

characterized between 25*C and 120*C. The effect of deposition oxygen working

pressure on the conductivity was characterized and is shown in Figure 4-17. One

observes that both the high and low temperature conductivities are affected by the oxygen

working pressure. Samples deposited at relatively lower oxygen pressures (1 and 4

mTorr) had an order of magnitude higher conductivity in the metallic and semiconducting

phases compared to samples deposited at relatively higher oxygen pressure (10 and 12

mTorr).
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Figure 4-17 DC electrical conductivity of thin films of V0 2 deposited at different oxygen working

pressures during pulse laser deposition.

4.2.8 Coulometric Titration

Coulometric titration measurements were used to characterize the stoichiometry of V0 2.
This is done by measuring the number of moles of oxygen pumped electrochemically

through a zirconia crucible as described in the section 3.2.4.6. These measurements were

carried out on powder samples between 500*C and 650*C. A plot of the number of moles



of oxygen pumped versus the equilibrium oxygen partial pressure in the titration cell is

shown in Figure 4-18.

In this figure, plateau areas where the equilibrium oxygen partial pressure shows no

significant change with number of moles of oxygen pumped indicates two phase regimes.

Regions where there are steep changes are indicative of non-stoichiometry in a single

phase regime. The oxygen partial pressure range over which V0 2 is stable was shown in

Figure 1-5 in the introduction chapter. Based on that stability data, the existence range of

V0 2 is indicated in Figure 4-18 with horizontal lines for each temperature curve.
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Figure 4-18 Raw data from coulometric titration measurements between 500C and 650C. The plot

shows the equilibrium oxygen partial pressure as a function of amount of oxygen pumped out of the

titration cell.

Based on the existence range of V0 2 the raw data in Figure 4-18 the amount of oxygen

pumped out within the V0 2 phase and the associated equilibrium oxygen partial pressure

is shown in Figure 4-19.



0.10-
-0- 500 C
~-O- 550 C

0.08 - A 600 C
650 C

0.06-

0.04-

0.02-

0.00 -

I I I I I i I

-16 -14 -12 -10 -8 -6 -4

Log p02 [atm]

Figure 4-19 The equilibrium oxygen partial pressure as a function of total non-stoichiometry in V0 2-

The absolute non-stoichiometry, 6, in V02-8 can be extracted from Figure 4-19. The

information obtained thus far from coulometric titration has provided only the overall

non-stoichiometry in V0 2. That is, if V0 2 exists between V02-8(1) and VO 2-3 (2), then the

information that has been obtained thus far is 1 (1)| + 6 (2)1 which will be referred to as

A.

If it is assumed that oxygen nonstoichiometry, 3, is defined as the oxygen deficiency with

respect to the stoichiometric composition, 5 = 0, then a change in nonstoichiometry, A,

is related to the oxygen content in the sample as:

AS=1-S* (32)

where 9' is the oxygen deficiency at the start of the titration. If as was discussed earlier,

the primary ionic defect in V0 2 is assumed to be [V/*] in the reducing regime and [Vr/~j

in the oxidizing regime, that is assuming Frenkel defect formation, then:



NAS =[V4+ ]Vv] (33)

where NA is the avogadro's number and V, is the molar volume of V0 2 (19.9g/cm 3).

Therefore, substituting for [V 4 ] and [Vv-J from equations 2 and 6 gives:

NA 4+ 4 K (4K )1/ 5 2 115 KF 5 +115 (34)

Vm (4KR ) 5

Thus, the measured change in stoichiometry, AS, is related to the absolute stoichiometry

by:

AS = 5-*= - AI( 4 KR )1/5(Po2 )1/5 KF (pO2)+1/5 _ * (35)

Vm 4 (4KR )115

An equation of the form:

y = P(1)* x1/5 - P(2)* x+1/5 - P(3) (36)

was used to fit the AS vs P0 2 data, where P(1), P(2), and P(3) were three independent

fitting parameters. From these three fitting parameters, KR, KF, KE and S' were calculated

from:

(4* p(1))5 (37)
K R-

4

KF= P(2) * (4* KR 15

4

KE = (KR )1/2

PO / (KF )1/4

3* = P(3)

where PO2 * corresponds to the partial pressure where 3=0. Equation 36 was used to fit

AS vs P0 2 data for V0 2. The absolute stoichiometry as function of P0 2 in V0 2

determined based on the fitting parameters is shown in Figure 4-20.
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Figure 4-20 Dependence of absolute stoichiometry, 8, in V02-8 as a function of oxygen partial

pressure.

From the fitting parameter obtained, KF, KR, and KE were calculated by equation 37.

These values were plotted as a function of inverse temperature and the results are shown

in Figure 4-21, Figure 4-22, and Figure 4-23
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Figure 4-21 Temperature dependence of log[KF] determined from fitting the titration data.
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Figure 4-22 Temperature dependence of log[KR] determined from fitting the titration data.
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Figure 4-23 Temperature dependence of log[KE] determined from fitting the titration data.

The activation energy of KF was determined to be 0.7eV and KR was determined to be

2.7eV. KE was found, within experimental error, to be temperature independent.
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4.2.9 Optical Properties

The optical absorption of PLD deposited thin films of V0 2 was measured with the

wavelength dependence of the optical transmission both above and below the phase

transition. The optical transmission plot is shown in Figure 4-24. The substrate used was

fused quartz, which was confirmed to be nearly fully transparent within the wavelength

range of interest. In the lower temperature semiconducting phase, the film is

approximately 40% transparent at 1550nm. In contrast, in the metallic phase (at 100*C)

the film is nearly 100% absorbing.
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Figure 4-24 Wavelength dependence of optical transmission above and below the phase transition in

V0 2 for PLD as-deposited thin films.

The dependence of optical absorption coefficient with energy for V0 2 thin films with

different levels of nonstoichiometry controlled in-situ during the PLD film deposition, is

shown in Figure 4-25. The variation of the absorption coefficient at 1550nm wavelength

for the same set of thin films is shown in Figure 4-26. The optical indices of V0 2 thin

films was determined by ellipsometry measurements. The wavelength dependence of the



real and imaginary parts of the refractive index for a thin film deposited at 4 mTorr total

oxygen pressure is shown in Figure 4-27.
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Figure 4-25 Dependence of absorption coefficient of semiconducting V0 2 as a function of energy for

thin films under different oxygen working pressures during PLD deposition.
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Figure 4-26 Plot of the dependence of the absorption coefficient of V0 2 at 1550 nm wavelength as a

function of oxygen total pressure during PLD deposition.
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Figure 4-27 Real and imaginary part of the refractive index determined by ellipsometry of thin V0 2

film deposited by PLD at 4 mTorr oxygen total pressure.

4.3 Barium Titanate based E-0 Modulator

4.3.1 Thin film growth results

CMOS compatible processing steps were used to fabricate the BT modulator. Control of

the orientation of the BT thin film is critical to good performance of the E-O modulator.

Thin films grown using pulse laser deposition (PLD) were characterized by x-ray

diffraction by Jussi Hiltunen [28], a visiting student and collaborator in this work. The

effect of oxygen working pressure during film growth is shown in the x-ray spectra in

Figure 4-28. From this figure, it can be seen that films grown at oxygen partial pressures

between 1.5mTorr to 20mTorr show BT films highly oriented in the (001)/(100)

direction. At higher oxygen pressure, secondary phase peaks appeared.

Rocking curve measurements, also performed by Jussi Hiltunen, showed that films grown

at 1.5 mTorr, 10 mTorr and 15 mTorr were epitaxial in nature, given by the nearly zero

intensity between the symmetrical reflections. His rocking curve measurements are

shown in Figure 4-29.



4.3.2 E-0 Modulator Device Simulations

Two different E-O modulator designs were investigated. However, one of the designs

was chosen due to ease of fabrication. The approach chosen was a strip-loaded design

consisting of a SixNy waveguiding layer on top of the active BT thin film. This design

was prefered due to the ease of patterning SixNy compared to patterning the BT thin film.

The design of the E-O modulator requires a significant fraction of the optical field to be

present in the BT layer so that there is maximum interaction of the applied electric with

the optical field.

Optical simulations were carried out using a commercially available mode solver,

FimmWave, by Jussi Hiltunen. From the simulations, the optimum thickness of the

waveguiding SixNy layer compared to the BT layer was determined so as to maximize the

optical field intensity in the the BT layer. A contour plot of the optical field distribution

for the stip loaded design is shown in Figure 4-30.

0,0
8

30 mTorr

25 mTo

CD
0

20 mTorr

15 mTorr

10 mTorr

1.5 mTorr

20 30 40 50 60 70 80 90 100
20 angle (0)

Figure 4-28 0-20 x-ray spectra of thin films of BT grown by PLD. Data courtesy of Jussi Hiltunen.
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Figure 4-29 X-ray rocking curve results showing the four fold symmetry of the (100)/(001) planes

normal to the BT film surface. Data courtesy of Jussi Hiltunen.
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Figure 4-30 Contour plot of optical field intensity distribution for the strip loaded MZ modulator

design. Data courtesy o f Jussi Hiltunen.



4.3.3 E-0 Modulator Fabrication Results

The BT based electro-optic modulator was fabricated using CMOS compatible

processing steps. The detailed process steps were given in the experimental section. The

final device was imaged and inspected using scanning electron microscopy. A SEM cross

section of a typical modulator structure and a top view optical micrograph of a section of

the modulator are shown in Figure 4-31.

From the SEM micrograph the square edges of the SiN waveguide can be observed. In

addition, the edge walls of the waveguide are relatively smooth, less than 1 nm RMS

roughness.

Figure 4-31 A) SEM cross-section image of a fabricated BT E-O modulator. B) Top view optical

micrograph showing part section of the Mach-Zehnder structure of two test devices next to each

other. The Y-split of the MZ waveguide arms can be seen.



4.3.4 E-O Modulator Test Results

The BT based MZ modulators were tested to determine the active layer electro-optic

coefficient. The localized light output from the MZ modulator, with no applied filed is

shown in Figure 4-32. From this figure it can bee seen that the light is guided to within 1

pim diameter, thus demonstrating good confinement of the optical field.

The modulation of intensity in the output side of the MZ modulator was measured as a

function of applied electric field between the electrodes of one of the arms of the

modulator. A typical intensity versus applied field plot is shown in Figure 4-33.
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Figure 4-32 A) Contour plot of the measured optical field intensity as function of position at the
output side of the MZ modulator. B) Near-field image captured with an infra-red camera.



Figure 4-33 Typical intensity modulation in a MZ test structure as a function of applied voltage.

By using the expression [69]

(38)
reff - AZXgn xV 1 xLXF

the effective electro-optic coefficient value reff can be extracted. V is the voltage required

to cause a 180 degree phase shift in the active arm, n refractive index, g electrode

separation, L electrode length and X the operating wavelength. The overlap factor F

between the optical and the applied electric field can be obtained by simulation. [69].

The effective electro-optic coefficient was measured for BT films deposited under

different oxygen working pressures. The results are tabulated in Table 7.

Table 7 lists the measured effective electro-optic coefficient for different materials and deposition

conditions of BT.
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Chapter 5: Discussion
The objective of this thesis was to design and develop new optical switch and modulator

designs and materials for integrated photonic applications. Towards this end, a

wavelength selective MEMS-based ring resonator optical switch was designed, fabricated

and tested. The results of the MEMS switch, its capabilities and limitations will be

discussed further in this chapter.

V0 2 was identified as potential phase-transition based optical switch with, in contrast to

the MEMS switch, no macroscopic moving parts. However, the transport properties of

V0 2 and the effects of non-stoichiometry on its electrical and optical properties were not

systematically studied in the literature. In this thesis, systematic studies of non-

stoichiometry and its effects on the optical and electrical properties were performed, the

results of which were presented in the results chapter. The implications of these studies in

terms of developing a defect and transport model and the implications for optical

switching will be discussed in this chapter.

Optical modulation was also identified as a potential opportunity in integrated photonics

requiring introduction of new materials. Barium titanate had been identified as a potential

material for electro-optic modulation. In this thesis, the results related to the fabrication

and testing of a thin film electro-optic modulator were reported. In this chapter the

performance of the electro-optic modulator will be discussed.

5.1 MEMS-switch

The SEM images of the fabricated MEMS devices were shown earlier in Figure 4-1. The

test results of the integrated MEMS-based ring resonator switch were also demonstrated.

This represented the first demonstration of the use of ring resonators for optical

switching. Given that the ring resonators are wavelength selective, this was also a first in

terms of integrated wavelength selective switching.

The spectral response results showed a switching contrast of 13 dB in the throughput port

and 2 dB in the drop port. The switching contrast was much smaller than the designed

values, which were 40 dB change in each port. This discrepancy was due to a

combination of the imprecise control of the air gap between the top of the ring resonator



and the bottom of the MEMS beams and the less than optimal horizontal alignment of the

beams with respect to the throughput and drop ports. As highlighted in the results section,

the MEMS beams were slightly displaced in plane towards one of the waveguides,

specifically the drop port. This misalignment can be clearly seen from the SEMS images

of the ring resonator switch.

In addition, residual stress induced deformation of the beams resulted in a lower than

anticipated air gap between the beams and top of the ring resonator, resulting in further

optical losses. The residual stresses in the aluminum beams originated from the sputter

deposition process and thermal anneal of the aluminum films. The magnitude of the

residual stresses in the aluminum thin film was characterized by Gregory Nielson [50]

using a cantilever deflection method. The average stress in the aluminum films was

determined to be approximately +111 MPa. The net residual stress from the deposition

and thermal treatments contributed to plastic deformation of the beams which resulted in

buckling and mechanical yielding of the support anchors.

A finite element simulation carried out by Gregory Nielson [50] showed that the Von

Mises stress at the anchors, after taking into account the thin film aluminum residual

stresses, was in excess of 250 MPa. This value is much higher than the thin film yield

stress of aluminum. This plastic deformation at the anchors contributed to the air gap

being approximately 0.4 pm compared to the designed valued of 1.2 pm. The

combination of residual stress induced deformation and misalignment of the beams

during lithography, contributed to the relatively low switching contrasts.

Temporal measurements were carried out to test the switching speed of the ring

resonators. The results of the temporal response were shown in Figure 4-3. From this

figure it can be clearly seen that the response in the drop and throughput port were in

synchrony, having the same response speed. It can also be noted that "switching off" of

the resonator, which corresponds to pulling-in the MEMS structure, is much slower,

compared to "switching on" the resonator, which corresponds to releasing the pulled-in

MEMS structure. The switch time was characterized as the time it takes for the response

signal to change from 10% to 90% of full range. The "switch off' time was

approximately 60 ps, compared to the "switch off" time which was 10 ps. The slower



"switch off' time was partly due to the relatively slow voltage driver. The voltage

amplifier that was used was driven at its maximum speed, at 8 kHz. A square wave

voltage was used. At this maximum frequency, the voltage amplifier took about 60 ps to

reach the maximum of the square wave voltage. Thus the "switch off' speed was

equipment limited.

5.1.1 Titanium Nitride for enhanced optical switch contrast

Titanium nitride was identified as a candidate CMOS compatible material to replace

aluminum as the material for the mechanical beam [64]. TiN having a superior density to

stiffness ratio compared to aluminum and silicon, for example, was one reason for this

choice. Control of the residual stress was another major reason. As stated earlier, due to

the relatively low yield stress of aluminum coupled with significant residual stress

resulting from the deposition process, an alternate material with larger yield stress was

desired. Young's modulus values reported for TiN tend to be as high as 400 GPa [41].

The failure strength of TiN is of the order of 5 GPa. Given this high stiffness and failure

strength, TiN is capable of sustaining larger residual stresses, without yielding.

Yet, the TiN films deposited by reactive sputtering showed significant as-deposited

compressive stress, approximately 1 GPa. Given the nature of the deposition process,

shot-pinning, a phenomenon where Ar ions from the sputter plasma, was believed to

result in Ar ions being embedded within the TiN film. The Ar atoms, being larger than

both Ti and N, are believed to have contributed to the compressive stress by occupying

more volume than is available in the TiN lattice. The phenomenon of shot-pinning is a

very common occurrence in sputter deposited films.

TiN beams that were released before any thermal treatment showed significant buckling

due to compressive stress. The average stress was controlled through high temperature

anneals. TiN films annealed at 500'C in a nitrogen ambient showed an average residual

stress at room temperature of +40 MPa. TiN beams released after the anneal step showed

very minimal buckling compared to aluminum. The influence of the temperature

treatment on the beams can be seen in Figure 4-4.



Whilst the high temperature anneal step helped minimize residual stresses, one of the

draw backs of the heat temperature treatment of TiN was the formation of TiSi 2 as

confirmed by XRD results in Figure 4-7.

A potential solution for circumventing the formation of TiSi 2 is to sacrificially remove

the poly-silicon layer before the thermal treatment. This approach was not successful,

however, as the as-deposited stress was significant and when released, the beams were

significantly damaged. Therefore, it is necessary to control the deposition stress. The

compressive stress during sputtering can be controlled by controlling the substrate bias

during deposition. This approach has been reported to give good results [31].

Once the problem of silicidation of Ti can be overcome, TiN promises to be an attractive

solution for replacing aluminum in the optical switch. As mentioned, given the high

stiffness to density ratio and larger failure strength of TiN compared to many other metals

used in MEMS devices, TiN is a very attractive material for use in MEMS devices. TiN

is also known to have a passivated surface. This is an additional advantage for MEMS

devices, as the passivated surface minimizes stiction effects, a common problem in

MEMS devices.

5.1.2 Summary of MEMS Switch

Despite the relatively low switching contrast reported, the device concept of using ring

resonators for wavelength selective optical switching was clearly demonstrated. This

represents the first reported results in the literature showing optical switching of

wavelength selective ring resonators and is quite significant as it provides a potential

solution to wavelength selective optical switching of reconfigurable add-drop

multiplexers (ROADM). The reported switching time of 60 ps is well within the

requirements for such a function in an optical network. This MEMS-based switch

occupies a much smaller footprint when compared to other MEMS-based optical

switches. The MEMS switches reported here occupy an area of approximately 150 pim x

20 pm which can be contrasted with reported MEMS free-space based optics which are

reported to occupy areas of few square millimeters. Furthermore, given that the

mechanical beams used in the MEMS devices in this report were electrostatically
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actuated, this resulted in currents during switching of less than a few micro amps. This

led to a total power consumption of approximately 1 pW.

Given the advantages of small device footprint, low power consumption, relatively fast

switching speeds and wavelength selective optical switching, we believe that this work

has contributed significantly towards the realization of integrated optical add-drop

multiplexers (OADM's).

The relatively low switch contrast observed in the throughput port, approximately 2dB,

compared to design expectation of 40dB, was due to the residual stresses introduced in

the aluminum film. The residual stresses were significant enough to contribute to plastic

yield at the anchors of the beams, leading to pulled-in structures, which in turn resulted in

the air gap between the top of the resonator and bottom of the aluminum structure being

as much as 1/3 of the designed value. Control of the residual stresses in aluminum was

found to be challenging as temperature excursions as small as 50'C lead to significant

stress gradients. Given the relatively low value of the yield strength of aluminum (~200

MPa), yielding was inevitable.

TiN, having a failure strength of approximately 3 GPa, was identified as a solution to this

problem. TiN was also identified to have a superior stiffness/density ratio compare to

poly-silicon, which is a standard MEMS material. Optical switching of ring resonators

with TiN membranes was not carried out due to early termination of the project by the

sponsors. As future work, it is recommended that TiN be used as the mechanical

membrane in ring the ring resonator switch, with potentially larger switch contrasts

expected, compared to what was obtained with aluminum.

5.2 Vanadium (IV) Oxide

It had been shown in the literature that V0 2 has a semiconductor-metal transition

accompanying a monoclinic-tetragonal phase transition. This phase transition based

discontinuity of the electrical conductivity could be exploited for optical switching,

utilizing the corresponding change in the absorption coefficient. However, the results

reported in the literature showed significant scatter in the absolute conductivities in the

semiconducting and metallic phases. In addition, the conductivity jump at the phase
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transition temperature varied between a factor of 100 to 5000. In order to understand the

origins of the scatter of the data, the effects of non-stoichiometry on the electrical and

optical properties were investigated. A transport model for V0 2 was developed based on

electrical property measurements. The results and their implications are discussed further

in the following sections.

5.2.1 Electrical Properties of V0 2

Vanadium (IV) oxide displays a characteristic phase transition as was shown by the x-ray

diffraction results of the vanadium oxide powder as a function of temperature between

25*C and 1 00*C. The change is crystal structure from the low temperature monoclinic to

the high temperature tetragonal phase was observed at 65*C.

While the high temperature phase (T > 65C) of V0 2 is known to be metallic-like, its

electrical properties had not been examined at elevated temperatures under conditions

where the material could come into equilibrium with its environment. Its metallic nature

under these conditions was confirmed by high temperature electrical conductivity

measurements (see figures 4-10, 4-13 and 4-15). Furthermore, the magnitude of the

conductivity above the phase transition, approximately 100 to 5000 S/cm, was found to

depend on the degree of non-stoichiometry of V0 2 and the temperature.

Given V0 2's metallic character, it was further surprising to see a conductivity maximum,

at approximately 600'C, in the log a vs reciprocal temperature plot obtained at fixed

stoichiometry between 100"C and 1000*C (figure 4-13). Of particular concern was the

appearance of a thermally activated conductivity from above the phase transition to

approximately 600'C. To investigate this further, thermoelectric power (TEP)

measurements were carried out over the same temperature range. The TEP exhibited little

change varying only between -5pV/K and -1 0pV/K. The sign of the TEP coefficient was

negative, pointing to electrons as the majority carriers. The carrier concentration

calculated from the TEP coefficient, was of the order of 1022 carriers/cm 3, clearly

consistent with metallic conductivity (see figure 4-14).

The temperature invariant thermoelectric power coefficient at temperatures above the

phase transition indicates an invariant carrier concentration over that temperature range.
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Given that conductivity is a product of nqp (where n is the carrier concentration, q, the

elementary charge and p, the mobility) and given that the carrier concentration was

invariant with temperature, the change in conductivity must, therefore, be due to an

activated mobility, for example, by the small polaron mechanism. The expression for

activated mobility is given by:

(39)
p =--exp EA-I

T kT

Incorporating the above equation into the conductivity expression (equation 19) leads to a

modified conductivity expression for mobility activated conductivity:

(40)
a= expjEA-)

T kT

where EA corresponds to the activation energy for mobility. Based on this equation, a plot

of log (oTf) versus 1/T should be linear as demonstrated, within experimental error, in

Figure 4-14. The magnitude of the activation energy calculated from this plot, 0.08eV, is

in the range reported for highly conducting metal oxides, e.g. La.xSrxMnO3+d [47]

Figure 5-1 Plot of conductivity vs reciprocal temperature assuming an activated mobility model.
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5.2.2 P02 dependence of conductivity

High temperature conductivity measurements were carried out as a function of oxygen

partial pressure between 10-2 atm and 10~1 atm on bulk samples. Measurements were

carried out at 950 0C, 10000C, and 1050*C. Measurements carried out at lower

temperatures required extremely long equilibration times and were therefore avoided.

Based on literature reports, the V0 2 phase is stable between approximately 10-3 atm and

10-6 atm in this temperature range. The actual V0 2 stability range was mapped onto the

conductivity vs oxygen partial pressure plot (figure 3-10). From the conductivity data, a

change in conductivity of factor of five can be seen at P0 2's between 1010 atm and 10-'

atm. This is suspected to be due to a phase changes in going from V20 3 to the V.0 2n,_1

Magnelli phases and then on to V0 2. The gradual change in conductivity between 1010

atm and 10-6 atm is consistent with transitions through closely spaced Magnelli phases.

Within the V0 2 phase range, the conductivity remained largely independent of oxygen

partial pressure. Based on the defect model that was developed earlier, a 1/5th

dependence in the log-log plot of conductivity vs P0 2 would be expected. However,

given that in this high temperature range V0 2 is metallic, having carrier concentrations of

the order of 1022 carriers/cm 3, a change in conductivity due to oxygen partial pressure

dependent carrier concentration is not expected.

TEP measurements carried out over the same oxygen partial pressure ranges revealed an

increase in the TEP coefficient in going from the reduced end of the V0 2 phase boundary

to the oxidized end. This is consistent with a decreasing number of electrons with

increasing P0 2. The slope of the logarithm of the calculated carrier concentration

(assuming a density of states in the conduction band of 1022 sates/cm 3) versus log P0 2

was equal to -0.07, a value again, much smaller than that expected from the dilute

solution approximation.

In conclusion high temperature oxygen partial pressure measurements revealed little

additional information regarding the defect properties of V0 2 given its metallic character.

However, changes in stoichiometry are still expected as a function of P0 2. The influence

of P0 2 on the properties of V0 2 should be more apparent in the properties of the
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semiconducting phase. This hypothesis was tested through the iso-stoichiometry

conductivity and TEP measurements.

5.2.3 Non-stoichiometry effects on Semiconducting Properties of V0 2

The effects of non-stoichiometry on the semiconducting properties of V0 2 were

measured through iso-stoichiometry conductivity and TEP measurements. The bulk

samples were annealed at high temperature at controlled P0 2 to obtain controlled values

of 6, in V02-8. These compositions were then slow cooled in a small sealed quartz tube.

As explained in the experimental section, the buffering action of the bulk material fixes 6

in V02-8. The electrical conductivity measurements for samples annealed under different

oxygen partial pressure, and hence different 6 values was shown in figure 4-12.

Due to the narrow P0 2 range over which V0 2, it was not possible to freeze high

temperature nonstoichiometry down to room temperature by simply cooling in a fixed

P02 environment due phase changes. Evidence of this can be seen, for example, in

Figure 4-3. Hence, this alternate method of freezing the non-stoichiometry by cooling in

a sealed environment.

From this figure, it can be clearly seen that high temperature anneal conditions, and hence

non-stoichiometry 6, has a significant impact on the semiconducting properties. The

conductivity jump between the metallic and semiconducting phase was only 101 for

samples annealed (at 100 ppm 02) close to the reduced end of the V02-8. The

conductivity jump for samples annealed at the oxidized end (at 1000 ppm 02), on the

other hand, was approximately 103.

Room temperature x-ray diffraction results of the post-annealed samples confirmed the

monoclinic V0 2 phase for the 100 ppm and 1000 ppm 02 anneal conditions. Therefore,

given that the phase was the same, the only explanation for the difference in the

conductivity jump is a non-stoichiometry effect on the samples.

The magnitude of the conductivities in the semiconducting phase at a given temperature

differed between specimens by up to 3.5 orders of magnitude. This difference in
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magnitude of the conductivity, induced by the different high temperature anneals, is also

correlated to changes in the degree of non-stoichiometry.

Based on our defect model, oxygen deficiency is accommodated in V0 2 by introduction

of interstitial vanadium ions. Interstitial vanadium ions are expected to serve as donors.

As the non-stoichiometry increases, the number of interstitial vanadium ions incorporated

into the VO 2- lattice increases, thereby contributing to a larger free carrier concentration

in the semiconducting phase compared to the sample with a lower degree of non-

stoichiometry. The free carrier concentration will vary linearly with the number of

donors, ND, if in the saturation regime and as ND12 if in the freeze out regime [60].

Next, the position of these donor states relative to the conduction band edge is addressed.

The activation energy of the electrical conductivity in the semiconducting phase was

typically quite low and dependent on stoichiometry. The activation energy was 0.07 eV

for samples annealed near the reduced end and 0.16 eV for samples annealed near the

oxidized end of the phase boundary. The question to address is what fraction of these

activation energies are related to carrier generation versus carrier mobility. TEP

measurements, which are sensitive only to carrier concentration, are examined to clarify

this question.

Based on the defect model, which assumed an n-type behavior, samples annealed at the

oxidized end of V02-8 should have lower carrier concentration due to lower number of

vanadium interstitial defects. This was indeed confirmed by TEP measurements (see

figure 4-15). Samples annealed at the reduced end of the phase boundary (samples

annealed at 100 ppm 02) exhibited lower TEP values as compared to samples annealed at

the oxidized end of the phase boundary (samples annealed at 1000 ppm 02). The sign of

the TEP coefficient confirmed that the majority carriers in the semiconducting phase

were also n-type.

The thermal activation of the thermopower indicates that the carrier concentration is

thermally activated. This activation energy was calculated to be approximately 0.02 eV ±

0.001 eV for the 1000 ppm sampled. Compared to the conductivity activation energy,

0.16 eV ± 0.001 eV for the same sample, it can be clearly seen that there is a small

temperature dependent activation of electrons and a stronger temperature dependence of

106



the mobility. This thermally activated mobility indicates either a small polaron hopping

behavior or a trapped mobility behavior.

If this sample is modeled as exhibiting small polaron behavior, the carrier concentration

can then be calculated from the thermopower assuming the density of states in the

conduction band is equal to the vanadium cation density. Assuming a cation density of ~

1022 /cm 3, the calculated room temperature carrier concentration is 5.64x10 2 1

carriers/cm3. The mobility can then be calculated using this carrier concentration and

equation 19. The calculated mobility is 4.7x105 cm 2/Vs. The low magnitude of mobility

(< Icm 2/Vs) obtained here is quite typical of solids exhibiting small polaron behavior

[76].

This behavior can also be modeled like conventional semiconductor behavior, like

silicon. The carrier concentration in this case can be calculated assuming an effective

mass of 3*ne giving an effective density of states of in the conduction band of 1.3x10' 9

/cm3. The carrier concentration and mobility thus calculated were: 7.33x10 19 carriers/cm 3

and 3.66x10-2 cm2/Vs respectively. Therefore, it can be seen that assuming even the most

extreme conditions, the low mobility calculated demonstrates an activated mobility

mechanism.

The temperature dependent TEP measurements in the semiconducting phase were used to

determine the carrier concentration dependence on temperature, which enabled the

determination of the activation energy for carrier generation. A plot of the logarithm of

carrier concentration versus reciprocal temperature was used to extract the activation

energy of the carrier concentration (see figure 4-16) and was found to be 0.02 eV ±

0.00 1eV for the sample annealed at 1000 ppm 02. This indicates that the donors, believed

to be vanadium interstitials are quite shallow, similar in magnitude to donor level

ionization energies found in more conventional semiconductors like silicon where values

range between 0.02 eV to 0.05 eV depending on the donor element. This low value for

the donor ionization energy is entirely consistent with the high reported relative dielectric

constant of V0 2 of approximately 100 [46].

The donor ionization energy of the order of 20 meV therefore suggests that the majority

of the measured activation energy for conduction is related to the electron migration or
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hopping energy. This would suggest therefore that the migration energy varies from

0.05 eV for samples annealed near the reduced end and 0.14 eV for samples annealed

near the oxidized end of the phase boundary. Stoichiometry dependent migration

energies in solids exhibiting small polaron behavior has been observed before and is

attributed to variations in wavefunction overlap between cations due to differences in

defect ordering [76]. Furthermore, it is worth noting that VO 2-8 with a lower degree of

non-stoichiometry has the low number of defect states and therefore, a lower free carrier

concentration. In the small polaron hopping model, the positive ion cores of the lattice

contribute to the 'drag" of the electrons. As the number of free electrons increase, these

free electrons are better shielded from the ion cores and therefore may be expected to

exhibit a lower activation energy for electron mobility.

The activation energies for conductivity and carrier concentration reported here are not

consistent with one other early report in the literature by Kitahiro et al [35]. In their

report, the thermoelectric power (TEP) and DC electrical conductivity were measured as

a function of temperature in single crystal V0 2 whiskers. The carrier concentration

dependence on temperature determined from the TEP measurements was found to have

the same activation energy as the DC electrical conductivity implying that carrier

generation was dominating the temperature dependence. It should be noted, however, that

their material exhibited much lower carrier concentration suggesting a compensated

rather than a donor-dominated material. This may be related to the manner in which the

whiskers were grown, possibly incorporating compensating impurities during crystal

growth.

5.2.4 Non-stoichiometry

Non-stoichiometry in V0 2 was measured between 500*C and 650*C by coulometric

titration. The total non-stoichiometry and absolute non-stoichiometry were determined.

The starting oxygen partial pressure inside the titration cell was 0.21 atm. At this partial

pressure and temperature range of testing (500*C - 650*C) the stable phase in the VOx

system is V20 5. As oxygen was pumped out, the powder inside the titration cell was

reduced. The change in the equilibrium oxygen partial pressure inside the titration cell as

a function of amount of oxygen pumped out was shown in figure 4-15.
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In this figure, oxygen partial pressure plateau regions correspond to two phase regimes.

Regions of sharp change in P0 2 with amount of oxygen pumped correspond to single

phase regimes. The non-stoichiometry was therefore, the width of the sharp PO2 change

regime. From the data shown, the onset of the single phase regime of V0 2 near the

oxidized end of the phase boundary was not quite clear. The two phase plateau of V60 13

and V02-S was not entirely flat. A small slope was observed. This slope was probably due

to polarization effects inside the cell, and insufficient time given to de-polarize the cell.

Nonetheless, the transition to single phase regimes was determined by the presence of an

inflexion point. The P0 2's at the upper and lower phase boundary, as determined from

the coulometric titration data match closely to those reported by Bruckner et al [7] within

a margin of error.

From the plot of the number of moles of oxygen pumped as a function of P0 2, the total

non-stoichiometry, A(S, was calculated. A5 was calculated assuming 8 = 0 at the oxidized

side of the V0 2 phase boundary. The total non-stoichiometry, AM, ranged from 0.1 at

6500C to 0.01 at 500 0C. This implies that the total non-stoichiometry increases with

increasing temperature as commonly observed in nonstoichiometric solids [37].

As described in the results section 4.2.8, the absolute stoichiometry, 5, was determined by

non-linear least squares fitting the total non-stoichiometry by an expression of the form

given in equation 5. The results of the fitting indicated an interstitial-vacancy transition in

V0 2 for 500*C, 550*C, and 600*C. The fit for data of 650*C was not of good quality,

possibly due to noisy data points resulting from leakage, yielding an unreasonable

9* value.

Based on the fitting, S= 0 in V0 2. occurs at 1013 5 atm, 10-.2 atm, and 10-8.9 atm at

500*C, 5500C, and 6000C respectively.

From the non-linear least square fit, values of KR, KF and KE, the equilibrium constants

for reduction, frenkel defect formation and electronic-defect formation respectively were

determined. Activation energies for KR, KF and KE were found to be 2.7 eV, 0.71 eV and

0 eV respectively. The low activation energy for the frenkel defect formation implies an

intrinsically highly defective material. This correlates well with the measured total non-

stoichiometry as high as 5%.
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It should be pointed out that the model developed for V0 2 assumed a dilute solution

model of defects. The electron concentration was assumed to be equal to the hole

concentration at high temperatures. These assumption are normally valid at high

temperatures for semiconducting oxides. However, given that above 65*C V0 2 is

metallic like, having a large carrier concentration (of the order of 1021 carrier/cm3), the

assumption of dilute solution of electronic defects can not be valid. Nevertheless, it may

be useful to examine the related scenario of a metallic phase in which the electron density

is also independent of P0 2.

In the stoichiometric regime where n = p, the expected power law dependence of P0 2

versus 6 is -1 in the reducing regime and +1 in the oxidizing regime, as was shown in

Table 3. The best fit obtained however indicated a power law dependence of -1/5 and

+1/5 in the reducing and oxidizing regimes respectively.

In the dilute solution model in the near stoichiometric regime where n = p w f(P0 2), the

expected power law dependence of 6 versus P0 2 is -1 in the reducing regime and +1 in

the oxidizing regime, as was shown in Table 3. It is understood that if the electron

concentration is high, its concentration should be replaced by its activity in any mass

action relation. As long as its activity is P0 2 independent, one can still expect other

defects in low concentrations to follow the predictions of the dilute solution model.

Therefore, an attempt was made to fit the nonstoichiometry data to the power law

dependences of ± 1. The best fit, however, was obtained with a power law dependence of

-1/5 and +1/5 in the reducing and oxidizing regimes respectively.

In considering this continued discrepancy, the lower than expected power law values are

likely related to one or more features of the V0 2 system. First, is the very narrow

existence range of V0 2 and the difficulty with the titration data to very precisely establish

the exact bounds of the V0 2 phase field. This latter factor, we suspect, is due to

somewhat sluggish kinetics and potential oxygen leakage through the titration cell seals.

This coupled with the already high degrees of nonstoichiometry exhibited by the V0 2

phase would tend to weaken the apparent 6 versus P0 2 dependence.

Despite this anomaly, the observed temperature independent KE is at least consistent with

the observation that V0 2 is metallic with a temperature independent carrier concentration.
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5.2.5 Thin film electrical properties

The DC electrical conductivity of V0 2 thin films deposited by PLD displayed similar

characteristics to the bulk properties. The jump in conductivity at the phase transition was

approximately a factor of 103 . The activation energy in the semiconducting phase varied

between 0.21 eV to 0.31 eV. The lower activation energy was obtained for samples

deposited in lower oxygen working pressures (pressure of approximately 1 mTorr).

Samples deposited at 12 mTorr showed the higher activation energy of 0.31 eV.

The main difference between the thin film and bulk conductivity measurements was that

in the thin films, there was very little difference in the magnitude of the conductivity

jump at the phase transition. In the bulk samples, the conductivity jump varied between

10 to 5000. In the thin films, the change was consistently approximately 1000.

This measurement nonetheless, showed once again that the transport properties are

significantly affected by the oxygen content in the sample as evidenced by the change in

activation energies and in the magnitude of conductivity.

5.2.6 Optical Properties of V0 2 thin films

Optical absorption measurements were performed on thin films of V0 2 that were

deposited at different oxygen working pressures during PLD deposition. Peaks in the

absorption spectrum were observed at approximately 1 eV, and the development of a

absorption peak shoulder at approximately 2.5eV was also observed. An additional peak

was observed at - 4 eV.

The absorption coefficient of the films were observed to increase with decreasing oxygen

working pressure. From the electrical conductivity measurements (Figure 4-17) it was

observed that films deposited at lower oxygen total pressures led to larger room

temperature conductivities which possibly implies the presence of a higher concentration

of free carriers in these more reduced films. Thus, the observed increase in the absorption

coefficient can be correlated with increasing free carrier concentration. This observation

is consistent with the electrical transport model developed in this thesis, where it was

argued that lower oxygen partial pressures within the V0 2 existence range leads to a

higher degree of frozen-in donor defects which in turn results in larger free carrier
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concentration. The dependence of the absorption coefficient on free carrier concentration

in semiconductors is given by equation 41 [49, 55]

a= A2c3 Nn (41)
4r2cdneo (mnun

where a = absorption coefficient, A = wavelength, q = elementary charge, c = speed of

light, n = real part of refractive (= 2.57 at 1550nm) index, go = permittivity of free space,

Nn = free carrier concentration, mn= effective mass of the free carrier, and p = mobility

of the free carrier.

The room temperature electrical conductivity ratio for the samples deposited at 12 mTorr

and 1 mTorr respectively was approximatly a factor of 6. The experimentally observed

variation of the absorption coefficient for the same two samples showed a similar factor

of 6 difference which is consistent with the electrical measurements and supports a model

in which absorption is controlled by the free electron density.

5.2.7 Summary of the Transport Characteristics of V0 2

The transport characteristics of semiconducting V0 2 are strongly influenced by the level

of non-stoichiometry. At high temperatures, interstitial vanadium in V0 2 is assigned to be

the dominant defect specie, contributing to the non-stoichiometry. The large degree of

non-stoichiometry at high temperatures, when frozen-in below the semiconductor-metal

phase transition, contributes to higher electrical conductivity in the semiconducting

phase. This higher electrical conductivity in the semiconducting (monoclinic phase) can

be explained by the increase in the carrier concentration due to larger number of shallow

donor like ionizedfrozen-in defects.

As was pointed out earlier, the semiconducting nature of V0 2 in the monoclinic phase is

due to reduced overlap between the vanadium d-orbitals, due to pairing of vanadium

cations and distortion of the tetragonal structure to form the monoclinc form. At the

largest distortion, the d-orbital overlap is minimum and conductivity lowest. This would

correspond to the stoichiometric point. As V0 2 deviates from stoichiometry, in the

reducing regime, more interstitial vanadium cations are formed leading to a higher carrier

density. Further, as the number of interstitial vanadium cations increases, the distortion in

112



the monoclinic phase reduces, reducing the separation between paired set of vanadium

cations, leading to higher degree of d-orbital overlap, thus increasing the mobility also

observed in this study. For example, the migration energy of 0.14 eV for specimens

annealed at 1000 ppm 02 (lower degree of non-stoichiometry) reduces to 0.04 eV for

specimens annealed at 100 ppm 02 (larger non-stoichiometry), consistent with larger

non-stoichiometry leading to lower lattice distortion of the monoclinic phase.

In the metallic phase, the carrier concentration was relatively high and temperature

independent. Also, as in the semiconducting phase, a small polaron hopping like

activated mobility, was observed.

5.2.8 Implications for V0 2 based optical switching

V0 2 was identified as a potential material that could be used in conjunction with ring

resonator structures for optical switching. However, the absorption coefficient in the

semiconducting phase was as high as 2x1 05 cm" at room temperature. Minimizing the

absorption coefficient by control of the stoichiometry was identified as a possible

approach. The study of the electrical transport properties of V0 2 showed that larger

amounts of vanadium interstitial defects were frozen as V0 2 deviates from stoichiometry

in the reducing regime. The large room temperature absorption was correlated to the free

carrier concentration from the thin film measurements. However, the lowest obtained

room temperature absorption coefficient was 9x10 4 cm1. The absorption coefficient in

the high temperature phase was approximately 5x105 cm'. This almost factor of 5 change

in the absorption coefficient could be utilized in a resonator type structure.

This high value of V0 2 implies that it cannot be used directly on top of an active

waveguide, for example, on top of the ring resonator waveguides. A dielectric cladding

layer between the V0 2 and the active waveguide is needed.

One potential advantage of exploiting the phase change in V0 2 as opposed to using a

MEMS structure to switch the ring resonators is the faster switching speed possible,

given the observed pico-second switching in V0 2 [9]. This fast switching speed coupled

with the factor of 5 change in absorption coefficient could also be utilized for optical

modulations applications. A possible means of actuating the phase transition is by current
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induced heating of V0 2, or possibly using a high electric fields as claimed possible by

Kim [32] and Stefanovic [68]. A schematic showing the possible implementation of the

V0 2 based ring resonator switch is shown in Figure 5-2

V02

Figure 5-2 Schematic of possible implementation of a ring resonator switch using V02.

5.3 Barium Titanate E-0 Modulator

5.3.1 Structure

The effect of the oxygen working pressure during deposition of BT films was found to be

crucial in controlling thin film orientation. The desired orientation was (001). This

orientation was obtained at oxygen working pressures of 15 mTorr and lower. The

measurements of the in-plane and out-of-plane lattice parameters showed the effective

stress in the films in samples grown at 1.5 mTorr, 10 mTorr and 15 mTorr.

For the optimum electro-optic effect, the ferro-electric phase of BT was preferred. BT

displays ferroelectric properties in the tetragonal phase. In bulk BT, a ferroelectric to

paraelectric phase transition occurs at 120*C. This corresponds to a change in crystal

structure from tetragonal to cubic. Thus stabilizing the tetragonal crystal structure is

needed given that during processing, the transition temperature would normally be

exceeded. In-plane tensile stresses for (001) oriented films could drive BT from

tetragonal to cubic, thus inducing the ferro- to para- electric transition.

Measurements of dielectric constant and in-plane and out-of-plane lattice constants of the

films as a function of temperature, however, showed that the ferro- to para- electric

transition was displaced to higher temperatures [28]. The characteristic sharp

discontinuity in the dielectric constant observed in bulk BT was not observed in the thin
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films. A rather broad peak in the dielectric constant was observed. The peak position was

at approximately 300*C. The in-plane and out-of-plane lattice parameter measurements at

high temperatures converged towards cubic lattice parameters, but were never quite

cubic. The crystal structure remained slightly tetragonal.

The dielectric constant and lattice parameter measurements confirmed that BT films

grown at 1.5 mTorr, 10 mTorr and 15 mTorr were ferroelectric in nature and that the

ferro-electric phase was stabilized up to 300*C.

5.3.2 Electro-optic Performance

The effective electro-optic values measured for the different growth conditions ranged

from 18 pm/V to 25 pm/V for BT. These were effective electro-optic coefficients, rff.

The r42 value calculated from the effective E-O coefficient was 70 pm/V for the 10 mTorr

sample. An r42 value for the 15 mTorr sample could not be determined as that sample had

mixed (001) and (100) orientations out of plane.

The r42 value determined for the 1 OmTorr sample was much smaller than the bulk value

(r42 = 820 pm/V). This significant difference could be due to the clamping of the BT

lattice due to lattice parameter mismatch.

Wessel's group in Northwestern University have published a series of report on the

performance of BT-based thin film modulators [69-73]. In their reports, the effective E-O

coefficients were increased from 35 pm/V to as high as 380 pm/V. No explanations for

the observed increases in effective E-0 values were given. Their films were grown by a

MO-CVD process. It could, therefore, be argued that this process permits layer by layer

deposition of BT films, thus minimizing deposition induced residual stresses leading to

better epitaxy. None of their reports show x-ray characterization data. Therefore, we were

unable to quantify the quality of their epitaxy compared to that in this report.

The effective E-O coefficient measured for the 15 mTorr sample is comparable in

performance to LiNbO3 based commercial bulk crystal modulators. This implies that the

bulk crystal function of LiNbO3 can be replaced with an integrated thin film E-O
modulator based on BT thus demonstrating the potential of using BT as a the E-O
modulator material in integrated photonics.
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Whilst the integration of the BT modulator is attractive, the drive voltage and device

sizes were still of the same magnitude as commercial LiNbO 3 based technology. The BT

modulator active device length was 3 mm. Despite the success in achieving BT based

thin film modulator performance comparable to commercial LiNbO3, these effective E-0

coefficient for BT are still a factor of 10 smaller than the Wessels group reports [73].

To enable smaller devices, high effective E-0 coefficient materials are needed. Several

other materials were investigated towards this end. Of particular note was a barium

titanate (BT)-strontium titanate (ST) superlattice structure grown by Jussi Hiltunen. The

effective E-O coefficient measured for this BT-ST structure was 73p mn/V. This value is

over a factor of two better than the performance of commercial LiNbO3 modulators.

There are indications that possible further improvements in the effective E-O coefficient

based on BT-ST superlattices could be achieved by optimizing the thickness of the BT-

ST layers. It has been shown that dielectric tunability (which is a change in the dielectric

constant as a function of applied electric field) of BT-ST structures can be optimized by a

factor of 10 by manipulation of the BT-ST layer thicknesses. Given the dielectric

constant is related to the refractive index and that the E-O effect is essentially a measure

of the refractive index tunability (i.e. change in the refractive index with applied electric

field), there is promise for a further enhancement of the E-O coefficient in BT-ST super

lattice structures.

5.3.3 Summary of BT E-0 Modulator

An integrated barium titanate based electro-optic modulator with performance

comparable to commercial bulk LiNbO3 was demonstrated. This is an important

achievement given that a thin film modulator can now be integrated on a substrate with a

light source and other optical functions such as switches and detectors. Therefore, the

demonstration of the thin film E-O modulator addresses one of the key requirements for

integrated photonics. Enhancements in the thin film modulator performance were

achieved by employing superlattice structures of BT-ST. The performance of this latter

device was 2.5 times better than LiNbO3. This implies that modulator device sizes can be

scaled down by that same factor and therefore, signal significant promise towards

enabling integrated photonic devices and modules.
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Chapter 6: Conclusions
The increasing demand for bandwidth in many applications ranging from computation to

telecommunication was highlighted as a driver for integrated photonic devices. Key

components of an integrated photonic chip are switches and modulators. In this thesis,

new switch designs and materials and modulators concepts were investigated.

A MEMS-based approach was used to switch wavelength selective ring resonators. This

MEMS-based switch was the demonstration of active switching of ring resonators. The

approach employed here resulted in a small foot print (3000 pm 2 area) device, very low

operating power (approximately 1p.W) and wavelength selective optical switching. TiN

was identified as an attractive MEMS structural material and fabrication requirements for

effective use of TiN were identified.

V0 2 was identified as a possible optical switch material. The transport and electrical

property characterization of V0 2 demonstrated that it has a high degree of non-

stoichiometry, approximately 5% at 6500C. The level of non-stoichiometry has a strong

impact on the electrical conductivity in the semiconducting phase and a much smaller

effect in the metallic phase. A small polaron hopping mechanism was identified as the

electron mobility mechanism in semiconducting and metallic V0 2. Control of V0 2's non-

stoichiometry was demonstrated to be key in controlling the electrical and optical

properties of the semiconducting phase. The high optical absorption observed in the

semiconducting phase was found to be dependent on the free carrier concentration arising

from donor level defects as well as possible band-band absorption. The observed factor of

2 contrast in the absorption coefficient between the semiconducting and metallic phase

could be utilized in a ring resonator design for optical switching applications. Further

enhanced of the absorption coefficient could be possible by compensation doping. The

pico-second switch speeds reported in literature coupled with possible electric field

induced phase transition also reported in the literature shows further promise of utilizing

V02 for realizing fast switch and modulator devices. Further work is needed to explore

these concepts.

117



The concept of barium titanate based thin film electro-optic modulation was explored and

was found to have at least comparable performance to LiNbO 3 bulk crystal technology. A

BT-ST super lattice structure was identified as a potentially better electro-optic material.

This BT-ST thin film super lattice structure demonstrated 2.5 times better performance

than bulk LiNbO 3. Effective electro-optic coefficients as high as 73 pm/V were obtained

for the BT-ST structure.

Overall, the demonstration of MEMS-based optical switching and the BT-based E-O

modulator work showed significant promise in addressing the need for integrated,

miniaturized, low power photonic devices for optical communication applications. The

concepts demonstrated could have far reaching impact from practical devices for

broadband communication to enabling optical interconnects on chip in memory and logic

microprocessors.
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Chapter 7: Future Work

7.1 MEMS Switch

The demonstration of switching ring resonators by use of electrostatically actuated

MEMS-based bridge structures was a significant step forward. Improvements in the

device performance, specifically, the switching contrast is needed. This can be achieved

by utilizing TiN-based optical switches which exhibit many attractive features. Control of

residual stresses in the mechanical beams is critical as residual stresses lead to unwanted

buckling of released structures. It was shown that residual stress can be controlled by

controlled temperature anneals. It is also expected that the deposition stress could be

controlled by manipulating substrate sputter bias. Therefore, process optimization work is

needed to identify the deposition parameters that will yield low-stress TiN.

7.2 V0 2 based switch

Based on the defect model developed for V0 2, and transport characteristics studied, there

are several points that need follow up:

1. It was speculated that the difference in mobility activation energy for in the

semiconducting phase was due to structural distortions. Physical charaterisation of

this distortion by synchrotron x-ray or neutron scattering experiments is needed to

confirm the hypothesis.

2. In addition, the possibility of using V0 2 for optical switching should be investigated

by fabricating optical switch devices. One possible design could involve a design

similar to the MEMS switch without mechanical deflection. Optimum methods to

actuate the phase transition should be investigated. Current-induced, Joule heating

based actuation is one approach. Stress and electric field induced are other

possibilities.

7.3 Barium Titanate based E-0 modulators

The possibility of realizing a BT-based E-O modulator was demonstrated. However, the

measured effective electro-optic values in the thin films were much lower than the bulk
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values. The reason was speculated to be due to stress in the thin films. This hypothesis

should be studied systematically, by use of buffer layers to tune the stress in the epitaxial

films. Alternate methods to relieve stress in the BT layer such as thicker BT films and

stress relieving buffer layers should be investigated.

For the BT-ST based E-0 modulator, the super lattice structure should be optimized and

the electro-optic effect characterized. Optimization of the superlattice structure could lead

to significantly better electro-optic performance.
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Appendix A - Material Properties of Titanium Nitride and
Silicon

Table 8 List of Mechanical properties of TiN.

Property Value Source

Young's Modulus 106 -640 GPa [31, 41, 56]

Density 4500 - 5700 kg/m3  [41, 56]

Hardness 12 -24 GPa [56]

Table 9 List of Mechanical properties of Silicon.

Property Value Source

Young's Modulus 160 GPa [45]

Density 2697 kg/n 3  [45]

Failure Strength 7 GPa [45]
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