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Abstract

The physics of blackbodies has been an ongoing source of fascination and scientific
research for over a hundred years. Kirchhoff's law states that emissivity and absorp-
tivity are equal for an object in thermal equilibrium. Coupled with the Second Law
of Thermodynamics, one can show that no object can emit more than a blackbody
at any given frequency, direction or polarization. While this provides a theoretical
maximum to the intensity of thermal emission from an object, few come even close to
the level of emission exhibited by a blackbody. Thus, there is much room for research
into enhancing thermal radiation from many different types of materials.

The ability to modify or tailor the thermal emission profile of an object is of
great importance and interest in many areas of applied physics and engineering. It
turns out that thermal emission spectra can be changed by altering the geometry of
the system or the materials used. For instance, nanoscale patterning can enhance
emission at certain frequencies, while point defects can localize light at microcavities.
General periodic electromagnetic structures, also known as photonic crystals, are
therefore a natural medium in which to carry out such investigations, since they
are metallodielectric systems that lend themselves relatively easily to sub-wavelength
scale patterning and design.

This research program aims to study, through both theoretical and computational
means, physical phenomena that drive thermal emission in photonic crystals and the
design of point defects in the presence of fabrication constraints.

First, we explore point defect geometries in inverted opal photonic crystals that
can be fabricated by colloidal self-assembly. We identify and study substitutional
point defects that introduce a usable defect band into the photonic band gap. It is
found that a silica sphere of radius between 0.33a and 0.35a (where a is the lattice
constant) introduces a triply degenerate state into the band gap. Reflectance and local
density of states calculations are performed to verify the existence and frequency of
this defect. Such a defect can be used as a microcavity for localizing light at a point,



with a quality factor Q that is limited primarily by the proximity of the defect to the
surface of the photonic crystal and other such defects.

Second, we present a useful framework within which we can understand some of
the physical phenomena that drive thermal emission in one- and two-dimensionally
periodic metallic photonic crystals, emphasizing phenomenology and physical intu-
ition. We find that polarization and periodicity play key roles in determining the
types of physical phenomena that can be excited in these systems. Promising struc-
tures in both 1D and 2D systems are identified as good candidates for thermal design.
We discuss how the emissive properties of these systems can be tailored to our needs.

Third, we establish that the significant enhancement of thermal emission via Q-
matching, which has been possible in 1D systems only, can be extended to 2D systems
by means of Fano resonances in the 2D system. We demonstrate through detailed nu-
merical and analytical studies that the Fano resonances characteristic of 2D-periodic
photonic crystal slabs can be understood in terms of a 1D-model, thereby showing
the existence of essentially 1D behavior in a 2D system. Moreover, we show how
properties of these spectra can be controlled by changing the geometrical parameters
of the photonic crystals. This work provides a path to the creation of graybodies that
have tailored thermal emission spectra, with highly anomalous behavior.

Fourth, we perform direct thermal emission calculations for 2D- and 3D-periodic
photonic crystal slabs using stochastic electrodynamics following the Langevin ap-
proach, implemented via an FDTD algorithm. We demonstrate that emissivity and
absorptivity are equal, and thereby numerically verify Kirchhoff's law, by showing
that such photonic crystal systems emit as much radiation as they absorb, for every
frequency, up to statistical fluctuations. This has been an issue of great controversy
because of experimental work indicating the violation of Kirchhoff's law. We also
study the effect of surface termination on absorption and emission spectra from these
systems.

Thesis Supervisor: John D. Joannopoulos
Title: Francis Wright Davis Professor of Physics
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Chapter 1

Introduction

Ever since the discovery of an electromagnetic band gap in certain periodic dielectric

structures[82] some twenty years ago, research into photonic band gap materials has

taken off, creating a whole new subfield of physics. Lying at the intersection of solid

state physics, materials science and electrical engineering, these fascinating materials

are characterized by their possession of a photonic band gap, a range of frequencies

in which light is forbidden from propagating. As such, these materials, also known

as photonic crystals, can be thought of as the electromagnetic analogue of semicon-

ductors, which possess electronic band gap regions where electrons are forbidden to

propagate. If the semiconductor revolution, which forever changed the landscape of

electronics research, is anything to go by, many believe that photonic crystals will

usher in a similar revolution in the fields of optics, telecommunications and optical

computing. Some believe it already has.

Prior to the advent of photonic crystals, a researcher in the field of optics had at her

disposal a few important ideas from geometrical and wave optics, which were sufficient

for most problems related to refraction, reflection, diffraction and interference[29].

In telecommunications, optical fibers were all the rage; they could trap light in a

cylindrical tube and even bend it around a corner (though not too sharp a corner).

Consequently, a fiber optic infrastructure has been built in many places around the

world, carrying far more information with much lower losses than conventional electric

coaxial cables.



Versatile as these fibers are, their operation is based on a very simple physical

idea: total internal reflection. As such, they are limited in two ways. Total internal

reflection occurs when the angle of incidence exceeds a critical angle; below this

threshold, refraction occurs. A fiber, therefore, cannot be bent into too small a

radius of curvature before the light in the inner core starts leaking out. The second

problem arises from the design of optical fibers. Total internal reflection occurs when

light from a high dielectric medium meets a low dielectric medium. It cannot occur

the other way around. Thus, the light necessarily travels in a region of high dielectric,

surrounded by a low dielectric cladding. It so happens that most materials have at

least some absorptive losses, so that the high index core ends up absorbing a sizable

fraction of the power over long distances, leaving a weakened signal at the other end.

Furthermore, nonlinearities, which are present in most materials, put a limit on the

maximum power that can be transmitted.

Both these problems can be avoided by using photonic crystals. A multilayer film

can be wrapped into an omnidirectional waveguide with superior confinement (no

critical angle). A one-dimensional line defect in a material with a complete photonic

band gap can serve as a waveguide, also with no critical angle; if two such line defects

meet to form a corner, a resonant cavity can be placed at that corner and tuned

so as to promote 100% transmission and 0% reflection around the bend. All these

configurations can be designed so that the light travels in a region of air surrounded by

bulk material. Thus, photonic crystals can overcome the limitations associated with

optical fibers by offering omnidirectional confinement and light transmission in an air

core. Moreover, as an illustration of the power and versatility of photonic crystals,

one can design a channel drop filter consisting of a resonant cavity connecting two

parallel waveguides, such that an input signal in one waveguide can be passed to the

output channel of the other waveguide with minimal losses.

We have extolled the virtues of photonic crystals in the realm of optical design,

but their merits do not end here. Far more than being a better technology, photonic

crystals embody a new paradigm, a fundamentally new way of thinking about electro-

magnetism in solid state systems. Because Maxwell's equations can be recast into the



form of a Hermitian eigenvalue problem involving vector differential operators (see

section 1.2), we can plot dispersion curves, or bandstructure, for these systems, which

give us great insight into the eigenmodes allowed by the system. What was previously

understood as total internal reflection above a critical angle of incidence can, in the

new paradigm, be understood as a region in w - k space that permits guided modes

to propagate. This new way of thinking has much in common with semiconductor

physics; in fact, an extensive analogy may be drawn between the three-dimensional

scalar eigenvalue problem in semiconductor physics and the three-dimensional vector

eigenvalue problem in solid state electromagnetism.

Computational calculations for such systems are of great importance because they

can serve as a pre-laboratory where novel geometries and structures can be tested and

refined. One can have faith in relatively accurate correspondence between calcula-

tion and experiment because Maxwell's equations are essentially exact in the linear

regime of low photon-photon coupling, the regime in which photonic crystals are used.

Reverting to the analogy with semiconductor physics, we expect computational cal-

culations for photonic crystals to be more accurate than those for semiconductors,

because electron-electron coupling is stronger in semiconductors than photon-photon

coupling is in photonic crystals. As a result, bandstructure calculations and time-

domain simulations have become indispensable tools in driving the field forward. In

fact, these tools have become so standardized that they are freely and widely available

to researchers in the field (e.g. MIT Photonic Bands).

1.1 Overview of this work

The goal of the present research is to shed light on a few important questions in the

field of photonic crystal research today, namely,

1. How do fabrication constraints affect the design of defects in photonic crystals?

2. How can photonic crystals be used to modify and enhance thermal radiation?

3. Does Kirchhoff's law hold for a general photonic crystal, given recent contro-



versial experiments that suggest the contrary?

With regard to the first question, recently, there has been much interest in fab-

ricating photonic crystals by means of colloidal self-assembly. Such a method is

attractive because it offers a simpler and cheaper way of making three-dimensionally

periodic photonic crystals, compared with conventional semiconductor nanofabrica-

tion techniques, which, while being more precise, are significantly more expensive.

However, the lower cost of manufacture comes with trade-offs. There is the problem

of disorder and structural defects in the photonic crystal, which plague many such

methods of self-assembly. This is especially important since disorder can destroy the

photonic band gap in such materials. But even if we were to set aside this problem

as an essentially experimental one, we would run into another, more theoretical, con-

straint: that put on the design of the photonic crystal by the method of fabrication

itself. For instance, Vlasov et al.[76] use a method of colloidal self-assembly that

requires etching out self-assembled silica spheres in order to produce air gaps inside a

background of silicon. However, the method of wet-etching necessitates a connected

structure of silica spheres through which the wet-etching agent can permeate. Given

the utility of point defects as microcavities for localizing light (we will discuss this

further later in this chapter), there is, therefore, a need to identify a class of point

defects that can be made using this method. This was the motivation for the work

described in chapter 2.

The second question concerning the modification and enhancement of thermal ra-

diation has been around for well over a century now. Ever since Planck[59], the physics

of blackbodies has been a source of fascination and scientific research; properties of

their thermal emission provided one of the most important clues for the discovery

of quantum mechanics. Kirchhoff's law states that emissivity and absorptivity are

equal in thermal equilibrium. Coupled with the Second Law of Thermodynamics,

it is possible to show that no object can emit more than a blackbody at any given

frequency, direction or polarization. While this provides a theoretical maximum to

the intensity of thermal emission from an object, few come even close to the level of

emission exhibited by a blackbody. In fact, uniform slabs of material are found to



be relatively poor emitters. Thus, there is much room for research into enhancing

thermal radiation from many different types of materials.

The ability to modify or tailor the thermal emission profile of an object is of great

importance and interest in many areas of applied physics and engineering. It turns

out that thermal emission spectra can be changed by altering the geometry of the

system or the materials used. Photonic crystals are therefore a natural medium in

which to carry out such investigations, since they are metallodielectric systems that

lend themselves relatively easily to sub-wavelength scale patterning and design. In

light of this, a clear and physically intuitive understanding of the mechanisms that

drive thermal emission in such systems is of great value in guiding thermal design.

Because of important inherent differences between one-dimensional (1D), two-

dimensional (2D) and three-dimensional (3D) periodicity in photonic crystals, it is

best to analyze crystals of different dimensionality separately. We focus on some of the

most important physical phenomena that drive thermal emission. We do this with the

intention of developing physical intuition and understanding of features of emission

spectra. Once we have this intuitive understanding, we show how one can tailor the

thermal emission properties of these structures to achieve one's design needs. We do

this for both 1D- and 2D-periodic metallic photonic crystal slabs, covering a multitude

of physical phenomena, including waveguide cut-offs, waveguide resonances, surface

plasmons, slab resonances and diffraction peaks.

From the literature, it is clear that the idea of matching the radiative Q-factor of

a system with its absorptive Q-factor in order to enhance emission is fundamentally

a one-dimensional one. It is reducible to the problem of having one input channel, a

resonant cavity, and one output channel. In such a setup, light emitted by the resonant

cavity and the incident light interfere in such a way as to extremize the net outgoing

wave. This complete cancellation of waves from the cavity and the incident/outgoing

beam is unique to the one-dimensional world. However, it turns out that enhancement

of thermal emission via Q-matching, which is usually observed in 1D systems only, can

be extended to 2D systems by coupling into Fano resonances[19] in the 2D system.

In other words, we demonstrate the existence of essentially 1D behavior in a 2D



system - a case of reduced dimensionality. We show through detailed numerical and

analytical studies that the Fano resonances characteristic of 2D-periodic photonic

crystal slabs can be understood in terms of a 1D-model based on Q-matching.

The third and final question we asked concerns the validity of Kirchhoff's law

when applied to a general photonic crystal structure. This was originally proven

analytically for a 1D uniform slab. One may well wonder whether such a law, which

makes sense intuitively given the principle of detailed balance, holds for the more

general case of a photonic crystal. But the question took on a new relevance in 2003,

when intriguing experiments by Lin et al.[45, 42] seemed to indicate that the thermal

radiation from metallic photonic crystals might even exceed that of a blackbody

in free space. The possibility of thermal nonequilibrium during the measurement

process has been acknowledged[46]. The controversy was partly addressed by Luo

et al. [48], who performed a direct emission calculation for a 2D-periodic array of

circular rods, and showed that thermal emissivity was equal to absorptivity, apart

from statistical fluctuations. However, Lin's work was done on 3D-periodic photonic

crystal structures. In the final part of this thesis, we extend the work of Luo et al.

by applying the same methodology of stochastic electrodynamics to two fully 3D-

periodic photonic crystal structures: a woodpile[74] (similar to that studied by Lin

et al.) and a diamond metallodielectric structure[20]. We also consider the role of

surface termination in determining the emission spectrum of a woodpile structure.

As a bonus, we find that certain 3D-periodic structures have much higher thermal

emission compared with a uniform slab; these high-emission structures should be very

useful in thermophotovoltaic and incandescent lighting applications, where luminous

efficiency is paramount.

The outline of the thesis is as follows: the rest of this chapter describes the

basic physics of photonic crystals and introduces important ideas that will come up

later in this work. Chapter 2 investigates point defect geometries in inverted opal

photonic crystals fabricated by colloidal self-assembly. In Chapters 3 and 4, we study

thermal emission and design in 1D- and 2D-periodic metallic photonic crystal slabs,

respectively. Chapter 5 applies a 1D-model of thermal emission enhancement based



on Q-matching to Fano resonances in a 2D-periodic system, with intriguing results.

In Chapter 6, we present a direct calculation of thermal emission in 3D-periodic

photonic crystals, using the methodology of stochastic electrodynamics previously

developed by Luo et al.[48], and demonstrate the validity of Kirchhoff's law in 3D-

periodic photonic crystals. Finally, in Chapter 7, we summarize the important ideas

of this thesis, and conclude our exposition.

1.2 A Whirlwind Tour of Photonic Crystals

The laws of classical electromagnetism were first presented to the Royal Society in

London by James Clerk Maxwell in 1864. These four equations governed the behavior

of electric and magnetic fields and their interactions with materials. As long as mate-

rials could be modeled by their dielectric permittivity (E) and magnetic permeability

(p), one could, in theory, work out the electric and magnetic fields generated by

the system for a given set of boundary conditions. These coupled three-dimensional

vector differential equations were not trivial to solve in general. Nonetheless, the

description of electromagnetism in the form of a classical field theory was complete.

In the early twentieth century, quantum mechanics was being developed, and one

of the most important mathematical frameworks being used in that field was that of

the eigenvalue problem. The time-independent Schrodinger equation, which governs

the behavior of a particle of mass m moving in a potential well V(r), can be written

H'iJ(r) = EiT(r)

where H = - -V2 + V(r) is the Hamiltonian (a scalar differential operator), Ti(r)

is the wavefunction (a complex scalar field), and Ei is the energy eigenvalue (a real

scalar). The wavefunction Ti(r), when operated on by the Hamiltonian H, is simply

the wavefunction itself multiplied by a constant Ei. There are generally many solu-

tions (labeled by i) to this eigenvalue equation, each of which has an eigenfunction

Ti(r) and an eigenvalue Ei. Because H is Hermitian (f ¢*HodV = f(HO)*?PdV),



the eigenvalues Ei are all real, and the eigenfunctions Ti(r) are mutually orthogonal.

It turns out that Maxwell's equations can be combined in such a way as to take

the form of a Hermitian eigenvalue equation. The magnetic field H at position r is

given by

eHi(r) =( Hi(r)

where E = V x ×-Vx is a real vector differential operator, wi is the frequency

eigenvalue, and c is the speed of light. The similarity is obvious between the elec-

tromagnetic eigenvalue problem and the quantum mechanical eigenvalue problem. It

turns out the E, as defined above, is a Hermitian operator, so we can expect the

eigenvalues wi to be real and the eigenfunctions Hi(r) to be orthogonal. Because of

the similarities between quantum mechanics and electromagnetism, many of the ideas

and theorems from the former field, such as Bloch's theorem for periodic potentials

and bandstructure calculations, may be applied to the latter.

In their most general form, photonic crystals are periodic structures made of

metal or dielectric. This periodicity may be in one, two or three dimensions. It is

fair to say that photonic crystals create the electromagnetic equivalent of the periodic

electronic potentials one sees so often in solid state physics. Out of these periodic po-

tentials arise electronic (photonic) band gaps, which are ranges of energy (frequency)

in which electrons (photons) are forbidden from propagating. One interesting feature

of electromagnetism in dielectric media is that there is no fundamental length scale,

unlike Schrodinger's equation, for which the natural length scale is the Bohr radius.

Therefore, it is possible to take an existing solution for a particular photonic crystal

system, and scale it up or down in physical size and frequency. It is also possible to

take advantage of mirror plane symmetry in photonic crystal systems and separate

the eigenmodes into transverse magnetic (TM) and transverse electric (TE) modes.

What makes photonic crystals truly versatile as building blocks for optical systems

is the possibility of introducing deliberately designed defects. A point defect can

localize light at a point; a line defect can be used as a waveguide. The basic principle

is the same: light of a particular frequency is forbidden from propagating in the



surrounding bulk material because of the photonic band gap that exists in the bulk;

as a result, the light is confined to the region of the defect, where a defect mode exists.

Furthermore, just as one can suppress absorption of light by using a band gap, so

one can suppress emission of light by the same method. The ideas and tools that are

available for designing absorption are equally applicable to thermal emission, because

of Kirchhoff's law. There is, therefore, much room for creativity and research in using

photonic crystals to tailor thermal emission to one's needs, and indeed, it is with this

topic that the greater part of this thesis will be concerned.





Chapter 2

Point defect geometries in inverted

opal photonic crystals

In this chapter, we study point defect geometries in inverted opal photonic crystals

that can be easily fabricated by means of colloidal self-assembly. Two broad classes

of defects are considered: substitutional and interstitial. Substitutional point defects

are found to introduce a usable defect band into the photonic band gap. This can

be done by using a silica sphere of radius between 0.33a and 0.35a (where a is the

lattice constant). The state is triply degenerate. Reflectance and local density of

states calculations are performed to verify the existence and frequency of this defect.

The point defect can be made by pre-coating shrunk silica spheres with a thin layer

of silicon. Such a defect can be used as a microcavity for localizing light at a point,

with a quality factor Q that is limited primarily by the proximity of the defect to the

surface of the photonic crystal and other such defects.

2.1 Introduction

Recently, there has been much interest in fabricating photonic crystals by means

of colloidal self-assembly[32, 76, 30, 77, 57, 65, 8, 47]. Such a method is attractive

because it offers a simpler and cheaper way of making three-dimensionally periodic

photonic crystals, compared with conventional semiconductor nanofabrication tech-



niques. Work has been done to show that self-organizing systems that self-assemble

into large-scale photonic crystals can have photonic band gaps (PBGs) or pseudo-

gaps in the near-visible frequency regime[9, 6, 67, 4, 78, 85, 49, 60, 33, 37, 34, 71, 40].

Natural assembly of colloidal microspheres yields irregular, polycrystalline photonic

crystals with many structural defects that can destroy the PBG. However, it turns out

that strong capillary forces at a meniscus between a substrate and a colloidal sol can

induce crystallization of spheres into a 3D array of controllable thickness. Sweeping

this meniscus slowly across a vertically placed substrate by solvent evaporation leads

to the deposition of thin planar opals. This technique has been used by Vlasov et

al.[76] to produce inverted opal photonic crystals with bandgaps at around 1.3 Mm.

Deliberately designed defects are desirable features in photonic crystals[62, 27].

A point defect, for example, with a mode localized within a complete PBG would

give rise to a microcavity, while a line defect can be used as a waveguide[32, 35].

Microcavities and waveguides can be used as building blocks for optical devices and

all-optical integrated circuits. There is, therefore, a need to design defects that can

exist in the gap and be easily introduced into the bulk structure. Since colloidal

self-assembly appears to be a promising and economical way of fabricating photonic

crystals, we would like to identify a class of point defects that can be made using this

method. This was the motivation for the work described in this chapter. Computa-

tional calculations for such systems are of great importance because they can serve

as a pre-laboratory where novel ideas of possible defect geometries are tested and

refined. One can have faith in relatively accurate correspondence between calculation

and experiment, since Maxwell's equations are essentially exact in the linear regime

of low photon-photon coupling, the regime in which such crystals are used.

2.2 Point defect geometries

We consider an inverted opal structure, which is a face-centered cubic lattice of air

spheres in a silicon background. Such a structure can be thought of as the inverse

of the more familiar f.c.c. crystal of silicon spheres in air. Experimentally, synthetic



opals can be made by colloidal crystallization of an f.c.c. lattice of silica spheres,

backfilling interstitial spaces with silicon, and then wet-etching out the silica spheres,

leaving air spheres behind. However, the infiltration of the background with silicon is

usually imperfect, leaving some air gaps in between the silica spheres. We take this

imperfection into account in our simulations by building up the structure using air

spheres with a 0.06a (where a is the lattice constant of the f.c.c. lattice; in all that

follows, length scales will be given in units of a) coating of silicon, which leaves air

gaps in the diagonal spaces between spheres. In the structure under study, the air

spheres have a radius of 0.354a, so the silicon coating is about 17% of the radius of

the air spheres. The air spheres are overlapping because the critical radius for the

overlap of spheres in f.c.c. crystals is a/(2xf2) = 0.354a. We terminate the surface

using a plane that cuts the spheres in half, because this appears to be more similar

to what is produced in experiments by Vlasov et al.

In general, one can create a defect by adding or removing dielectric. The former

method produces a dielectric defect while the latter gives an air defect[31]. Both are

effective ways of introducing defects to a photonic crystal system, though there are

connectivity issues that make the two methods different, depending on whether the

crystal itself is dielectric- or air-connected (or both). It should also be noted that the

orientation of the crystal can affect the reflectance measurements. It turns out that,

for inverted opals, samples of higher quality can be obtained with surfaces normal to

the [111] direction than the [100] direction. For this reason, most of our work involves

studying crystals with [111] surface orientation. Furthermore, in experimental mea-

surements, the wafer was placed on top of a silicon substrate. It was thought that the

presence of the substrate could have a non-trivial effect on reflectance measurements.

However, having performed calculations with and without the substrate, we find no

significant differences.

Fig. 2-1 shows the two different defect geometries that we considered. An in-

terstitial defect is designed to fit into the spaces between the larger spheres. A

substitutional defect replaces an existing sphere.

In the interstitial case, it is necessary that these interstitial spheres be sufficiently



substitutional interstitial
defect

iterstitial
efect

Figure 2-1: (Color) Two different styles of point defects (adapted from [10]).

a

detect

O354a



small; otherwise, their presence in the colloidal self-assembly process would disrupt 

the structure of the rest of the crystal. The upper bound on the radius of the small 

sphere is $(I - $)a = 0.146~. Single interstitial air and dielectric defects can be im- 

plemented by having small silica or silicon spheres, and were tried in our calculations. 

We also considered clumps of 7 or 8 such air and dielectric defects. The presence 

of interstitial air defects changes the connectivity of the system, since new air chan- 

nels have been created joining non-adjacent large air spheres. Interstitial dielectric 

spheres, however, only affect the system insofar as they fill in the 'holes' that were 

not completely backfilled with silicon. In any case, our results for these interstitial 

defect geometries revealed no particularly useful change in the bandstructure of these 

systems that could lead to the existence of a defect band in the gap. The change 

tended to either pull down some states from the upper bands into the gap, but only 

for certain wave vectors, or it destroyed the photonic band gap altogether. In the 

remainder of this chapter, we will restrict our attention to  substitutional defects. 

In the substitutional case, the outer radius must lie between 0 .146~ and 0.354~: if 

less than the former, then the sphere will slide into an interstitial space; if greater than 

the latter, it will disrupt the packing of the structure. A relatively easy modification 

would be to reduce the size of the silica spheres used to create the structure. Note, 

however, that if the radius of the silica spheres is decreased below 0.354a, the defect 

sphere will no longer be touching adjacent, normal spheres. This means that after 

backfilling, the defect sphere will be completely enclosed by silicon, and the silica 

material inside will not be etched away by the wet-etching process. We have effectively 

created a defect sphere with silica (c = 2.1025) inside instead of air, amounting to 

a dielectric substitutional defect. We study this class of defects for different radii of 

silica spheres, and identify some useful properties. 

2.3 Characteristics of the defect state 

To determine the properties of a photonic crystal structure, it is important to  be able 

to calculate its bandstructure and reflectance spectrum, since the first tells us about 



the modes the structure supports, and the second allows us to make direct compar-

ison with experimental results. We calculate bandstructure using the MIT Photonic

Bands (MPB) program, which uses a variational method to solve the Maxwell eigen-

value equation[35]. For reflectance, we perform a time domain simulation of the fields

using a finite difference technique. Note that in both our frequency and time domain

calculations, we did not allow frequency to go above 1.0 (in units of c/a) because

we did not wish to concern ourselves with diffraction. By working with frequencies

below 1.0, a normally incident light wave would produce a transmitted wave that is

also normal. For frequencies above 1.0, several diffracted beams are possible, cor-

responding to different wave vectors, which are conserved by the scattering of the

photonic crystal only up to a reciprocal lattice vector. Thus, we have reduced the

problem to a one-dimensional one. Such a simplification is acceptable, given that the

experimental measurements of Vlasov et al. were mostly at 1.0 or below.

Fig. 2-2 shows the bandstructure of a system with a shrunk silica sphere of radius

0.35a. The bands for the bulk structure were calculated using a basis set ranging from

(8,8,8) to (256,256,256), and (16,16,16) was found to be effectively converged. The

defect band was calculated by introducing the defect into the system and performing

the calculation with a 3x3x3 supercell and a basis set of (48,48,48). A supercell

calculation was required in this case because the presence of the defect reduced the

periodicity of the structure, and resulted in an increase of the size of the repeating cell.

Ideally, we would use an isolated defect in an otherwise periodic crystal, but it turns

out that having a periodic system simplifies the calculations enormously, as it allows

us to impose periodic boundary conditions and apply Bloch's theorem. The choice

of the size of the supercell involves striking a balance between preventing excessive

coupling between defects in adjacent supercells (this is equivalent to requiring a high

Q cavity), and computation time. The first consideration leads us to increase the size

of the supercell while the second leads us to decrease it. It was found that 3x3x3

gave good results for bandstructure calculations without incurring unacceptably long

computation times. We see from the figure that the presence of the defect pulled

down some of the upper bands to the middle of the gap while maintaining the overall
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Figure 2-2: (Color) Bandstructure of photonic crystal with point defect mode. Defect
calculation performed with 3x3x3 supercell, with a (48,48,48) basis set, for shrunk
silica sphere radius of 0.35a. The 3x3x3 supercell calculation for the defect produced
bandstructure with multiple folding of bands, and as such the band diagram for that
calculation is not edifying to show. The most important result from that calculation,
namely, the defect state frequency, was extracted, and this piece of information was
incorporated into the above non-supercell bandstructure.



integrity of the PBG. This geometry has the desirable features that we look for.

We also performed bandstructure calculations for shrunk silica spheres of different

radii. We examined a series of defect radii from 0.15a to 0.35a. Each one of these

defect radii produces a change in the bandstructure of the system. The defect pulls

down some states from above the gap. The larger the radius, the further into the gap

the states are pulled. Since we are interested in the local confinement of light, and

such confinement requires the existence of defect bands within an otherwise forbidden

region, we are looking for radii that pull down states such that they are in or near

the middle of the gap with forbidden regions on either side. It turns out that such a

defect state can be produced with defect radii between 0.33a and 0.35a. Obviously,

the smaller the radius, the greater the overall increase in dielectric constant. In

general, the frequency of the defect mode decreases as the average dielectric constant

of the defect is increased; this is the qualitative dependence of defect frequency with

dielectric constant. We show 0.35a, which is the defect mode that is most easily

distinguished from the surrounding background of states. We did a careful counting

of the number of defect bands pulled down by the defect into the gap, and it turns

out to be three. Thus, the defect state is triply degenerate. (Such a result is certainly

consistent given the cubic symmetry of the lattice.) The symmetry of the defect

structure allows for a three-fold degenerate irreducible representation, which in turn

leads to a three-fold degenerate state.

As an aside, it is useful to observe that the adequacy of a particular size of supercell

for the calculation at hand can be determined from the flatness of the defect band.

A point defect has complete directional symmetry and its mode must therefore be

independent of wave vector. This corresponds to a flat band in w - k space. If the

supercell is insufficiently large, the defects would be interacting (in a tight-binding

sense), and such interaction would produce a network of interlinked defects, favoring

the {100}, or cubic, directions. In other words, the band would not be flat. We were

able to have confidence in the frequency of the defect band to the extent that the

bands obtained in our 3x3x3 supercell calculations were acceptably flat.

Fig. 2-3 gives the reflectance spectrum for the system with and without the defect.
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Figure 2-3: (Color) Reflectance spectrum of photonic crystal, with and without point
defect. The dipole source is polarized in the [110] direction. The computational cell
used had dimensions of 56x97x411 grid points, corresponding to 40 grid points per
lattice constant. The photonic crystal slab was seated on a silicon substrate. A 2x2
supercell was used, and the simulation was run for 79,195 time steps. [Inset shows
magnified version of reflectance dip due to defect.]



The computational cell chosen was a long one, with dimensions 56x97x411 grid points,

corresponding to about 40 grid points per lattice constant a. The photonic crystal

slab was in the middle, and flux planes were placed on either side of it at distances

of 1.5a and 4a. The slab was nine spheres thick, seated on a silicon substrate, and

the surface was normal to the [111] direction. This was also a supercell calculation,

though in this case, we used a 2x2 supercell because we wanted to produce a wider

band and stronger coupling of the incident radiation with the defect mode. In these

computational experiments, a dipole source was used instead of a Gaussian plane

wave, as the former contains many different wave vectors while the latter contains

only one (that which corresponds to normal incidence), and we want the incident

radiation to couple into the defect mode, irrespective of its symmetry. The simulation

was run for a total of 79,195 time steps. This was chosen to be sufficiently large to

ensure that the Gaussian pulse had sufficient time to propagate through the entire

system. The reflectance was calculated by the following equation, which comes from

dividing the magnitude of the reflected flux (JEslab - Evac 2) by the magnitude of the

incident flux (IEVacl2):

Eflab - Evac 2 + IEylab - Evacl2 + JEslab - Evac 2

IEavc 2 + IEyac 2 + lEvac 2

Note that all fields are functions of frequency, for a given point in space, as we take

the Fourier transform of the time series of fields in real time. A discrete Fourier

transform was performed on the entire time series, and no averaging was required.

We take the absolute values because the fields are complex quantities in general. We

run the simulation once with the slab in place, and then again with vacuum only, and

the difference in fields between the first run and the second run, when expressed as

a fraction of the intensities in the vacuum case, gives the reflectance. For normally

incident radiation, one only needs to record the fields at one monitor point situated

between the source plane and the slab, but for a dipole source, integration over a flux

plane is required since the fields are different in different directions. That is what we

did to obtain Fig. 2-3.



One can see good agreement between the black curve (no defect) and the red curve

(defect) at almost all frequencies. To find the effect of the point defect, we focus our

attention on the region of the photonic band gap. This is a region where we expect

near 100% reflectance, since there are no propagating modes within the slab for that

range of frequencies, and the slab is thick enough to prevent tunnelling of evanescent

waves. It is encouraging to see the reflectance dip caused by the point defect, which

has been highlighted along with the band gap region. The position of the dip agrees

with the frequency of the defect state predicted by the bandstructure calculations. We

stress that the bandstructure and reflectance spectrum are two different calculations,

and that the agreement between the two on the frequency of the defect mode is a

strong indication of the reliability of our results.

The introduction of a defect causes a redistribution of the local density of states

(LDOS) of the system, with the total number of states being conserved. The defect

takes a few states from outside the gap and puts them inside the gap. This change

is localized in space but not in frequency. Integrating the LDOS over all volume

(including the defect) gives the global density of states. If the total number of states

in the system is N, then the effect of the defect is to put a state of weight - 1 in

the gap and reduce the DOS outside the gap by , 1/N. Transmission as a function

of frequency is proportional to the global density of states. In a structure of infinite

extent, N -* oc and the change in DOS outside the gap tends to zero. However,

in such a limit, the defect state becomes unobservable because 1 < N. Thus, a

compromise is needed to keep the disturbance to states outside the gap small while

allowing the localized state to have an observable effect on the spectrum inside the

gap. This is also the reason why it is impossible to observe the defect mode in

a reflectance spectrum without collateral change to the spectrum outside the gap

(though the relative magnitudes of these changes are in the ratio 1 : k).
We recognize also that there are a few reflectance dips within the photonic band

gap that appear to be states inside the gap. On closer examination, however, one

can see that the black and red curves overlap completely for these 'states'. What

this means is that the dips are present irrespective of the existence of the defect.
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Figure 2-4: Local density of states of photonic crystal, with point defect. We followed
the Gilat-Raubenheimer method, using 8 evenly spaced k-points in the irreducible
Brillouin zone.

We understand these to be resonant transmission peaks caused by the finite size of

the photonic crystal slab that we used in our calculations. Therefore, they are not

localized states.

We also point out that while a dipole source contains many wave vectors, in

practice, because of the long computational cell and the distance between the source

and the slab, the light that reaches the slab is not too far from being normally

incident. As a result, the light hits the slab with a wave vector close to the F-L

direction (111). The bandstructure calculation (Fig. 2-2) exhibits a partial gap in

the F-L direction between 0.45 and 0.55, and we see this showing up in the reflectance

spectrum in the form of a region of high reflectance between 0.48 and 0.55. The range

of frequencies do not correspond exactly because the incidence is only approximately

normal. Similarly, we see a region of high (but not unity) reflectance between 0.7 and

0.77, corresponding to the partial I-L gap in that range.

1· ··_



To obtain even more definite evidence of the existence and frequency of the defect

state, we performed calculations of the local density of states of the photonic crystal

system, and these results are presented in Fig. 2-4. The local density of states of a

system is defined by

D(w, r) = E IEnk(r)126(w - Wnk)
nk

such that

D(w) = D(w, r)d3r = Ek (r)126(w - k)d 3r 6 - k)
nk nk

where D(w) is the global density of states, and Enk(r) is assumed to be normalized to

unity over all space. We see that integrating the local density of states over all space

gives the global density of states, as required.

Such a calculation can be done numerically by integrating over 'shells' of constant

energy in k-space[36, 3]:

D(w, r) = 2
(27r) 3  v

where vg = •Vkw(k)|, the magnitude of the group velocity, and the integral is per-

formed over a surface of constant energy w(k). The extra factor of 2 accounts for

the two transverse polarizations of light. The local density of states can be thought

of as the probability of finding a photon with frequency w at point r, irrespective

of wave vector or band number (these are summed over). We choose to calculate

the local density of states for a point near the center of the defect sphere, with the

physical understanding that if a defect mode exists, it should have a mode profile

that has a high concentration of photons within the defect sphere. We therefore ex-

pect a peak at around 0.86c/a in the LDOS spectrum. Numerically, we follow the

Gilat-Raubenheimer method[24, 63] of dividing up the irreducible Brillouin zone into

a cubic mesh and approximating the constant energy surface with parallel planes. We

use 8 evenly spaced k-points in the irreducible Brillouin zone. Another way of doing

it would be to use a special k-points scheme[52].

Our local density of states calculation exhibits a very distinct peak at about



0.86c/a, showing clearly the existence of the defect mode. The LDOS is low for

frequencies on either side of the peak because of the photonic band gap. However,

it is not zero because our LDOS calculation was performed on a slab rather than an

infinite structure. The bandstructure calculation was done on an infinite crystal and

so it had a real gap. A slab, on the other hand, only has a pseudogap, and so we see

some states inside the pseudogap region. (Incidentally, we chose to do the calculation

for a slab because that is what can be made and observed experimentally.) Therefore,

we do not expect zero LDOS in the 'gap' region. The frequency of the peak agrees well

with our bandstructure predictions and reflectance calculations. There are interesting

peaks on either side of the main defect peak. They show that the defect produces

resonant structure beyond the gap. These resonant structures are more noticeable

with a finite slab than an infinite one in which the resonances wash out.

2.4 Conclusion

In this chapter, we studied possible point defect geometries in inverted opal photonic

crystals that can be easily fabricated by means of colloidal self-assembly. Two broad

classes of defects were considered: interstitial and substitutional. Calculations for

isolated as well as clumps of interstitial defects did not reveal promising changes to

the bandstructure that could introduce a defect band into the photonic band gap.

On the other hand, substitutional defects, wherein the air sphere is replaced by a

smaller silica sphere surrounded by silicon, were found to be much more promising.

By performing high resolution bandstructure calculations, we were able to determine

that a silica sphere of radius between 0.33a and 0.35a could introduce a clear and

usable defect mode into the gap. The state is found to be triply degenerate. We are

encouraged by the results of our bandstructure, reflectance and local density of states

calculations, all of which agree on the frequency of the defect mode. Since these are

three different calculations, we have confidence that the defect mode exists.

The proposed defect can be made by replacing some of the 0.354a silica spheres

with 0.35a spheres in the colloidal self-assembly process. Backfilling the assembled



structure with silicon should result in an thicker coating of silicon for the shrunk

spheres than for the normal ones, yielding the geometry we put forward in this chap-

ter. One possible problem with this approach, however, is that the smaller silica

sphere is unlikely to be 'floating' between other spheres and might quite possibly be

touching one of the larger spheres around it. This could prevent complete coating of

the silica sphere during the backfill. If there is a silica-silica point of contact between

the shrunk sphere and an adjacent sphere, then the wet-etching process could remove

the silica from the defect sphere as well. One way of overcoming this problem would

be to pre-coat the shrunk silica spheres with silicon. The ideal situation would be

to have the 0.35a silica spheres coated with a layer of silicon that is 0.004a thick,

resulting in a, total radius of 0.354a for the 'hybrid' sphere. We can vary the density

of such hybrid spheres in order to tune the Q value of the cavities. The higher the

concentration, the smaller the effective supercell, and the stronger the coupling of

radiation with the mode.





Chapter 3

Thermal emission and design in

1D-periodic metallic photonic

crystal slabs

In this chapter, we present a useful framework within which we can understand some

of the physical phenomena that drive thermal emission in 1D-periodic metallic pho-

tonic crystals, emphasizing phenomenology and physical intuition. We perform de-

tailed numerical calculations for these systems and find that polarization and peri-

odicity play key roles in determining the types of physical phenomena that can be

excited. Two promising structures are identified as good candidates for thermal de-

sign. We conclude with a discussion of how the emissive properties of these systems

can be tailored to our needs.

3.1 Introduction

The physics of blackbodies has been a source of fascination and scientific research

for well over a century now[59]; properties of their thermal emission provided one

of the most important clues for the discovery of quantum mechanics. In practice,

most objects have only finite absorption, and are thus referred to as 'graybodies'.

By virtue of Kirchhoff's law, these objects also have sub-unity emissivity. However,



graybodies are of interest because their thermal emission spectra can be changed by

altering the geometry of the system or the materials used. The ability to modify or

tailor the thermal emission profile of an object is of great importance and interest

in many areas of applied physics and engineering. It has been noted recently that

periodic sub-wavelength scale patterning of metallo-dielectric systems, i.e. photonic

crystals, can modify their emission spectra in many interesting ways[70, 2, 53, 25,

54, 48, 16, 23], through various physical effects such as surface plasmons[61, 39],

resonant-cavity enhancement[11], Bragg reflection[14] and modification of density of

states via photonic band gaps[14, 41, 45, 46]. Thus, a clear and physically intuitive

understanding of the mechanisms that can arise in such systems is of great value in

guiding thermal design.

In this chapter, we focus on some of the most important physical phenomena that

give rise to many of the features observed in thermal emission spectra of 1D-periodic

metallic photonic crystal slabs, with the intention of developing physical intuition and

understanding of features of emission spectra. We study these systems and demon-

strate through detailed numerical studies the intricate dependence of these excitations

on polarization, and how the type of periodicity can affect the characteristics of ther-

mal emission spectra we observe. This enables us to analyze the emission spectra

of 1D-periodic metallic photonic crystal slabs in order to identify, with confidence,

the underlying physical phenomena and to understand the physics behind them; this

way, we show how one can tailor the thermal emission properties of these structures

to achieve one's design needs. For definiteness, we focus our attention on emission in

the direction perpendicular to the plane of the slab.

This chapter is organized as follows: in section 3.2, we discuss the various physical

phenomena that can influence the emission spectra of 1D-periodic metallic photonic

crystal slabs. Section 3.3 outlines the numerical methods we use in our calculations.

In section 3.4, we examine the role of polarization in these systems. In section 3.5, we

turn our attention to periodicity and how it can give rise to surface plasmon excita-

tions. Section 3.6 discusses the dependence of emission spectra on metallic material

parameters, while in section 3.7, we give consideration to the role of diffraction and its



influence on emission spectra. In section 3.8, we show how the physical intuition and

understanding developed in earlier sections can help us design the thermal emission

spectra of these systems.

3.2 Physical phenomena that influence emission

spectra

Kirchhoff's law states that for an object in thermal equilibrium with the surrounding

radiation field, its absorptivity and emissivity are equal, for every frequency, direc-

tion, and polarization. Thus, to study thermal emission of an object, we need simply

calculate its absorptivity spectrum, knowing that the object's absorptivity and emis-

sivity spectra are identical. Moreover, for the purposes of developing an intuitive

understanding of the physics behind thermal emission, it is often more helpful to

think in terms of absorption rather than emission, and it is on this basis that we

proceed.

In a 1D-periodic metallic photonic crystal (PhC) slab, there is a marked distinc-

tion between the two orthogonal directions within the plane of the slab (see graphic

insets in Fig. 3-1). One direction (we shall call this x) is the direction of the PhC's

periodicity, and is characterized by the existence of a discrete translational symmetry.

The other direction (we shall call this y) supports continuous translational symme-

try. The two types of translational symmetry can lead to drastically different physical

effects in a 1D-periodic metallic PhC slab. Some of the phenomena that can be ob-

served can be broadly described as waveguide cut-offs, waveguide resonances, surface

plasmons and diffraction peaks. Each of these phenomena leaves a characteristic mark

on the emission/absorption spectra. In our examination of the significant role played

by polarization and periodicity in the physics of these systems, we will come across

each of these interesting phenomena in turn. In this section, we give brief descriptions

of these phenomena.

First, it is important to note that because of the mirror symmetry of the system



in a plane perpendicular to y (i.e. the xz-plane), the modes of the system can be

separated into transverse electric (TE) and transverse magnetic (TM) modes with

respect to the mirror plane. TE modes have field components Ex, Ez and H,, and

are even with respect to the mirror operation in the plane normal to y. TM modes,

on the other hand, have field components Hx, H, and Ey, and are odd with respect to

the same mirror operation. Incident and outgoing light polarized in the x-direction

can couple to TE modes while y-polarized light can couple to TM modes. Thus, we

can analyze these two types of modes completely separately, and this is what we do

in all our calculations.

Consider again the structure in Fig. 3-1. If we illuminate the structure with light

incident from the top of the cell, the air gaps in the metal slab can be thought of

as metallic waveguides channeling light downwards in the direction of -z. In other

words, the light is propagating between two metal slabs that are infinite in the y-

direction. Waveguide cut-offs arise from the requirement that the parallel component

of the electric field (i.e. E, in our case) be continuous across a boundary. Inside a per-

fect metal, the electric field is strictly zero. For such a material, E, is constrained to

vanish at the surface, and this leads to the well-known cut-off frequency corresponding

to a half-wavelength oscillation in the x-direction. Below this frequency, no propa-

gating mode can be supported within the waveguide, because the boundary condition

cannot be satisfied. For a realistic metal (i.e. one that permits some penetration of

fields), the fields do not exactly vanish at the surface, but decay away rapidly and

exponentially once inside the material. Such boundary condition matching leads to a

similar cut-off as in the case of the perfect metal, except that the penetration of field

into the metal produces a cut-off with a slightly lower frequency, because the effective

width of the waveguide in the x-direction is slightly larger. Cut-off frequencies de-

pend on the width of the waveguide. The wider the waveguide, the lower the cut-off

frequency. No such boundary condition holds for light polarized in the x-direction,

so there is no waveguide cut-off for that polarization.

Continuing with the same waveguide setup, there exists another phenomenon

which applies equally to light of either polarization. Waveguide resonances are analo-



gous to Fabry-Perot resonances except that they take place within a waveguide 'cav-

ity'. Any narrow channel through which light is forced to propagate can be thought

of as a Fabry-Perot cavity with partially reflecting mirrors at either end. If the in-

coming radiation is of a frequency such that the length of the cavity is equal to an

integer number of half-wavelengths, we observe resonant transmission of light. We

can think of these waveguide resonances as the consequence of boundary impedance

matching in the longitudinal (z) direction. These resonances give rise to sharp peaks

in the absorbance/emittance spectrum. Although this physical effect can be seen for

either polarization of incident light, it is most prominent for light polarized in the

x-direction whose spectra are not dominated by the existence of waveguide cut-offs.

Surface plasmons (SPs) are excitations that exist on the interface between a plane-

metal and a dielectric. They are confined to the surface, but can propagate freely

within that surface. They have a relatively simple dispersion relation that is approxi-

mately linear at low wave vectors and bends over toward a flat cut-off at higher wave

vectors (wp/v+1 is the cut-off frequency, where wp is the plasmon frequency and

c is the dielectric constant). If the direction of propagation is x (i.e. k is in the

x-direction), then the SP will have field components Ex, Ez and Hy (the z-direction

is normal to the interface). The SPs are unusual in that they have an electric field

component in the direction of propagation. Light incident from air cannot couple into

SP modes since all SP modes are below the light line of air. However, it can couple

into SP modes if the wave vector of the SP is along a direction of discrete translational

symmetry, because in such a direction, wave vector is conserved only up to an integer

multiple of the reciprocal lattice vector. These correspond to k = 1, 2, 3... in units of

2r/a. Thus, for our structure in Fig. 3-1, normally incident light polarized in x can

couple into SPs propagating in the x-direction. In contrast, normally incident light

polarized in y cannot couple into any SP modes.

Diffraction peaks occur when we consider the slab system at a macroscopic level, in

terms of incoming and outgoing radiation modes. This effect is not unique to metallic

PhCs, and can be observed in non-metallic PhCs as well. In terms of absorption, the

incident light can couple to outgoing radiation modes (in transmission or reflection)



that conserve the wave vector in the x-direction (kx) up to a reciprocal lattice vector,

since that is the direction of discrete periodicity. Because the incident light has no

k. component, it can couple to outgoing modes with kx equal to an integer multiple

of 21r/a (i.e. 1 in our units). This means that as we increase the frequency of the

incoming radiation, a new diffraction direction will be coupled into at w = 1,2,3...

(in units of 27rc/a), corresponding to k- = 1, 2, 3... At the threshold frequency for

a new diffraction mode, the wave vector has no kz component, and so k is parallel

to the surface of the slab. Such 'grazing' modes have maximum interaction with the

slab because they travel close to the surface of the metal, and as such are strongly

absorbed by the material. These absorption peaks translate into emission peaks, via

Kirchhoff's law, so we would expect to see emission peaks for modes corresponding

to w = k = 1,2, 3...

3.3 Description of Numerical Methods

Before presenting our results, a brief description of our methods is in order. Numer-

ical simulations in this chapter are performed using a finite-difference time-domain

(FDTD) algorithm[75]. These are exact (apart from discretization) solutions of 3D

Maxwell's equations, including material dispersion and absorption. We choose a com-

putational cell with dimensions 40 x 2 x 240 grid points, corresponding to 40 grid points

per lattice constant a. This is essentially a 2D simulation, because ky is constrained

to be zero by periodic boundary conditions on opposite y-faces of the computational

cell. The PhC slab is in the middle, and flux planes are placed on either side of it

at least 2a away. We run the simulation for a total of 40,000 time steps, chosen to

be sufficiently large to allow resolution of peaks with quality factors (Q) up to 250.

We illuminate the photonic crystal slab with a normally incident, temporally Gaus-

sian pulse. We record the fields going through flux planes on either side of the slab

and perform a discrete Fourier-transform on the time-series of fields, which we use

to calculate fluxes as functions of frequency, ýI(w) = ½Re{f E*(r, w) x H(r,w) -dS}.

We run the simulation once with the slab in place, and again with vacuum only, such



that Eslab = Evac + Eref between the source plane and the slab, with Eref being the

field due to reflection. The reflectance is given by

I ref --Re{fAI [Eslab(r,w) - Evac(r, w)]* x [Hslab(r, w) - Hvac(r, w)] - dS}

R(w) vac Re{fA1 E ac(r, w) x Hvac(r, w) - dS}

(3.1)
where A1 is the flux plane corresponding to '1', and the minus sign in the numerator

is there to make the reflected flux positive. We can simplify the numerator as follows

(dropping the dependence of fields on (r, w) for clarity of notation):

re - Re{I (Elab - Evac) x (Hlab - Hac) dS2 JA1

=- lab - Dvac + I Re { (Elac x Hslab + E*lab X Hvac) dS}

=- lab - Jvac + IRe{ [E ac x (Hvac + Href) + (Evac + Eref)* x H,,] dS}

= v ac - +lab + Rej (Eac x Href - Hvac x Eref) - dS}

where the flux plane closer to the light source is '1', and the flux plane further from

the light source is '2'. The cross term vanishes for incoming and outgoing plane waves

crossing the flux planes in vacuum, for which E and H are proportional. Therefore,

the expression for reflectance simplifies to

R(ow) = [~vac(W) - slab(w)]/ vac(w )

Similarly, the transmittance is given by T(w) -= Vlab(W)/Cac(w) and the absorbance

is simply A(w) = 1 - R(w) -T(w). This way, we obtain reflectance, transmittance and

absorbance spectra for PhC slabs. We incorporate absorption into our simulations

by means of the Drude model, according to the following equation:

w2 i



w cut-off A/2
0.2 0.984 0.32
0.3 1.22 0.41
0.4 1.56 0.51

Table 3.1: The waveguide cut-off frequencies associated with different gap widths in
Fig. 3-1a, and their corresponding half-wavelengths.

where c,, y, wo and wp are input parameters. In our case, we are concerned with

metals, for which wo = 0. (For metals, wp is known as the plasmon frequency.) By

Kirchhoff's law, the absorbance spectra so calculated are identical to the emittance

spectra of these objects, for each polarization, frequency and observation angle.

3.4 Role of Polarization

Let us now make our discussion more concrete by considering a real 1D system.

We study a 1D-periodic metal slab with gaps (as in Fig. 3-1) by calculating the

emittance of such an object at normal incidence. For now, we focus on y-polarized

light, i.e. light polarized in the direction of continuous translational symmetry. Fig. 3-

la shows the emittance spectrum for this structure for a few different gap widths.

(We include the transmittance spectrum (dotted lines) for completeness.) The first

peak we see in emittance, whose frequency varies with the gap width, corresponds

to the waveguide cut-off that we described earlier, which is the frequency at which

one can just fit approximately half a wavelength into the gap in the x-direction. In

reality, there is penetration of evanescent waves into the surrounding metal in the

x-direction which makes the gap effectively wider than it is. As we increase the gap

width, the waveguide cut-off frequency decreases, as expected. From the frequencies

of the peaks, we can deduce the half-wavelength associated with these cut-offs, and

we find that they are slightly larger than the widths of the gaps, as predicted (see

Table 3.1). The half-wavelengths are about 0.1a larger than the actual gap widths,

demonstrating penetration of fields into the bulk of the metal. In Fig. 3-1b, we hold

the gap width constant and vary the thickness of the slab. The waveguide cut-off

is clearly seen around w - 1.5c/a, and is the same for all thicknesses. The dotted
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Figure 3-1: (Color) Here we show emittance (solid lines) and transmittance (dotted
lines) spectra for y-polarized light emitted from a iD-periodic metal slab with gaps,
viewed at normal incidence. The Drude parameters used are c, = 1, wo = 0, ' =

0.15(27rc/a) and w, = v (27rc/a). In Panel (a), we fix the thickness of the slab at

1.0a (where a is the lattice constant of the slab) and vary the width of the gaps. In

Panel (b), we hold the gap width constant at 0.2a and vary the thickness of the slab.
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freq. A/2 2/n
1.577 2.20 2
1.658 0.89 1
1.760 0.61 2
1.880 0.48 -

Table 3.2: The waveguide resonant frequencies associated with the red curve in Fig. 3-
ib, and their corresponding half-wavelengths, calculated and predicted.

lines show transmittance decreasing with increasing slab thickness; as expected, more

light is being absorbed while propagating through longer waveguides. Notice the

small oscillations between 1.5c/a and 2.0c/a. These are the waveguide resonances

we discussed earlier. The number of such oscillations increases with the thickness

of the slab. Indeed, we see that the red curve has twice as many oscillations as the

black curve, and the green curve twice as many as the red curve, and so on. We

took the four peaks from the red curve, recorded their frequencies, and calculated

their half-wavelengths in the z-direction (see Table 3.2). The half-wavelengths (Az/2)

are calculated using the formula (w/c)2 = (2ir/A•x) 2 + (27r/Az) 2 , where AX is the half-

wavelength in the x-direction (obtained from Table 3.1) and A, is the half-wavelength

in the direction of guided propagation. In the third column of Table 3.2, we put the

expected/predicted number of half-wavelengths that fit into the vertical cavity. For

example, the nth-order harmonic fits n half-wavelengths into the waveguide in the

z-direction, so we would expect to see a half-wavelength of 2/n in units of a, since the

thickness of the slab is 2.0a. Assuming the first peak listed in Table 3.2 is the second

harmonic, we see good correspondence between the half-wavelengths calculated from

the emission peaks and the expected half-wavelengths. Thus, we can be confident

that the peaks in frequency range 1.5 to 2.0 are due to Fabry-Perot resonances in the

waveguides.

In both panels of Fig. 3-1, we see a dramatic rise in transmittance and emittance

above wp = V' ~' 3.16 because the material behaves as a regular dielectric (rather

than metal) above the plasmon frequency. We see some oscillations above 3.25c/a;

these are dielectric slab resonances, which are analogous to waveguide Fabry-Perot

resonances except that they permeate the entire slab. Once again, the number of



oscillations increases with increasing slab thickness. Thus, we see relatively simple

physical effects for incident light polarized in the y-direction.

Significantly different emission and transmission characteristics can be observed

for the same structure for light of an orthogonal polarization (i.e. polarized in the

x-direction). Since Maxwell's equations do not require that the perpendicular com-

ponent of electric field (Ex) be continuous across a boundary, the waveguide cut-offs

in the x-direction no longer exist. Instead, we expect to see resonances in the z-

direction within the waveguide cavity. We study the same 1D-periodic metal slab

with gaps as in Fig. 3-1, except that this time, we focus on emitted light polarized

in the x-direction, the direction of discrete translational symmetry. In Fig. 3-2a,

we show emittance and transmittance spectra for this system as a function of gap

width. First, we notice that there is high transmittance (dotted lines) at nearly all

frequencies shown. Contrast this with Fig. 3-la, which had zero transmittance for

frequencies below the waveguide cut-off at w 1. The two lowest frequency emit-

tance peaks in the black curve are waveguide cavity resonances (we shall discuss this

further in Fig. 3-2b). Between w = 1 and w = w, ; 3.16, the spectra shown here are

very different from those in the corresponding frequency range in Fig. 3-la. However,

above the plasmon frequency, the entire structure behaves as a dielectric, and the

differences between the two polarizations are no longer as pronounced. Indeed, we

observe similar emittance curves for both polarizations above the plasmon frequency

(high transmittance and slab resonances which increase in number with thickness).

In Fig. 3-2b, we hold the gap width constant at 0.2a and vary the thickness of the

slab. The most interesting phenomenon here is the number of sharp peaks between

w = 0 and w = 1. The fact that their number and density increase with the thickness

of the slab is clear evidence that they are produced by waveguide resonances in the

z-direction. To confirm this suspicion, we plot the field profiles for two resonances

on the red curve (first and fourth resonances), as indicated by the two black arrows

(I and II). For each resonance, we plot Ex and Ez side by side. The resonances were

excited by normally incident light coming down from the top of the computational

cell, in the absorbance setup. We notice that the first resonance has one Ex node
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within the waveguide in the z-direction. For the fourth resonance on the red curve,

we expect four nodes, and indeed this is what we find. Although in (I) we see that

Ex has one node in the middle of the waveguide, it is in fact the lowest order mode

because H, (not shown), which is related to OEx/Oz through Ampe're's law, has a

maximum at that same point in the middle of the waveguide, and no node. (Note

that Hy is a scalar in this case because we are considering a TE mode which has

only one component of magnetic field in the y-direction.) Another interesting feature

is the nodal line in Ez down the middle of the waveguide. This arises because Ez

is given by Hl/Ox (from Faraday's law). Since there is a maximum in H, as we

traverse the waveguide in the x-direction, there is a node in Ey. Note also that the

node in Ex is shifted upwards from the center of the waveguide because the incident

wave coming down from the top of the cell interacts with the resonance inside the

waveguide in such a way as to shift the position of the node of the combined fields

upwards.

In Fig. 3-2c, we study a corrugated metal slab, for various gutter widths, in order

to see how things are different when we prevent direct transmission of light through

the solid. First of all, above the plasmon frequency we see the same transparent be-

havior and the familiar dielectric slab resonances. However, the rest of the emittance

spectrum looks very different. To better understand some of these modes, we show

field profiles for three of the peaks on the green curve (III-V). In each set of field

plots, we can see the incident beam and also a sort of cavity mode inside the gutter.

These cavity modes are analogous to the case when we had gaps/waveguides in the

metal, except that they are terminated differently: instead of being terminated with

air, they are terminated with metal. This is most pronounced in the case of (V)

(w • 1.8), which shows strong fields being pinned to the corners and edges of the

gutter.

Thus, we see that polarization plays a key role in 1D-periodic systems. Because

one kind of polarization sees a continuity boundary condition when impinging on

a. metallic surface and the other does not, drastically different physical effects are

observed. In the next section, we discuss the intricate connection between periodicity



and surface plasmons.

3.5 Periodicity and surface plasmons

Most of the physical effects we have seen so far have been explainable in terms of

Maxwell boundary conditions which require us to fit an integer or half-integer number

of wavelengths within a particular resonant cavity. We now turn our attention to a

totally different type of physical phenomenon, one which does not arise from such

resonances in cavities: surface plasmons. These are affected by periodicity because

wave vector has to be conserved up to a reciprocal lattice vector in a direction of

periodicity; however, along a direction of continuous translational symmetry, wave

vector has to be absolutely conserved. Since the x-direction is, in our case, discretely

periodic, normally incident light polarized in x can couple into SP modes with integer

k (in units of 27r/a). The y-direction, however, has continuous translational symmetry,

so incident light polarized in y cannot couple into SP modes in the system.

We consider a uniform metal slab with small dielectric strips on its surface. (We

use dielectric strips instead of metallic ones in order to keep the metal surface uniform;

a metallic strip/corrugation would have led to SP modes on two different planes,

producing much stronger modification of the SP dispersion relation. In turn, such a

system would be less tractable intuitively.) We excite SP modes in the system, and

they emit light at normal incidence, polarized in the x-direction. Fig. 3-3a shows how

emittance and transmittance vary with the dielectric constant of the strip (c). First,

we observe many peaks in the emittance spectra, and we note that the frequencies

of these peaks decrease with increasing c.. Second, we see zero transmittance in the

system for frequencies below wp - 3.16, as we expect, because the metal is opaque

at frequencies below the plasmon frequency. Third, we demonstrate that most of the

emittance peaks with frequencies below 2.0 observed in Fig. 3-3a are in fact produced

by SPs.

To show this, we record the frequencies of the peaks (up to wpl/v JT+1, the SP

cut-off) for each curve in Panel (a), and plot them as circles (red circles corresponding
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lines) spectra for a uniform metal slab with thin dielectric strips periodically dis-
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to red peaks, for example), making the assumption that the first peak has a wave

vector of 1.0(27r/a), the second has a wave vector of 2.0(2r/a), and so on. We make

this assumption because, as we have said, normally incident light can only couple to

SP modes with integer wave vectors (in units of 2r/a) in the direction of periodicity.

Thus, we expect to see successive SP peaks with increasing frequencies corresponding

to k = 1,2, 3... SP modes. In addition, we plot SP dispersion curves for uniform and

semi-infinite metal-air and metal-dielectric structures (dotted lines). Surface plasmon

modes in the periodic structure under consideration would therefore be expected to

have a dispersion relation that lies between different SP dispersion relations of the

case when the dielectric is uniform. For example, we would expect the red circles to

lie between the black and red dotted curves, the green circles to lie between the black

and green dotted curves, and so on. Indeed, this is exactly what we see. Furthermore,

the fact that the circles, when joined together by solid lines, form a dispersion relation

that clearly bends over toward a cut-off, gives us confidence in identifying these modes

as surface plasmons. Note also that, in Fig. 3-3a, no SP peaks are observed in the case

of the uniform and unperturbed metal slab (black curve), just as expected: in that

case, continuous translational symmetry in the x-direction is maintained, so incident

light cannot couple to the SP modes of the system.

3.6 Dependence on metallic material parameters

We have seen the pivotal role played by polarization in the kinds of modes we can

thermally excite in a 1D-periodic metallic PhC slab system. We have also examined

the conditions under which SP modes can be excited, and the relation of these modes

to the type of translational symmetry exhibited by the structure (continuous or dis-

crete). With this knowledge, we can design, analyze and understand a diverse array

of 1D-periodic metallic PhC slab structures. For completeness, we examine a few

other interesting physical effects which can arise in such systems.

This time, we study light emanating from a corrugated metal slab at normal

incidence and polarized in the y-direction. In Fig. 3-4a, we show how emittance
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changes with the plasmon frequency (wp) of the metal. One can easily observe an

inverse proportionality relationship between background emittance and w,. Using

the Drude model, we can show that in the regime specified by 7 < w < wp, the

absorbance, and therefore the emittance, is given approximately by 2y7/wp.

Consider light incident on a semi-infinite slab of metal with dielectric function

w2

(2 + ijy

where we have chosen c, =

calculations. Breaking this up

1 and wo = 0, as is consistent with our numerical

into real and imaginary parts, we have

1 + w 2/y 2

E2 =
w (1 + L2/y2)

(3.2)

(3.3)

We can convert these into expressions for the real and imaginary parts of the refractive

index, using the equality E +iE2 = (n+ik)2. Making the approximation -y < w < wp,

we have

n = 2w2
k = w,/w

(3.4)

(3.5)

For a semi-infinite slab of metal, the reflectance (R) is given by

(n - 1)2 + k 2

(n + 1)2 + k2

Substituting our expressions for

mately,

n and k into the above expression yields, approxi-

R m 1 -



from which the absorbance (A) follows:

A = 1 - R = ' (3.6)

This is precisely the inverse proportionality relationship we observe between ab-

sorbance and wp.

Again, we see, for the black curve, that emittance increases significantly at fre-

quencies above wp = V1/ f 3.16, because above the plasmon frequency the metal

becomes transparent to incident radiation, which penetrates the whole structure,

leading to greater absorption and thereby greater emission. (This is not seen in

the red and green curves because their plasmon frequencies are out of the plotting

range.) Fig. 3-4b shows the variation of emittance with y, the parameter that con-

trols material losses in the Drude model. We observe that the background emittance

increases almost linearly with increasing y. This can be understood by considering

Im(E) -,/[w(w 2 + Y2)], which, for high frequencies (w > 7), is roughly linear in y.

This is also consistent with Equation (3.6), which is approximate. Finally, we point

out that in both panels, clear diffraction peaks are seen at w = 1, and the positions

of these peaks do not change with either wp or y.

3.7 Role of diffraction

In Fig. 3-5, we show emittance and transmittance spectra for a corrugated metal

slab for normally incident light polarized in the y-direction, for two different gutter

widths. We observe that there are small emittance peaks at the integer frequencies

(w = 1, 2, 3). These peaks are caused by diffraction. The size of these diffraction peaks

depends on the geometry of the system and the materials used. Notice that diffraction

peaks do not appear in the case of a uniform metal slab (black curve), because such

a slab has continuous translational symmetry in the x-direction. This symmetry

implies that the transverse wave vector is absolutely conserved, with the consequence

that only modes for which kx = 0 can couple to outgoing modes at normal incidence.
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In other words, a uniform metal slab is unable to produce diffracted beams. Note

also the sudden rise in transmittance and emittance above the plasmon frequency

(wp _ 3.16), above which the metal acts as a dielectric.

3.8 Thermal design

Now that we have a good understanding of the physical effects that thermal emis-

sion can produce, we turn our attention to thermal design using 1D-periodic metallic

PhCs. Of the many systems we studied in this chapter, the corrugated metal slab

and the slab with dielectric strips are the most promising in terms of emissivity en-

hancement, and it is to these two structures that we devote our attention. Fig. 3-6a

shows the power emitted by a corrugated metal slab (identical to the one in Fig. 3-

2c), at two different temperatures (1000K and 1200K). We show also emission spectra

for a blackbody (the Planck distribution) and a uniform slab for comparison. First,

we notice that the positions of the peaks do not change with temperature. Second,

increasing temperature increases emission at all wavelengths, as expected by Ste-

fan's law. Third, the relative weighting given to different wavelengths changes with

temperature, because the peak of the Planck distribution shifts toward lower wave-

lengths with increasing temperature. In our case, the group of small peaks between 1

and 2pmr were insignificant features at 1000K, but became much more prominent at

1200K, because the blackbody spectrum shifted in such a way as to give those peaks

much more weight than before. Fourth, the emission of the photonic crystal slab

exceeds that of the uniform slab at all wavelengths and at all temperatures. In fact,

the enhancement is impressive: we see a 10-fold increase in emissive power (over that

of a slab) at the major peak at around 3 .1pm. Of course, emissivity never exceeds

unity, because that would violate the Second Law of Thermodynamics (the large peak

in question attains 90% emissivity). The important lesson we learn from this is that

we can emphasize different parts of the emission spectrum of a PhC by changing the

temperature at which we operate the thermal structure.

In Fig. 3-6b, we present the emissive power of a metal slab with dielectric strips
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Figure 3-6: (Color) Panel (a) shows how emissive power for a corrugated metal slab
changes with temperature of operation. The emission spectra is observed at normal
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strips changes with the lattice constant. The metal slab is of thickness 3pm, while
the dielectric strips are of width 1.5pm, height 0.6pm, and e = 2. Clearly, increasing
the lattice constant increases the wavelength at which peak emission occurs. Note
that the peaks arise from the excitation of surface plasmon modes.
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on top (similar to the one in Fig. 3-3a). Here, instead of changing the temperature,

we keep temperature fixed and vary the lattice constant of the PhC. The blackbody

envelope and the emission spectrum of a uniform slab of this same metal are shown

for comparison. We see that increasing the lattice constant shifts the emission peaks

in the PhC toward a higher wavelength. In our case, for a = 3pm, the large peak

is already close to the point of maximum blackbody emission, so that increasing

the lattice constant only served to decrease the total emission from that excitation

(incidentally, it is a surface plasmon excitation). However, the change in a also

brought some small peaks from the lower wavelengths into the picture. Clearly,

one has a, substantial degree of control over the positions of the peaks. One should

realize that in both cases, the emissivity of the peak is unchanged, because PhC

emissivity spectra are scale invariant (contrast this with that of a uniform slab, whose

absolute emission spectrum does not scale with a, since it has continuous translational

symmetry). For both choices of a, there is significant enhancement of emission over

that of a uniform slab.

3.9 Conclusion

We demonstrated a physical and intuitive framework within which the thermal behav-

ior of 1D-periodic metallic photonic crystal slabs can be understood. In such systems,

polarization and periodicity play key roles in our understanding of waveguide cut-offs,

waveguide Fabry-Perot resonances, SP modes and diffraction peaks. We found that

metal slabs with corrugation or dielectric strips are good building blocks for thermal

design, because they have strong emission peaks with high emissivity. These peaks

can be shifted to the desired wavelength by changing the lattice constant of the sys-

tem, while other parts of the emission spectrum can be amplified and made more

prominent by altering the temperature of operation, which changes the weight given

to a particular range of wavelengths. One can use the principles described here to

tailor and design thermal emission using 1D-periodic metallic photonic crystal slabs.





Chapter 4

Thermal emission and design in

2D-periodic metallic photonic

crystal slabs

We present a useful framework within which we can understand some of the physical

phenomena that drive thermal emission in 2D-periodic metallic photonic crystal slabs,

emphasizing phenomenology and physical intuition. Through detailed numerical cal-

culations for these systems, we find that periodicity plays a key role in determining

the types of physical phenomena that can be excited. We identify two structures

as good candidates for thermal design, and conclude with a discussion of how the

emissive properties of these systems can be tailored to our needs.

4.1 Introduction

A blackbody is defined as an object of perfect absorption. Its entropy is maximized,

and in that sense it exemplifies utter disorder. The physics of blackbodies has both

fascinated and intrigued scientists for well over a century now[59]. In practice, most

objects have only finite absorption, and are thus referred to as 'graybodies'. However,

graybodies are of interest because their thermal emission spectra can be changed by

altering the geometry of the system or the materials used. The ability to modify or



tailor the thermal emission profile of an object is of great importance and interest

in many areas of applied physics and engineering. It has been noted that periodic

sub-wavelength scale patterning of metallo-dielectric systems, i.e. photonic crystals,

can modify their emission spectra in interesting ways[70, 44, 14, 7, 41, 17, 69, 25, 22,

45, 46, 68, 54, 48, 39, 11, 23]. Thermal radiation from 2D-periodic photonic crystals

has been studied within the contexts of spectral and directional control[51, 69, 61, 16,

38], guided resonances[19], thermophotovoltaic generation[68], resonant scattering[58,

15], laser action[50], Kirchhoff's law[48], coherence[25, 38], and spontaneous emission

enhancement[7, 17, 61].

In this chapter, we focus on some of the most important physical phenomena that

give rise to many of the features observed in thermal emission spectra of 2D-periodic

metallic photonic crystal slabs, with the intention of developing physical intuition and

understanding of features of emission spectra. We demonstrate through detailed nu-

merical studies the key role played by periodicity in determining the types of physical

phenomena that can be thermally excited in 2D-periodic metallic photonic crystals.

We develop understanding and physical insight using two illustrative examples, before

applying them to hybrid structures. Such structures exhibit strong thermal emission

peaks which can be used as building blocks in thermal design. We show how one can

tailor the emissive properties of these structures to one's design needs by changing

two simple physical parameters.

4.2 Description of Numerical Methods

Kirchhoff's law states that for an object in thermal equilibrium with the surrounding

radiation field, its absorptivity and emissivity are equal, for every frequency, direc-

tion, and polarization. Thus, to study thermal emission of an object, we need simply

calculate its absorptivity spectrum, knowing that the object's absorptivity and emis-

sivity spectra are identical. Moreover, for the purposes of developing an intuitive

understanding of the physics behind thermal emission, it is often more helpful to

think in terms of absorption rather than emission, and it is on this basis that we will



proceed.

It is important to note that because of the mirror symmetry of the system in

a plane perpendicular to x and y, the modes of the system can be separated into

transverse electric (TE) and transverse magnetic (TM) modes with respect to the

mirror plane. As a result of this symmetry, x-polarized modes do not mix with y-

polarized modes. Thus, we can analyze these two polarizations completely separately,

and this is what we do in all our calculations.

Numerical simulations in our work are performed using a finite-difference time-

domain (FDTD) algorithm[75]. These are exact (apart from discretization) 3D so-

lutions of Maxwell's equations, including material dispersion and absorption. We

choose a computational cell with dimensions 40 x 40 x 240 grid points, corresponding

to 40 grid points per lattice constant a. The faces of the cell normal to the x and

y axes are chosen to have periodic boundary conditions, while the faces normal to

the z-axis (i.e. the top and bottom ones) have perfectly matched layers (PML) to

prevent reflection. In other words, this is a 3D simulation of a 2D-periodic system.

The PhC slab is in the middle, and flux planes are placed on either side of it at

least 2a away. We run the simulation for a total of 40,000 time steps, chosen to be

sufficiently large to allow resolution of peaks with quality factors (Q) up to 250. We

illuminate the photonic crystal slab with a normally incident, temporally Gaussian

pulse. We record the fields going through flux planes on either side of the slab and

perform a discrete Fourier-transform on the time-series of fields, which we use to cal-

culate fluxes as functions of frequency, 4I(w) = !Re{f E* (r,w) x H(r,w) . dS}. We

run the simulation once with the slab in place, and again with vacuum only, such

that Eslab = Evac + Eref, with Ere,, being the field due to reflection. The reflectance

is given by

w ref - Re{fAl [Eslab(r,w) - Evac(r, w)]* x [Hslab(r, w) - Hvac(r, w)] dS}

(w) vRe {fA Evac(r, w) x Hac(r, w) " dS}

(4.1)
where A 1 is the flux plane corresponding to '1', and the minus sign in the numerator is

there to make the reflected flux positive. This expression can be shown to simplify to



R(w) = [• slab(W)]/•ac(w) where the flux plane closer to the light source is

'1', and the flux plane further from the light source is '2'. (One can show that the nu-

merator becomes Ovac(W) _ ~ b() + Re{fJA1 (Eac x Href - Hva x Eef) .dS} but the

cross term vanishes for incoming and outgoing plane waves in vacuum, for which E and

H are proportional.) Similarly, the transmittance is given by T(w) = -~D"b(w)/ vac(w)

and the absorbance is simply A(w) = 1-R(w)-T(w). This way, we obtain reflectance,

transmittance and absorbance spectra for PhC slabs. We incorporate absorption into

our simulations by means of the Drude model, according to the following equation:

E(W) = O2 (4.2)( _ W2 - i7W)

where wc, 7, wo and a are input parameters. In our case, we are concerned with

metals, for which wo = 0. By Kirchhoff's law, the absorbance spectra so calculated

are identical to the emittance spectra of these objects, for each polarization, frequency

and observation angle.

4.3 Holes and dips

Let us now turn our attention to real systems and the physical effects that are mani-

fested therein. The goal is to develop an understanding of the physical processes that

drive emittance in these systems. The first structure we will examine is a simple metal

slab with holes (see Fig. 4-1). If we illuminate the structure with light incident from

the top of the cell, the light propagates down the holes which act as metallic waveg-

uides. Waveguide cut-offs arise from the requirement that the parallel component of

the electric field be continuous across a boundary. Inside a perfect metal, the electric

field is strictly zero. For such a material, Ell is constrained to vanish at the surface,

and this leads to the well-known cut-off frequency corresponding to a half-wavelength

oscillation. Below this frequency, no propagating mode can be supported within the

waveguide, because the boundary condition cannot be satisfied. For a realistic metal

(i.e. one that permits some penetration of fields), the fields are not required to exactly
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Figure 4-1: (Color) Here we show emittance (solid lines) and transmittance (dotted
lines) spectra for a 2D-periodic metal slab with circular holes, viewed at normal
incidence and for y-polarized light. The Drude parameters used for the metal are
c, = 1, wo = 0, 7 = 0.3(27rc/a) and wp = v'W(27c/a). In Panel (a), we fix the
thickness of the slab at 1.0a (where a is the lattice constant of the slab) and vary the
radius of the holes. The black arrows indicate the peaks produced by the waveguide
cut-off in the x-direction. In Panel (b), we keep the hole radius constant at 0.4a and
vary the thickness of the slab. Here, we use arrows to indicate the peaks produced
by diffraction.



vanish at the surface, but must decay away rapidly and exponentially once inside the

material. Such boundary condition matching leads to a similar cut-off as in the case

of the perfect metal, except that the penetration of field into the metal produces a

cut-off with a slightly lower frequency, because the effective width of the waveguide is

slightly larger. Cut-off frequencies depend on the width of the waveguide. The wider

the waveguide, the lower the cut-off frequency.

We present emittance and transmittance spectra for this system. Fig. 4-la shows

how the spectra change with hole radius. The peaks below 1.0 (indicated by black

arrows) are waveguide cut-offs arising from propagation of light through the holes.

These peaks decrease in frequency with increasing radius, a clear signature of waveg-

uide cut-offs. They correspond to modes that fit approximately half a wavelength

across the hole in the x-direction. As we discussed, the electric field has to be con-

tinuous as we cross media boundaries in the x-direction (because E, is parallel to

the media boundary) but not in the y-direction. Thus, these modes have one 'hump'

as we cross the holes in the x-direction, and decay exponentially inside the metallic

bulk between holes such that the field profile within the metal is of the form of a

hyperbolic sine/cosine curve (a combination of a decaying and growing exponential),

depending on parity. We can see immediately that as we increase the radius of such a

hole, the profile relaxes in the x-direction in such a way as to make the hump wider.

This leads to a larger effective x-wavelength for the mode, and thus a lower frequency

cut-off. (The wavelength in the y-direction is unaffected by the radius of the hole,

since E, is not required to be continuous in the y-direction.)

Diffraction peaks occur when we consider the slab system at a macroscopic level,

in terms of incoming and outgoing radiation modes. This effect is not unique to

metallic PhCs, and can be observed in non-metallic PhCs as well. In terms of ab-

sorption, the incident light, being normal, can couple into outgoing radiation modes

(in transmission or reflection) that conserve the wave vector up to a reciprocal lat-

tice vector in a direction of discrete periodicity. Because the incident light has no

ktransverse component, it can couple into outgoing modes with ktransverse equal to an

integer multiple of 27r/a (i.e. 1 in our units). This means that as we increase the



frequency of the incoming radiation, a new diffraction direction will be coupled into

at w = 1, v/2, 2, ..., corresponding to (k., ky) = (1, 0), (1, 1), (2, 0), (2, 1)... At the

threshold frequency for a new diffraction mode, the wave vector has no kz component,

and so k is parallel to the surface of the slab. Such 'grazing' modes have maximum

interaction with the slab because they travel close to the surface of the metal, and

as such are strongly absorbed by the material. These absorption peaks translate into

emission peaks, via Kirchhoff's law, so we would expect to see emission peaks for

modes corresponding to w = Iki = 1, /v, 2, vf5...

Fig. 4-1b shows how emittance and transmittance change with the thickness of

the metal slab. First, we notice that transmittance is greater for the thinner slab, as

one would expect. Second, we see the emergence of diffraction peaks at 1, v/, 2 and

v/' (we indicate these with red and black arrows). Not only do they occur at precisely

those frequencies that correspond to the root of the sum of two squares (their wave

vectors being permutations of (1, 0), (1, 1), (2, 0) and (2, 1), respectively), they are

also the same for both black and red curves, lending further weight to the argument

that they are diffraction peaks. Their magnitudes are clearly quite variable; indeed,

they wash out at higher frequencies. Such diffraction peaks can be seen in Fig. 4-la,

too.

What happens if we take the same metal slab, but do not drill holes in the slab that

go all the way through? What happens if, instead of having circular holes, we have

circular dips? We present emittance and transmittance for this structure in Fig. 4-2 as

a function of dip radius. Again, we see peaks below 1.0 which correspond to cut-offs,

except in this case they are not waveguide cut-offs but a kind of 'cavity' cut-off, where

k, is such that there is approximately half a wavelength in the x-direction. We see

diffraction peaks at 1, v/, 2 and v/-. Above wp = VIT . 3.16, the plasmon frequency

of the metal, transmittance becomes significant, because above that frequency, the

metal becomes transparent and light can pass through it as though it were a dielectric

material (while still being subject to some absorptive loss).
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Figure 4-2: (Color) We show emittance (solid lines) and transmittance (dotted lines)
spectra for a 2D-periodic metal slab of thickness 1.0a with circular dips, observed
at normal incidence and y-polarization. The dips have a depth of 0.5a. The Drude
parameters used are coo = 1, wo = 0, y = 0.3(2rc/a) and w, = VO-0(27rc/a). We show
spectra for two different radii of dips, keeping the slab thickness constant.



4.4 Hybrid structures

Let us now turn our attention to hybrid structures which involve both metal and

dielectric. We consider a metal slab with a circular dielectric puck on top. This

puck is intended to be a small perturbation to the system that introduces discrete

periodicity in both the x- and y-directions by means of a piece of dielectric. We

observe emitted light at normal incidence and polarized in the y-direction.

Fig. 4-3a shows how emittance and transmittance vary with the dielectric constant

of the perturbation (E). First, we observe many peaks in the emittance spectra, and

we note that the positions of some these peaks (particularly the ones at frequencies

less than 2.0) decrease with increasing e. Second, we see zero transmittance in the

system for frequencies below wp, ; 3.16, as we expect, because the metal is opaque

at frequencies below the plasmon frequency. Third, we see also an entire series of

diffraction peaks, at frequencies 1, V/2, 2, vfh, 2v2 and 3, corresponding to modes

with wave vectors (1, 0), (1, 1), (2, 0), (2, 1) and permutations thereof. These are

especially clearly seen on the black curve. We know they are diffraction peaks because

they not only fit the above sequence, but also have the same frequencies on the red

and green curves. (Diffraction peaks do not change with the dielectric constants of the

structure.) Fourth, we demonstrate that most of the emittance peaks with frequencies

below 2.0 that we see in Fig. 4-3a are in fact produced by surface plasmons.

Surface plasmons (SPs) are excitations that exist on the interface between a plane-

metal and a dielectric. They are confined to the surface, but can propagate freely

within that surface. They have a relatively simple dispersion relation that is approxi-

mately linear at low wave vectors and bends over toward a flat cut-off at higher wave

vectors (wp//~fi is the cut-off frequency, where wp is the plasmon frequency and

c is the dielectric constant). If the direction of propagation is x (i.e. k is in the x-

direction), then the SP will have field components Ex, Ez and Hy (the z-direction is

normal to the interface). The SP is unusual in that it has an electric field component

in the direction of propagation. Normally incident light (for which ktransverse = 0)

cannot couple into SP modes with non-zero k because of conservation of wave vec-
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Figure 4-3: (Color) Panel (a) shows emittance (solid lines) and transmittance (dotted

lines) spectra for a 2D-periodic metal slab of thickness 1.0a with circular dielectric

pucks for normal incidence and light polarized in the y-direction. The pucks have

a radius of 0.4a and a thickness of 0.2a. The Drude parameters used for the metal

are c, = 1, wo = 0, 7 = 0.3(27rc/a) and wp = /i-(27rc/a). We show spectra for

three different dielectric constants for the circular puck. In Panel (b), we took the

peaks labeled by arrows in Panel (a), and plotted them on a dispersion curve. (Note

that the third red peak in Panel (a) coincides with a diffraction peak at frequency

-/2 m 1.41.) We see that the dispersion of the peaks (lines with circles) lies between

the metal-air dispersion and the metal-dielectric dispersion, for the corresponding

dielectric constant. Therefore, it is quite plausible that these peaks are produced by

surface plasmon modes. In Panel (c), we show the thermal emission spectrum for the

same metal slab with pucks of dielectric constant E = 5 at temperature 1000K (we call

it "PhC (model)"). We also show the blackbody spectrum at that temperature for

comparison. The lattice constant was chosen to be a = 2.94pm. Panel (d) shows the

thermal emission spectrum for the same system except that the "model" metal has

been replaced by tungsten. We modeled tungsten with Drude parameters[55] cE = 1,
wo = 0, 7/(27rc) = 487cm - 1 and wp/(2rc) = 51700cm - 1, and we chose a = 2.94pm.

We show the emission spectra for a uniform tungsten slab of thickness a (without

pucks) and a blackbody for comparison.
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tor; however, it can couple into such modes if the wave vector of the SP is along a

direction of discrete translational symmetry, because in such a direction, wave vector

is conserved only up to an integer multiple of the reciprocal lattice vector. These

correspond to k = (m, n) (2r/a) where m and n are integers.

To show that the emittance peaks with frequencies below 2.0 are indeed SPs, we

record the frequencies of the peaks (up to wp/v/ -+I, the SP cut-off) for each curve in

Fig. 4-3a, and plot them as circles in Fig. 4-3b against wave vector magnitude, making

the assumption that the first peak has a wave vector of (0, 1), the second a wave

vector of (1, 1), and the third a wave vector of (0, 2) (all in units of 21r/a). We make

this assumption because this sequence of (kr, k,) = (m, n) produces a sequence of

frequencies in ascending order. In addition, we plot SP dispersion curves for metal-air

and metal-dielectric structures where both media are semi-infinite in extent (dotted

lines). SP modes in the structure under consideration would therefore be expected

to have a dispersion relation that lies between the metal-air and the metal-dielectric

dispersions, since the average dielectric constant of the dielectric strip/air lies between

that of the air and the dielectric. Thus, we would expect the black circles to lie

between the dotted black and blue curves, the red circles to lie between the dotted

red and blue curves, and so on. Indeed, this is exactly what we see. Furthermore, the

fact that the circles, when joined together by solid lines, form a dispersion relation

that clearly bends over toward a cut-off, gives us confidence in identifying these modes

as SPs.

We can obtain the emissive power of these structures by taking the emittance

spectra that we have calculated and multiplying them by the blackbody emission

spectrum (which is also known as the Planck distribution). This is what we did

in Fig. 4-3c. We chose a = 2.94pm and plotted thermal emission of the PhC slab

as a function of wavelength. We show the emission spectrum of a blackbody for

comparison. We can immediately see an emission peak near 4 .7prn that has as high

emission as a blackbody; this peak corresponds to the first SP peak in Fig. 4-3a. The

two emission peaks at approximately 2.1[tm and 3.2/4m are diffraction and SP peaks,

respectively.



In Fig. 4-3d, we consider the same structure except that the "model" metal slab

is now replaced by a tungsten slab. We did this by doing the calculation using the

Drude parameters of tungsten[79, 1, 56, 55]. We also plot the equivalent tungsten

slab emittance (dashed red curve) for comparison. In keeping with Kirchhoff's law,

at no point does the emission of the PhC structure exceed that of a blackbody. The

qualitative similarities between this emission spectrum and that shown in Fig. 4-3c

can be traced quite easily: the three major peaks remain; the tall central peak and the

peak to its right are SPs, while the sharp peak to the left (around 2pm) comes from

diffraction into (1, 1) modes. Overall, the background emission of the tungsten PhC

slab is lower than that for the "model" metal that we have hitherto been studying,

because the background emittance of a slab[48] goes as 27/1w (in regime y < w < wp) ,

and w, is much higher for tungsten than for the Drude metal in Fig. 4-3c. Notice

that the PhC tungsten slab has higher emission at all frequencies than the uniform

tungsten slab. Thus, we have excellent enhancement of emissive power through the

use of a PhC.

As we have already remarked, the dominant feature of the emission characteristics

of this structure is the central peak at 3.06pm, which achieves 80% of the emission

of a blackbody. As we will show in the next figure, it is possible to shift this peak

by changing the lattice constant of the structure. By so doing, we can place a strong

emission peak at whatever frequency we choose. If we combine copies of this struc-

ture with different lattice constants, we can place strong emission peaks at multiple

frequencies. This is the beginning of thermal design using 2D-periodic metallic PhC

slabs.

4.5 Thermal design

In order to facilitate our discussion of thermal design in 2D-periodic metallic photonic

crystals, we turn our attention to another variation on the theme of a hybrid structure,

and show how the emission spectrum of this structure can be tailored to our needs.

We study a tungsten slab on top of which sits a dielectric slab with circular holes.
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Figure 4-4: (Color) Here we show the thermal emission spectrum for a hybrid 2D-
periodic structure consisting of a tungsten slab and a dielectric slab with holes. The
metal slab is 1.0a thick while the dielectric slab (c = 5) is 0.2a thick with holes of
radius 0.4a. We show emission of light polarized in the y-direction. In Panel (a),
we display emission at two different temperatures. We chose a lattice constant of
a = 2.00pm. In Panel (b), we show how the emissive power changes with lattice
constant. In both panels, we show emission spectra for a uniform tungsten slab of
thickness a without dielectric, and a blackbody, for comparison.
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One can think of the dielectric portion of this structure as being the 'inverse' of

the circular puck. Such a structure exhibits discrete periodicity in both the x- and

y-directions.

We show the emission spectrum for such a structure in Fig. 4-4. In Panel (a),

we choose a = 2.00pm and vary the temperature of operation. We plot thermal

emission for the PhC slab, the unadorned tungsten slab, and a blackbody. Again, the

PhC emission far exceeds that of a uniform tungsten slab. We see three prominent

groups of peaks, the smallest of which has fairly complicated substructure. First,

we notice that the positions of the peaks do not change with temperature. Second,

increasing temperature increases emission at all wavelengths. Emissive power goes

as T4 (Stefan's law), so that, going from 1000K to 1200K, emission increases by

a factor of (1.2) 4 . 2.07 (provided the weighting does not change significantly).

Third, the relative weighting given to different wavelengths changes with temperature,

because the peak of the Planck distribution shifts toward lower wavelengths with

increasing temperature. In our case, the group of small peaks between 1 and 2pm

were insignificant features at 1000K, but became more prominent at 1200K, because

the blackbody spectrum shifted in such a way as to give those peaks much more

weight than before (thus, they were enhanced by more than a factor of 2.07). Fourth,

the emission of the PhC slab exceeds that of the uniform slab at all wavelengths and

at all temperatures. In fact, the enhancement is impressive: we see a 20-fold increase

in emissive power (over that of a slab) at the major peak at around 2.9pm. Of

course, emissivity never exceeds unity, because that would violate the Second Law of

Thermodynamics (the large peak in question attains 66% emissivity). The important

lesson we learn from this is that we can emphasize different parts of the emission

spectrum of a PhC by changing the temperature at which we operate the thermal

structure.

In Fig. 4-4b, instead of changing the temperature, we keep temperature fixed

and vary the lattice constant of the PhC. The blackbody envelope and the emission

spectrum of a uniform slab of this same metal are shown for comparison. We see that

increasing the lattice constant shifts the emission peaks in the PhC towards a higher



wavelength. In our case, for a = 2.00pm, the large peak is already close to the point of

maximum blackbody emission, so that increasing the lattice constant to a = 3.23/Im

only served to decrease the total emission from that excitation (incidentally, it is a

surface plasmon). However, the change in a also brought some small peaks from the

lower wavelengths into the picture. The point of this exercise is to illustrate the degree

of control we have over the position of the peaks, and by these simple techniques, we

can shift emissive power around to different parts of the spectrum. It is useful to note

that for both choices of a, there is significant enhancement of emission over that of a

uniform slab because the breaking of continuous translational symmetry allows more

wave vector modes to be excited and coupled into.

The two hybrid structures we considered in this and the previous sections would be

suitable candidates for applications that require narrow band emission in one or more

frequencies. Both structures have a dominant peak that can be shifted in wavelength

by changing the lattice constant. If we want three emission bands separated by

1-2pm, the structure in Fig. 4-4 would be a good choice. There are two different

ways to amplify an emission peak relative to background emission. We can choose

to operate the structure at different temperatures, or we could change the lattice

constant. These are simply two different ways of making the emission peak coincide

with the wavelength of maximum blackbody emission. By combining many such

hybrid structures, each with its own lattice constant, we can place strong emission

peaks at whichever wavelengths we choose. We therefore have a means of tailoring

the thermal emission properties of a hybrid structure to our needs.

4.6 Conclusion

We presented a physical and intuitive framework within which we can understand

some of the physical phenomena that drive thermal emission in 2D-periodic metal-

lic photonic crystal slabs. We performed detailed numerical calculations for these

systems, and found that periodicity played a key role in determining the types of

physical phenomena that can be excited. In particular, we saw how periodicity gave



rise to waveguide cut-offs, waveguide resonances, diffraction peaks and surface plas-

mon modes. Using hybrid structures composed of metal and dielectric components,

we obtained sharp emission enhancement over and above that of a metal slab. In

the case of tungsten, we created strong emission peaks with 80% and 66% emissivity,

far exceeding that of a uniform tungsten slab, which plateaus at about 3-4%. These

peaks could be shifted at will by changing the lattice constant of the structure or by

changing the temperature at which the structure is operated. We can design materials

with multiple emission peaks by combining hybrid structures, each with its own lattice

constant. Thus, we have a powerful set of tools with which to develop physical intu-

ition and understanding for thermal design. The ability to design thermal emission

could well find uses in thermophotovoltaic systems and defense applications, where

many targeting systems rely on the detection of thermal emission from projectiles.



Chapter 5

Emulating 1D resonant scattering

behavior in a 2D system via Fano

resonances

We establish that the significant enhancement of thermal emission via Q-matching,

which has been possible in 1D systems only, can be extended to 2D systems by means

of Fano resonances in the 2D system. In particular, we show the existence of essen-

tially 1D behavior in a 2D system - a case of reduced dimensionality. We demon-

strate through detailed numerical and analytical studies that the Fano resonances

characteristic of 2D-periodic photonic crystal slabs can be understood in terms of a

1D-model. Moreover, we show how properties of these spectra can be controlled by

changing the geometrical parameters of the photonic crystals. Therefore, this work

provides a path to the creation of graybodies that have tailored thermal emission

spectra, with highly unusual properties.

5.1 Introduction

A blackbody is defined as an object of perfect absorption. Its entropy is maximized,

and in that sense it exemplifies utter disorder. The physics of blackbodies has both

fascinated and intrigued scientists for well over a century now[59]; properties of their



thermal emission provided one of the most important clues for the discovery of quan-

tum mechanics. In practice, most objects have only finite absorption, and are thus

referred to as 'graybodies'. Graybodies are of interest because their thermal emission

spectra can be changed by altering the geometry of the system or the materials used.

Most black/graybodies have certain generic features in common, many of which are

captured in Fig. 5-la.

The ability to modify or tailor the thermal emission profile of an object is of

great importance and interest in many areas of applied physics and engineering. It

has been noted recently that periodic sub-wavelength scale patterning of metallo-

dielectric systems, i.e. photonic crystals, can modify their emission spectra in inter-

esting ways[44, 7, 41, 17, 69, 22, 45, 46, 68, 48, 23]. Researchers studying 1D-periodic

photonic crystals have come up with ways to control emission spectra[70, 14, 54],

demonstrate the coherence of emitted light[25, 39], and enhance thermal emission

via resonant cavities[ll1]. Thermal radiation from 2D-periodic photonic crystals has

been studied within the contexts of spectral and directional control[51, 69, 61, 16],

guided resonances[19], thermophotovoltaic generation[68], resonant scattering[58, 15],

laser action[50], Kirchhoff's law[48] and spontaneous emission enhancement[7, 17, 61].

And most recently, Laroche et al. [38] predicted coherent thermal emission due to leaky

surface waves in truncated photonic crystal structures.

The body of work on enhancement of emission via resonant cavities will interest

us the most. It turns out that the idea of matching the radiative Q-factor of a system

with its absorptive Q-factor in order to enhance emission, as in Eq. (2) in (11], is

fundamentally a one-dimensional one. It is reducible to the problem of having one

input channel, a resonant cavity, and one output channel. In such a setup, light

emitted by the resonant cavity and the incident light interfere in such a way as

to extremize the net outgoing wave. This complete cancellation of waves from the

cavity and the incident/outgoing beam is unique to the one-dimensional world. Thus,

enhancement via Q-matching, an essentially 1D phenomenon, would not be expected

to work in a general 2D system with multiple input/output channels.

In this chapter, we show that enhancement of thermal emission via Q-matching,



which is usually observed in 1D systems only, can be extended to 2D systems by

coupling into Fano resonances[19] (arising from bulk guided modes of an otherwise

uniform slab) in the 2D system. This mechanism is different from all those described

above. In particular, we show the existence of essentially 1D behavior in a 2D sys-

tem - a case of reduced dimensionality. We demonstrate through detailed numerical

and analytical studies that the Fano resonances characteristic of 2D-periodic pho-

tonic crystal slabs can be understood in terms of a 1D-model based on Q-matching.

Moreover, we show how properties of these spectra can be controlled by changing the

geometrical parameters of the photonic crystals.

5.2 Fano resonances in photonic crystals

A photonic crystal (PhC) slab with a 2D-periodic array of holes gives rise to a num-

ber of Fano resonances (19], as shown in Fig. 5-2a. The way to understand these

resonances is to note that radiation incident from the surrounding low-c medium

cannot couple into the guided modes of a uniform high-c slab with continuous in-

plane translational symmetry because of conservation of in-plane (transverse) wave

vector. However, when the slab is punctuated with a periodic array of holes, dips or

other such perturbations, the transverse wave vector is now conserved only up to a

reciprocal lattice vector, and coupling between the incident radiation and the guided

modes of the slab is possible. The interaction between the guided modes and the

incident radiation manifests itself in the form of very sharp peaks in the transmission

spectrum (shown in Fig. 5-2a), called Fano resonances. Fano resonances show up

in both transmission and absorption as high-Q states on top of an otherwise undu-

lating background of Fabry-Perot resonances from the slab; this kind of undulating

background would occur even if the slab were uniform. In the case of no absorption,

the transmission peaks would go all the way up to 1 and all the way down to 0, but

with absorption, they are rounded out somewhat, though their frequencies remain

essentially the same; the frequencies are determined by the frequencies of the modes

of the corresponding transverse wave vector of the PhC slab. As can be seen from
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Figure 5-1: (Color) Panel (a) shows some generic features associated with ther-
mal radiation of common black/graybodies into air (the case of a perfect black-
body is denoted by solid lines, while an example of a graybody, a uniform Si slab
of thickness 0.75pm, is denoted by dashed lines); plotted is the thermal radiation
intensity/dkdkydA for an exemplary case: k, = 0.838pm - 1 and ky = 0. First,
black/graybodies have perfectly incoherent and ultra-broad bandwidth thermal emis-
sion spectra. Next, as the temperature of such a body increases, the emission spec-
trum shifts to shorter wavelengths. Finally, bodies with lower absorption have weaker
thermal emission; for example, a thin silicon slab is nearly transparent for infra-red
light even at fairly high temperatures, so its thermal emission is very weak. Panel
(b) shows FDTD calculations of the thermal emission spectra of the same Si slab as
in Panel (a), but this time patterned as a square-lattice 2D-periodic photonic crys-
tal slab of holes with radius r = 0.3pm, and lattice constant a = 1.5pm (structure
schematic shown in inset). Thermal radiation of such a body can display drastically
different behavior than the one shown in Panel (a). First, a photonic crystal can
produce very coherent thermal radiation, as implied by the narrowness of the emis-
sion peaks. Next, as one increases the temperature, the peak emission can shift to
longer (instead of shorter) wavelengths. Finally, despite the near-transparency of Si,
emissivity can be comparable to that of a perfect blackbody for certain frequencies.
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Fig. 5-2b, as one increases the angle of incidence (k.), some resonances increase in

frequency while others decrease. Still others remain unchanged (these are flat bands).

Turning a closer attention to the absorption spectrum in Fig. 5-2a, we observe

first of all that the background absorption of the slab is very low, in the region

of 2-3%. However, of more interest are the strong absorption peaks on top of the

background, in some cases reaching 50%. This illustrates how greatly Fano resonances

can enhance absorption over and above that for the slab. Now, Kirchhoff's law

states that emissivity and absorptivity are equal, meaning that for Fano resonance

frequencies the emissivity of the PhC slab can approach that of a perfect blackbody.

5.3 Analytical modeling

To identify the important physical parameters of the system and their relationship

to PhC emissivity, we study the behavior of Fano resonances within a framework

of coupled-mode theory[28]. A 2D PhC slab exhibits two dominant mechanisms for

electromagnetic wave transmission. The first transmission mechanism is the direct

transmission path through the slab, as in the case of a uniform slab. The second

mechanism is the resonant coupling to the guided modes of the slab by means of

Fano resonances; this produces sharp peaks in the transmission and reflection spectra.

Therefore, transmission can be understood as the superposition of a direct transmis-

sion path (represented by a slowly-varying envelope in frequency) and a Lorentzian-

type oscillator transfer function for each of the Fano resonances. This is analogous to

treating the system as a waveguide with a side-coupled cavity and partially-reflecting

mirrors. Waveguide-resonator systems have been studied using scattering theory,

coupled-mode theory and perturbation theory[81, 21, 18, 72, 83, 84, 73].

We now derive transmission and reflection coefficients for Fano resonances in a

lossy medium. For the benefit of the reader unfamiliar with coupled-mode theory we

outline some of the key steps in the analysis. Consider a 2D PhC slab surrounded by

air. We label the two sides 1 and 2, and define s+i as the incident wave amplitude

from air on side i and s-_ as the reflected wave amplitude leaving side i. Using
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coupled-mode theory, we can write down three equations that describe this system:

da(t) 1 1
dat) iwoa(t) - + a(t) + -, s1 (t)

dt Trad Tabs Trad

-2(t) tslabS+1(t) + -Ka(t)
Trad

s-l(t) = rslabS+1(t) ± r-Ka(t)
Trad

where a(t) is the amplitude of the resonant mode, wo is the resonant frequency, Trad is

the cavity mode lifetime in the case of no absorption, 1/Tabs is the decay rate due to

material absorption, , is the coupling constant, s+1 (t) is the incoming wave amplitude,

s l(t) is the reflected wave amplitude, s_2 (t) is the transmitted wave amplitude and

rslab and tslab are the reflection and transmission coefficients, respectively, of the planar

slab without any holes. Note that rTlab and tslab are complex functions that incorporate

the phase change upon transmission and reflection. In this set up, we do not have an

incoming wave on the other side (S+2 = 0).

The first equation says that the rate of change of the resonant mode complex

amplitude depends on the resonant frequency (responsible for phase oscillations),

the decay rates (1/Trad and 1/Tabs), and the coupling to the incoming wave, which

causes the resonant mode amplitude to grow. The second equation states that the

transmitted amplitude is equal to tslab times the incident amplitude (including a

phase) plus a coupling to the cavity mode. Similarly, the third equation states that

the reflected amplitude is equal to ralab times the incident amplitude, plus a coupling

to the cavity mode. Note that there is a + sign in front of the a term: this takes

into account the fact that the cavity mode may have even or odd parity. Even

parity, defined here with the + sign, indicates that the contribution of the a term to

the reflected and transmitted amplitudes are in phase with each other. Odd parity,

represented by the - sign, is the opposite: the contribution of the cavity mode to

reflection is 7r out of phase with its contribution to transmission. Of course, we could

just as easily have put the ± sign in the transmission equation; the net effect of such
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a change would be to shift the absolute phase of a by 7r, a change that has no physical

significance.

Using a complex exponential form as an ansatz for a, with frequency w, yields

i(w - wo) +-- +ab
Trad Tabs

It is now straightforward to write down equations for the transmission and reflection

coefficients of the photonic crystal slab:

S-2(0) K2 1

tPhC(W) - tlab Trad (5.1)s+1(W) i(w - wo) + - + 1
Trad Tabs

S -1() K2 1
S= slab rad 1(5.2)s+1 (w) b - i(w - wo) + + (5.2)

Trad Tabs

There are two conditions we can impose in order to calculate K2. The transmission,

reflection and absorption coefficients for the 2D PhC slab have to satisfy conservation

of energy: JaPhc12 + ItphC 2 + -rPhc1 2 = 1. The same is true for the planar dielectric

slab without holes: Jaslab 2 + Itlab 2 
+ Irslab 2 = 1. These two equations, combined with

Eqs. (5.1) and (5.2), can only be satisfied simultaneously if rK2 = -(tslab ±rslab). (One

can derive this relation by considering the lossless case, where aPhc = aslab I - 0

and 1/Tabs = 0.) Substituting this into Equations (5.1) and (5.2) gives the final form

for Fano resonances in lossy media:

(tslab ± rslab) 1
tPhC tslab T 1rad (5.3)

i(w - wo) + 1 + (
Trad Tabs

(rslab ± tslab) 1
TPhC rTlab - i(w - Trad (5.4)L(w - wo) + +

Trad Tabs

One can repeat the above derivation for multiple Fano resonances. The general result

is complicated, although it simplifies in the case of two resonances that are of opposite
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parity. If the first resonance is even and the second odd, then

(tslab + rslab) ± (tslab - rslab)
tPhC = tslab 1  1  2

i(W - .01) + 1 
• • i(w- W02) + + +

T71 Tabsl 2 Tabs2

(rslab + tslab) 1 (rslab - tslab) 1
rPhC = rslab - o 1 + i( - W+1) 1 +i(w(w -- (.02) -{--71 Tabs 72 Tabs2

and vice versa for the opposite case.

Substituting Equations (5.1) and (5.2) into laphc 2  1 - IrPhC 2 - ItphC 2 gives,

after some algebra,
21 K22 1 1

IaphC 2 Trad 
T

abs

(w - wo)2 +( 1 +1 )2
Trad Tabs

By applying time-reversibility to a lossless cavity[28], one can show that i2j = 1. We

now proceed to do this. Consider a situation with no source, such that s+l = s+2 =

0. The cavity mode amplitude decays at 1/Trad through symmetric decay channels

s_1 = S- 2 = -_.
da 2 2 2ja12 = -21s_1j

dt Trad

Note that jla2 = TadlS_ 2. Now consider the time-reversed situation, where the

lossless cavity, with amplitude 5, grows at the rate 1/Trad as a result of being driven

by incident waves.
dia•2 -  2

dt -Tad

(Quantities with a tilde indicate the time-reversed situation.) For our situation with

two inputs, it is true that

-- n(2,+)
i(w - o) +rad

Since a16 grows at 1/Trad, we can write w = wo - i/-rad. Substituting this into the

expression for d gives ii12 = TradiI 121g+ 2 . At time zero, lal = ja| and Is_ 2 = I9+l2,
allowing us to conclude that jl12 = 1. Thus, the absorption coefficient of the photonic
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crystal slab is given by

21 1
TaphC 2 Trad Tabs (5.5)

(w - w0)2  ( Il .)2
Trad Tabs

Clearly, absorptivity (and therefore, emissivity) is maximized when Trad = Tabs. In

terms of quality factors (Qrad W07rad/2), this means Qrad Qabs, i.e. the absorp-

tion is maximized when the Qrad of the Fano resonance is exactly matched with the

absorptive Qabs of the guided mode. When Qrad = Qabs, aPhcM2 ax = 50%. For cer-

tain different geometries (e.g. dielectric 2D PhC placed on top of a uniform metallic

surface), jaPhc max can equal 100%.

The frequency (wo) and the lifetime (Trad = 1/7 = 1/HWHM) of the lossless

Fano resonances can be extracted from FDTD simulations. The cavity lifetime Tabs

(due to material absorption losses only) can be calculated as follows. The quality

factor of a cavity with only internal losses (i.e. decoupled from the outside world) is

defined by
030

Qabs
2(1/Tabs)"

An equivalent definition is

Qabs = o(P)
where (U) is the average energy stored in the cavity, and (P) is the average rate of

energy dissipation. Combining the two yields an expression for Tabs:

2(U) 2 f rEOIEI2dVTabs = 2 2
(P) if aIE 2dV

where CTEo is the real part of the dielectric function of the material (Er is the relative

permittivity), and a is the electric conductivity. (The lower integral comes from

(P) = 1 f J - EdV and J - aE.) The region of integration is only close to the slab.

Assuming homogeneous media (E, and a independent of position), we can write

Tabs = (5.6)
of
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where ( is the fraction of modal energy contained within the dielectric.

It is well known that the imaginary part of the relative permittivity is given by

Ei = o/wco (where w = w0o in our case). Thus, we obtain a simple expression for the

absorptive Qabs:

Qabs =

We derived this under the high-Q approximation, assuming that the fields are only

slightly perturbed by the introduction of absorption in the material, which is indeed

the case here close to the resonance. (A similar result can be derived via perturbation

theory in E [73].)Note that Eqs. (5.5) and (5.6) provide us with a physical model that

can be used as a powerful tool for thermal design and understanding anomalous

thermal behavior.

5.4 Numerics

As we have seen, our analytical model consists of equations for the transmission,

reflection and absorption coefficients of Fano resonances, together with an expression

for Tabs, the cavity lifetime in terms of E, and ci. Let us now proceed to test this

model against numerical simulations, in order to validate our theory.

Numerical simulations in our work are performed using a finite-difference time-

domain (FDTD) algorithm[75]. These are exact 3D solutions of Maxwell's equations,

including material dispersion and absorption. We choose a computational cell with

dimensions 30 x 30 x 300 grid points, corresponding to 30 grid points per lattice

constant a. The photonic crystal slab is in the middle, and flux planes are placed on

either side of it at least 2a away. The slab is 0.5a thick. We run the simulation for a

total of 988,235 time steps, chosen to be sufficiently large to allow resolution of peaks

with quality factors (Q) in excess of 2,500. We illuminate the photonic crystal slab

with a temporally Gaussian pulse, with a transverse wave vector of our choosing (this

is implemented by specifying a phase difference between fields on opposite faces of the

computational cell). We record the fields going through flux planes on either side of

the slab and perform a discrete Fourier-transform on the time-series of fields, which
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we use to calculate fluxes as functions of frequency (1(w)). We run the simulation

once with the slab in place, and again with vacuum only. The reflectance is given by

R(w) = (4bac(w) - 4lab(W))/w ac(w) where the flux plane closer to the light source is

'1', and the flux plane further from the light source is '2'. The transmission is given

by T(w) -= ýab(W)/2ac(w) and the absorption is simply A(w) = 1 - R(w) - T(w).

This way, we obtain reflectance, transmission and absorption spectra for PhC slabs.

We repeat these calculations for incident light with different transverse wave vectors

(kx). From these spectra, the resonant frequencies and widths (i.e. lifetimes) of

Fano resonances can be extracted. We incorporate absorption into our simulations

by means of the Drude model, according to the following equation: E(w) = coo +

a/(w2 - W2 - iyw) where c•, y, wo and a are input parameters. These are chosen so

as to produce the desired absorption (Im(E)) at the frequencies we are interested in.

We show the results in Fig. 5-3. First, we plot transmission, reflectance and

absorption in the nearly lossless case (yabs < 3 x 10-6) for the first two Fano peaks

shown in Fig. 5-2b (red circles in Fig. 5-3); then wo and 7 (= 1/Trad) were extracted

from these numerical results, and analytical predictions (red lines) were thus obtained.

(The parameters ralab and tslab representing the background of the spectra are the

standard expressions for the reflection and transmission coefficients of a uniform slab:

we refer the reader' to Equations (9) and (10) in [19].) We then plot the numerical

results with absorption (black circles), and the predictions of the model (black lines).

This was done for both peaks.

We see very good agreement between theory and simulation. The imaginary part

(Ei) of the material in the absorptive case was chosen such that there is near-perfect

matching between the Qrad of the first resonance (x 370) and the absorptive Q of

the material: Qabs Qrad, which causes the absorption to be maximized. We see

this clearly in the first panel, where the absorption coefficient (black line and circles)

hits 50%. The same is not true of the second peak, because the Qrad of that peak

(• 2000) is much higher than Qabs = 370, so there is poor Q-matching and thus

weaker absorption. Nonetheless, the fit between theory and simulation is excellent.
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Figure 5-3: (Color) Comparison between theory and simulation, for the first two Fano
peaks shown in Fig. 5-2a. The parameters of the theory (wo and y) were calibrated by
fitting the red line (theory without absorption) to the red circles (simulation without
absorption). The black line gives the prediction of theory for the absorptive case; the
black circles represent the results from simulation with absorption. (The fraction of
energy in dielectric (() was 90% for the first peak and 95% for the second, done in a
separate FDTD calculation.)
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5.5 Thermal design

Confident that our analytical model has been validated by numerical studies, we

proceed to apply this model to the case of thermal design. Kirchhoff's law allows

us to relate absorptivity and emissivity, such that if we can design a PhC with high

absorptivity for certain frequencies, we know that it will also have high emissivity

for those frequencies too. We have shown that low emissivities of uniform slabs can

be greatly enhanced by means of Fano resonances. The frequencies of these emission

peaks are determined by the frequencies of Fano resonances, while the heights of

these peaks are determined by how well Qabs matches with Qrad. The exact positions

of Fano frequencies can be controlled by the geometry of the PhC (slab thickness,

lattice constant a, Ec, and to some extent also hole sizes) which determines the guided

modes. Qrad is determined by the strength of the coupling of the guided modes to

radiation (controlled mostly by the size of the holes). Qabs is determined by Ei, and

the overlap of the guided modes with the regions of the structure that are absorptive.

Given that one has so many parameters to control, and that their influence is largely

decoupled, one is provided with excellent possibilities to tailor properties of thermal

radiation almost at will.

In fact, most of the relevant parameters can even be controlled dynamically. For

example, changes in geometry can be implemented mechanically at ms-Ps time scales

(e.g. MEMS). Similarly, changes of E,, Ei can be implemented via change of tempera-

ture, or using electro-optical effects, or carrier injection (this can change Ei by orders

of magnitude); some of these effects can be operated at sub-nanosecond time scales.

As an illustrative example, we study the case where Ei varies with tempera-

ture. In the case of silicon, the imaginary part of the dielectric function is strongly

temperature-dependent, and increasing the temperature from, say, 750K to 1000K

increases the imaginary part in the IR regime from 10- 3 to 10- 2, i.e. by a factor of

ten[13]. (The real part changes by 3% or so. We use the following expressions for

the temperature-dependent refractive index for silicon: nsi = 16.044(1000A) -0 194 and

ksi = (a/47r)A x 10- 4 , where a = 4.15 x 10-5 1 . 51 T 2.95e-70 0 0 /T, with A specified in um
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and a in cm-1.) At 750K, Qabs ' 1000 and the higher frequency Fano peak (at around

4.5pm in Fig. 5-1b) is more closely matched with Qabs than the lower frequency peak,

resulting in a higher emissivity. At 1000K, Qabs - 100 and the lower frequency Fano

peak (at around 3.8pm) is better matched, resulting in emissivity close to 50%. In

other words, as we heat up this 2D silicon PhC slab, we see peak emission move

from short to long wavelength. This is precisely the opposite of what is expected

from a simple graybody, where the wavelength of strongest emission decreases with

temperature. Without additional information, an external observer would be led to

think that the body's temperature is actually decreasing. Note that the position of

each emissivity peak is fairly independent of the temperature, which is also markedly

different than in ordinary graybodies. This anomalous emissivity behavior occurs as

a result of a peculiar interplay between Qab,(T) and the Qrad of the Fano resonances.

Of further interest is the fact that Fano resonance frequencies can change with

wave vector (c.f. Fig. 5-2b). Since wave vector and angle of incidence are related,

it is clear that peak frequencies vary with the angle at which we view the material.

Fig. 5-4 shows the variation in the frequency of the emissivity peak with respect to

change in angle. In the top panel, plotted for the low-frequency Fano resonance from

Fig. 5-2a, we see that as we move away from normal incidence, the frequency of the

peak decreases. This agrees well with the band diagram for Fano resonances in Fig. 5-

2b, which shows decreasing w with increasing k. (a proxy for angle of incidence) for

the first band. In the bottom panel, we plot the same variation for the second peak.

This agrees with the band diagram again in Fig. 5-2b, which shows a relatively flat

second band. Such a material would be intriguing in that it would emit different

thermal colors depending on the direction from which it is viewed; observers without

additional information would perceive the 'temperature' changing with the angle of

observation.
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Figure 5-4: (Color) Variation of Fano absorption peak frequency as function of angle
of incidence (in degrees); rotation angle is around y-axis, and electric field is polarized
along y-direction. (a) First peak. (b) Second peak. The change in frequency for the
second peak is much smaller than that for the first. The angles are different for the
top and bottom panels even though the kr's used are the same because 0 is a function
of both k, and w.
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5.6 Conclusion

We have demonstrated that the significant enhancement of thermal emission via Q-

matching, which has been possible in 1D systems only, can be extended to 2D systems

by means of Fano resonances in the 2D system. Through detailed numerical and an-

alytical studies, we showed that these Fano resonances characteristic of 2D-periodic

photonic crystal slabs can be understood in terms of a iD-model. Moreover, we

found that properties of these spectra can be controlled by changing the geometrical

parameters of the photonic crystals. Therefore, this work provides a path to the cre-

ation of graybodies that have tailored thermal emission spectra, with highly unusual

properties.

Since thermal emission is so ubiquitous, we expect this novel capability of tailoring

it to open up a wide range of new and exciting opportunities. The capability to

significantly change the thermal spectra of bodies dynamically (and perhaps even

at time scales shorter than the thermalization times), could enable implementation

of another intriguing class of systems. In terms of concrete applications, coherent

thermal emission in infra-red spectra could be used for remote sensing. As far as

defense applications go, many reconnaissance (e.g. night-vision), as well as targeting

systems are based on thermal emission; the capability to modify thermal emission

might thus provide means of protection for objects that are being targeted.
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Chapter 6

Direct calculation of thermal

emission for 2D- and 3D-periodic

photonic crystal slabs

We perform direct thermal emission calculations for 2D- and 3D-periodic photonic

crystal slabs using stochastic electrodynamics following the Langevin approach, im-

plemented via an FDTD algorithm. We demonstrate that emissivity and absorptivity

are equal, by showing that such photonic crystal systems emit as much radiation as

they absorb, for every frequency, up to statistical fluctuations. We also study the

effect of surface termination on absorption and emission spectra from these systems.

6.1 Introduction

The physics of blackbodies has fascinated and intrigued researchers for well over

a century now[59]; properties of their thermal emission provided one of the most

important clues for the discovery of quantum mechanics. In practice, most objects

have absorption less than that of a blackbody, and are thus referred to as 'graybodies'.

By virtue of Kirchhoff's law, these objects also have sub-unity emissivity. However,

the thermal emission spectra of graybodies can be changed by altering the geometry

of the system or the materials used.
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Very exciting work has been done recently on three-dimensionally periodic pho-

tonic crystals with photonic band gaps[44, 41, 22, 45, 42, 43, 46, 12, 23] concerning

enhancement and suppression of thermal emission[41, 42, 43] and thermophotovoltaic

applications[45, 46]. Emission and absorption from 2D-periodic photonic crystals

have been also studied within the contexts of spectral and directional control[51,

69, 61, 16, 38], guided resonances[19], thermophotovoltaic generation[68], resonant

scattering[58, 15], laser action[50], Kirchhoff's law[26, 48], coherence[25, 38], and

spontaneous emission enhancement[7, 17, 61]. It has been noted that periodic sub-

wavelength scale patterning of metallodielectric systems, i.e. photonic crystals, can

modify their thermal emission spectra in many interesting ways[70, 53, 17, 69, 25,

68, 54, 48, 16, 23], through various physical effects such as surface plasmons[61, 39],

resonant-cavity enhancement [11], Bragg reflection[14] and modification of density of

states via photonic band gaps[14, 41, 45, 46].

In previous work, most calculations for thermal emission were performed by cal-

culating the absorption and then appealing to Kirchhoff's law, which states that

absorptivity and emissivity are equal. This has been shown analytically for a uniform

slab. Luo et al.[48], following a Langevin approach to stochastic electrodynamics,

performed a direct thermal emission calculation for a 2D-periodic photonic crystal

slab and showed that emissivity was equal to absorptivity (up to thermal fluctua-

tions), thus numerically verifying Kirchhoff's law for such systems. This has been an

issue of great controversy because of experimental work indicating the violation of

Kirchhoff's law[45, 43].

In this chapter, we extend the work done by Luo et al. to 3D-periodic structures.

Using stochastic electrodynamics, we perform direct simulations of emission spectra

for 2D- and 3D-periodic structures. We compare these directly calculated emission

spectra to the absorption spectra of these systems, and demonstrate that Kirchhoff's

law holds for 3D-periodic photonic crystal slabs. Moreover, we examine the effect

of changing the surface termination of a 3D-periodic structure and suggest how it

may be used to enhance absorption and emission of a photonic crystal. We also give

an in-depth and coherent presentation of the theory of stochastic electrodynamics,
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including relevant derivations and detailed explanations of our methodology.

This paper is organized as follows: in section 6.2, we describe the theory of stochas-

tic electrodynamics, and how it can be used to perform direct emission calculations.

Section 6.3 outlines the numerical methods and techniques used in this paper. In sec-

tion 6.4, we study a 2D-periodic array of rods, and show bandstructure, absorption

and emission calculations. We do the same in sections 6.5 and 6.6 for a 3D-periodic

woodpile structure and metallodielectric structure, respectively. Section 6.7 deals

with the effect of surface termination, and how it can be used to enhance emission in

these photonic crystal slab structures.

6.2 Theory

6.2.1 Stochastic electrodynamics and the Langevin approach

Maxwell's equations, as they stand, are classical deterministic field equations. We

would like to introduce an element of randomness into these field equations, in order

to represent the randomness inherent in thermal fluctuations. We follow the Langevin

approach to Brownian motion by introducing a random force term into our equations.

There are three ways in which we can proceed: (i) introduce randomness directly in

the Newtonian equation of motion, (ii) add a random term to the displacement field,

D, or (iii) add a random term to the free current density, J. These three ways of

introducing randomness are entirely equivalent, as we will demonstrate.

The first approach introduces randomness through the addition of a random term

in Newton's equation of motion. Modeling charge carriers as damped simple harmonic

oscillators driven by an external field E, we can write, for a deterministic system,

i- i- + wUr = eE/m, where r is the position of the charge carrier, e its charge, m its

mass, 7 the damping constant of the system, and wo the natural resonant frequency

of the system. Converting this to polarization via P = ner (where n is the density of
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positive charge), we have

d2p dP
dtp + - + w2P = E (6.1)

where a r ne2/m. We introduce a random term (K) to the right-hand side following

the Langevin approach:

d2P dP
dt2 + • + w2 = E + K(t) (6.2)

Substituting in a harmonic ansatz for P gives the following solution:

PE(r, w) K(r, w)
P(r, w) = -w 2 -iw + w-w 2 -i'w

Polarization is related to the displacement field via D = E + 47rP. Thus, we see

that D consists of an external field E, the usual non-stochastic polarization-induced

component 4cThE(r, w)/(wO - w2 - iyw), and a random component which we define

as

4irK(r, w)Q(r, w) K(rw) (6.3)r w) - W2 - iW

Thus, a fluctuating polarization (K) in the Newtonian equation of motion is equivalent

to a random, fluctuating term (Q) in the displacement field. The fourth Maxwell

equation now becomes
4j 1

VxH=-- +- (D + Q)
C c t

Alternatively, instead of introducing randomness to the displacement field, we could

just as easily have added a random term Jf,,c = -1 to the free current density

J, and the end result would have been the same. Therefore, we have shown that

approaches (i), (ii) and (iii) for introducing randomness into Maxwell's equations are

entirely equivalent.
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6.2.2 Statistical properties of thermal fluctuations

Let us proceed with the fluctuating displacement field. The correlation function for

Q has to satisfy a fluctuation-dissipation relation, derived by Rytov[66]:

(Qi(r, w)Q! (r', w')) = 16r3C2Im[E(w) Io(w, T)6ij6,,,6(r - r') (6.4)3W3

where Qi for i = 1, 2, 3 are the components of Q, (... ) denotes ensemble averaging, c

is the speed of light, Im[e(w)] is the imaginary part of the permittivity including the

polarization response in the absence of fluctuations (cf. Eq. (6.1)), and Io(w, T) =

D(w)E(w, T). In this expression, D(w) = is the free-space density of photon

states and E(w, T) = hw/[exp(hw/kT) - 1] is the Bose-Einstein energy distribution

function at absolute temperature T.

We can also calculate the correlation function for Q directly from Eq. (6.3):

Qr, w)(r, w')) (47r)2 (K(r, w)K(r', w')) (6.5)(Q(rw)Q(r',w' ( w2 ) _ iYw][(wR - w') - iw']I

The two expressions for the Q correlation function must be equal. By equating

Eqs. (6.4) and (6.5), we can learn something about the correlation function of K.

Our first step is to find the imaginary part of the dielectric function. In the

absence of fluctuations, the dielectric function for our system is

4P | 4naE(w) = 1 + 47r 1 + 2 2
El w 2 - i yw

Therefore, the imaginary part is

Im[E(w)] = (6.6)
-(wi - w2)2 + 2W2

Combining Eqs. (6.4), (6.5) and (6.6) gives

(Ki(r, w)Kj*(r', w'))= - 2 I(r - r) (6.7)
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This expression for the K correlation function gives us information about the distribu-

tion of the Langevin noise term. However, since finite difference numerical simulations

require the discretization of space, for our calculations, it will be necessary to convert

the Dirac delta function in r to a Kronecker delta.

The delta function 6(r - r') can be defined as follows:

f(r) = IV f(r')S(r - r')d3r'

for any function f(r) over some volume V. We can discretize the above definition by

approximating the integral by a discrete summation:

f(r) = E f (r)- AV
V

where AV is the volume element used in the simulation. Therefore, we can go from

the continuous to the discrete limit by making the replacement 6(r - r') -+ 6rr'/AV.

Making this substitution in Eq. (6.7) gives us the discretized version (where we have

set r' = r):
47n2 cij ww' lo(w, T)(K (r, w)Kj*(r, w')) = 2 V (w/c) 2  (6.8)

Note that in the high temperature limit, where hw < kT, the Bose-Einstein energy

density function hw/[exp(hw/kT) - 1] r kT, and so Io(w,T) _ w2 . This exactly

cancels out the frequency dependence on the right-hand side of Eq. (6.8), leading to a

white-noise spectrum in K. However, we will find in the next section that emissivity

can be simulated by a white-noise spectrum for all frequencies.

6.2.3 Calculation of emissivity

To calculate emissivity, the target thermal emission intensity needs to be normalized

by that of the free-space Planck radiation. The linearity of the system ensures that

this normalization procedure amounts to dividing the right-hand side of Eq. (6.8)

by the blackbody radiation collected within an element of solid angle. It can be

shown that[64] the Planck radiation emitted into an element of solid angle dQ is
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Io(w, T) cos OdQ.

However, in finite-difference time-domain calculations of photonic crystal systems

implementing Bloch-periodic boundary conditions in the xz and yz faces, directions

are specified using wave vectors kx and ky instead of polar and azimuthal angles

9 and q. Thus, the calculable quantity is (Ki(r,w)K*(r, w'))dkxdky for emission

into wave vector range (kx, kx + dkx) and (ky, ky + dky). It is straightforward to

calculate the Jacobian to convert from angles to wave vector components: dkxdky =

(w/c)2 sin 0 cos Od~d¢ = (w/c)2 cos OdQ. The Planck intensity of emission into dQ is

therefore
dk dklo(w, T) cos Odf = Io(w, T) (6.9)

Thus, the normalization factor is lo(w, T)/(w/c)2 . Dividing Eq. (6.8) by this factor

gives the emissivity spectrum for a given (k,, ky):

(K(r, w)K*(r, w')) = AV (6.10)

where K'(r, w) _ C'K(r, w) (w/c)2/Io(w, T), and we are considering emission into

an element of wave vector specified by dkxdky. C' is a dimension-correcting factor

that depends only on the discretization details of the system. It converts a fluctuation

in polarization to a fluctuation in emissivity. Fourier-transforming back to the time-

domain gives

S1 47(r,)K 2C12
(KI(r, t)K (r, t'))= r,)K we-t+w't' NAV oijtt, (6.11)

with N being the number of time steps used in the Fourier transform. Thus, we can

simulate emissivity by producing a time series of random drawings from a distribution

with variance (JK (r, t) 2). Since this is the only physical constraint on the distribution

of K, we are free to choose a simple and tractable distribution for our simulations.
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We choose a uniform distribution:

[K] 1/K, if IKIl < K,/2
ut[[Ki] = (6.12)

0 if IKj > K8/2

such that K 2= Cay, with C = 487r02CI/(NAV) being a discretization-specific con-

stant. Since Kirchhoff's law has been proven analytically for a 1D uniform slab,

we perform calibration runs on a uniform slab for both emission and absorption in

order to obtain the calibration constant. We then use the same constant (which is

discretization-specific) to convert emitted 'flux' to emissivity for the case of the pho-

tonic crystal slab. Thus, we can calculate emissivity for a photonic crystal at all

temperatures.

6.2.4 Limitations of the method

The approach we have outlined so far is able, as far as thermal fluctuations are

concerned, to reproduce the wave nature of light, but not its particle nature.

From statistical mechanics[64], we know that the expected number of photons

occupying a particular mode j is given by the Bose-Einstein distribution:

1
(nj) = e~j 1 1

where (nj) is the mean occupation number of state j, / = 1/kT where T is the

temperature and k is Boltzmann's constant, and cj is the energy associated with the

jth state.

The mean square deviation of the photon occupation number from this mean is

given by[64]

(An) = - (nj) + (nj)2  (6.13)

Thus, we see that
(An2 ) 1

- 1 +- (6.14)
(nj)2  (nj)

For a general particle in the Maxwell-Boltzmann limit, -p/kT > 1 and so the Bose-
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Einstein distribution can be approximated by e (A-1j ). Plugging this into Eq. (6.13)

gives
(An2 ) 1

(nj2 2 (nj)

Therefore, we can think of the 1/(nj) term as arising from the particle nature of

light (because in the Maxwell-Boltzmann limit, these photons do behave more like

particles than waves). Consequently, by deduction, the 1 term in Eq. (6.14) accounts

for the wave nature of light. This term dominates in the limit of kT > cj.

Luo et al.[48] performed a statistical analysis on their ensemble data and found

that /(AI(w, T)2) = (I(w, T)). Thus, the stochastic electrodynamics that we have

described so far reproduce the wave nature of light correctly. We can convert the fluc-

tuations we see in our simulations to the real physical fluctuations by observing that

ý2. = exp(hw/kT) for physical fluctuations, and then scaling the observed fluctua-

tions by the factor exp(hw/2kT). Therefore, v/(AI(w, T)2) = exp(hw/2kT)(I(w, T)).

6.3 Description of numerical methods

Numerical simulations in our work are performed using a finite-difference time-domain

(FDTD) algorithm[75]. These are exact (apart from discretization) 3D solutions of

Maxwell's equations, including material dispersion and absorption. Eqs. (6.1) and

(6.2) can be discretized in the standard way by writing d2 P(r, t)/dt2  [P(r, t + St) -

2P(r, t) + P(r, t - 6t)]/6t2 and dP(r, t)/dt [P(r, t + St) - P(r, t - 6t)]/(26t).

For 2D calculations, we choose a computational cell with dimensions 40 x 2 x 640

grid points, corresponding to 40 grid points per lattice constant a. The faces of the

cell normal to the x and y axes are chosen to have periodic boundary conditions,

while the faces normal to the z-axis (i.e. the top and bottom ones) have perfectly

matched layers (PML) to prevent reflection. This is a 2D simulation of a 2D-periodic

system. The slab is placed in the middle of the cell, and flux planes are placed on

either side of it at least 4a away. We run the simulation for a total of 81,600 time

steps, chosen to give a frequency resolution of 0.001c/a.

For 3D calculations, we choose a computational cell with dimensions 30 x 30 x 420
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grid points, corresponding to 30 grid points per lattice constant a. The faces of the

cell normal to the x and y axes are chosen to have periodic boundary conditions, while

the faces normal to the z-axis (i.e. the top and bottom ones) have PML boundary

conditions. The slab is placed one-third of the way down the cell, and flux planes

are placed on either side of it at least 3a away. We run the simulation for a total of

60,000 time steps, also chosen to be sufficiently large to give a frequency resolution

of 0.001c/a.

For absorbance calculations, we illuminate the photonic crystal (PhC) slab with

a normally incident, temporally Gaussian pulse. We record the fields going through

flux planes on either side of the slab and perform a discrete Fourier transform on the

time-series of fields, which we use to calculate fluxes as functions of frequency (T(w)).

We run the simulation once with the slab in place, and again with vacuum only. We

record the fields going through flux planes on either side of the slab and perform

a discrete Fourier-transform on the time-series of fields, which we use to calculate

fluxes as functions of frequency, 1(w) = aRe{f E*(r, w) x H(r, w) -dS}. We run the

simulation once with the slab in place, and again with vacuum only. To calculate

reflectance, we know that Eslab = Evac + Eref is true above the slab (i.e. between the

source and the slab), with Er,,f being the field due to reflection. The reflectance is

given by

SreRf -!Re{fA [Eslab(r, w) - Evac(r, w)]* x [Hslab(r, w) - Hvac(r, w)] -dS}
R(w) - rvac 2Re{fA, Etac(r, w) X Hvac(r, w) -dS}

where A1 is the flux plane corresponding to '1', and the minus sign in the numerator

is there to make the reflected flux positive. This expression can be shown to simplify,

in air, to R(w) = [4ac(W) _ lab(w)]/jvac(w) where the flux plane closer to the light

source is '1', and the flux plane further from the light source is '2'. (One can show that

the numerator becomes 4ac(w) -1 lab(W) ± 1Re{fA (Eac x Href - Hvac x Eref) -dS}

but the cross term vanishes for incoming and outgoing plane waves in vacuum, for

which E and H are proportional.) Similarly, the transmittance is given by T(w) =

slab(. )/•ac(w) and the absorbance is simply A(w) = 1 - R(w) - T(w). This way,

122



we obtain reflectance, transmittance and absorbance spectra for PhC slabs.

We incorporate absorption into our simulations by means of the Drude model,

according to the following equation:

4iro
E(w) = - - w +) (6.15)

where E, y, w0o and o are input parameters. In our case, we are concerned with

metals, for which wo = 0.

For emittance calculations, we use the same setup except that we do not have a

source plane. We include the random term (K) in our updating of the polarization (see

Eq. (6.2)), and we monitor the fluxes passing through the same two flux planes. We

repeat this many times, and then perform an average of the fluxes. Averaging reduces

the size of the fluctuations. The averaged fluxes are then converted to emittance by

multiplying by the same constant conversion factor that exists between the absorbance

and the fluxes in the case of the 1D uniform slab, for which emittance and absorbance

are known to be equal, analytically.

A note about time averaging and ensemble averaging is appropriate here. Accord-

ing to the ergodic theorem, time averages and ensemble averages are equivalent in the

limit of long time and large ensemble. However, when a discrete Fourier transform

(DFT) is involved, the situation is somewhat subtle. In the FDTD algorithm that we

use, the simulation is run for a discrete number of time steps N, after which a DFT

is taken over the time series of fields E(t) and H(t), producing fields as functions

of frequency E(w) and H(w). The frequency resolution (Aw) of the resulting DFT-

produced spectrum is inversely proportional to the number of time steps for which

the simulation is run: Aw - 1/N. Thus, the net effect of increasing the length of

the run is to increase the frequency resolution of the spectrum. However, the time

series of fields (and therefore its true, continuous Fourier transform) follows a stochas-

tic process, which consists, in general, of a background drift combined with random

fluctuations (distributed according to the probability density function in Eq. (6.12)).

It is well known that stochastic processes, while continuous, are not differentiable
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anywhere, i.e. they are infinitely 'wiggly'. This means that as we increase N and

thus frequency resolution, all we are doing is resolving the fluctuations at a finer and

finer level of detail, i.e. increasing N does nothing to reduce the magnitude of the

fluctuations. On the other hand, performing a larger number of such runs and then

taking the ensemble average does reduce the magnitude of those fluctuations, and we

get much better convergence. Therefore, it is only necessary to make N large enough

to achieve a desired frequency resolution. Once that resolution is reached, computa-

tional power is better spent performing more ensemble runs. We see this quite clearly

in Figs. 6-4 and 6-6, both of which are averaged over an ensemble of 40 runs. Runs in

Fig. 6-4 are ten times as long as runs in Fig. 6-6. Notice that the magnitudes of the

fluctuations are comparable in the two figures, but the stochastic process is resolved

at a much finer level of detail in Fig. 6-4, due to the higher frequency resolution that

accompanies longer run times.

6.4 2D-periodic array of rods

The first system we consider is a 2D-periodic array of metal rods in air. Because

of the existence of a mirror plane perpendicular to the y-direction, modes of the

system can be divided into TM modes (with components Ey, H!, Hz), which are odd

under reflection, and TE modes (with components H,, E, Ez), which are even under

reflection. This separation of modes into TM and TE modes can be performed for all

2D-periodic systems with a mirror plane in the third dimension[31], and consequently,

we can reap the benefits of this separation by considering the two types of modes

independently.

We focus our attention on TM modes for which the magnetic field is transverse and

the electric field is perpendicular to the 2D-plane of rods. (Physical behavior for TE

modes is closely analogous.) For these modes, the electric field points in the direction

of the axes of the rods, and so we need only consider light with electric field polarized

in the y-direction. This is true for both absorbance and emission calculations. For

absorbance, we illuminate the slab with y-polarized light; for emission, we allow only
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Figure 6-1: (Color) Bandstructure for a 2D-periodic array of perfect metal rods of
radius 0.2a. We show bands along F-X and F-M. The resolution is 40 grid points per
a. We consider only TM modes, for which the electric field is polarized along the axes
of the rods. We notice large band gaps in the system where light is forbidden from
propagating, specifically from 0 to 0.52c/a and from 0.72c/a to 0.86c/a.

thermal fluctuations (K) in the y-direction.

We start by calculating the bandstructure for such a system of perfect metal

rods of radius 0.2a, where a is the lattice constant, as shown in Fig. 6-1. We use a

resolution of 40 grid points per a, which is sufficient for a system with this level of

spatial complexity. We plot the bands from F-X and from F-M in the first Brillouin

zone. We see clearly the existence of a large photonic band gap from 0 to 0.52c/a,

and also from 0.72c/a to 0.86c/a. This gives us a good guide with which to interpret

the absorbance/emissivity spectra that we present next.

In Fig. 6-2, we compare the absorption and thermal emission spectra from a 2D-

periodic slab of metal rods for TM modes. Absorbance was calculated with normally

incident and outgoing waves. Notice that for these absorbance and emittance calcu-
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Figure 6-2: (Color) Comparison between absorption and thermal emission (averaged
over 40 runs) from a 2D-periodic PhC slab of metal rods and a uniform slab, for
TM modes at normal incidence. For the slab of rods, we use a long computational
cell of 1x8 rods. For the metal, we use the Drude model with parameters e) = 1,
7 = 0.3(27rc/a), 47ra = 10(41r2c2/a 2). We see good agreement between the emissivity
(green and blue solid lines) and the absorptivity (black and red dashed lines). We
notice also that the emissivity of a 2D slab of rods exceeds that of a uniform slab
at all frequencies. The greatest enhancement comes from the non-gapped regions,
where the enhancement can be as high as a factor of 4. Translucent yellow shading
indicates regions of pseudogap for such a slab of imperfect metal rods, inferred from
the absorption/emission spectrum.
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lations, we used a slab of imperfect metal rods, i.e. ones that have absorptive losses.

This is an important point because a perfect metal absorbs nothing and therefore

emits nothing. Thus, we cannot directly compare Figs. 6-1 and 6-2 since the band-

structure in Fig. 6-1 was calculated for an infinitely large array of perfect metal rods.

However, the bandstructure does give us a very good guide with which to interpret

the emission spectra. In Fig. 6-2, we see high absorption/emission in the frequency

ranges 0.4 - 0.6c/a and 0.8 - ic/a, from which we can infer that the band gaps are

located in frequency ranges 0 - 0.4c/a and 0.6 - 0.8c/a, approximately. We indicate

these regions with a translucent yellow shading. We expect low absorption for band

gap regions because the light is forbidden from propagating in the bulk of the pho-

tonic crystal, but we expect high absorption for non-gapped regions (i.e. regions with

bands) because the light is able to penetrate the bulk of the system and be absorbed

by the material.

We see excellent agreement between emissivity and absorbance, as predicted by

Kirchhoff's law. There are a couple of interesting points worth mentioning: (i) the

PhC slab emits more than the uniform slab at every frequency between 0 and 1

(we will explain this in the next section), and (ii) the fluctuations in emissivity are

proportional to emissivity itself, as expected according to the discussion in Section

6.2.4.

6.5 3D-periodic woodpile structure

The first 3D-periodic structure we consider is the woodpile[74]. Pioneering work on

thermal emission and the nature of the band gap for this structure was done by Lin et

al.[44, 41, 22, 45, 42, 46]. We choose this particular structure because of the absence

of linear bands at frequencies close to zero and the existence of a cut-off at 0.4c/a

(there is a band gap in range 0 - 0.4c/a). As a result, the structure behaves like a

metal at low frequencies, with wp . 0.4c/a.

The structure is made of metal rods with square cross section of width 0.25a

arranged so that the rods are orthogonal to each other in adjacent layers. These
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layers follow an ABCD pattern, such that C is the same as A shifted by half a lattice

constant, and the same is true for D and B (B is the same as A rotated by 90 degrees).

It turns out that such a structure can be described by a body-centered cubic lattice

whose basis consists of two rods, one on top of the other, forming a 'plus' pattern.

(One can also describe it as a stretched face-centered cubic lattice with a 'cross' for

a basis, but the ratio of the z-length to the x- or y- length of the unit cell would be

different, leading to an effectively orthorhombic lattice.)

In a general 3D-periodic system, there are no mirror planes of symmetry that

would allow us to separate the modes into TM and TE modes. This means that

it is not possible, in general, to excite perpendicular and transverse polarizations

separately; the different polarizations are coupled together. Therefore, it is necessary

to use all three directions (x, y and z) for polarizations in our simulations: all three

must also be turned on for absorbance and for emittance calculations.

Fig. 6-3 shows the bandstructure for a 3D-periodic woodpile structure of perfect

metal rods of width 0.25a and square cross section. We plot the bands from F-X and

F-Z, since the Z-direction is distinct from the X-direction as a result of the basis of

rods (though in the body-centered cubic lattice, they are equivalent directions). We

see that there is a photonic band gap in the region 0 - 0.42c/a. Above 0.42c/a, there

are bands which permit propagation of light through the photonic crystal.

In Fig. 6-4, we see a comparison between emissivity and absorptivity of the 3D-

periodic woodpile structure as a function of frequency. The jagged lines (green and

blue) correspond to emissivity, while the dashed lines (black and red) correspond

to absorptivity. We show absorptivity and emissivity spectra for both the woodpile

and the uniform slab. The agreement is excellent. Furthermore, we note that the

emissivity of the woodpile structure exceeds that of the uniform slab at all frequencies,

but especially at frequencies above the photonic band gap of the system. (We indicate

the pseudogap for the metallic woodpile slab with a translucent yellow color.)

These observations can be explained by considering the structure as being equiv-

alent to a uniform metal slab, with a plasmon frequency (wp -- v ) equal to the

upper bound of the band gap. In such a situation, we can derive expressions for the

128



L

0

a)
a)
Coc3

Frequency (c/a)

Figure 6-3: (Color) Bandstructure for a 3D-periodic woodpile structure made of per-
fect metal rods with square cross section of width 0.25a. We show bands along F-X
and F-Z. The resolution is 30 grid points per a. We consider modes with all polar-
izations. We notice a large band gap in the system where light is forbidden from
propagating, specifically from 0 to 0.42c/a.
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Figure 6-4: (Color) Comparison between absorption and thermal emission (averaged
over 40 runs) from a slab of 3D-periodic woodpile made of metal rods, at normal
incidence. We use a long computational cell with two unit cells of the woodpile
structure in the z-direction. For the metal, we use the Drude model with parameters
coo = 1, 'y = 0.3(27rc/a), 4ra = 10(47r2 c2 /a 2 ). The frequency resolution is 0.001c/a.
We see good agreement between the emissivity (green and blue solid lines) and the
absorptivity (black and red dashed lines). We notice also that the emission of the
woodpile structure exceeds that of a uniform slab at all frequencies. The greatest
enhancement comes from the non-gapped region above 0.4c/a, where the enhancement
can be as high as a factor of 4. Translucent yellow shading indicates regions of
pseudogap for such a woodpile slab structure made of imperfect metal rods, inferred
from the absorption/emission spectrum.
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absorbance of the slab in two regimes: w < 7 < wp and y < w < wp. This we do

by calculating the reflectance using R = [(n - 1)2 + k2]/[(n + 1)2 + k2] where n and

k are the real and imaginary parts of the refractive index, defined by C = (n + ik)2,

and e is the Drude dielectric function. Once we have the reflectance, we can obtain

the absorbance by A = 1 - R. There is no transmission because the thickness of the

slab is much greater than the penetration depth of the structure. If we perform this

calculation for A in the low frequency regime, such that w < 7 < wp, we find that

A r V-81/ /wp. This explains the square-root dependence on frequency at extremely

low frequencies. For the intermediate frequency regime, described by - < w < wp, we

find that A t 2y7/w, which is independent of frequency. This explains the 'plateau'

region of the absorption spectrum, where frequency dependence is almost flat. Fi-

nally, we note that the effective penetration depth of the photonic crystal slab is larger

than that of the uniform metal slab, because the photonic crystal contains both metal

and air while the uniform slab contains only metal. A larger penetration depth cor-

responds to a smaller effective wp (since penetration depth goes as 1/ap). Therefore,

we expect a larger absorbance for the photonic crystal slab than the uniform metal

slab in both the low and intermediate frequency regimes, and this is indeed what we

observe.

Above the band gap, the photonic crystal has bands which allow light to propagate

through the bulk of the structure. Now, light emitted from deep inside the structure

can escape and contribute to the emissivity of the crystal. This explains the significant

enhancement of emission over that from a uniform slab at frequencies above that of the

pseudogap region. The emissivity of a uniform slab is limited to contributions from

within about one penetration depth of the surface of the metal; light emitted from

the bulk cannot escape because there are no propagating modes available to transport

the light to the surface. Emissive contributions from the bulk of the structure are the

reason that, the emissivity from the non-gapped region of a photonic crystal slab is

significantly higher than that from a uniform metal slab.
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6.6 3D-periodic metallodielectric structure

The next structure we consider is a 3D-periodic metallodielectric structure made

of metal spheres embedded in a Teflon background (E = 2.1), as studied by Fan,

Villeneuve and Joannopoulos[20]. In direct contrast to the woodpile structure inves-

tigated in the previous section, this metallodielectric structure does have linear bands

at low frequencies. While the woodpile exhibited metallic behavior at low frequen-

cies, here we expect to see uniform dielectric behavior in that same frequency range.

Whereas the woodpile structure had a band gap from 0 to 0.42c/a, the metallodielec-

tric structure has propagating bands for all frequencies except for a small gap from

0.54c/a to 0.63c/a. We will see dramatic differences between the emissivity of this

structure and that of the woodpile.

The bandstructure of this metallodielectric structure is shown in Fig. 6-5. The

metal spheres have radius 0.177a (where a is the lattice constant) and are arranged

in a diamond structure. We show the bands from F-X and F-L. The structure has a

complete band gap between 0.54 and 0.63c/a.

Fig. 6-6 shows the results of comparing the absorptivity spectrum with the emissiv-

ity, calculated for a slab of the 3D-periodic metallodielectric structure using stochastic

electrodynamics. Once again, there is good agreement between emissivity and ab-

sorptivity. This time, we used a lower frequency resolution (Aw = O.01c/a) in order

to reduce computation time. It is clear that the emission spectra are smoother here

than in Fig. 6-4, but notice that the size of the emissivity fluctuations (vertical fluc-

tuations on the graph) are comparable to those in Fig. 6-4. This is because in both

Fig. 6-4 and Fig. 6-6, the emissivity spectra were averaged over 40 runs, and, as we

have already observed, the only way to reduce the size of the thermal fluctuations

and increase convergence is to average over a larger ensemble of runs.

We notice that for a large range of frequencies (- 0.4-1.0c/a) the emissivity of the

photonic crystal far exceeds that of the uniform metal slab. This we already explained

in the previous section in terms of emissive contributions from the bulk of the photonic

crystal being allowed to escape because of the existence of propagating bands at those
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Figure 6-5: (Color) Bandstructure for a 3D-periodic metallodielectric structure made
of perfect metal spheres of radius 0.177a in a background of Teflon (c = 2.1). We
show bands along F-X and F-L. The resolution is 32 grid points per a. We consider
modes with all polarizations. We notice a complete band gap in the system where
light is forbidden from propagating, specifically from 0.54c/a to 0.63c/a.
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Comparison between absorption and thermal emission (averaged
a slab of 3D-periodic metallodielectric structure made of metal
background, at normal incidence. We use a long computational
cells of the metallodielectric structure in the z-direction. For

the metal, we used the Drude model with parameters E, = 1, 7 = 0.3(2yc/a),
47oa = 10(47r2C2/a 2). Here, we use a lower frequency resolution of 0.Olc/a in order
to decrease the duration of each run. We see good agreement between the emissivity
(green and blue solid lines) and the absorptivity (black and red dashed lines). We
notice also that the emission of the metallodielectric structure exceeds that of a
uniform slab at all frequencies above 0.1c/a. The greatest enhancement comes from
the non-gapped region around 0.8c/a, where the enhancement can be as high as a
factor of 6. Note that the emissivity in that region is close to unity. Note also that the
decreased run time leads to lower frequency resolution, as evidenced by the smoother
spectrum. However, the size of the fluctuations remains unchanged (compare with
Fig. 6-4), since is determined by the number of runs used in ensemble-averaging.
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frequencies. The gapped region in this structure is so narrow (0.54 - 0.63c/a) that

the dip in emissivity one would expect to see in that region is not noticeable. What is

interesting is that for frequencies below 0.1c/a, the emissivity of the photonic crystal

is actually lower than that of the uniform slab. This requires some explanation.

At low frequencies, the photonic crystal behaves effectively like a uniform dielec-

tric. We can see this from the bandstructure, which shows roughly linear bands in

the region 0 - 0.4c/a. Such uniform dielectric behavior can be modeled by the Drude

dielectric function with an oscillator frequency that is much higher than the frequency

regime we are interested in, i.e. we are working in the low-loss, dielectric-like regime

given by w < 7 < wo. In this regime, the imaginary part of the dielectric function

(see Eq. (6.6)), which is given by Im(E) = 4ra-yw/[(w2 -w 2)2 + 2w2], is approximately

linear in w. The a.c. conductivity of the structure is given by wcoIm(E), which goes as

w2. Thus, the absorbance of the system, which is proportional to the integral of the

a.c. conductivity over the volume of the structure, scales as w2 in the low frequency

regime. This is precisely what we see in Fig. 6-6, and explains why the emissivity of

the photonic crystal slab is lower than that for a uniform metal slab for w --ý 0.

As Figs. 6-4 and 6-6 demonstrate, we have successfully verified Kirchhoff's law

numerically for two very different 3D-periodic photonic crystal structures.

6.7 Effect of surface termination

One may wonder whether details of the absorption and emission spectra of a structure

are affected by the surface termination one chooses. By surface termination, we refer

to the plane in the periodic structure at which we terminate the PhC slab. Our choice

of this termination may well have an effect on the surface modes that can be excited

by incident light. The absorption/reflection/transmission caused by the bulk of the

structure remain unchanged, because we keep the same thickness of bulk structure in

the PhC slab. We can imagine a window as wide as the thickness of the slab, moving

downwards in the z-direction across such a periodic structure of infinite extent; as

the window moves, it reveals a slab of material with a different surface termination.

135



>* E

a)
00.

EOLU

0
CO0

.0
0
.0

z

Figure 6-7: (Color) Absorbance/emittance spectrum for a woodpile PhC slab made
of imperfect metal rods for 5 different surface terminations. Light polarized along x
is incident from the top of the cell. We use a long computational cell with two unit
cells of the woodpile structure in the z-direction. For the metal, we used the Drude
model with parameters e, = 1, y = 0.3(27rc/a), 4ora = 10(47r2C2/a2). The inset is a
schematic (lengths not to scale) indicating the surface terminations chosen. For all
calculations, we keep the thickness of the slab to about two unit cells, so changing
the surface termination amounts to shifting the structure within a two-unit-cell-thick
slab 'mask' which remains stationary as the structure is shifted, such that the total
amount of material is kept constant. For instance, for 'STO', the structure used is
that between the two black lines, while for 'ST6', it is what lies between the two blue
lines. 'ST7' appears to have the highest absorption/emission at all frequencies.

136

-----• 
E

Lx



Fig. 6-7 shows how absorbance/emittance of x-polarized light changes with surface

termination in the case of the 3D-periodic woodpile slab structure. We indicate in

the inset the different ways in which the slab structure can be 'terminated'. The

number following the letters 'ST' indicate the position of the surface termination

plane in relation to the structure. For example, 'ST2' is halfway down the first layer

of blocks, and 'ST7' is three-quarters of the way down the second layer of blocks.

It is remarkable how big a difference in absorption/emission can arise as a result of

changing the surface termination. For example, 'ST7' seems to lead to the highest

absorbance at all frequencies investigated, whereas 'ST4' has lower absorbance than

almost all the other terminations.

In the band gap region (0 - 0.4c/a), the light incident from the top of the cell

is only able to penetrate the top surface; it is forbidden from propagating through

the bulk of the crystal. Effectively, the incident light sees only the top surface,

and any absorption/emission in the structure takes place near that surface. Thus,

the absorption/emission spectra within the band gap are more sensitive to surface

termination than that lying above the gap, for which absorption and emission are

dominated by the bulk of the structure. This explains why the curves are more

distinct in the band gap region than above it.

We notice also that above the band gap, the red and blue curves overlap signifi-

cantly, as do the black and green curves. This requires some explanation.

We see from the schematic in Fig. 6-7 that the red and blue ('ST2' and 'ST6')

terminations are very similar, the only difference being that the blue structure is the

same as the red structure rotated by 90 degrees about the z-axis. In fact, such a

rotation maps the red onto the blue, and vice versa. In terms of surface terminations,

they are the same: the termination that red has at the top of the slab is what

blue has at the bottom, so that what the red structure emits from the top surface

is what the blue structure emits from the bottom surface. Thus, we expect to see

very similar absorbance/emittance spectra for the red and blue structures above the

gap, and this is indeed what we see: the red and blue curves overlap significantly

at frequencies above 0.5c/a. The small differences comes from the fact that in the
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absorption calculation in Fig. 6-7, the light is incident from the top; this means that

the top surface has a greater contribution to absorption than the bottom surface (even

though both surfaces contribute because the bulk is transmitting above the gap), and

causes the spectra to be polarization-sensitive, since the top surfaces of the red and

blue structures are different.

At first glance, one may be tempted to think that the black and green ('STO'

and 'ST4') terminations are related to each other in the same way. However, that is

not the case: a 90 degree rotation will not map the black structure onto the green

structure. Thus, as far as x-polarized light is concerned, they are irreducibly different

surface terminations, in that one is orthogonal to the other. The curves show this

clearly: the black and green curves are quite close together, but not as close together

as the red and blue curves. And once again, the difference is most pronounced in the

band gap region, where surface contributions dominate.

This information can be very useful in tailoring thermal emission properties of such

woodpile slab structures, and more generally, photonic crystal slabs. By choosing a fa-

vorable surface termination, we can get over 20% enhancement in absorption/emission

in certain frequency ranges over a randomly chosen surface termination.

6.8 Conclusion

We outlined in detail the theory and implementation of stochastic electrodynamics

following the Langevin approach and performed direct calculations of thermal emis-

sion for 2D- and 3D-periodic photonic crystal slabs via an FDTD algorithm. We

demonstrated that emissivity and absorptivity are equal for a 2D-periodic structure

of metal rods, a 3D-periodic woodpile structure and a 3D-periodic metallodielectric

structure, by showing that such photonic crystal systems emit as much radiation as

they absorb, for every frequency, up to statistical fluctuations. We also studied the

effect of surface termination on absorption and emission spectra from these systems,

and found that subtle changes in surface termination can have significant effects on

emissivity. In terms of applications, the stochastic electrodynamic framework de-
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scribed in this work has many potential uses, including direct calculations of thermal

emission in non-equilibrium systems, and systems with short thermalization times.

One can also use this methodology to verify Kirchhoff's law numerically for finite-

sized (non-slab) thermal objects. The results on surface termination can be used to

enhance thermal emission for many such photonic crystal systems.
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Chapter 7

Conclusion

In this thesis, we studied point defect geometries in inverted opal photonic crystals

that can be fabricated by means of colloidal self-assembly, and discovered a way of

introducing a triply degenerate defect mode into the band gap. We demonstrated

a physically intuitive framework within which the thermal behavior of 1D- and 2D-

periodic metallic photonic crystal slabs can be understood. We found a few structures

that have strong emission peaks with high emissivity that can be used as building

blocks for designing high-emission photonic crystal structures. These peaks can be

shifted at will by changing the lattice constant of the structure or by changing the

operating temperature. We developed an analytic model that allows us to understand

how the significant enhancement of thermal emission via Q-matching, which has been

possible in 1D systems only, can be extended to 2D systems by means of Fano res-

onances. Properties of these spectra can be controlled by changing the geometrical

parameters of the photonic crystals. We described the theory and implementation

of stochastic electrodynamics following the Langevin approach and performed direct

calculations of thermal emission for 2D- and 3D-periodic photonic crystal slabs via

an FDTD algorithm. We showed that emissivity and absorptivity are equal for a 2D-

periodic structure of metal rods, a 3D-periodic woodpile structure and a 3D-periodic

metallodielectric structure, up to statistical fluctuations. We also studied the effect

of surface termination on absorption and emission spectra from these systems. In

summary, this thesis has proposed a new class of point defects, provided a physi-
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cally intuitive framework for understanding thermal phenomena in photonic crystals,

suggested structures for enhancing thermal emission, explained anomalous thermal

behavior related to Fano resonances, and demonstrated how a direct thermal emission

calculation can be done for 3D-periodic photonic crystals.

Although we studied a wide range of phenomena, this thesis is far from being

a complete catalog of thermal effects or point defect geometries in photonic crystal

systems. There are many open questions that can be addressed and new directions in

which this research can be taken. For instance, one could investigate other classes of

defects, whether they be of the point or line variety, in systems subject to fabrication

constraints. Such work is important because the cost of fabrication remains a serious

roadblock to widespread adoption of this versatile technology, and a defective under-

standing of the physics can be costly. One could optimize the designs suggested in

this thesis, and perhaps propose new ones, for enhancing thermal emission in certain

frequency ranges. In particular, it would be interesting to study 3D-periodic photonic

crystal geometries that enhance thermal radiation. More work could be done on Fano

resonances and the anomalous thermal behavior they exhibit. Our ability to perform

direct thermal emission calculations for general photonic crystal systems opens up

exciting possibilities for non-equilibrium systems[80, 5], finite-sized objects, and non-

linear materials. Kirchhoff's law comes with a caveat for non-linear or fluorescent

materials: under such circumstances, light can be absorbed at one frequency and

emitted at another, so that emissivity and absorptivity are not equal for particular

frequencies, but are equal when integrated over all frequencies. It would be intriguing

to simulate such systems numerically with the stochastic electrodynamic framework

described, and to incorporate non-linear effects such as the Pockels or the Kerr effects

that can lead to apparent 'violations' of Kirchhoff's law. The goal of this work is to

present the basic physical principles that underlie many of these interesting phenom-

ena in a clear and illuminating manner, and to act as a springboard for further study.

We hope that this thesis will ignite the interest of the reader in these topics. Thermal

emission from photonic crystals is a hotbed of interdisciplinary research, and people

working in this radiant field can look forward to a bright future.

142



Bibliography

[1] G. S. Arnold. Absorptivity of several metals at 10.6 pm: empirical expressions for

the temperature dependence computed from drude theory. Appl. Opt., 23:1434,

1984.

[2] J. Arriaga, A. J. Ward, and J. B. Pendry. Order-n photonic band structures for

metals and other dispersive materials. Phys. Rev. B, 59:1874, 1999.

[3] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Harcourt, 1976.

[4] V. N. Astratov et al. Interplay of order and disorder in the optical properties of

opal photonic crystals. Phys. Rev. B, 66:165215, 2002.

[5] H. P. Baltes. On the validity of kirchhoff's law of heat radiation for a body in a

nonequilibrium environment. Progress in Optics, XIII, 1976.

[6] A. Blanco et al. Large-scale synthesis of a silicon photonic crystal with a complete

three-dimensional bandgap near 1.5 micrometres. Nature, 405:437-439, 2000.

[7] M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and

E. Yablonovitch. Spontaneous emission extraction and purcell enhancement from

thin-film 2-d photonic crystals. J. Lightwave Technol., 17:1096, 1999.

[8] F. Bresson et al. Simplified sedimentation process for 3d photonic thick lay-

ers/bulk crystals with a stop-band in the visible range. Appl. Surf. Sci., 217:281-

288, 2003.

[9] K. Busch and S. John. Photonic band gap formation in certain self-organizing

systems. Phys. Rev. E, 58:3896-3908, 1998.

143



[10] W. D. Callister. Fundamentals of Materials Science and Engineering: An Inter-

active e-Text. Wiley, 2000.

[11] I. Celanovic, D. Perreault, and J. Kassakian. Resonant-cavity enhanced thermal

emission. Phys. Rev. B, 72:075127, 2005.

[12] D. L. C. Chan, E. Lidorikis, and J. D. Joannopoulos. Point defect geometries in

inverted opal photonic crystals. Phys. Rev. E, 71:056602, 2005.

[13] D. Chub, D. Woldrof, A. Muelenberg, and R. DiMatteo. Semiconductor silicon

as selective emitter. In TPV Generation of Electricity 5th Conference, American

Institute of Physics, 2003.

[14] C. M. Cornelius and J. P. Dowling. Modification of planck blackbody radiation

by photonic band-gap structures. Phys. Rev. A, 59:4736, 1999.

[15] A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young. Resonant scattering

and mode coupling in two-dimensional textured planar waveguides. J. Opt. Soc.

Am. A, 18:1160, 2001.

[16] S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and

G. Albrand. Simple layer-by-layer photonic crystal for the control of thermal

emission. Appl. Phys. Lett., 86:261101, 2005.

[17] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen,

G. S. Petrich, and L. A. Kolodziejski. Enhanced coupling to vertical radiation

using a two-dimensional photonic crystal in a semiconductor light-emitting diode.

Appl. Phys. Lett., 78:563, 2001.

[18] S. Fan. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems.

Appl. Phys. Lett., 80:908, 2002.

[19] S. Fan and J. D. Joannopoulos. Analysis of guided resonances in photonic crystal

slabs. Phys. Rev. B, 65:235112, 2002.

144



[20] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos. Large omnidirectional band

gaps in metallodielectric photonic crystals. Phys. Rev. B, 54:11245, 1996.

[21] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus. Loss-induced

on/off switching in a channel add/drop filter. Phys. Rev. B, 64:245302, 2001.

[22] J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho. All-metallic three-

dimensional photonic crystals with a large infrared bandgap. Nature, 417:52,

2002.

[23] M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling. Thermal emission and

absorption of radiation in finite inverted-opal photonic crystals. Phys. Rev. A,

72:033821, 2005.

[24] G. Gilat and L. J. Raubenheimer. Accurate numerical method for calculating

frequency-distribution functions in solids. Phys. Rev., 144:390-395, 1966.

[25] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen.

Coherent emission of light by thermal sources. Nature, 416:61, 2002.

[26] J.-J. Greffet and M. Nieto-Vesperinas. Field theory for generalized bidirectional

reflectivity: derivation of helmholtz's reciprocity principle and kirchhoff's law.

J. Opt. Soc. Am. A, 15:2735, 1998.

[27] T. D. Happ, M. Kamp, and A. Forchel. Coupling of point-defect microcavities in

two-dimensional photonic-crystal slabs. J. Opt. Soc. Am. B, 20:373-378, 2003.

[28] H. A. Haus. Waves and Fields in Optoelectronics. Prentice-Hall, 1984.

[29] E. Hecht. Optics. Addison-Wesley, 3rd edition, 1998.

[30] J. D. Joannopoulos. Self-assembly lights up. Nature, 414:257-258, 2001.

[31] J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals: Molding

the Flow of Light. Princeton, 1995.

145



[32] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan. Photonic crystals: putting a

new twist on light. Nature, 386:143-149, 1997.

[33] S. John and K. Busch. Photonic bandgap formation and tunability in certain

self-organizing systems. J. Lightwave Technology, 17:1931-1943, 1999.

[34] P. M. Johnson, A. F. Koenderink, and W. L. Vos. Ultrafast switching of photonic

density of states in photonic crystals. Phys. Rev. B, 66:081102(R), 2002.

[35] S. G. Johnson and J. D. Joannopoulos. Photonic Crystals: The Road from Theory

to Practice. Kluwer, 2002.

[36] C. Kittel. Introduction to Solid State Physics. Wiley, 7th edition, 1996.

[37] A. F. Koenderink, L. Bechger, H. P. Schriemer, A. Lagendijk, and W. L. Vos.

Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic

crystals. Phys. Rev. Lett., 88:143903, 2002.

[38] M. Laroche, R. Carminati, and J.-J. Greffet. Coherent thermal antenna using a

photonic crystal slab. Phys. Rev. Lett., 96:123903, 2006.

[39] B. J. Lee, C. J. Fu, and Z. M. Zhang. Coherent thermal emission from one-

dimensional photonic crystals. Appl. Phys. Lett., 87:071904, 2005.

[40] B. Li et al. Photonic band gap in (pb,la)(zr,ti)o 3 inverse opals. Appl. Phys. Lett.,

82:3617, 2003.

[41] S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg. En-

hancement and suppression of thermal emission by a three-dimensional photonic

crystal. Phys. Rev. B, 62:R2243-R2246, 2000.

[42] S.-Y. Lin, J. G. Fleming, and I. El-Kady. Experimental observation of photonic-

crystal emission near a photonic band edge. Appl. Phys. Lett., 83:593, 2003.

[43] S.-Y. Lin, J. G. Fleming, and I. El-Kady. Three-dimensional photonic-crystal

emission through thermal excitation. Opt. Lett., 28:1909, 2003.

146



[44] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M.

Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur. A three-dimensional

photonic crystal operating at infrared wavelengths. Nature, 394:251, 1998.

[45] S. Y. Lin, J. Moreno, and J. G. Fleming. Three-dimensional photonic-crystal

emitter for thermal photovoltaic power generation. Appl. Phys. Lett., 83:380,

2003.

[46] S.-Y. Lin, J. Moreno, and J. G. Fleming. Response to "comment on 'three-

dimensional photonic-crystal emitter for thermal photovoltaic power genera-

tion"'. Appl. Phys. Lett., 84:1999, 2004.

[47] J. R. Link and M. J. Sailor. Smart dust: Self-assembling, self-orienting photonic

crystals of porous Si. P. Natl. Acad. Sci. USA, 100:10607-10610, 2003.

[48] C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos. Thermal radiation

from photonic crystals: A direct calculation. Phys. Rev. Lett., 93:213905, 2004.

[49] L. Martin-Moreno, F. J. Garcia-Vidal, and A. M. Somoza. Self-assembled triply

periodic minimal surfaces as molds for photonic band gap materials. Phys. Rev.

Lett., 83:73-75, 1999.

[50] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, and J. D.

Joannopoulos. Laser action from two-dimensional distributed feedback in pho-

tonic crystals. Appl. Phys. Lett., 74:7, 1999.

[51] A. Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos. Two-

dimensional photonic crystal couplers for unidirectional light output. Opt. Lett.,

25:942, 2000.

[52] H. J. Monkhorst and J. D. Pack. Special points for brillouin-zone integrations.

Phys. Rev. B, 13:5188-5192, 1976.

[53] B. A. Munk. Frequency Selective Surfaces Theory and Design. Wiley, New York,

2000.

147



[54] A. Narayanaswamy and G. Chen. Thermal emission control with one-dimensional

metallodielectric photonic crystals. Phys. Rev. B, 70:125101, 2004.

[55] M. A. Ordal, R. J. Bell, Jr. R. W. Alexander, L. L. Long, and M. R. Querry.

Optical properties of fourteen metals in the infrared and far infrared: Al, co, cu,

au, fe, pb, mo, ni, pd, pt, ag, ti, v and w. Appl. Opt., 24:4493, 1985.

[56] E. D. Palik. Handbook of Optical Constants. Academic Press, Inc., 1985.

[57] B. A. Parviz, D. Ryan, and G. M. Whitesides. Using self-assembly for the fabri-

cation of nano-scale electronic and photonic devices. IEEE T. Adv. Packaging,

26:233-241, 2003.

[58] S. Peng and G. M. Morris. Resonant scattering from two-dimensional gratings.

J. Opt. Soc. Am. A, 13:993, 1996.

[59] M. Planck. On the law of distribution of energy in the normal spectrum. Annalen

der Physik, 4:553, 1901.

[60] R. D. Pradhan, J. A. Bloodgood, and G. H. Watson. Photonic band structure

of bcc colloidal crystals. Phys. Rev. B, 55:9503-9507, 1999.

[61] M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T.

Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas. Photonic

crystal enhanced narrow-band infrared emitters. Appl. Phys. Lett., 81:4685, 2002.

[62] M. H. Qi et al. A three-dimensional optical photonic crystal with designed point

defects. Nature, 429:538-542, 2004.

[63] L. J. Raubenheimer and G. Gilat. Accurate numerical method of calculating

frequency distribution functions in solids. ii. extension to hcp crystals. Phys.

Rev., 157:586-599, 1967.

[64] F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, 1965.

148



[65] 0. E. Rogach et al. Self-organization of uniform silica globules into the three-

dimensional superlattice of artificial opals. Mat. Sci. Eng. B - Solid, 64:64-67,

1999.

[66] S. M. Rytov. Theory of Electric Fluctuations and Thermal Radiation. Academy

of Sciences Press, Moscow, Russia, english translation 1959 edition, 1953.

[67] Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel. Tunable photonic band

gap in self-assembled clusters of floating magnetic particles. Phys. Rev. B,

66:195108, 2002.

[68] H. Sai, T. Kamikawa, Y. Kanamori, K. Hane, H. Yugami, and M. Yamaguchi.

Thermophotovoltaic generation with microstructured tungsten selective emitters.

In Proceedings of the Sixth NREL Conference on Thermophotovoltaic Generation

of Electricity, pages 206-214, 2004.

[69] H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane. Spectral control

of thermal emission by periodic microstructured surfaces in the near-infrared

region. J. Opt. Soc. Am. A, 18:1471, 2001.

[70] M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and

A. S. Manka. Transparent, metallo-dielectric, one-dimensional, photonic band-

gap structures. J. Appl. Phys., 83:2377, 1998.

[71] H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos. Modified

spontaneous emission spectra of laser dye in inverse opal photonic crystals. Phys.

Rev. A, 63:011801(R), 2000.

[72] M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos. Op-

timal bistable switching in nonlinear photonic crystals. Phys. Rev. E, 66:055601,

2002.

[73] Marin Soljacic, Elefterios Lidorikis, Lene Vestergaard Hau, and J. D. Joannopou-

los. Enhancement of microcavity lifetimes using highly dispersive materials.

Phys. Rev. E, 71:026602, 2005.

149



[74] H. S. S6ziier and J. P. Dowling. Photonic band calculations for woodpile struc-

tures. J. Mod. Opt., 41:231, 1994.

[75] A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite-

Difference Time-Domain Method. Artech House, Norwood, MA, 2000.

[76] Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris. On-chip natural assembly

of silicon photonic bandgap crystals. Nature, 414:289-293, 2001.

[77] Yu. A. Vlasov et al. Manifestation of intrinsic defects in optical properties of

self-organized opal photonic crystals. Phys. Rev. E, 61:5784-5793, 2000.

[78] Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng. Three-dimensional

self-assembly of metal nanoparticles: Possible photonic crystal with a complete

gap below the plasma frequency. Phys. Rev. B, 64:113108, 2001.

[79] J. H. Weaver, C. G. Olson, and D. W. Lynch. Optical properties of crystalline

tungsten. Phys. Rev. B, 12:1293, 1975.

[80] M. A. Weinstein. On the validity of kirchhoff's law for a freely radiating body.

Am. J. Phys., 28:123, 1960.

[81] Y. Xu, Y. Li, R. K. Lee, and A. Yariv. Scattering-theory analysis of waveguide-

resonator coupling. Phys. Rev. E, 62:7389, 2000.

[82] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and elec-

tronics. Phys. Rev. Lett., 58:2059, 1987.

[83] M. F. Yanik, S. Fan, and M. Soljacic. High-contrast all-optical bistable switching

in photonic crystal microcavities. Appl. Phys. Lett., 83:2739, 2003.

[84] M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos. All-optical transistor

action with bistable switching in a photonic crystal cross-waveguide geometry.

Opt. Lett., 28:2506, 2003.

[85] V. Yannopapas, N. Stefanou, and A. Modinos. Effect of stacking faults on the

optical properties of inverted opals. Phys. Rev. Lett., 86:4811-4814, 2001.

150




