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Abstract

Despite their intrinsic advantages due to co-location, the two LIGO (Laser Interfer-
ometer Gravitational Wave Observatory) Hanford interferometers have not been used
in the search for the stochastic gravitational wave background due to their coupling
to a shared environment, which may be comparable to or exceed any gravitational
signal. In this thesis, using data from LIGO's fourth science run, we demonstrate
a technique to relate the H1-H2 coherence to coupling with physical environmental
channels. We show that the correspondence is tight enough to correctly identify re-
gions of high and low coupling and the nature of the coupling in the data set. A
simple thresholding provides frequency vetoes, which we can use to derive a signif-
icantly cleaner coherence spectrum. Next, using this frequency veto technique and
data from the first epoch of LIGO's fifth, currently running science run, we design,
implement, and perform a search for astrophysical populations of gravitational wave
emitters, which emit predominantly in the kilohertz region of the spectrum, a region
totally inaccessible to detectors separated by thousands of kilometers. As well as
providing us with a proof-of-concept, the results provide an advanced look at the
physical results to come from H1-H2 by the end of S5.
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Chapter 1

Introduction

This introductory chapter will give an overview of the LIGO instrumentation, define

the gravitational signals of interest, and review the basics of detection. Chapter 2

examines how correlations specifically of environmental origin can be identified and

excised, leaving behind a significantly better behaved data set, perhaps allowing us

to execute a stochastic search with co-located detectors for the first time. Chapter 3

steps through the physical models of several gravitational wave emitters, developing

theoretical spectra for which we can search. Chapter 4 discusses the final pipeline

which combines the developments of chapters 2 and 3 and reviews pipeline validation

through hardware injections. Chapter 5 contains the final results of this thesis work

and directions for future research.

1.1 Gravitational Wave Phenomenology

In a famous two sentence summary of Einstein's general relativity (GR), the great

relativist John Archibald Wheeler stated[8],

Matter tells space how to curve.

Space tells matter how to move.

More verbosely, GR provides dynamics for spacetime's curvature based on its mass

and energy contents, as well as dynamics describing what trajectories particles will



take when passing through curved spacetime. Curvature itself carries energy, and

gravitational waves are self-propagating waves of this spacetime curvature. Gravita-

tional waves arise very naturally in considering metric perturbations to otherwise flat

spacetime. We will discuss their production later, but for now will focus on salient

predicted features and the resulting effects whereby they are detectable.

Gravitational waves, like electromagnetic waves, are transverse waves, propagate

with the speed of light, have two independent polarizations, and follow a I/r 2 falloff

in energy, which corresponds to a 1/r falloff in electric field strength and gravita-

tional wave strain. Gravitational wave detectors like LIGO are often referred to as

gravitational antennas or gravitational telescopes, in analogy to radio wave detectors

which are radio antennas and in astronomers' hands become radio telescopes.

The polarization states of gravitational waves are rather different from the po-

larizations of light. For linearly polarized light normally incident on a polarization-

sensitive detector, one would have to rotate the detector 7 radians about the beam

axis in order to go from maximum signal to minimum signal and back to maximum

signal. For a gravitational wave in an identical setup, one would only have to ro-

tate the detector 7r/2 radians to go through the same cycle. These symmetries are

consistent with "plus" (+) and "cross" (x) polarization states, 7r/4 radians apart,

versus horizontal and vertical polarization states for light, 7r/2 radians apart. This

is consistent with gravitational fields being spin-2 and electromagnetic fields being

spin-i.

The effect of monochromatic, linearly polarized gravitational incident on a small

patch of spacetime is to sinusoidally squeeze and stretch it and its contents along

one axis, then along the perpendicular, all in the plane transverse to the direction

of propagation. The process is best described by the diagram of figure 1-1. The

amplitude of fractional length change (6L/L) along an optimally oriented axis is

half the gravitational wave strain. The instantaneous difference in fractional lengths

between perpendicular arms (differential strain, 6L1/Li - 6L 2 /L 2) has amplitude

equal to the gravitational wave strain. The strain of gravitational waves incident

onto the Earth are expected to be of order 10-21 or smaller. For two perpendicular



rods, each of length 4km, this corresponds to a differential displacement (6Li - 6L 2)

of 4 x 10-1"m, which is three orders of magnitude smaller than the radius of an atomic

nucleus.

+ 0 0 0 0
X s00* 0

0 7 7r 3w 2r2 2

Figure 1-1: The effects of gravitational waves incident on a circle of point particles.
The waves are linearly polarized plane waves traveling into the page. The top row
indicates the + polarization state and the bottom row indicates the x polarization
state. Time (and the waves' phases) increases from left to right. The strain shown
here (amplitude of stretch and squeeze) is h = 0.3, which is at least 20 orders of
magnitude larger than the gravitational wave strain we expect to observe with LIGO.

1.2 LIGO Interferometers

The Michelson interferometer is an ideal apparatus for gravitational wave detection.

It has exquisite sensitivity for differential length changes in its arms. In broad out-

line, the LIGO detectors are power-recycled Michelson interferometers with resonant

arm cavities, as we see in figure 1-2[11]. We will assume familiarity with a basic

Michelson interferometer. A power-recycling mirror allows for power buildup in the

interferometer. Power buildup in well-tuned resonant arm cavities magnifies strain

sensitivity in the interference fringe by a few orders of magnitude. Those resonant

arm cavities are capped by input test masses (ITMs) and end test masses (ETMs),

which are suspended mirrors. The mirrors, as well as every other optic, are seismically

isolated by complex, multiple pendulum systems such that we may approximate them

as inertial bodies along the beam axis. It is the differential displacement (6L 1 - 6L 2)



between these inertial cavities that is revealed at the readout port (also known as the

anti-symmetric port or dark port) and converted to differential strain.

ETMY

Figure 1-2: This is the basic optical layout of the LIGO interferometers. From the
input laser, the beam passes through the Recycling Mirror (labeled RM), then the
Beam Splitter (BS), where the beam splits to enter the resonant arm cavities (X and
Y arms). The resonant arm cavities are capped by the Input Test Masses (ITMs)
and the End Test Masses (ETMs).

Adding slightly more detail, the entire interferometer is enclosed within ultra high

vacuum beam tubes, achieving a gas pressure of less than 10-9 torr, the largest vac-

uum system ever constructed. The input optics, beam splitter, and readout table

are all in a common room called the LVEA (Laser Vacuum Equipment Area), as

depicted in figure 1-3. There are three LIGO interferometers between two sites, both

in the United States, separated by 3002km. In Livingston Parish in the state of

Louisiana, there is a 4km interferometer named L1. At the Hanford Nuclear Reserva-

tion in the state of Washington, there are two interferometers of arm length 4km and

2km, dubbed H1 and H2, respectively. Both Hanford interferometers utilize the same

evacuated beam tubes and LVEA, but separate buildings to house their respective

ETMs.

LIGO has reached or exceeded design sensitivity[3] in all of its instruments and S5

X



Figure 1-3: This is the building layout of Hanford.[1] The LVEA houses most of the
optics and electronics. The HI ETMs are in the end stations, and the H2 ETMs are
in the mid stations. The Livingston site is similar, but there are no mid stations, as
there is no 2km interferometer there.

(science run 5) has commenced. This thesis describes a technique to identify frequen-

cies of significant instrumental correlation between the LIGO (Laser Interferometer

Gravitational Wave Observatory) instruments HI and H2, the 4km and 2km inter-

ferometers at Hanford, Washington. Removing those frequencies, we gain the use of

H1 and H2 for the stochastic search, which adds a significant advantage, given their

geometry, opening the window to kilohertz gravitational waves.

1.2.1 Primary Noise Sources

The LIGO interferometers are complicated instruments. The current sensitivities are

the product of careful design and intensive noise hunting efforts. Figure 1-4 shows

current snapshots of best achieved strain noise among all of the LIGO interferome-

ters. The SRD (Science Requirements Document[3]) curve is a composite of three

fundamental noise sources in the instrument. What proceeds is a description of those

dominant noise sources limiting the current interferometer sensitivity.

LEFT
ARM
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ARM
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Figure 1-4: Best LIGO sensitivity curve as of June 4, 2006 with historical
comparisons[2]. h[f] is defined such that the signal energy in a given frequency band
is f h2[f]d f .

The SRD curve shows three distinct slopes (in log-log space). At low frequen-

cies, from OHz to approximately 40Hz, the noise floor is seismic in origin. Multiple-

pendulum systems attenuate low-frequency disturbances rapidly, h cx f- 14 in this

plot. The slope of the curve is vertical enough that it has become known as the

"seismic wall". L1 has been upgraded to an active seismic isolation system called

HEPI (Hydraulic External Pre-Isolation) due to excessive seismic noise in the local

environment, such as construction, logging, and passing trains.

At the high-frequency end, 150Hz and beyond, we have shot noise. Shot noise

arises from photon counting statistics in resolving the phase shift between the arms.

The interferometer mirrors are controlled to sit at an interference null, so that any

differential arm length changes appear as light. h oc f, and in the present configu-
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ration, the floor can be lowered by increasing laser power. However, for Advanced

LIGO, photons in squeezed quantum states may be used to improve the statistics and

thereby improve sensitivity [15].

In the intermediate frequency range of 40-150Hz, we observe thermal noise. Ther-

mal fluctuations in the mirror cause spontaneous, stochastic excitations of (primarily)

the fundamental pendulum mode [26] [17]. While every optic has thermal fluctuations,

the pendulum mode produces the greatest and only limiting noise in this band, at

present. A few ways one can drive down thermal noise are by changing the suspen-

sion material or geometry to that of higher effective Q (quality factor) and lowering

operating temperature to cryogenic levels[16].

While we have covered the three noise floors comprising the SRD noise curve, in

practice, there are many spectral lines on top of them (refer back to figure 1-4). At

every harmonic of 60Hz is the "60Hz comb", caused by the 60Hz alternating current in

United States electrical power transmission system. Every harmonic of violin modes

in the suspensions stands out, as well as numerous other mechanical resonances,

to varying degrees. There are times when the noise floor is elevated. High winds,

construction, logging, and passing trains couple to the interferometers through the

buildings which house the optics. Daily traffic patterns on nearby roadways cause

diurnal variation in low frequency noise.

1.2.2 LIGO Calibration

What is actually collected at the dark port is a discrete number of photodetector

counts in each sample period. To convert this to strain, h(t), we must use our knowl-

edge of the instrument to apply the appropriate gains. Calibration is generally done

in the frequency-domain and only converted back to time-domain if a time-series is

explicitly required. The official reference calibration document for S4 is available

online[14].

The net calibration uncertainty in S4 is approximately 8% for HI and H2 and

5% for L1, and will likely be similar for S5. In the stochastic search, we use two

interferometers, so the uncertainty in the result is the quadrature sum of the individual



uncertainties. H1-L1 and H2-L1 results will have 9% uncertainty and H1-H2 will have

11% uncertainty.

1.2.3 The Hanford LIGO Interferometers and the Stochastic

Search

In the search for the stochastic gravitational wave background, H1-H2 as a pair is

potentially more sensitive than the HI-L1 by roughly an order of magnitude for

initial LIGO 1, but H1-H2 has not yet provided a trusted result for the stochastic

search. The lasers, photodiodes, associated optics, and electronics for both Hanford

interferometers are located outside of the vacuum envelope in a shared room. Co-

location and co-alignment remove the geometric sensitivity penalty, quantified by the

overlap reduction function[23], at all frequencies, but co-location unavoidably entails

immersion in a common, noisy environment.

In a search for a faint, persistent correlation, this is a severe problem. Our inability

to handle instrumental correlations between HI and H2 has thus far prevented their

use together in the stochastic search. Table 1.2.3 summarizes each interferometer

pair's estimate of the effective stochastic background strength, Qeff, during LIGO's

first science run (SI) assuming a flat •2, (to be defined in section 1.3.2). HI-H2's

point estimate is thoroughly inconsistent with zero and is negative, unequivocally in-

dicating the presence of cross-correlated noise. This thesis describes an attempt to use

data from PEMs (Physical Environmental Monitors) to remove those frequencies with

instrumental correlations and potentially gain the use of the Hanford interferometer

pair for the analysis of the currently running S5 data set[2] and beyond.

1.3 Stochastic Gravitational Waves

From a detection standpoint, it makes a tremendous difference if our analyses are

listening for a distant collective muttering, a distinct thunderclap, the ring of a bell,
1The potential sensitivity advantage also exists for Advanced LIGO, but is greatly reduced due

to improved sensitivity at low frequencies.



IFO pair Qeff a Qeff/a

H1-H2 -16 1.8 -8.8
H1-L1 62 34 1.8
H2-L1 0.31 33 9.4. 10- 3

Table 1.1: LIGO S1 Results by interferometer pair. a is the standard deviation of
our measurement on Qeff. We assume a reduced Hubble constant of h1 00 = 0.72. [10]

or a single, vibrato note. In the pursuit of gravitational radiation, we distinguish

between target sources and design specialized search algorithms accordingly.

Continuous wave searches target sources which radiate continuously; pulsars are

persistent electromagnetic emitters of radiation and are believed to be continuous

sources of gravitational radiation as well. Inspiral searches look for the distinctive

signature of the radiation emitted before the coalescence of two compact objects,

and the subsequent ringing as asymmetry is radiated away. Burst searches target

waves passing through the detector which are well localized in time, as we expect

from supernovae and compact object coalescences. Finally, stochastic searches seek

to characterize the ensemble of gravitational wave sources that are past our ability

to detect individually. There are two distinct classes of stochastic waves: those of

cosmological origin, cast off in the immediate aftermath the Big Bang, and those

of astrophysical origin, which emanate from much more recent, condensed objects

we know as stars, white dwarfs, neutron stars, and black holes. This thesis relates

only to the stochastic background, so will not detail the other classes of gravitational

radiation any further.

1.3.1 Astrophysical Gravitational Wave Background

Rifling through our catalogues of known astronomical systems, we find only a few

objects with sufficient mass, sufficient asymmetry, and sufficient acceleration to throw

off appreciable quantities of gravitational radiation. Rather generically, the length and

time scales of neutron stars and stellar-mass black holes dictate that their radiation

spectra will peak within a factor of a few around 1kHz. Supermassive black hole and

white dwarf systems will radiate predominantly below 0.001Hz.



Depending on the dominant contributors, we expect varying degrees of anisotropy.

Directional searches will always make it a point to look closely in the direction of the

Virgo cluster, as Virgo is the nearest galaxy cluster to Earth and thus is probably

home to the most detectable unresolvable populations. Recently, Stefan Ballmer

developed an analysis[7] that measures the stochastic gravitational radiation from

each point on the sky assuming that there is a point source at each pixel location.

1.3.2 Spectrum

Stochastic gravitational radiation is usually quantified by Qgw (f), the ratio of energy

contained in gravitational waves, pgw, in the vicinity of frequency f to the energy

required to close the universe, Pcritical = 3HO/(8rG). Formally, it is given by the

expression:

1 dpgw
Ogw((f)- (1.1)

Pcritical d In f

Its definition involves In f so that Qgw(f) is dimensionless. This form is sometimes

shared by the other major cosmological background, the cosmic microwave back-

ground (CMB).

The seminal paper which describes the stochastic search as performed by the LSC

(LIGO Scientific Collaboration) is by Bruce Allen and Joseph Romano[5]. Section 1.3

more or less summarizes several sections of their paper, highlighting the equations

and discussions most relevant to and setting the notation for this thesis. We refer

readers to the Allen and Romano paper to clear up any ambiguity in the discussion

below.

1.3.3 Statistical Assumptions

In constructing the foundations of our signal processing strategy, we utilize four sim-

plifying assumptions. We assume the background is isotropic, unpolarized, stationary,

and Gaussian. For discussion of each of these assumptions, we refer once again to

Allen and Romano[5]. While we expect the stochastic background to adhere to our



assumptions, we know that terrestrial detectors, firmly planted upon the heavily traf-

ficked Earth, cannot; real detector streams will be non-stationary and non-Gaussian.

The LIGO stochastic search makes stationarity cuts and tests the Gaussianity of the

data.

1.3.4 Upper Limits

The only firm theoretical bound on Qgw(f) in observable frequencies (of order 10-

1000Hz for terrestrial detectors and 10- 4 - 10-1 for the proposed space interferometer,

LISA[19]) arises from standard Big Bang nucleosynthesis (BBN) models, and it only

applies to the cosmological background. A calculation of this bound with modern

parameters[22] is:

I Qgw(f)dlnf < 1.1 x 10-5(N - 3). (1.2)

Here, iV, is the effective number of light, relativistic particles present during BBN.

Measurements have provided a 95% confidence upper limit of N, - 3 < 1.3[13].

This bound is generally considered weak since it does not constrain the shape of

Qgw(f) at all and a priori, few expect the cosmological background to be very strong

anyway[20].

Experimental upper limits on the Qgw(f) have come from studying the cosmic

microwave background, timing millisecond pulsars, doppler-tracking man-made space-

craft, and running instruments dedicated to detecting gravitational waves, such as

cryogenic bars and earlier LIGO science runs[20][10]. Some of these have beat the

BBN bound, but in completely different frequency bands than LIGO. LIGO will

certainly beat the BBN bound in either the current S5 science run or the next. The

expected gravitational radiation from various cosmological models along with past

and future upper limits are shown in the "landscape" plot of figure 1-5. Note that

the very best projected upper limits involve co-located interferometers. This thesis

attempts to tap into some of H1-H2's superior sensitivity.



...... LIGO S 1
0 1----·~---LISA

2 ... .......... ...... .... ....... . ..... .. .. .  ... ........ ... .... .... ...............
-2

S -- LI--GO S3

CM -4 Cosmic strings Pulsar B
6 LIGO S5 (lyr. H1-L1)

LIGO S5 (1yr. H1-H2)• , -8 ... ... .i... ... ..- .... ...- .... ... i .. ... .i... ... .. :'- --/- -,- ...-,--. .. .......... --------t .. .. .. - ---------.... ..
-8

Pre-big bang

S -10 o d e .................. .... .......... .............
-J / EWorSUSY

12 I...........nflation - Phase transition--

-14 S i ow roll -- yclic mde -

-18-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10
f~ H - one oscillation in the Log (f [Hz]) i Plank ale - red shtr d from
lirtime of the universe the Plank era to the present time

Figure 1-5: The gravitational wave "landscape". It represents observational limits on
gravitational waves at different frequencies as well as a few theoretical predictions for
where we might expect to find gravitational waves. The LIGO S5 entries are based
on projections of design sensitivity curves integrated for a full year. The H1-H2
projection further assumes no instrumental correlation.

1.4 The Stochastic Search

While a stochastic background can be detected with a single detector (recall Penzias

and Wilson discovering the CMB[4]), it requires high signal to noise and considerable

confidence that one knows all of the instrument's noise sources. Cross-correlating two

detector streams yields far deeper sensitivity. It has been shown that even with many

interferometers at one's disposal, it is best to cross-correlate them in pairs and then

combine results[5] [21].

To simplify derivation, we will first consider co-located detectors and then gener-

alize, with the overlap reduction function, to more complicated geometry. Also, as

in Allen and Romano[5], we will begin by assuming that detector noise is stationary,

Gaussian, independent of other detectors' noise, and much larger than the signal we

seek. This section will highlight the equations and concepts most necessary to con-



duct a stochastic search. The subsequent sections will handle the more complicated

situations where we relax these assumptions or deal with an important effect of deal-

ing with real data. The case of combining multiple detector pairs is omitted, as it is

beyond the scope of this work.

1.4.1 The Basics, Optimal Filtering

The inputs to the stochastic search are the differential strain channels from two grav-

itational wave detectors. We model these time-series as the linear sum of all the

sources of noise intrinsic to the detector and a persistent gravitational wave signal.

The instruments are assumed to respond identically to gravitational waves and share

the same beam tubes (i.e., H1 and H2, but both the same length). The noise spectrum

does not vary in shape or intensity over time. Noise in one detector is statistically

independent of noise in the other.

Our signal model gives the signal, as measured by each of the detectors, sx and

s2 , in terms of the true gravitational strain, h, and statistically independent noise in

each instrument, nl and n2.

s l (t) = h(t) + nl(t) (1.3)

s 2 (t) = h(t) + n 2(t) (1.4)

We take the cross-correlation statistic by taking the product of the two streams

and integrating over the extent of our data set, T. We use Wiener filtering to maximize

our signal. Let - denote a frequency-domain function, Fourier Transformed from a

time-domain function.

/T/2 fT/2

Y = /2 sl(t)Q(t - t')S2(t') dt (1.5)
J -T/2 -T/2

= j 6T(f - f')§*(f)Q(f')92(f') df df'. (1.6)
-OO COC



6 T(f - f') is a sinc function approximation to the delta function that arises from

integrating over finite time. Q(f') is the optimal (Wiener) filter and is given up to a

normalization factor, A, either in terms of the physical quantity we desire to know,

gw (f), or in terms of the one-sided gravitational wave strain power at the detector

that we directly measure, Sgw(f) = 3H2fQgw(f)/(10r 2f 3). Ho is the Hubble constant.

Sgw(f)

SA Sgwfp(f) Sgw(f) (1.8)
Pl(f)P2(f)

P1 (f) and P2 (f) are one-sided strain noise power spectra of the two detectors. In

either case, we need to estimate the target spectrum to conduct an optimal search. In

chapter 3, we will review several models of various astrophysical Qgw(f) spectra and

their conversion to optimal filters. It is important to note that only the spectral shape

matters, as the stochastic search will essentially return the best-fit scaling factor.

Finally, we need to characterize the mean and variance of the cross-correlation

statistic in order to decide between detection and non-detection and also to relate

our cross-correlation measurement to a physical quantity. Note that the expression

for variance below neglects the contribution of gravity to the strain noise - our analysis

is conducted in a weak signal limit.

(Y) - T Q*(f) h*(f)h(f) df (1.9)

T Af" Sgw(f) 2

- f)P( df (1.10)

1
(h*(f')h(f)) = -6T(f-f') (1.11)2

4 J_ 0



T 2" S, (f)2" -TA j P' (f)P2f df (1.13)

The SNR (signal to noise ratio) will be maximized for the Wiener filter, Q(f),

that most accurately matches the stochastic gravitational wave background. That

SNR will be given by:

SNR y (Y) PI f) S(f)2 df 1/2. (1.14)

1.4.2 Non-trivial geometry

The overlap reduction function, -y(f) quantifies the geometric loss in sky-averaged

stochastic sensitivity experienced by two detectors that are not co-located and co-

aligned. This definition ensures that co-located and co-aligned interferometers have

an overlap reduction function of 1 at all frequencies (4/3 for bar detectors). If we

were to begin with two co-located and co-aligned detectors and moved them apart, we

would introduce a source location-dependent phase difference between the received

signals. Averaging over an radiation from every point in the sky, there is destructive

interference from the phase differences, resulting in a decrease in sensitivity. If we

were to rotate them away from co-alignment, the detectors would be sensitive to

different polarizations.

For plots of overlap reduction functions between pairs of interferometer sites from

{LIGO Hanford, LIGO Livingston, GEO-600, TAMA-300, and Virgo}, see Appendix

B of Allen and Romano[5]. In figure 1-6 below, we plot the overlap reduction functions

of H1-H2 and H1-L1, the latter having provided the best upper limits to date.

The overlap reduction function will give H1-H2 the better stochastic sensitivity

integrand (-yHL 1 /PL 1 < 'YHH2/PH2 ), and that potential sensitivity should motivate us

to enable them. Still, we should be cautious that better sensitivity may not be realized

in the final analysis if we veto most of the sensitive frequencies, and which frequencies

are sensitive is determined by the source spectrum for which we are searching. From

figure 1-6, we can say immediately that for high frequency searches, using H1-H2 is
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Figure 1-6: H1-L1 and H1-H2 overlap reduction functions. Above 300Hz, the H1-L1
overlap reduction function is essentially zero while the H1-H2 overlap reduction func-
tion remains at one.

absolutely essential.



Chapter 2

Identifying Environmental

Correlation in H1-H2

2.1 Introduction

One real-world issue we did not address in the first chapter is that of common en-

vironmental noise. When we integrate a cross-correlation between two gravitational

wave detectors, we actually obtain neff = Qgw + instr Qeff is comprised of a true grav-

itational signal and a signal which stems from non-gravitational correlations between

the instruments. Qinstr is particularly dangerous to an upper limit in Qgw in that it

can be positive or negative (from correlated or anti-correlated signals), whereas Qgw

must be positive.

For the case of Hi-L1, a few narrow-band sources of inter-site correlation have

been measured, such as the 1Hz comb that we believe stems from the GPS timing

pulses [7] [9]. However, having a phenomenon to which we can attribute these correla-

tions, we can remove them. Careful estimates and measurements lead us to believe

that other non-gravitational, inter-site correlations are well below the sensitivity of

our search, so we take Qinstr to be negligible and the measurement of Qeff to be a

direct measurement of £Qgw[23]. The HI-H2 pair, however, has known and unknown,

broad- and narrow-band sources of common environmental noise.

There are two analysis approaches to dealing with the common environmental



noise. The first, more ideal solution is to regress out environmental correlations[6].

The regression technique is delicate in that it can introduce new cross-correlations if

applied with insufficient care; its implementation is in the early stages of testing. We

describe a second, less ambitious approach - identify frequencies at which environ-

mental correlations are significant and exclude them from the stochastic search. As

we shall see, while this method is still being explored, its results are promising and

its implementation straightforward.

In section 2.2, we review practical knowledge of coherence, then examine H1-H2

coherence during LIGO's fourth science run (S4). Section 2.3 derives a relation be-

tween interferometer-interferometer coherence and interferometer-environmental co-

herences. We apply this relation in section 2.4, where we describe an algorithm which

can identify frequency regions with high environmental correlations. In the results

section, section 2.5, we demonstrate a significantly cleaner S4 H1-H2 coherence spec-

trum.

2.2 Coherence

To quantitatively characterize correlation, environmental or otherwise, we require a

metric. Coherence is a frequency-domain measure of correlation independent of the

spectral shape of the instruments' noise. However, coherence assumes stationary

processes with constant couplings. If the noise is of a transient nature or the coupling

changes over time, coherence is not a good measure. We should use coherence with

these caveats in mind.

A coherence spectrum, denoted Fxy(f), is the absolute square of the cross power

spectral density (CPSD) between the two channels of interest, normalized by the

individual power spectral densities (PSDs) of the channels. It is the absolute square

of a complex-valued quantity and is guaranteed to be between zero and one at each

frequency:

rxy (f) = yxy (f)1 2  Pxy(f) 2
Pxx (f)Pv(f) (2.1)



To estimate the coherence with a finite stretch of data, we use Welch's periodogram

method. How we choose to segment the data to form periodograms has ramifications

for our estimation of the coherence. The frequency resolution, Af, is the reciprocal

of the length of each data segment. The level of the coherence statistical noise floor

(the expectation value of coherence for channels uncorrelated at a given frequency) is

the reciprocal of the number of periodogram averages, N, which is inversely propor-

tional to segment length. In summary, by increasing segment length, we improve the

frequency resolution while increasing the noise floor.

Figure 2-1 shows the coherence between H1 and H2's gravitational strain channels

as measured over the course of S4. If the interferometers were perfectly insulated

from their common environment and the gravitational wave signature were below

detectability, we would observe no major excursions from the noise floor (figure 2-1)

and the coherence values would be exponentially distributed (figure 2-2). We expect

a real gravitational background signature to be fairly broad, unlike many of figure 2-

l's features. Furthermore, we can be sure that weak gravitational waves would not

couple to any of our environmental monitors.

2.3 Environmental contributions to coherence

We would like to learn how the environment contributes to IFO-IFO (interferometer-

interferometer) coherence. With this relation, we will estimate IFO-IFO coherence

based on IFO-PEM (interferometer-physical environmental monitor) coherences. We

can then set a simple threshold decision rule to identify contaminated frequencies.

The LIGO Hanford site has approximately 100 PEM sensors scattered through-

out the facility, such as thermometers, wind sensors, seismometers, accelerometers,

magnetometers, microphones, radio antennae and voltage monitors. However, ther-

mometers and wind sensors are omitted from our analysis because they have very low

sampling rates and frequencies below 40 or 50Hz are dominated by seismic distur-

bances; they would not provide any new information.

Let us derive the contribution to H1-H2 coherence from environmental couplings.
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Figure 2-2: Histograms of bin-by-bin coherence values averaged over all of S4. The
thick, solid line represents the expected distribution of F values if the two data streams
were uncorrelated. The remaining lines show histograms of coherence from real data,
with the veto threshold indicated by the legend. In all cases, the 0.1Hz band sur-
rounding injected pulsars and the 5Hz band surrounding each 60Hz harmonic were
vetoed.

We assume a linear channel model. X and Y are the channels of interest, i.e. H1 and

H2 interferometer differential strain channels, and Zi(f) are channels which might

cross-talk into X(f) and Y(f), i.e. PEM channels, and do not couple to gravitational

waves. These Zi(f) will couple into X and Y with transfer functions ai(f) and

A3(f), respectively. G(f) represents the true gravitational signal, which appears only

between X(f) and Y(f), with respective coupling constants aG(f) and 3G(f). nx(f)

and ny(f) are noise terms, intrinsic to each detector, and statistically independent

of one another.



X(f)

Y(f)

-= G(f)G(f) + c i(f)Zi(f) +nx(f)

= /c(f)G(f) + /pOi(f)Zi(f) + ny(f) (2.2)

PGZi = O, Pnxny = 0.

There are a large number of environmental disturbances that could couple to the

interferometers. They are generally not orthogonal, so there are cross-terms in de-

composing 'yxy into its constituent signals (henceforth, explicit frequency dependence

will not be denoted, but should be understood). The full, analytical expression for

the coherence between X and Y is then:

(2.3)Yinstr ýYXYG-O - i
VPX X PY Y

It takes only a few lines of derivation to show that we can equate Yinstr, the

instrumental component of H1-H2 IFO-IFO coherence, with a quantity composed of

purely IFO-PEM and PEM-PEM coherences. In the following, .- 1 denotes matrix

inversion.

k k PZkZz

vPxx Pz••

E, oPlzjzl

k c'Yzzi Zk
k XX

l

5 -1i YXzizz y
i~j

= z*Rz -1 /PzkzkPz 1z

k,l PXX PYY

Ek,l I4 )3 PZkZ,
V/ Px x P Yy

36

,/xzi

Yzj Y

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)



2

SFinstr V instr 2 = ZYx ZZ 7ZZ Y -- (2.9)

For a real world situation where we have a finite and incomplete coverage of the

environment, i, j = 1..N. Furthermore, there are nonlinear couplings in the system,

which are not encapsulated in our model (see section 2.4.3). The best we can do is

the following, where ^ denotes measurement:

2

Finstr xziz-1 (2.10)
i,j=1..N

The $zizj matrix is Hermitian and every diagonal element is 1, so with N channels,

we must compute N(N- 1)/2 matrix elements, which requires N(N-1)/2 PEM-PEM

coherence calculations. Additionally, for Finstr, we require 2N IFO-PEM coherence

calculations and as many N x N matrix inversions as there are frequency bins. For

our system, however, it turns out that we can do almost as well with just the 2N

IFO-PEM coherence calculations. Many channels are almost entirely redundant in

the information they convey (Zi(f) - aZj(f) for some a, possibly a = 0), especially

within a given narrow frequency band. Seismometers and accelerometers are highly

correlated below 40 to 50Hz; at 60Hz harmonics, all of the channels exhibit a coherent

peak due to power mains.

Let us assume that at each frequency, there is a single, dominant, physical under-

lying phenomenon. Multiple reports of the same phenomenon do not add much new

information. Furthermore, other quiet channels do not add much new information.

Because of channel redundancies and nearly zero rows and columns, the matrix zizi

is then almost singular and the inverse is difficult to compute numerically. We sidestep

the matrix inversion issue by removing all dominant channels but one, the most dom-

inant, and removing non-dominant channels, which we believe do not contribute. By

removing these channels' corresponding rows and columns from the PEM-PEM co-

herence matrix 7 (with elements 7ziz3), we remove the almost-singularity and happen

to leave behind a 1 x 1 matrix, y', whose only element's value is known since self-
coherence is always ' = (). Therefore, = (). Equation 2.10 reduces to

coherence is always 1: y' = (1). Therefore, y' = (1). Equation 2.10 reduces to



Finstr " "XZýZiZY 2 for the index i corresponding to the dominant channel. We inter-

pret the most dominant channel to be that with the greatest contribution to Finstr-

Therefore, for each separate frequency bin:

Finstr _ max /xzi7ziy[2  maxFxzj fZiY (2.11)
i i

Equation 2.11 is motivated by our knowledge that our system has many chan-

nels which provide nearly redundant information. After applying the above rank-

reduction scheme, there are N candidate channels over which to maximize, each of

which requires 2 coherence calculations. Requiring only 2N coherences makes the

approximation practical to compute over all available PEM channels and over very

long data sets. Having an estimate for Finstr(f), we can now set a threshold on the

maximum coherence contribution we want from the environment, within the error of

our estimate. We exclude from the stochastic search all frequencies for which Finstr (f)

exceeds this threshold.

2.4 Implementation

With our simple approximation, we can design a computer program to flag regions

of high environmental correlation. With this knowledge, the stochastic search can

ignore contaminated frequencies. Figure 2-3 shows the basic structure of one such

implementation. In summary, we compute IFO-PEM coherences, multiply spectra,

and take the bin-by-bin maximum across channels. The resulting spectrum is then

thresholded to provide frequency vetoes. The following subsections describe design

choices and the data set over which we provide initial checks of the method.

2.4.1 Degrees of Freedom

In generating vetoes, we must choose a data set, a set of channels, a frequency res-

olution, and a threshold. The question of threshold is important and is the topic

of section 2.4.2. This section describes the other choices made in conducting the
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Figure 2-3: Flowchart of our H1-H2 frequency veto generator. Data flows from left to
right. Hn:LSC-DARMERR are the gravitational wave channels and HO:PEM-XXXXMIC
are examples of microphone channels. F(f) denotes taking the coherence between the
two input channels, x denotes bin-by-bin multiplication, and max denotes taking the
maximum across PEM channels.

analysis.

In the test and validation of the technique described here, we use IFO-PEM co-

herences that had been previously computed for use in line-finding and other detector

characterization work, as the computation is rather intensive. This data set is a very

conservative subset of S4 data that excludes all segments marked as having a data

quality issue. H1-PEM coherences are computed with all surviving H1 segments, and

H2-PEM coherences are computed with all surviving H2 segments. The frequency

resolution is 0.01Hz. These parameters determine the length and number of segments

analyzed to be 100 seconds and N - 1.3 x 104 , respectively.

To help us gauge success, we test against a reference H1-H2 coherence measure-

ment to represent the response of the stochastic search to vetoes. We must also

choose data set and frequency resolution for this reference. Ideally, we would like

these reference parameters to match the IFO-PEM parameters, with both matching

the parameters that would be used in a real stochastic search. In this trial study,

however, the IFO-PEM parameters do not match what we would use for the stochastic

search. Nonetheless, we choose to make the reference H1-H2 coherence measurement



with the stochastic search's data set and frequency resolution. We use a subset of

H1-H2 coincident data in S4 that removes data known to be compromised due to

instrumental problems or otherwise taken during anomalously strong environmental

disturbances. The stochastic search uses a frequency resolution of 1/32Hz. These

choices set the length and number of segments to be 32 seconds and Nref 3.7 x 104,

respectively.

2.4.2 Threshold

There are two bounds between which we should place our threshold. The upper limit

is the 1/Nref noise floor of the reference coherence. If correlation above this level

is obvious in coherence, it seems likely that it could impact the stochastic search.

Naively, we should set a threshold to some level at or below this. The lower limit

on threshold is the 1/N 2 floor, which is naively the expectation value of the PEM

coherence products; if we set the threshold below that, we have no remaining data

to analyze. Actually, the "1/N 2" noise floor will be somewhat higher than 1/N 2 ,

since we are taking the maximum across 100 cproducts, each product being com-

posed of 2 independent random factors, each factor being drawn from an exponential

distribution.

We have not yet developed a solid metric other than coherence for directly assess-

ing environmental contamination, so the final choice is somewhat arbitrary at this

point. We have chosen two thresholds with which to evaluate this technique, one

at 6.8 x 10-6, which is a factor of 4 below the stochastic search's 1/Nref level, and

3 x 10-7, which we estimate is as low as we can set the threshold without cutting bins

that are definitely uncorrelated. Without formal calculations, these thresholds seem

reasonable. In the future, it may be possible to determine how to set our threshold

such that we maximize our stochastic sensitivity subject to a maximum environmental

contribution to Qeff, either analytically or via simulation.



2.4.3 Caveats

Let us consider what circumstances might confound our implementation in the real

world. Prominent considerations include possible false positives and false negatives.

False positives can occur primarily when the threshold is chosen to be below 1/N due

to the 1/N noise floor of the individual coherences. For instance, if the coherence

between the H1 differential strain channel and a microphone at 371Hz were 0.95 and if

the H2 differential strain channel and the same microphone were totally uncorrelated,

then we would measure the 0 coherence as approximately 1/N, so the coherence

product would be 0.95/N. A threshold below 0.95/N would then incorrectly assert

that H1 and H2 are coherent due to acoustic couplings at 371Hz. This type of

misidentification is not dangerous to the stochastic search per se, but results in a loss

of data.

False negatives, or misses, will contribute toward Qinstr. There are several reasons

we might not be able to identify frequencies that are coupled to the environment. Of

course, there is the question of whether our approximation is valid - is there really

one dominant physical source of correlation? Another is our choice of threshold -

have we removed enough correlation that Qinstr becomes negligible? We will discuss

this in the final section. Other contaminated regions we might accept as good are

literally due to blind spots - what if we are just not monitoring some phenomenon

in the environment that couples to the interferometers or are not monitoring near

enough to the coupling site? This will always be a possibility. Finally, this technique

cannot bound the coherence contribution from non-linear couplings. Further studies

using bicoherence are necessary to better assess the effects of non-linearities.

2.5 Results

Figures 2-2, 2-4, 2-5, and 2-6 give the final results of this initial experiment. We find

that we can identify nearly all regions of high H1-H2 coherence and the responsible

physical coupling by looking only at coherence between the interferometers and envi-

ronmental channels. The higher threshold does almost as well as the lower threshold,



as measured by the remaining coherence histogram of figure 2-2.

Looking at figure 2-4, the difference between the estimated coherence and the

measured reference coherence appears very small everywhere above the 1/N line,

demonstrating that equation 2.11 is a reasonable approximation. Not shown in this

thesis, but manually verified, is that we see exactly the redundancy in the channels

that we expect - a given coherent region would be vetoed individually in tens of

channels and the coherence feature is notable in many others.

With the higher threshold of 6.8 x 10-6, the coherence histogram shown in figure 2-

2 has orders of magnitude fewer outliers than that of no threshold, but still contains

several discrete deviations from expectation and systematically higher slope fall-off

in the tail. Referring again to figure 2-5, it looks as if the discrete outliers come from

the vicinity of 60Hz and that a large fraction of the tail might come from the vicinity

of 90Hz. This threshold seems not to be low enough.

Lowering the threshold to 3 x 10-', the coherence histogram of figure 2-2 is yet

better, with less excess over uncorrelated streams. Indeed, the histogram may be

consistent within counting statistics to no correlation. We interpret this as evidence

that there is sufficient information in our approximation to completely clean the

coherence within our ability to measure. We will discuss more advanced metrics in

chapter 5.

Between 50 and 350Hz, the most sensitive part of the instruments' range, 44%

of frequency space was vetoed with a threshold of 6.8 x 10- 6, and 93% with the

3 x 10- 7 threshold. Between 0 and 1024Hz, the total range of PEM coverage, 26% of

frequencies were vetoed with a threshold of 6.8 x 10- 6, and 60% with the 3 x 10- 7

threshold. As we ablate data, we erode H1-H2's advantage. Exactly how much

depends on the stochastic sensitivity integrand at those frequencies. Unfortunately,

we are primarily vetoing the lower frequencies, which are the most important in

searching for a flat stochastic background. While we still have to evaluate what

threshold is most appropriate, it is not clear yet whether or not H1-H2 will have

greater stochastic sensitivity than H1-L1 after vetoes.

An important result is that we have determined frequencies above roughly 420Hz
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to be largely free of contamination, making it appealing to use H1-H2 for higher fre-

quency searches for astrophysical sources of stochastic gravitational waves. This also

has ramifications for planned cryogenic bar detectors, which typically have narrow

sensitivity in the kilohertz region. Moreover, we have a useful detector characteriza-

tion tool. For each vetoed bin, we know the dominant environmental coupling. Even

if this technique does not succeed in its goal of enabling H1-H2 for trusted stochas-

tic upper limits better than those of H1-L1, it is at least a sensitive diagnostic for

improving the instruments.



Chapter 3

Modeling Astrophysical

Gravitational Wave Spectra

The previous chapter laid out a technique to remove common noise between the LIGO

Hanford instruments. With their relative geometry's improved sensitivity at high fre-

quencies relative to H1-L1 and H2-L1, the H1-H2 pair grants us better opportunities

to search for kilohertz-range astrophysical stochastic backgrounds.

To optimally search for the presence of a signal, we must perform Wiener filter-

ing. To form the optimal filter of equation 1.7, we require models of the stochastic

background's energy spectrum. This chapter will largely describe the methods and

results of Regimbau and de Freitas Pacheco, which they use in several papers to pre-

dict QRgw(f). Other authors use variations of the same idea. Source detectability is a

major focus of most astrophysical papers on gravitational waves, but we will depart

from them in that we care only about spectral shape and not amplitude.

3.1 General Technique

In order to obtain the amalgamated spectrum of a population of gravitational wave

emitters, we need to know the average source's emitted spectrum, the distribution of

these sources across space-time, and how radiation changes as it propagates through

an expanding universe. We will assume that sources will radiate in the same way



at all eras, and adopt parameters for that radiation spectrum from observational

averages. Let us relate Qgw(vo), the stochastic energy density spectrum as we measure

at observation frequency vo, to the spectra of individual sources and their places in

the universe.

Qgw (Vo) - dPgw
Pcritical d In vo
S8rG dpgwS- 0vo
3H0  dvo
87rG d(pgwC2 C)

= 3Hc 3Vo duo
87rG

- 3H2c3

(3.1)

(3.2)

(3.3)

(3.4)

We began with the definition of Qgw(f) and expanded definitions. Pcritical =

3H0/(8irG) and dpcritical/d ln v = Vodpcritical/dvo. Then, we converted mass density,

pgw, to the flux (erg-cm-2.s - 1) from an energy density pgwC2 moving at the speed of

light, c. We are now left with a specific flux, F,, [erg-s- 1 -Hz-l1 cm - 2] and prefactors.

Continuing,

= Jv(z) dRfo(-z) dz.dz
(3.5)

Here, we decompose the flux into the specific fluence from each source, fo [erg.Hz-l 1 cm-2],

integrated over the number of sources radiating per unit time per unit redshift, dR/dz

[s- 1.z - 1] . With this factorization, we have separated the spectra of individual sources

from their distribution across space-time.

3.1.1 Source Fluence

Let us reduce the fluence from an individual source in equation 3.5 further. It will

decompose naturally into an intrinsic source spectrum and a geometric factor.



fVo (z) 1 dEgw (3.6)
4(z) d (z) dvo v=io(1+z)

1 dEgw (1 + z) (3.7)
47dr (z) dv v=io(l+Z)

r(z) = E(z')' dL(z) = r(z)(1 + z), E(z) = V/Qm(1 •-z) 3 + QA (3.8)

r, dL, and E(z) are conceptually useful cosmological functions; an excellent ref-

erence for these is by Hogg[18]. Om and QA represent the fractions of matter and

dark energy, respectively, in the universe to the critical density. The specific fluence

is the specific energy radiated from a source diluted over a sphere of area 47rd2(z),

where we've assumed isotropic radiation and dL(z) is the luminosity distance to the

source. The redshift of the spectrum is taken into account by evaluating the specific

energy at the blue-shifted observation frequency. A dvo/dv = 1 + z factor allows us

to use the dE/dv function, which is the energy spectrum at the source and includes

the total radiated gravitational wave energy from that source. It is assumed to be the

same for all sources in a population. Now that we know how the fluence spectrum

appears to us from any given source, let us consider how the sources are distributed

throughout the universe.

3.1.2 Event Rate Density

On variables represented by R, the * superscript will denote mass per comoving

volume per year, and its omission will denote number per unit redshift. In general,

the gravitational wave event rate density, R*(z), can be related to the progenitor

systems' formation rate density, R*(z). We will leave this relationship unspecified at

the moment, as this varies from system to system. Let us relate R' (z) [M®-s- 1.Mpc -3 ]

with dRf/dz [s-l 1 z- 1]:



dRf _ Rf(z) dV (3.9)
dz 1+z dz

dV I  41rr(z)2 C 1 (3.10)
d z- Ho E(z)z

The factor of 1/(1 + z) is (dr/dt)-1 , where T is the observer's proper time and t is

the time as measured at the source. dV/dz is the volume enclosed within a sphere of

radius r(z), per unit redshift. See equation 3.8 for the definitions of the cosmological

quantities.

3.1.3 Summary

In summary, our population spectrum will be:

Qf\ 8rG [zmax R*(z) dEgw dz. (3.11)
3HO3C••2 E(z)(1 + z)2  dv v= o(+z)

Invariably, the event rate density, R*(z), will somehow relate back to the star

formation rate density, R*FR. We use Porciani and Madau's fit for an (Qm = 1, 2A =

0, h = 0.65) universe[24]1 , R*M, corrected for modern values (Qm = 0.3, QA = 0.7, h =

0.7):

h E(z)
R*FRj(z) = 0.65 (1 + z)3/2PM (3.12)

3.4z

RpM(z ) = 0.1 5 22. + e3.4z (3.13)

We truncate the SFR at z = 5. The spectra are largely insensitive to where this

cutoff lies.

Finally, we will often make use of the Salpeter initial mass function, ((m) =

Am - 2 j5. It models the mass distribution of newborn stars. mý(m) is the probability

1Actually, Porciani and Madau provide a couple fits to GRB data which differ in various correc-
tions at high redshift. The details of the SFR at high redshift do not strongly affect the spectra of
this thesis, so we chose their SFR2 model.



density of star formation at a given mass. A is the unit normalization of mý(m),

which we take over the range 0.1M® to 80M®.

Our population spectrum model is almost complete. Still needed are an indi-

vidual source's radiation spectrum, dE/dv, and a relationship between the source

population's event rate and their progenitors' formation rate. These are discussed on

a source-by-source basis in the following sections of this chapter.

3.2 Search Models

In this section, we will derive the radiation spectra for various gravitational wave

emitters. These systems were selected for having energy in frequencies accessible to

LIGO's H1-H2 pair and for well understood spectral shapes. Again, accurately mod-

eling the amplitude of the waveforms is not important for the purpose of performing

Wiener filtering.

3.2.1 Pulsars

Over the course of its magnetic spin-down, a lone neutron star with a small ellipticity,

E, moment of inertia, Iz, magnetic braking time-scale, Tm, and initial period, Po, will

radiate the net radiation spectrum of [25] [27]2:

dEgw = K = 512r 6 G 212 Tm 3. (3.14)
dv 5 c zz-02

Common assumptions for neutron star parameters are E = 10- 6 and

I = 1.4 x 1045 gcm 2. Regimbau and de Freitas Pacheco have estimated K =
3.7 x 1013 s- 1 via Monte Carlo simulation. The spectrum only holds in the (emitted)

frequency band [0, UK], where we take the initial Keplerian frequency to be vK

2500Hz.

Neutron stars are born from relatively massive stars, probably between 10M0  and

40M®, who consume their nuclear fuel quickly in cosmic time. We can therefore take

2 There is a factor of 2 missing from the equation given in [27].



the neutron star formation rate to be proportional to the cosmic star formation rate:

Ri s = ANsRSF R .  (3.15)

Using the Salpeter initial mass function, we obtain the neutron star progenitor mass

fraction ANS = f40M® ((m) = = 4.8 x 10-3 MJ. Therefore, the final contribution

due to g2 W due to solitary pulsars is:

=( 87G h 5127G 22 f max R*M(z)

QNs(4o) = ( 6
22  V S 4 PM dz. (3.16)

3H2C3 0.65 5C5  zz' P2 (1 + Z)
1 / 2

One final matter is that of the limits of integration. zmin we can set to 0 since

pulsars are continuous emitters and we do not have to worry about duty cycle and its

ramifications. Zmax is capped by the Keplerian frequency, UK. For each observation

frequency, v,, there is a redshift Zmax beyond which the maximum emitted frequency,

VK, redshifts below vo. Another limit is that there is no star formation past about

z = 5. We encode these physical constraints by setting:

max = min 250 H z  1,5 (3.17)

Performing numerical integration on QNs (v), we obtain the pulsar population's

gravitational wave spectrum in figure 3.2.1

3.2.2 Magnetars

Magnetars have the same gravitational radiation emission mechanism as standard

pulsars - while the neutron star is spinning down due to magnetic effects, they will

continuously emit gravitational radiation. The difference appears in that the magnetic

field is now strong enough to significantly deform the neutron star's shape. The degree

of deformation depends on the magnetic field geometry, the equation of state, and

whether or not the core is superconducting, but in general, the energy radiated per

source is much greater[28]. At the same time, there are far fewer magnetars than
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Figure 3-1: Expected stochastic gravitational wave background due to pulsars spin-
ning down throughout the universe. Magnetar spindowns will have the same spectral
shape, but an amplitude 10x greater.

other pulsars. The spectrum is - IOx larger than the pulsar spectrum, but the

uncertainties are also substantially greater.

As the magnetar spectrum is identical to the pulsar spectrum up to overall scaling,

no separate search is necessary.

3.2.3 Black Hole Ringdowns

Once their nuclear fuel is spent, some sufficiently massive stars will undergo core-

collapse and supernova, leaving behind a black hole. This violent process radiates

copiously in gravitational waves. While the process can be simulated in full GR and

the full spectrum can be calculated[30], the majority of energy is radiated in quasi-

normal mode (QNM) perturbations of the spacetime metric. We follow the simpler

computation of Tania Regimbau[25], which assumes that all energy is radiated at the

lowest-order QNM frequency.

As the QNM frequency is determined by the mass and each emitter will not be



the same, we cannot use a single ApdRf/dz as before. Instead, we will incorporate

the mass information via a dRf/dzdm, then integrate over the mass range of stars

that eventually collapse to black holes.

dEgw = eamc26(v - v(m)) (3.18)
du

dRf(z) ) RFR(z) dV (3.19)
dzdm 1+z dz

am

m is the progenitor mass. a is the fraction of the progenitor mass that goes into

the black hole, which we take to be 0.2. c is the fraction of black hole mass converted

to gravitational waves, which we approximate with E 10-4.A is the frequency of

the lowest-order QNM for a 1Me black hole, which has been calculated as A 0 12kHz,

and v (m) is the frequency of the lowest-order QNM for a black hole of arbitrary mass.

((m) = Am -2.35 is our familiar Salpeter initial mass function, and we again use the

cosmic star formation rate, as black hole progenitors are very massive and collapse

quickly, so the star formation rate has not changed appreciably between formation

and collapse times. Using this information:

85rG
Qgw (7o) 8r= 3g 1VoF (3.21)

/zmax(vo) o80M c ® (m)RS*(z) dEgw

dEgw dm dz (3.22)zmn(Vo) 40M® Ho (1 + z) 2E(z) du v=v(1+z)

2 c( a 0.35 h .65zmax(vo) R•PM(Z ) dz
SAac -0.65 (3.23)

H0o \AI 0.65 Jzmin(vo) (1 + z) 4.15

8irG (/a•0.35 5h zax(f o R PM (z) dz
cgw(Vo) .= Aa 5  (3.24)

3H3 0 .65 o zmin(o (1+ )4.15

The redshift limits of integration are determined by the QNM frequencies of 40M®

and 80M® black hole progenitors. At low enough observation frequencies, even 80M0

progenitor-mass black holes will have QNM frequencies too high to observe at z = 5.



Conversely, at high observation frequencies, even 40MO progenitor-mass black holes

will have QNM frequencies too low to observe at z = 0. We can codify these bounds

as:

Zmin (Vo)

zmax(Vo)

= max , 750Hz
Vo

= min 15 0 H z - 1, 5
Vo

(3.25)

(3.26)

The model can be numerically integrated to produce the spectrum of figure 3-2.
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Figure 3-2: Expected stochastic gravitational wave
forming and ringing down throughout the universe.

background due to black holes

3.2.4 Double Neutron Star Coalescences

When two neutron stars collide, copious gravitational radiation is released during

the final inspiralling orbits. The stochastic background of these gravitational wave

bursts is among the most detectable of models considered here. While Regimbau and



de Freitas Pacheco[29] apply Monte Carlo techniques to determine the population

stochastic background, we find that we can perform the calculation with numerical

integration alone.

In the quadrupolar approximation, two masses, mi and m2, which we will even-

tually take to be 1.4M®, that execute an inspiral will radiate according to:

dEgw (GOr)2 / 3  mlm2 -1/3 (3.27)
dv 3 (ml + m 2) 1/3

with a cutofff frequency equal to twice the Keplerian frequency at surface contact, or

about 1500Hz.

The relationship between coalescence rate and the star formation rate is more

complicated. The two massive stars of a double neutron star (DNS) progenitor system

form according to the cosmic star formation rate. Being DNS system progenitors,

they expend their nuclear fuel quickly (in a short 108 years) and manage to remain

in bound orbits after the supernovae. The mass fraction of such systems is estimated

to be Ap = 1.85 x 10- 5 M,1 by simulation. Next, the newly formed neutron stars

have some decreasing orbital separation and will eventually merge, but the merger

timescale can vary widely. Further simulations show a minimum merger time of

2 x 105 years and a long-tailed merger probability density function of P(T) = B/7,

where B is the normalization over the span 2 x 105 to 2 x 1010 years and has the

value B = 0.087. Therefore, at each redshift ze, the DNS merger rate is the integral

over the DNS formation rate at each point in the past, dRf/dzlzf, multiplied by the

probability of merger at zc, P(T(zf, zc)) . dt/dzlzc:

dRc P(r(z) dt dZRSR dz'. (3.28)
dz Z z dz z dz zI

This tricky function can be numerically integrated at each z then substituted into

our final expression:

Qgw () 87rG f Zmax(Vo) 1 dRc dEgw dz. (3.29)
3Ho3c2 i 47rd(z) dz dv v=vo(1+z)



Finally, we need limits of integration. On the lower end, we are constrained by duty

cycle. As DNS coalescences are short-duration and rare events, one has to consider

a very large volume before one can be continuously bathed in their gravitational

waves. As the stochastic search is optimized for continuous stochastic backgrounds,

we must constrain ourselves to search for sources at high duty-cycle redshifts. We

define duty-cycle as following:

D(z) = (1 + z') dz', (3.30)
fo dz zI

where 7 is the mean duration of the gravitational wave emission. It is multiplied by

rate per unit redshift at each redshift to obtain an average number of events occurring

simultaneously in the volume out to z. The redshift at which the duty-cycle is 1, a

semi-arbitrary choice, is z f 0.23 for our star formation model. We exclude everything

with lower duty cycle by setting Zmin = 0.23. At the upper end, we are constrained

by the high-frequency radiation cutoff, so:

Zmx = min {1500Hz - 1,5} (3.31)

3.2.5 Neutron Star Bar Modes

Rapidly spinning neutron stars can become unstable to r-modes (rotational modes) of

1 > 2. The 1 = 2 mode deforms the neutron star to a bar-like geometry, and is often

called a bar mode. Such geometry and kinematics give rise to copious gravitational

radiation[31]. Unfortunately, there are several aspects of these models are contro-

versial and perhaps over-optimistic, and as they affect the amplitude and spectral

shape[25], we decline to search for this population.
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Figure 3-3: Expected stochastic gravitational wave background due to double neutron
star mergers throughout the universe.



Chapter 4

A Search for Astrophysical

Gravitational Radiation

With candidate spectra from chapter 3, and H1-H2 frequency vetoes from chapter 2,

we are ready to design and execute a search. This chapter describes the design and

validation of the search. Validation was performed on S4 and the first three months

of S5 data, which I will call S5a. The data of S5a is described in section 5.1. All

nine-digit times are GPS times, that is, seconds since the start of the GPS epoch,

00:00:00 UTC on January 6, 1980. Wherever two error bars follow a measurement,

the first error bar is statistical uncertainty, and the second is systematic calibration

uncertainty.

4.1 Search Pipeline

The search proceeds according to the standard stochastic search pipeline, largely

described in chapter 1, with two additions - frequency vetoes and custom optimal

filters. The code to produce and use optimal filters from spectra was recently written

for use in the gravitational radiometer search [7] and works in the present context

with only trivial modification. The code to produce frequency vetoes was written for

the analysis of chapter 2. The analysis parameters, including PEM channels used are

in Appendix A.



Figure 4-1: Flowchart of the pipeline used in this thesis to measure stochastic back-
grounds of astrophysical gravitational waves. The LIGO stochastic analysis is de-
scribed in references [9], [10], and [12].

4.2 Low-Frequency Validation with Hardware In-

jections

While we saw in chapter 2 that thresholding the coherence product maxima makes

the resulting H1-H2 coherence appear clean, one way to gain confidence in the tech-

nique is to use it to successfully recover hardware injections. Hardware injections

are gravitational wave-like differential strains induced by physically shaking optics at

one end of each interferometer. For stochastic injections, the signals' spectral char-

acteristics are generally designed to mimic a flat Qgw spectrum. We search for the

injections in the sensitive region of detector response, 40-500Hz, where environmental

correlations are also strongest. Successfully recovering the injected amplitude gives

some confidence in the efficacy of a data analysis pipeline.



4.2.1 S4 Hardware Injections

Three S4 hardware injections were previously analyzed for H1-L1 and H2-L1, and

are given in table 4.1 for comparison. The injection #1 is ignored due to missing

calibration. During injection #4, H2's laser was unstable. Injection #5 was H1-H2

only. For each measured value, the first error bars are statistical uncertainties, and the

second are the calibration uncertainties. Within a given injection segment, injected

amplitudes are not the same for different pairs due to the inaccuracy of our knowledge

of the calibration at the time that the injections were performed. V4 calibration was

used. All analyzed injections were recovered by the standard stochastic analysis.

Injection Start time Duration Injected Qgw,o Measured Qgw,o

#2 (HI-L1) 794623800 3610 4.7 x 10-2 (4.1 ± 0.1 ± 0.4) x 10-2
#2 (H2-L1) 794623800 3610 4.1 x 10-2 (3.6 ± 0.2 ± 0.3) x 10- 2

#3 (H1-L1) 794628333 1024 1.3 x 10- 2 (1.3 ± 0.2 ± 0.1) x 10- 2

#3 (H2-L1) 794628333 1024 1.2 x 10- 2 (0.8 ± 0.3 ± 0.1) x 10- 2

#4 (H1-L1) 794683400 20600 5.8 x 10- 3  (4.9 ± 0.2 ± 0.5) x 10- 3

Table 4.1: S4 hardware injection results for H1-L1 and H2-L1 pairs. All injections
were successfully recovered for both pairs. Start time is in GPS seconds and duration
is in seconds.

Using our technique of generating frequency vetoes, we analyzed the relevant hard-

ware injections in H1-H2. Results are given in table 4.2 with various thresholds. The

threshold=l case does not threshold the coherence product maxima at all, but still

removes 60Hz harmonics and the pulsar injections, which occur at fixed frequencies

and are present through much of the run.

All three S4 H1-H2 hardware injections were recovered, though the systematic

calibration errors completely dominate the error. Calibration uncertainty is approxi-

mately 11%.

4.2.2 S5a Hardware Injections

During S5a, the beginning epoch of S5, two stochastic hardware injections were per-

formed. For H1-L1 and H2-L1 standard stochastic searches, both injections were

recovered, as summarized in table 4.3. Note that the table covers only triple coinci-



Injection/Threshold Start time Duration Injected ~0 Measured •o

#2 (HI-H2) 794623162 4498 4.43 x 10-2
threshold = 1.0 - - (3.953 ± .011 ± .435) x 10- 2

threshold = 6.8 x 10- 6 - - (3.948 ± .014 ± .434) x 10- 2

threshold = 3 x 10- 7  - - (4.002 ± .041 ± .440) x 10- 2

#3 (H1-H2) 794628333 1024 1.03 x 10-2
threshold = 1.0 - - (0.899 ± .020 ± .099) x 10-2
threshold = 6.8 x 10-6 - - (0.896 ± .025 ± .099) x 10- 2

threshold = 3 x 10- 7  - - (0.827 .071 ± .091) x 10- 2

#5 (Hi-H2) 794623162 14398 5.42 x 10-3
threshold = 1.0 - - (5.116 ± .056 ± .526) x 10-3
threshold = 6.8 x 10- 6 - - (5.260 ± .074 ± .579) x 10- 3

threshold = 3 x 10-  - - (5.033 ± .203 ± .554) x 10- 3

Table 4.2: S4 hardware injection results for H1-H2. Thresholds are applied to the
coherence product maxima to produce frequency vetoes, as described in chapter 2.
Start time is in GPS seconds and duration is in seconds.

dence times for more direct comparison to the H1-H2 case. The HI-L1 and H2-L1

analyses were also successful over the full double coincidence intervals. Additionally,

the set of PEM channels used is identical to the set used for S4 analysis, and the

channels are listed in Appendix A. V2 calibration was used.

Injection Start time Duration Nominal Qgw,0  Measured Qgw,o

#1 (H1-L1) 822198750 960 1 0.92 ± .04 ± .10
#1 (H2-L1) 822198750 960 1 1.01 ± .05 ± .11
#2 (H1-L1) 822201020 1152 10-2 (1.09 ± .12 ± .12) x 10- 2

#2 (H2-L1) 822201020 1152 10- 2 (1.11 ± .21 ± .12) x 10- 2

Table 4.3: S5a hardware injection results for HI-L1 and H2-L1 pairs during triple
coincidence times only. Both injections were successfully recovered for both pairs.
Start time is in GPS seconds and duration is in seconds.

The same analysis was performed for H1-H2 in table 4.4 and all injections were

recovered. As the threshold lowers, we do not see any systematic drift of the point

estimate. We also see the lower bound of thresholding; for the weaker injection and

lowest threshold, we fail to discriminate signal from noise.

Unfortunately, such high calibration uncertainties with such strong hardware in-

jections do not constrain Qinstr. Further studies with software injections at lower

injection amplitudes are necessary to probe the effectiveness of this technique and



Injection Start time Duration Nominal Qgw,o Measured Qgwo

#1 (H1-H2) 822198750 960 1
Threshold = 1.00 - - (964.63 ± 2.56 ± 106.11) x 10- 3

Threshold = 4.02 x 10-6 - - (961.11 ± 2.77 ± 105.72) x 10- 3

Threshold = 1.27 x 10-6 - - (958.65 ± 2.98 ± 105.45) x 10- 3

Threshold = 4.02 x 10- 7  - - (950.58 ± 3.47 ± 104.56) x 10- 3

Threshold = 1.27 x 10- 7  - - (935.84 ± 4.64 ± 102.94) x 10- 3

Threshold = 4.02 x 10- s  - - (917.02 ± 7.06 ± 100.87) x 10- 3

Threshold = 1.27 x 10- s  - - (86.49 ± 1.29 ± 9.29) x 10- 2

Threshold = 4.02 x 10- 9  - - (89.61 ± 3.26 ± 9.86) x 10- 2

Threshold = 1.27 x 10-  - - (9.48 ± 1.22 ± 1.04) x 10-1

#2 (H1-H2) 822201020 1152 10-2
Threshold = 1.00 - - (961.74 ± 9.65 ± 105.79) x 10- 5

Threshold = 4.02 x 10- 6  - - (963.42 ± 9.87 ± 105.98) x 10- 5

Threshold = 1.27 x 10-6 - - (96.86 ± 1.04 ± 10.65) x 10- 4

Threshold = 4.02 x 10- 7  - - (96.76 ± 1.21 ± 10.64) x 10- 4

Threshold = 1.27 x 10- 7  - - (96.82 ± 1.62 ± 10.65) x 10- 4

Threshold = 4.02 x 10- s  - - (100.63 ± 2.62 ± 11.07) x 10- 4

Threshold = 1.27 x 10- s  - - (97.41 ± 6.23 ± 10.72) x 10- 4

Threshold = 4.02 x 10- 9  - - (9.46 ± 1.82 ± 1.04) x 10- 3

Threshold = 1.27 x 10- 9  - - (9.78 ±- 4.44 ± 1.08) x 10-2

Table 4.4: S5a hardware injection results for H1-H2 pairs during triple coincidence
times. Thresholds are applied to the coherence product maxima to produce frequency
vetoes, as described in chapter 2. We expect and assume an 11% systematic uncer-
tainty, based on S4 calibrations. Start time is in GPS seconds and duration is in
seconds.

determine a good threshold.





Chapter 5

S5a H1-H2 Results

The pipeline described in chapter 4 was run for H1-H2 on the S5a data set. We quote

measured values of Q• for a flat energy spectrum and astrophysical backgrounds

of pulsars/magnetars, black hole ringdowns, and double neutron star coalescences.

Unfortunately, the results here will stand only as a proof of concept. Before formal,

Bayesian upper limits can be placed on physical quantities, we must bound Qinstr,

which remains a future work, and is described in the final section.

5.1 Data Selection

The analysis was performed over the S5a epoch, GPS times 815402926 to 823284014,

Nov 07 2005 12:48:33 UTC to Feb 06 2006 18:00:00 UTC, or S5 start to the February

commissioning break, while both H1 and H2 were in science mode and while there

were no obvious problems with data quality. We omitted time intervals during which

calibration is missing, when laser or electronics glitches appeared, when local wind

speeds reached 30 miles per hour, and the 30 seconds prior to each loss of interfer-

ometer lock.

After restricting ourselves to double-coincidence times and making these data

quality cuts, net live time was 7.1 x 106 seconds of the 7.8 x 106 in the epoch. The

actual time run through the coherence portion of the pipeline and actual time run

through the stochastic analysis will be smaller, since data can only be analyzed in



minimum length-chunks - 32 seconds for coherences and 578 seconds for the stochastic

analysis.

5.2 S5a H1-H2 Coherence Spectrum

It is useful to examine properties of the coherence spectrum, as in chapter 2. Figure 5-

1 shows us the H1-H2 coherence over the coherence product maxima approximation.

Again, we see that the approximation follows the measured coherence quite closely

above the 1/N line. Only near 60Hz harmonics, where non-linear interferometer

effects occur, do we see noticeable deviation.

Post-veto coherence histograms can be seen in figure 5-2. They show that for all

but the loosest thresholds, the excess coherence over null is very small. Note that

this does not cover the high-coherence tail, where there are several discrete outliers.

Coherence measurements indicate a clean coherence distribution for most thresholds.

5.3 Flat Qgw Spectrum

The flat Qgw is the standard target of the LIGO stochastic search. We present such a

search with H1-H2 to directly compare sensitivity with H1-L1 in the band 40-500Hz.

While the result cannot yet be construed as a physical statement, the error bar is

sufficiently small that it may serve to whet the appetite for future H1-H2 work. Again,

calibration uncertainty is assumed to be 11%, based on S4 calibration.

5.3.1 Result

In table 5.1, we immediately see that for certain thresholds, the point estimate raised

to significantly non-zero values. This is clear indication that negative Qinstr had been

removed. The subsequent lowering indicates that positive correlation was removed

also. Unfortunately, we don't know if all instrumental correlation is removed in the

end, despite a null result. The error bar increases with decreasing threshold because

we are analyzing less and less data.
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Figure 5-1: S5a H1-H2 coherence and the IFO-PEM coherence product maxima ap-
proximation. The top trace is the direct H1-H2 coherence and the lower trace repre-
sents the coherence product maxima. The gray, horizontal line at 1/N ý 10- 5 is the
noise floor of the former.
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Figure 5-2: Normalized coherence histograms for surviving S5a H1-H2 coherence after
veto.

We have no a priori method of choosing a threshold, but it would seem that

everything below a threshold of 4.02 x 10-8 yields a non-detection. We will use

this threshold as a test case for our diagnostics. The error bar of 4.22 x 10-6 is

an estimated factor of - 4 better than the corresponding H1-L1 error for the same

analysis. Marginalizing over Qinstr will surely erode this advantage, but this result

is encouraging nonetheless. In particular, our error bar is well under the BBN limit

(see section 1.3.4). The full S5 data set should be at least four times as long as the

S5a data set, halving the error bar in the final analysis. If the marginalization does

not inflate the error bar by more than a factor of eight, then LIGO will be ready to

make a meaningful physical statement at the end of S5.

_Nr
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Threshold Measured Point Estimate SNR In-band BW Sensitive BW
1.00 x 100 (6.14 ± 1.54 ± .68) x 10-6 3.6 .912 .939
4.02 x 10-6 (2.94 ± 1.57 ± .32) x 10-6 1.8 .763 .919
1.27 x 10- 6 (4.52 ± 1.65 ± .50) x 10-6 2.6 .666 .848
4.02 x 10- 7  (11.46 ± 1.94 ± 1.26) x 10-6 5.0 .531 .667
1.27 x 10- 7  (17.19 ± 2.57 ± 1.89) x 10-6 5.4 .364 .415
4.02 x 10- 8 (7.25 ± 4.22 ± .80) x 10-6 1.7 .220 .177
1.27 x 10- 8  (15.62 ± 10.30 ± 1.72) x 10-6 1.5 .102 .036
4.02 x 10- 9  (2.13 ± 2.90 ± .23) x 10- 5  0.7 .026 .007
1.27 x 10- 9  (15.22 + 12.18 + 1.67) x 10- 4  1.2 .005 .000

Table 5.1: S5a H1-H2 Flat Spectrum Results. Error bars represent statistical uncer-
tainty, then calibration uncertainty. SNR is calculated using the root sum squares of
the uncertainties. The final two columns hold the fraction of bandwidth remaining
after veto. In-band BW refers to the entire analysis band of 40-500Hz. Sensitive BW
refers to the frequency region between the ist and 99th percentiles of cumulative sen-
sitivity (as integrated over frequency), or 77.25-160.84375Hz. Calibration uncertainty
is assumed to be 11%.

5.3.2 Diagnostic Checks

Here we review diagnostic plots for a threshold of 4.02 x 10- 8, figures 5-3 through

5-5. They are unfortunately inconclusive as to residual correlation in the result.

Figure 5-3 shows the cumulative point estimate as additional data is included over

the course of the run. In the absence of systematic correlations between instruments,

the point estimate error bars would continuously constrict around zero. This behavior

we see in this plot seems perfectly consistent with a null result.

Figure 5-4 shows the coherence and the coherence product maxima again, but this

time, we show the vetoed regions in red. Figure 5-5 shows us the relative contribution

of each surviving frequency bin. We see that there are clear high coherence outliers,

probably from non-linear up-conversion of seismic or acoustic disturbances, optical

effects, or other, unmonitored influences which should be investigated further. In

future analyses, these can certainly be thresholded and removed, since we believe

that a stochastic background will be relatively smooth and will not contain sharp

peaks.

One common diagnostic is the Fourier Transform of the point estimate's frequency-

domain integrand, in which one obtains the point estimate as a function of time-shift.
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Figure 5-3: The running point estimate of the S5a H1-H2 flat Qgw stochastic analysis.
At each time, the ordinate is the point estimate as integrated over all prior data. The
blue region is the 90% confidence region, i.e., 1.65a. The data shown have been
smoothed via interpolation.

That is, the value at a given time-shift is the point estimate that would have been

measured with that time-shift introduced between the data channels, integrated over

the data set. However, with this analysis, we have cut out frequency bins wholesale,

and the effect of such notching is to make the time-domain ring. It seems likely that

this diagnostic is no longer useful with the addition of frequency vetoes.

In summary, we see no indication of environmental contamination still present in

the H1-H2 stochastic result with an applied threshold of 4.02 x 10- . Unfortunately,

our diagnostics do not discount the possibility. Again, what remains is to quantify

that residual contamination.
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Figure 5-5: Top: Hi and H2 interferometer strain noise curves as measured in Jan-
uary 2006, about midway through S5a. Middle: H1-H2 stochastic search sensitivity
integrand, with vetoes applied. Frequencies with larger sensitivity integrands con-
tribute more to the point estimate. Units are not particularly meaningful, so we omit
them. The scaling on the y axis is logarithmic. Integrating from low frequency to
high, 1% and 99% accumulated sensitivity percentiles are 77.25Hz and 160.84375Hz,
respectively. Bottom: Coherence from frequency bins which survive the frequency
veto with threshold 4.02 x 10 8 . The grey, dashed line indicates 1/N, the coherence
noise floor, and the red, dashed line indicates 10.4/N, the coherence level below which
one would expect all coherences, were the coherence all drawn from an uncorrelated
distribution (exp(-NF)), with a false rate of approximately 1 in 32768.

5.4 Pulsar/Magnetar Results

For a background of unresolved pulsars, we expected to see nothing and our expecta-

tions have been met in table 5.2. We are six orders of magnitude away from being able

to detect the pulsar background as predicted. The magnetar background may be as

much as a factor of two stronger overall, but again produce the same spectral shape.

With both models having large uncertainties in amplitude, we are perhaps five orders

of magnitude in sensitivity from any constraining statement on these populations.

A brief note on orders of magnitude in point estimates: The flat search returned

very small values because the signal for which we optimally filter has (constant)

magnitude 1, and our sensitivity is well below that. Here, the signal for which we are

optimally filtering has very small input amplitude and our sensitivity is well above

0 -
C14 0



that, so we see very large point estimates.

Threshold Measured Point Estimate SNR
Threshold = 1.00 x 100 (22.19 ± 1.23 ± 2.44) x 106 8.1
Threshold = 4.02 x 10-6 (1.85 ± 1.36 ± .20) x 106 1.3
Threshold = 1.27 x 10-6 (2.90 ± 1.47 + .32) x 106 1.9
Threshold = 4.02 x 10- 7  (1.71 ± 1.66 ± .19) x 106 1.0
Threshold = 1.27 x 10- 7  (2.27 ± 2.03 ± .25) x 106 1.1
Threshold = 4.02 x 10-8 (1.23 ± 2.60 ± .14) x 106 0.5
Threshold = 1.27 x 10-8 (4.82 + 3.92 ± .53) x 106 1.2
Threshold = 4.02 x 10- 9  (2.22 ± 1.02 ± .24) x 107 2.1
Threshold = 1.27 x 10- 9  (6.30 ± 3.25 ± .73) x 107 2.0

Table 5.2: S5a H1-H2 Pulsar/Magnetar Results

5.5 Black Hole Ringdown Results

In table 5.3, we see no indication of a black hole ringdown background. Our sen-

sitivity is six orders of magnitude away from detection at the estimated strength.

Constraining physical statements might occur at five orders of magnitude sensitivity

improvement.

Threshold
Threshold = 1.00 x 100

Threshold = 4.02 x 10-6
Threshold = 1.27 x 10-6
Threshold = 4.02 x 10-7
Threshold = 1.27 x 10-7
Threshold = 4.02 x 10- s

Threshold = 1.27 x 10-8
Threshold = 4.02 x 10-9
Threshold = 1.27 x 10-9

Table 5.3: S5a H1-H2

Measured Point Estimate

(35.54 ± 1.73 ± 3.91) x 105
(4.70 ± 1.99 ± .52) x 105
(6.87 ± 2.17 ± .76) x 105
(7.45 + 2.47 ± .82) x 105
(1.84 ± 3.04 ± .20) x 105
(0.27 ± 4.01 ± .03) x 105
(6.26 + 5.93 ± .69) x 105

(3.06 ± 1.39 ± .34) x 106
(7.72 ± 4.25 + .85) x 106

Blackhole Ringdown Results

5.6 Double Neutron Star Coalescence Results

The most detectable of our astrophysical spectra, a background of neutron star-

neutron star coalescences is again a null result, as seen in figure 5.4. Unfortunately, we

SNR
8.3
2.3
3.0
2.9
0.6
0.1
1.0
2.1
1.8



are now three or four orders of magnitude from a physically interesting result, though

that may be within the range of Advanced LIGO's H1-H2. It seems that astrophysical

stochastic backgrounds are beyond the reach of first generation gravitational wave

detectors and at the very edges of the second.

Threshold Measured Point Estimate SNR
Threshold = 1.00 x 100 (27.81 ± 4.66 ± 3.06) x 103 5.0

Threshold = 4.02 x 10-6 (7.20 ± 4.76 ± .80) x 103  1.5
Threshold = 1.27 x 10-6 (10.55 ± 5.05 ± 1.16) x 103 2.0
Threshold = 4.02 x 10- 7  (29.60 ± 5.93 ± 3.26) x 103 4.4
Threshold = 1.27 x 10- 7  (48.81 ± 7.89 ± 5.37) x 103 5.1
Threshold = 4.02 x 10-8 (2.03 + 1.27 ± .22) x 104  1.6
Threshold = 1.27 x 10- s  (3.43 ± 3.19 ± .38) x 104 1.1
Threshold = 4.02 x 10- 9  (7.63 + 11.35 ± .84) x 104 0.7
Threshold = 1.27 x 10- 9  (2.65 ± 1.80 ± .29) x 106 1.5

Table 5.4: S5a H1-H2 Double Neutron Star Coalescence Results

5.7 Future Prospects

This thesis has demonstrated that through IFO-PEM coherences, we can derive vetoes

that significantly reduce environmental contributions to H1-H2 coherence. However,

we simply do not know how much environmental contribution remains. The most

important work to be done is to quantitatively bound Qinstr so that we can translate

an estimate of Qeff into an estimate of Qgw. This translation is done by Bayesian

marginalization, similar to how we account for calibration uncertainty in H1-L1 and

H2-L1 upper limits[12]. Thus, with a bound on Qinstr, H1-H2 results have equal

standing to H1-L1 and H2-L1 stochastic results. Allen and Romano [5] considered

this briefly, so some of the formalism is in place.

If we cannot bound Qinstr analytically, then we can never prove that we have

identified all persistent, broadband, common, local noise. Nonetheless, our empirical

diagnostics might still grant us some confidence in H1-H2's efficacy as a working

detector pair, just as we have gained confidence in HI-L1. For every upper limit set by

H1-L1 and H2-L1, a corroboration of non-detection by H1-H2 adds confidence. When



the day comes that H1-L1 and H2-LI register a detection, the added corroboration

of H1-H2 will provide tremendously greater confidence, formal proof or not.

Astrophysical populations of gravitational wave emitters seem firmly outside the

range of LIGO, and may be detected by Advanced LIGO under optimistic parameter

estimations. This thesis has demonstrated that the kilohertz region is largely free from

environmental correlations and that the way is clear to make stochastic background

observations of astrophysical interest.

The LIGO Scientific Collaboration hopes to use H1-H2 to improve the stochastic

upper limit for the S5 data set now being collected; to what extent and in what

capacity will depend on how well we can bound Qinstr.





Appendix A

Analysis parameters

Table A. 1 contains the parameters used for the stochastic searches of this thesis. They

are the same for S4 and S5a except where explicitly called out.

In tables A.2-A.4, we list all PEM channels used to generate the coherence product

maxima and subsequent frequency vetoes. Those channels recorded at high sampling

rates (actually, only HO: PEM-LVEA_MIC and the LSC-DARM_ERR channels) were low-pass

filtered and down-sampled for analysis. The low-pass filtering was accomplished with

an 8th order Chebyshev Type 1 filter. Filtering was applied forwards, then backwards

in order to achieve zero phase delay.



Parameter
Frequency Range
Frequency Resolution
Resample Rate
Transient Buffer
Data channel
Windowing Function
Window Duration
Window Overlap
High-pass Filter 3dB Freq
High-pass Filter Order
Calibration Version (S4)
Calibration Version (S5)

Value
[40,500]Hz

1/32Hz
1024Hz

Is
LSC-DARMERR

Hann
192s
50%

30Hz
6

V4 (final)
V2

Table A.1: Analysis parameters used in the stochastic searches of this thesis.



HO:PEM-LVEA SEISX 256 256
HO:PEM-LVEASEISY 256 256
HO:PEM-LVEASEISZ 256 256
HO:PEM-MXSEISX 256 256

HO:PEM-MXSEISY 256 256

HO:PEM-MXSEISZ 256 256

HO:PEM-MYSEISX 256 256
HO:PEM-MYSEISY 256 256

HO:PEM-MYSEISZ 256 256
HO:PEM-EXSEISX 256 256

HO:PEM-EXSEISY 256 256
HO:PEM-EXSEISZ 256 256

HO:PEM-EYSEISX 256 256
HO:PEM-EYSEISY 256 256

HO:PEM-EYSEISZ 256 256

HO:PEM-PSLEACCX 2048 2048
HO:PEM-PSLLACCZ 2048 2048

HO:PEM-PSL2_ACCX 2048 2048

HO:PEM-PSL2_ACCZ 2048 2048
HO:PEM-BSCLACCY 2048 2048

HO:PEM-BSC2_ACCX 2048 2048
HO:PEM-BSC2_ACCY 2048 2048

HO:PEM-BSC3_ACCX 2048 2048
HO:PEM-BSC4_ACCX 2048 2048

HO:PEM-BSC4_ACCY 2048 2048
HO:PEM-BSC54ACCX 2048 2048

HO:PEM-BSC6_ACCY 2048 2048

HO:PEM-BSC7_ACCX 2048 2048
HO:PEM-BSC8_ACCY 2048 2048

HO:PEM-BSC9_ACC1X 2048 2048

HO:PEM-BSC10_ACC1Y 2048 2048
HO:PEM-HAMLACCX 2048 2048

HO:PEM-HAMi_ACCZ 2048 2048
HO:PEM-HAM3_ACCX 2048 2048

HO:PEM-HAM7_ACCX 2048 2048

HO:PEM-HAM7_ACCZ 2048 2048
HO:PEM-HAM9_ACCX 2048 2048

HO:PEM-ISCTHACCX 2048 2048
HO:PEM-ISCTLACCY 2048 2048

HO:PEM-ISCTLACCZ 2048 2048

HO:PEM-ISCT4_ACCX 2048 2048
HO:PEM-ISCT4_ACCY 2048 2048
HO:PEM-ISCT4_ACCZ 2048 2048

Table A.2: PEM channels used to generate vetoes, original sampled rates, and the
downsampled rate used.

Channel name Original ResampledSampling RateRate



Channel name
HO:PEM-ISCT7_ACCX

HO:PEM-ISCT7_ACCY
HO:PEM-ISCT7_ACCZ

HO:PEM-ISCT1O0ACCX

HO:PEM-ISCT10ACCY
HO:PEM-ISCT1O0ACCZ
HO:PEM-LVEAMIC

HO:PEM-PSL1_MIC
HO:PEM-PSL2_MIC

HO:PEM-BSC5_MIC
HO:PEM-BSC6_MIC

HO:PEM-BSC7_MIC
HO:PEM-BSC8_MIC

HO:PEM-BSC9JMIC
HO:PEM-BSC1OMIC

HO:PEM-IOT1_MIC

HO:PEM-IOT7_MIC
HO:PEM-ISCT1_MIC
HO:PEM-ISCT4_MIC

HO:PEM-ISCT7_MIC

HO:PEM-ISCT1OMIC
HO:PEM-LVEA_MAGX
HO:PEM-LVEAMAGY

HO:PEM-LVEA_MAGZ

HO:PEM-BSC1_MAG1X
HO:PEM-BSC1_MAG1Y

HO:PEM-BSC1_MAG1Z
HO:PEM-BSC5_MAGX

HO:PEM-BSC5_MAGY
HO:PEM-BSC5_MAGZ

HO:PEM-BSC6JMAGX
HO:PEM-BSC6_MAGY

HO:PEM-BSC6_MAGZ
HO:PEM-BSC9_MAGX

HO:PEM-BSC9_MAGY

HO:PEM-BSC9_MAGZ
HO:PEM-BSC10OMAGX

HO:PEM-BSC1OMAGY
HO:PEM-BSC1OMAGZ
HO:PEM-COILMAGX

HO:PEM-COIL_MAGZ
HO:PEM-RADIOJLVEA
HO:PEM-RADIO CS_1

Original Sampling
2048
2048

2048

2048

2048
2048
16384
2048
2048

2048

2048
2048
2048

2048

2048
2048

2048
2048

2048
2048

2048

2048
2048
2048

2048

2048
2048

2048
2048
2048

2048
2048

2048
2048

2048

2048
2048

2048
2048
2048

2048
2048
2048

Table A.3: PEM channels used to generate vetoes, original
downsampled rate used (continued).

sampled rates, and the

Rate Resampled Rate
2048
2048
2048
2048
2048
2048
2048
2048
2048

2048

2048
2048

2048
2048

2048

2048
2048
2048

2048
2048

2048

2048
2048
2048

2048

2048
2048

2048
2048

2048
2048
2048

2048

2048
2048

2048
2048

2048
2048
2048

2048
2048

2048



Channel name Original Sampling Rate Resampled Rate
HO:PEM-RADIO_CS_2 2048 2048
HO:PEM-LVEA2_V1 2048 2048
HO:PEM-LVEA2_V2 2048 2048
HO:PEM-LVEA2_V3 2048 2048
HO:PEM-MX_VI 2048 2048
HO:PEM-MX_V2 2048 2048
HO:PEM-MY_V1 2048 2048
HO:PEM-MY_V2 2048 2048
HO:PEM-EX_V1 2048 2048
HO:PEM-EX_V2 2048 2048
HO:PEM-EY_V1 2048 2048
HO:PEM-EY_V2 2048 2048

Table A.4: PEM channels used to generate vetoes, original
downsampled rate used (continued).

sampled rates, and the
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