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Abstract

The difficulties in identification and control of engineering systems are due to sev-
eral factors including the presence of several types of nonlinearities, and significant
and unknown sources of variations in the operating conditions of the system. In
many of these problems, the underlying physics that contributes to the nonlinear sys-
tem characteristics can be modeled using physical laws. However, due to analytical
tractability, the traditional approach has not always made effective use of available
physically-based models.

In this thesis, new parameter estimation and control techniques, which take ad-
vantage of prior physical knowledge of dynamic systems, are presented. The tools
used are artificial neural networks (ANN). For parameter estimation problems, the
scheme denoted as #-adaptive neural networks (TANN) is developed. TANN is useful
for systems where the unknown parameters occur nonlinearly. For control problems,
we consider two classes of nonlinear stabilization problems including systems with
unknown parameters and systems with unknown controller structures. TANN is im-
plemented on the former class to adjust the controller parameters so that stabilization
can be achieved in the presence of parametric uncertainty. For systems with unknown
controller structures, ANN are trained off-line to generate nonlinear controllers that
contribute to the decrease of specified positive definite functions of state variables.
Conditions under which these two controllers result in stable closed-loop systems are
given.

The framework introduced in this thesis naturally lends itself to a mathematically
tractable problem formulation and can be applied to general nonlinear systems. The
neural network training procedure, whether it is for the purpose of parameter estima-
tion or control, also permits the use of more efficient training algorithms and leads
to a larger region of stability for a wide class of dynamic systems.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Assistant Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

An increasing demand in the performance specifications and the concomitantly present
complexity of dynamic systems mandate the use of sophisticated information process-
ing and control in almost all branches of engineering systems. The promise of fast
computation, versatile representational ability of nonlinear maps, fault-tolerance, and
the capability to generate quick, robust, sub-optimal solutions from artificial neural
networks (ANN) make the latter an ideal candidate for carrying out such a sophisti-
cated identification or control task.

The field of dynamic systems theory deals with identification, prediction, and
control problems where variables interact over time. In many of these problems, the
task invariably is to determine a nonlinear map between two quantities in the sys-
tem. For instance, the function of the nonlinear map is that of a controller if the
concerned quantities are system errors and the control input; the nonlinear relation
may correspond to that of an identifier if the quantities are system inputs and system
outputs. Difficulties arise in carrying out the relevant tasks since there are uncertain-
ties associated with these nonlinear maps. Given the potential and proven success
of neural networks in tasks related to pattern recognition, classification, and such
[32, 36], the obvious question that arises is then the applicability of neural networks

in approximating such nonlinear maps.
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In many of these problems, the underlying mechanisms that contribute to the
nonlinear system characteristics can be modeled using physical laws. Conservation
equations due to mass, momentum, and energy balance relations together with the
constitutive laws provide a framework for accurately representing the governing non-
linear time-varying characteristics. Despite the presence of complex physically based
models, identification and control procedures that have been developed for dynamic
systems have not always made effective use of them. For the sake of analytical
tractability, simplifications are often introduced in the system model. The question
is whether the use of a neural network will allow the development of a more pow-
erful identification and control procedure which requires few assumptions and less
simplifications.

Adaptive control addresses dynamic systems with parametric uncertainty. A com-
mon assumption in this field is that the uncertain parameters occur linearly. Fur-
thermore, even without parametric uncertainty, the controller structure itself could
be very complex for nonlinear systems. Hence, attention has been focused on linear
systems or some special classes of nonlinear systems. Unfortunately, many system
models do not fall into these categories without further simplification. In addition,
such simplification would usually limit the applicability of the resulting model such as
around some neighborhood of an operating point. To avoid this problem, we propose
using neural networks to construct such nonlinear maps, whether the map is from
measurable signals to parameters or from system outputs to control inputs, by taking
advantage of their ability in function approximation. The approach should be general
enough so as to be applicable to wide classes of nonlinear systems and, nonetheless,
retain mathematical rigor of the analysis. Hence, when the schemes are implemented,

performance can be guaranteed over a wide range of operating points.

1.2 Contribution of Thesis

The contribution of this thesis consists of three parts:
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1. Develop neural network based estimation schemes, which are capable of deter-

mining parameters occurring nonlinearly.

2. Establish an adaptive control algorithm and its corresponding stability property

for nonlinear systems with parametric uncertainty.

3. For nonlinear systems with unknown controller structures, a new strategy for

neural network training is developed to construct a stable nonlinear controller.

They are explained in detail below.

A significant portion of parameter estimation methods concerns linear systems and
only a limited class of nonlinear systems can be solved analytically using available
tools. Whether linear or nonlinear, in most of these problems, the identification
approach requires the unknown parameters to occur linearly. However, many system
models derived based on physical laws involve nonlinear parametrization. To bridge
the gap, two neural network based parameter estimation algorithms are proposed in
this thesis. The local conditions under which such algorithms exist are examined.
The convergence property of the algorithms are analyzed. A neural network training
procedure that would achieve such property is also suggested. The algorithms are
shown to be suitable for a wide class of nonlinear systems where existing methods
cannot be used.

Control of nonlinear systems are even more challenging especially for those with
uncertain parameters. For this class of problems, as in the parameter estimation case,
research in adaptive control focuses on linear parametrization. In this thesis, a neural
network algorithm to update unknown controller parameters that occur nonlinearly
is incorporated into the controller structure to stabilize nonlinear systems with para-
metric uncertainty. Conditions under which the algorithm guarantees stability are
given explicitly. Moreover, these conditions are general enough so that they can also
serve as design guidelines for adaptive controllers under plant nonlinearity.

Unlike linear adaptive control where a general controller structure to stabilize a
system can be obtained with only the knowledge of relative degrees, stabilizing con-

trollers for nonlinear systems are hard to determine. A few approaches have been

14



suggested for utilizing neural networks in the context of a general controller struc-
ture. However, there are several limitations for these approaches. First of all, a
majority of them can only be applied to discrete-time systems. Secondly, stability of
the closed-loop systems is left unanswered. To avoid these problems, a new approach
for nonlinear controller designs is proposed in this thesis. This approach can deal with
discrete-time as well as continuous-time nonlinear systems. Furthermore, stability of
the resulting systems becomes transparent following the proposed method. As a con-
sequence, the approach achieves large region of convergence by utilizing the function
approximation ability of neural networks while still maintaining mathematical rigor

of the stability analysis.

1.3 Related Work and Previous Literature

Significant research has been done in the fields of system identification and adaptive
control for parameter estimation. Most of the problems that can be solved exactly
require the unknown parameters to enter linearly [42, 37, 18]. This also includes
nonlinear systems where the unknown parameters are linearly related to the output
(17, 11, 16, 56, 27, 5, 28]. The recursive least-squares algorithm and many of its
variants (e.g. [18, 37]) are among the most popular in the discrete case. For its
continuous-time counterpart, gradient type schemes are most commonly used [42],
though some faster updating algorithms were also proposed [28]. On the other hand,
for problems where the parameters occur nonlinearly, only approximate algorithms are
developed for general models. These algorithms usually make use of the current pa-
rameter estimate to establish an approximate direction in improving estimation. This
includes the nonlinear least-squares algorithm and the bootstrap methods [62, 18].
The extended Kalman filter method for parameter estimation also falls into this class
(e.g. [23]). Whether the estimate would converge to the true value depends on the
underlying nonlinearity and how good the initial estimate is. When these algorithms
are implemented on adaptive control of nonlinear systems, stability property of the

closed-loop system is usually unknown.
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Artificial neural networks (ANN) had been recognized for their capability in rep-
resenting complex functions. In most of their applications to system identification,
ANN are used as general model structures, replacing standard linear or bilinear mod-
els. The role of the networks is to mimic the output of unknown systems given the
same input signals. Due to their representative ability, many successful applications
have been reported (e.g. [43, 10, 9, 14, 51, 58]).

In recent years, there has been much research on the use of neural networks in
control, especially in problems where nonlinearity dominates. A significant portion
of them utilizes neural networks as nonlinear models of the underlying nonlinearity,
for example, [43, 55, 13, 12, 24, 26, 44, 34, 1, 46, 39, 35, 54, 3]. Broadly, the results of
these papers can be classified into two classes on the basis of the functionality of the
neural network. In the first class [43, 55, 13, 12, 24, 35, 54|, the neural network is to
be trained on-line so that it mimics an adaptive controller and meet a regulation or
tracking objective, whereas in the second class [26, 44, 34, 1, 46, 39, 3], the network
is required to function as an optimal controller with an appropriately chosen cost
function.

In the first class, with the networks as identifiers and/or controllers, the problem
reduces to finding a stable algorithm for adjusting the weights of the network. Both
the development of these algorithms as well as the stability analysis are carried out
in these papers in a manner similar to linear adaptive control methods as in [42]. For
example, in [43, 55], unknown nonlinear parts in dynamic systems are modeled using
neural networks. The information is then used by the controllers to adaptively cancel
those nonlinearities and replace them by desired dynamics with either multi-layered
neural networks (MNN) [43] or radial basis functions (RBF) networks [55]. However,
there is no stability proof given in [43], while the proof of stability in [55] is for a
special class of affine systems. For systems which are feedback linearizable but with
unknown nonlinearities, the results in [13, 12, 24] pertain to using neural networks to
perform the task of a feedback-linearizing controller. However, the conditions under
which the system is stable require that the initial weights of the network be close

to a certain set of desired weights [13, 12]. This is extremely difficult to check, if
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not impossible, since the weights in the network do not have any physical meaning.
Based on the knowledge gained from the linear adaptive control, modification in
the adaptive control algorithms to improve stability has also been studied. Since a
neural network is only an approximation to the underlying nonlinear system, there is
always a residual error between the true system and the network model. This effect
is similar to that of an adaptive system under bounded external noise, which has
long been understood in linear adaptive control to result in unstable mechanism if
the standard adaptive law is used [49]. To overcome this problem, modifications in
the adaptation algorithms, similar to those in the adaptive control, was introduced
in the weight updating algorithm to avoid instability in the presence of small residual
error [13, 35]. Furthermore, it is well known in adaptive control that a brute-force
correction of controller parameters based on the gradient of the output error can
result in instability even for some classes of linear systems [48, 45]. To avoid such
instabilities, some researchers proposed only varying network weights that are linearly
related to the outputs of the network, such as the RBF networks, so as to achieve a
stable updating rule [55, 35, 54].

Up to this point, the development of nonlinear adaptive control using neural net-
works parallels that of linear adaptive control, and many ideas can be carried di-
rectly over. Unfortunately, unlike linear adaptive control where a general controller
structure to stabilize a system can be obtained with only the knowledge of relative
degrees, stabilizing controllers for nonlinear systems are hard to determine. As a
consequence, all of the above researches focus on nonlinear systems whose stabilizing
controllers are readily available once some unknown nonlinear parts are identified,
such as z" = f(z"1, -+, z) + bu with full state feedback where f is to be estimated
by a neural network. Even though some approaches have been suggested for utiliz-
ing neural networks in the context of a general controller structure [29], the stability
implications are unknown.

In the absence of general controller structures for nonlinear systems, using ANN
to construct stabilizing controllers also appears in the literature, especially in the

discrete-time case. A straightforward approach is to find a neural network map that
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approximates the inverse dynamics of the nonlinear system. Once the network is
trained successfully, given a desired trajectory, the network would then send appro-
priate input signals to drive the system to follow that trajectory [26]. Since inverting
dynamics may be too restrictive and may sometimes result in huge control signals
that are not practical for some systems, several researchers have posed the problem
as one of optimization to make it more tractable, whose results can be grouped under
the second class of neural control methods. For example, in [44, 34], using a series of
neural networks, it is sought to control a dynamic system to the desired target gradu-
ally, where each network in the series corresponds to a map from the measurement to
the input signals of the system at a particular time. The complexity of training, not
surprisingly, increases dramatically as the number of steps increase. This idea can
be extended to solve the N-stage optimal control problem by finding the controller
mapping that minimizes a cost function of states and inputs as is done in [1, 46, 39, 3].
In all these papers, however, the issue of stability of the closed-loop system with the

neural network as a controller is not addressed.

1.4 Synopsis of Thesis

This thesis is organized into seven chapters as follows.

Background material relating to ANN is introduced in Chapter 2. Results in
analysis, control theory and optimization useful in later derivations are also given in
this chapter.

In Chapter 3, f-adaptive neural networks (TANN) for parameter estimation in
nonlinear systems is proposed. Two methods, the block estimation method and the
recursive estimation method, are discussed. The idea behind the two algorithms
and the structures, training procedure, on-line implementation as well as convergence
analysis of the algorithms are also explained. One common method for estimating
parameters in nonlinear systems is the extended Kalman filter. This method is com-
pared in this chapter to the recursive method to illustrate the fundamental difference

between TANN and those approximate algorithms.
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TANN for parameter estimation developed in Chapter 3 is extended to adaptive
control of nonlinear systems in Chapter 4. In this chapter, the class of systems under
consideration and its assumptions are first described. Conditions that TANN has to
satisfy in order to guarantee stability of the closed-loop system are given. We also
discuss a training method for the neural networks to satisfy these conditions.

For the parameter estimation problems in Chapter 3, the goal is to reduce the
parameter estimation error. Whereas, for the stabilization problems, the goal is to
decrease the output error. To achieve this, the idea of the recursive method for
parameter estimation can be modified to construct controllers for systems with un-
known controller structures. This is described in Chapter 5. In this chapter, Training
procedure as well as the stability analysis of this approach are given.

The algorithms described in Chapters 3, 4 and 5 are verified by simulation in
Chapter 6. The simulation examples include discrete-time and continuous-time sys-
tems in either state space or regression forms. Comparison of simulation results with
other schemes is also presented in this chapter.

Finally, concluding remarks and recommended future work are given in Chapter 7.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, materials that are useful in later chapters are discussed. Repre-
sentations of multi-layered neural networks (MNN) and Gaussian networks and their
property that is essential to development of the algorithms in this thesis are presented
in section 2.2. Some known results in analysis and differential equations to be used
later are delineated in Section 2.3. Training of neural networks is often a nonlinear
programming problem. The quadratic penalty function method, which deals with

constrained optimization, used throughout the thesis is summarized in Section 2.4.

2.2 Artificial Neural Networks

ANN are usually referred to computational units composed of simple and intercon-
nected linear or nonlinear functions. They initially attracted attention of researchers
due to resemblance in structure to their namesake in living beings. Later, ANN found
applications in diverse disciplines such as pattern recognition, task classification, iden-
tification and control for various reasons. In this thesis, we mainly take advantage
of their capability of function approximation, that is, efficiency in representing func-
tions to desired degree of accuracy using finitely parametrized units. We focus on two

classes of neural networks, MNN and Gaussian networks, though other neural net-
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work architectures possessing the property called “universal approximator”, which is
explained later in this section, can be applied equally well to the methods in this
thesis. The analytical forms of these two networks and some of the related formula
are presented below.

A typical n-layered MNN with input v and output y can be written in the following

equations [25}:

where W (7) and b(i) denote the weight matrix and the bias vector of the i-th layer
respectively, (1) = u, 2(n + 1) = y and T(2) = [y(21), 1(z2), - -, 7(&m)] with
usually a smooth nonlinear function such as

_1—6“””

1+e*

¥(x)

To train a MNN, we often need to calculate the gradients of y with respect to W (%)

and b(i). They are given as follows:

T
w0 2 ()
= T'E)WT@)6® (i +1)

Oy g — (DM
(urig) = woue
T
<8abl(lllc)) - 6(k)(i+1)’ 1=2,---,m

where 6" (n+1) =[0,---,0,1,0,---,0]7, gy is the k-th element of y, w;(i) is the j-th
column of W (i) and I''(z) = diag{+'(z1), ---, ¥'(zm)}. These gradient information
is used in different schemes for updating weights. For example, the well-known back-
propagation method [63] is simply correcting weights along the opposite directions

of the gradients. Due to slow convergence of the gradient descent method, other
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higher order methods such as the extended Kalman filter algorithm are applied to
the training of neural networks as well [57].
On the other hand, for a Gaussian network with p centers and the input u, the

corresponding output y can be represented in the following form [55]:

P
y o= > wjz
=1
I 2
Ur — Cik
zj = exp(—Z——l QJI)
k=1 O

where w; is a column weight vector and has the same dimension as y, u; denotes the
k-th element of the column vector u, oy is the variance associated with ug, and I is

the total number of the network inputs. The gradients of y with respect to w; and

Qay are:
Jy
‘a—:ZjI
Wj
SV s g2 T
21- ula’fcu)a SRR zli'ulazzcu
Oy
— =W
oo
zp—TLQ(ul_c 1)2, oy 2p2(1”—2“)2
| oy ajy A
where W = [wy, -+ -, wp].

As is mentioned earlier, the role of neural networks in this thesis is to approximate
nonlinear functions. Furthermore, they must be able to do so to desired degree of
accuracy if enough units are used. This ability is often called the universal approxi-
mator. To quantify the requirement, the following definition describing such a class
of neural networks N is used. Let  be the set of all continuous mappings of " into

R™, and N be a subset of Q.

Definition 2.1 Given ¢ > 0 and a compact set K C R", for every f € Q, there
erists a N € N such that

|IN(z) — f(x)| <€ Ve e K
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Definition 2.1 implies that for any continuous function f € Q, we can find a N € N/
to approximate the function uniformly to the desired degree of accuracy in a compact
set. MNN and the Gaussian network discussed previously have been shown by various
authors [15, 21, 47] to qualify as such a class. Without loss of generality, we assume
that all neural networks considered in this thesis have this property. Another reason
why neural networks are used here is due to their efficiency in representing nonlinear
functions. According to [6], if parameters of nonlinear combinations are adjusted,
sigmoidal networks can achieve integrated square error of order %, where N is the
number of basis functions. Hence, by varying the nonlinear coefficients in the network,
more compact representations of nonlinear functions can be achieved compared to

linear models such as power series. This is especially useful when the dimension of

network inputs is high.

2.3 Mathematical Preliminaries

In this section, we first show some results in ordinary differential equations in or-
der to establish conditions for transformation from continuous-time to discrete-time
representations, followed by results in analysis and stability of dynamic systems.
The parameter estimation algorithms developed in this thesis as well as many other
algorithms appearing in the literature focus on discrete-time representations. Since
most physical systems are modeled in the continuous time, transformation between
these two representations is often necessary. While the transformation is trivial in
linear systems, its counterpart in nonlinear systems is much more involved, and an
analytical form may not be easily obtained. Nevertheless, TANN algorithms only
require either the continuous-time or the discrete-time model be known, provided that
the discrete-time representation exists and is continuous. To establish existence and
continuity of the transformation, the following two theorems from ordinary differential

equations shall prove useful.
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Consider the following initial-value problem:
&= f(t,€(1)), §(0°%) = 2° (2.1)

where f : T x X — R, X C R" is open and 7 is an interval in R. In addition, f

satisfies the following two properties:
(H1) f(-,z):Z — R™ is measurable for each z € X.
(H2) f(t,-) : R™ — R" is continuous for each t € 7.

(H3) f is locally Lipschitz on z; that is, there are for each 2° € X a real number
p > 0 and a locally integrable function « : Z — R, such that the ball B,(z°) of

radius p centered at x° is contained in X and

1t 2) = F(& )l < a(t)llz -yl

for each t € 7 and z,y € B,(z°).

(H4) f is locally integrable on ¢; that is, for each fixed z° € X there is a locally
integrable function 3 : Z — R, such that

1£(t, 2%l < B(2)

for almost all t.

Existence and uniqueness of solutions of the initial-value problem in Eq. (2.1) can be

stated as follows [60]:

Theorem 2.2 (Existence and Uniqueness Theorem) Assume that f : Ix X —
R" satisfies the assumptions (H1), (H2), (H3) and (H4). Then, for each pair (o°,2°) €
T x X there is some nonempty subinterval J C I open relative to I and there exists

a solution & of Eq. (2.1) on J, with the following property: If ( : J' — X is any other
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solution of Eq. (2.1), where J' C I, then necessarily
JclJ and £=¢

on J'.

The solution ¢ is called the maximal solution of the initial-valued problem on the
interval 7.

Under more assumptions on f, continuous dependence of the solution on initial
conditions and on the right-hand side of Eq. (2.1) can be established. Consider the

new initial-value problem as follows:

(= f(t,¢) + h(t, Q) ((0°%) =2° (2.2)

where f and h are mappings satisfying the hypotheses (H1), (H2), (H3) and (H4) and
in addition

<6

[, ps.e(9)is

for all t € [0, 7], and 20 € X,

|2° — 2% < 6
Theorem 2.3 [60] Let £ be a solution of Eq. (2.1) on the interval [c°,7) C Z. Then,
there exist numbers ¢, A > 0 so that if 6 € (0, A}, the solution { of Eq. (2.2) is defined

on the entire interval [0°, 7], and is uniformly close to that of Eq. (2.1), i.e.,

“§ - Clloo <ch

Based on Theorems 2.2 and 2.3, the result on the transformation between continuous-
time and discrete-time representations using piecewise constant control signals can

be formulated below. Consider a continuous-time system as follows:
i= fla,r0),  2(0) =2° (2.3)

where f: A XU X O - R*" and 2° € X, X C R", U C R* and © C R™ are open.
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Assume the system is under a discrete exogenous input 7, where 7 : 7 — U is a

piecewise constant function defined as
r(t) = ¢, if teliT, (i+1)7T)
where T'>0and ¢ =0,---,1 — 1.

Furthermore, the following conditions are satisfied:

(CD1) f is uniformly continuous on X’ x U x ©.

(CD2) there are for each z° € X a real number p > 0 and a function a : i x © — R,
locally integrable for every r € ¢ and 6 € © such that the ball B,(z°) of radius

p centered at z° is contained in X’ and

1f(z,7,0) = f(y,m, )| < ar, O)llx -yl

for every r € U, 0 € ©, and z,y € B,(z°).

(CD3) there exists [ > 0 such that for every (t,2°,60,7) € [0,1T) x X x© xU, solutions
of (2.3) exist.

Theorem 2.4 For the dynamic system in Eq. (2.3), there exists a continuous func-

tion fq: X XU X © — R" such that for every x(kT) € X, r(kT) € U and § € O,
z((k +1)T) = fa(x(kT),r(kT),0)

where k < 1 —1 is a non-negative integer.
i
Proof: Define f: 7 x X x © — R as f(t,z,0) = f(z,r(t),0). Consider the

following initial-value problem:

~

= f(t,z,0), z(0) = 2°

Since 7 is a piecewise constant function of ¢ and, from (CD1), f(, -, #) is continuous

for every £ € X and 0§ € ©, f is measurable for every z € X and 6 € ©. Hence,
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(H1) of Theorem 2.2 is satisfied. (H2) is obtained directly from (CD1). Since « in
(CD2) is locally integrable and 7(t) is a piecewise constant function, the function
f:7x0 — R, defined as §(t,0) = a(r(t), ) is thus locally integrable. Hence, from
(CD2),

1F(t,2.0) = f(t,9.0)] < 5(. 0|1z -yl

for every t € 7, § € © and z,y € B,(2°), which implies (H3). Moreover, since
f(x,r,0) is continuous and 7 is integrable on Z, f(t,z,#) is integrable on Z and thus,
(H4) is satisfied. Therefore, we can conclude from (CD3) and Theorem 2.2 that the

solution of (2.3) is unique on [0,!7T"). Thus, there exists a function f,; : XY xUXO — R™:

2(T) = fa(2(0),7,0)

Next, we want to prove that f; is continuous on X' x U x O. Since f(x,r,6) is
uniformly continuous on X' x U x O, given € > 0 and ¢ > 0, there exists a 6 > 0 such

that for every (x,rp,00) € X xU x O if ||((r — 10), (0 — by))]|| < 6, then

€

1 2,7, 0) = f (2,70, 00) oo < =

If, in addition. 2(0) € X is chosen so that ||z(0) — z°|] < &, then, according to

Theorem 2.3, the solution of the following two initial-value problems:

£ = f(€,70,00), £(0)=2z°
¢ = f(¢n0), <)

T

are uniformly close:

1€ = Clloe <€

Therefore, if ||((z — 2°), (r — o), (8 — 69))|| < &, then || fa(z,7,8) — fa(z®, 70, 600)|| < e,
implying that f; is continuous on X x U x ©

Let & (t) be the maximal solution of Eq. (2.3) on J; with z(¢ + T) = 2° and
7 = r1(t) where (0 + T,2°0) € J; x X x ©; let &(t) be the maximum solution of

Eq. (2.3) on J; with z(o) = z° and r = r,(t + T) where ¢ € J,. We want to prove
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that 1 (t + T') = &(t), for every t € J; N Jy, and thus, (kT + T) = fo(z(kT),r1,6)
for every (z(kT),r1,6) € X xU x © and k < [ — 1. Since &;(¢) and &,(t) are solutions
of Eq. (2.3) with (6 + T') = z° and (o) = z° respectively, they satisfy the following

equations:

&L(t) = 2%+ f;_,_T f& (), r(1))dr, Vte J;
&) = 2+ [; f(&(a),r(a+T))da, Vt € J,

By comparing the above two equations, we can conclude that &(¢ —T) = &.(t). W

In one of the TANN for parameter estimation, the neural network is trained to
approximate the implicit function between measurable signals and parameters. The
following result from analysis states the conditions under which the implicit function

exists and its corresponding property.

Theorem 2.5 (Implicit Function Theorem) [40] Let A be open in R¥+"; let f :
A — R" be of class CT. Write f in the form f(z,y), for x € RF and y € R". Suppose
that (a,b) is a point of A such that f(a,b) =0 and

of
det 5 (a,b) #0

Then, there is a neighborhood B of a in R* and a unique continuous function g : B —
R" such that g(a) = b and
fz,9(z)) =0

for all x € B. The function g is in fact of class C".

The following two theorems states stability results for dynamic systems. Theo-
rem 2.6 concerns linear systems, while Theorem 2.7 can be applied to general nonlinear

systems.

Theorem 2.6 [42] The equilibrium state x = 0 of the linear time-invariant system

= Az
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is asymptotically stable if, and only if, given any symmetric positive-definite matriz
Q. there exists a symmetric positive-definite matriz P, which is the unique solution

of the set of ﬂ"2—+l—) linear equations
ATP+PA=-Q (2.4)

Therefore, V() = ¥ Pz is a Lyapunov function for the system.

A discrete version of the above theorem also exists [18], with Eq. (2.4) being replaced
by
ATPA-P=-Q (2.5)

For stability of general nonlinear systems, consider the following dynamic system:
= X(x) (2.6)

where x € O C ®" and X : O — R". The positive definite function V : O — R has

continuous first partials on O.

Theorem 2.7 [31] Let Q2 denote the set defined by V() < a, and let Q° denote the
complement of Q. If

(i) V (z) <0 for all = in Q,
(ii) V does not vanish identically along any trajectory that starts in Q°,
(141) The system in Eq. (2.6) is Lagrange stable,

then every solution of Eq. (2.6) approaches Q ast — co.

2.4 The Quadratic Optimization Method

The training problems of neural networks for parameter estimation and control in

this thesis can usually be formulated as constrained optimization. For the sake of

29



brevity in the later discussion, we review in this section results from nonlinear pro-
gramming which are pertinent to these problems. Part of the material in this section
is summarized from [8].

Consider the following constrained optimization problem:

minimize f(z)

(2.7)
subject to hi(z) =0, -+, hp(z) =0, a(z) <0, -+, g-(x) <0

The above inequality constrained problem can be converted to a equality constrained

one by adding r variables z;:

minimize  f(x)

subject to hy(z) =0, -+, hn(2) =0,  gi(z)+2 =0, -+, g(x) +22=0

If the quadratic penalty function method is used, this problem becomes

ming ; L.(z, 2, A, p) =

min, . (f(z) + Nh(@) + §IA@)I + iy {15(05(2) + 22) + £lgs ) + 2212})
(2.8)

where A = [\, -+, An]T and g = [p1,- - -, ur)7 are the Lagrange multipliers and c is a
positive constant sometimes referred to as the penalty parameter. It can be observed
from (2.8) that for large ¢, L. can be large if the constraints are not satisfied. Hence,
as ¢ increases, the solution tends to be near the constraints. As a matter of fact, if A
is equal to the optimal value of Lagrange multiplier, there is a finite ¢ such that when
¢ > ¢, the W that minimizes the augmented Lagrangian L. is also the solution of the
original optimization problem in (2.7) [8]. The above minimization can be performed
by first minimizing L. with respect to z, which can be carried out in closed form for

each z. This yields

ming L.(z, A, ) =

min, [£(z) + Nh(z) + §|A@)|2 + & Ty, { (max{0, p; + cg; (2)})* - u?}](
2.9)

To improve convergence rate and avoid numerical ill-conditioning, the method of mul-
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tipliers is commonL\,)/ used to update A and p in (2.9) without requiring c approaching

infinity. The algorithm is summarized below:

AR = AR) g k) (kD)

= max{0, 4 + cMg;(z)}

(2.10)

where z(*) minimizes

Lo (2, A®), ) = f(z) + X® h(z) + <2 ||h(z)||2

, (2.11)
+2c%7 =1 {(maX{O, ugk) + c(k)gj(x)})l’ _ ('ugk))2}

and the limit point of the sequence of {z(*)} is the global minimum of the problem
in (2.7).

In the derivation of the training algorithms in the following chapters, the resulting
optimization problem is often a special case of that in (2.7). That is, the problem

involves only inequality constraints and no cost function or equality constraints:
9(z) <0, -+, g,(x) <0 (2.12)

For this special case, it can be observed from (2.9) that for a particular y, as long as

2
"_, £ can always be achieved

every constraint g; < 0 is met, the minimal cost —3-7_; 5t

with a large enough c. Hence, (2.9) can be further reduced to the following problem:
N 2
minJ = min 3 > (max{0, gi(z)}) (2.13)
=1

Obtaining z* that solves the above problem requires less computation than that
in (2.9) since only one optimization step is necessary in (2.13) as opposed to solving
a series of optimization problems in (2.10) and (2.11).

The unconstrained optimization problems in (2.11) and (2.13) can be solved in

many ways. In this thesis, the Levenberg-Marquardt [38] method is often used. The
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algorithm is summarized below [52]. Consider minimizing the fo‘@wing cost function:

N n 2
Yij — Yj\Ui; T
S
i=1 j=1 i

where NV is the total number of data elements, n is the dimension of y(u; ), yi; is
the j-th coordinate of the i-th data element, and y;(u;; ) denotes the j-th element of
the model output with the input »; and the model parameter x. The goal is to adjust
x so that x? is minimized. For the Levenberg-Marquardt method, the adjustment

sz = x(mew) — glewrrent) is obtained by solving the M simultaneous linear equations:
M !
Zaklél'zﬁk, kzl,"’,M
1=1

where M denotes the total number of elements in z, a;-j = a;;(1+ A), g = ay for

k1,

N _ 1 62X2
M 9 92,01

10x?
Be = —33m,

and zj is the k-th element of z. ‘When (™) results in smaller x2, A is decreased,
which moves the algorithm towards the Newton method. Otherwise, if the new x
yields larger x?, the original z is kept and ) is increased so that the next éz is closer
to the direction of the gradient. The procedure then repeats as described above. In

practice, ay; and i are evaluated as:

5 = i " [y — yi(usi; 7)) Oy;(ui; )

* =1 j=1 o} oy
N &1 [8y;(us; ) Oy (ui; )

Akt = ;J;U—f 8CCk 3.’171
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Chapter 3

Parameter Estimation Using

9-Adaptive Neural Networks

3.1 Introduction

The term parameter is typically used to denote an element that characterizes the
dynamic characteristics of a system. Determining the parameter value is therefore
very useful in several contexts. In the case of linear systems, the parameter value
is sufficient for representation, prediction, and control in the entire state-space. For
nonlinear systems, the specific value of a parameter characterizes an operating point
as well as the corresponding linearized map about the operating point. For instance,
in the context of the heat exchange dynamics in air-conditioners, the heat transfer co-
efficient between the tube wall and the air varies due to different operating conditions
[19]; in order to determine a suitable controller at a particular operating condition,
the coefficient needs to be estimated on-line. In several process control problems, one
might be interested in determining actual physical parameters in a system instead
of predicting its response. For example, the determination of the control parameters
such as the PID gains might be the task assigned to a skilled controller, since that
suffices to generate the requisite performance over a wide range of operation. For
all these problems, it would be more appropriate and useful to employ the neural

network to identify the parameters of a dynamic system rather than simply match
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the output of a network with that of the plant.

A significant portion of parameter estimation methods concerns linear systems
and only a limited class of nonlinear systems can be solved analytically using avail-
able tools. Whether linear or nonlinear, in most of these problems, the identifi-
cation approach requires the parameters to occur linearly. In general, a nonlinear
parametrization is inevitable due to a number of reasons. For instance, one often

needs to transform the state space representation to the regression form

Yt = f"‘(yt—h"'7yt—n7ut—la'-'1ut—n70) (31)

for the sake of convenience or because all the states may not be accessible. In such a
case, even if f is linear in the parameter 6 in the state space form, f, can be nonlinear
in 6 due to nonlinearity of the states. Also, it may not always be possible to determine
the analytical form of f. based on the nonlinear state space representation. In all
these cases, parameter estimation methods, which can generate an estimate of 6 using
either the regression form in Eq. (3.1) or the state space form, and does not require
f» to be linear in 6, is highly attractive. A parameter estimate thus obtained can be
used to carry out tasks such as fault detection, prediction, or control in a nonlinear
system.

In this chapter, neural network based algorithms are developed to perform pa-
rameter estimation. Most of the instances where a neural network has been used
to represent dynamic systems have been in the context of identifying input-output
representations (e.g. [58, 43]). The focus in this chapter, however, is on a different
relationship that illustrates the system characteristic. This corresponds to the rela-
tion between the system variables and the parameter 6. If w is a vector of system

variables that can be measured, then we can express this relationship as

0 = h(w)

It is proposed in this chapter to use a neural network to identify the nonlinear map A,

thereby generating a parameter estimate of §. Two approaches are given. In the first
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approach, defined as the block estimation method, the neural network attempts to
approximate the implicit function between the response and the parameters directly.
In the second approach, denoted as the recursive estimation method, the parameter
estimates are updated by incorporating new samples of system response. For both
approaches, the inputs of the network are the observable system variables. The
outputs are the parameter estimates for the first approach, and the update of the
parameter estimates for the second approach. The final algorithms obtained represent
the map between the system variables and the parameter estimate. We denote this

model as #-adaptive neural networks (TANN).

This chapter is organized as follows. The problem is described in Section 3.2.
The block estimation method is discussed in Section 3.3, and the recursive method
in Section 3.4. The structure and the on-line implementation procedure for the block
and recursive methods are explained in Section 3.3.1 and Section 3.4.1 respectively,
followed by the training procedure of the neural network in Section 3.3.2 and Sec-
tion 3.4.2 respectively. The recursive algorithm is compared to the extended Kalman
filter in Section 3.5 to illustrate the difference between TANN and those schemes

based on linearization. Finally, concluding remarks are given in Section 3.6.

3.2 Problem Statement

Our focus is on a class of nonlinear dynamic systems which can be represented in the

form of
x = fJlx,u,b
fel ) (3.2)
y = gelz,u,b)
in continuous-time or
re = fa(Tio1,ue-1,0) (3.3)
Yy = gd(fft—l, U1, 0)

in discrete-time. Eqgs. (3.2) and (3.3) are typically obtained from physical models of
the system under consideration, and the parameter § corresponds to the physical con-

stants that characterizes the system dynamics. The regression form of representation
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of the system in Eq. (3.2) (or (3.3)) is

Yo = fr(de-1,0) (3.4)

where ¢;_; represents measurable signals upto time ¢ — 1 including past inputs and
outputs. It is also assumed that ¢, ; € ®* C R™, § € ©° C R" and y; € ¥° C R for
every t > 1, where ®¢,©° and ¥° are known compact sets and f, : ¢ x ©° — ¥ is
twice continuously differentiable on ®°x ©°¢. In this paper, we restrict our attention to
the nonlinear system in the form of Eq. (3.4). That this is not a significant restriction
can be justified as follows. By using results in Theorem 2.4, it follows that there is
a unique transformation between Eq. (3.2) and Eq. (3.3). Furthermore, according to
[33], under the condition that the Hankel matrix of the linearized f, around some
equilibrium point has the rank equal to the dimension of the states, Eq. (3.3) can
be transformed into the form of Eq. (3.4) with ¢:—1 = [Ye_1,- -+ Yt—ks Ut1s - - - » Ut—i) T
where k£ denotes the number of states in Eq. (3.3). Thus, under these conditions,
Egs. (3.2) and (3.3) can be transformed into the form of Eq. (3.4). Even though the
transformation from one form to another may be very complex and may not even be
easily obtained analytically in some cases, the training of the neural networks in our
algorithms does not require explicit knowledge of the transformation map as we shall
see later. Therefore, the development based on the regression form f, does not limit
application of our algorithms.

There are two important aspects regarding the training stage for the identification
procedure we shall develop in this chapter. First, in order to train the neural network
to learn the mapping between the system observations and 6, the vector [¢;_1, ]
as well as the corresponding true parameter § must be known or calculable. Since
the training process typically occurs off-line and in a controlled environment, it is
reasonable to assume that these quantities are available for measurement or known.
For instance, using the model in Eq. (3.2) or (3.3), at specific known operating points
of the system, if f. or f; is completely known, and z(t) can be measured corresponding

to the known value of the parameter 6, the set {z(t),6} suffices to accomplish the
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training. On the other hand, when only a subset ¢(t—1) can be measured, a known f,
leading to the measurement of the set {y(t), #(t—1),8} can be used to train the neural
network. In the absence of accurate knowledge regarding f., fq or f., an extensive
simulation model depicting the system interaction for a specific parameter needs to
be available to select the data set {y(t),(t—1),0}. An experimental setup which is a
prototype model of the process or a pilot experiment leading to the same measurable
data set would suffice as well to accomplish the training. [50] describes that one such
experiment is carried out to collect data for the purpose of designing a gain scheduling
controller in aircrafts. Second, during the training process data collection has to
be accomplished by varying the operating point and the parameter over all typical
values that would be encountered during the systems’ on-line operation. Therefore,
the model, whether it is obtained from analysis, simulation, or experiments, must
be amenable to the parameter as well as the operating point being varied. Such an

off-line training procedure is a necessary ingredient of the approach.

3.3 The Block Parameter Estimation Method

3.3.1 The Block Estimation Algorithm

Consider the nonlinear system in Eq. (3.4). By collecting data for n continuous time

steps, we can write Eq. (3.4) as

Ytnt1 = fr(¢t—na9)

(3.5)
Yeor = fr(r-2,0)
{ Yy = fr(di1,0)
Eq. (3.5) can be written in a compact form as
F(Qt—lvg) =0 (36)
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where F(®;_1,0)=[f,(¢:-1,0) — 4, -+, fr(®t-n,0) — Ys—ns1]T and ®;,_; denotes the
vector of independent variables of ¢;_1, ¢t—1, -+, Gr—pn and ye, Ye—1, ***, Yt—ni1-
Since F' is continuous, according to the implicit function theorem in Theorem 2.5, if
det(DpF(®o,6p)) # 0 and F(®y,6y) = 0, then there exists a neighborhood ®° of @,

and a unique continuous map G : $° — ©° such that for all & € ¢°,
0 = G(®,_1) (3.7)

In other words, if the implicit function G can be determined, a # which satisfies
Eq. (3.6) can be uniquely determined using the measurement ®. However, for most
systems, either F(-) is unknown or G can not be found analytically. Nevertheless,
using ®;_; as a input, the implicit function G' can still be reconstructed using the
training method described in Section 3.3.2. The relation between the parameter

estimate so derived and the input @ is given by:
0, = N(®,_,) (3.8)

where IV represents a neural network mapping and g, is the corresponding parameter
estimate. The goal is to train the neural network so that given ®,_;, its output
converges to the desired parameter §. In Theorem 3.1, we state that such a neural
network N exists, which ensures that 6 converges to # under certain conditions on
;.

Consider the equation F(®,0) = 0. The continuity of F' follows from the assump-

tion that f, is continuous on ®° x ©°.

Theorem 3.1 Let DoF(®y, ) be nonsingular at interior points ®q of ®° and 0y of
©c. Given the class of neural network N which maps ®° into R", there exist €, > 0

and a neural network N € N such that, given € >0,

sup |6 — N(®)| < e

deB;
where Bl = {‘I’I |<I) — @0' < 61}
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Proof: Since F is continuous and DyF(®Py, ) is nonsingular, according to the
implicit function theorem, there exist p; > 0 and a unique continuous map ©(®) such
that for every ® € By, F(®,0(®)) = 0, where By = {®| |® — ®y| < p1}. If we choose
€1 = p1/2, then By C B;. Hence, for every ® € By, ©(®) is continuous. Since B,
is compact and © is continuous on the compact set B;, according to Definition 2.1,

there exists a neural network N € A such that given € > 0
|© — N(®)| <e Vo € By

|
The proof of the theorem simply utilizes the implicit function theorem and the uni-
versal approximator property of neural networks as stated in Definition 2.1.

Theorem 3.1 states that, with an appropriate choice of a neural network, the
condition under which the block method will guarantee parameter identification is
existence of the implicit function. This is analogous to the persistent excitation
condition (e.g. [18]) in linear parameter estimation problems.

The convergence properties of the estimation algorithm obviously depends on the
amount of observation noise present and how well the neural network is trained.
In practice, the measurement ®;_; is almost always corrupted by noise. This may
necessitate post-processing of the output of the neural network so that the effect of
the noise is averaged out in some manner. One way of accomplishing this is by using a
K-means like algorithm [20]. That is, instead of using Eq. (3.8) directly, we generate

é\t as as
f: = N(®;-y)

A A L (3.9)
0 =61+ Pe_"%lot_ot_llz (0: — 6:1)

where 0 < p < 1 is the step size, o is the variance, and 8, is the resulting parameter
estimate. The choice of p and o? depends on the tradeoff between fast convergence
(by choosing p close to 1 and small U%) and small variance (by choosing p close to 0
and large Z;). The reason of adding the exponential term in Eq. (3.9) is that when the

new estimate is too far away from the previous one, the correction is weighted less,
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Figure 3-1: On-line Estimation using the Block Estimation Method

which usually occurs when the singularity points are encountered. In this case, larger
-&15 should therefore be used. o is thus the parameter that controls the weighting.
After the neural network is successfully trained, the block estimation algorithm is
implemented as shown in Figure 3-1.

The nonsingularity of DyF'(®y, ) cannot be checked on-line since it depends on
0 for general nonlinear systems. The parameter estimate resulting from a data point
where the implicit function does not exist could be less accurate. To increase the
accuracy when the data is not rich enough, we can select a wider window over which
the data is collected to determine the parameters, i.e. choose a larger n in Eq. (3.6).
With more data available, we can reduce the possibility of encountering singular
points, which is analogous to using pseudo-inverse to solve noisy linear equations.
However, there is a direct tradeoff between accuracy and network complexity. As n
gets larger, the network becomes larger in size and hence takes more time to train.
Another approach to avoid the problem of singularity is to improve the estimate

gradually only when new information is available and stop adaptation otherwise.

This leads to the recursive estimation scheme discussed in Section 3.4.

3.3.2 Training Scheme

As shown in Egs. (3.7) and (3.8), the neural network is used to model the mapping
®;_; — 6 in the hyperspace (®;_1,8). Since it is known that 6 belongs to a compact
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region ©°, we set § = 0; € ©°. The corresponding ® in Eq. (3.6) can be measured,
and we denote this values as ®;. A data element can be formed as (®1,6;), where
these values are related as F(®,,6,) = 0. By continuing the above procedure for

® =&, where i =1,...,q, a typical set of data T} can then be formed as
Ty = {(®:,61)1 <i< g}

The process can be repeated for other § = §; € ©° where j = 1,...,p to form the
corresponding data sets 7T} respectively. The complete set of training data is defined

as:

Tirain = U T‘]

1<j<p
Similarly, we can also form a testing set Tj,; for cross-validation during training,.
Once the training set is obtained, we can train the weights of a neural network
with the input ®; and the corresponding target #;. If a multi-layered neural network
is used, for example, the training can be done by the back-propagation algorithm.
If a radial basis function is used, the recursive least squares method can train the
network efficiently. After the training procedure is completed, the network can be

implemented as shown in Figure 3-1 using the algorithm in Eq. (3.9).

3.4 The Recursive Parameter Estimation Method

In contrast to the block method in Section 3.3, we introduce, in this section, an
alternative procedure wherein the neural network produces the parameter update at
every iteration rather than the actual parameter estimate itself. The algorithm, its

training, and the stability analysis are presented in Sections 3.4.1 through 3.4.3.

3.4.1 The Recursive Estimation Algorithm

As is mentioned earlier, the goal is to construct a recursive scheme to identify 8 in
Eq. (3.4), which should depend only on signals that can be directly measured and

contain information regarding 6. Since the value of # is reflected at v, through the
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relation in Eq. (3.4), to determine the direction of improving the estimate ,_; of
# at time ¢{ — 1, one way is to compare y; with the predicted response #;, where
Uy = fT(¢>t_1,§t_1). Since J; depends on ¢;_; and ,_;, we choose the estimation
algorithm as a function of y;, ¢,—; and ,_,. Therefore, the algorithm is written in

the following form:

Aé} é gt — gt_l = R(yta ¢t—-1a é\t—-l)

where the function R is to be chosen such that 8, converges to # asymptotically. In
the case of a linear system y; = 67 ¢;_;, for example, a well-known linear parameter

estimation method is to adjust Af as (e.g. [18])

n ag;—1

Ab = ——L 1 — T B, 3.10
! C+¢?—1¢t—1[yt Gerb 1] ( )

In other words, the mechanism for carrying out parameter estimation is realized by
R. In the case of general nonlinear systems, the task of determining such a function
R is quite difficult, especially when the parameters occur nonlinearly. The goal here
is to find R corresponding to a general f, in Eq. (3.4). Towards this end, we propose

the use of a neural network N. That is, 6, is adjusted as
AB, = N(ys, pr-1,0:-1) (3.11)

where the inputs of the neural network are y;, ¢;—; and f,_; and the output is AG,.
The neural network is to be trained so that the resulting network can improve the
parameter estimation over time for any possible § € ©°¢.

In order for the recursive scheme in Eq. (3.11) to result in a successful parameter
estimation, it is sufficient to establish that the parameter error, f;, or a continuous
function thereof, decreases monotonically, where ét = 9} — 0. If we define a positive

definite function V; as
V, = 676, (3.12)

and the neural network in Eq. (3.11) is trained such that V; < V;_; for all possible

f, once the algorithm is implemented on line, the estimated parameter 8, would
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eventually approach the true parameter § no matter what 6 is. Based on the above
idea, the change AV} is first calculated to see how the neural network affects the

estimation error. This is given by
AV, =V, = V_; = 20676,_, + AT AG,
The choice of Af, as in Eq. (3.11) implies that
AV, =2N",_, + NTN.

The training procedure for adjusting weights in the network should therefore be such
that AV; < 0if §,_; # 0. Since the output error §; = 7, — y; is indicative of how large

the parameter error is, we define as a target of AV;,

2+ |C(ye, ¢t—17§t—-1)|2 gj2

A‘/dt = —qa — )
(1 + |C (s, P11, 0t-—l)|2)

(3.13)

where 0 < a < 1, C is a continuous function of y;, ¢;_, and 6., in R™, and AV, =
AV — AV,. The choice of C is discussed in Section 3.4.3. If N can be found such
that AV, < 0 for all possible system responses and parameters in a compact region,
the algorithm in Eq. (3.11) would gradually improve parameter estimation for any 6
in that region, since this implies that AV < AV, < 0. However, as AV, approaches
zero, when AV, is small, AV may become positive due to the approximating nature
of neural networks. This in turn would cause the parameter error to increase. To

avoid this situation, the recursive estimation algorithm is modified as

gt = a\t—l +Aét
- N(ye, be1,00-1) if || > 6 (3.14)
A@t e
0 otherwise

similar to the dead-zone modification in adaptive controllers [42]. In general, the

choice of 6 depends on how well the neural network approximates and the magnitude
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f(¢i-1,0) Yt

Figure 3-2: On-line Estimation Using the Recursive Estimation Method

of measurement noise. If the neural network can guarantee stability (AV < 0) for
small § and the noise is weak, a smaller 6 can be selected, which results in more
accurate estimation. The algorithm is implemented in the following manner (Figure 3-
2): ¢—1, y: are measured first, and along with the past estimate 6,1 constitute
the network inputs. Using this information, AB, is obtained as the output of the
network. If |g| > 6, § is updated as 8, = 0,_; + Af,. Otherwise, the estimate remains

unchanged.

3.4.2 Training Scheme

To establish AV; < AV, for every 8, 6 € ©° and ¢ € ¢, it is necessary that for every
samples 0, 6, € ©° and ¢s € ®°, AV, < AV,,, where

AV, = 2N"(y,s,8,)0; + NTN(y,, 45, 0,) (3.15)

2+ C s sags 2 ~
A‘/d_, = —a l (y ¢ )l 2(313—3/3)2 (316)

(1+1C(5s: 94,0,)1%)

ys = f(Ps,0;) and g5 = f(¢s,§s). In other words, AV < AVj at the sample points.
Thus, we need to find N such that for every 6,, g, € ©° and ¢, € ®°,

AV,, = AV, — AV, <0
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Figure 3-3: Training of the Recursive Estimation Network

Finding weights of a neural network to satisfy AV, < 0 can be considered as an

optimization problem with no cost function and subject to the inequality constraints
A‘/&(W) < 07 1= 1}”'7M (317)

on the weights space, where M is the total number of patterns in the training set.
As discussed in Section 2.4, this can be accomplished by solving the following uncon-

strained optimization problem:
minJ 2 min E % (max{0, AV, (W)})? (3.18)
W W 2 Z=1 ) €; .

To find a W which minimizes the above cost function J, we can apply algorithms
such as the gradient method and the Gauss-Newton method. The gradient of the cost

function with respect to a weight (or bias) w; can be obtained as

oJ ~ ~ 1T ON

— =) 2AV, |0, + N(y,, ¢s,05)| — 3.19

= 2 28V [B NG00 80)] 5 (3.19)
where P denotes the set of patterns where AV,, > 0. The term gTA; = [%’%, ey %ﬁ'}]T

is the gradient of the output vector of the neural network with respect to a weight w;

in the network. The explicit forms of gﬁ'_' for the MNN and Gaussian networks are
2

given in Section 2.2. If the gradient descent method is used for example, the weights
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in N are changed as

oJ
Aw; = —Pa—wj

where p is the step size. This training procedure can be graphically shown in Fig. 3-
3. In the forward path, the neural network N has the inputs y,, ¢, and 53, and
its output is the adjustment Ab,. By using this preliminary AB,, we can calculate
AV, from Eq. (3.15). AVj is then compared with AV,, to obtain the error signal
AV,, for correcting the weights W of the network. If AV, is already less than zero,
no correction is made in W. Otherwise, training is done by back-propagating AV,
through the intermediate function AV;. In this formulation, as opposed to common
neural network training, the outputs of the network do not have a direct target to
compare with. Instead, after the outputs pass through another function, there is a
distal target AVy,. This kind of structure is also known as “training with a distal
teacher” [26]. By continuously applying the algorithm on a training set which contains
all the sampled data required to calculate Eq. (3.19), the cost function J can then be
minimized. It should be noted that since it is a nonlinear optimization problem, the
solutions may converge to a local minimum.

Since we want the algorithm in Eq. (3.11) to be valid in the ranges of possible
values of 8 and ¢ as well as different initial estimates g, the training set should cover
those variables in their respective ranges. The training set also needs to include all
the values required to calculate Eq. (3.19), specifically g, (Z,ys, U, and ¢, in order
to apply the training algorithm. The procedure for gathering such a set of data is
delineated below.

Similar to the procedure described in Section 3.3.2, by selecting § = 6;, we can
formulate the triple (¢1,%1,6:), where these values are related as yj = f.(¢1,6:), and
the subscript and superscript of y denote that the response is due to the specific 6,
and ¢, respectively. We also need to find out how the system responds to a different
parameter value, say 6,, so that we can train the network to learn the underlying

relation between (f; — ;) and g, §! for the particular ¢;, where

'Zji = fr(¢17§1)
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and the subscript of § corresponds to the parameter 6,. By combining 6;, é1, y1,
6, and 7!, a data element can be formed as (61, ¢, 01,41, 71) for a true parameter
value #;. This data element suffices to determine every term inside the summation
of Eq. (3.19). Proceeding in the same manner, we can obtain a number of estimated

outputs Jj as

7 = f(¢1,0)), j=1,-,p
and collect p data sets (61, ¢1, 01, ¥, 72), - - -, (61,01, 6,, yi,7,) for various 9, € ©°.
By repeating the above procedure for ¢ = ¢; where ¢ = 1,...,¢q, we can also obtain

! and @’J of the plant not only for #; and various gj respectively, but also for different

¢;. A typical set of data T; can therefore be formed as
Ty = {(61,6:,0;, 91, )1 <1 < g;1 < j < p}

We can also repeat the process for other possible parameters § = 6, € ©° where k =
2, ..., r and form the corresponding sets T} respectively, where T}, = {(6k, ¢;, 9}-, vi, @”’J)I

1<i<gq;1<j<p}. The complete set of training data is then defined as

Tirain = |J Tk
1<k<r
Similarly, a testing set Ti.s: for cross-validation during network training can also be
formed.
By utilizing the sets Tirqin and Tiest, we can train the neural network as depicted in
Figure 3-3. The procedure is summarized below, where we assume the stochastic gra-
dient descent method is used to minimize the cost function (3.18). If other nonlinear

optimization algorithms are used, Step 4 below can be modified accordingly.

Step 1 Consider the s-th data element (6, ¢, 6,, Ys, Us) Of Tirain, where s denotes the
index of the training set. By using (y,, ¢s,0,) as inputs of the neural network,
we can obtain the output vector of the network as, say, Af,. If the neural

network is thoroughly trained, it is expected that |, + A8, — 8, < |6, — 6,|.
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Step 2 The change, AV, corresponding to AB, is calculated from Eq. (3.15) by re-
placing N(-) with A8, as

AV, = 2A070, + AGT A8,

where 9~s = §s —0,.
Step 3 Calculate AV,, from Eq. (3.16).
Step 4 If AV,, > 0, update w; as

Aw; = —pAV,, [d, + A8,]" g—i,\[;
The above procedure is repeated for every data element of the training set and for
several epochs until J stops improving.

It is worth noting that %;, which appears in both the training phase in AV,, and
the on-line implementation in Eq. (3.14), can be attained in several ways. First, if the
plant model f, in Eq. (3.4) is available, g, can be simply calculated from the model.
Otherwise, during the training phase, if ¢, can be freely chosen, %, can be obtained
by performing another experiment with g = f,.(&s, 55) This avoids an inaccurate NV
due to model uncertainty in the training phase, while limiting using the plant model
only to check whether |§;| > 6 during the on-line implementation phase. If neither is
the model available nor can ¢ be chosen easily, we can construct another network N,
to estimate the output using ¢;—; and 6 as inputs to mimic fy(¢;-1,6). To form the
training set for /V,, we can follow the similar procedure discussed in this section. The
data set T,(61) = {(61, ¢;, y1)|1 < j < p} is obtained by measuring yi = f,(¢;,6;) for
the corresponding ¢; and ;. By repeating the process for different 8, we can form

the training set as
Tptrain = U TP(O"r)

1<i<q
Ny(¢,6) is then trained on the set with inputs ¢; and 6;, and target yf using standard

network training methods. After N, is trained thoroughly, 7, can be obtained as
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Ny(pi_1, §t~l) Yt

N(yt7 d)t—l? gt-—l) é\t—l + Aé\t
f(_d)t—hg) Yt
Gr-1
Figure 3-4: The Recursive Estimation Method (f, unknown)
Y = Ny(gbt_l,ét_.l). On-line implementation of the recursive method when f, is

unknown is shown schematically in Figure 3-4.

3.4.3 Convergence Analysis

For the procedure proposed in Section 3.4.2, the network is trained to make AV, <
0 by using all the measurable signals to determine Af. To guarantee the success
of training, it must be shown that for any 6, Af can indeed be found from those
measurable signals. Furthermore, if the network is successfully trained, the algorithm
in (3.14) can guarantee stability of parameter estimation. In this section, we will
prove that the above statement is true under some assumptions. Moreover, those
assumptions turn out to be satisfied for a wide class of nonlinear systems.

Consider the nonlinear system in Eq. (3.4) and the corresponding predictor for
the estimate @t._lz

Y = fr(¢t—1,0)

R (3.20)
gt = fr(¢t—1a0t—1)

where ¢,_; € ®°, 0, 6,_1 € ©° and Yi, Yp € UE.

Theorem 3.2 For the system in Eq. (3.20), let there exist continuous functions C :

Uex P xO° — R" and h : U x & x O° — R, and a function R: P x O° x O° — R
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such that the following condition is satisfied:
67C(y, ¢,0) + R(6,6,8) = h(y, ,9) (3.21)
Then, the equilibrium point 6 = 0 of the parameter identification algorithm
0, = 0:_1 + akvh(ys, b1, 00-1)C (Y1, Pr-1, 1) (3.22)

1s stable, where

1 if |h(y, ¢,0)| > 6
0 otherwise

1
1+CTC

O =SUP 4 gco Geo |R(¢,0,§)|, 6> %a, 0<b<land0<a<1l.

Proof: Let V; = 0?01 be a Lyapunov function candidate, where 6, = §t — 0.
If Ih(yt,¢t_1,§t_1)! < 6, then 6; = 6,_, and therefore V; = V,_; implying stability.
Hence, we need to consider the case when |h(y, ¢,8)| > 6. By triangular inequality,

we can conclude from Eq. (3.21) that, if |h(y, ¢,8)| > 6, then | 2R | < b. Thus,

0TC+R
AV, £ V-V
= 2akhbT C + a®k*h2*CTC
ah? 2R

= — | 2—-2-a)|CPP+ ——(1+ CQ]

A ToRE |2~ @ 9ICr + L (o)

2+CP .,
< —a(l =b)——==h
< =0 aTepp
< 0
Hence, 6, < §t_1. 6 = 0 is thus a stable equilibrium point. |

Theorem 3.2 implies that if the condition in (3.21) is satisfied, then the parameter
update law, determined as in Eq. (3.22), is a stable one. The question naturally arises

as to whether this condition is indeed satisfied by a general nonlinear system. Since
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f, is twice continuously differentiable, if we expand the system in Eq. (3.20) around

a point 6y using Taylor expansion, the following equation can be obtained:

I AN
G — gy = r(e10)

t — Yt 20 01 + 9{H191 - 95H292

0o
where 6; = §t — 6y and 6, = 0 — 6y; H, and H, are Hessian matrices of f, with respect
to 0 evaluated at 6 = 6y + p16; and 6 = Gy + pa6, respectively with p;, ps € [0,1]. By

comparing the above equation with (3.21), we can define C, R and h as follows:

c = (af,_(g;ﬂ 90>T (3.23)

R = 60TH6, — 6T H,0,

h = G—y
Since f, is continuous and ®¢, ©° and ¥ are compact, 6 in Theorem 3.2 exists.

The above argument and Theorem 3.2 establish the existence of a stabilizing
continuous algorithm for a general nonlinear system. However, if a function C given
by Eq. (3.23) is indeed chosen in (3.22), the region where v = 1 is satisfied can be very
small. This is because this specific C is only a linear approximation around 6,. When
9 or 0 is away from 6, h is dominated by R and thus a large 6 results. Fortunately,
the neural network NV is trained so as to have AV < AVj. This allows more freedom
in the function that NV has to approximate and hence may result in a larger region

where v = 1. The following theorem summarizes the stability of the algorithm when

N is trained so that AV — AV; <e.

Theorem 3.3 For the system in Eq. (3.20), suppose a neural network N is trained
such that AV, — AV, < € for an ¢ > 0 and for every ¢, € ®° and 03,53 € 6c. If
b1 € D and 0,_, € ©° for every t, and 6 € ©°, then there exists a 6 > 0 so that the

following algorithm

=

N Oy + N(ys, ds—1,0:1) if 5| > 6
g { t—1 (yt Dr—1 tl) Zflytl (3.24)

0, otherwise
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is stable at 0, = 0.

Proof: From the definition of AVj,, we have the following inequality:

2+|C)2 ,
QY
(1+]C)?)?
~2
()
> -
= 9 + |C)?

'Ath|

Since C' is continuous and ®¢, ©° and f,(®¢, ©°) are compact, the supremum of |C|

exists on f,.(®¢,0°) x ®¢ x ©°. Thus, we can find a a > 0 such that
|Ath| > 01:02

Hence, if §* > £,

AV, <AV, +e<0

By choosing 6 = \/g, we have V; = V,_; for g < 6 and V;, <V, if |§| > 6. 6=0is
thus stable for every ¢;_, € ®¢ and 0, [9;-1 € O°. [ ]

3.5 Comparison with Extended Kalman Filter

Since many efficient parameter estimation algorithms have been developed for linear
systems, a natural extension is to modify nonlinear problems so that these algorithms
can be applied to them. Most methods attempt to overcome this difficulty by lin-
earizing the nonlinear system around the most recent parameter estimate. One such
approach is the extended Kalman filter. In this section, the extended Kalman filter
is used as an example to illustrate the difference between TANN and these linearized
methods.

The extended Kalman filter for parameter estimation can be summarized as follows

[23, 18]. The regression form in Eq. (3.4) can be rewritten in the following state space
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representation with the unknown parameters 8 as state variables:

9t+1 = 19t

(3.25)
Yevr1 = fr(¢ta 6:)

where [ is an identity matrix and 6y = 6. If we linearize f, around some estimate of

0, say, @, the linear approximation of (3.25) can be written as

01 = 16 (3.26)
Yy1 = afra?,e)|9:a 6,

With the above formulation, a standard Kalman filter can then be easily applied.

The result is
o~ ~ _ T -~
b1 = O+ e W — £(40,02)

_ P(t—1)HT (H)H(t)P(t—1)
P(t) = P(t - 1) - J,»4.?1%)}:'@—1)HT((t)

(3.27)

where H(t) = 5%‘“&’6:?,1 and 7 denotes the variance of measurement noise.

A major difference between the extended Kalman filter as well as other algorithms
that uses information from the linearized system and TANN is that the later utilizes
the knowledge of the true parameter value during construction of the algorithms.
This can be elaborated as follows. When the extended Kalman filter is applied on-
line, since the true parameter value is unknown, the direction to correct parameter
estimate is based on the gradient calculated at the current parameter estimate. If
the estimate is far away from the true value, this gradient may not point in the right
direction. As a result, even worse estimate could occur. Hence, there is no guarantee
that these classes of algorithms would converge to the right value if at all. On the
other hand, the fact that TANN is trained off-line is made full use of. Since during
the off-line training phase the parameter value is known, the direction where the
parameter update should be made at each measurement and for each parameter value
is determined without resorting to estimation. Once the neural network has stored
this information off-line, on-line estimation becomes simply choosing the appropriate

correction in parameter estimate, which has already been obtained during training,
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corresponding to the current measurement. Hence, more stable result can be expected
from TANN algorithms. Furthermore, how the parameter estimate is updated is
determined off-line. As shall be seen in Chapter 4, this property helps establish the
stability of the controlled systems in a rigorous manner.

The above discussion can be illustrated geometrically in Figures 3-5, 3-6 and 3-7,
which sketch respectively how parameter estimates using the TANN, the projection
algorithm and the extended Kalman filter evolve during estimation. The projection
algorithm is also derived from the linearized system at the most recent parameter esti-
mate. In this fictitious example y; = f(¢;—1,8), it is assumed that only two different
measurements (y(), (1)) and (y®,¢() are available, and they appear alternately.
The two thick solid lines L, and L, in the figures represent all possible combinations
of the two parameters to be estimated that satisfy the relationships ¥V = f(¢(), §)
and y@ = f(¢?, ) respectively. The intersection of the two lines is certainly the true
value. The thin solid curves represent the values of § that satisfies ¢; = f(¢V), 8) for
various ¢;, while the dotted curves correspond to those of satisfying d; = f(¢®, 9).
For the recursive TANN algorithm, since the parameter values are known off-line,
the neural network can be trained to update parameter estimate approximately as
what is shown in Figure 3-5. If the initial estimate is at the point a, the following
estimates would gradually move toward the true value. However, for the projection
algorithm, since the correction is always along the gradient calculated at the most
recent estimate, the estimate would gradually diverge for this particular example.
On the other hand, Figure 3-7 shows the trajectory of parameter estimate using the
extended Kalman filter. For the sake of simplicity in illustration, it is assumed that
r = 0in Eq. (3.27), and thus, the extended Kalman filter becomes the orthogonalized
projection algorithm [18]. The algorithm updates parameter estimate along the di-
rection that is orthogonal to all previous directions of updates. Hence, after the first
two updates, the new estimate stops at the point b. From this example, it can be
seen that the quality of the results clearly depends on how well the linearized system

resembles the original nonlinear system.
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Figure 3-5: Illustration of the TANN Algorithm

Figure 3-6: Illustration of the Projection Algorithm
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Figure 3-7: Tllustration of the Extended Kalman Filter

3.6 Summary and Remarks

In this chapter, we have introduced a novel use of neural networks for parameter
estimation. These parameters can occur nonlinearly and the structure of the non-
linearities may or may not be known. We make use of the nonlinear representative
capability of neural networks to approximate the map between system variables and
system parameters. By training the network off-line in a controlled environment
where data can be collected regarding the system corresponding to known system
parameters, it can be used on-line to estimate unknown parameters of a nonlinear
and perhaps time-varying system. We denote the class of neural networks trained
thus as #-adaptive neural networks. Two different methods, based on the block and
the recursive parameter estimation, are proposed. The analytical conditions under
which the parameter estimates converge to their true values are presented. We also
show that these conditions are indeed satisfied locally by a broad class of nonlinear
systems.

The block estimation method, described in Section 3.3, uses a neural network to
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construct the implicit function describing the relation between the responses and the
parameters for general nonlinear dynamic systems. This method can be viewed as
being analogous to the concept of the look-up table with the entry of the table ®. The
table is coded into the network using the training procedure described in Section 3.3.2.
When the network is implemented on-line, it then “interpolates” the table to find the
best parameter approximation that fits the measured responses. Since the neural
network is constructed off-line, the on-line identification can be carried out fairly
quickly. Furthermore, the algorithm requires no specific knowledge of the analytic
form of the system for parameter identification since either an extensive simulation
model or an experimental setup can substitute the analytical model to form T},q;p.
Therefore the algorithm is useful in applications where the systems are too complex
to model accurately.

We provide some comparisons between the recursive parameter estimation al-
gorithm and the parameter identification procedures carried out in adaptive con-
trol [42, 18]. The role of the neural network in this case, as shown in Figure 3-2, is
to generate the map between the quantities {y, @, 5} and Af. In the case of linear
parameter estimation, this mapping is defined by Eq. (3.10) using which convergence
and other stability properties can be established. For parameter estimation in general
nonlinear systems which is of interest here, we use a neural network as described in
Section 3.4.1. As in the block parameter estimation method, the fact that the true
parameter is known during training is directly used, as shown in Section 3.4.2. The
stability properties of the algorithm proposed was established in Section 3.4.3, using
a target function AVj,. Since the estimation is being carried out recursively, using in-
stantaneous values of {y:, ¢, @}, AV, was chosen to be a function of the scalar error
function ¥ rather than the parameter error vector . Due to the approximating nature
of neural networks, the algorithm is modified to incorporate a dead-zone like feature
as in Eq. (3.14), similar to adaptive control algorithms [42]. Yet another feature of
commonality between the adaptive algorithms and those proposed here is the effect of
persistent excitation. As it shall be seen in Chapter 6, this leads to smaller parameter

error. Unlike the block parameter estimation, when there is a lack of persistent exci-
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tation, the parameter estimate from the recursive algorithm simply ceases to update,
i.e. Ad ~ 0, which again is similar to linear adaptive algorithms. Furthermore, since
the recursive algorithm uses only the most recent values of {y;, ¢, @}, the dimension
of the input space of the neural network is smaller, which results in a less complex
network structure.

A comparison between the f-adaptive neural networks and those in [43] is also
worth making. Neural networks have been used in [43] as well as in many other papers
to represent the nonlinear map from inputs to outputs. In contrast, we have suggested
the use of neural networks for estimating the map between system observations and
parameters. In [43], the neural network has been shown to represent different classes of
nonlinear systems (denoted as models I-IV), which are input-output models, derived
perhaps on an empirical basis. In this paper, our starting point is the model as in
Eq. (3.2) or Eq. (3.3), which is based on the physical characteristics of the dynamic
system, thereby providing a closer connection between neural network models and
the actual physical models of the system. The target for training the neural network
in [43] is the output error. More specifically, the performance index used for back
propagation is a quadratic function of the output error which is an obvious target
for the proposed use of the neural network. In our case, the goal is to reduce the
parameter error. The advantage to be gained is that the resulting output, which is

the true parameter of the nonlinear system, is more useful for adaptive control tasks.
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Chapter 4

Adaptive Control of Nonlinear
Dynamic Systems Using

9-Adaptive Neural Networks

4.1 Introduction

In many of the engineering problems, governing dynamics of the systems can be
modeled using physical laws such as conservation of mass, momentum and energy.
Physical constants in these models characterize key aspects of the behavior of the
systems. Due to several factors including change in operating conditions, these phys-
ical constants may vary during operation. How to compensate for such variations is
a challenging task for control engineers. The field of adaptive control deals specif-
ically with this class of problems, where a control action has to take place despite
the presence of uncertain and varying system parameters. For the sake of analyti-
cal tractability, simplifications are often introduced in the system models despite the
presence of physically-based models.

In this chapter, we introduce a neural controller which makes direct use of the
physical model of the system under consideration. The problem we focus on is the
control of systems with parametric uncertainty while the structure of the system

models is assumed to be known. This occurs in many systems where the underlying
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physics that contributes to the system dynamics is well-known and can be modeled
using physical laws such as conservation of energy and momentum. Yet, the param-
eters that characterize the operating points vary and need to be determined on-line.
Since the system model is used in designing the controller, designers have more free-
dom in choosing the controller structure. However, difficulty arises in estimating
the unknown parameters in the system if the physical model is used, since these pa-
rameters usually occur nonlinearly in the model. The approach that we suggest to
overcome this problem is to use TANN discussed in Chapter 3. In contrast to com-
mon approaches in applying neural networks to control problems where the neural
network is used as a controller model with its weights updated on-line, our approach
consists of applying TANN to adjust the parameters of a controller whose structure
is designed using the available physical model. In other words, the neural networks in
our approach act as parameter adaptation mechanisms as opposed to controller mod-
els. The adaptation algorithm for a nonlinear system is constructed using a neural
network rather than being solved analytically. Outputs of the neural network are thus
correction in the controller parameters. There are several advantages for this kind of
approach. Besides allowing a more flexible choice of controllers as the control design
is based on the system model, there are much fewer number of parameters to be
adjusted on-line compared to most neural control methods where typically hundreds
of weights need to be varied on-line. This would significantly improve transient per-
formance of the resulting closed-loop system especially when nonlinearity dominates,
and in turn result in a larger region of applicability in state space and parameter
space.

In addition to proposing a new way of incorporating neural networks for control
purposes, another main contribution is the proof of stability of the closed-loop system.
In contrast to much of the published literature on control using neural networks,
we show that the proposed controller with a neural algorithm leads to closed-loop
stability. While the stability is local, since the parameters adjusted on-line are closely
associated with the physical model and usually have a physical meaning, the bounds

on the initial parameter estimates that we shall establish in the proof are more tangible
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(compared to the weights of a neural network) and can thus be easily checked for a
given process. Furthermore, the assumption that is required in most adaptive control
approaches that the system model is affine in the control input, is not needed in our
approach.

In order for the neural network to adjust the controller parameters on-line in a
stable manner, training of the network must be performed off-line for our proposed ap-
proach. Such an off-line training prior to proceeding to on-line parameter adaptation
is a distinct departure from most other adaptive algorithms suggested for identifica-
tion and control in the literature, which are simply implemented on-line with no prior
training requirements. As shall be seen later, the off-line training is analogous to the
process of finding a stable parameter adaptation algorithm for a linear adaptive sys-
tem. Since the goal of the network training is to find such an algorithm, the targets
of the training are certain properties that would guarantee stability of the closed-loop
system when the network is implemented on-line, as opposed to the controller map-
ping that would minimize a performance cost function. The properties to be satisfied
and the training process to achieve them are described in detail in this chapter.

This chapter is organized as follows. The problem as well as assumptions on the
system model are described in Section 4.2. Properties that the neural network has to
satisfy in order to guarantee stability of the overall system are discussed in Section 4.3.
We describe a training method for the neural network to satisfy those properties in
Section 4.4. Outlines of the proof of stability followed by the proof itself are shown
in Section 4.5. The assumptions and sufficient conditions under which the stability
holds are also discussed in this section. For systems where part of the model is linearly
parametrized, simplification can be done to reduce complexity of the problem. We

discuss one such scheme in Section 4.6.
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4.2 Problem Statement

The focus of the nonlinear adaptive controller to be developed in this paper is on

dynamic systems that can be written in the d-step ahead predictor form as follows:

Yerd = fr(we, us, 0) (4.1)

where

th = [Yss " s Ytmnt 1y Utm1y " Upmmm—dip1] (4.2)

n>1m>0,d>1 m+d=n, Y),U CR containing the origin and ©; C R*
are open, f, : V' x Lllm+d x ©1 — R is a known function, y; and wu; are the output
and the input of the system at time t respectively, and 6 is an unknown parameter
and occurs nonlinearly in f,.! The goal is to choose a control input u such that the

system in (4.1) is stabilized and the plant output is regulated around zero.

4.2.1 Assumptions

Let
zf = [Yera—1, - Yer1, w7 ), (4.3)
[ 10 ]
[0 0 ' 0 0
I : O(n+d-1)x(m+d—1)
A = 0 . B |20 (4.4)
0 0 01
O(mtd—1)x(n+d-1) I 00
L 0 . :
L O 0 J

We make the following assumptions regarding the system in Eq. (4.1).

1Here, as well as in the following sections, A™ denotes the n-th product space of the set A.
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(A1) For every 6 € ©4,
f-(0,0,6) =0 (4.5)

(A2) There exist open and convex neighborhoods of the origin YV, C V) and Uy C U,
an open and convex set ©, C ©q, and a function K : Ey — U; such that for

every wy € s, Yira € V2 and 0 € O,, Eq. (4.1) can be written as
us = K(wt, Ye+d, 0)- (4.6)

where

Q 2 VP xUrtl B 2 Oy x Yy x 0,

(A3) K is twice differentiable and has bounded first and second derivatives on Ej,

while f, is differentiable and has a bounded derivative on 2, x K(E;) X O,.

(A4) There exists a 6, > 0 such that for every y; € f.(Q2, K(22,0,0,),0;), w € Q
and 6,0 € ©,,

. ofr(w,u,0)
ou

. (3K(w,y, 6) 3K(w,y,9)) >,

dy dy

Yy=un u=uy

(A5) There exist positive definite matrices P and @ of dimensions (n +m + 2d — 2)
such that for every 6 € O,

T (AT PA,, — P)z; + [0, K(w;,0,0)|BL PB,,

K(w,0,6) ]

+22T AT PB,,

< —zf Q;
K(wt, 0, 9)
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Assumptions (A1) and (A2) together imply K(0,0,8) = 0 for every § € ©. It
is worth noting that if g’% # 0 at wy = 0 and for some § € ©; in Eq. (4.1), the
existence of )y, Uz, ©2 and K is guaranteed by the implicit function theorem [40].
The smoothness assumption in (A3) is needed to apply the mean-value theorem to
obtain upper bounds on growth rates of signals in the closed-loop system. Assumption
(A4) is automatically satisfied if the gain multiplying u; is known. This is similar
to conditions on the high frequency gain in linear adaptive control. The assumption

in (A5) essentially implies the decrease of
w, & o] Pz, (4.7)

along the trajectory to be no slower than —a7 Qux; if u; = K(w;,0,6). A necessary
condition for this assumption is for the zero dynamics of the closed-loop system to

be stable.

4.2.2 The Adaptive Neural Controller

Since the objective is to control the system in (4.1) where 6 is unknown, in order to

stabilize the output y at the origin, we choose the control input as
Up = K(wt, 0, é\t) (48)

where 8, is the estimate of 8 at time ¢. It can be seen from Egs. (4.1) and (4.6) that

the following relation holds:
0= fr(wt, K(wt, 0, 9), 6)

which implies that if the value of # is known, the controller in Eq. (4.8) can drive
the output y to the origin in one step. Since § in Eq. (4.1) is unknown, the stabiliz-
ing controller needs to be combined with an adaptive algorithm that generates the

parameter estimate 6,.
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Suppose the algorithm for updating 0, is defined recursively as
o~ A —~ ~ -~
AB; = 0y —0:1 = R(ys, we—g, Ut—q, 0:-1)

the problem is to determine the function R such that 6, converges to § asymptotically.
In general, R is chosen to depend on y;, wi_4, U;—q and ét_l since they are measurable
and contain information regarding . For example, in the case of linear systems which
can be cast in the input predictor form, u; = ¢r6, a well-known linear parameter

estimation method to adjust Af is the projection algorithm [18]

~ t—d

Al = ——% Ty, g—oF 0,1l 4.9
t 1+¢g~—d¢t_d[td ®;_abt-1) (4.9)

In other words, the mechanism for carrying out parameter estimation is realized by
R. In the case of general nonlinear systems, the task of determining such a function
R is quite difficult, especially when the parameters occur nonlinearly. Towards this

end, we propose the use of an artificial neural network N. That is, we adjust 8, as
Agt = N(yt, Wt—d, Ut—a, [9;—1) (4.10)

where the inputs of the neural network are y;, wi_q, u;—q and §t_1, and the output
is AB,. The structure of the controller and the adaptive algorithm are shown in
Fig. 4-1. The neural network is to be trained so that the resulting network can
improve the parameter estimation over time for any possible § € ©,. In addition, the
trained network must ensure that the overall system in Egs. (4.1), (4.8) and (4.10) is
stable. We show in the following sections that these are indeed achievable. By using
a procedure similar to what we developed for the TANN algorithms [2] in parameter
estimation, we show in Section 4.4 that we can successfully train the network. Under
the conditions made in this section regarding f, and K, we prove in Section 4.5 that
the output of the closed-loop system converges to a neighborhood of the origin.

It must be noted that in order to apply the TANN controller, the controller struc-
ture specified by the function K in Eq. (4.6), which satisfies (A2)-(A5), should be
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Data

TANN

Yt

K(wt,O,gt) Yerd = fr(we, ue, 0)

Figure 4-1: Structure of Adaptive Control Using TANN

explicitly known. A question arises as to under what conditions on f, does such a

function K exist. While we do not explicitly address the issue here, we argue that

the class of such functions is quite large. For instance, consider the class of nonlinear

systems with a triangular structure discussed in [28, 27, 56] of the form

Ll

T2

Ldyyy

‘Td+1t+1

Triya

Yt

= 1, + fi(x1,, 22, 0)

= Iy + fQ(xlt’tha Z3,, 0)

= Z4, +fd(xlt7' * ‘,l'd+1t,0) +ut

(4.11)

= Td+1, + fd(xlu sty Ty, U, 0)

= In, + fn(xlu ot 'axmautae)

= I,

Assume -6—% (0,--+,0,6p) # 0 for 1 <i < d. We can transform (4.11) into the form

in (4.6) by following the steps described below. Since 51% (0,---,0,6p) # 0, we can
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write
Titlypgoi = gi(x1t+d—i’ "y Tigyaio Tigpgoigy 0) (4'12)

for some function g; : f“ x ©;, where V; and ©; are open neighborhoods of the
origin and # respectively, and 1 < ¢ < d. It can be observed from (4.11) that by
continuously substituting zi,,, ;,, = Tiu_+ fi(T1,4u s =** Tit1,,, ;) into the state

equation z;_1, , .., and utilizing (4.12) we can obtain

Ut = G(1yy0r Tlorars > Thr™ s Tigya_sr "~ Tigs "+ Ty 0)
By applying (4.12) again, we can represent xy, ,,- ", 4, in terms of zq,,---, T1,_,,,
and u;_1,- -, us_qgy1. The above equation is then in a predictor model form

Uy = K(yt+d, Yoo Yo—1, " Yemdi1> U1, " * *  Ut—d+1, 0) (4-13)
which is similar to that in Eq. (4.6) with w? = [ys, Ye—1," "+, Ytmder1, Ut—1, " " * » Ut—dt1)-

If the internal dynamics

Tdt1,41 = Td+1, + fd(xlu © 0y Ty, Uty 0)

Tnipr = Ty + fn(xlg’ oy Ty Ug,y 0)

is stable for u; € Uy and 6 € ©,, the predictor model in Eq. (4.13) suffices to be used
as a controller. Though outside the scope of this paper, it is possible to determine

conditions on f; in (4.11) under which (A3)-(A5) are satisfied.

4.3 TANN Algorithms for Control

A question that naturally arises is whether the same algorithm and training procedure
developed for parameter estimation in the previous chapter can be applied directly

for estimating # in the adaptive control problem stated in Section 4.2. Since in the
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control problem, we are interested not only in generating bounded parameter esti-
mates 8, but also in establishing stability of the closed-loop system, we may need to
impose additional conditions on the neural network and its training. In this section,
we introduce two sufficient conditions that the neural network must satisfy for sta-
bility. In Section 4.4, we show how the network can be trained so as to satisfy these
conditions. In Section 4.5, we show that under these conditions, closed-loop stability
follows.

To quantify the parameter estimation error, we use the same norm as in Eq. (3.12).
By comparing Eq. (4.6) with Eq. (3.4), we can see that [w¢, y4a] in Eq. (4.6) have
the role similar to ¢,_, in Eq. (3.4), while y; in Eq. (3.4) is similar to u; in Eq. (4.6).
Hence, referring to Eqgs. (3.11), (3.13) and (3.23), similar Af;, AV, and C(¢;) can be

defined for the control parameter estimation as

Agt = N(yta Wi—d, Ut—d, é\t—l)
Iy 2
2 GG (4.14)
(1+1C(d-a)?)

_ oK T
Cle) = (— , ,0 )
( t) 80 (wt Yiyd ) 4=,

AV, =

where

Uy = Ut — K(wt, Yt+ds §t+d—1) (4-15)

¢t = [wg'ayt-i-d]Ta (416)

ay € (0,1) and 6y € O, as in (3.23) is the point where K is linearized. Unlike TANN
for parameter estimation where AV; < 0 is sufficient to guarantee stability, the control

problem does require that AV; < AV, or at least
AV, — Ath <€ (417)

where ¢; is a small positive constant. Besides making the proof tractable due to

the knowledge of the minimum rate of parameter convergence, another reason for
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requiring AV;—AV,, < ¢ is that if the convergence rate is too slow, the system output
may diverge before the controller parameter converges to a stable set. Therefore, AV,
should be bounded above by a negative definite function of #;_4. These points shall
be made clear when we prove stability of the system in Section 4.5.

The choices of the functions AV, and C in (4.14) for the control problem are
motivated by the projection algorithm (4.9) used for linear parameter estimation.
That is, if 8 is close to 6, the projection algorithm yields a AV =~ AV given by (4.14),
and hence a stable estimation procedure. In the problem under consideration, we
selected these functions to provide a negative definite target for AV since the goal is
to achieve AV < 0. The training procedure, derived in detail in Section 4.4, seeks
to train IV in (4.14) so that AV satisfies (4.17). The parameter estimation algorithm
in (4.14) however is not determined as a specific continuous function with a closed
form but is constructed using a neural network which is trained to approximate this
continuous function. Since the algorithm attemps to generate a AV which is less than
or equal to AV, and not achieve an exact equality, its construction requirements are
less stringent and therefore, it is amenable to generating satisfactory performance over
a range of parameter values of § and not merely for 8 close to 6,. This is illustrated
in Section 6.3.

For the parameter estimation problem in Chapter 3, it was only required that
the parameter error norm be non-increasing. In the control problem, in addition to
having AV; < AVj,, we need yet another property, which is that the magnitude of
the parameter correction A@t at each step has to be small enough if %;_4 is small.

Since Aat is the output of the network, we limit the output vector such that

(<
(T+1C(- P

|V (Ye, we—d, Ut—a, 5t—1)|2 < ap (4.18)

where a; < ay < 1.
Feasible corrections of parameter estimation satisfying the two properties can be
graphically shown in Figure 4-2. In the figure, (6;,6,) denoted by ‘x’ is the true value

of parameter, while (51, 52) labeled by ‘*’ represents the current estimate. Hence, the
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Figure 4-2: Feasible Region of Neural Network Output for Adaptive Control

requirement AV, < AV}, limits the new estimate to be somewhere inside the large
disk whose radius is determined by AV,,. For parameter estimation, this would be
enough. However, for the control problem, the additional property in Eq. (4.18)
specifies the maximum distance where the next estimate can move, which is defined
by the right-hand side of Eq. (4.18). It therefore restricts the new estimate to within
the small disk centered at ‘*’. The intersection of the two disks is the feasible region
of the neural network output.

Similar to the parameter estimation case, a dead-zone modification is also made
in TANN for the control problem to guarantee AV; < 0. Suppose there is an ¢; > 0
so that AV; — AV, < €;. The algorithm in Eq. (4.10) is changed to

t =

. Bi—1 + N(ye, we—a, Uea, Or_1) if AV, < —e
Atl (yt t—d> Ut—d tl) d (4.19)

01 otherwise

where € > ¢;.
In summary, we are interested in finding a function N : Y3 x UFt? x ©; —
RE, where Vs C V5, Us C Uy and ©3 C O, are compact sets, and Vs, U3 contain

neighborhoods of the origin, such that for every w,_4 € Y3 x Uy*™4"!, § € ©; and
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f,_1 € O3, N satisfies the following two properties:

—~ C T _ 2 -
(P1) |N(yt,wt—d, Ut—d, 9t—1)|2 < (12%—;‘_‘{3])'2)511?_01

(PQ) AV, — Ath < €, € >0.

if u—q € Us £, o (V3), where f71|,  ;(Vs) denotes the inverse image of the set
Y3 under the mapping f,(w,u,d) at w = w;_q and ¥ = §. With this neural network
N, TANN algorithm is then implemented as in (4.19) with € > ¢;.

The reason why we restrict us_q4 in Us N f~ 1|wt_d,9 (V3) is that for arbitrary u;_g,
y: does not necessarily stay within }3;. As a result, the subsequent w;_4.; may be
outside the set V3 x U1 where N is trained. If this happens, the network output
needs to be discarded since its approximation is unreliable outside the compact set.
Hence, we do not train the network on those patterns which result in such a scenario.
However, when (4.19) is actually implemented on the closed-loop system, the question
remains whether those patterns can actually be avoided. In Section 4.5, we prove this
is indeed true as long as the initial estimation error is small enough.

It is also worth noting that although we require the above two properties to estab-
lish stability of the closed-loop system, it is still possible for algorithms violating these
two properties to result in a stable system since they are only sufficient conditions.
Nevertheless, these two properties provide us with mathematical tractability in the

proof.

4.4 'Training of TANN for Control

In the previous section, we proposed an algorithm using a neural network for ad-
justing the control parameters. We introduced two properties (P1) and (P2) of the
identification algorithm that the neural network needs to possess in order to maintain
stability of the closed-loop system. In this section, we discuss the training procedure
by which the weights of the neural network are to be adjusted so that the network
retains these properties.

As in the training of TANN in Chapter 3, a training set is constructed off-line
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first. Since we want the algorithm in Eq. (4.19) to be valid on the specified sets
Y5 and U3 for different 6 and g in O3, the training set should cover those variables
appearing in Eq. (4.19) in their respective ranges. Hence, we first sample w in the set
Vi % U§”+d‘1, and 0, 6 in the set ©3. Their values are, say, w;, 6; and §1 respectively.
For the particular 8; and 6; we sample § again in the set {8 € O3] |0 —60;| < |6, —6:]},
and its value is, say, 5‘11 The reason for having two different samples of 6 (i.e. 51 and
69) is elaborated as follows. It can be observed from Eqs (4.1), (4.8) and (4.19) that
§ appears at two different places in the closed-loop system: the parameter estimate
at time ¢ is used to assign u; and is used at time ¢ + d — 1, together with ¥yii4,
wy and u;, to obtain the new estimate §t+d as well as 4;. Hence, we need 6, and
gf to represent samples of the variables @ and §t+d_1 respectively. Since §t+d_1 is
(d — 1) steps ahead of 8;, if the parameter estimation is successful, 64 should always
be closer to the true parameter than 8. Therefore, we limit the samples of 8¢ in the
set {0 € O3] |# — 01| < |A;, — 6,|}. However, for the special case d = 1 in Eq. (4.1),
only 6; is required since t +d — 1 =t.

Once wy, 64, 6, and 5‘11 are sampled, other data can then be calculated, such as
u; = K(wi,0, 51) and y; = fr(wy,u1,6;), where u; corresponds to a sample of u at
time ¢, whereas y; corresponds to a sample of y at time ¢ 4d. If y; & Vs, this pattern
is ignored for reasons explained in the end of Section 4.3. Otherwise, we can also

obtain the corresponding C(¢;), AVy, and L, as follows:

- oK
C(¢1) = %‘ (wh y1,60)
7|2
Ale = —ag 2 + IC(?1)| 5 (ul _ ﬁ1)2
(1+1C@)P)
L, = a |C(1)]? (1 — )’

*aA+IC@)P)

where ¢, = [wf,y1]T and @; = K (w1, y1, 6%). A data element can then be formed as
(y1,ws,u1, 5;’, 6;, AV, , L;). This data element suffices to determine every term on the

right-hand side of Eq. (4.22). Proceeding in the same manner, by choosing various
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ws, B, B and 67 in their respective ranges, we form a typical training set Tyrqin as

Ttrain - {(ys, Ws, Us, ég’ 93; AVd,a Ls)

1535M}

where M denotes the total number of points in the training set. Similarly, a testing
set Tiest can also be formed for cross-validation during the network training.
Let s denote an index of the pattern in the training set. AV, and AV, for the

particular pattern s are

AV, = 0,4+ N,(W) —0,]> — |6, — 6,]?
AV,, = AV, — AV,

where N,(W) is an abbreviation of N(ys, ws, us, 0,: W) and W denotes weights in the
network.
To establish (P1) and (P2) in the previous section, it is necessary that for every

pattern in the training set, W must be such that

IN.(W)]* < L,
A‘/e,(w) < O, 3:1,...,M

(4.20)

In order to satisfy the inequalities in (4.20), we view the problem as one of con-
strained optimization with no cost function. We first convert the inequality con-

straints in (4.20) into equality constraints by adding additional variables v; and z;:
INW)2—Li+22=0, AV, (W)+v?=0, i=1,---,M

If the quadratic penalty function method [7] is used, we can formulate the optimization

problem as follows:

miny, ¢ SHy {1 (AVe (W) +02) + £ [AVe (W) + 03
+ 3 (G UN(W)2 = Li+ 22) + § [[N(W)? — L + 22) }
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where p; and (; are Lagrange multipliers, ¢ is a constant and b% is a weighting constant.
Minimization with respect to v and z can be carried out in closed form [7], the result

can be written as

1

%Vnﬁg; {(max{O, i + AV, ) — u? + =] [(ma.x {0, G+ c(|N:(W)|? - Li)})2 - Cz?]}

Since the optimization involves only inequality constraints, we can further reduce the

problem into the following form:
. A . 1 M 9 1 9 2
winJ & ming 3 {(maX{O, AV} + 15 (max{o, IN(W)? — Li}) } (4.21)

To find a W which minimizes the above unconstrained cost function J, we can apply
algorithms such as the gradient method and the Gauss-Newton method. The gradient
of J with respect to a weight (or bias) w;, which is required for either algorithm, can

be obtained as

o) _ > 24V, [0+ N(ys,ws,usﬁs)]T ON
awj sePy awj
. - ON
—_ 2 Ns z_ Ls NT s sy Wsy Vs .
PR R

where P; and P, denote the sets of patterns for which AV,, > 0 and |N,|> — L, > 0

respectively. The term gwlj = [g—g}%, e, %’:’—;]T is the gradient of the output vector of

the neural network with respect to a weight w; in the network. The procedure of

neural network training is summarized below.

Step 1. Consider the s-th data element (yg,ws,us,af,ﬂs, AVy,, L) of Ttrgin, where s
is an index of the training set. By using y,, ws, us and §f as inputs of the neural

network, we can obtain the output vector of the network as, say, AG;.

Step 2. AV, corresponding to this particular AB, is calculated from the definition as:

AV, = 2A67 (6% — 8,) + AGT A,
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If the neural network is thoroughly trained, it is expected that AV, < AV, and
|AG,)? < L.

Step 3. Update the j-th weight w; of the network as

new __ ,,old _
J Wy =

—p (1A [fs + N(gosway 1, )] + FOIN = LINT (g, 0,,0,) ) 2

A
Aw; = w

where 6[z] = 2 if £ > 0 and 6[z] = 0 otherwise. Repeat the correction for every

weight in the network.

The above procedure is repeated for every data element of the training set and for
several epochs until J in Eq. (4.21) is within tolerance.

In Step 3, Aw; is calculated using the stochastic gradient descent method. If
the Gauss-Newton method is used for example [52], we can replace Step 3 with the

following steps:

Step 3a Calculate ay; and Gi as

AAV; DAV, 1 8INJ~|"’3INJ-I2]
o = - + 9 | "a.. &
® ez,; [Bwk oy ] ].; b2 [ dwp Oy
oA oIN;?
= — A e - E 2
B ’Lg};l i 3 J€P, (INl L) Owy

where wy is the k-th element of the weights in the network, and

0AV; T 8N
o = 2 [, + Ny wi, u, 8)] 5— Sur
O|N;|? ON
—éw—k- - 2N (yuwl)uue ) Wy
Step 3b Solve the following n,, linear equations for Aw;:
ZaklAwl=18ka k=172,"'7nw

=1

where n,, is the total number of variable coefficients (weights) in the network and
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Aw; is the update of the [-th weight.

The Gauss-Newton method or its variants such as the Levenberg-Marquardt method
[38] are very efficient in finding a local minimum of the cost function J. Since the
optimization problem is nonlinear, there is no guarantee that the local minimum is
also a global one unless the initial choice of weights are close to the optimal ones.
Hence, a common practice is to start from several different initial weights to increase
the chance of reaching a global minimum. An alternative is to use global search
techniques such as the simulated annealing method [52], albeit the global methods
are usually computationally more expensive than their local counterparts. After a
minimum of J is reached, whether it is local or global, a question that arises is if the
resulting upper bound on AV, of the training set is small enough. To ensure stability
of the closed-loop system when TANN is implemented on-line, however, what is rele-
vant is not whether or not .J reaches a global minimum, but how small the resulting
upper bound on AV, is after a minimum of J is reaches. This is discussed at the end

of Section 4.5.

4.5 Proof of Stability

With the plant given by Eq. (4.1), the controller by Eq. (4.8), the TANN parameter
estimation algorithm by Eq. (4.19), and the TANN trained using Steps 1-3 (presented
in Section 4.4) off-line, we proceed to show in this section that the resulting closed-
loop system is stable. Before providing the proof, two points that are specific to neural
controllers must be mentioned. First, since a neural network can only approximate
a nonlinear function in a compact set, care must be taken to ensure that all signals
entering the network in the closed loop indeed belong to the compact set where it is
trained. Second, due to the approximating nature of the networks and nonlinearity
of the functions to be approximated, there can be a nonzero error between the target
and the approximator. In other words, only a positive € can be achieved such that
(AV — AV,) < e. In order to avoid an increasing parameter estimation error, a dead-

zone is incorporated in (4.19). While proving stability, the effect of the dead zone
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should also be taken into account.
The closed-loop system, specified by Egs. (4.1), (4.8) and (4.19), is rewritten

below:

Yt+d = fr(wtyutaa)
uy = K(w,0,6;)
{ §t+d—1 + N(yt+d,wt,ut,§t+d—1) if AVy,,, < —¢

§t+d =
Osrd—1 otherwise

To analyze the stability of the system, we use the state variable z, as defined in
Eq. (4.3). The closed-loop system excluding the dynamics of the parameter estimates

can be written in the following state space form:

[ »(we, K(w ,0,5 , 0
Tyl = Amxt+Bm f(t (t At) )
K(wt,O,()t)
- Am-'rt""Bm +BmE (423)
K(wt,O,G)

where A,, and B,, are defined in Eq. (4.4), and

F, = (4.24)

fr(wt’ K(wt’ 0, é\t)v 0)
K(wt, 0, §t) - K(wt, 0, 0)

Also, the closed-loop system is assumed to satisfy Assumptions (A1)-(A5) stated and
discussed in Section 4.2.1.

Before proceeding to the proof, we enumerate the key steps which lead to the
stability of the closed-loop system. To analyze the stability, we focus on the evolution

of W,, defined in Eq. (4.7), over time.

(Cl) If AWt = I/I/H-l - Wt, then

AW, < =Amin(@)lael® + colze| | K (we, 0,8,) — K(wr,0,0))|

! 2 (4.25)
“+cC10 IK(U);, 0, Ot) - K(wt, 0, 0)[
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(C2)

(C3)

(C4)

which is established by utilizing the smoothness assumptions of f, and K in the

bounded sets as in (A3).

The following two properties of the TANN algorithm, pertaining to parameter
convergence, can be established. If all the signals entering the network remain

within the sets where the network is trained, then
(i) the parameter estimation error is non-increasing;
(ii) given an € > 0, there are only certain number of iterations such that

|AVq,| > € for any length of interval.

Based on property (P1) of TANN and assumption (A4), we can derive from
(C2) that given an € > 0, the maximum number of iterations where
'K(wh 07 at) _ K(wta 01 6)‘2

= > €

14+ |C(¢y)|?

cannot exceed certain value for any length of window of time.

Based on the result from (C3), it can be proved that if z; is outside a neighbor-
hood of the origin there are only finite number of iterations between 1 < ¢ < 00
where AW, > 0. In addition, even for these iterations, the maximum increase
in W, is bounded. Hence, the total amount of change in W, is negative over a
large enough interval. Thus, z; eventually converges to the neighborhood of the

origin. Based on this idea, we divide the state space into three sets:

S = {m €| |K(w,0,8) - K(w;,0,0)| < ale) }
S2 = {xt € Q3| IK(wta07§t) - K’(wtao,e)l 2 k1|xt|7 Ixt|2 > __!c_g__z_}

k1—kacg

S5 = {z €03 |K(w,0,8,) — K(w,,0,0)| > kile], |2l < 52hs
(4.26)
where Q3 = VP41 x Y"+41 and k; is chosen so as to guarantee that AW, < 0

if z; € S;. Whereas, k, is selected so that if |z;|* > H_’ﬁ,"c;cz, then the inequality
1K (w0,0,0:) = K (wi,0,0)] 2 kulee] implies K230 (eu00 > k. which en-

sures that z; belongs to the set S, for only finite number of iterations between
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1<t < ox.

(C5) The statement in the previous step is valid if signals entering the neural network
do not leave the set where the network is trained. It is shown by induction that
this is indeed true by choosing the initial parameter estimate close enough to
the true value and small initial conditions for the state variables. Moreover, the
larger the set over which the neural network is trained, the farther the initial
estimate can be from the true parameter value and larger the initial conditions

from the origin.

O

The proof is organized as follows. The upper bound on AW, as described in (4.25)

is derived first. The two properties of the parameter estimation algorithm described in

(C2) are established in Proposition 4.1. Based on the results in (C2), (C3) is achieved

using Propositions 4.2, 4.3 and 4.4. Upper bounds on the change of AW;, in term

of Wy, for z; belonging to the sets Si, Sy and S; defined in (4.26) are subsequently

obtained in (4.35). Using these results, we prove by induction in Theorem 4.5 that

all the signals entering TANN remain in the set where it is trained. Furthermore, the
output converges to a neighborhood of the origin.

Evolution of W;: W, can be evaluated along trajectories of the closed-loop

system as:

AW, = Wi - W,

= z; (AL PA,, — P)z; + [0, K(w,,0,6)|BL PB,,
K(Wt, Oa 0)

0
+2zT AT PB,, +2 (2 AT, + [0, K (w0, 0,0)| BL) PB,F,
K(wh Oa 0)

+FI'BTPB,,F,

INA

—-.’BZQ.’L} +2 (O'max(A,];,PBm) lze| + O'max(BrTr;PBm) | K (we, 0, G)I) |F
+0Omax(BE PB,,)|F|? (4.27)
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where assumption (A5) is used in obtaining the last inequality. It is worth noting

that, if 6, =0 fort > to, Yteqa = 0, F; = 0 and hence,

AW, = zI(ATPA,, — P)z,+[0,K(w:,0,0)|BLPB,,
K(Wt, 07 9)
+2x7 AT PB,,
K(wh Oa 0)
< —foQIt-

for t > to. Thus, (A5) implies that the unobservable state variables of x;, (us—1,-- -,
Ut_m—ds1), are stable and, furthermore, converge to the origin, as in the linear case,
at a rate determined by Q.

Based on assumption (A3) that f, and K are differentiable and have bounded
derivatives, inequalities regarding f, and K can be derived as follows using the mean-
value theorem [40], where c; represents a positive constant, i = 1,---,11. First, since

K(0,0,0) = 0 from (A2), provided that w; € 2, and 0, 6 c o,
|K (w;,0,0)] = |K(w:,0,0) — K(0,0,0)] < c1]we| < calay] (4.28)
Moreover, by using the relation f,(0, K(0,0, 5), #) = 0, we have

o~ -~ -~

|fr(w, K(w,0,6),0)| |fr(w, K(w,0,6),0) — £-(0, K(0,0,6),6)|

AN

¢ |w, K (w,0,8), 6] — [0, K(0,0,8), ]

IN

cqlw|

since K(E)) is convex which in turn follows from the facts that F is convex and K
is continuous on Ej.

The function C, defined below, satisfies the following inequalities if y;1q € V5,

- oK
CGI 2 |G ntira
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0K 0K

= |36 (wt, fr (we K (w1, 0,8:) ,6) ,66) — g (0:0.00)
< ¢ [WtTafr (Wt, Wt,O 0t ] ’
< ool (4.29)

Above, we have used the fact that 25(0,0,6,) = O since K(0,0,6) = 0 for every
f € ©,. The first inequality in (4.29) is obtained from the assumption that K is twice
differentiable and have bounded second derivatives on 5 X YV, X O,.

Furthermore, since f,(w, K(w,0,8),6) =0, and K(E}) is convex,
|fr(w, K (w,0,0),0)] < c7] K(w,0,0) — K (w,0,0)] (4.30)
Hence,

IFtl S C7|K(wt, 0, gt) - K(wt, 0, 0)' —+ IK(UJt, 0, at) - K(Wt, 0, 9)[
= 5| K(w,0,8;) — K(w;,0,0)]|

The inequality in (4.27) can thus be written as

AWI‘, S —/\min(Q)lxtl2 + Cgl.’L'tl IK(wta O, gt) - K(wta 07 9)’
+010 lK(UJt,O, at) - K(wtvo’e)r (431)
< MW, (4.32)

where cq = 2cs (amax(Az,;PBm) + czamax(BZlPBm)), 10 = C20max(BLPB,,) and \, =
s caC c2e : . ) 1
—:\‘::;((?,))+ 2 2/\2:213) 2. The inequality ‘K (w,0,60,) — K (qu,@)' < 2¢p|x| obtained

from (4.28) and the triangular inequality are used to obtain (4.32).

By applying the mean-value theorem again, we can obtain

Yerd = fr(we, K(wi,0,6;),6)
= fr(wt’K(wtaoa é\t)ag) - fr(wtaK(wtaOa ot)ya)
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afr(wta u, 9)

au . (K(wt,O,gt) —_ K(U)t,o, 9))

u=uy

where u; € K(,,0,0;) since K(2,0,0,) is convex. Hence,

K(wt, Yt+d, ‘9) - K(‘% Yi+d, ét)

= (K(wt, O, 0) - K(wt, O, at)> + (

*Yi+d

Yy=mn
) af,(wt, u, 0)

_ ou _ }
Y=y U=ui

(K (w,0,0) — K(w,,0,0,)) (4.33)

Oy dy
_ {1 _ (6K (0,3,6)  OK(woy, 91))

8K(wta Y, 0) _ a}’(((“)ta Y, é\t))

dy dy

where y; € f.(Q2, K(Q2,0,0;),0,) since ), is convex and contains the origin.

We recall from Eq. (4.19) that ¢; is the upper bound of AV — AV, after network
training and € is the width of the dead-zone in the parameter estimation algorithm.
With € chosen to be larger than €; and provided that the signals entering the network
remain in the set where it is trained, certain properties of the parameter estimation

algorithm can be established, as is done in the following proposition:

Proposition 4.1 For the system in Egs. (4.1), (4.8) and (4.19) satisfying properties
(P1) and (P2), ife1 <€, 0 €03, y; € V3 for0<i<t, u; €Uz for0 <1< t—d and
5,- €03 forn+d—2<i<t—1, then the following statements hold:

(i) 10 < 18ea] < --- < |Bnta]

(11) The set T, = {i € T|AVy, < —€} cannot have more than n, elements.
where n, is the largest integer that is less than or equal to &e*_d_;ﬁ and T ={n+d—

1,---,t—1,t}.

Proof: Based on the assumptions in Proposition 4.1, we have w;_4 € )3 X
UPFTL g €U F e, 0 (V) and 6;_, € O3 forn+d—1<i<t According to
(4.19) and the property (P2), AV; =0 if AVy > —e. Otherwise, if AVy, < —e,

A‘/,'<AVdi+€1 <0

since € > ¢;. Hence, (i) follows.
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We also have the following inequality:

t
> Ay

i=n+d—1

0 < = 16:* = 1Bnsa2l?| < 1Bngasl?

Since AV; < —(e —¢;) and the set {i € T|AV; < —(¢ — ¢;)} cannot have more than
Jé—og elements, (7¢) can be established. -

€—

From the definition of AV, in Eq. (4.14), we can obtain

| K (wt, Y, §t+d-1) ~ K(wt, yea,0)|?
1+ [C(¢)?

|Ath+d| > aq

Comparing the numerator of the above inequality with (4.31) and (4.33), in order
to make use of the property of AV,, developed in Proposition 4.1, we need to first
relate |K(wy, Yita, §t+d_1)— K(wi, Y1+a,0)| to |K(wt,yt+d,§t)— K (wt, Yt+4,0)|. This
issue is addressed in the following proposition, where the requirement of limiting the

magnitude of parameter correction in (P1) comes in.

Proposition 4.2 There exists a continuous function h : R — R satisfying lims_q h() =

0 such that for every 6 > 0, if

'I((wifd%—la Yit1, 9) _AK(wi—d+17 Yi+1, éz)|2 o
14+ |C(hi—at1)]? T a’

fori=tt+1,--- t+d-1

where w;_q441 € V¥ X Z/{§"+d_1, 0,@ €03 and Yy € Vs fort <i1<t+d—1, and @
15 adjusted using (4.19), then

IK(wtu Yt+d, 9) - ]{(W;, Yt+d, at)|2 < h(c‘i)
1+ |C(¢y)|

Proof: Since y;11 € Vs, uj_qi1 € Us N ff1|wi_d+1’9 (V3), wi—g1 € VP x U1

and 0,6, € O3 fori =t,---, t+d—2, from Eq. (4.19) and the property (P1), we have,
fori=¢t---,t+d-—-2,

0is1 — 0 = IN(Yir1, Wicar1, Wieart, 0:))?
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IC(Giar)l” -,

< = u,;_
A+ [C(Gimar) P2 4
< 85
ax

Hence,

ra — 0] < (d— 1),/ 26
ai

Furthermore, since w; € Y2 X US4, gy, a € Vs, 6y, 0,14-1 € O3, and K is differen-

tiable and has a bounded derivative on Fy,
\K (Wi, Yerds Osvacr) — K (We, Yorar 0)] < cn1|frpa—1 — 0] < c1a(d — 1)

Therefore,

|K(wt, Yi+d, 0) - K(wt, Yt+d, at)l
(1+]C())?
| K (we, Yera, 0:) — (Wta yt+d, Or1a—1)] 4 | K (wt, Yerd, 0) — K(wi, Ytd, Orra—1)|

B (1+]|C()I? (1+]C(B)I)z
< Cll - ]. (126 + \/—
V ax
Hence, h(6) can be chosen as h(6) = (1 +cii(d — 1)\/a—2')2 ;% [

Using Proposition 4.2, we prove in Proposition 4.3 that given € > 0 there are only

- 9:)12 .
finite number of sequences when IK("’"”&';’J‘:? C(’;E‘)‘i;ywdv"t)l >e GivenT € ZT,¢ >0,

and T ={n+d—2,n+d~—1,..,T}, we partition T into T and Ty, where

>

_ AN _
T, {teTl'K(”t’de’e) K(wr, yeva, 00) Sh(e)}, T, 2 T-T, (4.34)

14+ |C(¢:)|?

Proposition 4.3 states that the set T, has at most certain number of elements no

matter how large T is.

Proposition 4.3 For any T € Z*, 0 € O3 and e > 0, if ¢ < €, and wy_q41 €
Vi xU Ul gy €V, and 9, € O, fort=n+d-2,---,T+d—1, then Ty cannot
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have more than 2n,d elements.

Proof: We first partition T into segments of d elements as follows:

12

Ty {(n+d—2)+(k—1)d,(n+d—2)+(k—1)d+1,- -, min((n+d—2)+kd-1,T)}

k

where 1 < k < ny, k € Z and n, is the largest integer satisfying (no+d—2)+kd—1 <
T. Define

T = {Tylic 2*,1<i<ny}

' |K (wi—ar1, Yeg1,0) — K (Wemdi1, Yer1, 0)|> € }
T = (T, _ <=, VteTy

' { * 1+ C(brar) = ¢
T, = T -T,

. ~ 2
| K (we,9t44,0)— K (2,Ye4a,0¢ 4a-1)|
1+[C(¢:)]?

that T, has at most n; elements. By utilizing Proposition 4.2, it can be concluded

that if Ty, € T} and T,,., € T, then

Since a; < |AV,,. |, we can obtain from Proposition 4.1 (1)
t+d

i+1

[K(wta Yi+ds 0) - K(wt, Yt+d, at)l2

L+ ICGIP SO Ve

Hence, T, cannot have more than 2n;d elements. |

We define a set T3

IN | |K (@, 0,8) = K (w, 0,8) > h(e)
n e frer et ettt - 52

Based on Proposition 4.3 and assumption (A4), a property satisfied by the set T3 is

derived in Proposition 4.4.

Proposition 4.4 For any T € Z%, § € O3 and ¢ > 0, if ¢; < €, and wi;_gyq €
i XUPTET g €V and 6, € O, fort=n+d—-2,---,T+d—1, then T3 cannot

have more than 2n,d elements.
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Proof: From Eq. (4.33) and the assumption (A4),

| K (w944, 02) = K (w1, 9140, 0)|
> 6, |K(we,0,8) — K (w0, 0)|

Hence, if t € T3

|K(wt, Yerd, 0) — K(Wr, Yeqa, gt)|2
1+(C(4:)|?
|K (w;,0,0) — K (w;, 0,8,)]2
! 1+(C(6)]?
> h(e)

implying t € T3. Thus, T3 cannot have more than 2n,d elements. [ |
To study the evolution of W,, we separate the set Y3+ ™1 x Y"+%1 into the
three subsets, S1, S; and S; as defined in (4.26), for given 6.0, € O3, where k; =
min <4—i;/\mm(Q), (ﬁ)\min(@))%) and 0 < ky < % The value k; is chosen such that
if ; € S; then AW, < 0, as can be verified from (4.31).
From (4.31) and (4.32), we have

AWt < /\1Wt if Ty € 52 U S3
AWt < —/\QWt if Ty € Sl

(4.35)

where Ay = %“:ﬁ(% < 1. Furthermore, from (4.29), if z; € S, then

|K (w,,0,8,) — K(w,0,0)] o 1E(w,0, 8,) — K(w,0,0)|
1+[C(0)]2 = 1+ 2|z,
kllxt|2
T 1+ cla)?
> kg.

Under the conditions of Proposition 4.4, given € > 0 and €; <€, if k3 > %)-, then for
any T € Z*, there are at most 2n,d elements in T3. In other words, for any period

of time, x; belongs to S, for at most 2n,d times if the conditions of Proposition 4.4 is
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satisfied. Therefore, using (4.35) and the definitions of S, S; and S3, we can conclude

that for any T € Z7,

)\max(P)k2

A e (1 + /\1)2n1d+2(1 _ )\2)max(0,T—-2n1d—2)’
1 — ~20lg

Wr < max(

k
2nid+177 _ max(O,T—and—l)W M
(1 + )\1) (1 )\2) to> ki — ICQC%)

ks

S max /\max(P)k2(1+/\l)2n1d+27 (1+/\1)2n1d+1Wt0, >
kl - k2c6

kl - k2c§

) (4.36)

provided that y; € Vs for 0 < i < T+d -2, and u; € Us N 71, _,, g (V) for
0<i<T-2andf;ecOzforn+d—2<i<TH+d-2
Based on the above results, the stability property of the closed-loop system in

Egs. (4.1), (4.8) and (4.19) can be concluded in the following theorem:

Theorem 4.5 For the closed-loop adaptive system given by (4.1), (4.8) and (4.19),
under assumptions (A1)-(A5), given the compact sets Y3t x U x O3 where the
neural network in Eq. (4.19) is trained so that properties (P1) and (P2) hold, there
exist €1,€ > 0 such that the following statement is true: For any interior point 6 of
O3, there exist open sets V4 C V3, Uy C Uz and a neighborhood ©4 of 6 such that if
Yoy Yntd—2 € Va, Ug,**+, Un_2 € Uy, and gn_l, cee §n+d_2 € Oy, then all the signals
wn the closed-loop system remain bounded and y; converges to a neighborhood of the

origin.

Proof: Since the compact sets V3 and U; contain neighborhoods of the origin,
we can find a § > 0 such that the set V; = {x € Rrim+2d-2| 7| = 6} is a subset of the
product space Y341 x Yf"+4-1, Since V; is compact and W, is a continuous, positive
definite function of z;, & = mingey, W(z) exists and a > 0 where W(z) = z7 Px.
Hence, the set V3 = {z € Y571 x U5+ W(z) < o} is open and nonempty, and

contains the origin. Choose €; < €} where

(4.37)

h(et) & 6gmin( okt aky kl).

o + Amax(P)(1+1)2 1+ ac’ &
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Hence, there exist an integer ng > 0 and € > ¢; such that

h(e) < 6, min ( orky oky kl)

a2 + Amax(P)(1 + A\)20442° 1 + a2’
For the particular ny and €, k; is then chosen so that

iL(—E)<kg<min(
bg

ak1 ak1 k1> (4 38)

aC + Amax(P)(1 + A1)2rod+2’ 1T+ acd’ 2

where the first term in the bracket of min(-) is chosen such that for any non-negative
integer n; < ng, the first term in the bracket of (4.36) is less than o, whereas the
second term in min(-) implies that the third term in the bracket of (4.36) is less than
a.
Since # is an interior point of ©3, we can find a neighborhood ©4 C O3 of ¢ such
that for every 6eo,
10 — 6] < max(1,70)(e — &)

Therefore, if the initial estimate 0,1 € O4, then n; < ng since n; € Z*+ U {0} and
ny < Ja"—:;—aﬁ. Consider the open set V3 = {z € V3| W(z) < (—lﬁls"wl—dﬁ} We can find
open sets Vs C V3 and Uy C Us containing the origin such that Yy~ xU 4! C Vj.
For the open sets ), Uy and ©4 constructed above, we prove below by induction that
if the initial estimate 6, € O, for to <t <to+d—1,y, € Ysfor 0 <t <tg+d—1
and u, € Uy for 0 < ¢t < tg—1, where to =n—1, then y, € Vs, u; € Us and §t+to € O3
for every t > 0.

At t =tg, since y; € Yafor 0 < i <tg+d—1,u; € Uy for 0 < i <tp—1 and
Bi, € ©4, based on (4.32) Wiyi1 < qzsyres Which implies 241 € Y5+ x Uyt
and thus y,44 € V3 and uy, € Us. In addition, uy,, € Us N f IIMO,O (Vs), since
fr(wig, Uty, 0) = Yto+4 € V3. Hence, §t0+d € O, according to Proposition 4.1(%).

Att =T >ty ifys € Ysfor0< i <T+d-1,u; € UsN f;llwivo(yg) for
0<i<T—1andf; €O, for tg <i<T+d— 1, then according to (4.36),

Amax(P)k2

k
2n1d+2 2
kl — ]{,‘2(}% (1 + /\1) « —————)

W. < max
T+1 ] ) kl _ kzc%
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due to the choices of k, in (4.38) and max(1,n,) > Ja—"‘"e"_"fl—‘glz > ny. It implies yriq €
Y3 and ur € Us N f 1|WT’0 ()3). Hence, §T+d € O, according to Proposition 4.1(%).
Therefore, we can conclude by induction that yera € Vs, us € Us N 71, o (V) and
§t+d € ©, for every t > to. All the signals in the closed-loop system are thus bounded
for all time.

Since AV; < 0 and 332, AV, is bounded below according to Proposition 4.1,
lim; ..o AV; = 0 and, thus, there exists a ¢t; > 0 such that |AV,,| < e for ¢ > ;.

Hence,

a | K (wt, Yera, 0) — K(u_)t, Yerds Orrar)|
1+ |C())?

It follows from the above inequality and Proposition 4.2 that

< €, VtZtl

IK(wt, Yt+d, 9) - I{(Wt, Yt+d, 5t)|2
1+ |C(e4)|?

<h(e), Vt>ti+d-1 (4.39)

From the inequality (4.29) and the boundedness of |z;| proved earlier, we can establish:

c2a

O < 5P

(4.40)

Furthermore, since u; = K (ws, yera, ) = K (wy, 0,8;), by combining (4.39), (4.40) and
Assumption (A4), it can be established that

cia
/\min (P )

1
1 2
|yt+d| < g; [h(e) (1 + )] , Vi>t1+d-1 (441)

Therefore, we conclude that as ¢t — oo, y; converges to a neighborhood around the

origin. [

4.5.1 Discussions

The proof of Theorem 4.5 implies that closed-loop stability follows if properties (P1)
and (P2) are satisfied by the TANN, with ¢ < €}, where €} is given by (4.37). The
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question to be answered then is whether such an €] can be determined for a given
fr and K. The constants ¢;, k; and A} which appear in the right-hand side of (4.37)
depend on smoothness of the system model, and can be estimated. Hence, the left-
hand side of (4.37) can be calculated from the definition of A(-) in Proposition 4.2 for
a particular €;, while the right-hand side of the inequality can be determined once
the set V) is chosen. Therefore, whether or not the network training is successful
enough to result in a stable adaptation algorithm can be checked explicitly before
implementation. It is in this regard that the proposed approach in this paper is more
tangible and verifiable.

Since the proof of stability follows if a continuous function /N exists such that
properties (P1) and (P2) with €; < €} are satisfied, whether or not such a continuous
function exists needs to be guaranteed. To answer this question, let us consider
the projection algorithm obtained by linearizing Eq. (4.6) with respect to §. For this
algorithm, it can be easily checked that (P1) is automatically satisfied. If V; is chosen,
the right-hand side of (4.37) is fixed. Hence, we can always find a ©3 such that the
projection algorithm can satisfy (P2) on ©; for the required ¢; in (4.37) based on the
linearization principle. Therefore, we can conclude that such a continuous function
does exist.

Since the continuous function exists, the existence of networks in the chosen class
such as MNN or RBF which can approximate the continuous function to a desired
degree of accuracy so that (P1) and (P2) continue to hold can be ensured from the
universal approximator property described in Definition 2.1. Such networks can be
constructed using the training procedure suggested in Section 4.4 and by increasing
the complexity of the network structure until ¢; < €. It is noted that it is not
necessary for the network to solve the global minimum of J in (4.21). Any local
minimum that satisfies ¢; < €] suffices as well for stability.

The region ©3 for which the projection algorithm guarantees (P1) and (P2) may
be very small. However, since our approach does not explicitly use the projection al-
gorithm but attempts to construct a continuous function that satisfies (P1) and (P2),

the applicable region of parameters and initial conditions can be made larger as long
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as such functions exist. The same kind of comparison can be made between our
neural controller and the extended Kalman filter algorithm which uses the gradient
of f, with respect to the most recent parameter estimate to determine the update
(see Section 6.3 for more details). For practical purposes, in order to ensure that
the network training can be accomplished, the training set should initially include
patterns sampled from a smaller ©3, and could be gradually enlarged as training is
successful.

Even though Theorem 4.5 is stated in terms of the neural network parameter
estimation algorithm, the result in the theorem can be applied to much broader
adaptive control schemes. It is noted that the only requirements for the parameter
adaptation scheme in Theorem 4.5 are the properties (P1) and (P2) discussed in
Section 4.3. They are accomplished in this paper using a neural network. Nonetheless,
other algorithms can be used as well, as long as the requirements in (P1) and (P2)
are met, and stability of the closed-loop system is assured from Theorem 4.5.

We provide the following comments on some of technical aspects of the proof of

Theorem 4.5:

1. The proof was established by showing that over any arbitrary interval, W,, the
norm of the system state, can grow at most over a finite period and decays

almost everywhere else. This is similar to the arguments used in [30, 41].

2. In order to ensure that all the signals entering the TANN controller are within
the region where it is trained, it is shown that given a neighborhood of the
origin, an upper bound on the output can be estimated for all initial conditions
starting in the neighborhood. This is a stronger result than most of the proofs of
the adaptive systems, where only global boundedness for each initial condition

is established.

3. Eq. (4.41) defines an upper bound on the steady state value of the output,
which, among others, depends on the size of the dead-zone, €, in the TANN
algorithm. The smallness of € in turn is limited by €;, which is an upper bound

of AV, — AV,,, as well as the size of V3. If €, = 0, € can be chosen to be zero and,
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thus, there is no steady state error. Nevertheless, it does not imply that if € is
positive, there will be a non-zero output error during implementation. Thus,
in general, the final output error varies with the initial parameter estimate as
well as the initial state of the system. Depending upon where the control pa-
rameters converge to when the adaptation stops, the output error may converge
to zero. In the simulation studies reported in Section 6.3, it can be seen that
the output indeed converges to zero since in steady state the control parameter

corresponded to an asymptotically stable closed-loop system.

. In the above proof, the sets }; and U where the initial conditions of the system
should lie in order to ensure stability is determined by the set V5. The larger
the set V3, the larger the sets )y and U,. However, the size of V5 is limited,
among others, by the constants o and n;. The implications of the values of the
two constants on the network training and initial parameter estimation error

are explained below:

(a) The value a is decided by the compact set Y3 x UF**¢ x ©; where the
network is trained successfully. If the compact set is large, so is a as well

as the allowable initial conditions.

(b) Since n, is the largest integer that is less than or equal to Ja—"g_‘—;ilz, if the
initial parameter estimation error is large, n; becomes large, which in turn
results in a small V3. Hence, there is a direct tradeoff between allowable
initial parameter estimation error and allowable initial conditions of the

system for a given TANN controller.

. When we established the inequality in (4.36), y; € JYs is required only for
0<i<T+d-2instead of for 0 < i < T +d — 1. The reason is that
AWr_1 < M\Wr_; is valid as long as, among others, wr_; € €. The same is

true that u; € Us for 0 <7 < T — 2 rather than for 0 < < 7T — 1.
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4.6 Complexity Reduction for Partially Linear Sys-
tems

For the control algorithm developed in Section 4.3, all the unknown parameters in
the system are estimated using a TANN. However, in many problems, only some of
the unknown parameters occur nonlinearly while others occur linearly. It is therefore
desirable to exploit the linear structure to reduce complexity of the neural networks.
In this section, instead of the model in Eq. (4.6), we consider a subclass of (4.6) in

the following form:
u = K(¢n,,0n) + ¢1.,01 (4.42)

where ¢y, and ¢;, are vectors of measurable signals up to time ¢ and, possibly, ¥4 4;
Oy denotes unknown parameters which enter the system nonlinearly and 6, linearly.
Comparing Eq. (4.42) with Eq. (4.6), we can see that ¢, and ¢, together comprises
[we, Ye+a] While [Oy,6L] is equivalent to 6. In [59], a parameter estimation method,
which utilizes the projection algorithm [18] to identify parameters occurring linearly
and the TANN to estimate nonlinearly occurring parameters, deals specifically with
this class of parameter estimation problems. In this section, the training criteria of
the network in [59] is modified to accommodate the properties (P1) and (P2) needed
in the control problem.

As proposed in [59], the TANN algorithm of the following form is used to update
On,:

§Nt = é\1\/}_1 + th—dN(d)Nt_da §N¢_1) (443)

The linear parameter estimate §Lt is adjusted based on the projection algorithm:
th = é\Lz—1 + th——d¢Lt_d (444)

where

a'&t
ki = , a€ (0,1
¢ 1+ CL.Cn, + 6% o1, (0,1)
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1 if AV, < —€
v =
0 otherwise

8K(¢Nt ) gN)
% oy,

U = Uy — (K((bNu §Nt+d——l) + ¢£§Lt+d—1)

In order to satisfy (P1) and (P2), the network N in Eq. (4.43) is subjected to the

following constraints:

(PL1) |N(¢n, s 0n. 1) < |Cn,_d

(PL2) NT(¢n, 4 On,_1)0n,_, — (K(¢N“5Nt+d_1) - K(¢Nt,9N)) < e, €2 > 0.

for every wl ; € Y} x Ur+i-l 9 € O3 and 5{_ 1 € ©3 and for which u,_q € U3 N

fite,_ 0 (V) where On, = Oy, — On. From (PL1) we can derive that, if v =1,

AD 2 +180L, 12 = K2y (IN(ON,_a v, ) + |1, _u)
< kg (ICh W+ 181 )
a2 (CJI\}g_dCNt—-d + ¢'£t_d¢ltt—d) ~9
T T 7Ut—d
(1+CF,_Cry+ %, br.)

This in turn implies that (P1) is satisfied since C(¢;) = [Cw,, ¢%,]T. Moreover, if
(PL1) and (PL2) are satisfied and there exists a €3 such that |2k.e;] < €3, then, if

v=1,

AVy, & 850y, 05 0w,
< 2kig (K (¢Nt_d,§m_1) -K (¢Nt_d79N) + 62)
+k2_ G NT (SN, N )N (DN, O, )
< 2%ea (K (630 Ovs) = K (3,0 6n))

+kt2—dNT(¢Nt—d’ gNt—l)N((bNt—d’ §Nt—1) + €3
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It is also noted that

1>

AVi, = 670 -0 0u

= 2k-adr, O, + ki abl, PL,_s
Hence,

AV,

AV, + AV,
2ki—a (67, Or., + K (dn,_arOns) — K (60,0 On))
kg (IN(S8eas O ) + 102, %) + &5

—2kt—'dﬂt_d + ktz—d(IN(¢Nt_d7 §Nt_1)|2 + |¢Lt—d|2) -+ €3
< _ 20&’(1%_‘1 + a2,ﬂ‘%—d(c%;t_cht—d + ¢£t—d¢Lt-—d)
< 1+ CIJ\;t_dCNt_d + ¢r‘£t_d¢1,,_d (1+ C{,t_dCNt_d + ¢€t—d¢Lt-—d)2
ail}_g
< - ;
1 + CNt—dCNt—d + ¢Lt—d¢Lt—d

IA

+ €3

+ €3

implying (P2) is satisfied. Therefore, the stability result in Theorem 4.5 can be carried

directly over to the current approach provided that (PL1) and (PL2) are satisfied.
To achieve (PL1) and (PL2), we follow the similar procedure as introduced in

Section 4.4. That is, for every pattern in the training set, the weights W are to be

found to satisfy

INW)? < L
NI(W)by, < D;

where L; = |Cn.|?> and D; = K(qﬁi,éNi) — K(¢:,6n;). As shown in Section 4.3, the

problem is equivalent to minimizing the following cost function J:

M

7= 53 { (max{o, NT V)i, D)+ (maxfo, NV - L)'} (045

As in the previous section, '1;17 is the relative weight for the two targets. A similar

training procedure to that in Section 4.4 can be applied to find W in Eq. (4.45).
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As is pointed out in [59], a major advantage of separating terms that are linearly
parametrized from the rest of the model is reduction in dimensions of the training
space. In this case, if the original algorithm is used, we need to vary wy, 6;, g, and 53 in
their respective ranges. By comparison, if we take advantage of the linear structure,
only a subset of them need to be varied. The dimensions of the training set are
smaller, and, thus, it takes less time to train the network, reducing the computational

complexity significantly.

4.7 Summary and Remarks

In this chapter, we considered the adaptive control of nonlinear dynamic systems
where parameters occur nonlinearly. A neural network is used to generate the pa-
rameters of the adaptive controller with the structure of the controller determined
using the nonlinear model. The notable property of the proposed neural controller
is that it leads to stability of the overall adaptive system. In particular, it is shown
that (a) given a neighborhood of the origin, upper bounds on the input and output
of the closed-loop system can be established for all initial conditions starting in the
neighborhood, (b) for small initial parameter estimation error, all signals entering the
network remain within the sets where TANN is trained, and (c) the output of the
system converges to a neighborhood of the origin. We also showed that by exploiting
the linear structure, complexity of TANN can be significantly reduced.

Training of neural networks is formulated as a constrained optimization problem.
The constraints that the neural network has to satisfy are the sufficient conditions
that guarantee closed-loop stability. This approach deviates considerably from most
of the neural network literature where the role of the neural networks is to meet
tracking or stabilization objectives. This constrained problem is eventually reduced
to an unconstrained one, which can be solved by various optimization methods.

An important aspect of the proposed approach is the training of the neural network
that needs to be carried out off-line. Since the neural network is required to estimate

the control parameters on-line for a particular controller structure, it needs to be
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trained a priori to learn the map between the system variables and the controller
parameters. This implies that during the training data collection phase, the parameter
value as well as the corresponding response of the system must be known. This
is a reasonable assumption since the data collection is often done off-line and in
a controlled environment. For instance, an accurate system model, an extensive
simulation model or an experimental setup all suffice to accomplish the formulation

of the training set.
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Chapter 5

Stable Control of Nonlinear
Dynamic Systems Using Neural

Networks

5.1 Introduction

In many of the applications of neural networks in control problems for cancelling
unknown nonlinearity, such as in [43, 55|, a prerequisite is that a controller structure
is readily available such that the system can be stabilized if this nonlinearity is known.
Unfortunately, unlike linear systems, determining a nominal controller for a nonlinear
system itself is difficult even if the system model is well-known. To overcome this
problem, a stability based approach for designing a neural controller is proposed in
this chapter. The goal of this approach is to develop a new way of designing neural
controllers which can stabilize more general nonlinear systems. The technique used
to achieve this is similar to the recursive parameter estimation method discussed
in the previous two chapters except that now the desired target is the change of a
positive definite function of state variables instead of that of parameter estimation
error. Nevertheless, the resulting controller and the class of problems considered in
this chapter is quite different from the parameter estimation case.

This chapter is outlined as follows. The problem under consideration is described
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in Section 5.2. The new controller design method is explained in Section 5.2, in which
the training procedure is described in Section 5.3.1, and the existence of a controller
and stability property of the closed-loop system is shown in Section 5.3.2. Several

remarks of this approach are given in Section 5.4

5.2 Problem Statement

Consider the following nonlinear dynamic system

r = f(CL’,U)

(5.1)
y = h(z)

where z € R", © € R™. Determination of a nonlinear controller

U= 7(y’ t)

to stabilize (5.1) for general f and h is a difficult task even if f and h are known.
For systems which are feedback linearizable, although such a v exists, closed form
solutions for v cannot always be obtained. Our goal in this chapter is to construct a
neural controller as

u=N(y; W) (5.2)

where N is a neural network with weights W, and establish the conditions under
which the closed-loop system is stable.
The nonlinear system in (5.1) is expressed as a combination of a linear part and

a higher-order nonlinear part as

z = Az + Bu+ Ry(z,u)

3.3

where f(0,0) = 0 and h(0) = 0. We make the following assumptions:

(SA1) f,h are twice continuously differentiable and are completely known.
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(SA2) There exists a K such that (A — BKC) is asymptotically stable.

The problem is therefore to determine a controller as in Eq. (5.2), the structure of
N, and a procedure for training the weights of NV so that the closed-loop system is
stable.

Again, in order for the neural network to approximate any continuous function,
the class of neural networks used in this thesis must satisfy the universal approximator

property defined in Definition 2.1.

5.3 Stable Neural Controller

With an input y in Eq. (5.2), the neural controller is therefore completely determined
once the weights of the network are selected. Since this selection should be such that
the closed loop is stable, the following approach is adopted. It is noted that while the
controller and the training procedure is described for the continuous system in (5.1),
a similar result can be derived for nonlinear discrete-time systems as well.

In order for the nonlinear controller in Eq. (5.2) to result in an asymptotically
stable closed-loop system, it is sufficient to establish that a continuous positive definite
function of the state variables decreases monotonically through output feedback. In
other words, if we can find a scalar positive definite function with a 