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Abstract

The difficulties in identification and control of engineering systems are due to sev-
eral factors including the presence of several types of nonlinearities, and significant
and unknown sources of variations in the operating conditions of the system. In
many of these problems, the underlying physics that contributes to the nonlinear sys-
tem characteristics can be modeled using physical laws. However, due to analytical
tractability, the traditional approach has not always made effective use of available
physically-based models.

In this thesis, new parameter estimation and control techniques, which take ad-
vantage of prior physical knowledge of dynamic systems, are presented. The tools
used are artificial neural networks (ANN). For parameter estimation problems, the
scheme denoted as 9-adaptive neural networks (TANN) is developed. TANN is useful
for systems where the unknown parameters occur nonlinearly. For control problems,
we consider two classes of nonlinear stabilization problems including systems with
unknown parameters and systems with unknown controller structures. TANN is im-
plemented on the former class to adjust the controller parameters so that stabilization
can be achieved in the presence of parametric uncertainty. For systems with unknown
controller structures, ANN are trained off-line to generate nonlinear controllers that
contribute to the decrease of specified positive definite functions of state variables.
Conditions under which these two controllers result in stable closed-loop systems are
given.

The framework introduced in this thesis naturally lends itself to a mathematically
tractable problem formulation and can be applied to general nonlinear systems. The
neural network training procedure, whether it is for the purpose of parameter estima-
tion or control, also permits the use of more efficient training algorithms and leads
to a larger region of stability for a wide class of dynamic systems.
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Title: Assistant Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

An increasing demand in the performance specifications and the concomitantly present

complexity of dynamic systems mandate the use of sophisticated information process-

ing and control in almost all branches of engineering systems. The promise of fast

computation, versatile representational ability of nonlinear maps, fault-tolerance, and

the capability to generate quick, robust, sub-optimal solutions from artificial neural

networks (ANN) make the latter an ideal candidate for carrying out such a sophisti-

cated identification or control task.

The field of dynamic systems theory deals with identification, prediction, and

control problems where variables interact over time. In many of these problems, the

task invariably is to determine a nonlinear map between two quantities in the sys-

tem. For instance, the function of the nonlinear map is that of a controller if the

concerned quantities are system errors and the control input; the nonlinear relation

may correspond to that of an identifier if the quantities are system inputs and system

outputs. Difficulties arise in carrying out the relevant tasks since there are uncertain-

ties associated with these nonlinear maps. Given the potential and proven success

of neural networks in tasks related to pattern recognition, classification, and such

[32, 36], the obvious question that arises is then the applicability of neural networks

in approximating such nonlinear maps.



In many of these problems, the underlying mechanisms that contribute to the

nonlinear system characteristics can be modeled using physical laws. Conservation

equations due to mass, momentum, and energy balance relations together with the

constitutive laws provide a framework for accurately representing the governing non-

linear time-varying characteristics. Despite the presence of complex physically based

models, identification and control procedures that have been developed for dynamic

systems have not always made effective use of them. For the sake of analytical

tractability, simplifications are often introduced in the system model. The question

is whether the use of a neural network will allow the development of a more pow-

erful identification and control procedure which requires few assumptions and less

simplifications.

Adaptive control addresses dynamic systems with parametric uncertainty. A com-

mon assumption in this field is that the uncertain parameters occur linearly. Fur-

thermore, even without parametric uncertainty, the controller structure itself could

be very complex for nonlinear systems. Hence, attention has been focused on linear

systems or some special classes of nonlinear systems. Unfortunately, many system

models do not fall into these categories without further simplification. In addition,

such simplification would usually limit the applicability of the resulting model such as

around some neighborhood of an operating point. To avoid this problem, we propose

using neural networks to construct such nonlinear maps, whether the map is from

measurable signals to parameters or from system outputs to control inputs, by taking

advantage of their ability in function approximation. The approach should be general

enough so as to be applicable to wide classes of nonlinear systems and, nonetheless,

retain mathematical rigor of the analysis. Hence, when the schemes are implemented,

performance can be guaranteed over a wide range of operating points.

1.2 Contribution of Thesis

The contribution of this thesis consists of three parts:



1. Develop neural network based estimation schemes, which are capable of deter-

mining parameters occurring nonlinearly.

2. Establish an adaptive control algorithm and its corresponding stability property

for nonlinear systems with parametric uncertainty.

3. For nonlinear systems with unknown controller structures, a new strategy for

neural network training is developed to construct a stable nonlinear controller.

They are explained in detail below.

A significant portion of parameter estimation methods concerns linear systems and

only a limited class of nonlinear systems can be solved analytically using available

tools. Whether linear or nonlinear, in most of these problems, the identification

approach requires the unknown parameters to occur linearly. However, many system

models derived based on physical laws involve nonlinear parametrization. To bridge

the gap, two neural network based parameter estimation algorithms are proposed in

this thesis. The local conditions under which such algorithms exist are examined.

The convergence property of the algorithms are analyzed. A neural network training

procedure that would achieve such property is also suggested. The algorithms are

shown to be suitable for a wide class of nonlinear systems where existing methods

cannot be used.

Control of nonlinear systems are even more challenging especially for those with

uncertain parameters. For this class of problems, as in the parameter estimation case,

research in adaptive control focuses on linear parametrization. In this thesis, a neural

network algorithm to update unknown controller parameters that occur nonlinearly

is incorporated into the controller structure to stabilize nonlinear systems with para-

metric uncertainty. Conditions under which the algorithm guarantees stability are

given explicitly. Moreover, these conditions are general enough so that they can also

serve as design guidelines for adaptive controllers under plant nonlinearity.

Unlike linear adaptive control where a general controller structure to stabilize a

system can be obtained with only the knowledge of relative degrees, stabilizing con-

trollers for nonlinear systems are hard to determine. A few approaches have been



suggested for utilizing neural networks in the context of a general controller struc-

ture. However, there are several limitations for these approaches. First of all, a

majority of them can only be applied to discrete-time systems. Secondly, stability of

the closed-loop systems is left unanswered. To avoid these problems, a new approach

for nonlinear controller designs is proposed in this thesis. This approach can deal with

discrete-time as well as continuous-time nonlinear systems. Furthermore, stability of

the resulting systems becomes transparent following the proposed method. As a con-

sequence, the approach achieves large region of convergence by utilizing the function

approximation ability of neural networks while still maintaining mathematical rigor

of the stability analysis.

1.3 Related Work and Previous Literature

Significant research has been done in the fields of system identification and adaptive

control for parameter estimation. Most of the problems that can be solved exactly

require the unknown parameters to enter linearly [42, 37, 18]. This also includes

nonlinear systems where the unknown parameters are linearly related to the output

[17, 11, 16, 56, 27, 5, 28]. The recursive least-squares algorithm and many of its

variants (e.g. [18, 37]) are among the most popular in the discrete case. For its

continuous-time counterpart, gradient type schemes are most commonly used [42],

though some faster updating algorithms were also proposed [28]. On the other hand,

for problems where the parameters occur nonlinearly, only approximate algorithms are

developed for general models. These algorithms usually make use of the current pa-

rameter estimate to establish an approximate direction in improving estimation. This

includes the nonlinear least-squares algorithm and the bootstrap methods [62, 18].

The extended Kal.man filter method for parameter estimation also falls into this class

(e.g. [23]). Whether the estimate would converge to the true value depends on the

underlying nonlinearity and how good the initial estimate is. When these algorithms

are implemented on adaptive control of nonlinear systems, stability property of the

closed-loop system is usually unknown.



Artificial neural networks (ANN) had been recognized for their capability in rep-

resenting complex functions. In most of their applications to system identification,

ANN are used as general model structures, replacing standard linear or bilinear mod-

els. The role of the networks is to mimic the output of unknown systems given the

same input signals. Due to their representative ability, many successful applications

have been reported (e.g. [43, 10, 9, 14, 51, 58]).

In recent years, there has been much research on the use of neural networks in

control, especially in problems where nonlinearity dominates. A significant portion

of them utilizes neural networks as nonlinear models of the underlying nonlinearity,

for example, [43, 55, 13, 12, 24, 26, 44, 34, 1, 46, 39, 35, 54, 3]. Broadly, the results of

these papers can be classified into two classes on the basis of the functionality of the

neural network. In the first class [43, 55, 13, 12, 24, 35, 54], the neural network is to

be trained on-line so that it mimics an adaptive controller and meet a regulation or

tracking objective, whereas in the second class [26, 44, 34, 1, 46, 39, 3], the network

is required to function as an optimal controller with an appropriately chosen cost

function.

In the first class, with the networks as identifiers and/or controllers, the problem

reduces to finding a stable algorithm for adjusting the weights of the network. Both

the development of these algorithms as well as the stability analysis are carried out

in these papers in a manner similar to linear adaptive control methods as in [42]. For

example, in [43, 55], unknown nonlinear parts in dynamic systems are modeled using

neural networks. The information is then used by the controllers to adaptively cancel

those nonlinearities and replace them by desired dynamics with either multi-layered

neural networks (MNN) [43] or radial basis functions (RBF) networks [55]. However,

there is no stability proof given in [43], while the proof of stability in [55] is for a

special class of affine systems. For systems which are feedback linearizable but with

unknown nonlinearities, the results in [13, 12, 24] pertain to using neural networks to

perform the task of a feedback-linearizing controller. However, the conditions under

which the system is stable require that the initial weights of the network be close

to a certain set of desired weights [13, 12]. This is extremely difficult to check, if



not impossible., since the weights in the network do not have any physical meaning.

Based on the knowledge gained from the linear adaptive control, modification in

the adaptive control algorithms to improve stability has also been studied. Since a

neural network is only an approximation to the underlying nonlinear system, there is

always a residual error between the true system and the network model. This effect

is similar to that of an adaptive system under bounded external noise, which has

long been understood in linear adaptive control to result in unstable mechanism if

the standard adaptive law is used [49]. To overcome this problem, modifications in

the adaptation algorithms, similar to those in the adaptive control, was introduced

in the weight updating algorithm to avoid instability in the presence of small residual

error [13, 35]. Furthermore, it is well known in adaptive control that a brute-force

correction of controller parameters based on the gradient of the output error can

result in instability even for some classes of linear systems [48, 45]. To avoid such

instabilities, some researchers proposed only varying network weights that are linearly

related to the outputs of the network, such as the RBF networks, so as to achieve a

stable updating rule [55, 35, 54].

Up to this point, the development of nonlinear adaptive control using neural net-

works parallels that of linear adaptive control, and many ideas can be carried di-

rectly over. Unfortunately, unlike linear adaptive control where a general controller

structure to stabilize a system can be obtained with only the knowledge of relative

degrees, stabilizing controllers for nonlinear systems are hard to determine. As a

consequence, all of the above researches focus on nonlinear systems whose stabilizing

controllers are readily available once some unknown nonlinear parts are identified,

such as x" = f((x,- 1,... , x) + bu with full state feedback where f is to be estimated

by a neural network. Even though some approaches have been suggested for utiliz-

ing neural networks in the context of a general controller structure [29], the stability

implications are unknown.

In the absence of general controller structures for nonlinear systems, using ANN

to construct stabilizing controllers also appears in the literature, especially in the

discrete-time case. A straightforward approach is to find a neural network map that



approximates the inverse dynamics of the nonlinear system. Once the network is

trained successfully, given a desired trajectory, the network would then send appro-

priate input signals to drive the system to follow that trajectory [26]. Since inverting

dynamics may be too restrictive and may sometimes result in huge control signals

that are not practical for some systems, several researchers have posed the problem

as one of optimization to make it more tractable, whose results can be grouped under

the second class of neural control methods. For example, in [44, 34], using a series of

neural networks, it is sought to control a dynamic system to the desired target gradu-

ally, where each network in the series corresponds to a map from the measurement to

the input signals of the system at a particular time. The complexity of training, not

surprisingly, increases dramatically as the number of steps increase. This idea can

be extended to solve the N-stage optimal control problem by finding the controller

mapping that minimizes a cost function of states and inputs as is done in [1, 46, 39, 3].

In all these papers, however, the issue of stability of the closed-loop system with the

neural network as a controller is not addressed.

1.4 Synopsis of Thesis

This thesis is organized into seven chapters as follows.

Background material relating to ANN is introduced in Chapter 2. Results in

analysis, control theory and optimization useful in later derivations are also given in

this chapter.

In Chapter 3, 0-adaptive neural networks (TANN) for parameter estimation in

nonlinear systems is proposed. Two methods, the block estimation method and the

recursive estimation method, are discussed. The idea behind the two algorithms

and the structures, training procedure, on-line implementation as well as convergence

analysis of the algorithms are also explained. One common method for estimating

parameters in nonlinear systems is the extended Kalman filter. This method is com-

pared in this chapter to the recursive method to illustrate the fundamental difference

between TANN and those approximate algorithms.



TANN for parameter estimation developed in Chapter 3 is extended to adaptive

control of nonlinear systems in Chapter 4. In this chapter, the class of systems under

consideration and its assumptions are first described. Conditions that TANN has to

satisfy in order to guarantee stability of the closed-loop system are given. We also

discuss a training method for the neural networks to satisfy these conditions.

For the parameter estimation problems in Chapter 3, the goal is to reduce the

parameter estimation error. Whereas, for the stabilization problems, the goal is to

decrease the output error. To achieve this, the idea of the recursive method for

parameter estimation can be modified to construct controllers for systems with un-

known controller structures. This is described in Chapter 5. In this chapter, Training

procedure as well as the stability analysis of this approach are given.

The algorithms described in Chapters 3, 4 and 5 are verified by simulation in

Chapter 6. The simulation examples include discrete-time and continuous-time sys-

tems in either state space or regression forms. Comparison of simulation results with

other schemes is also presented in this chapter.

Finally, concluding remarks and recommended future work are given in Chapter 7.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, materials that are useful in later chapters are discussed. Repre-

sentations of multi-layered neural networks (MNN) and Gaussian networks and their

property that is essential to development of the algorithms in this thesis are presented

in section 2.2. Some known results in analysis and differential equations to be used

later are delineated in Section 2.3. Training of neural networks is often a nonlinear

programming problem. The quadratic penalty function method, which deals with

constrained optimization, used throughout the thesis is summarized in Section 2.4.

2.2 Artificial Neural Networks

ANN are usually referred to computational units composed of simple and intercon-

nected linear or nonlinear functions. They initially attracted attention of researchers

due to resemblance in structure to their namesake in living beings. Later, ANN found

applications in diverse disciplines such as pattern recognition, task classification, iden-

tification and control for various reasons. In this thesis, we mainly take advantage

of their capability of function approximation, that is, efficiency in representing func-

tions to desired degree of accuracy using finitely parametrized units. We focus on two

classes of neural networks, MNN and Gaussian networks, though other neural net-



work architectures possessing the property called "universal approximator", which is

explained later in this section, can be applied equally well to the methods in this

thesis. The analytical forms of these two networks and some of the related formula

are presented below.

A typical n-layered MNN with input u and output y can be written in the following

equations [25]:

z(i + 1) = W(i)x(i) + b(i)

x(i) = F(z(i)), i = 1, ., n

where W(i) and b(i) denote the weight matrix and the bias vector of the i-th layer

respectively, x(1) = u, z(n + 1) = y and F(x) = [y(x), Y(Z2), ... , Y(Xm)]T with -'

usually a smooth nonlinear function such as

1 - e- x

1 + ex

To train a MNN, we often need to calculate the gradients of y with respect to W(i)

and b(i). They are given as follows:

6(k)(z(i ) T

= r'(z(( i)))WT( i)6(i + 1)
wj (i) = Xj(i))6(k) + 1)
awb (i))

_(i)_ = 6 (k)(i + ), i= 2, .. ,n

where 6(k)(n +1):= [0, . , 0, 1, 0,.-- , yk is the k-th element of y, w.(i) is the j-th

column of W(i) and F'(x) = diag {7'(xl), ---, 7'(m)}. These gradient information

is used in different schemes for updating weights. For example, the well-known back-

propagation method [63] is simply correcting weights along the opposite directions

of the gradients. Due to slow convergence of the gradient descent method, other



higher order methods such as the extended Kalman filter algorithm are applied to

the training of neural networks as well [57].

On the other hand, for a Gaussian network with p centers and the input u, the

corresponding output y can be represented in the following form [55]:

p
y = wjzj

j=1

zj = exp IUk - jk2
k=1 k

where wy is a column weight vector and has the same dimension as y, Uk denotes the

k-th element of the column vector u, ak is the variance associated with Uk, and I is

the total number of the network inputs. The gradients of y with respect to wj and

ck are:

w= zjI(9wj

Dy =
019

S2(l -c11)
2  . 2(u-ci )2

1 a

2(u1-cP1)2 2(uj-cp )2
, Zp-* -

where W = [wl, - - -, w,].

As is mentioned earlier, the role of neural networks in this thesis is to approximate

nonlinear functions. Furthermore, they must be able to do so to desired degree of

accuracy if enough units are used. This ability is often called the universal approxi-

mator. To quantify the requirement, the following definition describing such a class

of neural networks K is used. Let Q be the set of all continuous mappings of Rn into

Rm, and KN be a subset of Q.

Definition 2.1 Given e > 0 and a compact set K C R", for every f E Q, there

exists a N E N such that

IN(x) - f(x) < E Vx E K



Definition 2.1 implies that for any continuous function f E Q, we can find a N E NI

to approximate the function uniformly to the desired degree of accuracy in a compact

set. MNN and the Gaussian network discussed previously have been shown by various

authors [1.5, 21, 47] to qualify as such a class. Without loss of generality, we assume

that- all neural networks considered in this thesis have this property. Another reason

why neural networks are used here is due to their efficiency in representing nonlinear

functions. According to [6], if parameters of nonlinear combinations are adjusted,

sigmoidal networks can achieve integrated square error of order ,1 where N is the

number of basis functions. Hence, by varying the nonlinear coefficients in the network,

more compact representations of nonlinear functions can be achieved compared to

linear models such as power series. This is especially useful when the dimension of

network inputs is high.

2.3 Mathematical Preliminaries

In this section, we first show some results in ordinary differential equations in or-

der to establish conditions for transformation from continuous-time to discrete-time

representations, followed by results in analysis and stability of dynamic systems.

The parameter estimation algorithms developed in this thesis as well as many other

algorithms appearing in the literature focus on discrete-time representations. Since

most physical systems are modeled in the continuous time, transformation between

these two representations is often necessary. While the transformation is trivial in

linear systems, its counterpart in nonlinear systems is much more involved, and an

analytical form may not be easily obtained. Nevertheless, TANN algorithms only

require either the continuous-time or the discrete-time model be known, provided that

the discrete-time representation exists and is continuous. To establish existence and

continuity of the transformation, the following two theorems from ordinary differential

equations shall prove useful.



Consider the following initial-value problem:

(= f(t, 0(t)),

where f : I x X -- R?", X C R" is open and

satisfies the following two properties:

I is an interval in R. In addition, f

(H1) f(., x) : I _ ~" is measurable for each x e X.

(H2) f(t, -) : -n _-,n is continuous for each t E I.

(H3) f is locally Lipschitz on x; that is, there are for each xz E X a real number

p > 0 and a locally integrable function a : I -*+ R such that the ball BP(xo) of

radius p centered at zx is contained in X and

Ilf(t x ) - f(t,Y)ll <_ a(t)llx - Y11

for each t E I and x, y E Bp(xo).

(H4) f is locally integrable on t; that is, for each fixed xo E X there is a locally

integrable function : I -* R+ such that

If (t, xo0) <_ N(t)

for almost all t.

Existence and uniqueness of solutions of the initial-value problem in Eq. (2.1) can be

stated as follows [60]:

Theorem 2.2 (Existence and Uniqueness Theorem) Assume that f : IxX -

3" satisfies the assumptions (H1), (H112), (H3) and (H4). Then, for each pair (ua, xo) E

I x X there is some nonempty subinterval J C I open relative to I and there exists

a solution ( of Eq. (2.1) on J, with the following property: If ( : J' --+ X is any other

(o 0 ) = x 0 (2.1)



solution of Eq. (2.1), where J' C I, then necessarily

J' cJ and

on J' .

The solution (: is called the maximal solution of the initial-valued problem on the

interval I.

Under more assumptions on f, continuous dependence of the solution on initial

conditions and on the right-hand side of Eq. (2.1) can be established. Consider the

new initial-value problem as follows:

(= f(t, () + h(t, 0), 0((o) = zO (2.2)

where f and h are mappings satisfying the hypotheses (H1), (H2), (H3) and (H4) and

in addition

0 h(s,((s))ds < 6
for all t E [•, ;r], and zo E ,7

Hzo0 - X011 < 6

Theorem 2.3 [60] Let ( be a solution of Eq. (2.1) on the interval [aO, T] C I. Then,

there exist numbers c, A > 0 so that if 6 E (0, A], the solution ( of Eq. (2.2) is defined

on the entire interval [ 0 ,7 T], and is uniformly close to that of Eq. (2.1), i.e.,

jjý - (Iloo < c6

Based on Theorems 2.2 and 2.3, the result on the transformation between continuous-

time and discrete-time representations using piecewise constant control signals can

be formulated below. Consider a continuous-time system as follows:

x= f(x, r, 0), x(0) -= x (2.3)

where f : X' x x -- R, and xo E X, X C ~n", H C R? and E C Rm are open.



Assume the system is under a discrete exogenous input r, where r : I - U is a

piecewise constant function defined as

r(t) = ci, if t E [iT, (i + 1)T)

where T > 0 and i = 0, ... ,1- 1.

Furthermore, the following conditions are satisfied:

(CD1) f is uniformly continuous on X x U x 6.

(CD2) there are for each xz E X a real number p > 0 and a function a : U x 0 -* R+

locally integrable for every r E U and 0 E O such that the ball Bp(xo) of radius

p centered at xz is contained in X and

|| f (x, )r, ) - f(y, r, 9)11 < a(r, 9)Il x - yII

for every r E U, 0 E e, and x, y E BP(xo).

(CD3) there exists 1 > 0 such that for every (t, xo, 8, r) E [0, IT)x x E x U, solutions

of (2.3) exist.

Theorem 2.4 For the dynamic system in Eq. (2.3), there exists a continuous func-

tion fd : X U x E -+n such that for every x(kT) E X, r(kT) E U and 0 E e,

x((k + 1)T) = fd(x(kT), r(kT), 0)

where k < 1 - 1 is a non-negative integer.

Proof: Define f: 1 x X x E -* as f(t,x, 9) = f(x, r(t), 9). Consider the

following initial-value problem:

x= f(t, x,), x(0) = x0

Since r is a piecewise constant function of t and, from (CD1), f(x, -, 0) is continuous

for every x E X and 9 E O, f is measurable for every x E X and 9 E E. Hence,



(Hi) of Theorem 2.2 is satisfied. (H2) is obtained directly from (CD1). Since a in

(CD2) is locally integrable and r(t) is a piecewise constant function, the function

I : x 0 -- R+ defined as 0(t, 0) = a(r(t), 0) is thus locally integrable. Hence, from

(CD2),
lf(t, X, 0) - f(t, y, )11 <_ (t, o) Ix - A

for every t E 1, 0 E O and x,y E Bp(xo), which implies (H3). Moreover, since

f (x, r, 0) is continuous and r is integrable on I, f(t, x, 0) is integrable on I and thus,

(H4) is satisfied. Therefore, we can conclude from (CD3) and Theorem 2.2 that the

solution of (2.3) is unique on [0, IT). Thus, there exists a function fda XxUxO --+ R":

x(T) = fd(x(0), r, 0)

Next, we want to prove that fd is continuous on X x U x 0. Since f(x, r, 0) is

uniformly continuous on X x U x 0, given e > 0 and c > 0, there exists a 6 > 0 such

that; for every (x, ro, 0o) E ' x U x E) if ((r - ro), (0 - 0o))|| < 6, then

|f (x, r, 0) - f(x, ro, 0o) lcoo <
cT

If, in addition., x(0) E X is chosen so that |lx(0) - x0 11 < 6, then, according to

Theorem 2.3, the solution of the following two initial-value problems:

S= f(, ro, o), (0) =zo

= f((,r, 0), ((0) = x

are uniformly close:

Therefore, if II((x - o0), (r - ro), (0 - 0o)) < 6, then I fd(x, , 0) - fd(x 0, r0, o)0 < E,
implying that fad is continuous on X x U x O

Let ý1(t) be the maximal solution of Eq. (2.3) on J1 with x(a + T) = zx and

r = ri(t) where (o + T, xo, 0) E J1 x X x O; let (2(t) be the maximum solution of

Eq. (2.3) on J2 with x(o) = xz and r = rl(t + T) where a E J2. We want to prove



that (l(t + T) = 62(t), for every t E J1 n J2 , and thus, x(kT + T) = fd(x(kT), ri, 0)

for every (x(kT), r1, 0) E X x U x O and k < 1 - 1. Since 1 (t) and 62(t) are solutions

of Eq. (2.3) with x(a + T) = x0 and x(a) = xz respectively, they satisfy the following

equations:

Ol(t) = =x + f,+T f(ci(7,),r(T))dT, Vt E J,

6(t) = x0 + ft f( 2(a), r(a + T))da, Vt e J2

By comparing the above two equations, we can conclude that 62 (t - T) = j (t). 0

In one of the TANN for parameter estimation, the neural network is trained to

approximate the implicit function between measurable signals and parameters. The

following result from analysis states the conditions under which the implicit function

exists and its corresponding property.

Theorem 2.5 (Implicit Function Theorem) [40] Let A be open in Rk+n; let f :

A - ~" be of class Cr. Write f in the form f(x, y), for x e Rk and y E n. Suppose

that (a, b) is a point of A such that f(a, b) = 0 and

Of
detf (a, b) 0By

Then, there is a neighborhood B of a in Rk and a unique continuous function g : B --+

R" such that g(a) = b and

f(x, g(x)) = 0

for all x E B. The function g is in fact of class Cr.

The following two theorems states stability results for dynamic systems. Theo-

rem 2.6 concerns linear systems, while Theorem 2.7 can be applied to general nonlinear

systems.

Theorem 2.6 [42] The equilibrium state x = 0 of the linear time-invariant system



is asymptotically stable if, and only if, given any symmetric positive-definite matrix

Q, there exists a symmetric positive-definite matrix P, which is the unique solution

of the set of n(n+)_ linear equations

ATP + PA = -Q (2.4)

Therefore, V(x) = xTpx is a Lyapunov function for the system.

A discrete version of the above theorem also exists [18], with Eq. (2.4) being replaced

by

ATPA - P = -Q (2.5)

For stability of general nonlinear systems, consider the following dynamic system:

i= X(x) (2.6)

where x E O C Rn and X : 0 _> R". The positive definite function V : 0 -> R has

continuous first partials on O.

Theorem 2.7 [31] Let Q denote the set defined by V(x) < a, and let Qc denote the

complement of Q. If

(i) V (x) < 0 for all x in Q,

(ii) V does not vanish identically along any trajectory that starts in Qc,

(iii) The system in Eq. (2.6) is Lagrange stable,

then every solution of Eq. (2.6) approaches Q as t -+ oo.

2.4 The Quadratic Optimization Method

The training problems of neural networks for parameter estimation and control in

this thesis can usually be formulated as constrained optimization. For the sake of



brevity in the later discussion, we review in this section results from nonlinear pro-

gramming which are pertinent to these problems. Part of the material in this section

is summarized from [8].

Consider the following constrained optimization problem:

minimize f(x) (2.7)

subject to hi(x) = 0, -. , hm(x) = 0, gl(x) < 0, ... , gr,() < 0

The above inequality constrained problem can be converted to a equality constrained

one by adding r variables zi:

minimize f(x)

subject to hi(x) = 0, , hm(x) = 0, g(x) + z2 = 0, .. , gr(x) + z2 = 0

If the quadratic penalty function method is used, this problem becomes

minx,z Lc(x, z, A•, p) =

min,z (f (x) + A'h(x) + |h(x) 2 + 1  (gj(X) + Z?) + flgj(z() zI2})
(2.8)

where A = [A1, ' , Am]T and p = [pl, 1., p,]T are the Lagrange multipliers and c is a

positive constant sometimes referred to as the penalty parameter. It can be observed

from (2.8) that for large c, L, can be large if the constraints are not satisfied. Hence,

as c increases, the solution tends to be near the constraints. As a matter of fact, if A

is equal to the optimal value of Lagrange multiplier, there is a finite e such that when

c > E, the W that minimizes the augmented Lagrangian L, is also the solution of the

original optimization problem in (2.7) [8]. The above minimization can be performed

by first minimizing L, with respect to z, which can be carried out in closed form for

each x. This yields

minx L,(x, p,) =

minx [f(x) + A'h(x) + ~lh(x)j2 + C ]j=1 {(max{0, [Lj + cgj(x)})2 -
(2.9)

To improve convergence rate and avoid numerical ill-conditioning, the method of mul-



tipliers is commoniv used to update A and p in (2.9) without requiring c approaching

infinity. The algorithm is summarized below:

A(k+1) A= (k) + c(k)h(x(k))
(2.10)+l) max{0, + c(k)gj(x(k))}

where x(k) minimizes

LCc(k) (X, (k), ,C(k)) = f() + A(k)'h(x) + -Ilh(x)211

(X().11+ 2c~ ~ { (max{0, p~k) + C(k)(x)}) 2 - (k)) 2

and the limit point of the sequence of {x(k)} is the global minimum of the problem

in (2.7).
In the derivation of the training algorithms in the following chapters, the resulting

optimization problem is often a special case of that in (2.7). That is, the problem

involves only inequality constraints and no cost function or equality constraints:

gl(x) < 0, ... , Sg(x) < 0 (2.12)

For this special case, it can be observed from (2.9) that for a particular p, as long as

every constraint gj < 0 is met, the minimal cost - Er 1 , can always be achieved

with a large enough c. Hence, (2.9) can be further reduced to the following problem:

minJ = min - i (max{0, g(x)}) 2  (2.13)
x x 2 i

Obtaining x* that solves the above problem requires less computation than that

in (2.9) since only one optimization step is necessary in (2.13) as opposed to solving

a series of optimization problems in (2.10) and (2.11).

The unconstrained optimization problems in (2.11) and (2.13) can be solved in

many ways. In this thesis, the Levenberg-Marquardt [38] method is often used. The



algorithm is summarized below [52]. Consider minimizing the fo wing cost function:

N2 N Yij - Yj

i=1 j=l I

where N is the total number of data elements, n is the dimension of y(ui; x), yij is

the j-th coordinate of the i-th data element, and yj(ui; x) denotes the j-th element of

the model output with the input ui and the model parameter x. The goal is to adjust

x so that X2 is minimized. For the Levenberg-Marquardt method, the adjustment

6x = z(new) - x(current) is obtained by solving the M simultaneous linear equations:

M

cak l6x k, k=1,-,M
1=1

where M denotes the total number of elements in x, caj = ajj(l + A), akl = Ckl for

k 0 1,

1 02X2

2 zXk Xl
1 aX2

13k = 2 8Zk

and Xk is the k-th element of x. When x(new) results in smaller X2, A is decreased,

which moves the algorithm towards the Newton method. Otherwise, if the new x

yields larger x2, the original x is kept and A is increased so that the next 6x is closer

to the direction of the gradient. The procedure then repeats as described above. In

practice, akl and /k are evaluated as:

Nn [Yj [ --(u;x)] Oyj(u; x)
3k =

i= j=1 j=



Chapter 3

Parameter Estimation Using

0-Adaptive Neural Networks

3.1 Introduction

The term parameter is typically used to denote an element that characterizes the

dynamic characteristics of a system. Determining the parameter value is therefore

very useful in several contexts. In the case of linear systems, the parameter value

is sufficient for representation, prediction, and control in the entire state-space. For

nonlinear systems, the specific value of a parameter characterizes an operating point

as well as the corresponding linearized map about the operating point. For instance,

in the context of the heat exchange dynamics in air-conditioners, the heat transfer co-

efficient between the tube wall and the air varies due to different operating conditions

[19]; in order to determine a suitable controller at a particular operating condition,

the coefficient needs to be estimated on-line. In several process control problems, one

might be interested in determining actual physical parameters in a system instead

of predicting its response. For example, the determination of the control parameters

such as the PID gains might be the task assigned to a skilled controller, since that

suffices to generate the requisite performance over a wide range of operation. For

all these problems, it would be more appropriate and useful to employ the neural

network to identify the parameters of a dynamic system rather than simply match



the output of a network with that of the plant.

A significant portion of parameter estimation methods concerns linear systems

and only a limited class of nonlinear systems can be solved analytically using avail-

able tools. Whether linear or nonlinear, in most of these problems, the identifi-

cation approach requires the parameters to occur linearly. In general, a nonlinear

parametrization is inevitable due to a number of reasons. For instance, one often

needs to transform the state space representation to the regression form

Yt-- fr(Yt-li...,7 Yt-n, Ut-l, ... ,Ut-n, 0) (3.1)

for the sake of convenience or because all the states may not be accessible. In such a

case, even if f is linear in the parameter 0 in the state space form, fr can be nonlinear

in 0 due to nonlinearity of the states. Also, it may not always be possible to determine

the analytical form of f, based on the nonlinear state space representation. In all

these cases, parameter estimation methods, which can generate an estimate of 0 using

either the regression form in Eq. (3.1) or the state space form, and does not require

fr to be linear in 0, is highly attractive. A parameter estimate thus obtained can be

used to carry out tasks such as fault detection, prediction, or control in a nonlinear

system.

In this chapter, neural network based algorithms are developed to perform pa-

rameter estimation. Most of the instances where a neural network has been used

to represent dynamic systems have been in the context of identifying input-output

representations (e.g. [58, 43]). The focus in this chapter, however, is on a different

relationship that illustrates the system characteristic. This corresponds to the rela-

tion between the system variables and the parameter 0. If w is a vector of system

variables that can be measured, then we can express this relationship as

0 = h(w)

It is proposed in this chapter to use a neural network to identify the nonlinear map h,

thereby generating a parameter estimate of 0. Two approaches are given. In the first



approach, defined as the block estimation method, the neural network attempts to

approximate the implicit function between the response and the parameters directly.

In the second approach, denoted as the recursive estimation method, the parameter

estimates are updated by incorporating new samples of system response. For both

approaches, the inputs of the network are the observable system variables. The

outputs are the parameter estimates for the first approach, and the update of the

parameter estimates for the second approach. The final algorithms obtained represent

the map between the system variables and the parameter estimate. We denote this

model as 0-adaptive neural networks (TANN).

This chapter is organized as follows. The problem is described in Section 3.2.

The block estimation method is discussed in Section 3.3, and the recursive method

in Section 3.4. The structure and the on-line implementation procedure for the block

and recursive methods are explained in Section 3.3.1 and Section :3.4.1 respectively,

followed by the training procedure of the neural network in Section 3.3.2 and Sec-

tion 3.4.2 respectively. The recursive algorithm is compared to the extended Kalman

filter in Section 3.5 to illustrate the difference between TANN and those schemes

based on linearization. Finally, concluding remarks are given in Section 3.6.

3.2 Problem Statement

Our focus is on a class of nonlinear dynamic systems which can be represented in the

form of

S (X, u, ) (3.2)
y = g (X, u, 0)

in continuous-time or
Xt = fd(t-t1,t-1,) (3.3)

Yt = gd(Xtl, Ut-iO)

in discrete-time. Eqs. (3.2) and (3.3) are typically obtained from physical models of

the system under consideration, and the parameter 0 corresponds to the physical con-

stants that characterizes the system dynamics. The regression form of representation



of the system in Eq. (3.2) (or (3.3)) is

Yt = fr(¢t-1,8) (3.4)

where ¢t-1 represents measurable signals upto time t - 1 including past inputs and

outputs. It is also assumed that Ot-_1 G C R~ 4 m, 0 E O C Rn and y t E T c C R for

every t > 1, where 4c, ec and [c are known compact sets and fr : V x eO -+ V is

twice continuously differentiable on Oc x EO. In this paper, we restrict our attention to

the nonlinear system in the form of Eq. (3.4). That this is not a significant restriction

can be justified as follows. By using results in Theorem 2.4, it follows that there is

a unique transformation between Eq. (3.2) and Eq. (3.3). Furthermore, according to

[33], under the condition that the Hankel matrix of the linearized fd around some

equilibrium point has the rank equal to the dimension of the states, Eq. (3.3) can

be transformed into the form of Eq. (3.4) with Ct-1 = [yt-1,... , Yt-k, ut- 1 , ... U.t-k]T

where k denotes the number of states in Eq. (3.3). Thus, under these conditions,

Eqs. (3.2) and (3.3) can be transformed into the form of Eq. (3.4). Even though the

transformation from one form to another may be very complex and may not even be

easily obtained analytically in some cases, the training of the neural networks in our

algorithms does not require explicit knowledge of the transformation map as we shall

see later. Therefore, the development based on the regression form fr does not limit

application of our algorithms.

There are two important aspects regarding the training stage for the identification

procedure we shall develop in this chapter. First, in order to train the neural network

to learn the mapping between the system observations and 0, the vector [Lt-1, yt]

as well as the corresponding true parameter 0 must be known or calculable. Since

the training process typically occurs off-line and in a controlled environment, it is

reasonable to assume that these quantities are available for measurement or known.

For instance, using the model in Eq. (3.2) or (3.3), at specific known operating points

of the system, if fc or fd is completely known, and x(t) can be measured corresponding

to the known value of the parameter 0, the set {x(t), 0} suffices to accomplish the



training. On the other hand, when only a subset (t- 1) can be measured, a known fr,

leading to the measurement of the set {y(t), 0(t-1), 0} can be used to train the neural

network. In the absence of accurate knowledge regarding f,, fd or fr, an extensive

simulation model depicting the system interaction for a specific parameter needs to

be available to select the data set {y(t), b(t- 1), 0}. An experimental setup which is a

prototype model of the process or a pilot experiment leading to the same measurable

data set would suffice as well to accomplish the training. [50] describes that one such

experiment is carried out to collect data for the purpose of designing a gain scheduling

controller in aircrafts. Second, during the training process data collection has to

be accomplished by varying the operating point and the parameter over all typical

values that would be encountered during the systems' on-line operation. Therefore,

the model, whether it is obtained from analysis, simulation, or experiments, must

be amenable to the parameter as well as the operating point being varied. Such an

off-line training procedure is a necessary ingredient of the approach.

3.3 The Block Parameter Estimation Method

3.3.1 The Block Estimation Algorithm

Consider the nonlinear system in Eq. (3.4). By collecting data for in continuous time

steps, we can write Eq. (3.4) as

Yt-n•+i = fr(¢O-n, 0)

(3.5)

yt-1 = fr(~- 2, 0)
Yt fr(Ot-1, )

Eq. (3.5) can be written in a compact form as

F((-1, ) = 0 (3.6)



where F( 4 t-l,0)=[fr(Ot-l,O) - Yt, "*", fr(¢t-n,0) - yt-n+i]T and It_l denotes the

vector of independent variables of Ot-1, Ot-1, * ", I t-n and Yt, Yt-1, , Yt-n+l.

Since F is continuous, according to the implicit function theorem in Theorem 2.5, if

det(DeF(%o, Oo)) $ 0 and F(4o, 0o) = 0, then there exists a neighborhood (V of I0D

and a unique continuous map G : (I - eO such that for all (1 E (DO,

0 = G((t-1) (3.7)

In other words, if the implicit function G can be determined, a 0 which satisfies

Eq. (3.6) can be uniquely determined using the measurement 4. However, for most

systems, either F(-) is unknown or G can not be found analytically. Nevertheless,

using )t-l as a input, the implicit function G can still be reconstructed using the

training method described in Section 3.3.2. The relation between the parameter

estimate so derived and the input P is given by:

Ot = N((t-1) (3.8)

where N represents a neural network mapping and 0t is the corresponding parameter

estimate. The goal is to train the neural network so that given 4)t-1, its output

converges to the desired parameter 0. In Theorem 3.1, we state that such a neural

network N exists, which ensures that 0 converges to 0 under certain conditions on

(It.

Consider the equation F(I, 0) = 0. The continuity of F follows from the assump-

tion that f, is continuous on 4c x c.

Theorem 3.1 Let DoF(4Do, 0o) be nonsingular at interior points (o of YC and 0o of

Ec. Given the class of neural network jA which maps VC into n", there exist E1 > 0

and a neural network N E A such that, given e > 0,

sup 9 - N((I) < E
)EB1

where B1 = {(II I(I - Io < E• 1}



Proof: Since F is continuous and DOF(Q)0, 00) is nonsingular, according to the

implicit function theorem, there exist pi > 0 and a unique continuous map e(1)) such

that for every () E B2 , F(4D, EO())) = 0, where B 2 = {(I(I I() - o)01 < Pi}. If we choose

61 = p1/2, then B 1 C B 2. Hence, for every 4) B 1, EO() is continuous. Since B 1

is compact and C-) is continuous on the compact set B 1, according to Definition 2.1,

there exists a neural network N E A such that given E > 0

|I - N(4)l < V4Q E B1

The proof of the theorem simply utilizes the implicit function theorem and the uni-

versal approximator property of neural networks as stated in Definition 2.1.

Theorem 3.1 states that, with an appropriate choice of a neural network, the

condition under which the block method will guarantee parameter identification is

existence of the implicit function. This is analogous to the persistent excitation

condition (e.g. [18]) in linear parameter estimation problems.

The convergence properties of the estimation algorithm obviously depends on the

amount of observation noise present and how well the neural network is trained.

In practice, the measurement (t-1 is almost always corrupted by noise. This may

necessitate post-processing of the output of the neural network so that the effect of

the noise is averaged out in some manner. One way of accomplishing this is by using a

K-means like algorithm [20]. That is, instead of using Eq. (3.8) directly, we generate

Ot as as

Ot = N(Nt-1)
1 = ,- + pe- 1 -  - 1 12(0 - 9,-1) (3.9)

where 0 < p < 1 is the step size, ao2 is the variance, and kt is the resulting parameter

estimate. The choice of p and a 2 depends on the tradeoff between fast convergence

(by choosing p close to 1 and small -') and small variance (by choosing p close to 0

and large -2). The reason of adding the exponential term in Eq. (3.9) is that when the

new estimate is too far away from the previous one, the correction is weighted less,



Ot-
Yt

Figure 3-1: On-line Estimation using the Block Estimation Method

which usually occurs when the singularity points are encountered. In this case, larger

± should therefore be used. a is thus the parameter that controls the weighting.

After the neural network is successfully trained, the block estimation algorithm is

implemented as shown in Figure 3-1.

The nonsingularity of DoF(o0 , O0) cannot be checked on-line since it depends on

0 for general nonlinear systems. The parameter estimate resulting from a data point

where the implicit function does not exist could be less accurate. To increase the

accuracy when the data is not rich enough, we can select a wider window over which

the data is collected to determine the parameters, i.e. choose a larger n in Eq. (3.6).

With more data available, we can reduce the possibility of encountering singular

points, which is analogous to using pseudo-inverse to solve noisy linear equations.

However, there is a direct tradeoff between accuracy and network complexity. As n

gets larger, the network becomes larger in size and hence takes more time to train.

Another approach to avoid the problem of singularity is to improve the estimate

gradually only when new information is available and stop adaptation otherwise.

This leads to the recursive estimation scheme discussed in Section 3.4.

3.3.2 Training Scheme

As shown in Eqs. (3.7) and (3.8), the neural network is used to model the mapping

(t_l 1 - in the hyperspace (4-1l, 0). Since it is known that 0 belongs to a compact



region EO, we set 0 = 01 E Oc. The corresponding 4 in Eq. (3.6) can be measured,

and we denote this values as j1. A data element can be formed as (41, 01), where

these values are related as F(4 1, 01) = 0. By continuing the above procedure for

S= _i where i =: 1,..., q, a typical set of data T1 can then be formed as

T,= {(ci,0j)I1 < i < q}

The process can be repeated for other 0 = Oj e Oe where j = 1,..., p to form the

corresponding data sets T3 respectively. The complete set of training data is defined

as:

Ttrain= U Tj
1<j<p

Similarly, we can also form a testing set Ttest for cross-validation during training.

Once the training set is obtained, we can train the weights of a neural network

with the input 4)i and the corresponding target Oj. If a multi-layered neural network

is used, for example, the training can be done by the back-propagation algorithm.

If a radial basis function is used, the recursive least squares method can train the

network efficiently. After the training procedure is completed, the network can be

implemented as shown in Figure 3-1 using the algorithm in Eq. (3.9).

3.4 The Recursive Parameter Estimation Method

In contrast to the block method in Section 3.3, we introduce, in this section, an

alternative procedure wherein the neural network produces the parameter update at

every iteration rather than the actual parameter estimate itself. The algorithm, its

training, and the stability analysis are presented in Sections 3.4.1 through 3.4.3.

3.4.1 The Recursive Estimation Algorithm

As is mentioned earlier, the goal is to construct a recursive scheme to identify 0 in

Eq. (3.4), which should depend only on signals that can be directly measured and

contain information regarding 0. Since the value of 0 is reflected at yt through the



relation in Eq. (3.4), to determine the direction of improving the estimate tl- of

0 at time t - 1, one way is to compare yt with the predicted response #t, where

Yt = fr(t-l, et-1). Since Yt depends on Ot-1 and Ot-1, we choose the estimation

algorithm as a function of Yt, ,t-1 and t_-1. Therefore, the algorithm is written in

the following form:

/9t - Ot - Ot-1 = R(yt, Ot-1, Or-l)

where the function R is to be chosen such that kt converges to 0 asymptotically. In

the case of a linear system yt = oTct-1, for example, a well-known linear parameter

estimation method is to adjust A0 as (e.g. [18])

t at- 1 -- O t1 t-1] (3.10)
c + OTlot-1

In other words, the mechanism for carrying out parameter estimation is realized by

R. In the case of general nonlinear systems, the task of determining such a function

R is quite difficult, especially when the parameters occur nonlinearly. The goal here

is to find R corresponding to a general f, in Eq. (3.4). Towards this end, we propose

the use of a neural network N. That is, 0t is adjusted as

/At = N(yt, Ot- 1, t_ 1l) (3.11)

where the inputs of the neural network are yt, Ot-1 and Ot-_ and the output is Akt.

The neural network is to be trained so that the resulting network can improve the

parameter estimation over time for any possible 0 E EO.

In order for the recursive scheme in Eq. (3.11) to result in a successful parameter

estimation, it is sufficient to establish that the parameter error, 0t, or a continuous

function thereof, decreases monotonically, where 0t = Ot - 0. If we define a positive

definite function Vt as

Vt= =Tot (3.12)

and the neural network in Eq. (3.11) is trained such that Vt < Vt_1 for all possible

0, once the algorithm is implemented on line, the estimated parameter kt would



eventually approach the true parameter 0 no matter what 0 is. Based on the above

idea, the change AVt is first calculated to see how the neural network affects the

estimation error. This is given by

AVt = Vt - Vt- 1 = 2At 0t- 1 + a•t At

The choice of Ak1 as in Eq. (3.11) implies that

AVt = 2NT'9t_ + NTN.

The training procedure for adjusting weights in the network should therefore be such

that AVt < 0 if t-_1 - 0. Since the output error ýt = &t - yt is indicative of how large

the parameter error is, we define as a target of AVt,

2 -+ IC(yt, qt-1, t_1)1 2 (3.13)
AVd, = -a (2 -(3.13)

(1 + C(yt, Ot-1, Ot-1)12

where 0 < a < 1, C is a continuous function of yt, Ot-1 and 0t-1 in R", and AVe =

AV - AVd. The choice of C is discussed in Section 3.4.3. If N can be found such

that A Ve < 0 for all possible system responses and parameters in a compact region,

the algorithm in Eq. (3.11) would gradually improve parameter estimation for any 0

in that region, since this implies that AV < AVd _ 0. However, as A/Vd approaches

zero, when AV,, is small, AV may become positive due to the approximating nature

of neural networks. This in turn would cause the parameter error to increase. To

avoid this situation, the recursive estimation algorithm is modified as

Ot Ot-l + AOt

N(y,¢ t-l,t t-1) if Itl > 6 (3.14)

1 0 otherwise

similar to the dead-zone modification in adaptive controllers [42]. In general, the

choice of 6 depends on how well the neural network approximates and the magnitude



ot

Figure 3-2: On-line Estimation Using the Recursive Estimation Method

of measurement noise. If the neural network can guarantee stability (AV < 0) for

small y and the noise is weak, a smaller 6 can be selected, which results in more

accurate estimation. The algorithm is implemented in the following manner (Figure 3-

2): ot-1, Yt are measured first, and along with the past estimate Ot-i constitute

the network inputs. Using this information, Azt is obtained as the output of the

network. If Yt| > 6, 0 is updated as t = t- + a\t. Otherwise, the estimate remains

unchanged.

3.4.2 Training Scheme

To establish AVt < AVd, for every 8, E Oc and 0 E Oc, it is necessary that for every

samples 0s, E, EO OC and 0, E ~C, AV, < AVd., where

AV, = 2N (ys, ,, ,) , + NTN(ys, s,,~ ) (3.15)

2 + C(ys, #s, ,)122
S+ Vd C( -a (Ys -. )2  (3.16)

1 (+ C(ysi, ,, ,)12)2

Ys = f (s,, 0) and j = f (0s, ,). In other words, AV < A Vd at the sample points.

Thus, we need to find N such that for every 0., 0s CE e and 0. E oC,

AVe, = AVs - AVd, < 0
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Figure 3-3: Training of the Recursive Estimation Network

Finding weights of a neural network to satisfy AVe, < 0 can be considered as an

optimization problem with no cost function and subject to the inequality constraints

AVe,(W) < 0, i = 1, -.. , M (3.17)

on the weights space, where M is the total number of patterns in the training set.

As discussed in Section 2.4, this can be accomplished by solving the following uncon-

strained optimization problem:

min = min - (max{0, AV,(W)}) 2  (3.18)w w2

To find a W which minimizes the above cost function J, we can apply algorithms

such as the gradient method and the Gauss-Newton method. The gradient of the cost

function with respect to a weight (or bias) wj can be obtained as

OJ TaON
w= 2Al + N(ysqs,2AJ , (3.19)

where P denotes the set of patterns where AVe, > 0. The term [_,..., N 1T

is the gradient of the output vector of the neural network with respect to a weight wj

in the network. The explicit forms of N for the MNN and Gaussian networks are

given in Section 2.2. If the gradient descent method is used for example, the weights



in N are changed as
8J

where p is the step size. This training procedure can be graphically shown in Fig. 3-

3. In the forward path, the neural network N has the inputs ys, 0, and 9S, and

its output is the adjustment AOS. By using this preliminary AO,, we can calculate

AV, from Eq. (3.15). AV, is then compared with AVd, to obtain the error signal

AVes for correcting the weights W of the network. If AVe, is already less than zero,

no correction is made in W. Otherwise, training is done by back-propagating AVes

through the intermediate function AV,. In this formulation, as opposed to common

neural network training, the outputs of the network do not have a direct target to

compare with. Instead, after the outputs pass through another function, there is a

distal target AVd,. This kind of structure is also known as "training with a distal

teacher" [26]. By continuously applying the algorithm on a training set which contains

all the sampled data required to calculate Eq. (3.19), the cost function J can then be

minimized. It should be noted that since it is a nonlinear optimization problem, the

solutions may converge to a local minimum.

Since we want the algorithm in Eq. (3.11) to be valid in the ranges of possible

values of 0 and 0 as well as different initial estimates 9, the training set should cover

those variables in their respective ranges. The training set also needs to include all

the values required to calculate Eq. (3.19), specifically 0,, 0s, y,, &Y and 0,, in order

to apply the training algorithm. The procedure for gathering such a set of data is

delineated below.

Similar to the procedure described in Section 3.3.2, by selecting 0 = 01, we can

formulate the triple (01, yi, 01), where these values are related as yl = fr(l1, 01), and

the subscript and superscript of y denote that the response is due to the specific 01

and 01 respectively. We also need to find out how the system responds to a different

parameter value, say 01, so that we can train the network to learn the underlying

relation between (01 - 01) and Y1, gl for the particular 01, where

Yi = fr(01, 61)



and the subscript of y corresponds to the parameter 01. By combining 01, 01, y¢ ,

01 and ,, a data element can be formed as (011, , 1, 0, y', I) for a true parameter

value 01. This data element suffices to determine every term inside the summation

of Eq. (3.19). Proceeding in the same manner, we can obtain a number of estimated

outputs • as

-1
S= f (,0 ), j = 1, ..,p

and collect p data sets (01, ¢1, 01, yl, y), ... , (01,01, , y, y ) for various j E Oc.

By repeating the above procedure for ¢ = ¢i where i = 1,..., q, we can also obtain

yl and y~ of the plant not only for 01 and various 0j respectively, but also for different

0i. A typical set of data T1 can therefore be formed as

T = {(01, i, Oj, y,17 )I1 < i < q;1 <j <p}

We can also repeat the process for other possible parameters 0 = Ok E Oc where k =

2, ..., r and form the corresponding sets Tk respectively, where Tk = {(Ok, 'i, 0j/, Y, F)j

1 < i < q; 1 < j < p}. The complete set of training data is then defined as

Ttrain = U Tk
1<k<r

Similarly, a testing set Ttet for cross-validation during network training can also be

formed.

By utilizing the sets Ttrain and Ttest, we can train the neural network as depicted in

Figure 3-3. The procedure is summarized below, where we assume the stochastic gra-

dient descent method is used to minimize the cost function (3.18). If other nonlinear

optimization algorithms are used, Step 4 below can be modified accordingly.

Step 1 Consider the s-th data element (0s, 0,, 08, y,, 9s) of Ttrain, where s denotes the

index of the training set. By using (ys, ks, 0s) as inputs of the neural network,

we can obtain the output vector of the network as, say, A0s. If the neural

network is thoroughly trained, it is expected that Jo, + An, - 0eI 5 l, - 0e1.



Step 2 The change, AV,, corresponding to As, is calculated from Eq. (3.15) by re-

placing N(.) with AS as

AV, = 2AdTO, + AVA

where 8, = d8 - 08.

Step 3 Calculate AVd, from Eq. (3.16).

Step 4 If AVe, > 0, update wj as

WP = -pVe, [k] + A N

The above procedure is repeated for every data element of the training set and for

several epochs until J stops improving.

It is worth noting that #t, which appears in both the training phase in AVd, and

the on-line implementation in Eq. (3.14), can be attained in several ways. First, if the

plant model f, in Eq. (3.4) is available, it can be simply calculated from the model.

Otherwise, during the training phase, if 4, can be freely chosen, #, can be obtained

by performing another experiment with is = f,(~,, ý,). This avoids an inaccurate N

due to model uncertainty in the training phase, while limiting using the plant model

only to check whether Qt > 6 during the on-line implementation phase. If neither is

the model available nor can 0 be chosen easily, we can construct another network Ny

to estimate the output using Qt-1 and 8 as inputs to mimic fy,(t-1, 0). To form the

training set for Ny, we can follow the similar procedure discussed in this section. The

data set TP(81) = {(81, cj, yf) 1l < j < p} is obtained by measuring yj = fr(Ij, 81) for

the corresponding Oj and 81. By repeating the process for different 0, we can form

the training set as

Tptrain =U T (0)
1<i<q

N,(0, 9) is then trained on the set with inputs Oj and 8I, and target yj using standard

network training methods. After N, is trained thoroughly, Yt can be obtained as



Figure 3-4: The Recursive Estimation Method (f, unknown)

t N == Ny(t--1, t-1). On-line implementation of the recursive method when f, is

unknown is shown schematically in Figure 3-4.

3.4.3 Convergence Analysis

For the procedure proposed in Section 3.4.2, the network is trained to make AVe <

0 by using all the measurable signals to determine AO. To guarantee the success

of training, it must be shown that for any 0, AO can indeed be found from those

measurable signals. Furthermore, if the network is successfully trained, the algorithm

in (3.14) can guarantee stability of parameter estimation. In this section, we will

prove that the above statement is true under some assumptions. Moreover, those

assumptions turn out to be satisfied for a wide class of nonlinear systems.

Consider the nonlinear system in Eq. (3.4) and the corresponding predictor for

the estimate Ot-1:

Yt - fr( t-1,0) (3.20)

where 4t-1 E ~c, E0, t- E 0C and Yt, tE .

Theorem 3.2 For the system in Eq. (3.20), let there exist continuous functions C :

Tc x (c x 0c -+ ~" and h: 41 e x (c x 0o --+ W, and a function R : •cx x e x c --

ot



such that the following condition is satisfied:

d TC(y, q, ) + R(q, 0, 9) = h(y, ), 9) (3.21)

Then, the equilibrium point 0 = 0 of the parameter identification algorithm

Ot = Ot-1 + akvh(yt, Ot-1, t-_l)C(yt, Ot-1, I0-1) (3.22)

is stable, where

1 if |h(y, q, ) > 6

0 otherwise

1
k = 1

1 + CTC

a =supE,oo R(, , ), 6 > a, O < b < 1 and 0 < a < 1.

Proof: Let Vt = 0tTt be a Lyapunov function candidate, where 0t = t - 0.

If jh(yt, ¢t-1, jt-1)1 _ 5, then 0t = 0t-1 and therefore Vt = Vt- 1 implying stability.

Hence, we need to consider the case when |h(y, , )I > 6. By triangular inequality,

we can conclude from Eq. (3.21) that, if |h(y, ,0)I > 6, then - < b. Thus,

AVt  vt - vt_1

= 2akhTi_ 1C + a2 k2 h2 CTC

ah -2 - (2 - a)C2 1C12)
(1 + C 2)2  (-a TC+R

< -a(1 - b) 2+ C2h2
(1 + IC2)2

< 0

Hence, 0t < t-1. 0 = 0 is thus a stable equilibrium point. U

Theorem 3.2 implies that if the condition in (3.21) is satisfied, then the parameter

update law, determined as in Eq. (3.22), is a stable one. The question naturally arises

as to whether this condition is indeed satisfied by a general nonlinear system. Since



f, is twice continuously differentiable, if we expand the system in Eq. (3.20) around

a point Oo using Taylor expansion, the following equation can be obtained:

it - y fr( t-=, ) I 9t-1 + OTH 1+ O - OT9H202

where 01 = t -- o and 02 = 0- 0o; H 1 and H 2 are Hessian matrices of f , with respect

to 0 evaluated at 0 = 0o + p910 and 0 = 0o + P202 respectively with Pi, P2 E [0, 1]. By

comparing the above equation with (3.21), we can define C, R and h as follows:

C = (1fr(Ot-t 90) OT (3.23)

R = T H
1 1 - 9OT H 2

02

h = Yt-Yt

Since fr is continuous and cD, Eo and Tc are compact, 6 in Theorem 3.2 exists.

The above argument and Theorem 3.2 establish the existence of a stabilizing

continuous algorithm for a general nonlinear system. However, if a function C given

by Eq. (3.23) is indeed chosen in (3.22), the region where v = 1 is satisfied can be very

small. This is because this specific C is only a linear approximation around 00. When

0 or 9 is away from 00, h is dominated by R and thus a large 6 results. Fortunately,

the neural network N is trained so as to have AV < AVd. This allows more freedom

in the function that N has to approximate and hence may result in a larger region

where v = 1. The following theorem summarizes the stability of the algorithm when

N is trained so that AV - AVd < c.

Theorem 3.3 For the system in Eq. (3.20), suppose a neural network N is trained

such that AV, - AVd , E5 for an e > 0 and for every 0, e Dc and 8S, 8, E ec. If

Ot-1 E 4c and Ot-1 OEc for every t, and 0 E Ec, then there exists a 6 > 0 so that the

following algorithm

ýt-j + N(yt, Ot-1, e,-j) if |9t| > 6
t = t(3.24)

SOt-1 otherwise



is stable at Ot = 0.

Proof: From the definition of AVd,, we have the following inequality:

2V+ IC12

a(1 + JC12)2

-2
> a

- 1 + IC2

Since C is continuous and Vc, Ec and f,( ( c, 0E) are compact, the supremum of IC|

exists on fr(~C, O ) x C x ~. Thus, we can find a a > 0 such that

IAVdj> aŽ 2

Hence, if y2 >

AVt < A Vd +E< 0

By choosing 6 = , we have Vt = Vt 1 for < 6 and V < Vt-1 if |Y > 6. 0 = 0 is

thus stable for every t-1 CE 4)c and 0, Ot- 1 E c .

3.5 Comparison with Extended Kalman Filter

Since many efficient parameter estimation algorithms have been developed for linear

systems, a natural extension is to modify nonlinear problems so that these algorithms

can be applied to them. Most methods attempt to overcome this difficulty by lin-

earizing the nonlinear system around the most recent parameter estimate. One such

approach is the extended Kalman filter. In this section, the extended Kalman filter

is used as an example to illustrate the difference between TANN and these linearized

methods.

The extended Kalman filter for parameter estimation can be summarized as follows

[23, 18]. The regression form in Eq. (3.4) can be rewritten in the following state space



representation with the unknown parameters 0 as state variables:

9 t+1 = l0t
Yt+J = fI9t (3.25)
Yt+l - f=(ot, Ot)

where I is an identity matrix and 80 = 0. If we linearize f, around some estimate of

0, say, 9t, the linear approximation of (3.25) can be written as

+ = lot (3.26)
Yif = f(,,0) 0= OtYt+1 -- a I0=Ot

With the above formulation, a standard Kalman filter can then be easily applied.

The result is

t+1 = o + r+H(tl)HT(t) t+ -f(t, )(3.27)
P(t) = P(t-1) P(t-1)HT (t)H(t)P(t-1) (3.27)

r+H(t)P(t-1)HT (t)

where H(t) = of((t),0) and r denotes the variance of measurement noise.
80 0=0s

A major difference between the extended Kalman filter as well as other algorithms

that uses information from the linearized system and TANN is that the later utilizes

the knowledge of the true parameter value during construction of the algorithms.

This can be elaborated as follows. When the extended Kalman filter is applied on-

line, since the true parameter value is unknown, the direction to correct parameter

estimate is based on the gradient calculated at the current parameter estimate. If

the estimate is far away from the true value, this gradient may not point in the right

direction. As a result, even worse estimate could occur. Hence, there is no guarantee

that these classes of algorithms would converge to the right value if at all. On the

other hand, the fact that TANN is trained off-line is made full use of. Since during

the off-line training phase the parameter value is known, the direction where the

parameter update should be made at each measurement and for each parameter value

is determined without resorting to estimation. Once the neural network has stored

this information off-line, on-line estimation becomes simply choosing the appropriate

correction in parameter estimate, which has already been obtained during training,



corresponding to the current measurement. Hence, more stable result can be expected

from TANN algorithms. Furthermore, how the parameter estimate is updated is

determined off-line. As shall be seen in Chapter 4, this property helps establish the

stability of the controlled systems in a rigorous manner.

The above discussion can be illustrated geometrically in Figures 3-5, 3-6 and 3-7,

which sketch respectively how parameter estimates using the TANN, the projection

algorithm and the extended Kalman filter evolve during estimation. The projection

algorithm is also derived from the linearized system at the most recent parameter esti-

mate. In this fictitious example yt = f(ot-1, 0), it is assumed that only two different

measurements (y(l), 1( 1)) and (y(2), 0(2 )) are available, and they appear alternately.

The two thick solid lines L 1 and L 2 in the figures represent all possible combinations

of the two parameters to be estimated that satisfy the relationships y(l) = f((l1), 9)

and y(2 ) = f(0(2), 9) respectively. The intersection of the two lines is certainly the true

value. The thin solid curves represent the values of 0 that satisfies ci = f((1), 0) for

various ci, while the dotted curves correspond to those of satisfying di = f(0(2), 9).

For the recursive TANN algorithm, since the parameter values are known off-line,

the neural network can be trained to update parameter estimate approximately as

what is shown in Figure 3-5. If the initial estimate is at the point a, the following

estimates would gradually move toward the true value. However, for the projection

algorithm, since the correction is always along the gradient calculated at the most

recent estimate, the estimate would gradually diverge for this particular example.

On the other hand, Figure 3-7 shows the trajectory of parameter estimate using the

extended Kalman filter. For the sake of simplicity in illustration, it is assumed that

r = 0 in Eq. (3.27), and thus, the extended Kalman filter becomes the orthogonalized

projection algorithm [18]. The algorithm updates parameter estimate along the di-

rection that is orthogonal to all previous directions of updates. Hence, after the first

two updates, the new estimate stops at the point b. From this example, it can be

seen that the quality of the results clearly depends on how well the linearized system

resembles the original nonlinear system.



Figure 3-5: Illustration of the TANN Algorithm

Figure 3-6: Illustration of the Projection Algorithm



Figure 3-7: Illustration of the Extended Kalman Filter

3.6 Summary and Remarks

In this chapter, we have introduced a novel use of neural networks for parameter

estimation. These parameters can occur nonlinearly and the structure of the non-

linearities may or may not be known. We make use of the nonlinear representative

capability of neural networks to approximate the map between system variables and

system parameters. By training the network off-line in a controlled environment

where data can be collected regarding the system corresponding to known system

parameters, it can be used on-line to estimate unknown parameters of a nonlinear

and perhaps time-varying system. We denote the class of neural networks trained

thus as 9-adaptive neural networks. Two different methods, based on the block and

the recursive parameter estimation, are proposed. The analytical conditions under

which the parameter estimates converge to their true values are presented. We also

show that these conditions are indeed satisfied locally by a broad class of nonlinear

systems.

The block estimation method, described in Section 3.3, uses a neural network to



construct the implicit function describing the relation between the responses and the

parameters for general nonlinear dynamic systems. This method can be viewed as

being analogous to the concept of the look-up table with the entry of the table 4. The

table is coded into the network using the training procedure described in Section 3.3.2.

When the network is implemented on-line, it then "interpolates" the table to find the

best parameter approximation that fits the measured responses. Since the neural

network is constructed off-line, the on-line identification can be carried out fairly

quickly. Furthermore, the algorithm requires no specific knowledge of the analytic

form of the system for parameter identification since either an extensive simulation

model or an experimental setup can substitute the analytical model to form Ttrain.

Therefore the algorithm is useful in applications where the systems are too complex

to model accurately.

We provide some comparisons between the recursive parameter estimation al-

gorithm and the parameter identification procedures carried out in adaptive con-

trol [42, 18]. The role of the neural network in this case, as shown in Figure 3-2, is

to generate the map between the quantities {y, 0, '} and AW. In the case of linear

parameter estimation, this mapping is defined by Eq. (3.10) using which convergence

and other stability properties can be established. For parameter estimation in general

nonlinear systems which is of interest here, we use a neural network as described in

Section 3.4.1. As in the block parameter estimation method, the fact that the true

parameter is known during training is directly used, as shown in Section 3.4.2. The

stability properties of the algorithm proposed was established in Section 3.4.3, using

a target function AVd. Since the estimation is being carried out recursively, using in-

stantaneous values of {yt, Ot, t }, A Vd, was chosen to be a function of the scalar error

function # rather than the parameter error vector 9. Due to the approximating nature

of neural networks, the algorithm is modified to incorporate a dead-zone like feature

as in Eq. (3.14), similar to adaptive control algorithms [42]. Yet another feature of

commonality between the adaptive algorithms and those proposed here is the effect of

persistent excitation. As it shall be seen in Chapter 6, this leads to smaller parameter

error. Unlike the block parameter estimation, when there is a lack of persistent exci-



tation, the parameter estimate from the recursive algorithm simply ceases to update,

i.e. A0 - 0, which again is similar to linear adaptive algorithms. Furthermore, since

the recursive algorithm uses only the most recent values of {yt, Ot, Ot}, the dimension

of the input space of the neural network is smaller, which results in a less complex

network structure.

A comparison between the 0-adaptive neural networks and those in [43] is also

worth making. Neural networks have been used in [43] as well as in many other papers

to represent the nonlinear map from inputs to outputs. In contrast, we have suggested

the use of neural networks for estimating the map between system observations and

parameters. In [43], the neural network has been shown to represent different classes of

nonlinear systems (denoted as models I-IV), which are input-output models, derived

perhaps on an empirical basis. In this paper, our starting point is the model as in

Eq. (3.2) or Eq. (3.3), which is based on the physical characteristics of the dynamic

system, thereby providing a closer connection between neural network models and

the actual physical models of the system. The target for training the neural network

in [43] is the output error. More specifically, the performance index used for back

propagation is a quadratic function of the output error which is an obvious target

for the proposed use of the neural network. In our case, the goal is to reduce the

parameter error. The advantage to be gained is that the resulting output, which is

the true parameter of the nonlinear system, is more useful for adaptive control tasks.



Chapter 4

Adaptive Control of Nonlinear

Dynamic Systems Using

O-Adaptive Neural Networks

4.1 Introduction

In many of the engineering problems, governing dynamics of the systems can be

modeled using physical laws such as conservation of mass, momentum and energy.

Physical constants in these models characterize key aspects of the behavior of the

systems. Due to several factors including change in operating conditions, these phys-

ical constants may vary during operation. How to compensate for such variations is

a challenging task for control engineers. The field of adaptive control deals specif-

ically with this class of problems, where a control action has to take place despite

the presence of uncertain and varying system parameters. For the sake of analyti-

cal tractability, simplifications are often introduced in the system models despite the

presence of physically-based models.

In this chapter, we introduce a neural controller which makes direct use of the

physical model of the system under consideration. The problem we focus on is the

control of systems with parametric uncertainty while the structure of the system

models is assumed to be known. This occurs in many systems where the underlying



physics that contributes to the system dynamics is well-known and can be modeled

using physical laws such as conservation of energy and momentum. Yet, the param-

eters that characterize the operating points vary and need to be determined on-line.

Since the system model is used in designing the controller, designers have more free-

dom in choosing the controller structure. However, difficulty arises in estimating

the unknown parameters in the system if the physical model is used, since these pa-

rameters usually occur nonlinearly in the model. The approach that we suggest to

overcome this problem is to use TANN discussed in Chapter 3. In contrast to com-

mon approaches in applying neural networks to control problems where the neural

network is used as a controller model with its weights updated on-line, our approach

consists of applying TANN to adjust the parameters of a controller whose structure

is designed using the available physical model. In other words, the neural networks in

our approach act as parameter adaptation mechanisms as opposed to controller mod-

els. The adaptation algorithm for a nonlinear system is constructed using a neural

network rather than being solved analytically. Outputs of the neural network are thus

correction in the controller parameters. There are several advantages for this kind of

approach. Besides allowing a more flexible choice of controllers as the control design

is based on the system model, there are much fewer number of parameters to be

adjusted on-line compared to most neural control methods where typically hundreds

of weights need to be varied on-line. This would significantly improve transient per-

formance of the resulting closed-loop system especially when nonlinearity dominates,

and in turn result in a larger region of applicability in state space and parameter

space.

In addition to proposing a new way of incorporating neural networks for control

purposes, another main contribution is the proof of stability of the closed-loop system.

In contrast to much of the published literature on control using neural networks,

we show that the proposed controller with a neural algorithm leads to closed-loop

stability. While the stability is local, since the parameters adjusted on-line are closely

associated with the physical model and usually have a physical meaning, the bounds

on the initial parameter estimates that we shall establish in the proof are more tangible



(compared to the weights of a neural network) and can thus be easily checked for a

given process. Furthermore, the assumption that is required in most adaptive control

approaches that the system model is affine in the control input, is not needed in our

approach.

In order for the neural network to adjust the controller parameters on-line in a

stable manner, training of the network must be performed off-line for our proposed ap-

proach. Such an off-line training prior to proceeding to on-line parameter adaptation

is a distinct departure from most other adaptive algorithms suggested for identifica-

tion and control in the literature, which are simply implemented on-line with no prior

training requirements. As shall be seen later, the off-line training is analogous to the

process of finding a stable parameter adaptation algorithm for a linear adaptive sys-

tem. Since the goal of the network training is to find such an algorithm, the targets

of the training are certain properties that would guarantee stability of the closed-loop

system when the network is implemented on-line, as opposed to the controller map-

ping that would minimize a performance cost function. The properties to be satisfied

and the training process to achieve them are described in detail in this chapter.

This chapter is organized as follows. The problem as well as assumptions on the

system model are described in Section 4.2. Properties that the neural network has to

satisfy in order to guarantee stability of the overall system are discussed in Section 4.3.

We describe a training method for the neural network to satisfy those properties in

Section 4.4. Outlines of the proof of stability followed by the proof itself are shown

in Section 4.5. The assumptions and sufficient conditions under which the stability

holds are also discussed in this section. For systems where part of the model is linearly

parametrized, simplification can be done to reduce complexity of the problem. We

discuss one such scheme in Section 4.6.



4.2 Problem Statement

The focus of the nonlinear adaptive controller to be developed in this paper is on

dynamic systems that can be written in the d-step ahead predictor form as follows:

Yt+d = fr(wt, Ut, 0) (4.1)

where

tT = [Yt, , Yt-n+l, Ut--1, , Ut-m-d+1] (4.2)

n > 1, m > 0, d > 1, m + d = n, Y1 ,Ul C R containing the origin and E1 C Rk

are open, fr y n X m+ d x E1 --+ R is a known function, yt and ut are the output

and the input of the system at time t respectively, and 0 is an unknown parameter

and occurs nonlinearly in ft.1 The goal is to choose a control input u such that the

system in (4.1) is stabilized and the plant output is regulated around zero.

4.2.1 Assumptions

Let

T [Yt+d-1, ',Yt+1, T], (4.3)

0 .o

I

O(m+d-1)x(n+d-1)

O(n+d-1)x(m+d-1)

I

0

We make the following assumptions regarding the system in

1Here, as well as in the following sections, A" denotes the n-th product space of the set A.

Am = Bm =

1 0

0 0

00

0 1

O 0

00

(4.4)

Eq. (4.1).



(Al) For every 0 CE 1,

fr, (0,0) = 0 (4.5)

(A2) There exist open and convex neighborhoods of the origin Y2 C Y 1 and U2 C 41,

an open and convex set 0 2 c 0 1, and a function K : E1 -- U4 such that for

every Wt E ýý2, Yt+d E Y2 and 0 E 0 2, Eq. (4.1) can be written as

Ut = K(wt, yt+d, ). (4.6)

where

2•- yn2 X A2m
+ d - 1

El =2 X Y2 X 02-

(A3) K is twice differentiable and has bounded first and second derivatives on El,

while f, is differentiable and has a bounded derivative on £Q2 x K(E1) x 0 2.

(A4) There exists a 69 > 0 such that for every yl E fr(Q2, K( 2 1, 0, 02), 2), 2 E -2

and 0, E 2,

(DK(w,y, 0)
ay

aK(w, y, )

ay ) = 91afr(w, u, 9)
Ou

(A5) There exist positive definite matrices P and Q of dimensions (n + m + 2d - 2)

such that for every 0 E O1,

xT(A PAm - P)xt + [O, K(wt, 0, 9)]BIPBm
0

K(wt, , 00)

+2xT AT pBm
0

K(w7, 01, )

1 -
U=UL1

< -xTQxt



Assumptions (Al) and (A2) together imply K(O, 0, 9) = 0 for every 0 E O. It

is worth noting that if fr 40 at wt = 0 and for some 0 E E1 in Eq. (4.1), the

existence of Y2, U2 , 6 2 and K is guaranteed by the implicit function theorem [40].

The smoothness assumption in (A3) is needed to apply the mean-value theorem to

obtain upper bounds on growth rates of signals in the closed-loop system. Assumption

(A4) is automatically satisfied if the gain multiplying ut is known. This is similar

to conditions on the high frequency gain in linear adaptive control. The assumption

in (A5) essentially implies the decrease of

Wt = xTPx t  (4.7)

along the trajectory to be no slower than -xTQxt if ut = K(wt, 0, 0). A necessary

condition for this assumption is for the zero dynamics of the closed-loop system to

be stable.

4.2.2 The Adaptive Neural Controller

Since the objective is to control the system in (4.1) where 0 is unknown, in order to

stabilize the output y at the origin, we choose the control input as

ut = K(wt, 0, Ot) (4.8)

where Ot is the estimate of 0 at time t. It can be seen from Eqs. (4.1) and (4.6) that

the following relation holds:

0 = f,(wt, K(wt, 0, 0), 9)

which implies that if the value of 0 is known, the controller in Eq. (4.8) can drive

the output y to the origin in one step. Since 0 in Eq. (4.1) is unknown, the stabiliz-

ing controller needs to be combined with an adaptive algorithm that generates the

parameter estimate kt.



Suppose the algorithm for updating Ot is defined recursively as

_At :-- - O = R(yt,Wt-d, Ut.d, t-

the problem is to determine the function R such that Ot converges to 0 asymptotically.

In general, R is chosen to depend on yt, Wt-d, Ut-d and kt-1 since they are measurable

and contain information regarding 0. For example, in the case of linear systems which

can be cast in the input predictor form, ut = 4t0 , a well-known linear parameter

estimation method to adjust AO is the projection algorithm [18]

A-t-d O- ~T dt-1] (4.9)/t 1 + O -- [Ut-d -tt--1
1T + t-d t-d

In other words, the mechanism for carrying out parameter estimation is realized by

R. In the case of general nonlinear systems, the task of determining such a function

R is quite difficult, especially when the parameters occur nonlinearly. Towards this

end, we propose the use of an artificial neural network N. That is, we adjust Ot as

AOt = N(yt, Wt-d, Ut-d, 0 t-1) (4.10)

where the inputs of the neural network are Yt, Wt-d, Ut-d and Ot-1, and the output

is Akt. The structure of the controller and the adaptive algorithm are shown in

Fig. 4-1. The neural network is to be trained so that the resulting network can

improve the parameter estimation over time for any possible 0 E 0 2 . In addition, the

trained network must ensure that the overall system in Eqs. (4.1), (4.8) and (4.10) is

stable. We show in the following sections that these are indeed achievable. By using

a procedure similar to what we developed for the TANN algorithms [2] in parameter

estimation, we show in Section 4.4 that we can successfully train the network. Under

*the conditions made in this section regarding f, and K, we prove in Section 4.5 that

the output of the closed-loop system converges to a neighborhood of the origin.

It must be noted that in order to apply the TANN controller, the controller struc-

ture specified by the function K in Eq. (4.6), which satisfies (A2)-(A5), should be



r

Figure 4-1: Structure of Adaptive Control Using TANN

explicitly known. A question arises as to under what conditions on f, does such a

function K exist. While we do not explicitly address the issue here, we argue that

the class of such functions is quite large. For instance, consider the class of nonlinear

systems with a triangular structure discussed in [28, 27, 56] of the form

St+ 1 = + f (xlt, Zx2t, 0)

2t+l = X2t + f 2 (lt, X2t, X3t, 0)

Xdt+l Xdt + fdt,'" ",X d+ltO) + Ut
(4.11)

Zd+lt+ = Zd+l, + fd(Xlt,''',X,, Ut, )

Xnt+1 ~ Xn t fn(Xlt , '' XntUt, )

Yt = xit

Assume f (0, ... , 0, 0o) = 0 for 1 < i < d. We can transform (4.11) into the form

in (4.6) by following the steps described below. Since '9 ( (0, , 0, Go) $ 0, we can



write

xi+lt+d_i = gi(7xl+d_,,"", xi, +d_,, xZidsl, 9) (4.12)

for some function gi : yf+l x O 1, where Y1 and E1 are open neighborhoods of the

origin and 00 respectively, and 1 < i < d. It can be observed from (4.11) that by

continuously substituting xit+d-i+l = Xit+d-i+ fi(xlt+d-i,", Xi+lt+d-i) into the state

equation Xi-lt+d-,+ 2 and utilizing (4.12) we can obtain

U.t =: g(Zlt+d, Xlt+dl 7,..., l, , it+d-i7 ,... , Xit , i , t, x ,O)

By applying (4.12) again, we can represent Xlt+d7, , XZd in terms of xl, ,. . Xltd+l

and ut-1, ", Ut-d,+1. The above equation is then in a predictor model form

ut = K(yt+d, Yt, Yt-1, " " ,Yt-d+1 Ut-1, " " " , Ut-d+1, 8) (4.13)

which is similar to that in Eq. (4.6) with wT = [Yt, yt-1, Y, t-d+l, ut-1,''', Ut-d+l]

If the internal dynamics

Xd+ltlt fd( lt,'',l +Xnt,U t, )

Xnt+l Xnt + fn(Xlt,'', Xn t, U )

is stable for ut E r1t2 and 0 E 62, the predictor model in Eq. (4.13) suffices to be used

as a controller. Though outside the scope of this paper, it is possible to determine

conditions on fi in (4.11) under which (A3)-(A5) are satisfied.

4.3 TANN Algorithms for Control

A question that naturally arises is whether the same algorithm and training procedure

developed for parameter estimation in the previous chapter can be applied directly

for estimating 0 in the adaptive control problem stated in Section 4.2. Since in the



control problem, we are interested not only in generating bounded parameter esti-

mates Ot but also in establishing stability of the closed-loop system, we may need to

impose additional conditions on the neural network and its training. In this section,

we introduce two sufficient conditions that the neural network must satisfy for sta-

bility. In Section 4.4, we show how the network can be trained so as to satisfy these

conditions. In Section 4.5, we show that under these conditions, closed-loop stability

follows.

To quantify the parameter estimation error, we use the same norm as in Eq. (3.12).

By comparing Eq. (4.6) with Eq. (3.4), we can see that [wt, Yt+d] in Eq. (4.6) have

the role similar to 4t-1 in Eq. (3.4), while Yt in Eq. (3.4) is similar to ut in Eq. (4.6).

Hence, referring to Eqs. (3.11), (3.13) and (3.23), similar A t, AVd, and C( t) can be

defined for the control parameter estimation as

Akt = N(yt, t-d,d Ut-d, t-1)

2 + IC(t-d) 12 2

fUt = ut - K(wt, Yt+d, t+d-1) (4.15)

Wt = [WT, Yt+d]T, (4.16)

a, e (0, 1) and 00o E 2 as in (3.23) is the point where K is linearized. Unlike TANN

for parameter estimation where AVt • 0 is sufficient to guarantee stability, the control

problem does require that AVt 5 AVdt, or at least

AVt - AVdt < E1 (4.17)

where cl is a small positive constant. Besides making the proof tractable due to

the knowledge of the minimum rate of parameter convergence, another reason for



requiring AVt - AVd, < E1 is that if the convergence rate is too slow, the system output

may diverge before the controller parameter converges to a stable set. Therefore, AVt

should be bounded above by a negative definite function of iit-d. These points shall

be made clear when we prove stability of the system in Section 4.5.

The choices of the functions AVd, and C in (4.14) for the control problem are

motivated by the projection algorithm (4.9) used for linear parameter estimation.

That is, if 0 is close to 00, the projection algorithm yields a AV .AVd given by (4.14),

and hence a stable estimation procedure. In the problem under consideration, we

selected these functions to provide a negative definite target for AV since the goal is

to achieve AV < 0. The training procedure, derived in detail in Section 4.4, seeks

to train N in (4.14) so that AV satisfies (4.17). The parameter estimation algorithm

in (4.14) however is not determined as a specific continuous function with a closed

form but is constructed using a neural network which is trained to approximate this

continuous function. Since the algorithm attemps to generate a AV which is less than

or equal to A'Vd and not achieve an exact equality, its construction requirements are

less stringent and therefore, it is amenable to generating satisfactory performance over

a range of parameter values of 0 and not merely for 0 close to 00. This is illustrated

in Section 6.3.

For the parameter estimation problem in Chapter 3, it was only required that

the parameter error norm be non-increasing. In the control problem, in addition to

having AVt < AVd,, we need yet another property, which is that the magnitude of

the parameter correction /At at each step has to be small enough if Fit-d is small.

Since Ant is the output of the network, we limit the output vector such that

IN(yt, Wt-d, Ut-d, Ot-1)12 < a2 (1 )1C(t )2)2 d  (4.18)
(+IC(+t d)I2)2U

where al < a2  1.

Feasible corrections of parameter estimation satisfying the two properties can be

graphically shown in Figure 4-2. In the figure, (01, 02) denoted by 'x' is the true value

of parameter, while (91, 92) labeled by '*' represents the current estimate. Hence, the



C0

Figure 4-2: Feasible Region of Neural Network Output for Adaptive Control

requirement AVt 5 AVd, limits the new estimate to be somewhere inside the large

disk whose radius is determined by AVd,. For parameter estimation, this would be

enough. However, for the control problem, the additional property in Eq. (4.18)

specifies the maximum distance where the next estimate can move, which is defined

by the right-hand side of Eq. (4.18). It therefore restricts the new estimate to within

the small disk centered at '*'. The intersection of the two disks is the feasible region

of the neural network output.

Similar to the parameter estimation case, a dead-zone modification is also made

in TANN for the control problem to guarantee AVt 5 0. Suppose there is an e1 > 0

so that AVt - AVd, < e1. The algorithm in Eq. (4.10) is changed to

S t-1 + N(yt, Wt-d, Ut-d, t-1) if AVdt < -E0t = - (4.19)
1t-I otherwise

where E > E1.

In summary, we are interested in finding a function N : yn+l x U3,+d X 3 -

Rk, where Y3 C Y 2 , U3 C /2 and 0 3 C 0 2 are compact sets, and Y3 , 13 contain

neighborhoods of the origin, such that for every Wt-d E y3n X U3m+ d- l, 0 E 0 3 and



t-1. E 0 3 , N satisfies the following two properties:

(Pl) |N(yt, t-d, W td, td -1) 2 F a 2 (1+IC(t )I2
)

2 t-d

(P2) AVt - AV" < l1, 1e > 0.

if Ut-d E U3n Jr-llWd,O (Y3), where f7-l t-d,o (Y3) denotes the inverse image of the set

Y3 under the mapping fr(w, u, d) at w = Wt-d and 9 = 0. With this neural network

N, TANN algorithm is then implemented as in (4.19) with e > E1.

The reason why we restrict Ut-d in U3  f 1 "Wt-d,O (Y3) is that for arbitrary Ut-d,

Yt does not necessarily stay within y3. As a result, the subsequent Wt-d+1 may be

outside the set ,y x U3m +d- 1 where N is trained. If this happens, the network output

needs to be discarded since its approximation is unreliable outside the compact set.

Hence, we do not train the network on those patterns which result in such a scenario.

However, when (4.19) is actually implemented on the closed-loop system, the question

remains whether those patterns can actually be avoided. In Section 4.5, we prove this

is indeed true as long as the initial estimation error is small enough.

It is also worth noting that although we require the above two properties to estab-

lish stability of the closed-loop system, it is still possible for algorithms violating these

two properties to result in a stable system since they are only sufficient conditions.

Nevertheless, these two properties provide us with mathematical tractability in the

proof.

4.4 Training of TANN for Control

In the previous section, we proposed an algorithm using a neural network for ad-

justing the control parameters. We introduced two properties (P1) and (P2) of the

identification algorithm that the neural network needs to possess in order to maintain

stability of the closed-loop system. In this section, we discuss the training procedure

by which the weights of the neural network are to be adjusted so that the network

retains these properties.

As in the training of TANN in Chapter 3, a training set is constructed off-line



first. Since we want the algorithm in Eq. (4.19) to be valid on the specified sets

Y3 and U3 for different 0 and 0 in 03, the training set should cover those variables

appearing in Eq. (4.19) in their respective ranges. Hence, we first sample w in the set

y3 Ur +d- l , and 0, in the set 03. Their values are, say, wl, 01 and 01 respectively.

For the particular •1 and 01 we sample 0 again in the set {0 E 031 10 - 011 II 1-i01 },

and its value is, say, 01. The reason for having two different samples of 0 (i.e. 01 and

1d) is elaborated as follows. It can be observed from Eqs (4.1), (4.8) and (4.19) that

0 appears at two different places in the closed-loop system: the parameter estimate

at time t is used to assign ut and is used at time t + d - 1, together with Yt+d,

wt and ut, to obtain the new estimate 0t+d as well as iit. Hence, we need 01 and

'd to represent samples of the variables Ot and Ot+d-1 respectively. Since "t+d-1 is

(d - 1) steps ahead of Ot, if the parameter estimation is successful, 01 should always

be closer to the true parameter than 01. Therefore, we limit the samples of 0d in the

set {0 e 31 10 - 011 •1 O - 01I}. However, for the special case d = 1 in Eq. (4.1),

only 01 is required since t + d - 1 = t.

Once wl, 01, 01 and Id are sampled, other data can then be calculated, such as

U1 = K(wi, 0, 1) and yl = f,(wl, ul, 01), where ul corresponds to a sample of u at

time t, whereas yl corresponds to a sample of y at time t + d. If yl V y3, this pattern

is ignored for reasons explained in the end of Section 4.3. Otherwise, we can also

obtain the corresponding C(01), AVd, and L 1 as follows:

= K

A2 + Jc( 1)1 |22
Vd, = -al P2 U1 _- u1)2

+ Ic( )l2

= a(1 + C( 1)12)2

where $1 = [w, y]T and fil = K(wl, yi, 01). A data element can then be formed as

(yi1, W1, U j, 01, AVdi,, L1). This data element suffices to determine every term on the

right-hand side of Eq. (4.22). Proceeding in the same manner, by choosing various



ws, Os, s, and 10 in their respective ranges, we form a typical training set Ttrain as

Ttrain = (yS, Us, O, •,Is, AVds, Ls)1 1 < s < M

where M denotes the total number of points in the training set. Similarly, a testing

set Ttest can also be formed for cross-validation during the network training.

Let s denote an index of the pattern in the training set. AV, and AVS for the

particular pattern s are

Av, = I(6 + N,(W) - Os9 -I 8 - 8sI

A Ve. = A v,- AVd

where Ns(W) is an abbreviation of N(ys, w , us, ,S; W) and W denotes weights in the

network.

To establish (P1) and (P2) in the previous section, it is necessary that for every

pattern in the training set, W must be such that

IN,(W)12 < L, (4.20)

AVe,(W) <_ 0, s=, ,M

In order to satisfy the inequalities in (4.20), we view the problem as one of con-

strained optimization with no cost function. We first convert the inequality con-

straints in (4.20) into equality constraints by adding additional variables vi and zi:

Ni(W)12 - Li +z= 0, Ve,(W)+ v= 0, i = 1,M.-,

If the quadratic penalty function method [7] is used, we can formulate the optimization

problem as follows:

minw,,,,C 8 {• i (AVej(W) + vi) + ~ Ve,(w) + v•| 2

+ ( 2  
2  2-L+ ( (I )1 - Li + z?) + ,IINj(w)L' - Li+ ?1)



where pi and i are Lagrange multipliers, c is a constant and - is a weighting constant.

Minimization with respect to v and z can be carried out in closed form [7], the result

can be written as

M
min (max{O, i + cAZ.}) 2 - 2 + [(max 0,(+c(INi(W)l2 -Li)) 2  2]

Since the optimization involves only inequality constraints, we can further reduce the

problem into the following form:

minJ min 1 (max{0, AV})2 + (max{O, Ni(W)2 - Li})2 (4.21)
W W 2 V-

To find a W which minimizes the above unconstrained cost function J, we can apply

algorithms such as the gradient method and the Gauss-Newton method. The gradient

of J with respect to a weight (or bias) wj, which is required for either algorithm, can

be obtained as

_J _ ON
2A 2V,,, [V , + N(ys,Ws, Us, US) T

1 'N
+ b 2(Ns 12 - Ls)NT(ys, WS, US, s) (4.22)

sEP2 aLw

where P1 and P 2 denote the sets of patterns for which AVe, > 0 and INs 2 - L, > 0

respectively. The term -= [ ,..., r ] is the gradient of the output vector of

the neural network with respect to a weight wj in the network. The procedure of

neural network training is summarized below.

Step 1. Consider the s-th data element (ys, u,,, u ,, 10, 0 Vd,, L,) of Ttrain, where s

is an index of the training set. By using ys, w., u. and 10 as inputs of the neural

network, we can obtain the output vector of the network as, say, AUZ.

Step 2. AV, corresponding to this particular An, is calculated from the definition as:

AV, = 2Az (s( - O,) + AeU AS



If the neural network is thoroughly trained, it is expected that AV, < AVd, and

IAnI2 < L,.

Step 3. Update the j-th weight wj of the network as

A new oldAw j w -w =

-P (xavj [d +N(ySwS,U 8,7)] + , 6[INNl 2 _L]NT(y 8 , w,U, &)) ON
- LN SIOS, S, k) twj

where 6[x] := x if x > 0 and 6[x] = 0 otherwise. Repeat the correction for every

weight in the network.

The above procedure is repeated for every data element of the training set and for

several epochs until J in Eq. (4.21) is within tolerance.

In Step 3, Awj is calculated using the stochastic gradient descent method. If

the Gauss-Newton method is used for example [52], we can replace Step 3 with the

following steps:

Step 3a Calculate akl and !k as

iki Ve Mk
iEPi aWk

+ [b2OINjl Ni 2 1
jEP2 b2 i9Wk O'9WI]

E
jEP2

(NNj 2 - Lj) jN12

OWk

where wk is the k-th element of the weights in the network, and

azv•
OWk

OWk

= 2 [+ N(y,wi, ui, N)] TON

O N k
= 2NT(yW, wU, u 0, 9)

dwk

Step 3b Solve the following n, linear equations for Awl:

SaklAW = k, k = 1, 2, ... , n
1=1

where n, is the total number of variable coefficients (weights) in the network and



Awl is the update of the 1-th weight.

The Gauss-Newton method or its variants such as the Levenberg-Marquardt method

[38] are very efficient in finding a local minimum of the cost function J. Since the

optimization problem is nonlinear, there is no guarantee that the local minimum is

also a global one unless the initial choice of weights are close to the optimal ones.

Hence, a common practice is to start from several different initial weights to increase

the chance of reaching a global minimum. An alternative is to use global search

techniques such as the simulated annealing method [52], albeit the global methods

are usually computationally more expensive than their local counterparts. After a

minimum of J is reached, whether it is local or global, a question that arises is if the

resulting upper bound on AV,, of the training set is small enough. To ensure stability

of the closed-loop system when TANN is implemented on-line, however, what is rele-

vant is not whether or not J reaches a global minimum, but how small the resulting

upper bound on AV,i is after a minimum of J is reaches. This is discussed at the end

of Section 4.5.

4.5 Proof of Stability

With the plant given by Eq. (4.1), the controller by Eq. (4.8), the TANN parameter

estimation algorithm by Eq. (4.19), and the TANN trained using Steps 1-3 (presented

in Section 4.4) off-line, we proceed to show in this section that the resulting closed-

loop system is stable. Before providing the proof, two points that are specific to neural

controllers must be mentioned. First, since a neural network can only approximate

a nonlinear function in a compact set, care must be taken to ensure that all signals

entering the network in the closed loop indeed belong to the compact set where it is

trained. Second, due to the approximating nature of the networks and nonlinearity

of the functions to be approximated, there can be a nonzero error between the target

and the approximator. In other words, only a positive e can be achieved such that

(AV - AVd) < e. In order to avoid an increasing parameter estimation error, a dead-

zone is incorporated in (4.19). While proving stability, the effect of the dead zone



should also be taken into account.

The closed-loop system, specified by Eqs. (4.1), (4.8) and (4.19), is rewritten

below:

fr (Wt, t, 0)

= K(wt, O, t)
S9t+d-1 + N(Yt+d, Wt, Ut, Ot+d-1)

[t+d-1
if AVd,+d < -E

otherwise

To analyze the stability of the system, we use the state variable xt as defined in

Eq. (4.3). The closed-loop system excluding the dynamics of the parameter estimates

can be written in the following state space form:

= Amxt + Bm

= Amxt + Bm L

fr (wt, K(wt, 0, 0 tt), 1 0)

K(wt, 0, 9)

0 ] +BmFt (4.23)

where A, and B,, are defined in Eq. (4.4), and

(4.24)

Also, the closed-loop system is assumed to satisfy Assumptions (A1)-(A5) stated and

discussed in Section 4.2.1.

Before proceeding to the proof, we enumerate the key steps which lead to the

stability of the closed-loop system. To analyze the stability, we focus on the evolution

of Wt, defined in Eq. (4.7), over time.

(Cl) If AWt = Wt+1 - Wt, then

AWt < -Amin(Q) lxt12 + c9jXtl JK(wt, 0, t) - K(wt, 0, 0)

+c1o IK(wt, 0, 0) - K(w, 0, 0)2
(4.25)

Yt+d

Ut

Ot+d

xt+1

fr (wt, K(wt, O, t), O)

L K(wt, 0, 0O) - K(wt, 0, 0)



which is established by utilizing the smoothness assumptions of f, and K in the

bounded sets as in (A3).

(C2) The following two properties of the TANN algorithm, pertaining to parameter

convergence, can be established. If all the signals entering the network remain

within the sets where the network is trained, then

(i) the parameter estimation error is non-increasing;

(ii) given an e > 0, there are only certain number of iterations such that

A Vdt I > E for any length of interval.

(C3) Based on property (P1) of TANN and assumption (A4), we can derive from

(C2) that given an E > 0, the maximum number of iterations where

(K(wt, 0, Ot) - K(wt, 0, 0)12
1 + C(ýt)I2

cannot exceed certain value for any length of window of time.

(C4) Based on the result from (C3), it can be proved that if xt is outside a neighbor-

hood of the origin there are only finite number of iterations between 1 < t < oo

where AWt W> 0. In addition, even for these iterations, the maximum increase

in Wt is bounded. Hence, the total amount of change in Wt is negative over a

large enough interval. Thus, xt eventually converges to the neighborhood of the

origin. Based on this idea, we divide the state space into three sets:

St = {Xt E 31 IK(wt, 0, t) - K(wt, 0, )l < klxtl }

S2 = t Q31 I K(w, 0,9 )- K(wt,0, O) > kilxtl, Ixtl 2 >

S3 = t e Q3 IK(wt, 0, t) - K(wt, 0, 0)| Ž kllxt], Ixt2  k-k2

(4.26)

where Q3 = yin+d-1 X Um+d-1 and ki is chosen so as to guarantee that AWt < 0

if xt E S1. Whereas, k2 is selected so that if Ixtj2 > k-2, then the inequality

IK(wt, 0, O) - K(wt, 0, O)l Ž klixt| implies 1K(wt,1t)K(w,0,0)1 > k2, which en-

sures that xt belongs to the set S2 for only finite number of iterations between



1 < t < oo.

(C5) The statement in the previous step is valid if signals entering the neural network

do not leave the set where the network is trained. It is shown by induction that

this is indeed true by choosing the initial parameter estimate close enough to

the true value and small initial conditions for the state variables. Moreover, the

larger the set over which the neural network is trained, the farther the initial

estimate can be from the true parameter value and larger the initial conditions

from the origin.

The proof is organized as follows. The upper bound on AWt as described in (4.25)

is derived first. The two properties of the parameter estimation algorithm described in

(C2) are established in Proposition 4.1. Based on the results in (C2), (C3) is achieved

using Propositions 4.2, 4.3 and 4.4. Upper bounds on the change of AWt, in term

of Wt, for xt belonging to the sets S1, S2 and S3 defined in (4.26) are subsequently

obtained in (4.35). Using these results, we prove by induction in Theorem 4.5 that

all the signals entering TANN remain in the set where it is trained. Furthermore, the

output converges to a neighborhood of the origin.

Evolution of Wt: Wt can be evaluated along trajectories of the closed-loop

system as:

AWt = Wt+1 - Wt

= xt (A PAm - P)xt + [0, K(wt, 0, 0)]BIPBm K(w, , )
_0K(wt, T ), T n

+2xt A PBm + 2 (xTA T + [0, K(wt, 0, 9)]B T ) PBmFt
SK(wt, 0, 9) J

+FtTBPPBmFt
S-XTQxt + 2 (max(ATPBm) Ixt + mrax(B PBm) IK(wt, 0, 0)1) JFt

+O'max(B T PBm) Ft12 (4.27)



where assumption (A5) is used in obtaining the last inequality. It is worth noting

that, if 0t = 0 for t > to, Yt+d = 0, Ft = 0 and hence,

W = xt(AMPAm - P)xt + [0, K(w, 0, )]BPBm ,
K(wt, 0, 8)

+2xT AT PBm
K(< t, O, )

< -xt Qxt.

for t > to. Thus, (A5) implies that the unobservable state variables of xt, (ut-1,-..

Ut-m-d+l), are stable and, furthermore, converge to the origin, as in the linear case,

at a rate determined by Q.

Based on assumption (A3) that fr and K are differentiable and have bounded

derivatives, inequalities regarding f, and K can be derived as follows using the mean-

value theorem [40], where ci represents a positive constant, i = 1,-.., 11. First, since

K(0, 0, 0) = 0 from (A2), provided that wot E Q2 and 0, E 02,

(4.28)IK(wt, 0, O9) = jK(wt, o, ) - K(O, 0, 9) I c•lwtl • c221Xtl

Moreover, by using the relation f,(0, K(O, 0, 0), 9) = 0, we have

= If,(, K(w, 0,),9) - fr(0,K(0,o, ), 9)1
< c [w, K(w, 0, ), 0] - [0, K(0, 0, ), 0]

< c4lIw

since K(E 1) is convex which in turn follows from the facts that E1 is convex and K

is continuous on El.

The function C, defined below, satisfies the following inequalities if Yt+d E Y 2,

c( -1 = o K( Yt+d, 0o)

Ifr(W, K(wj, 0, ), ) 1



K K(0,O,)= W us (fr K ( t, 0, t) ,1 ) , Oo) _OK (0, 0, 0o)
< C5 I[W[, fr (Wt, K (Wt, 0, t) )]

5 c6 x|tl (4.29)

Above, we have used the fact that 2-0(0, 0,00) = 0 since K(0, 0, 0) = 0 for every

0 E 6 2 . The first inequality in (4.29) is obtained from the assumption that K is twice

differentiable and have bounded second derivatives on 22 X Y2 X e 2.

Furthermore, since fr(w, K(w, 0, 9), 9) = 0, and K(E1 ) is convex,

Ifr(w, K(w, 0, 9), 0)I 5 c7|K(w, O, ) - K(w, 0, 9)1 (4.30)

Hence,

IF|l 5 c71K(wt, 0, t) - K(wt, 0, 9)1 + IK(wt, O, t) - K(wt, 0, 9)1
= cs8K(wt, 0, ,t) - K(wt, 0, 0)1

The inequality in (4.27) can thus be written as

AWt < -Amin(Q)IXtI 2 + c9gltl jK(wt, 0, 9t) - K(wt, 0, 9)

+co0 K(Lt, 0, ,) - K(wt, 0, 9) (4.31)

< AjWt (4.32)

where c9 = 2c8 (max(AmPBm) + C2 max(B PBm)), c10 = Csamax(BTPBm) and A1 =

- )+ 2c2C • Cn . The inequality KK(wt, 0, t) - K(wt, 0, )1 2c2Clxt, obtained

from (4.28) and the triangular inequality are used to obtain (4.32).

By applying the mean-value theorem again, we can obtain

Yt+d = fr(wt,K(wt,O, t), 9)

= fr(Wt, K(wt, O, t), 9) - fr(wt, K(wt, O, Ot), 9)



8f, ( t, u, e)f(Wt, u, - (K(wt,, O, ) - K(wt, 0, 9))
au

U=U-1

where ul C K(Q 2, 0, 0 2) since K(Q2, 0, 02) is convex. Hence,

K(wt, Yt+d, 9) - K(wt, Yt+d, 9t)

S(K(wt, 09) - K(wt, 0,t))+ • (wt y, (O y - (wty Yt)Yt+d

((K(wt, y,9) _ K(wt,Ky, kt )y df K(wt, u, 0)

S(K(wt, 0, 9) - K (wt, 0, )t)) (4.33)

where yl C fr(Q2, K(Q2 , 0, 02), 02) since Y2 is convex and contains the origin.

We recall from Eq. (4.19) that e1 is the upper bound of AV - AVdt after network

training and e is the width of the dead-zone in the parameter estimation algorithm.

With e chosen to be larger than E1 and provided that the signals entering the network

remain in the set where it is trained, certain properties of the parameter estimation

algorithm can be established, as is done in the following proposition:

Proposition 4.1 For the system in Eqs. (4.1), (4.8) and (4.19) satisfying properties

(Pl) and (P2), if e1 < E, 0 E 03, yji Y3 for 0 < i < t, ui E 1 3 for 0 < i <t - d and

9i e 03 for n + d - 2 < i < t - 1, then the following statements hold:

(i) Al <_ t-A1 <... < 1n+d-2

(ii) The set T,9  {i E TIAVd, < -- iE cannot have more than nli elements.

where nl is the largest integer that is less than or equal to In+d-2 2 and T = {n + d -

1, --. ,t- 1, t}.

Proof: Based on the assumptions in Proposition 4.1, we have Wi-d E yC x

u3fm+ d - 1, Ui-d cE 33 -f- 1 
Wi-d,O (Y3) and 8i_1 E 03 for n + d - 1 < i < t. According to

(4.19) and the property (P2), AVZ = 0 if AVd. > -c. Otherwise, if AVdi < -e,

AVi < AVd, + E1 < 0

since E > El. Hence, (i) follows.



We also have the following inequality:

t

0 < Z AV 0 = 2 - 0 n+d-2'I < n+d-2 2
i=n+d-1

Since AVi < -- (e - E1) and the set {i E T|AV§ < -(e - ei)} cannot have more than

elements, (ii) can be established. U

From the definition of AVd, in Eq. (4.14), we can obtain

> K(wt, Yt+d, Ot+d-1) - K(wt, Yt+d, 0) 2
I'~ I1 + |C(0t) 2

Comparing the numerator of the above inequality with (4.31) and (4.33), in order

to make use of the property of AVd, developed in Proposition 4.1, we need to first

relate |K(wt, Yt+d, Ot+d-l)- K(wt, Yt+d, O)| to K(w•, Yt+d, 0t)- K(wt, Yt+d, 0) . This

issue is addressed in the following proposition, where the requirement of limiting the

magnitude of parameter correction in (P1) comes in.

Proposition 4.2 There exists a continuous function h : R -R 9 satisfying limd6 0 h(6) =

0 such that for every 6 > 0, if

IK(wa)i-d+l, Yi+l, 0) - K(wi-d+l, Yi+i, i)2  6
< - fori = t,t + 1,...,t + d- 1

I + | C(i-d+1) 2  a 1

wheire Wi-d+l E Y n X 3 +d- 1 i 0 3 and y,+, E Y3 for t < i < t + d - 1, and 0i

is adjusted using (4.19), then

K(wt, Yt+d, 0) - K(wt, Yt+d, t) 2
< h(6)1 + IC(ot)12

Proof: Since yi+l E Y3, Ui-d+l E U3 r fr LLi-d+1,0 (Y3), i i-d+L X ••+d-1

and 0,ýi E 03 for i = t,...,t+d-2, from Eq. (4.19) and the property (P1), we have,

for i = t, --,t +d- 2,

i+1 - 0iy2 IN(yi+l, i-d+l, Ui-d+, i) 2



IC( 1 i-d+1) 2  -2
a2 (1 C(id+l)2)2 i- d+l

a2-6.

Hence,

|0t+d-1 - tl < (d
Fa1

Furthermore, since wt E Y x 4•+d-l 1 Yt+d E 3, Ot, 6 t+d-1 E 0 3, and K is differen-

tiable and has a bounded derivative on El,

I K(w•, Yt+d, Ot+d-1) - K(wt, Yt+d, Ot)

Therefore,

IK(wt, Yt+d, 0) - K(wt, Yt+d, it)

1a2
C1II1 t+d- tI < C11(d - 1) -6

a1

(1 + |C( t) 2),

< K(wt, Yt+d, Ot) - K(wt, Yt+d, Ot+d-l)

(1 + C(t) 2) 1

< c11(d-1) 26+

Hence, h(6) can be chosen as h(6) = (1 +

K(wt, Yt+d, 0) - K(wt, Yt+d, Ot+d-1)l

(1 + C( t) 2 )½

c11(d - 1) al)
2

Using Proposition 4.2, we prove in Proposition 4.3 that given f > 0 there are only

finite number of sequences when IK(w+t,Yt+d,O)-K(•t,yt)01 2 > E. Given T E Z +, E > 0,

and T = {n + d - 2, n + d - 1, ..., T}, we partition T into Ti and T2, where

SI(wt, Yt+d, 9)
1+

- K(wt, Yt+d, t) 2

Ic(q(t) 2

Proposition 4.3 states that the set T2 has at most certain number of elements no

matter how large T is.

Proposition 4.3 For any T E Z + , 0 E 0 3 and E > 0, if E1 < E, and Wt-d+l E

y3n X U3m+d-1 , Yt+1 C Y3 and et E 03 for t = n + d - 2, ... , T + d - 1, then T2 cannot

ILT, = t < h(E) , (4.34)



have more than 2n 1 d elements.

Proof: We first partition T into segments of d elements as follows:

Tdk = {(n+d-2)+(k-1)d,(n+d-2)+(k-1)d+l, .. ,min((n+d-2)+kd-1,T)}

where 1 < k 712, k e Z and n2 is the largest integer satisfying (n 2+d-2)+kd-1 <

T. Define

T' = {Td, i Z+ ,l < i <n 2}

T = Td
IK(Wot-d+l, Yt+1, O) - K(W.t-d+l, Yt+l, Ot)12

1 + IC(t-d+1)> 2
<-
al

Vt Td }

12
Since a K 1(wt,yt+d,1) K(wt,yt+d, < Vdt+d1 I I, we can obtain from Proposition 4.1(ii)
Since a, 1+IC(ot)12

that T2 has at most nli elements. By utilizing Proposition 4.2, it can be concluded

that if Td, E T, and Td,+1 E T, then

K(wt, yt+d, 0) - K(wt, y7t+d, t)12t
< h() ,1 + IC(o,)12

Hence, T2 cannot have more than 2n 1d elements.

We define a set T3

' T IK(wt, 0, 9) - K(wt, 0, t)0 2

1 + IC(Qt)12

Vt E Td,

> h(f)

Based on Proposition 4.3 and assumption (A4), a property satisfied by the set T3 is

derived in Proposition 4.4.

Proposition 4.4 For any T E Z +, 0 E 0 3 and E > 0, if 'e < E, and Wt-d+1 E

y3 n X lm +d- 1, Yt+l E Y 3 and Ot e 3 for t = n + d - 2, ... , T + d - 1, then T3 cannot

have more than 2n 1 d elements.

T3= t



Proof: From Eq. (4.33) and the assumption (A4),

K(wt, Yt+d, 9) - K(wt, Yt+d, 0

> 6 K(wt, 0, o) - K(wt, 0, 9)

Hence, if t E T3

K(wL, Yt+d, 9) - K(wt, Yt+d, t)

1 + C(ot)12

IK(wt, 0, 0) - K(wt, 0, t) 2
S 1 + IC(t)12

> h(E)

implying t E T2 . Thus, T3 cannot have more than 2n 1d elements. U

To study the evolution of Wt, we separate the set y3n+d-1 X U3m+d-1 into the

three subsets, S1, S2 and S3 as defined in (4.26), for given 0, 9t E 0 3, where kl =

min Amin(Q), ( Amin(Q) 2 and 0 < k2 < k. The value kl is chosen such that

if xt E S1 then AWt < 0, as can be verified from (4.31).

From (4.31) and (4.32), we have

AW t < A1 W if x t E S2 U S3
(4.35)

AWt < -A 2Wt if xt E S1

where A2 = 2.. < 1. Furthermore, from (4.29), if xt G S2, then

JK(wt,0, 8) - K(wt,O0, ) IK(wt, 0, 1t)- K(w, 0, 0),
1+ ±C(1,)l 2  -1 + c2I z6 2

> k2.

Under the conditions of Proposition 4.4, given e > 0 and e1 < E, if k2 _ h(• , then for6
9

any T E Z+, there are at most 2nld elements in T3. In other words, for any period

of time, xt belongs to S2 for at most 2n 1 d times if the conditions of Proposition 4.4 is



satisfied. Therefore, using (4.35) and the definitions of S1, S2 and S3, we can conclude

that for any T E Z +,

WT < max (A1(~max(P)k2 + A) 2nd+2 ( _ 2 )max(O,T-2njd-2)

(1 + A1 ) 2nld+l(1 - 2 )max(O,T- 2nld-l)Wto k 2

Smax Amax(P)k2 ( 1)21nd+2, (1 )2nid+lto k2  (4.36)ki - k2C6 +  ki - k2 c

provided that yi E y3 for 0 < i < T + d - 2, and ui E 1U3 n f-1 =,,J,,=o (Y3) for

0 < i < T - 2, and Oi E 0 3 for n + d - 2 < i < T + d - 2.

Based on the above results, the stability property of the closed-loop system in

Eqs. (4.1), (4.8) and (4.19) can be concluded in the following theorem:

Theorem 4.5 For the closed-loop adaptive system given by (4.1), (4.8) and (4.19),

under assumptions (A1)-(A5), given the compact sets y3+l x Um+d x 6 3 where the

neural network in Eq. (4.19) is trained so that properties (Pl) and (P2) hold, there

exist fE, E > 0 such that the following statement is true: For any interior point 0 of

0 3, there exist open sets Y 4 C Y 3 , U4 C U3 and a neighborhood 0 4 of 0 such that if

Yo..., Yn+d-2 E) 34, 0,' ', Un-2 E /4, and 0n-1, ... , In+d-2 E 04, then all the signals

in the closed-loop system remain bounded and Yt converges to a neighborhood of the

origin.

Proof: Since the compact sets Y3 and 1U3 contain neighborhoods of the origin,

we can find a 6 > 0 such that the set V1 = {x E Rn+m+2d-2 I IXI = 6 is a subset of the

product space 32d-1 x u+d-l. Since V1 is compact and Wt is a continuous, positive

definite function of xt, a = minXev1 W(x) exists and a > 0 where W(x) = xTpx.

Hence, the set V2 = {x C y3+d-1 X 3m+d-11 W(x) < ca is open and nonempty, and

contains the origin. Choose e1 < e~ where

h(E) = 6 mm ~ k . (4.37)

(• acd + Amax(P)(1 + A1)2' 1 + L )C C



Hence, there exist an integer no > 0 and E > E1 such that

Saki akl kl
h(c) < 6g min (mak, ak1  k)

h( minac + Amax(P)(1 + A1)2nod+2' 1 + OZ C2

For the particular no and e, k2 is then chosen so that

h(E) k( akl akl kl) (4.38)

-r ac+ + Amax(P)(1 + Al) 2nod+ 2 ' 1 + aC' C2

where the first term in the bracket of min(-) is chosen such that for any non-negative

integer nl < no, the first term in the bracket of (4.36) is less than a, whereas the

second term in min(.) implies that the third term in the bracket of (4.36) is less than

Oe.

Since 0 is an interior point of O3, we can find a neighborhood 6 4 C 6 3 of 0 such

that for every 9 E 6 4

10 - el < max(l, no)(E - €1)

Therefore, if the initial estimate -,_1 E 6 4, then ni1 5 no since ni E Z + U {0} and

ni< I•- 2 . Consider the open set V3 = {x e V21 W(x) < (+~••d+ }. We can find

open sets Y4 C Y3 and U4 C U13 containing the origin such that y+d -1 X4m+d-1 C V3.

For the open sets Y 4, U4 and 6 4 constructed above, we prove below by induction that

if the initial estimate 9t e 0 4 for to < t < to + d - 1, Yt E 4 for 0 < t < to + d - 1

and ut E 1U4 for 0 < t < to - 1, where to = n - 1, then yt E Y3, Ut E 1 3 and Ot+to E O3

for every t > 0.

At t = to, since y, e Y4 for 0 < i < to + d - l, ui E 1/4 for 0 < i < to - 1 and

Eto E 04, based on (4.32) Wto+l < (1+21d, which implies to+l +d-1 X m+d-1

and thus Yto+d e Y3 and Uto E U3. In addition, Uto E /3 n fr-lwto,e (Y3), since

fr (Wto, Uto, 0) = Yto+d E Y 3. Hence, Oto+d E 8 4 according to Proposition 4.1(i).

At t = T > to, if y, E Y3 for 0 < i < T + d - 1, ui e U3 n f,-ll,, eo (3) for

0 _ i < T- 1 and 0i E 0 4 for to < i < T + d - 1, then according to (4.36),

WT < max (Amax(P)k 2 (1 + A) 2nld+2  k2 )
WT+ <ki - k2C6 , , kl - k2c6



=a

due to the choices of k 2 in (4.38) and max(l, no) > EIEd -2-2 > n1 . It implies YT+d E

Y3 and UT E U3 nl fV wIT,e (Y3). Hence, OT+d E 64 according to Proposition 4.1(i).

Therefore, we can conclude by induction that Yt+d E Y3, ut E U3  f f- 1 s,o (0Y3) and

0t+d E 0 4 for every t > to. All the signals in the closed-loop system are thus bounded

for all time.

Since AVt < 0 and 'to, AVt is bounded below according to Proposition 4.1,

limt-,, AVt = 0 and, thus, there exists a tl > 0 such that IAVdI < E for t > t l .

Hence,
JK(wt, Yt+±, 0) - K(wt, yt+d, O-t+d-1)12

a 1 + IC(t) < ' Vt_> tl

It follows from the above inequality and Proposition 4.2 that

IK(wt, Yt+d, 9) - K(wt, Yt+d, 9t)12
1 + IC(0)l

< h(c), Vt > t 1 + d- 1

From the inequality (4.29) and the boundedness of Ixt I proved earlier, we can establish:

cja
IC( ,t)l <

Amin(P)
(4.40)

Furthermore, since ut = K(wt, Yt+d, 9) = K(wt, 0, Ot), by combining (4.39), (4.40) and

Assumption (A4)., it can be established that

IYt+d| < -- h() 1+ (I)6h Amin(P) Vt > tl + d -1

Therefore, we conclude that as t -* oo, Yt converges to a neighborhood around the

origin.

4.5.1 Discussions

The proof of Theorem 4.5 implies that closed-loop stability follows if properties (P1)

and (P2) are satisfied by the TANN, with E < E~, where e* is given by (4.37). The

(4.39)

(4.41)



question to be answered then is whether such an E* can be determined for a given

f, and K. The constants ci, kI and A* which appear in the right-hand side of (4.37)

depend on smoothness of the system model, and can be estimated. Hence, the left-

hand side of (4.37) can be calculated from the definition of h(.) in Proposition 4.2 for

a particular e1 , while the right-hand side of the inequality can be determined once

the set Vi is chosen. Therefore, whether or not the network training is successful

enough to result in a stable adaptation algorithm can be checked explicitly before

implementation. It is in this regard that the proposed approach in this paper is more

tangible and verifiable.

Since the proof of stability follows if a continuous function N exists such that

properties (P1) and (P2) with e1 < cE are satisfied, whether or not such a continuous

function exists needs to be guaranteed. To answer this question, let us consider

the projection algorithm obtained by linearizing Eq. (4.6) with respect to 0. For this

algorithm, it can be easily checked that (P1) is automatically satisfied. If V1 is chosen,

the right-hand side of (4.37) is fixed. Hence, we can always find a 6 3 such that the

projection algorithm can satisfy (P2) on 6 3 for the required e1 in (4.37) based on the

linearization principle. Therefore, we can conclude that such a continuous function

does exist.

Since the continuous function exists, the existence of networks in the chosen class

such as MNN or RBF which can approximate the continuous function to a desired

degree of accuracy so that (P1) and (P2) continue to hold can be ensured from the

universal approximator property described in Definition 2.1. Such networks can be

constructed using the training procedure suggested in Section 4.4 and by increasing

the complexity of the network structure until e1 < cE. It is noted that it is not

necessary for the network to solve the global minimum of J in (4.21). Any local

minimum that satisfies el < E* suffices as well for stability.

The region 6 3 for which the projection algorithm guarantees (P1) and (P2) may

be very small. However, since our approach does not explicitly use the projection al-

gorithm but attempts to construct a continuous function that satisfies (P1) and (P2),

the applicable region of parameters and initial conditions can be made larger as long



as such functions exist. The same kind of comparison can be made between our

neural controller and the extended Kalman filter algorithm which uses the gradient

of f, with respect to the most recent parameter estimate to determine the update

(see Section 6.3 for more details). For practical purposes, in order to ensure that

the network training can be accomplished, the training set should initially include

patterns sampled from a smaller 6 3, and could be gradually enlarged as training is

successful.

Even though Theorem 4.5 is stated in terms of the neural network parameter

estimation algorithm, the result in the theorem can be applied to much broader

adaptive control schemes. It is noted that the only requirements for the parameter

adaptation scheme in Theorem 4.5 are the properties (P1) and (P2) discussed in

Section 4.3. They are accomplished in this paper using a neural network. Nonetheless,

other algorithms can be used as well, as long as the requirements in (P1) and (P2)

are met, and stability of the closed-loop system is assured from Theorem 4.5.

We provide the following comments on some of technical aspects of the proof of

Theorem 4.5:

1. The proof was established by showing that over any arbitrary interval, Wt, the

norm of the system state, can grow at most over a finite period and decays

almost everywhere else. This is similar to the arguments used in [30, 41].

2. In order to ensure that all the signals entering the TANN controller are within

the region where it is trained, it is shown that given a neighborhood of the

origin, an upper bound on the output can be estimated for all initial conditions

starting in the neighborhood. This is a stronger result than most of the proofs of

the adaptive systems, where only global boundedness for each initial condition

is established.

3. Eq. (4.41) defines an upper bound on the steady state value of the output,

which, among others, depends on the size of the dead-zone, e, in the TANN

algorithm. The smallness of e in turn is limited by e1, which is an upper bound

of AVt -A aV, as well as the size of V3 . If E1 = 0, E can be chosen to be zero and,



thus, there is no steady state error. Nevertheless, it does not imply that if e is

positive, there will be a non-zero output error during implementation. Thus,

in general, the final output error varies with the initial parameter estimate as

well as the initial state of the system. Depending upon where the control pa-

rameters converge to when the adaptation stops, the output error may converge

to zero. In the simulation studies reported in Section 6.3, it can be seen that

the output indeed converges to zero since in steady state the control parameter

corresponded to an asymptotically stable closed-loop system.

4. In the above proof, the sets Y4 and 114 where the initial conditions of the system

should lie in order to ensure stability is determined by the set V3 . The larger

the set V3 , the larger the sets Y4 and 114. However, the size of V3 is limited,

among others, by the constants a and nl. The implications of the values of the

two constants on the network training and initial parameter estimation error

are explained below:

(a) The value a is decided by the compact set Y3+l x 1 lXm xd x 3 where the

network is trained successfully. If the compact set is large, so is a as well

as the allowable initial conditions.

(b) Since nli is the largest integer that is less than or equal to AIi--12 if the

initial parameter estimation error is large, nl becomes large, which in turn

results in a small Va . Hence, there is a direct tradeoff between allowable

initial parameter estimation error and allowable initial conditions of the

system for a given TANN controller.

5. When we established the inequality in (4.36), yi E Y3 is required only for

0 < i < T+d-2 instead of for 0< i < T+d-1. The reason is that

AWT_1 < AlWTlI is valid as long as, among others, WT-1 E Q 2 . The same is

true that ui e E13 for 0 < i < T - 2 rather than for 0 < i < T - 1.



4.6 Complexity Reduction for Partially Linear Sys-

tems

For the control algorithm developed in Section 4.3, all the unknown parameters in

the system are estimated using a TANN. However, in many problems, only some of

the unknown parameters occur nonlinearly while others occur linearly. It is therefore

desirable to exploit the linear structure to reduce complexity of the neural networks.

In this section, instead of the model in Eq. (4.6), we consider a subclass of (4.6) in

the following form:

ut = K(¢Nt, ON) + CLtOL (4.42)

where 4 Nt and LL, are vectors of measurable signals up to time t and, possibly, Yt+d;

ON denotes unknown parameters which enter the system nonlinearly and OL linearly.

Comparing Eq. (4.42) with Eq. (4.6), we can see that gN, and 4 Lt together comprises

[wt, Yt+d] while [ON, OL] is equivalent to 0. In [59], a parameter estimation method,

which utilizes the projection algorithm [18] to identify parameters occurring linearly

and the TANN to estimate nonlinearly occurring parameters, deals specifically with

this class of parameter estimation problems. In this section, the training criteria of

the network in [5(9] is modified to accommodate the properties (P1) and (P2) needed

in the control problem.

As proposed in [59], the TANN algorithm of the following form is used to update

ONt:

YNt = ONt, + vkt-dN(Ny,_d, ON,_-) (4.43)

The linear parameter estimate nLt is adjusted based on the projection algorithm:

OLt = OLtI + vkt-daLt,_ (4.44)

where

kt = t a E (0, 1)
1 + Ck, CNt + OT±(kL



if AVda <

otherwise

CNt

ut

OK(N, ,ON)
0ON ONO

= us- K d-l,) + L0 _ -1

In order to satisfy (P1) and (P2), the network N in Eq. (4.43) is subjected to the

following constraints:

(PL1) IN(Nt-d,ONtI_ )I < ICNt-dl

(PL2) NT( tNd,eNtl)Nt-_ - (K(K)Nt N+dl) - K(Nt ,ON)) •- 62, 62 > 0.

for every WTd 3 U3m+ d- 1, E 3 and 01 E 063 and for which Ut-d E U3

fl- ,_t-d,o (Y3 ) where 0 , = N, - ON From (PL1) we can derive that, if v = 1,

IZ| NtI + I Le, 2 Skt-d (IN(ONt-d Nt_)12 + ILt-d_)
< k,_, (IcN,_k2 2 + L,_~dl)

_2 (CCLT_ + o • 2
S t-dCNt-d t-dLt-d) 2

(1 + CNt-dCNt- + _Lt- Lt-d)a

This in turn implies that (Pl) is satisfied since C(Lt) = [CNt, ,]T. Moreover, if

(PL1) and (PL2) are satisfied and there exists a C3 such that 12ktE2 ! < ~3, then, if

S= 1,

< 2kt- (K (ktNd, kN -1 )

< 2kt-d (K (ON--d Nt-1 -

- K(•Nt-d•'N) + 2)

K (ONt-d, ON))

+k2dNTNt-d Nt-d l)N(Nt-d, Nt-) + 63

V =

+k-_dNT(_Ntd, IN,_)N(ON,_d, INt-1)



It is also noted that

2kt-d Lt-d L t- + kt-Idt-d Lt-d

Hence,

AV, = 1AVLt + AV

S 2 kt-d (Lt-dLt-1 + K (Ntd Ntl) - K (Nt-d ON))

< + + E3S Ct-d t-dt-d ( ,t-d Nt-d LtdLt-d)2_1 + CT + OT (1 + C"T OT _ t

- +

- -1 
+ CNt-dCN-d + t-d Lt-d

implying (P2) is satisfied. Therefore, the stability result in Theorem 4.5 can be carried

directly over to the current approach provided that (PL1) and (PL2) are satisfied.

To achieve (PL1) and (PL2), we follow the similar procedure as introduced in

Section 4.4. That is, for every pattern in the training set, the weights W are to be

found to satisfy

INi(W) 2 < Li

NT(W)#N, < Di

where Li = ICN, 2 and Di = K(i, 9N) - K(5, ONJ). As shown in Section 4.3, the

problem is equivalent to minimizing the following cost function J:

J = (max{O, NT(W)N; - Di}) + (max{0, lNj(W)I 2 - L,})2 (4.45)

As in the previous section, - is the relative weight for the two targets. A similar

training procedure to that in Section 4.4 can be applied to find W in Eq. (4.45).



As is pointed out in [59], a major advantage of separating terms that are linearly

parametrized from the rest of the model is reduction in dimensions of the training

space. In this case, if the original algorithm is used, we need to vary ws, 0s, 9, and 9d in

their respective ranges. By comparison, if we take advantage of the linear structure,

only a subset of them need to be varied. The dimensions of the training set are

smaller, and, thus, it takes less time to train the network, reducing the computational

complexity significantly.

4.7 Summary and Remarks

In this chapter, we considered the adaptive control of nonlinear dynamic systems

where parameters occur nonlinearly. A neural network is used to generate the pa-

rameters of the adaptive controller with the structure of the controller determined

using the nonlinear model. The notable property of the proposed neural controller

is that it leads to stability of the overall adaptive system. In particular, it is shown

that (a) given a neighborhood of the origin, upper bounds on the input and output

of the closed-loop system can be established for all initial conditions starting in the

neighborhood, (b) for small initial parameter estimation error, all signals entering the

network remain within the sets where TANN is trained, and (c) the output of the

system converges to a neighborhood of the origin. We also showed that by exploiting

the linear structure, complexity of TANN can be significantly reduced.

Training of neural networks is formulated as a constrained optimization problem.

The constraints that the neural network has to satisfy are the sufficient conditions

that guarantee closed-loop stability. This approach deviates considerably from most

of the neural network literature where the role of the neural networks is to meet

tracking or stabilization objectives. This constrained problem is eventually reduced

to an unconstrained one, which can be solved by various optimization methods.

An important aspect of the proposed approach is the training of the neural network

that needs to be carried out off-line. Since the neural network is required to estimate

the control parameters on-line for a particular controller structure, it needs to be



trained a priori to learn the map between the system variables and the controller

parameters. This implies that during the training data collection phase, the parameter

value as well as the corresponding response of the system must be known. This

is a reasonable assumption since the data collection is often done off-line and in

a controlled environment. For instance, an accurate system model, an extensive

simulation model or an experimental setup all suffice to accomplish the formulation

of the training set.



Chapter 5

Stable Control of Nonlinear

Dynamic Systems Using Neural

Networks

5.1 Introduction

In many of the applications of neural networks in control problems for cancelling

unknown nonlinearity, such as in [43, 55], a prerequisite is that a controller structure

is readily available such that the system can be stabilized if this nonlinearity is known.

Unfortunately, unlike linear systems, determining a nominal controller for a nonlinear

system itself is difficult even if the system model is well-known. To overcome this

problem, a stability based approach for designing a neural controller is proposed in

this chapter. The goal of this approach is to develop a new way of designing neural

controllers which can stabilize more general nonlinear systems. The technique used

to achieve this is similar to the recursive parameter estimation method discussed

in the previous two chapters except that now the desired target is the change of a

positive definite function of state variables instead of that of parameter estimation

error. Nevertheless, the resulting controller and the class of problems considered in

this chapter is quite different from the parameter estimation case.

This chapter is outlined as follows. The problem under consideration is described



in Section 5.2. The new controller design method is explained in Section 5.2, in which

the training procedure is described in Section 5.3.1, and the existence of a controller

and stability property of the closed-loop system is shown in Section 5.3.2. Several

remarks of this approach are given in Section 5.4

5.2 Problem Statement

Consider the following nonlinear dynamic system

S= f(x,u) 
(5.1)

y = h(x)

where x e R n, u E R m . Determination of a nonlinear controller

U = y(y, t)

to stabilize (5.1) for general f and h is a difficult task even if f and h are known.

For systems which are feedback linearizable, although such a - exists, closed form

solutions for y cannot always be obtained. Our goal in this chapter is to construct a

neural controller as

U = N(y; W) (5.2)

where N is a neural network with weights W, and establish the conditions under

which the closed-loop system is stable.

The nonlinear system in (5.1) is expressed as a combination of a linear part and

a higher-order nonlinear part as

S= Ax + Bu + R(x, u) (5.3)
y = Cx+R 2(x)

where f(0, 0) = 0 and h(0) = 0. We make the following assumptions:

(SA1) f, h are twice continuously differentiable and are completely known.



(SA2) There exists a K such that (A - BKC) is asymptotically stable.

The problem is therefore to determine a controller as in Eq. (5.2), the structure of

N, and a procedure for training the weights of N so that the closed-loop system is

stable.

Again, in order for the neural network to approximate any continuous function,

the class of neural networks used in this thesis must satisfy the universal approximator

property defined in Definition 2.1.

5.3 Stable Neural Controller

With an input y in Eq. (5.2), the neural controller is therefore completely determined

once the weights of the network are selected. Since this selection should be such that

the closed loop is stable, the following approach is adopted. It is noted that while the

controller and the training procedure is described for the continuous system in (5.1),

a similar result can be derived for nonlinear discrete-time systems as well.

In order for the nonlinear controller in Eq. (5.2) to result in an asymptotically

stable closed-loop system, it is sufficient to establish that a continuous positive definite

function of the state variables decreases monotonically through output feedback. In

other words, if we can find a scalar positive definite function with a negative definite

derivative of all points in the state space, we can guarantee stability of the overall

system. Here, the choices of the Lyapunov function candidates are limited to the

quadratic form, i.e. V = xTpx, where P is positive definite, and the goal is to choose

the controller so that V< 0 where

V= 2xTPf(x, N(h(x), W)). (5.4)

To ensure V< 0, we define a desired time-derivative Vd is defined as

Vd= -xTQx where Q = QT > 0 (5.5)

P and Q matrices are chosen as follows. First, a matrix K to make (A - BKC)
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asymptotically stable exists according to assumption (SA2). In general, such a K

can be easily obtained from linear controller design methods such as the LQ scheme.

A P, Q pair can subsequently be found by choosing an arbitrary positive definite

matrix Q and solving the following Lyapunov equation to obtain the positive definite

P (Theorem 2.4):

(A - BKC)TP + P(A - BKC) = -Q (5.6)

Based on the linearization principle (ref. pp. 170-173 of [60]), it follows that there is

at least a linear controller u = -Ky which can make the derivative of V = xTPx as

close to -xTQx as possible in a neighborhood of the origin with the choices of P and

Q. Our aim is to use a controller as in Eq. (5.2) so that by allowing nonlinearity, the

neural controller can achieve a larger basin of convergence.

With the controller of the form of Eq. (5.2), the goal is to find W in Eq. (5.2)

which yields

V< Vd (5.7)

along the trajectories in a compact set X C -n containing the origin in the state space.

Let xi denote the value of a sample point of x E X in the state space where i is an

index. To establish (5.7), it is necessary that for every xi in a neighborhood X C R"

of the origin, V~iVdi, where Vi= 2xTpf (xi, N(h(xi), W)) and Vdi= -xTQxi . That

is, the goal is to find a W such that the inequality constraints

AVe, I 0, i =l, .. , M (5.8)

are satisfied, where AVe, =Vi - Vdi and M denotes the total number of sample

points in X. Alternatively, this can be posed as an optimization problem with no

cost function and subject to the inequality constraints in (5.8). This problem is similar

to those in the last two chapters. If the same quadratic penalty function method is

used, the problem becomes finding W to minimize the following cost function:

min J = min (max{0, AV, })2 (5.9)
i=-1
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It is worth noting that, though we focus on satisfying the constraints in (5.7)

in the above derivation, Vi< 0 is all that is needed to assure nominal stability.

There are several other ways to achieve this. For example, training the network to

minimize Elýi Vi subject to the constraint Vi< 0 for 1 < i < M suffices to ensure

the condition. If the penalty function method is used, as shown in Section 2.4, the

problem involves finding a sequence of weights, W(k), which minimizes the following

augmented Lagrangian

Z 1 M (k)
L(k) (W, A(k)) = Vj (W) + 2c() + C(k) (W)} 2 -

j=1 j=1

where the Lagrange multipliers A k) and c(k) are updated recursively as

A(k+1) = max{0, Ak) + C(k) ýj (W(k))}

c(k+ 1) = 3c(k)

and 0 > 1. Since the process of finding weights is equivalent to solving a sequence of

unconstrained problems due to the presence of EiM Vi in the original cost function,

it takes longer time to train the network. Nevertheless, this approach can potentially

result in large stable region since less stringent constraints are imposed.

5.3.1 Training Scheme

To minimize J in Eq. (5.9), we can use the gradient method or higher order methods

such as the Levenberg-Marquardt method. If the gradient method is used, W can be

updated as
8J

Awj = -p (5.10)

where p is the step size and wj denotes j-th element of W.-- in turn can be obtained

as:

8J =J ON(yi; W)

0wj iA 8N(yi; W) awj
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vs, Vd,
Ys

Figure 5-1: Block Diagram of the Network Training

= 2Z E A/VXTP f (xi, ui) ON(yi; W)

iEA C9U 0Wj

where A denotes the set of patterns where AVe, > 0 and the term NY(y;W)

[gj(yj;W) _0N. .(,];W)]T represents the gradient of the outputs of the neural net-

work with respect to the parameter wj of the network, which are given in Section 2.4.

To train a neural network to minimize Eq. (5.9), we can form a set, which is composed

of all the data needed in the training algorithm, and continuously apply Eq. (5.10)

on the set. This procedure is graphically shown in Figure 5-1. Suppose for a state x,,

the output is y, and the corresponding control input is us = N(ys; W). In the forward

path, the neural network N has as its input vector ys, and its output is us. By using

this preliminary us, we can calculate V, from Eq. (5.4). V, is then compared with

Vd, to obtain the error signal AVI,. Only if Ve~ > 0 is the pattern used to update W

in the network.

The procedure of training a neural network in Eq. (5.2) to stabilize Eq. (5.1) is

summarized in the following steps, where the stochastic gradient descent method is

assumed to be used.

Step 1 Find the linear approximation matrices A, B and C of the system in Eq. (5.2).

Choose a matrix K to make (A - BKC) asymptotically stable.

Step 2 Define a negative definite function Vd= -- TQx, which is our desired change

of Lyapunov function. The corresponding Lyapunov function candidate V =
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xTPx is obtained by solving the Lyapunov equation (5.6) to find the positive

definite matrix P.

Step 3 Sample x in a subspace X CE n. Its value is, say, zl. The corresponding

output vector yl and Vd, at the particular point xl can be evaluated as yl =

h(xi) and AVd1 = -xTQxl respectively. A typical data element is of the form

(xt, yl, Vdi). By repeating the above procedure for different xi E X where xi

can be either chosen randomly or evenly spaced, we can then formulate the

training set as:

Tirain = {(xI, y, Vdi) 1 < i < M

Similarly, a testing set Ttest can also be formed for cross-validation. In order

to ensure existence of a map N(.), the training set should initially compose of

samples in a smaller region around the origin, and could be gradually enlarged

as training is successful.

Step 4 For each element xi in the training set, the outputs of the network can be

obtained as ui = N(yi; W). Based on this preliminary ui, we can calculate

Vi= 2xTP f(xi, uj) and subsequently using Eq. (5.11).

Step 5 The weights of the neural network is updated with the step size p as

OJ
'wj = - p 

(9

Step 6 Repeat Step 4 and Step 5 until J stops improving. E

After the training is finished, it is expected that Vi - Vdj < i for a small e > 0 of all

the sample points xi. It implies that Vi< 0 except possibly at some points where Vdi

is small, which are in a small neighborhood of the origin. This ensures that states of

the closed-loop system converges to the neighborhood when the neural controller in

Eq. (5.2) is implemented as we shall see in the next section.
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The procedure discussed in this section can also be applied to discrete-time sys-

tems with some minor modification. In particular, the discrete version of Lyapunov

equation in Eq. (2.5):

(A - BKC)TP(A - BKC) - P = -Q (5.12)

replaces Eq. (5.6) to determine the matrix P. In addition, V in (5.4) is substituted

by the difference of the Lyapunov function candidate:

AV = xT Pxt+l - xTPx t

= fT(xt, N(h(xt), W))pfT(xt, N(h(xt), W)) - xTpxt

Otherwise, the rest of the training procedure follows the same line as its continuous-

time counterpart.

5.3.2 Stability Analysis

In this section, that the proposed neural controller and the corresponding training

procedure lead to closed-loop stability is established. First of all, in order to guar-

antee the training is successful, it is necessary that there indeed exists a smooth

function which, when used as a controller, can make I V - Vd Ias small as possible

in a neighborhood of the origin. Theorem 5.1 establishes this by making use of the

linearization principle for stability (ex. [60]). When this smooth function is approx-

imated by a neural network, the universal approximator property in Definition 2.1

ensures stability of the closed-loop system using the neural controller. For systems

where a more complex controller exists to achieve V - Vd < 0 in a larger region,

Theorem 5.2 says that the states of the closed-loop system with a well-trained neural

controller converges to a neighborhood of the origin.

In the following theorem, x(to) = xo corresponds to the initial conditions of the

system in (5.1).

Theorem 5.1 Consider the closed-loop system in Eqs. (5.1) and (5.2), which satis-
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fies the assumptions (SA1) and (SA2).

(i) For every E > 0, there exist yi > 0, 0 < 72 < 71 and a neural network N E AJ

such that

V-VId < E VxCEX

where V and Vd are given by Eqs. (5.4) and (5.5), and X = {x e Rn 1"2 1_ IxII < -YI

(ii) There exist a neural network N EC and an open set U containing the origin such

that the solutions converge to a neighborhood ( C U of the origin for every xo E U.

Proof: From (SA2) it follows that K e ~n exists such that Eq. (5.6) is satisfied.

Since X is a closed annulus region in R" and h is continuous on X, the set y =

{yj h(x) = y, x E X} is compact. Therefore from Definition 2.1, it follows that we

can find an N E NA such that IN(y) - (-Ky)l can be made as small as possible for

every y E Y. Let N(y) = -Ky + E(y). Using Eq. (5.3), we obtain that

u = -KCx - KR 2(x) + E(y) (5.13)

and the closed-loop system to be

v= (A - BKC)x + R 4 (x)

where R 4 (x) = Ri(x, u(x)) - BKR2 + BE. Since V = xTPx and V= -xTQx +

2xTPR 4(x), it follows that

V - Vd= 2xTPR4(x)

We need to establish therefore that a annulus region X exists such that for every

x e X, 12xTPR 4(x)I < E.

Since f E C(2), according to Taylor's theorem [53], limll(x,u)ll-o IIRi(x,u)ll = 0. Hence,

for every e1 > 0, there exists 61 > 0 such that

IIR(x, u)1l < E6i1(x, u)Ii if II(x,u)II < 61 (5.14)

Similarly, since h E C( 2) , limllll__-o0 IR2(X)I = 0 and thus, for every E2 > 0, there exists
lIXII
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62 > 0 such that

if IxIlj < 62 (5.15)

From Eq. (5.13), it follows that

II(x, u)II < (1 + IIKC1 + e211jKl()lxl + Ell|
= c21lXl1 + |E11 (5.16)

The above inequality is valid if IlxII < 62. By using (5.14) and (5.16), we can derive

JJlR(x, u) l < 61(c2llxll + IEll)

if Ixl II < 62 and Il(x, u) Il < 61.

For a given cl > 0, let E2 -1 - /lf1 -= min =(61 -) and 0 < 72 • 1.313c1'BKI3C22C2 2 '

For the choices of Ei, 62, 71 and Y2, if x E X, then Ixll < 62 and 61 > c2 ll4zx, which

implies that (x, u)jj < 61 can indeed be satisfied for a small enough JIEll. From

Definition 2.1 and since y is a compact set, we can find N E KN such that

IIE(y)lj < E3 (5.17)

If es = min C(+Iil)' 61 - c271), then II(x, u) I < 61 and furthermore

llR 4(x)|I :5 • R1(x,u)j + I|BKR 2(x)|| + IIBE(y)[I

< (C2E1+ jjBKIIj 2)IIxl + (1 + IIBI3) 3

Scilllls arbitrary, we can choose c

for every x E A'. Since cl is arbitrary, we can choose c1 so that

j12x TPR4(x)hI < 6 Vx E X

which establishes (i).

If we choose c < 2 (Q) then 1V< -(Amin(Q) - 2cAmax,(P))lX11 2 < 0 for everyIf we choose c < 0max(P)'
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x e X. Define U, = {x E RJI Jxl = Yi}, U2 = {X E 3nj 11jXj = Y21, l1 =

minEu1 V(x), ac2 = maxIU,2 V(x) and 0 = {x E R~I V(x) < ca2}, where ca > 0 and

a2 > 0 exist since U, and U2 are compact. Choose U = fz E n"I V(x) < al } and 72

to be small enough so that Z2 < al. Such a 72 can always be found since V(x) -+ 0

as x -* 0. Furthermore, Vi< 0 if x E U - O. Therefore, according to Theorem 2.7,

the solutions of Eqs. (5.1) and (5.2) converge to the neighborhood 0 of the origin for

every x E U. M

The above theorem establishes the existence of a stabilizing neural network con-

troller around the origin such that V - V/d< e, for every x E X. The proof was given

essentially along the same lines as the proof of the linearization principle for stabil-

ity (ex. [60]). The important modification is the introduction of a neural network

which replaces the stabilizing linear controller. For systems where a continuous but

unknown function K(y) exists such that for V = xTpx, the control input u = K(y)

yields V< -xTQx, we can find a neural network N(y) which approximates K(y) ar-

bitrarily closely in a compact set leading to closed-loop stability. This is summarized

in Theorem 5.2.

Theorem 5.2 Let there be a continuous function K(h(x)) such that 2xTP f(x, K(h(x)))

+ xTQx < 0 for every x C X where X C "n is a compact set containing neighbor-

hoods of the origin. Then, given a neighborhood O C X of the origin, there exists a

neural controller u = N(h(x); W) and an open set Y C X such that the solutions of

x= f(x, N(h(x); W))

converge to O, for every xo E Y.

Proof: Since f E C2,

f(x, K(y) + E(y)) = f(x, K(y)) + (z, K(y))E(y) + RI(E(y))OU
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where limE(y) RIE(y) = 0. Hence, for every E1 > 0, there exists a 61 > 0 such that

IIRI(E(y))j < c IIE(y)II if jjE(y)II < 61

Since f E C2, h E C2 and K is continuous, 2(x, K(y)) is continuous on X.au\ur\/ ,,,uruu r ~ Fur-

thermore, since X is compact, there is a cI > 0 so that I-(x, K(y))ll < cI for every

x E X.

Define y ={x E R'n1 V(x) < all, U1 = {x E Rnl Ix14 = 71}, oa2 = maxxEul V(x)

and U2 = {x E -'n V(x) < a 2}. Choose al and yl to be small enough so that y C X,

Ui C O and a 2 <: al. Since X is compact, there exists a N E N such that for every

xEE(y) N(y) - K(y)<min(, 271

IiE(y)ll • IIN(y)- K(y)Il < min(Q1, C2Y1)

Armin(Q)where c2 - 4Amax(P)(cj+c)"

Thus, for every x E Y - U2, x > 1y and

V = 2xTPf(x,N(y))

=2xTpf(x, K(y)) + 2xTP f(x,

< -x Qx + 2xTP (x, K(y)) +49U

K(y)) + 2XTPR 1(E(y))

2xT PR(E(y))

< -Amin(Q) 1xll2 + 2cXAmax(P)I lxhEllEl + 2eiAmax(P)(lxi lEllE

< -- [Amin(Q) - 2Amax(P)(ci + e1 )c 2] IIll1 2

< 0

According to Theorem 2.7, the solutions converge to O for every x0 E Y.

The following are several remarks regarding training and performance of the re-

sulting controller:

1. It should be noted that the region X of initial conditions for which the stability

result in Theorem 5.1 is valid can be small. This is because the neural network

was chosen so as to approximate a linear controller -Ky. Nevertheless, as long
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as a continuous controller which results in V_<Vd along every trajectory in a

larger region exists, we can use the proposed procedure to search for such a

function. And, as stated in Theorem 5.2, with proper training, we can ensure

that the states of the resulting closed-loop system converge to a neighborhood

of the origin.

2. It can be seen from Theorem 5.1 and 5.2 that, as opposed to most analytically

expressed controllers where zero steady state error can be achieved under the

disturbance-free condition, the neural controllers generally result in some small

steady state error. To ensure the states converging to the origin as close as

possible, small y2 and, hence, C3 are required in Theorem 5.1. To achieve this, we

need a more complicated network especially around the origin, and it inevitably

takes longer time to train the network. The same conclusion can also be drawn

from Theorem 5.2. Hence, there is a tradeoff between network complexity and

accuracy of the neural controller.

5.4 Summary and Remarks

In this chapter, a stability based approach is taken to design a neural controller. With

a quadratic Lyapunov function candidate V of state variables, the neural controller

is chosen such that a negative definite time-derivative V is resulted along trajectories

of the closed-loop system. A stability proof is given, which establishes the conditions

under which such a neural controller can be found. The proposed procedure allows

us to design stabilizing controllers for systems where conventional methods may be

inadequate. The framework chosen naturally lends itself to a mathematically more

tractable problem formulation and can be applied to more general nonlinear systems.

Training such a neural controller off-line permits more efficient algorithms in nonlinear

programming being used. One such algorithm is discussed in this chapter as well.

Furthermore, the nonlinear representational ability of neural networks allows the

controller to achieve a larger stable region, compared to a linear controller. This shall

be confirmed by the simulation results provided in Chapter 6.
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The approach proposed in this chapter starts from selecting a Lyapunov function

candidate. The role of the neural controller is then to make this candidate indeed a

Lyapunov function. It is known from [4] that if there is a smooth Lyapunov function

of the closed-loop system in (5.1), then there must exist a corresponding continuous

controller. [61j further proposed a way to construct explicitly the controller. However,

the method can only be applied to systems which are affine in control and with full-

state feedback. The approach suggested here, on the other hand, does not require

such assumptions. Furthermore, it is much easier to incorporate other requirements

into the approach of constructing the neural controller, which is essential in improving

performance of the closed-loop systems.

There are several classes of systems where existence of a nonlinear controller can

be guaranteed while difficulty still remains in actually solving such a controller. For

example, the feedback linearization technique establishes a constructive procedure

for finding nonlinear controllers for systems affine in control under some conditions

[22]. However, obtaining such controllers through the procedure requires solving

simultaneous nonlinear partial differential equations, which is notoriously difficult.

Hence, even for those classes of problems, the proposed neural controller still offers

an alternative solution.
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Chapter 6

Simulation Results

6.1 Introduction

In the last three chapters, the model-based algorithms and their convergence prop-

erties for parameter estimation and controller design are developed. In this chapter,

the detailed procedure for construction of the training sets and on-line implementa-

tion of those algorithms are illustrated through extensive simulations. The examples

chosen are intended to show how these methods can be applied to different classes of

systems.

In Section 6.2, both the block and the recursive versions of TANN are imple-

mented on systems represented in regression as well as state space forms. To stabilize

a system with unknown parameters occurring nonlinearly, the TANN controller pro-

posed in Chapter 4 can be applied. In Section 6.3, stabilization of one such system is

shown. For a system whose controller structure is unknown, the simulation example

in Section 6.4 demonstrates how a stable neural controller can be constructed, based

on the method derived in Chapter 5.

6.2 Parameter Estimation Using TANN

In this section, four simulation examples are presented to demonstrate parameter es-

timation using TANN. These examples cover system models represented in regression
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forms and state space forms in discrete time as well as continuous time. Both the

block and the recursive versions of TANN are implemented. The simulation results

of outputs corrupted by noise are also compared to those of the noise-free cases to

illustrate robustness of the algorithms to disturbance.

6.2.1 Example 1: A Simple System

In this section, a simple nonlinear system with one parameter to be estimated is

introduced. The value of the parameter can indeed be calculated by simply inverting

the function. The purpose of this example is to demonstrate graphically the idea

behind the two methods and how they differ in achieving the estimate.

Consider the system as follows:

2ut-1 o2

Yt = 4+ 0 .1 e (6.1)1 + 0.1_t-1

where 0 is the parameter to be estimated on-line, and yt and ut-1 are all measurable

signals. Prior knowledge regarding u and 0 is that 1 < u < 3 and 0.8 < 0 < 2. With

some manipulation, it can be found that Eq. (6.1) can be rewritten as

0 = F(ut-1, yt)

where

F(ut-1,yt) = 2 (1 + O2u_1)Yt (6.2)

The goal is to determine 0 based on measurable signals using both the block and

the recursive TANN.

The Block Method

The block method for this example can be written in the following form

U = N(yt, ut-1)
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where N(-) denotes a neural network with inputs yt and ut-1. The output of the

network is the parameter estimate 6. In this example, a Gaussian network of the form

shown in Eq. (2.1) is used to construct the mapping, where a2 = 2.045, a2 = 3.615,

p = 400 and I = 2. Locations of the centers are randomly distributed in the range of

the training set.

For N to model the mapping F, we choose the training set to contain data points

(Ut-1, Yt, 0) where Yt, Ut-1 and 6 are related by Eq. (6.1). The procedure for construct-

ing such a set is by first randomly choosing a 0, say 01, in its range. By varying the

input ut between 1 and 3, we can gather the corresponding yt for this particular 01.

A series of (ut-l, yt, 01) triples can then be formed such as (u1 , Y2, 01), (u2, y3, 1),

(u3, Y4, 1), .... Repeating the same procedure by selecting different 6, we can form a

training set composed of the triples as

Train={(ui, y;,j)l •1i <q, 1• < j 1 p}

In this example, q = 40 and p = 40, with a total of 1,600 data points in the training

set. A similar testing set can also be constructed for cross-validation purpose.

After the training set is formed, the Gaussian network is trained on the set using

the recursive least squares method. Figure 6-1 shows the target implicit function

map calculated from Eq. (6.2). After one epoch of training, the resulting map from

the neural network is shown in Figure 6-2, where the implicit function has not been

learned completely. Since a neural network only approximates a function well in

the region where it is trained, it is important for the training set to cover regions

where signals during on-line operation might be present. In this example, if the

neural network is trained only for 1.75 < u < 2.25 and 1 < 0 < 2 as opposed

to 1 < u < 3 and 0.8 < 0 < 2, the function constructed from the network does

not approximate the implicit function well outside the trained region, as shown in

Figure 6-3. With a network thoroughly trained in the appropriate region, the implicit

function can be fully reconstructed in that region. Figure 6-4 shows the resulting

neural network approximation of the implicit function, which is nearly identical to
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Figure 6-1: The Target Function

Figure 6-3: Inappropriate Training
Set

Figure 6-2: Without Enough Train-

ing

Figure 6-4: Correct Approximation

the desired nonlinear map in Figure 6-1.

During on-line operation, the value of 0 might vary due to different operating

conditions. The trained network can then be implemented on-line to estimate the

current value of 0. The on-line process starts by measuring ut-1 and Yt, which are in

turn used as inputs of the network. The output of the network is the current estimate

of 0. To reduce the variance of estimation error, the output from the network is

postprocessed by a K-means like algorithm as described in Eq. (3.9). The resulting

algorithm is shown as follows:

S= N(yt, ut-1)

Ot = t-1 + pe--i 1-(ll9e -- 1)

(6.3)

(6.4)
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Figure 6-5: Parameter Estimate 6 under Noisy Measurement in Example 1

where, in this example, p = 0.2, - = 5. The simulation is done with 0 = 1.34 and yt

corrupted by a random signal uniformly distributed between +0.1. Figure 6-5 shows

the estimate directly from the output of the network (i.e. 9 in Eq. (6.3)), where the

dashed lines are constant 0 contours, the solid line corresponds to the actual value

0 = 1.34 and the dots represent the estimates during simulation. Under the same

conditions except with the output from the network being processed by (6.4), the

result is shown in Figure 6-6. By comparing the two figures, we can see that the

variance of the estimation error is reduced due to the postprocessing scheme.

The Recursive Method

The recursive estimation algorithm for this particular example is written as follows:

=t Ot-1 + Aot

S N(yt,ut-1, 9t- 1) if ItI > 6 (6.5)

0 otherwise

where 9, and It-j represent the current and previous estimates of 0 respectively, and
t = t - , with e- t-1 GaussiannetworkoftheforminEq.2.1)

= - Yt, with 1i--T e 2. A Gaussian network of the form in Eq. (2.1)
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Figure 6-6: Parameter Estimate 0 under Noisy Measurement with Post-processing in
Example 1

with p = 500 and variances ai = 8.535, 12.370 and 7.481 corresponding to yt, ut-1

and kt-1 respectively are used to model N(-).

The training set consists of data points (Ok, ui, j, y , y7), where they are related

as
02 0-2i l+ i : e =

Y 1+0.lU 2 1+e.1u 2

The procedure of forming the training set is similar to that of the block method. By

selecting 0 = 01 and varying u, we can formulate the triple (yl, ui, 01). For the same

ui but with 0 = ýt, where 01 is selected in the same range as 0 , the triple (y1, ui, 01)

can also be attained. The process is repeated for different 0 and 9. A training set of

the following form is obtained.

Ttrain ( = k, Oi j, Y , )l < i <1 q; 1 < j < p; 1 < k < r

In this example, a total of 1,600 data points are used in the training set. A similar

testing set can also be constructed for cross-validation purpose.
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Yke

Figure 6-7: Block Diagram of the Network Training

N is trained on the training set such that AV -- AVd at the data points, where

AV = 2NT( - Ok)+NTN

AVd 2 + CT(.)C(.) - 2
(1 + C2(.))2

C(.) = e  = e 2
S1 + .4 0=00 1 + O.1u 4

and 00 = 1.4. It can be seen that all the data required to calculate AV and AVd

can be found in Tt,,ain. A schematic drawing of the training process is shown in

Figure 6-7. As shown in the figure, each data point in the training set is sequentially

applied to calculate the corresponding AV and target AVd. N(.) is then adjusted

accordingly to make AVe approach zero using either the gradient descent algorithm

with a cost function J = Z (AVe2 or other optimization schemes. For this simulation,

the Levenberg-Marquardt method is used to train the network.

When the trained network is implemented on-line, it uses the measurement Yt, ut-1

and Ot-1 as inputs, and the output of the neural network is the current adjustment of

the parameter estimate. The actual change of the estimate depends on &t = &t - yt,

as shown in Eq. (6.5). If lYtl > 6, the adjustment is made according to the output

of the neural network. Otherwise, the estimate remains unchanged. The procedure

is shown in Figure 3-2. The first simulation is done with 0 = 1.34 and 6 = 0.01 in

Eq. (6.5). Figure 6-8 shows the simulation result for the noise-free case, where the

dashed and solid lines are constant 9 contours while the solid line represents the true
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Figure 6-8: Correction of Parameter Estimate AO under Noise-free Measurement in
Example 1

value of 9. Directions and lengths of the arrows in the figure denote the signs and

relative magnitude of A9 given (y, u, 9) at the corresponding point as inputs of the

network. It can be seen that the corrections A9 point in the directions of decreasing

estimation error except in the region around the solid contour. In other words, the

estimation error outside the region always decreases no matter what (yt, ut-1, 9 t-1) is.

For the system under the same measurement noise as the block method, the contour

plots are shown in Figures 6-9 and 6-10 for 6 = 0 and 0.12 respectively. It can be

observed from Figure 6-9 that there are arrows along the solid line, which implies that

the algorithm continues adapting even if the correct parameter value has already been

reached. This behavior might result in instability in a dynamic system as explained

in Chapter 3. With the dead zone modification (6 - 0) in Eq. (6.5), the estimate

stops changing when it is close to the true value, and the effect of noise starts to

dominate, as shown in Figure 6-10. Therefore, instability caused by noise and error

of neural network approximation can be avoided.
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Figure 6-9: Correction of Parameter Estimate AO under Noisy Measurement in Ex-
ample 1
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u(t-1)

Figure 6-10: Correction of Parameter Estimate AO under Noisy Measurement with
Dead-zone Modification in Example 1
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6.2.2 Example 2: Parameter Estimation for a Regression

Model

In this section, the behavior of TANN in the context of a nonlinear system in regres-

sion form with two unknown parameters is studied:

81yt-1
yt 1- + 082t- 1 + nt (6.6)

where 01 and 02 are the parameters to be estimated on-line, and are known to be

between 1 and 2. The input u of the system is a sinusoidal wave varying between 1

and 3 with a frequency of 0.4 rad/sec. nt, the measurement noise, is a random signal

uniformly distributed between ±0.05.

The Block Method

Since there are two unknown parameters in this system, by choosing •t-1 = [yt, yt-1,

yt-2, ut- 1, ut- 2]T in Eq. (3.9), the block estimation algorithm can be derived as:

1t = N(yt, Yt-1, Yt-2, Ut-1, Ut-2)

t }1 { + pe- e--e-ll( e0-_) (6.7)
92t 02 t-1

where 0t = [lt , 02t]T is the estimate of [01, 0 2 ]T at time t.

The training set is composed of data points (Yt, yt-1, Yt-2, t-, Ut-2, 01, 02), where

the subscripts of y and u denote their relative causality in time. To form the training

set, ut is chosen to be the same sinusoid as that during on-line estimation, and Yt is

determined from Eq. (6.6) for some 01 and 02. The process is repeated by varying

both 01 and 02 between 1 and 2. In this example, the training set consists of 2,940

data points. A Gaussian network as shown in Eq. (2.1) with 500 centers and variances

ai = 1 is used as the network structure. The network is trained using the recursive

least-squares method with inputs (yt, yt-1, Yt-2, Ut-1, Ut-2) and targets (01, 02).
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Figure 6-11: Estimation Error 01 under Noise-free Measurement Using the Block
Method in Example 2

During simulation, p and 1 in Eq. (6.7) were chosen as 0.1 and 5 respectively.

The estimation errors of 01 and 02 for the system without measurement noise, nt = 0,

are shown in Figures 6-11 and 6-12 respectively. For the same system with the output

corrupted by noise uniformly distributed between ±0.05, the estimation errors of 01

and 02 are shown in Figures 6-13 and 6-14 respectively.

The Recursive Method

For this example, by substituting Ot = [yt-1, Ut-1] and 9t = [8t,, 2̂ jT into Eq. (3.11),

the recursive algorithm becomes:

AN(yt, Yt-1, ut-1, 1,_9 , I2,_=) if Itl> 6

0 otherwise

where 6 = 0.1, N(-) is a Gaussian network with 600 centers, and yt = ut - Yt.

A typical point in the training set is (01, 02, yt-1, ut- 1, k1, 2, Yt, yt), where the sub-

scripts of y and u denote their relative causality in time. A complete set, composed of

10,000 data points, is obtained by varying 01, 02, 91 and 92 in their respective ranges
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Figure 6-12: Estimation Error 92 under Noise-free Measurement Using the Block
Method in Example 2
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Figure 6-13: Estimation Error 01 under Noisy Measurement Using the Block Method
in Example 2
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Figure 6-14: Estimation Error 92 under Noisy Measurement Using the Block Method
in Example 2

and choosing ut as the specified sinusoidal wave. The corresponding yt and &t can

then be obtained.

For each data point, AV and AVd can be calculated as in Eq. (3.15) and (3.16).

The resulting AVe is then used to adjust the network. Once again, the network is

trained using the Levenberg-Marquardt method.

Under the same situation as the block method, the estimation errors of 81 and

92 for the system without measurement noise are shown in Figures 6-15 and 6-16

respectively. For the system with noisy measurement, the estimation errors of 81 and

02 are shown in Figures 6-17 and 6-18 respectively. It can be seen that the parameter

estimates stop adapting when the estimation error is small. This is due to that, in

order to ensure stability, as jyl < 6, AG becomes zero according to Eq. (3.11).

6.2.3 Example 3: Parameter Estimation for a Discrete-time

State Space Model

For systems in the state space representation, the two methods can be applied equally

well even though the corresponding regression form is unknown. In this section, an
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Figure 6-15: Estimation Error 01 under Noise-free Measurement Using the Recursive
Method in Example 2

iterations

Figure 6-16: Estimation Error 02 under Noise-free Measurement Using the Recursive
Method in Example 2
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Figure 6-17: Estimation Error i1 under Noisy Measurement Using the Recursive
Method in Example 2

0
ai

Figure 6-18: Estimation Error 92 under Noisy Measurement Using the Recursive
Method in Example 2
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example of such systems is shown. The system is in the discrete-time state space

form with two unknown parameters given by

Xlt+1 l+X•"t -- + Ut
01It

52X2t(xlt (6.8)x2t+l X= + X122t

Yt = X2t

where 01 and 02 are the parameters to be estimated on-line, and are known to be within

[0.1, 0.7] and [0.5, 1.5] respectively. The input ut of the system is ut = sin ?t/10 +

sin ,rt/5. It is assumed that only y and u can be measured at each instant of time.

Linearized around the equilibrium point (x 1 , x 2) = (0, 0), the linear approximation

of Eq. (6.8) can be derived as follows:

Xlt+ _ 501 0 Xlt + 1U
2t+ 1  1 502 X2t 0

Z2tI

It can be easily checked that the linearized system is both controllable and observable

for any 01 and 02 in their respective range of variation. Therefore, the rank of the

Hankel matrix of the linearized system is 2, which is the dimension of the state space.

According to [33], Eq. (6.8) can be represented as:

Yt = fr(Yt-1, Yt-2, Ut-1, Ut-2, 01, 02) (6.9)

However, the exact representation of fr for this particular example is unknown.
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The Block Method

By choosing t- = [Yt, Yt-1, , t-, ut-, uti Ut-1, ... , Ut-n]T in Eq. (3.9), the block estima-

tion method for Eq. (6.9) can be written as follows:{l2 = N(yt, Ytl, . . . , ytn, utl, . . . , utn)

(6.10)

2 p a2 _t (6t --t_l )

02t 02t-1

where Ot = [01,, 62t] is the estimate of [01, 02] at time t. The smallest n that can be

used in the above algorithm is 3. In order to achieve a smaller error variance, we

choose n = 5 in the simulation.

The training set is formed by using the input ut = sin 7rt/10+sin 7rt/5 and perform-

ing simulations for various 01 and 02 in the ranges of variation. The resulting training

set consists of 9,000 data points of the form (Yt, t-1, . , Yt-5, Ut-1, , . . , t-5, 01, 02),

where the subscripts of y and u represent their relative causality in time. A similar

testing set with 2,000 data points is also constructed for cross-validation. Again, the

Gaussian network in Eq. (2.1) with 720 centers is used to represent N in Eq. (6.10).

The training is done by using the recursive least-squares and the Levenberg-Marquardt

methods to vary weights and variances of the network respectively.

After the network is thoroughly trained, we simulate the system for 01 = 0.5 and

02 = 1. p and a in Eq. (6.10) are selected as p = 0.05 and - = 10. The parameter

estimation errors for 91 and 02 are shown in Figures 6-19 and 6-20 respectively. It is

seen that the parameter estimation can be obtained even though the corresponding

regression form is unknown and the parameters enter nonlinearly. Further reduction

in estimation error can be achieved by more training or adding centers to the network.
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Figure 6-19: Estimation Error i1 Using the Block Method in Example 3
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Figure 6-20: Estimation Error 02 Using the Block Method in Example 3
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The Recursive Method

By substituting ¢t-1 = [yt-l, Yt-2,'ut- 1 , Ut-2] into Eq. (3.11), the recursive algorithm

for estimating 01 and 02 in this example, can be written as

- I N(yt, yt-l, Yt-2, Ut-1 Ut-2, 1, O2) ift (6.11)
Aot Ote, - Ot_,(6.11)

0 otherwise

where O] = [91,, 2 T and /t = Yt - Yt.

The training and testing sets, consisting of data points (01, 02, Yt-1, Yt-2, ut-1,

Ut-2, 91, 12, Yt 9t), are constructed similar to those in Section 6.2.2 with 01 and 91

varying between [0.1, 0.7], and 02 and 02 between [0.5, 1.5]. The resulting training and

testing sets, referred as S1 and S2, contain 25,920 and 1,620 data points respectively.

Since the function fr in Eq. (6.9) is not explicitly known, in order to calculate ofL

and subsequently AVd, a neural network of the following form is used to model f,:

Yt = Ny(Yt-1, Yt-2, ut-1, ut- 2, 01, 02)

where the inputs of the neural network are yt-1, yt-2, Ut-1, Ut-2, 01 and 02. A training

set for Ny, constructed similarly to the training sets for the block method, contains

8,000 data points of the form (Yt, Yt-1, Yt-2, Ut-1, Ut-2, 01, 02). Another set of 500 data

points is also formed for cross-validation. We use Eq. (2.1) with 720 centers to model

N,. After N, is trained, C in Eq. (3.23) is calculated by taking derivative around

[91, 92] = [0.4, 1] through Ny as

C(.) = (N9 (yt- 1,Yt-2,Ut-1,Ut-2,01,02)

902 (01,02)=(0.4,1)

Each data point in S1 and S2 is substituted into the above equation to evaluate C(.)

vector and then the corresponding AVd in Eq. (3.13).

Because AVd with respect to each data point in S1 and S2 are available as described

earlier, N(.) in Eq. (6.11) can then be trained as described in the previous examples
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Figure 6-21: Estimation Error 01 Using the Recursive Method in Example 3

for the recursive method. In this example, the Gaussian network N(.) in Eq. (2.1) has

seven inputs, two outputs and 600 centers. The training is done using the Levenberg-

Marquardt method.

We then simulate the recursive method in Eq. (6.11) for the same actual 01 and 02

as the block method, where 6 is chosen as 0.35. In order to compute ý in Eq. (6.11),

N, is also implemented on-line to estimate g as Ny(yt- 1, Yt-2, Ut-1, Ut-2, 0lt_1, 02t_i)

based on the measurement at every instant. A schematic drawing of this procedure

is shown in Figure 3-4. The resulting estimation error for 01 and 02 are shown in

Figures 6-21 and 6-22 respectively.

6.2.4 Example 4: Parameter Estimation for a Continuous-

time State Space Model

One of the most commonly encountered models in dealing with parameter estimation

for physical systems is in the continuous-time state space form. In such case, the pro-

cesses of sampling and transformation make the regression representation nonlinear

in parameters. Moreover, the corresponding regression relation is extremely difficult

to obtain analytically. The example in this section shows how unknown parameters
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Figure 6-22: Estimation Error 02 Using the Recursive Method in Example 3

for this kind of problems can be determined.

The following model corresponds to the dynamics of the two-phase flow heat

exchange in an air-conditioning system [19]:

y = D-'(x)fa(x, u;a) (6.12)

Y = [0 1 0 0 0]x

fa =

7hi u- U i hg + ailTDiLi (Twl - Trl )

izo h,- r• , h, + i27DiD(L - )( Tr2)
wnT - m

aigr Di(Trl - T 1wi) + arDo(Ta - Tw1)

ai 2 1rDi(Tr2 Tw2 ) + a7rDo(Ta - T. 2 )

In the above equations, x = [ L1 P ho Twl Tw2 ]T is a state vector; D(x) is a 5

by 5 matrix and depends nonlinearly on x; rhi, rho, ail, ai2 , D, Do and L are all known

constants; Tnr and Tr2 are approximated as known linear functions of the states P

and ho, while h9 is proportional to P. Most of the parameters affecting the dynamics

of the system can be determined by off-line experiment. However, the equivalent heat
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transfer coefficient, a, between the tube wall and the air, varies due to many factors

including the ambient temperature and air speed. Therefore, the actual value of a

can only be measured on-line. Yet, to carry out this measurement, numerous sensors

have to be installed in each machine which makes it somewhat impractical. It is

therefore necessary to estimate a from the input and output signals of the system

during on-line operation. The prior knowledge of the system is that a is between

56.68 and 66.68 during operation, and the input u is a square wave varying between

39 and 41 with a period of 60 seconds. The sampling interval is 2 seconds.

The Block Method

While a occurs linearly in Eq. (6.12), the corresponding regression form includes

a in a nonlinear way. According to Theorem 2.4, Eq. (6.12) can be transformed

into a discrete-time state space form with five state variables. If the linearization

of the discrete-time state space form does not lose rank, the system can be further

transformed into a regression form with five delayed outputs and inputs as

Yt = fr (yt-, Yt-2, ... Yt-5, ut-i, ut-2, ·... , ut-5; a) (6.13)

However, due to complexity of the system, as are most nonlinear systems represented

in the continuous-time state space form, the resulting mapping fr is unknown.

From Eq. (6.13), the block estimation algorithm can be written as:

=t = N(yt, Yt-1, ... , Yt-5, ut-1, ... , ut-5)

=t = &t-1 + pe- • t-1)

where, in this simulation, N is a Gaussian network with 300 centers and variances

equal to 1, p = 0.1 and - = 0.1.

The training set is composed of 850 data points of the form (yt, yt-1, ... , t-5, Ut-1,

.. , ut-5, a), where y and u are sampled every 2 seconds. N is then trained using

the set of inputs (yt-, Y-, ... , Yt-5, t- 1, ... , Ut- 5 ) and target a using the recursive
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Figure 6-23: Estimation Error & under Noise-free Measurement Using the Block
Method in Example 4

least-squares algorithm. The parameter estimation error for the system without mea-

surement noise is shown in Figure 6-23, while that with the output corrupted by noise

uniformly distributed between ±0.05 is shown in Figure 6-24.

The Recursive Method

According to the regression form of the system in Eq. (6.13), the recursive algorithm

can be written as

Cet= Ot-1 + A~t

At - I N(yt, Yt-l,...,Yt-5,Ut-l, .. .,Ut-5,1 t-1) if > ~I (6.14)>

10 otherwise

where N(-) is a Gaussian network with 500 centers, and 6 = 0.1. The training set is

composed of data points (a, y-, Y- , ... , t-5 Ut-, - - - , t- 5 , &, Yt, gt). They are obtained

by first choosing a and & in the specified range of variation, and ut the square wave

obtained from the prior knowledge. The corresponding Yt, -t and ut are then measured

every 2 seconds.
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Figure 6-24: Estimation Error & under Noisy Measurement Using the Block Method
in Example 4

Since f, is unknown in Eq. (6.13), in addition to a network used to construct

the recursive algorithm in Eq. (6.14), another network N, is necessary to model fr

in (6.13) in order to calculate C(-) in Eq. (3.13) required during training and y in

Eq. (6.14) during on-line operation. The structure of N, is given by

Yt = Ny(yt-l, . .. , Yt-5, ut-l, . .. ut-5, 01)

where N, is a Gaussian network with 500 centers. The training of Nl is achieved by

using (yt-1,..., Yt-5, ut-1,..., ut-, aO) in the training set as inputs and Yt as target.

By following the same procedure as that of the recursive method in the previous

section, AVd corresponding to each data point can be obtained. N in Eq. (6.14) can

then be trained to make AV --+ AVd.

The diagram for the complete on-line process containing the two networks N and

N, is shown in Figure 3-4. As shown in the figure, N, is used to calculate Vt, where

t = Ny(t- 1, . .. , Yt-5, Ut-1, . . . , Ut- 5, a)

135

11 h · · · · · ·

... ...........-

.................

I I I I I I 1 I



.0
iterations (x 100)

Figure 6-25: Estimation Error & under Noise-free Measurement Using the Recursive
Method in Example 4

in order to check IYtI > 6 in Eq. (6.14). Under the same conditions as the block estima-

tion method, the simulation result for the estimation error of a without measurement

noise is shown in Figure 6-25, while that for the system with noisy measurement is

shown in Figure 6-26.

6.3 Adaptive Control Using TANN

In this section, we present a simulation example of the control algorithm proposed in

Chapter 4. The system is of the form

_yt(1 - yt)
Yt+1 1 + e-o ° ' 5yO + Ut

where 0 is the parameter to be determined on-line, and yt and ut are the output and

input at time t respectively. Prior information regarding the system is that 0 E [4, 10].

Based on Eq. (4.8), the controller is chosen to be

t Ott( - Yt (6.15)
1 + e

-
0.

O0 5 0 t y t
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where Ot denotes the parameter estimate at time t. According to Eq. (4.19), 0 is

estimated using the TANN algorithm with inputs yt+i, yt, ut and Ot as shown below:

t1 = t + N(yt+l, yt, ut, Ot) if AVd, < --

Ot otherwise

where E = 0.01. N is a Gaussian network in Eq. (2.1) with 700 centers, and vari-

ances al = 0.51462, a 2 = 0.94078, a3 = 22.30859 and a4 = 1.20583 corresponding

respectively to Yt+l, Yt, ut and Ot. Centers of the Gaussian networks are chosen to

be the centers of clusters on the training set using the K-means clustering technique

[201. To form the training set and the testing set, we varied yt between +3, as well

as 0 and 0 between 4 and 10, and formulated data elements of the form (yt+l, Yt, Ut,

Ot, 0, AVd,, Lt). However, as discussed in Section 4.4, only those elements with yt+l

within +3 were retained. The final training set and the testing set were composed

of 6,040 and 720 data elements respectively. We then performed training on the sets

using the Levenberg-Marquardt method [38].

After the training was completed, we tested the TANN controller on the system

with six different values of 0, 4.5, 5.5, 6.5, 7.5, 8.5 and 9.5, while the initial parameter

estimate and the initial output were chosen as 01 = 7 and yo = -0.9 respectively.

The results are plotted in Figure 6-27. It can be seen that Yt can be stabilized at

the origin for all these values of 0. For comparison, we also simulated the system

under the same conditions using the controller in Eq. (6.15) but with 0 determined

as follows:

1. Ot = 7

2. the recursive least squares algorithm [18] with

Pt-2 C(t-1, ) [U0)- (Yt +C(ytl, )OO)-1)]
Ot = •-1+ + + C(y•-1 o--Pt-2C--Yt- , 00) o

Pt-2C 2(yt-1, 80)Pt-2
1 + C(yt-1, 9o)Pt- 2C(yt-1, 80)
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3. the extended Kalman filter [18] with

8t -~= -1 - Pt-2C(yt- I,Ot-1) [t t-1 -- (Yt + C (yt- 1 •t 1) '-1)]
1+C(yt-1,t-1 )Pt-2C(Yt-t-1) t - (Yt + (

Pt- = Pt-2- Pt-2 2 (t-1,-1)Pt-
1+C(yt 1 ,Ot- 1)Pt-2C(yt-l ,t-1)

where C(yt, 9') = - o v=Y=) . The difference between (2) and (3) is80 1+e- 005! y=yt-1,
0

=
0

'

that in the corresponding algorithms, the gradients of the system with respect to

0 was evaluated at a fixed point 80 in the recursive least squares algorithm, while

at the most recent parameter estimate in the extended Kalman filter. Figures 6-28,

6-29 and 6-30 show respectively the output responses of the three methods. It is

not surprising that they perform well for certain values of 0. However, for other

values of 0, especially when the initial estimation error is large, the responses either

diverge or exhibit steady state error. It is worth mentioning that with the TANN

controller, although the output converges to zero (see Figure 6-27) for all parameter

values, the parameter estimation error of the TANN controller does not, as can be

seen from Figure 6-31, which is a common phenomenon in adaptive control. The

reason can be observed from Figure 6-32 that when 9 converges to a neighborhood

of 0, ut approaches 0, which in turn leads to AVd, > --. As a result, parameter

adaptation stops.

Since the system model is affine in control, an adaptive neural controller similar

to that in [13] was also implemented. The controller is a RBF network with the input

yt, the output ut and 700 centers as shown below:

ut = N(yt; w,) (6.16)

where w, denotes weights in the network. The centers of the RBF were distributed

evenly between +20. During simulation, w, was updated using the projection algo-
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rithm of the following form:

Wr(t) = Wr(t1)+ 1 ((yyt-1) ut-1 - (t + RT(yt-1)w,(t - 1))] if let( > A

0 otherwise
(6.17)

where w,(t) is the value of w, at time t, A = 0.01 is the width of the dead-zone and

R(.) is the output vector from the centers of the RBF. The simulation results are

shown in Fig. 6-33. It can be seen that the transient responses of the adaptive neural

controller for the same values of 0 are much worse than those of the TANN controller

due to the fact that significantly more number of parameters were varied on-line. For

the same neural controller, we performed a second simulation by first training the

network extensively off-line before implementation to learn the mapping from yt to

- oyt(-yt) for 0 = 7 and yt between ±20. Such training set is composed of 3,0001+e-0.
0 5 0 y

t

patterns. The neural controller was then implemented under the same conditions as

above, with weights adjusted on-line using the projection algorithm in (6.17). The

results are shown in Fig. 6-34. Since the RBF network had been trained for 0 = 7, the

performance of the adaptive neural controller and the TANN controller is comparable

around 0 = 7 as expected. However, for 0 = 4.5, large transients occurred in the

simulation.

6.4 Stable Neural Controller

The stable neural controller presented in Chapter 5 is demonstrated in this section

through a simulation example. The neural controller is also compared with a linear

controller to illustrate the difference. This example concerns a second-order nonlinear

system:

Xt = f(xt-1, Ut-1) (6.18)

where

X1t- (1 + X2 _-1) + X2t_1 - Ut- 1 + U2_1)

L Xt-1 + 2x2t-1 + 2t- + X2t_ 1)
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u and x = [x 1, x 2]T denote the input and the state vector respectively. It is assumed

that x is measurable, and we wish to stabilize the system around the origin. It can

be verified that the above system is not feedback-linearizable and no other stabilizing

nonlinear controllers can be found by inspection.

A neural controller of the following form is used to stabilize Eq. (6.18):

ut = N(xl, X2t)

where N is a Gaussian network with inputs xs, and x2t, output ut, 289 centers, and

variances al and a2 both equal to 0.0120417. The linearized system is given by

xt = Axt_ 1 + But

X t-1+ • t-1
0 2 1

A choice of K = [0.1429, 1.7752] results in the eigenvalues of (A - BK) being within

the unit circle. By choosing Q as an identity matrix, we can calculate the matrix P

in the discrete-time Lyapunov equation in (5.12). The training set was constructed

by sampling both xl and x 2 between ±0.2 with a total of 961 points. We also formed

a testing set composed of 121 points distributed in the same range. The network was

then trained using the Levenberg-Marquardt method to make AV < -xTQx at all

points in the training set, where AV = fT(x, N(x; W)Pf(x, N(x; W)) - xTpx.

After the training was finished, the actual changes of the function, AV, using

the linear controller u = -Kx and the neural controller were plotted in Figures 6-35

and 6-36 respectively. It can be observed from the two figures that if the neural

controller is used, AV is negative definite except in a small neighborhood of the

origin, which, according to Theorem 2.7, assures that the closed-loop system would

converge to vicinity of the origin; whereas, if the linear controller is used, AV becomes

positive in some region away from the origin, which implies that the system may be

unstable for some initial conditions. The reason for larger region of stability of the

neural controller can be seen from Figures 6-37 and 6-38. As shown in Figure 6-
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37, the linear control function is restricted to a plane in the space. On the other

hand, the neural controller allows the control input to be nonlinear. As a result, the

neural controller can stabilize regions where the linear controller fails. Figure 6-38

shows the difference of the input signals between the linear controller and the neural

controller with respect to the state vector x. It can be seen that nonlinearity has

the most effect in the region where the linear controller fails to stabilize. Simulation

results for an initial state located in the region where AV of the linear controller is

positive are shown in Figures 6-39 and 6-40 for the linear and the neural controllers

respectively. Instability of the closed-loop system using the linear controller confirms

our observation.

6.5 Summary and Remarks

In this chapter, TANN for parameter estimation and adaptive control as well as the

stable neural controller introduced in the last three chapters are verified through

extensive computer simulations. In the examples of parameter estimation, different

classes of system models where unknown parameters relate nonlinearly to the output

are simulated using both the block and the recursive methods of TANN. For systems

with uncertain parameters, the TANN controller can be used to stabilize such systems

even though these parameters enter nonlinearly. Comparisons of the TANN controller

with other linear schemes are also made in the simulation examples. On the other

hand, when the controller structure itself is unknown, the simulation result of the

neural controller demonstrates superior performance compared to a linear controller.

In the parameter estimation using TANN, if the system model is represented in the

state-space form, the corresponding regression model might not be available, such as

those in Examples 3 and 4 of Section 6.2. For this class of problems, another network

Ny is required to model the input-output map of the system. The purpose of the

additional network is to compute AVd during the training phase and - during the

on-line estimation phase. Training of such networks is similar to that appearing in

other approaches (such as [43]) utilizing neural networks as model structures. The
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only difference is that, in addition to past inputs and outputs of the system, the

unknown parameters become part of the inputs to the neural network as well. In

other words, the network Ny can predict the output of the system not only for a

particular parameter value but also for every value in its range of variation. This is

required when we compute g and thus, y in the on-line phase, since g corresponding

to various parameter estimates has to be readily available.

All of the simulations done in this chapter use the Gaussian network as the model

structures. Nevertheless, they can also be performed, for example, using MNN since

they satisfy the universal approximator property as well. If a MNN is used instead of a

Gaussian network, the procedure of forming the initial network structure is simplified

since we do not have to worry about the locations of the centers. Another benefit

expected to be gained from using a MNN is reduction in complexity of the network

structure. For a Gaussian network, the contribution of each Gaussian function to

the outputs is limited to the region of radius approximately four times the standard

deviation of the Gaussian function. Therefore, the number of Gaussian functions

required to approximate a function within certain error bound grows exponentially as

the dimensions of the inputs. In contrast, the number of sigmoidal terms in a MNN

increases at a much slower rate for functions bounded on a spectral norm, according

to [6]. Therefore, we expect fewer neurons to be needed if MNN were used in the

simulation. On the other hand, deterioration in the speed of convergence during

training especially for the block method would probably occur if a MNN is used. The

weights of a Gaussian network are linearly related to the desired targets in the block

method of TANN. Therefore, linear algorithms such as the least-squares method can

be applied to adjust weights of the network. This results in fast convergence during

training. However, the weights and biases in the hidden layers of a MNN are nonlinear

in the outputs. Therefore, only nonlinear optimization schemes such as the gradient

descent and the Newton methods can be used. The rate of convergence of those

algorithms is usually slower. Thus, tradeoff between complexity and training speed

has to be kept in mind when choosing an appropriate network structure.
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Chapter 7

Conclusion

In this thesis, algorithms are developed using ANN for parameter estimation and

control of nonlinear systems. A model-based approach is taken to solve the estimation

and control problems. The resulting algorithms are applicable to either discrete-time

or continuous-time models in regression and state space forms, which are among

the most common model representations in engineering problems. The nonlinear

maps that the neural networks attempt to approximate are the nonlinear functions

that would satisfy the specified stability indices, rather than explicit input to output

mappings. These indices are positive definite functions of parameter estimation errors

if the problem under consideration pertain to identification and adaptive control; they

are the change of the Lyapunov function candidates if the problems are related to

control design. The unified approach in achieving this is formulating the training of

neural networks as optimization problems with these indices as either cost functions or

constraints. This approach naturally lends itself to a framework that is transparent

in determining stability of the resulting algorithms, with the approximating error

directly linked to the stability criteria.

An important aspect of the methods proposed in this thesis is that they are all de-

veloped for partially known system models as opposed to the black box approach often

taken in system identification and control using ANN. The tradeoff is, of course, that

some knowledge about the systems is required. Nevertheless, in many engineering

problems, analytical models can usually be obtained based on physical laws, and de-
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signers are reluctant to replace them by black boxes. What is often needed are means

to improve performance by incorporating better knowledge and designing better con-

trollers for the systems. Explicit knowledge of the system models allows flexibility

in designing controllers. Furthermore, by using physical models to parametrize the

systems, the parameters can be associated closely with physical constants. The pa-

rameter estimation and control schemes developed in this thesis, which make full use

of the analytical models, can take advantage of them-the TANN controller stabilizes

systems under nonlinear parametric uncertainty, while, for systems where a nonlinear

controller itself is hard to obtain, the stable neural controller method points a new

way of constructing such controllers.

The work in this thesis can be extended in several directions. They are enumerated

as follows:

1. The TANN control algorithm is developed for adaptive stabilization of nonlinear

systems. For systems where tracking is the major concern, more work still needs

to be done in solving these problems. Moreover, the training procedure as well

as how the new training set should be constructed require further investigation.

2. The assumption on the systems for which a neural controller can be constructed

is that a static controller exists to stabilize the linearized system. This is more

restrictive than the stabilizable and detectable conditions. In order to relax the

assumption, dynamic compensators are necessary. Hence, the neural controller

can be coupled with a linear filter, an extended Kalman filter or a nonlinear

filter. As the complexity of the filters increase, the applicable region of the

dynamic compensators should also expand. However, how those filters should

be designed to ensure closed-loop stability remains to be seen.

3. Whether the problems in this thesis are parameter estimation or control, the

positive definite functions quantifying the performance indices are always cho-

sen first. In the control problems, for example, it implies choosing a Lyapunov

function candidate. Even though the way the functions are determined guar-

antees existence of either a stable parameter estimation algorithm or a neural
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controller, different choices of the positive definite function may lead to better

performance or larger applicable region. Hence, other alternative functions or

even constructing these functions by training are worth investigating.
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