22.351 Systems Analysis of the Nuclear Fuel Cycle Spring 2003 Problem Set #5

Starting with the attached illustrative fuel cycle cost calculation for a PWR from our class notes, determine the savings in Mills/kWhre for each of the following.

- (a) A decrease in SWU costs to 20 \$/kg SWU due to a breakthrough in separations technology.
- (b) Zero cost government loans to purchase fuel as a greenhouse gas reduction incentive.
- (c) Changing to a fixed waste disposal fee of 200 \$/kg, payable as of the start of irradiation, to encourage high burnup.
- (d) A CO₂ avoidance credit of 50\$/Ton C, assuming that the nuclear unit displaces coal combustion producing 0.18 MWd e/MT Carbon.
- (e) Adopting a future "sustainable energy" mode exploiting the virtually infinite resource of natural uranium in seawater, recoverable at 200\$/kg.
- (f) Use of vibratory compaction of UO₂ powder instead of pelletizing, at a saving of 50 \$/kgHM.
- (g) For each of the above indicated what changes in fuel cycle and fuel management practices would be likely consequences of the postulated change.

LWR Fuel Cycle Cost Estimate

Basis: 1 kg of fuel, n = 193/72 = 2.68, 18 calendar month cycle, enrichment = 4.51 w/o

	Cl	Ml	Lead time to	t	Cl*Ml	Cl*Ml* * t	Total per
	Unit Cost	Mass Flow	Irradiation	Time to Midpoint	Direct Cost	Carrying Charges	Process Step
Transaction	(\$/kg)	(kg/kg fuel)		of Irradiation			
			(yr)	(yr)	(\$/kg)	(\$/kg)	(\$/kg)
Ore Purchase	50	9.398	2	4.25	469.90	199.71	669.61
\$/kg U _{out}							
Conversion	8	9.351	1.5	3.75	74.81	28.05	102.86
\$/kg U _{out}							
Enrichment	110	6.908	1	3.25	759.88	246.96	1006.84
(\$/kg SWU)							
Fabrication	275	1	0.5	2.75	275.00	75.63	350.63
(\$/kg U)							
				TOTAL (\$/kg)			2129.93
				TOTAL (Mills/kwhre)			5.326
				Federal Waste disposal fee (Mills/kwhre)			1
				TOTAL FUEL COST (Mills/kwhre)			6.326

Notes:

- 1) Annual carrying charge rate = 0.1 / yr ()
- 2) Plant Thermo Efficiency = (1150 MWe/3411 MWt) = 0.3371
- 3) Transportation costs are included in each major cost center
- 4) Mass flow rates have processing losses included
- 5) Fabrication costs do NOT include the extra cost for poisoned assemblies (big assumption)
- 6) Numbers for unit cost and time to midpoint of irradiation obtained from IECD report "The Economics of the Nuclear Fuel Cycle"
- 7) Discharge Burnup = 49.4 MWd / kg