
Project 1A Specification 


Goals 
The goal of this project is to develop—through experience—your ability to: 

1. Make technical choices. 
2. Bring multiple ideas together to solve a problem. 
3. See how one problem can serve as a precedent for the solution of another. 
4. Deal with problems that have less specification than that typical of a problem set. 
5. Organize and perform work with a partner, if you choose to work with a partner. 
6. Write about your work. 

The Resource-Allocation Problem 
Resource allocation is an often-difficult, real-world problem. One instance of this 
problem is the assignment of part-time workers to time on a job. In its simplest form, you 
can imagine a set of workers, each of whom wants a shift to work, and a set of shifts, 
each of which can be assigned to a worker. 

You could think of this as a search problem, with depth w and branching factor s. You 
could think of solving the search problem by doing a British Museum search; that is, you 
could generate all possible paths and then evaluate each. Alas, even with just 10 workers 
and 15 shifts to schedule, a British-Museum enumeration of assignments unthinkable, 
which you should show yourself, if in doubt, on the back of an envelope. 

You could also think of this as a constraint satisfaction problem. In this case, either 
workers are the variables, with shifts the values in their domain, or shifts are the variables 
and workers assigned to them are the values. 

The Problem 
Consider MIT dormitory desk workers... 

For those who aren't familiar with the system: 

Each dorm has a Desk, which is by the front door to the dorm, and the desk worker is 
responsible for tasks like screening who gets through the door, answering the phone, and 
as a host of other small duties. The Desk needs to be manned throughout most of the 
week, and is generally manned by students who want or need part-time work. 



There is a weekly schedule generated by the Desk Captain (the student given direct 
authority over the Desk), which tells the desk workers who is working and when. If a 
student can't make his regularly scheduled shift, it is his responsibility to find somebody 
else to cover for him. 

As it happens, making up the schedule for desk workers by hand is a long and tedious 
task, of just the sort that 6.034-equipped computers can solve. For years now, the 
Random Hall Desk Captains have been swearing that they will write such a program so 
that the Desk Captains who follow won't have to do hand assignment. That time has 
finally arrived: your task is to design the program which assigns students to work the 
Random Hall Desk. 

This is a real problem, and, if your project works well, we'll send it to Random Hall and 
they may decide to use it. 

What you start with 
We provide you with a description of how desk workers are scheduled and a case study 
example of preference sheets and resultant hand-created schedule We also provide you 
with a possible search-based starting point in the form of a program cum data set and rule 
set with the following characteristics: 

1. The search done is depth-first search. 
2. Node expansion is done by a rule-based system. 
3. There is sample database of a few assertions and one sample rule. 
4. The assumption is that no student wants to work more than one hour. 

Your job 
You will need to do something intelligent to assign desk workers. In particular, you are to 
do the following: 

1.	 Develop a set of assertions from the student and scheduling-rule descriptions. You 
must decide what to make use of in the descriptions and what to ignore: you may 
decide to capture some details of description only approximately or not at all. 

2.	 Develop a set of rules using commonsense and the student and scheduling-rule 
descriptions. 

3. Choose and implement a search or constraint strategy. 
4.	 Choose and implement a mechanism for determining the quality of a particular 

desk worker assignment. 

You may be able to find a solution for the sample data by hand. Keep in mind that the 
goal is not only to find a solution for the sample data, but also to write a program that will 



work in future semesters with, for example, other, more, or fewer preferences and 
requirements. 

Also, note that if your program is successful, it may be used to do part-time worker 
assignment for larger groups of workers and schedules than a single desk worker at a 
small dormitory. 

Check points 
The following are default checkpoint days; you may negotiate small movements with 
your TA. We note that a quiz occurs near the first date. 

Oct 11 You are to have completed your knowledge engineering work, which you will 
submit to your TA. 

Oct 21 

You are to have implemented an interim version of a running, documented 
program and produced one or more sample runs, which you will show to your 
TA. Your interim implementation is to handle requirements, but not necessarily 
preferences. 

Oct 28 You are to have completed a report along with a final version of your running, 
documented program and produced one or more sample runs. 

Completed your knowlege engineering work means deciding on a representation. If you 
use rules, you need to show representative rules in Scheme or pseudo-scheme (or Java or 
other language by agreement). If you use constraints, you similarly need to show 
representative constraints in Scheme or pseudo-scheme (or other language). You are not 
bound by what you submit on Oct 11; the first check point is in place to ensure you don't 
try to do all you thinking the night before the project is due. 

Report Length 
The right length for a paper is always the shortest length that covers what you want to say 
clearly. As a rough guide, we do not want you to write more than five pages, exclusive of 
illustrations, code, run printout, and the like. We would be surprised if you can say what 
needs to be said in much less. 

Important Notes 
1.	 Your program is to distinguish between requirements and preferences: 

requirements cannot be violated; preferences can be, but the quality of a set of 
worker assignments declines in proportion to the number of violated preferences. 



2.	 Your program is to do the best it can with more workers than shifts, just the right 
number, or not enough workers for the needed shifts. 

3.	 You may wish to solve the problem in two steps, first assuming that each student 
only wants to work one shift; then, generalize to be able to assign multiple shifts 
to one student. 


