
Massachusetts Institute of Technology

6.034 Artificial Intelligence

Examination Solutions #
1

Problem 1 Enforcing the Rules on Wall Street (30 points)

Part A (12 points)

Worksheet

Initial Database
Joe bought stock in the past two weeks
Joe is a friend of Sam
Sam has insider information
Joe is a relative of Sam

Step Rule(s) Bindings Rule Assertion(s) Added
Triggered Fired

1 R2 ?x = Joe
R4 ?x = Joe, ?y = Sam R2 Joe has traded recently
R5 ?x = Joe, ?y = Sam
R6 ?x = Joe

2 R4 ?x = Joe, ?y = Sam R4 Joe knows Sam
R5 ?x = Joe, ?y = Sam
R6 ?x = Joe

3 R3 ?x = Joe, ?y = Sam R3 Joe has insider information
R6 ?x = Joe

4 R1 ?x = Joe R1 Joe is an insider trader
R6 ?x = Joe

5 R6 ?x = Joe R6 Joe is an active trader

1

abgupt
 Fall 2000

Part B (12 points)

Rule Name Antecedent Consequent
R1 ?X has insider information ?X is an insider trader

and ?X has traded recently
R2 ?X bought stock in the past two weeks ?X has traded recently
R3 ?X knows ?Y ?X has insider information

and?Y has insider information
R4 ?X is a friend of ?Y ?X knows ?Y
R5 ?X is a relative of ?Y ?X knows ?Y
R6 ?X bought stock in the past two weeks ?X is an active trader.

Initial Database
Joe bought stock in the past two weeks
Joe is a friend of Sam
Sam has insider information
Joe is a relative of Sam

The tree (not required):

(Joe is an insider trader)
| R1 |
| |
| (Joe has traded recently)
| | R2
(Joe has insider information) |
| R3 | R5 |
| | (Joe has bought stock in the past two weeks)
| |
(Joe knows ?y) (Sam has insider information)
| R4
|
|
(Joe is a friend of ?y)

(Joe is an insider trader) not in database, R1 deployed, asks for (Joe has insider information). That not
in database, R3 deployed, asks for (Joe knows ?y). That not in database, R4 deployed, asks for (Joe is a
friend of ?y). That is in the database, binding ?y to Sam. R4 succeeds. R3 succeeds. R3 now checks, with
?y bound, to see if (Sam has insider information, which is in the database. R2 succeeds. Back to second
antecedent of R1. Check for (Joe has traded recently). Not in the database, deploy R2, find (Joe bought
stock in the past two weeks). Done.

The table:

2

1
2
3
4
5
6
7
8
9
10
11

Step Pattern matched against the database
(Joe is an insider trader)
(Joe has insider information)
(Joe knows ?y)
(Joe is a friend of ?y)
(Sam has insider information)
(Joe has traded recently)
(Joe bought stock in the past two weeks)

3

Part C (6 points)

Backward chaining systems make all the inferences that follow from the facts in the database. No.

Backward chaining systems can infer something that is not in a goal tree terminating at the question at the
top of the tree. No.

Backward chaining systems can instantiate a rule with different bindings for two occurrences of the same
pattern variable in that rule. No.

Backward chaining systems can handle a situation in which the same antecedent is used in more than one
rule. Yes.

Problem 2 Search in a weird city (38 points)

Part A (6 points, hill-climbing search)

You were to:

• Use hill climbing.

• Use straight-line distance as the heuristic quality-of-node measure.

• With no backtracking (also known as no backup).

• With no use of a visited or expanded list.

A.1

Search succeeds.

A.2

Search proceeds directy to goal. Nine nodes, not counting goal. Ten accepted as well, because of possible
assumption is that the path containing the goal is expanded before goal is tested. Both ways were taught.

Part B (12 points, breadth-first search)

You were to:

• Use breadth-first search.

• With no use of a visited or expanded list.

4

B.1

Sum of nodes in tree of depth d and braching factor b is bd+1 − 1/b − 1 = 29 − 1 = 511 (or 512).

B.2

With visited list, no node expanded twice, so answer is just a count of the nodes, which is 17 (or 18).

Part C (12 points, branch-and-bound and A* search)

You were to:

• Use branch-and-bound search.

• With no use of a visited or expanded list.

• With no admissible estimate of distance remaining.

C.1

Because of the extremely long length of the final street, all paths even one step short of the goal are relatively
short, and require expansion, including paths leading to the extreme left nodes, which do not happen to
have any following nodes. Answer is twice previous answer, minus 1 (so as not to double count the start
node), hence 1021 (or 1022).

C.2

With expanded list, no node expanded twice, so answer is just a count of the nodes, which is twice what is
was before, minus one (so as not to double count the start node), hence 33 (or 34).

C.3

Because of the extremely long length of the final street, admissible estimate does not help. Same as previous
answer, 33 (or 34).

C.4

With the winding roads made direct straight lines, the admissible can help, so number of nodes expanded
would decrease.

5

Part D (8 points, branch-and-bound and A* search)

You were to:

• Consider an arbitrary map, not the maps previously used in this problem.

• Use branch-and-bound search.

• With an expanded list.

• With no admissible estimate of distance remaining.

With the problem being to arrive at the destination with the most gas. This would translate to “least
gas used” which would mean “least distance travelled,” but for the unknown gas station situation. Alas,
the gas stations, from the perspective of gas consumption, are like a negative cost, which clobbers the key
assumption in branch and bound that costs are all positive. Following illustrates. If expanding on the basis
of gas used, would not go beyond I in the search of the top path, but the gas station at G, if providing
enough gas, could make the S-G route the lessor route.

10
S *--------------->* I
| |
| 3 |G

|
<---------------

G

Problem 3 Doing a constrained search (32 points)

Part A (11 points)

Pure backtracking

----------------()---------------
| |

-------A1------- -------A2------
| 1 | | 6 |

---B1--- ---B2--- ---B1--- ---B2---
| 2 | | 5 | | 7 | | |

-C1- -C2- -C1- -C2- -C1- -C2- -C1- -C2-
| 3 | | 4 | | | | | | 8 | | 9 | | | | |
D1 D2 D1 D2 D1 D2 D1 D2	 D1 D2 D1 D2 D1 D2 D1 D2

10 11

Part B (11 points)

Backtracking with forward checking

6

v

----------------()---------------
| |

-------A1------- -------A2------
| 1 | | 2 |

---B1--- ---B2--- ---B1--- ---B2---
| | | | | 3 | | |

-C1- -C2- -C1- -C2- -C1- -C2- -C1- -C2-
| | | | | | | | | | | 4 | | | | |

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2
5

7

Part C (10 points)

The schedule will be a valid, minimal difficulty schedule (in the sense that the most difficult term will not
be more difficult than the most difficult term in a nonoptimal schedule).

You can add forward checking, but you will have to keep track of the reduced domain set for every path in
the queue, which could involve a great deal of memory.

8

