Lecture 13: Extreme Events, Lévy Stability and Fractional Calculus

M. Slutsky

Department of Physics, MIT

April 8, 2003

1 Extreme Events

Consider \(N \) i.i.d. random variables with PDF \(p(x) \), i.e., an \(N \)-step random walk. The question we ask now is: How is the largest step up to time \(N \) distributed? Here we focus on fat-tail random variables with PDF

\[
p(x) \sim \frac{A}{x^{1+\alpha}} \quad \text{as } x \to \infty.
\]

For example, we may take \(p(x) = l_\alpha(x) \).

The outcomes can now be ordered

\[
\Delta x_{(1)} \leq \Delta x_{(2)} \leq \ldots \leq \Delta x_{(N)},
\]

so that the largest value cumulative distribution function is defined as

\[
F_N(x) \equiv \text{Prob}\left(\Delta x_{(N)} \leq x\right).
\]

If the number of steps \(N \) is large enough, the largest outcome is always sampled in the tail, where the CDF is

\[
P(x) \simeq 1 - \frac{A}{\alpha x}\alpha.
\]

Then, for the largest step we obtain

\[
F_N(x) = [P(x)]^N.
\]

This equation merely states the simple fact that the largest step is smaller than \(x \) if and only if all steps are smaller than \(x \). For \(N \to \infty \), and \(\Delta x_{(N)} \to \infty \),

\[
F_N(x) \simeq \left[1 - \frac{A}{\alpha x}\alpha\right]^N \simeq \exp\left[-\frac{NA}{\alpha x}\alpha\right].
\]

The expression in the exponent suggests the following rescaling:

\[
z_N = \frac{\Delta x_{(N)}}{(AN/\alpha)^{1/\alpha}}. \tag{7}
\]
Figure 1: Fréchet distribution is characterized by an essential singularity at the origin and a power-law tail.

Then we rewrite (6) as

$$F_N(z) \sim \exp \left[-z^{-\alpha}\right].$$

(8)

This is called Fréchet distribution\(^1\) (introduced in 1926).

Recall now that in a Lévy flight with \(p(x) = l_\alpha(x, a) \propto ax^{-(1+\alpha)}\), the position after \(N\) steps is distributed like

$$P_N(x) = \frac{1}{N^{1/\alpha}} l_\alpha \left(\frac{x}{N^{1/\alpha}}, a \right),$$

(9)

i.e., it has a characteristic width of \(N^{-1/\alpha}\). Behold that the extremal value \(z_N\) also scales like \(N^{-1/\alpha}\). This interesting phenomenon is a direct consequence of the power-law distribution which has no scale and therefore in a typical Lévy flight, all sizes of steps are present. The total displacement is therefore of the same order of magnitude as the largest step in the walk (see Fig. 2).

2 Lévy Stability

What are the possible limiting distributions for a sum of i.i.d. random variables? By now, we know the answer to this question for a quite broad class of distributions, with \(\text{var}(\Delta x) < \infty\), that converge to a Gaussian in accordance with the Central Limit Theorem. The analog of the CLT for fat-tail distributions are the so-called Lévy Stability Laws, that are the subject of the present section.

\(^1\)A nice summary of extreme values distributions, also called Fisher-Tippett distributions can be found online at http://mathworld.wolfram.com/Fisher-TippettDistribution.html
Figure 2: A typical Lévy flight: the maximal step and the entire walk extent are of the same order of magnitude.

For i.i.d. variables,

$$P_N(k) = [P(k)]^N.$$

As we have seen in several case studies before, short-time correlations do not influence the long-time behavior of $P_N(x)$; their main effect is the rescaling of the time unit in terms of “correlation time” n_c, so that the sum of N r. v. acts like a sum of N/n_c independent r. v. More generally,

$$P_{n \times m}(k) \sim [P_n(k)]^m, \quad n \gg n_c. \tag{11}$$

For i.i.d. variables, this equation is exact.

In what follows, we assume zero mean for Δx_n. Then, rescaling

$$z_N = \frac{X_N}{a_N}, \tag{12}$$

we find that $F_N(z)$, which is the PDF for z_N, satisfies

$$\hat{F}_{n \times m}(a_{mn}k) = [\hat{F}_n(a_n k)]^m, \tag{13}$$

or

$$\hat{F}_{n \times m}(\frac{a_{mn}}{a_n} k) = [\hat{F}_n(k)]^m. \tag{14}$$

Let $\hat{F}_N(k)$ converge to some limit $\hat{F}(k)$ as $N \to \infty$, where $\hat{F}(k)$ is a nontrivial characteristic function. Then

$$\lim_{n \to \infty} \frac{a_{mn}}{a_n} = c_m \quad (m \text{ is fixed}). \tag{15}$$

Thus, (14) reduces to the following functional equation

$$\hat{F}_m(c_m k) = [\hat{F}(k)]^m. \tag{16}$$
What are the possible solutions of this equation? To answer this, we use a scaling argument. The scaling constants a_N can be expressed as

$$a_N = N^{1/\alpha} L_N,$$

where α is some constant and L_N is a slowly varying function of N, e. g. $L_N = (\log N)^\mu$.

Proof:

$$\frac{a_{mn}}{a_n} = \frac{(m \times n)^{1/\alpha}}{n^{1/\alpha}} \frac{L_{m \times n}}{L_n} \to c_m = m^{1/\alpha}.$$

Hence, (16) becomes

$$\hat{F}_m(m^{1/\alpha} k) = \left[\hat{F}(k) \right]^{m}.$$

The only possible solutions of this equation satisfying $\hat{F}(0) = 1$ and $\hat{F}(\infty) = 0$ have the form

$$\hat{F}(k) = \exp \left[-\nu \ \text{sign}(k) |k|^\alpha \right].$$

If the distribution is symmetric, then

$$\hat{F}(-k) = \hat{F}(k).$$

Since the characteristic function is in this case sign-independent, we obtain

$$\hat{F}(k) = \exp \left[-a |k|^\alpha \right] = \hat{\lambda}_\alpha(a, k),$$

i. e. the Lévy distribution characteristic function. More generally, we have

$$\hat{F}(-k) = \hat{F}^*(k),$$

then rewriting $\nu \ \text{sign}(k) = c_1 + i c_2 \ \text{sign}(k)$ we find that the general form of the limiting distribution reads

$$\hat{F}(k) = \exp \left[-a |k|^\alpha \left(1 - i \beta \tan \left(\frac{\alpha \pi}{2} \right) \ \text{sign}(k) \right) \right] \equiv \hat{\lambda}_{\alpha, \beta}(a, k),$$

This is a three-parameter distribution; the parameters $0 < \alpha \leq 2$ and $-1 \leq \beta \leq 1$ determine the shape of the distribution and a determines the width.

The function $\hat{\lambda}_{\alpha, \beta}(a, k)$ thus produces the limiting distribution for a much broader class of random walks.

2.1 Basins of Attraction

In the above context, several results have been obtained regarding the basins of attraction of $l_{\alpha, \beta}(a, x)$ that are worth mentioning here. We state these theorems without a proof.

Theorem 1 (Gnedenko-Doeblin) The distribution $p(x)$ is the basin of attraction of $l_{\alpha, \beta}(a, x)$, i. e.

$$\frac{1}{a_N} P_N \left(\frac{x}{a_N} \right) \to l_{\alpha, \beta}(a, x)$$

if and only if

the CDF $P(x) = \int_{-\infty}^{x} p(x') dx'$ satisfies
1. \[
\lim_{x \to \infty} \frac{p(-x)}{1 - p(x)} = \frac{1 - \beta}{1 + \beta}
\] (26)

2. \(\forall r > 0,\)
\[
\lim_{x \to \infty} \frac{1 - p(x) + p(-x)}{1 - p(rx) + p(-rx)} = r^\alpha
\] (27)

Theorem 2 (Gnedenko) The distribution \(p(x)\) is the basin of attraction of \(l_{\alpha,\beta}(a, x)\) with \(a_N = N^{1/\alpha}\) if
\[
p(x) \sim \frac{A_+}{|x|^{1+\alpha}} \quad x \to \pm \infty,
\] (28)

where
\[
\beta = \frac{A_+ - A_-}{A_+ + A_-}.
\] (29)

3 The Continuum Limit and Fractional Calculus

For a Lévy flight, we recall that
\[
\hat{P}_N(k) \sim \exp(-Na|k|^\alpha) = \exp\left[-\frac{a}{\tau}|k|^\alpha t\right],
\] (30)

where, as usual, we define the continuum limit by \(t = N\tau\). Then, \(\rho(x, t) = P_N(x)\) and the “diffusion equation” in the Fourier space reads
\[
\frac{\partial \hat{\rho}}{\partial t} = -\frac{a}{\tau}|k|^\alpha \hat{\rho}.
\] (31)

The RHS of this equation helps to define the Riesz fractional derivative of \(\rho\) as the inverse Fourier transform:
\[
\frac{\partial^\alpha \rho(x)}{\partial |x|^\alpha} \equiv \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{-ikx} (-|k|^\alpha) \hat{\rho}(k).
\] (32)

This is a formal construction that is more or less frequently used in similar problems.