Verification of d-wave Pairing Symmetry by Microwave Intermodulation Distortion Measurements in Yttrium Barium Copper Oxide

by

Sang-Hoon Park

Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

© Massachusetts Institute of Technology 2004. All rights reserved.

Author

Department of Electrical Engineering and Computer Science

May 21, 2004

Certified by

Daniel E. Oates
Visiting Scientist
Thesis Supervisor

Terry P. Orlando
Professor of Electrical Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Students
Verification of $d$-wave Pairing Symmetry by Microwave Intermodulation Distortion Measurements in Yttrium Barium Copper Oxide

by

Sang-Hoon Park

Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2004, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering

Abstract

We report measurements of the temperature and power dependence of the microwave frequency intermodulation distortion (IMD) in high quality pulsed laser deposition (PLD) Yttrium Barium Copper Oxide (YBCO) on LaAlO$_3$ substrate.

A low-temperature ($T < 30$ K) increase in IMD is the observation of an upturn of the nonlinear coefficient of the quadratic field dependence of the penetration depth. This IMD upturn is limited by the nonlinear Meissner effect that has been predicted for $d$-wave high-$T_c$ superconductors.

Various amounts of IMD increase are observed for different films with impurity (Ni, Zn and Ca) doping and other defects. The demonstration of the IMD upturn and the nonlinear Meissner effect were possible because the IMD measurement is an extremely sensitive method to detect the penetration depth change at even less than 0.01 nm. IMDs from various samples tend to merge at a single universal value at 0 K regardless of disorder, defects, and impurities due to the node singularity at 0 K. There is a similar converging trend in IMD towards the transition temperature $T_c$ due to the quasiparticle thermal excitation and depletion of superelectrons. It is most likely that IMD has both intrinsic and extrinsic contributions.

The $1/T^2$ divergence at low $T$ of the IMD was theoretically predicted and confirmed with high quality PLD YBCO on LaAlO$_3$ substrate from below 30 K.

We found that Ni-doped YBCO gave an IMD increase comparable to high quality PLD YBCO. This finding agrees with the evidence that Ni (magnetic impurity) does not destroy superconductivity and preserves $d$-wave symmetry as shown in scanning tunnelling microscope experiments.

The off-the-resonance excitation experiment indicates that the response time scale of nonlinearity in IMD generation is not affected by the magnitude of two-tone separation $\Delta f = f_2 - f_1$ in YBCO on LaAlO$_3$ substrate. But, at low temperature ($T < 20$ K) and low output power at fundamental frequency ($P_{out}^1 < -30$ dBm), the response time scale slows down IMD generation as the $\Delta f$ increases in YBCO on
MgO substrate.

Thesis Supervisor: Daniel E. Oates
Title: Visiting Scientist

Thesis Supervisor: Terry P. Orlando
Title: Professor of Electrical Engineering
Acknowledgments

I would like to thank Dr. Daniel Oates at MIT Lincoln Laboratory for his guidance throughout this thesis research. Without the highest quality samples he provided, this thesis work would not be possible. I also would like to thank Professor Orlando for much valuable advice. He served as my academic and research advisor, and thesis committee member. Both Professors Hu and Berggren were kind enough to be on my research qualifying exam (RQE) committee. Professor Berggren was on my thesis committee, too.

At MIT Lincoln Laboratory, Group 86 leader Mark Gouker and assistant leader Leonard Johnson allowed me to fully concentrate on my thesis research. Group secretary Ms. JoAnne Rantz was kind to help me with any administrative matter. I was fortunate enough to get help from Mr. Bob Konieczka. He assembled all resonators used in this thesis research. Mr. George Fitch did all the programming work for data acquisition. Mr. Dan Baker patterned all samples used in this thesis research. Mr. Terry Weir, Rene Boisvert, Mark Seaver and Brian Reynolds helped me with instruments.

I also wish to thank Dr. John Derov for his hospitality and help at the Air Force Research Laboratory.

Dr. Jürgen Halbritter and Professor Matthias Hein in Germany helped me with some of the interpretations in this thesis work.

I would like to express my deepest gratitude to my wife Su-Jung Park for her never-ending love. She has been a constant inspiration to me. My two precious daughters Anne and Hye-Young Park have also been a great joy in my life.

Finally, the author wishes to thank US Air Force Office of Scientific Research for its support, and MIT Dean for Graduate Students, Dr. Isaac Colbert for support for my last semester.
Contents

1 Introduction 15
  1.1 Historical developments of superconductor ..................... 15
  1.2 Applications ............................................. 19
  1.3 Motivation .................................................. 21

2 Intrinsic origin of nonlinearity in d-wave superconductor near the node 23
  2.1 Quasiparticle excitation near the node singularity ............... 23
  2.2 Observation of nonlinear response due to the quasiparticle excitation 30

3 Experiments and Background 33
  3.1 Experiments .................................................. 33
    3.1.1 Thin films used ........................................... 33
    3.1.2 IMD measurements ........................................ 35
    3.1.3 Dewar, test probe and stripline resonator ................ 37
  3.2 Background .................................................. 42
    3.2.1 Parallel equivalent resonant circuit model ................ 42
    3.2.2 Extraction of the surface resistance and reactance .......... 45
    3.2.3 IMD Normalization ....................................... 48

4 Verification of d-wave symmetry using microwave intermodulation distortion 53
  4.1 IMD results from YBCO ....................................... 53
List of Figures

1-1 This is the structure of YBCO. CuO$_2$ planes sandwich the Y atoms. The Cu(II) atoms in CuO$_2$ plane have a square pyramidal coordination. The molecular formula of YBCO is expressed as YBa$_2$Cu$_3$O$_{7-x}$. When $x$ is 0, the crystal is superconducting with $T_c = 93$ K and orthorhombic with lattice parameters $a = 3.8227$, $b = 3.8872$, and $c = 11.6802$. The coordination of the Cu(I) in Cu-O chain is planar fourfold. When $x = 1$, the compound is non-superconducting and tetragonal. All oxygen sites on the top plane are vacant. The coordination of Cu(I) is linear twofold. When $x = 0.03$, the YBCO is known to be optimally doped. 18

1-2 Measured filter response of an all-YBCO filter (Insertion loss $IL$ is 1.0 dB) at 77 K, of an all-Ag filter ($IL$ is 5.9 dB) at 77 K, and of an all-Au ($IL$ is 10.6 dB) at 77 K. W. G. Lyons et. al. IEEE MTT-S Digest, p. 1230, 1991. 20

1-3 Superconductor shows both the normal channel and superconducting channel. $j_T$ is the supercurrent density, $j_n$ the normal current density, $j_s$ the supercurrent density, $R_s$ the surface resistance, and $X_s$ is the surface reactance. $\sigma_1$ is the real part of conductivity and $\sigma_2$ is the imaginary part of conductivity. 22

2-1 Gap function for $d_{x^2-y^2}$ symmetry in momentum space, $\alpha_\rho = \sin^{-1}(v_f v_s / 2 \Delta_\phi)$ is the wedge angle of the occupied states of the quasiparticles. When $v_f v_s = 2 \Delta_\phi$ is the energy gap, $\alpha_\rho$ becomes $90^\circ$, and $\theta$ is the azimuthal angle referred to a node. 25
2-2 Quasiparticle excitations near the node: Region I \((v_f v_s < \pi T)\) has the quadratic field dependence of the penetration depth, Region II \((v_f v_s > \pi T)\) has the linear field dependence, and Region III is the Abrikosov vortex state. \(\theta\) is the azimuthal angle referred to a node. The true node singularity is achieved at 0 K.


2-4 \(\Delta \lambda\) vs circulating current with undoped YBCO on LaAlO\(_3\) at 1.7 K.


2-6 Comparison of nonlinear response prediction and measured IMD. T. Dahm and D. J. Scalapino, PRB 60, 13125, 1999.

3-1 Two phased-locked generators produce two tones symmetrical about the center frequency of the resonator. The tone separation was \(1/32\) of the 3 dB bandwidth of the resonator. The power amplifiers were used to increase the signal input power up to 30 dBm. The lowpass filter keeps generator harmonics from entering the power combiner. The isolator was placed to suppress the standing waves. Then, the combined \(f_1\) and \(f_2\) were applied to the resonator. The third-order IMDs at \(2f_1 - f_2\) and \(2f_2 - f_1\) were measured as a function of the output power at fundamental frequency.

3-2 IMD setup photo

3-3 Dewar, test probe and resonator package

3-4 Temperature instability shifts the resonance curve. Input frequencies \(f_1\) and \(f_2\) are no longer near the peak of the shifted resonance curve.

3-5 Stripline resonator used for measurement of the surface impedance \(Z_s\) and intermodulation distortion. The gaps between ground planes and substrate are shown for clarity. In practice there is no gap.
3-6 Parallel equivalent resonant circuit model of the stripline resonator is shown. \( V_S \) is the signal source, \( C_C \) the coupling capacitance, \( R_S \) the source resistance, \( R_L \) the load resistance. \( R, L, \) and \( C \) describes the resistance, the inductance, and capacitance of the stripline resonator used.

3-7 Resonance curve

3-8 The resonance frequency vs temperature for the high quality PLD YBCO on LaAlO\(_3\) shown as No. 1 in Table 3.1. The circles are measured values and line is fitted values with \( \lambda_0 = 0.313 \mu \text{m}, T_c = 91.2 \text{K} \).  

3-9 Parallel equivalent resonant circuit model of the stripline resonator is shown. \( V_S \) is the signal source, \( C_C \) the coupling capacitance, \( R_S \) the source resistance, \( R_L \) the load resistance. \( V_L \) the voltage source due to the nonlinear inductance. At low temperatures, the nonlinear voltage mainly comes from the nonlinear inductance. \( R, L, \) and \( C \) describes the resistance, the inductance, and capacitance of the stripline resonator used.

4-1 Average angular response in momentum space

4-2 IMD vs Power and Temperature for PLD undoped YBCO on LAO

4-3 IMD vs Temperature at three different circulating powers

4-4 IMD vs \( \log_{10}(T/T_c) \) compared with theory. PLD YBCO on LaALO\(_3\) was used.

4-5 IMD vs \( 1/T^2 \) compared with theory. PLD YBCO on LaALO\(_3\) was used.

4-6 IMD vs reduced temperature for various films

4-7 IMD vs \( \log_{10}(T/T_c) \) for various films. IMD converges at about 5 mK, which is very close to the node singularity at 0 K. This implies that \( d \)-wave node is a true node.

4-8 IMD vs Temperature with niobium

A-1 modulation envelope
A-2 Graphical representation of $\tau_{input}$ and $\tau_{IMD}$ ............... 71
A-3 Double sided vs Single sided off-the-Resonance excitation .......... 72
A-4 Off-the Resonance excitation to generate IMD ...................... 73
A-5 IMD measurements by off-the-resonance excitation with YBCO on LaALO$_3$ at 5 K. For both plots, $f_0=1.47330117$ GHz, $f_{3dB}=16.5$ KHz, and matching power = -51.6 dBm .................. 74
A-6 IMD measurements by off-the-resonance excitation with YBCO on MgO at 5 K. .................................. 75

C-1 Passive microwave devices .................................................. 82
C-2 General TEM transmission lines: cross-section does not vary along the direction of wave propagation ......................... 83
C-3 Comparison between the resistance and the surface resistance .... 84
C-4 Definition of S-parameters ................................................. 85
C-5 Derivation of the unloaded quality factor $Q_o$ from the loaded quality factor $Q_L$ .............................................. 86
C-6 Comparison of the current density distribution between stripline resonator and dielectric resonator ....................... 87
C-7 Derivation of $Q/r_v \approx 10^6$ nearly constant in our resonator regardless of input power and temperature. Eq (2) was obtained from combining eq (2.17b) and eq (2.24) in p.151, Matthias Hein, High-Temperature-Superconductor Thin Films at Microwave Frequencies, Springer-Verlag, Berlin, Germany, 1999. ............. 88
C-8 IMD generation diagram. ...................................................... 89
C-9 The derivation of IMD frequencies. ..................................... 90
C-10 Summary of the extraction of $R_s$ and $X_s$ from $Q$ and $f_o$ vs Power and $T$. 91
List of Tables

3.1 Details of the films used in IMD measurements. .................. 34
3.2 P, I, and D parameters of temperature controller. ............... 40
B.1 Typical values of P, I, and D coefficients. ....................... 78
B.2 Off-the-excitation frequency values for input and IMD. .......... 79
Chapter 1

Introduction

1.1 Historical developments of superconductor

Kamerlingh Onnes at Leiden Cryogenic Laboratory found superconductivity in mercury at a critical temperature of 4.15 K in 1911 after he succeeded in producing liquid helium in 1908 [1]. Walther Meissner and Robert Ossenfeld showed in 1933 that a superconductor expels magnetic flux below its critical magnetic field $H_c(T)$ [2].

In 1935, Heinz and Fritz London brothers also showed that there is a characteristic length scale $\lambda$ closely related to the magnetic field screening properties of the superconductor. The London penetration depth was shown to have an empirical relation

$$\lambda(T) = \frac{\lambda_0(0)}{\sqrt{1 - (T/T_c)^4}} = \frac{1}{\sqrt{1 - (T/T_c)^4}} \sqrt{\frac{\Lambda}{\mu_0}}$$  \hspace{1cm} (1.1)$$

where $\lambda_0(0)$ is the penetration depth at 0 K, $T$ the temperature, $T_c$ the critical temperature above which the superconductivity disappears, $\Lambda$ is defined as $m^*/n^*(q^*)^2$, $m^* = 2m$ is 2 times an electron mass, $n^*$ the number density of superelectrons, $q^* = 2q$ is 2 times an electron charge, and $\mu_0$ is the permeability of free space. As the equation 1.1 shows, the penetration depth of superconductor is independent of frequency unlike the skin depth.
\[ \delta = \sqrt{\frac{2}{\omega \mu_0 \sigma_o}} \]  

(1.2)

of normal metals, where \( \omega \) is the angular frequency, and \( \sigma_o \) is the conductivity.

In 1950, Ginzburg and Landau introduced another phenomenological theory of superconductivity which incorporates electrodynamics, quantum mechanics, and thermodynamics. The theory showed that the coherence length and the penetration depth were two fundamental characteristic lengths.

In 1953, Pippard introduced a coherence length to explain nonlocal electrodynamics [3]. The coherence length is the range of phase coherence in a Cooper pair, which consists of two electrons bound with an energy \( 2\Delta \) which is called the energy gap of the superconductor. Pippard also realized that the coherence length decreases by the presence of defects or impurities through the mean free path. Pippard’s empirical relation for coherence length is

\[ \frac{1}{\xi_p} = \frac{1}{\xi_o} + \frac{1}{\alpha \ell} \]  

(1.3)

where \( \xi_p \) is the Pippard coherence length, \( \xi_o \) the intrinsic coherence length, \( \alpha \) a constant on the order of unity, and \( \ell \) is the electron mean free path between scattering events. In the impure limit, \( \ell \) decreases due to the increased scattering. From equation 1.3, when the electron mean free path \( \ell << \xi_o \), then \( \xi_p \simeq \ell \). Scattering not only reduces the coherence length but also increases the penetration depth [4].

In 1957 Abrikosov classified superconductors as two different types by the relative size of the penetration depth \( \lambda \) and the coherence length \( \xi \) [5]. When \( \lambda << \xi \) the superconductor is called Type I. A Type I superconductor follows the nonlocal electrodynamics, since the value of the electric field changes within a coherence length. In addition, a Type I superconductor expels magnetic flux exclusively below its critical magnetic field \( H_c(T) \). When \( \lambda >> \xi \) the superconductor is called Type II. Local electrodynamics applies to this type of superconductor. All high temperature super-
conductors are Type II, which have two critical magnetic fields $H_{c1}$ and $H_{c2}$. Below $H_{c1}$, the magnetic field is expelled from the material. Above $H_{c2}$, superconductivity is destroyed completely. For the range $H_{c1} < H < H_{c2}$, the magnetic field enters the superconductor in an array of vortices. Each vortex carries a quantum of flux $\Phi_0$ which is $2.0679 \times 10^{-15}$Tm$^2$ [6].

The BCS theory developed in 1957 by Bardeen, Cooper and Schrieffer [7] was the first quantum-mechanical, microscopic theory of superconductivity. It showed that the formation of Cooper pairs through the electron-phonon interaction is responsible for superconductivity. The Cooper pair acts like a boson that is composed of a spin-up and spin-down electron pair. The BCS theory predicted the energy gap of the Cooper pair $E_g = 2\Delta(T)$, where $\Delta(T)$ is the gap function. In 1959, Gorkov showed that the Ginzburg-Landau theory could indeed be derived from the microscopic BCS theory.

In 1962, Josephson predicted that the Cooper pairs can tunnel through a very thin insulating barrier [8]. His remarkable prediction was verified experimentally by Anderson and Rowell in 1963 [9]. Now, the Josephson junction is a key element of many superconducting circuits.

A. Müller and G. Bednorz discovered in 1986 that a layered copper-oxide material, Ba-La-Cu-O became superconducting at temperatures exceeding 30 K [10]. Before this time, the highest critical temperature superconductor was Nb$_3$Ge ($T_c$ was 23 K). In January of 1987, Paul C. W. Chu and Maw-Kuen Wu showed that YBa$_2$Cu$_3$O$_{7-\delta}$ had a critical temperature of 95 K. This was an exciting achievement since the YBCO could be cooled by liquid nitrogen, which compared to liquid helium, is cheap and widely available. Figure 1-1 is the structure of YBCO. Superelectrons are believed to flow on the CuO$_2$ plane. The Cu-O chains in the top and bottom probably act as charge reservoirs.

BCS theory was extremely successful in low-$T_c$ superconductors. But, only partially successful in high-$T_c$ superconductors. Evidence of Cooper pairs has been demonstrated, but the pairing mechanism of high-$T_c$ superconductors is still elusive at this moment, even though there have been intensive research activities in the last
Figure 1-1: This is the structure of YBCO. CuO$_2$ planes sandwich the Y atoms. The Cu(II) atoms in CuO$_2$ plane have a square pyramidal coordination. The molecular formula of YBCO is expressed as YBa$_2$Cu$_3$O$_{7-x}$. When x is 0, the crystal is superconducting with $T_c = 93$ K and orthorhombic with lattice parameters $a = 3.8227$, $b = 3.8872$, and $c = 11.6802$. The coordination of the Cu(I) in Cu-O chain is planar fourfold. When x = 1, the compound is non-superconducting and tetragonal. All oxygen sites on the top plane are vacant. The coordination of Cu(I) is linear twofold. When x = 0.03, the YBCO is known to be optimally doped.


1.2 Applications

All the high-$T_c$ superconductors discovered so far are Type II, with very short coherence lengths and very high critical fields. Therefore, high-$T_c$ superconductors are naturally useful in applications that require very high magnetic fields. For example, YBCO is estimated to be superconducting up to 100 Tesla. Flux pinning is especially important for high magnetic field applications to reduce hysteretic loss [11]. Circular particle accelerators, controlled fusion, maglev trains all require the high magnetic field provided by superconducting magnets. The Josephson tunneling junction is another important superconducting element. It is used in superconducting quantum interference device (SQUID), single-flux-quantum logic, and radiation detectors.

Very recently, quantum computing, which takes advantage of entangled states of Cooper pairs, has been proposed and shows a great potential for solving some problems far beyond the capability of the current supercomputers [12].

The demand for compact and high quality microwave passive devices such as resonators, filters, transmission lines, multiplexers, and delay lines has increased [13]. The significantly lower surface resistance of superconductors than that of normal metals is quite useful for resonators with high quality factors and low insertion loss. Figure 1-2 shows the measured filter response using YBCO, silver and gold metalization [14]. The filter was fabricated on 0.5-mm LaAlO$_3$ using gold, silver, and postannealed coevaporated YBCO. The YBCO filter had 1.0-dB insertion loss at 77 K compared with 5.9 dB for the silver filter at 77 K and 10.6-dB of insertion loss for the gold filter at 300 K.

The significantly low RF surface resistance also helps the device miniaturization. By reducing the size of the superconducting device, we can make it more compatible with the existing microwave circuits [15].
Figure 1-2: Measured filter response of an all-YBCO filter (Insertion loss $IL$ is 1.0 dB) at 77 K, of an all-Ag filter ($IL$ is 5.9 dB) at 77 K, and of an all-Au ($IL$ is 10.6 dB) at 77 K. W. G. Lyons et. al. IEEE MTT-S Digest, p. 1230, 1991.
1.3 Motivation

In the two-fluid model, the total current flows through the resistive branch and the inductive branch as shown in Figure 1-3.

\[ j_T = j_n + j_s \] (1.4)

Here, \( j_T \) is the total current density, \( j_n \) the normal current density, and \( j_s \) is the supercurrent density. According to the two-fluid model [2, 4] the surface impedance \( Z_s \) is

\[ Z_s = R_s + jX_s = \frac{\omega^2 \mu^2 n_o \sigma_n \lambda^3}{2n} + j\omega \mu \lambda = \frac{\omega^2 \mu^2 \sigma_1 \lambda^3}{2} + j\omega \mu \lambda \] (1.5)

where \( \mu_o(\text{H/m}) \) the permeability of free space, \( n_n(\text{m}^{-3}) \) the number density of electrons in unpaired states, \( \sigma_n(\Omega^{-1}\text{m}^{-1}) \) the normal-state conductivity, \( \lambda(\text{m}) \) the penetration depth, \( n(\text{m}^{-3}) \) the total density of conduction electrons, and \( \sigma_1(\Omega^{-1}\text{m}^{-1}) \) is the real part of the conductivity in the superconductor.

Superconductors only display true zero resistances with DC currents, since \( X_s \to 0 \) and the total current \( j_T \) in Figure 1-3 flows only through the inductive branch. At AC (RF) current, the inductive branch develops a non-zero impedance. So, some current is forced to flow through the resistive branch and then a superconductor develops loss. As we see, the normal fluid is involved in the surface resistance which is a source of loss in superconductors. But, the loss is still quite low compared to normal metals at the same temperatures.

Superconducting materials, however, have intrinsic problems. The resistance and inductance increase as the current increases. This nonlinear resistance or inductance is a source of nonlinear behavior, such as the intermodulation distortion and harmonic generation. The superconducting films used for measurements in this thesis are very thin (400 nm or 350 nm thickness). So, the high current density due to limited
Figure 1-3: Superconductor shows both the normal channel and superconducting channel. $j_T$ is the supercurrent density, $j_n$ the normal current density, $j_s$ the supercurrent density, $R_s$ the surface resistance, and $X_s$ is the surface reactance. $\sigma_1$ is the real part of conductivity and $\sigma_2$ is the imaginary part of conductivity.

cross-sectional film area increases the nonlinear behavior.

In filters, by mixing two input signals $f_1$ and $f_2$, many additional frequencies are generated by nonlinear behavior. Most important frequencies are $2f_2 - f_1$ and $2f_1 - f_2$. These additional two frequencies are called intermodulation (IMD) and are very close to the input frequencies applied to the filter. Then, IMD interferes with the input signals. So, IMD is still a major limiting factor for the design of high performance filters. The goal of our study is identifying IMD signals, understanding the generation mechanism and reducing IMDs by improving superconducting materials.

All of the superconducting samples used in this thesis were deposited on a dielectric substrate. To be a good substrate, the loss associated with it should be very low. In addition, the superconducting material and substrate should match each other in terms of the thermal expansion coefficient and lattice parameter [12] to ensure a high quality material deposited on the substrate.
Chapter 2

Intrinsic origin of nonlinearity in 
d-wave superconductor near the 
node

2.1 Quasiparticle excitation near the node singularity

Before this study, the general consensus was that IMD was generated by the extrinsic origins [16]. In the high-\(T_c\) superconductors, grain boundaries, weak-link Josephson regions, twin boundaries, defects, impurities, dislocations, magnetic impurities, inclusion of normal conducting materials, and heating effects including both global and local [17] are some of many possible extrinsic origins of nonlinear behavior that generate IMD.

But, this study shows that in \(d\)-wave superconductors, the IMD has intrinsic contributions at low temperatures. The theoretical prediction was: if the high-\(T_c\) superconductor has \(d\)-wave symmetry, which is generally believed now, IMD increases at low temperatures. In \(s\)-wave superconductors, the IMD was predicted to decrease exponentially.

Low-\(T_c\) conventional superconductors are known to have \(s\)-wave spherical symme-
try. s-wave superconductors have a true gap, but d-wave superconductors are believed to have 4 nodal lines along the cylindrical Fermi surface as shown in Figure 2-1. So, at the node, there are low energy excitations at all temperatures, with the result that the temperature dependence of the penetration depth is linear for $T << T_c$. On the Fermi surface, the energy of a quasiparticle in the presence of the superflow velocity $\vec{v}_s$ is given by [18, 19, 20].

$$E + \sigma_v = \sqrt{\varepsilon^2 + |\Delta(T)|^2} + \sigma_v$$

(2.1)

where $\varepsilon$ is the quasiparticle energy in the normal state, the gap function $\Delta(T)$ is $\Delta_o(T) \sin(2\theta)$ for a $d_{x^2-y^2}$ -wave gap, $\theta$ the azimuthal angle referred to a node, $\sigma_v = \vec{v}_f \cdot \vec{v}_s$ the shift in the quasiparticle energy due to the superflow, $\vec{v}_f$ is the quasiparticle velocity.

The introduction of an arbitrary mass scale is not needed since we follow Yip and Sauls’ constitutive equation relating the supercurrent, $\vec{j}_s$, to the velocity $\vec{v}_s = (1/2)[\vec{\partial} \phi + (2e/c)A]$ [18].

In the equation 2.1, $\sqrt{\varepsilon^2 + |\Delta(T)|^2}$ is 0 at the node. So the term $\vec{v}_f \cdot \vec{v}_s$ becomes important in the presence of the superflow $\vec{v}_s$. When $T = 0$, there is no thermal excitation. The quasiparticle is excited only by $\vec{v}_f \cdot \vec{v}_s$.

The wedge of the occupied states of the quasiparticles near the node opposite to the $\vec{v}_s$ is indicated in the dotted circle in Figure 2-1. $\alpha_c = \sin^{-1}(v_f v_s/2\Delta_o)$ is the wedge angle of the occupied states of quasiparticles.

As a result, the unperturbed supercurrent $-e\vec{v}_s n$ is reduced by $\vec{j}_{qp}$ the quasiparticle backflow as shown in

$$\vec{j}(T, \vec{j}_s) = -e\vec{v}_s n - \vec{j}_{qp}$$

(2.2)

where $\vec{j}(T, \vec{j}_s)$ is the total current, and $n$ is the total density at the Fermi level. The $\vec{j}_{qp}$ the quasiparticle backflow is expressed by BCS theory as [18, 19, 20, 21, 22]
Figure 2-1: Gap function for $d_{x^2-y^2}$ symmetry in momentum space, $\alpha_c = \sin^{-1}(v_f v_s / 2\Delta_o)$ is the wedge angle of the occupied states of the quasiparticles. When $v_f v_s = 2\Delta_o$ is the energy gap, $\alpha_c$ becomes $90^\circ$, and $\theta$ is the azimuthal angle referred to a node.
\[ j_{qp} = -2eN(0) \int_0^\infty d\varepsilon \int_{-\alpha_e/2}^{\alpha_e/2} \frac{d\theta}{2\pi} \bar{v}_f f(\sqrt{\varepsilon^2 + |\Delta(T)|^2 + \bar{v}_f \cdot \bar{v}_s}) \]  

(2.3)

where \( N(0) \) is the normal state density of states (dos), \( f(\sqrt{\varepsilon^2 + |\Delta(T)|^2 + \bar{v}_f \cdot \bar{v}_s}) \) is Fermi equilibrium distribution of quasiparticles. In a more general sense, when \( v_f v_s \) is greater than the thermal energy term \( \pi T \) [18], expanding equation 2.3 to linear order and then substituting equation 2.3 into equation 2.2 gives

\[ j = -e\bar{v}_s n(1 - \frac{\bar{v}_s}{2\Delta_0/v_f}) \]  

(2.4)

where \( |\bar{v}_s| \) is the projected \( \bar{v}_s \) to any of the four nodes.

Yip and Sauls [18] applied Maxwell’s equations to equation 2.4 and obtained the linear field dependence of the penetration depth as a consequence of \( d \)-wave symmetry of the high-temperature superconductors as

\[ \frac{1}{\lambda_{eff}} = \frac{1}{\lambda} (1 - \frac{2}{3} \frac{|H|}{|H_o|}), \bar{H}||node \]  

(2.5)

\[ \frac{1}{\lambda_{eff}} = \frac{1}{\lambda} (1 - \frac{1}{\sqrt{2}} \frac{2}{3} \frac{|H|}{|H_o|}), \bar{H}||antinode \]  

(2.6)

where \( H_o \approx H_c \) is the critical field, \( \bar{H}||node \) and \( \bar{H}||antinode \) mean that the direction of field is parallel to the direction of the node and antinode, respectively as shown in Figure 2-1. The linear field dependence of the penetration depth in the local limit is commonly known as the nonlinear Meissner effect (NLME). Figure 2-2 shows more details of quasiparticle excitation near the node. As we just reviewed, when \( v_f v_s > \pi T \) as in the region II, the field dependence of the penetration depth is linear. When \( v_f v_s \) is lower than the thermal energy term \( \pi T \) as in the region I, some of the lowest energy states are occupied by thermally excited electrons.
Figure 2-2: Quasiparticle excitations near the node: Region I \((v_f v_s < \pi T)\) has the quadratic field dependence of the penetration depth, Region II \((v_f v_s > \pi T)\) has the linear field dependence, and Region III is the Abrikosov vortex state. \(\theta\) is the azimuthal angle referred to a node. The true node singularity is achieved at 0 K.
Yip and Sauls demonstrated that the quasiparticle backflow term in this region becomes quadratic with respect to the $\vec{v}_s$ [18]. So, the total current is given by

$$\vec{j} = -e\vec{v}_s n[1 - \alpha(T)\left(\frac{\left|\vec{v}_s\right|}{v_c}\right)^2]$$

(2.7)

where $\alpha(T)$ contains the temperature dependence, and $v_c = \Delta_o(T)/v_f$ is the critical velocity over which the superconductivity disappears.

When the supercurrent $\vec{j}_s$ increases from zero, $v_fv_s$ increases, too. The quadratic field dependence in the region I crosses over to the linear field dependence of region II. When the field strength is greater than $H_{c1}$, the Abrikosov vortices start entering into the superconductor in the region III.

The node singularity at 0 K is removed by the thermal excitation at non zero temperatures. Impurities also remove the node singularity by increasing the lifetime from the quasiparticle scattering [18]. Furthermore, nonlocal electrodynamics removes the node singularity by increasing quasiparticle excitation due to the increased effective coherent length $\xi_{eff}$ [23, 24].

Figure 2-3 shows the summary of Yip and Sauls’ nonlinear current responses in $d$-wave superconductor.

Figure 2-4 shows the experimental observation of the nonlinear Meissner effect. As Yip and Sauls’ theory predicted, there is a crossover from the quadratic to the linear dependence of the penetration depth as the current increases. Over $H_{c1}$, vortices start entering the superconductor and there is a slope change.

Yip and Sauls’ theory predicted that the curvature of the quadratic current dependent region in Figure 2-4 is temperature dependent. But, the experimental data shows that it is very difficult to verify their prediction [25]. The corresponding $\Delta\lambda$ is less than 0.01 nm.
\[ j(T, j_s) = nev_f - j_{sp} \text{ current density} \]

where \( j_{sp} = -2eN(0) \int_0^\infty \frac{d\theta}{2\pi} v_f \int [\delta^2 + \Delta^2(\theta) + v_f \cdot v_s] \]

\( BCS \) quasiparticle backflow

Expanding to linear order

\[ j = -e\nu_n \left\{ 1 - \frac{v_s}{2\Delta_o/v_f} \right\} \]

Maxwell's eq

\[ \frac{1}{\lambda(H, T)} = \frac{1}{\lambda_n(T)} \left\{ 1 - \frac{2}{3} H_n(T) \right\} \]

linear field dependence region

\[ \frac{1}{\lambda(H, T)} = \frac{1}{\lambda(T)} \left\{ 1 - \frac{3}{4} \alpha(T) \left[ \frac{H}{H_n(T)} \right]^2 \right\} \]

quadratic field dependence region

Figure 2-3: Two limiting cases of nonlinear current responses for \( d \)-wave superconductor Yip and Sauls, PRL, vol. 69, pp. 2264-2267, 1992.

Figure 2-4: \( \Delta \lambda \) vs circulating current with undoped YBCO on LaAlO\(_3\) at 1.7 K.
\[ j(T, j_s) = nev_s - j_{w} \quad \text{current density} \]

where \( j_{w} = -2eN(0) \sum_{\nu} d^{\theta} \int \nu_{j} \{ e_{\nu}^{2} + \Delta_{\nu}(\theta) + v_{j} \cdot v_{s} \} \]

**Expanding to linear order**

\[ \frac{\delta n_{s}(j_s)}{n} = \frac{2\Delta_{s}}{\lambda} = \frac{1}{2} \left( \frac{j_s}{j_s} \right)^2 \]

**Indep. of T**

\[ \left( \frac{j_s}{j_s} \right)^2 = \frac{4}{15\pi} \left( \frac{j_{w}}{j_s} \right)^2 \]

**linear field dependence region**

**IMD power \( \propto (b_{\theta})^2 \)**

**quadratic field dependence region**

Figure 2-5: Two limiting cases of the nonlinear third harmonic current response for \( d \)-wave superconductor. Dahm and Scalapino, PRB, vol. 60, pp. 13125-13130, 1999.

### 2.2 Observation of nonlinear response due to the quasiparticle excitation

To overcome this difficulty, Dahm and Scalapino \[20, 26, 27, 28, 29\] extended Yip and Sauls' theory and obtained two limiting cases of the change in the superfluid density and they applied it to IMD and third harmonic generation (THG) to get more easily observable temperature dependence of the quadratic-current-dependent region \[29\].

The summary of their work is shown in Figure 2-5. Their analysis demonstrated that the temperature dependences of IMD and third harmonic generation have the same qualitative behaviors. Dahm and Scalapino started from the same quasiparticle backflow (equation 2.3) as Yip and Sauls. When \( j_{s}/j_{c} < T/T_{c} \), the coefficient \( b_{\theta}(T) \) of the quadratic-current term is temperature dependent. The \( b_{\theta}(T) \) diverges as \( 1/T \) as shown in Figure 2-5 at low temperature and IMD power is proportional to \( (b_{\theta}(T))^2 \) \[29\].

Figure 2-6 shows Dahm and Scalapino's theoretical prediction and my measure-
Figure 2-6: Comparison of nonlinear response prediction and measured IMD. T. Dahm and D. J. Scalapino, PRB 60, 13125, 1999.

ments. The agreement is excellent. Indeed, as the temperature decreases, the nonlinear response increases due to the increase.

In this thesis, we will present the first convincing evidence of an IMD increase and saturation due to Yip-Sauls limit in YBCO at low temperature. We also confirmed the predicted $1/T^2$ temperature dependence of IMD power below 30 K.

IMD measurements have been proven to be an extremely sensitive method to detect the penetration depth change. Otherwise, observing change in $\lambda$ is very difficult since $\Delta\lambda$ is exceedingly small with current change.
Chapter 3

Experiments and Background

3.1 Experiments

3.1.1 Thin films used

Table 3.1 shows the details of the films used in this study. All films were epitaxially deposited on the given substrate with the c-axis normal to the substrate surface. YBCO was deposited on LaAlO$_3$ by PLD, sputtering and coevaporation. One sample of YBCO on sapphire was included. Sample 1 is the highest quality [30]. Samples 2, 3, 4, and 5 were deposited under the same condition only the target was different, so the quality is similar to sample 1, but with impurities included. Ni and Zn are known to substitute for Cu. Ca is known to substitute for Y. In sample 6, the YBCO was grown by sputtering [31, 32]. The linear $R_s$ measurements show that sample 6 is of lower quality than sample 1. Sample 7 [33] was made by overlaying 40 nm of 30% Ca YBCO on another sample from the wafer that was also used for the sample 6. In sample 8, the YBCO was on sapphire [34, 35]. Samples on sapphire are known to have higher concentrations of defects since there is a mismatch in lattice and thermal expansion coefficient between YBCO and sapphire [36, 37]. Sample 9 was grown on MgO by coevaporation [38, 39]. Sample 10 [40] was measured for comparison purpose.
<table>
<thead>
<tr>
<th>Number</th>
<th>Film Type</th>
<th>Substrate</th>
<th>Deposition Method</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YBa$_2$Cu$_3$O$_7$-$X$</td>
<td>(100) LaAlO$_3$</td>
<td>PLD</td>
<td>Koren</td>
</tr>
<tr>
<td>2</td>
<td>YBa$<em>2$Ni$</em>{0.06}$Cu$<em>{2.94}$O$</em>{7-X}$</td>
<td>LaAlO$_3$</td>
<td>PLD</td>
<td>Koren</td>
</tr>
<tr>
<td>3</td>
<td>YBa$<em>2$Zn$</em>{0.06}$Cu$<em>{2.94}$O$</em>{7-X}$</td>
<td>LaAlO$_3$</td>
<td>PLD</td>
<td>Koren</td>
</tr>
<tr>
<td>4</td>
<td>Y$<em>{0.94}$Ca$</em>{0.06}$Ba$_2$Cu$<em>3$O$</em>{7-X}$ 6% Homogeneous Ca</td>
<td>LaAlO$_3$</td>
<td>PLD</td>
<td>Koren</td>
</tr>
<tr>
<td>5</td>
<td>Y$<em>{0.7}$Ca$</em>{0.3}$Ba$_2$Cu$<em>3$O$</em>{7-X}$ 6% Homogeneous Ca</td>
<td>LaAlO$_3$</td>
<td>PLD</td>
<td>Koren</td>
</tr>
<tr>
<td>6</td>
<td>YBa$_2$Cu$_3$O$_7$-$X$</td>
<td>LaAlO$_3$</td>
<td>Sputtered</td>
<td>Anderson</td>
</tr>
<tr>
<td>7</td>
<td>YBa$_2$Cu$_3$O$_7$-$X$ + 30% Ca overlayer</td>
<td>LaAlO$_3$</td>
<td>Sputtered</td>
<td>Anderson &amp; Hammerl</td>
</tr>
<tr>
<td>8</td>
<td>YBa$_2$Cu$_3$O$_7$-$X$</td>
<td>r-plane-Al$_2$O$_3$ (Sapphire)</td>
<td>PLD</td>
<td>Lorenz</td>
</tr>
<tr>
<td>9</td>
<td>YBa$_2$Cu$_3$O$_7$-$X$</td>
<td>(001) MgO</td>
<td>Coevaporation</td>
<td>Humphreys</td>
</tr>
<tr>
<td>10</td>
<td>Nb</td>
<td>LaAlO$_3$</td>
<td>Sputtered</td>
<td>Berggren</td>
</tr>
</tbody>
</table>

Table 3.1: Details of the films used in IMD measurements.
3.1.2 IMD measurements

Figure 3-1 shows the diagram of the two-tone IMD measurement setup. Two signal generators produce tones $f_1$ and $f_2$. The tone separation $\Delta f = f_2 - f_1$ was 1/32 of the 3dB bandwidth of the resonator, since the IMD power depends on $\Delta f$ and $P_{IMD}(\Delta f)$ becomes independent of $\Delta f$ at this extremely narrow separation. The power amplifier was used to increase the input signal power up to 30 dBm. The lowpass filter keeps the generator harmonics from entering the power combiner. The power combiner is a reciprocal device which can be also used as a power divider. The isolators were placed to suppress standing waves. The combined $f_1$ and $f_2$ were applied to the resonator. These input signals were calibrated with a power meter before each measurement. The third-order IMDs at $2f_1 - f_2$ and $2f_2 - f_1$ were measured by a spectrum analyzer versus the output power at $f_1$ and $f_2$. The signal generators and spectrum analyzer are phase-locked to a common 10 MHz reference signal.

The following mixing equations show how we get two intermodulation frequencies $2f_1 - f_2$ and $2f_2 - f_1$. In a superconductor, the impedance does not depend on the direction of current flow. Define the nonlinear impedance as

$$Z(t) = Z_o + a|I(t)| + bI^2(t) + \cdots. \quad (3.1)$$

Then the voltage across a nonlinear material is

$$V(t) \propto I(t)Z(t) = I(t)(Z_o + a|I(t)| + bI^2(t) + \cdots) = I(t)Z_o + aI^2(t) + bI^3(t) + \cdots. \quad (3.2)$$

If we let signal generator 1 current $I_1(t) = A \cos(\omega_1 t)$ and signal generator 2 current $I_2(t) = B \cos(\omega_2 t)$, where $A$ and $B$ are constants, the current in the power combiner becomes
Figure 3-1: Two phased-locked generators produce two tones symmetrical about the center frequency of the resonator. The tone separation was 1/32 of the 3 dB bandwidth of the resonator. The power amplifiers were used to increase the signal input power up to 30 dBm. The lowpass filter keeps generator harmonics from entering the power combiner. The isolator was placed to suppress the standing waves. Then, the combined $f_1$ and $f_2$ were applied to the resonator. The third-order IMDs at $2f_1 - f_2$ and $2f_2 - f_1$ were measured as a function of the output power at fundamental frequency.
\[ I(t) = I_1(t) + I_2(t) = A \cos(\omega_1 t) + B \cos(\omega_2 t). \] 

(3.3)

Among all terms in equation (3.2), \(bI^3(t)\) contributes the most to intermodulation power when the nonlinear inductance has \(I^2\) dependence. Substituting equation (3.3) into \(I^3(t)\) gives

\[ I^3(t) = (A \cos(\omega_1 t) + B \cos(\omega_2 t))(A \cos(\omega_1 t) + B \cos(\omega_2 t))(A \cos(\omega_1 t) + B \cos(\omega_2 t)) \] 

(3.4)

Simplifying and collecting terms with trigonometric identities, we found

\[ I^3(t) = \frac{3}{4}A^2B \cos(2\omega_1 - \omega_2)t + \frac{3}{4}AB^2 \cos(2\omega_2 - \omega_1)t + \cdots \] 

(3.5)

These intermodulation terms will be important since they fall within the passband of the resonator.

In equation (3.2), \(aI^2(t)\) contributes the most to intermodulation power when the nonlinear inductance has \(|I|\) dependence. But, the intermodulation frequencies will be the same as equation 3.5 [41].

### 3.1.3 Dewar, test probe and stripline resonator

Figure 3-2 is a photo of the IMD measurement setup. The right side of the photo shows one of the Dewars used. The boiling point of liquid helium 4 is 4.2 K at 1 atm. To obtain lower temperatures, a vacuum pump was used to decrease the vapor pressure of the liquid helium. In addition, helium 4 becomes superfluid below the lambda point \(T = 2.17\) K. Superfluid helium is known to have no viscosity at all. Tight sealing of the test probe is especially important. The left side of Figure 3-3
Figure 3-2: IMD setup photo

shows a schematic diagram of the Dewar and test probe immersed in liquid helium. The S-shaped stripline resonator is shown inside the test probe. The interior of test probe was filled with 1 atm helium gas at room temperature, to act as a heat exchange. The right side of Figure 3-3 is a magnified view of a resonator in an Au-plated copper package mounted on a copper thermal block, together with a diode temperature sensor and 2 resistive heaters. Input and output microwave power was transferred through the coax cables. If the temperature fluctuates the resonance frequency of the resonator changes due to the change in penetration depth. It turns out that the IMD measurements were quite sensitive to the resonance frequency shift. Figure 3-4 shows that the position of the input signals at $f_1$ and $f_2$ on the resonance curve and the resonance frequency shift as a result of temperature drift. After the resonance frequency is shifted, the input signals at $f_1$ and $f_2$ are no longer near the peak of the resonance curve. As a result, the reduced level of the circulating current leads to a reduced IMD. So, the temperature must be controlled precisely. For example, the resonance frequency shift from PLD YBCO was measured to be 3.6 Hz / mK from
5 K down to 1.7 K. The smallest $\Delta f = f_2 - f_1$ used in this temperature range was 300 Hz. So, the temperature change $\Delta T$ corresponding to 300 Hz is obtained as

$$\Delta T = 300\text{Hz} \times \frac{\text{mK}}{3.6\text{Hz}} \approx 83.3\text{mK}$$ (3.6)

Therefore, the temperature drift of the device must be less than 83.3 mK. In our study, a precise temperature was achieved through feedback control using a sensor, two heaters, and temperature controller adopting P, I, and D parameters. The P term is a gain factor of the feedback control loop. If it is too high, the system will oscillate. The I term is an integrator term and D term is a derivative term of feedback control loop. I and D terms work in different ways in controlling temperatures. The achieved temperature drift was from 0.5 mK to 5 mK. As a result, we were able to measure very precise IMD values. Table 3.2 shows the definitions, ranges, and roles of P, I and D parameters.
Figure 3-4: Temperature instability shifts the resonance curve. Input frequencies $f_1$ and $f_2$ are no longer near the peak of the shifted resonance curve.

<table>
<thead>
<tr>
<th></th>
<th>definition</th>
<th>range</th>
<th>if too large</th>
<th>if too small</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P$</td>
<td>gain factor</td>
<td>0.1-1000</td>
<td>oscillation</td>
<td>slow response</td>
</tr>
<tr>
<td>$I$</td>
<td>integrator term (sec)</td>
<td>0.1-10000 (sec)</td>
<td>slow response</td>
<td>sensitive to noise</td>
</tr>
<tr>
<td>$D$</td>
<td>derivative term (sec)</td>
<td>0-1000 (sec)</td>
<td>sensitive to noise</td>
<td>slow response</td>
</tr>
</tbody>
</table>

Table 3.2: P, I, and D parameters of temperature controller.
Figure 3-5: Stripline resonator used for measurement of the surface impedance $Z_s$ and intermodulation distortion. The gaps between ground planes and substrate are shown for clarity. In practice there is no gap.

Figure 3-5 shows the $\lambda/2$ transmission line resonator inside an Au-plated copper package with S-shaped thin-film sample inside. The stripline resonator is enclosed by upper and lower superconducting ground planes. It has very low loss and consequently very high quality factor $Q$ due to minimization of the radiation loss. A stripline resonator was also used since it is a planar transmission line which is compatible with microwave integrated circuitry. As shown in Figure 3-5, our stripline was made by etching the center conductor on a substrate B, and then placing two grounded substrates A and C of the same thickness over and under the substrate B. The substrate size was 1 cm x 1 cm x 0.5 mm. Standard photo lithography and wet etching were used to pattern the films [42, 43]. The cross section of the superconducting center conductor was either 0.15 mm x 400 nm or 0.15 mm x 350 nm.

We model the stripline resonator as a TEM waveguide and assume that there is very little interaction between meandering centerline segments since the line sep-
aration is large compared with the substrate thickness. The two superconducting ground planes are shorted through the copper package and the spacing is less than \( \lambda_\phi/4 \) where \( \lambda_\phi \) is the wavelength propagating inside the dielectric substrate. So, the higher-order TM and TE modes are suppressed. The fundamental mode of operation is TEM which is a propagation of a plane wave. The electric field is perpendicular to the propagation direction. The length \( \ell \) of the superconducting meandering center line used was 2 cm. The resonance frequency \( f_0 \) is determined by the relationship

\[
\ell = \frac{\lambda_\phi}{2} = \frac{c}{2\sqrt{\varepsilon_r} f_0}
\]

where \( c \) is speed of light and \( \varepsilon_r \) is the relative dielectric constant of the substrate used. The \( \varepsilon_r \) is 23.5 for LaAlO\(_3\), 10.6 for sapphire and 11.1 for MgO. So, the resonance frequencies for LaAlO\(_3\), sapphire, and MgO were 1.5 GHz, 2.3 GHz, and 2.25 GHz, respectively. The microwave power was transferred in and out of the sample through a capacitive coupling. The weak capacitive coupling acts like an open end. Because of the open end nature of resonator, the electric field is maximum at both ends, and the magnetic field and current are maximum in the middle of the center-conductor line for the fundamental mode.

3.2 Background

3.2.1 Parallel equivalent resonant circuit model

The parallel equivalent-circuit model of the stripline resonator, including the source and the load is shown in Figure 3-6. We measured the transmission coefficient \( S_{21} \) using a vector network analyzer. The \( S_{21} \) is found by driving the input port with an incident wave and measuring the transmitted wave amplitude to a 50-\( \Omega \) load. Another important parameter to describe a resonator is the quality factor \( Q \) which is a measure of the loss of a resonant circuit. The definition is
Figure 3-6: Parallel equivalent resonant circuit model of the stripline resonator is shown. $V_S$ is the signal source, $C_C$ the coupling capacitance, $R_S$ the source resistance, $R_L$ the load resistance. $R$, $L$, and $C$ describes the resistance, the inductance, and capacitance of the stripline resonator used.

\[
Q = \frac{\omega_o \text{ average energy stored}}{\text{energy loss/sec}} = \frac{f_o}{\Delta f_{3dB}},
\]  

where $\omega_o = 2\pi f_o$ is the angular resonance frequency,

\[
f_o = \frac{1}{2\pi \sqrt{LC}}
\]

the resonance frequency, $L$ the inductance, $C$ the capacitance in Figure 3-6, and $\Delta f_{3dB} = 3$ dB bandwidth.

Figure 3-7 shows the resonance curve and defined parameters.

Mathematically, the resonance curve is given by the Lorentzian distribution as

\[
L(f) = \frac{\Delta f_{3dB}/2}{\pi[(f - f_o)^2 + (\Delta f_{3dB}/2)^2]}.
\]  

Any resonance circuit is inevitably coupled (loaded) to an external circuit to transfer power in and out. Therefore, the actual loaded quality factor $Q_L$ of a resonant circuit is expressed as
where $Q_o$ is the unloaded quality factor due to losses in the superconductor, $Q_D$ is the quality factor representing dielectric loss, and $Q_{ext}$ is the quality factor due to external coupling loss. The physical meaning of the equation (3.11) is that total loss = superconductor loss + dielectric loss + energy loss due to external coupling. The loss for the dielectrics used here is very low ($1/Q_D \approx 0$). So, when we reduce energy loss due to external loading by weakly coupling ($1/Q_{ext} \approx 0$) the above equation (3.11) becomes $1/Q_L \approx 1/Q_o$. In practice $1/Q_{ext} > 0$, so a small correction was needed to obtain $Q_o$. In our study, $Q_L$ and $f_o$ were measured as a function of input power at different temperatures from 1.7 K to near $T_c$. Then, $Q_L$ was converted to $Q_o$ using [44]

$$Q_o = Q_L \frac{1}{1 - |S_{21}|}$$

(3.12)

where $|S_{21}| = \sqrt{P_L/P_o}$ is transmission coefficient, $P_o$ the available power from the
source and $P_L$ is the power delivered to the load.

This relationship holds when the coupling for both input and output is the same [44].

The insertion loss $IL$ is defined as

$$IL = 10 \log\left(\frac{P_o}{P_L}\right)dB = -20 \log(S_{21})dB$$ (3.13)

### 3.2.2 Extraction of the surface resistance and reactance

Whenever most of the current flows near the surface, the loss is concentrated on the surface. So, it has been a general practice to use the surface impedance concept. The penetration depth in a superconductor and the skin depth in a metal are used to specify how close the current flows from the surface. The surface impedance $Z_s$ in superconductor is given by equation 1.5. To get $R_s$ and $X_s$, the quality factor and the resonance frequency were measured as a function of input power at different temperatures. Figure 3-8 shows a typical $f_o$ vs temperature plot. The sample was the high quality PLD YBCO on LaAlO$_3$ shown as No. 1 in Table 3.1.

The solid line is a least-squares fit to the data using

$$f_o(T) = f_o(T_o) \sqrt{\frac{L[\lambda(T_o)]}{L[\lambda(T)]}}$$ (3.14)

where $T_o$ is the reference temperature and the inductance per unit length was obtained by integrating over the cross section of the line as

$$L(\lambda) = \mu_0 \int_A (H^2 + \chi^2 j^2(x,y))dS = \mu_0 \frac{\int_A (H^2 + \chi^2 j^2(x,y))dS}{I^2}$$ (3.15)

and the penetration depth
Figure 3-8: The resonance frequency vs temperature for the high quality PLD YBCO on LaAlO$_3$ shown as No. 1 in Table 3.1. The circles are measured values and line is fitted values with $\lambda_o = 0.313 \, \mu m$, $T_c = 91.2 \, K$.

$$\lambda(T) = \frac{\lambda_o(0)}{\sqrt{1 - (T/T_c)^4}}$$

(3.16)

from the two fluid model. In equation 3.15, $j(x, y)$ was obtained from [45], $dS = dx\, dy$, and $S$ is the cross section of the line.

Fitting process gave $\lambda_o(0) = 0.313 \, \mu m$ and $T_c = 91.2 \, K$.

Now, we have all necessary parameters: the measured unloaded quality factor $Q_o$ from equation 3.12, $f_o$ from Figure 3-8, $L(\lambda)$ computed from equation 3.15, and $\lambda(T)$ with $\lambda_o(T)$ and $T_c$ from equation 3.16. Then, $R_s$ and $X_s$ are obtained following the procedures in [46, 47]. The unloaded $Q_o$ is given for the parallel resonance circuit shown in Figure 3-6,

$$Q_o = \frac{\omega_o L}{R}$$

(3.17)
Substituting $Q_o$, $\omega_o$, and $L$ into equation 3.17 gives $R$ the resistance per unit length. Two fluid model [2] says that the conductivity of the superconductor is given by

$$\sigma_s = \sigma_1 - j\sigma_2 = \frac{n_{qp}e^2\tau}{m} - j\frac{1}{\omega\mu_o\lambda^2} \approx \frac{n_{qp}}{n}\sigma_n - j\frac{1}{\omega\mu_o\lambda^2}, \quad (3.18)$$

where $n_{qp} = n - n_s$ is the number density of quasiparticles, $n$ the total density of conduction electrons, $n_s$ the number density of superelectrons, $\tau$ the average quasiparticle relaxation time, $m$ the electron mass, and $\sigma_n$ is the conductivity of the normal state. $\sigma_2$ is obtained by substituting $\lambda$ into the imaginary part of equation 3.17. The loss in the superconducting lines is defined by

$$\frac{1}{2} R|I|^2 = \frac{1}{2} R|\int_S j dS|^2 = \frac{1}{2} \int_S \sigma_1|\vec{E}|^2 dS = \frac{1}{2} \int_S (\frac{\sigma_1}{\sigma_1^2 + \sigma_2^2})|j|^2 dS \approx \frac{1}{2} \int_S (\frac{\sigma_1}{\sigma_2^2})|j|^2 dS \quad (3.19)$$

where $I$ the current, $j = j(x, y)$ the current density distribution, $S$ the cross section of superconductor, and $\vec{E}$ is the electric field. The last relationship in equation 3.19 holds when $\sigma_1 << \sigma_2$, which holds for superconductors.

Substituting $R$, $\sigma_2$, and the current density $j$ into equation 3.19 gives $\sigma_1$. Finally, the surface resistance $R_s$ is given by $\omega^2\mu^2\sigma_1\lambda^3/2$ from equation 1.5. The imaginary part $X_s$ is given by also in equation 1.5. But, $\Delta X_s(T)$ will be computed rather than $X_s$ since the change in $X_s$ is very small. Then, $\Delta X_s(T)$ is obtained by $\omega_o\mu_o\Delta \lambda$ where

$$\Delta \lambda(T) = \frac{\lambda_o(0)}{\sqrt{1 - (T/T_c)^4}} - \frac{\lambda_o(0)}{\sqrt{1 - (T_o/T_c)^4}}. \quad (3.20)$$

The $R_s$ and $X_s$ extraction explained in this section was done for all films used in this thesis research.
3.2.3 IMD Normalization

The IMD power was measured as a function of temperature and output power using various resonators. The IMD power was normalized to compare the material properties of the various resonators and to account for \( Q(T) \) and \( IL(T) \) in each. This section shows how IMD power was normalized. The IMD generation in the resonator will be shown using the equivalent circuit in Figure 3-9.

The circulating current at \( f_1 \) and \( f_2 \) in resonator is [47]

\[
|I_{\text{cir}}^1| = \sqrt{\frac{4Q_o r_v (1 - \tau_v) P_{\text{in}}^1}{\pi Z_o}}, \tag{3.21}
\]

where \( I_{\text{cir}}^1 \) is circulating current at fundamental frequencies \( f_1 \) and \( f_2 \), \( r_v^2 \) is \( P_{\text{out}}^1/P_{\text{in}}^1 \), \( P_{\text{in}}^1 \) the input power at \( f_1 \) and \( f_2 \), \( P_{\text{out}}^1 \) output power at \( f_1 \) and \( f_2 \), and \( Z_o \) characteristic impedance of resonator. The circulating power at \( f_1 \) and \( f_2 \) inside resonator is given by

\[
P_{\text{cir}}^1 = |I_{\text{cir}}^1|^2 Z_o = \frac{4Q_o r_v (1 - \tau_v) P_{\text{in}}^1}{\pi}. \tag{3.22}
\]

Here, we assumed the uniform current distribution in the resonator. The IMD power due to the nonlinear inductance is discussed in [48, 49]. At low power, the nonlinear part of the penetration depth has a \( j^2 \) dependence as shown in Figure 2-5. At higher power, the nonlinear part of the penetration depth has \( |j| \) dependence as in Figure 2-5. The nonlinear part of the inductance is proportional to the nonlinear part of the penetration depth [45]. The \( |j| \) dependence carries over to \( I \) and consider the power exponent \( x \) as a general case.

Let the nonlinear inductance be

\[
L = L_o + \Delta L = L_o + L_2 I^x \tag{3.23}
\]
and the nonlinear penetration depth be

\[
\lambda = \lambda_o + \Delta \lambda = \lambda_o + \lambda_2 I^x
\]  
(3.24)

where \(L_2\) is a nonlinear inductance coefficient proportional to \(\lambda_2\), \(I\) the circulating current in the resonator, and \(x\) is an exponent to the current \(I\) ranging from 1 to 2. Then, the voltage \(V_L\) across the nonlinear inductance \(\Delta L\) is

\[
V_L = j\omega\Delta LI = j\omega L_2 I^x I = j\omega L_2 I^{x+1}
\]  
(3.25)

We present here the result for \(P_{out}^{IMD}\) modified from [48, 49] since the general power component \(x\) is used in this thesis.

\[
P_{out}^{IMD} = \omega^2 L_2^2 A^x r_v^{x+2/4}(1 - r_v)^{x+2} Q_o^{x+2} \pi^x Z_o^{x+2} P_{in}^{x+1}
\]  
(3.26)

Other authors derived similar equations in [20, 50]. Now, if we substitute equation 3.22 into equation 3.26

\[
P_{out}^{IMD} \propto \omega^2 L_2^2 \frac{\pi}{4Z_o^{x+2}} Q_o r_v (1 - r_v) (P_{cir}^1)^{x+1}
\]  
(3.27)

\(\omega^2, Q_o\) and \(r_v\) change depending on the temperature, input power levels and resonator used. The nonlinear inductance coefficient \(L_2\) is sample-specific and independent of \(\omega, Q_o\), and \(r_v\).

After rearranging, the normalized \(P_{norm}^{IMD}\) is defined as

\[
P_{norm}^{IMD} = \frac{P_{out}^{IMD}}{\omega^2 Q_o r_v (1 - r_v)} \propto L_2 \frac{(P_{cir}^1)^{x+1}}{Z_0^{x+2}}
\]  
(3.28)

Now, the \(P_{norm}^{IMD}\) is independent of \(Q_o\), insertion loss and resonance frequency shift for
a given $P_{\text{cir}}^1$. The slope of $\log(P^{IMB}_{\text{norm}})$ as a function of $\log$(circulating power) is $x + 1$. 
Figure 3-9: Parallel equivalent resonant circuit model of the stripline resonator is shown. $V_S$ is the signal source, $C_C$ the coupling capacitance, $R_S$ the source resistance, $R_L$ the load resistance. $V_L$ the voltage source due to the nonlinear inductance. At low temperatures, the nonlinear voltage mainly comes from the nonlinear inductance. $R$, $L$, and $C$ describes the resistance, the inductance, and capacitance of the stripline resonator used.
Chapter 4

Verification of $d$-wave symmetry using microwave intermodulation distortion

The pairing symmetry in high-$T_c$ superconductors has been controversial. New experimental evidence from phase-sensitive tests, however, strongly supports a predominantly $d$-wave symmetry. So, this issue is quite settled down. Tsuei and Kirtley [25] wrote an excellent review article on this issue. Yet, proving $d$-wave symmetry by microwave measurements has been evading many experimentalists' efforts. Here, we report the first convincing evidence of $d$-wave symmetry in high-$T_c$ superconductors using microwave intermodulation measurements.

4.1 IMD results from YBCO

Figure 4-1 shows the superconducting resonator on the dielectric substrate. The current flows along the conductor. In the left side of the Figure 4-1, there is a gap function for $d$-wave symmetry in momentum space. $\tilde{v}_s$ is the superflow velocity and $\alpha_c$ is the wedge angle for the occupied quasiparticles. We don’t know the directions of $P_x$ and $P_y$ axis in the superconductor. In addition, because of the weak coupling at the end of the superconducting line, there is a current maximum in the middle...
of the line. So, the IMD response we measured is an average sampling from the continuously changing directions of the current, weighted more in the middle of the superconducting line.

Figure 4-2 shows the temperature and power dependence of IMD in our measurements. The unit dBm is defined as $10 \log(\text{power(W)}/10^{-3}\text{W})$. We measured many temperatures, but only measurements at 1.75 K, 5 K, 50 K and 80 K are shown for clarity.

The IMD increase at low temperature and low power is evident. At 1.75 K, the lowest temperature measured, the IMD was the highest at low and intermediate power levels. At this temperature, the slope was approximately 3 at low power indicating that $x = 2$ in equation 3.23 and equation 3.24. According to Dahm and Scalapino, the quadratic field dependence of the penetration depth applies to this region. The slope was 1.43 at medium power. The linear field dependence of the penetration
Figure 4-2: IMD vs Power and Temperature for PLD undoped YBCO on LAO

depth corresponds to this region. Equation 3.23 and equation 3.24 with \( x = 0.43 \) is for this region.

At the highest power, the slope was also 3. The Dahm and Scalapino theory did not address this region. As the temperature increases, the slope of IMD power approaches 3. At 80 K, the slope is 3 across all power levels. It seems that the IMD generation mechanism at 80 K is different from that of low temperatures. This region resembles the high power region at low temperatures.

Figure 4-3 shows the measured IMD as a function of temperatures at the three different circulating power cuts as shown in Figure 4-2. The IMD increases as the temperature decreases at the low circulating power \( P^1_{cir} = 5 \) dBm. At the medium circulating power \( P^1_{cir} = 22.3 \) dBm, IMD is constant as temperature decreases within experimental errors. At high circulating power \( P^1_{cir} = 32.5 \) dBm, IMD decreases as temperature decreases. It is evident there is a crossover in temperature behavior at
$P^1_{\text{cir}} \simeq 22.3 \text{ dBm.}$

### 4.2 The temperature dependence of IMD power at low temperatures

Figure 4-4 shows the temperature dependence of the IMD at low temperature and at 5 dBm circulating power. We obtained the $1/T^2$ dependence predicted from $b^2(T)$ by Dahm and Scalapino. $b^2(T)$ has one free parameter. It is shifted down to show the agreement more clearly. To expand the low $T$ behavior, the log of the reduced temperature was plotted. The agreement of the temperature dependence is excellent. In Figure 4-5, the same data was plotted as a function of $1/T^2$. The confirmation of the temperature dependence of the IMD is very strong evidence of the intrinsic
4.3 Effects of dopants, disorder

Figure 4-6 shows the IMD vs $T/T_c$ for the films in Table 3.1. PLD YBCO showed the lowest level of IMD at the middle of temperatures. We obtained convincing evidence of an IMD increase at low temperatures with various samples of YBCO on LaAlO$_3$. High quality PLD YBCO on LaAlO$_3$ showed the highest IMD upturn. This IMD upturn is due to the increase in the nonlinear coefficient $b(T)$ of the quadratic current dependence of the penetration depth. The change in penetration depth correspond-
Figure 4-5: IMD vs $1/T^2$ compared with theory. PLD YBCO on LaAlO$_3$ was used.
ing to the quadratic current dependent region is less than 0.01 nm at 1.7 K with high quality PLD YBCO on LaAlO$_3$. Refer to Figure 2-4. This explains why the direct measurements of the penetration depth change had been so difficult. Around 50 K, the IMD levels vary depending on dopants, disorder and defects in YBCO due to extrinsic contributions. The Ca doped YBCO raised the background IMD at the middle of the temperature range. In 6 % (not shown) and 30 % homogeneous Ca-doped YBCO, the low temperature IMD increase almost disappeared. Another finding is that Ni doped YBCO also has a similar dependence and increase comparable to the high quality PLD sample No. 1. In Ni-doped YBCO, the IMD is also comparable to the high quality YBCO sample No. 1 in the middle of the temperature range. Ni is a magnetic impurity; it is known to destroy the superconductivity in s-wave materials [51]. However, this data suggests that Ni does not destroy d-wave symmetry signature. Scanning tunnelling microscope experiments [52] also show that Ni preserves superconductivity and d-wave symmetry. Our IMD measurements showed that non-magnetic Zn has a stronger suppression of d-wave symmetry than Ni has. Our measurements also showed that the increased level of IMD in the middle of the temperature range in the Zn-doped sample. Zn locally destroys superconductivity as reported in [53]. It is consistent with the hypothesis that the pairing mechanisms for d-wave superconductor is magnetic unlike s-wave superconductor [54, 55].

YBCO on sapphire shows the highest level of IMD and a monotonic decrease towards 0 K. Maybe, epitaxially grown YBCO on sapphire has many defects and disorder because of mismatch in thermal expansion coefficient and lattice parameter between the YBCO and sapphire. YBCO grown by sputtering at Lincoln Laboratory shows a higher IMD at intermediate temperature than the PLD YBCO, probably due to the increased contribution from extrinsic origins. This sample does show an upturn and slope change in IMD vs power plot. We observe that the IMD has a tendency to converge to a universal value at 5 mK regardless of doping and defects due to the node singularity at 0 K as shown in Figure 4-7. IMD convergence at 5 mK also implies that the d-wave node is a true node. As the temperature decreases, the intrinsic effect becomes more evident in the case of d-wave superconductor.
IMD measured at low circulating power \( P_{\text{circ}}^l = 5 \text{dBm} \)

Figure 4-6: IMD vs reduced temperature for various films

- YBCO on Sapphire \( T_c = 90 \text{ K} \)
- Ca 30% doped \( T_c = 66 \text{ K} \)
- Sputtered YBCO \( T_c = 89 \text{ K} \)
- Zn 6% doped \( T_c = 73 \text{ K} \)
- Ni 6% doped \( T_c = 80 \text{ K} \)
- PLD YBCO \( T_c = 90 \text{ K} \)
- Sputtered Niobium \( T_c = 9.25 \text{ K} \)
The 5 mK is very close to Node Singularity at 0 K.

Figure 4-7: IMD vs $\log_{10}(T/T_c)$ for various films. IMD converges at about 5 mK, which is very close to the node singularity at 0 K. This implies that $d$-wave node is a true node.
There is a similar tendency for the IMD to converge as $T$ approaches to $T_c$ due to the total depletion of the superelectrons at $T_c$.

4.4 IMD results from niobium for comparison

Theory predicts that IMD increases at low temperatures for $d$-wave superconductors and IMD decreases exponentially at low temperatures for $s$-wave superconductors. In this section we will verify the $s$-wave prediction with niobium on LaAlO$_3$. In addition, we will check if the substrate LaAlO$_3$ contributes to IMD. Figure 4-8 shows the normalized IMD measurements with the $s$-wave superconductor niobium [40] on LaAlO$_3$. The graph on the top side is plotted as a function of reduced temperatures. Even though the theoretical prediction says that IMD decreases exponentially in $s$-wave superconductors, the measured IMD becomes independent of temperatures below 4.3 K and deviates from theory at 6.7 K probably due to the extrinsic effects. This is polycrystalline niobium, but weak links should not be important since the Nb coherence length is long. This behavior is not well understood. We need more measurements with various Nb samples. The reduced temperature of Nb was not low enough to confirm that IMD does not increase at lower temperatures.

On the bottom side the IMD is plotted as a function of absolute temperatures. Here, IMD of Nb is constant where IMD of YBCO increases. We clearly see that the LaAlO$_3$ substrate is not a source of the IMD increase at low temperatures.
Figure 4-8: IMD vs Temperature with niobium
Chapter 5

Conclusions

We obtained convincing evidence of an IMD upturn at low temperatures with various samples of YBCO on LaAlO$_3$. High quality PLD YBCO on LaAlO$_3$ showed the highest IMD upturn. This IMD upturn is due to the increase in the nonlinear coefficient $b_0(T)$ of the quadratic current dependence of the penetration depth. The change in penetration depth corresponding to the quadratic current dependent region is less than 0.01 nm at 1.7 K with high quality PLD YBCO on LaAlO$_3$. This explains why the direct measurements of the penetration depth change had been so difficult. Furthermore, we were able to show the predicted temperature dependence $1/T^2$ in IMD at low temperatures in high-quality PLD YBCO on LaAlO$_3$. The confirmation of the $1/T^2$ temperature dependence is a strong evidence of the intrinsic nature of the IMD upturn. Other films do not agree with the $1/T^2$ dependence possibly due to extrinsic effects.

Dahm and Scalapino predicted that there is a crossover from $j^2$ to $|j|$ current dependence of the nonlinear superfluid density as the current increases. We showed that there is crossover from slope 3 ($j^2$ dependence) through slope 1.43 ( $|j|^{0.43}$ dependence) to slope 3 ($j^2$ dependence) again. The $j^2$ dependence at the highest power is probably due to flux penetration above the lower critical field $H_{c1}$. At 80 K, the IMD shows the slope 3 across all power levels. It seems that IMD generation mechanism at 80 K is different from that of low temperatures.

Around 50 K, the IMD levels vary depending on dopants, disorder and defects.
in YBCO due to extrinsic contributions. Epitaxially grown YBCO on sapphire has many defects and disorder because of the mismatch in thermal expansion coefficient and lattice parameter. The film on sapphire shows no upturn in IMD and only a monotonic decrease towards 0 K.

A closer look at the IMD vs temperature plot reveals that in all samples the IMD values converge to a single universal value towards 5 mK as T decreases regardless of dopants, disorder, defects in YBCO, and substrate used. This is explained by the fact that as temperature decreases, the singular behavior at the node dominates over the extrinsic contribution. Furthermore, the node singularity suggests the d-wave node is a true node. A similar converging trend is seen as T approaches $T_c$ since the quasiparticles become totally depleted at $T_c$ in this case. Niobium on LaAlO$_3$ does not show an IMD upturn. It rules out that the IMD increase is due to the LaAlO$_3$ substrate. Theory predicts that IMD from s-wave superconductor such as niobium decreases exponentially. Therefore, the temperature independence of the measured IMD from niobium at low temperatures suggests that this IMD is coming from extrinsic sources such as weak links [56]. Lower-temperature measurements down to 0.3 K using helium 3 cooler are desired to extend experimental verification at the further reduced temperatures.

Magnetic interactions and magnetic impurities destroy superconductivity in conventional s-wave superconductors [51]. But, our IMD measurements revealed that Ni-doped YBCO has an increase in IMD at low temperature that is a characteristic of d-wave symmetry. Our IMD measurements also showed that non-magnetic Zn has a stronger effect to suppress d-wave symmetry than Ni has. Our findings agree with scanning tunneling microscope results. They reported that Ni preserves superconductivity and d-wave symmetry [52]. Also, Zn locally destroys superconductivity [53]. It is consistent with the hypothesis that the pairing mechanisms for d-wave superconductor is magnetic unlike s-wave superconductor [54, 55].
Chapter 6

Future Studies

For further verification of $d$-wave signature, measurements on YBCO using a helium 3 cooler are desired for the reduced temperatures possible with such a system. To test the effects of thickness of superconducting film on $d$-wave signature, more sample measurements are needed. To confirm the Abrikosov vortex state, the careful computation of $H_{c1}$ value are desired. Systemetic variation of dopants in YBCO is required to further verify the node singularity. IMD measurements with more Nb samples at lower temperatures are strongly desired to compare $s$-wave and $d$-wave signatures.
Appendix A

Investigation of the substrate effects on the time response of IMD generation

A.1 The Description of the off-the-resonance excitation Method

This experimental method investigates the IMD generation time scale $\tau_{IMD}$ of the nonlinearity [57] by varying $\Delta f = f_2 - f_1$ while keeping circulating powers $P^{\text{cir}}_1$ and $P^{\text{cir}}_2$ at $f_1$ and $f_2$ constant in the resonator. Also, this method will test the validity of the IMD generation model.

Here, we will introduce another time scale $\tau_{\text{input}}$ as follows. The current in the power combiner is expressed using trigonometric identity as

$$\cos(\omega_1 t) + \cos(\omega_2 t) = 2 \cos\left(\frac{\omega_2 - \omega_1}{2} t\right) \cos\left(\frac{\omega_2 + \omega_1}{2} t\right) = 2 \cos\left(\frac{\Delta \omega}{2} t\right) \cos(\omega_0 t) \quad (A.1)$$

where the identical amplitudes for both signals were assumed. This is an amplitude
modulation envelope

\[
\cos \omega t + \cos \omega_2 t = 2 \cos \left( \frac{\Delta \omega}{2} \right) \cos \omega t
\]

modulation frequency,

where \( \omega_0 = \frac{\omega_1 + \omega_2}{2} \)

\( \Delta \omega = \omega_2 - \omega_1 \)

Figure A-1: modulation envelope

modulation by frequency \( \Delta \omega / 2 \) and the carrier frequency is \( \omega_o \). Figure A-1 shows the modulation envelope and carrier frequency. The modulation time scale \( \tau_{\text{input}} \) is defined as the reciprocal of the modulation frequency as

\[
\tau_{\text{input}} = \frac{2}{\Delta \omega} = \frac{2}{2\pi \Delta f} = \frac{1}{\pi \Delta f}
\]  

(A.2)

Figure A-2 shows how \( \tau_{\text{input}} \) decreases as \( \Delta f \) increases.

The left side of Figure A-3 shows how the input powers at \( f_1 \) and \( f_2 \) were applied on both sides of the resonance peak. As the \( \Delta f = f_2 - f_1 \) increases, the time scale \( \tau_{\text{input}} \) decreases. If the IMD output power traces the Lorentzian resonance curve while varying \( \Delta f = f_2 - f_1 \) as shown here, \( \tau_{\text{IMD}} \leq \tau_{\text{input}} \). We can say that the response time scale of the nonlinearity in the IMD generation is faster than the modulation time scale \( \tau_{\text{input}} \). The right side shows how the input powers at \( f_1 \) and \( f_2 \) were applied
Figure A-2: Graphical representation of $\tau_{input}$ and $\tau_{IMD}$
Double sided excitation

\[ \Delta f = |f_1 - f_2| \text{ increases} \]
\[ \therefore \tau_{\text{input}} = \frac{1}{\pi \Delta f} = \frac{1}{\pi (f_2 - f_1)} \text{ decreases} \]

When IMD output power was not affected by \( \tau_{\text{input}} \), it traces the resonance curve.
\[ \therefore p_{\text{out}}^{\text{IMD}} \propto \left( P_{\text{cir}}^1 \right) \mathcal{L}(f) \] where \( \mathcal{L}(f) \) is Lorentzian distribution function.

Figure A-3: Double sided vs Single sided off-the-Resonance excitation
Step 1 and step 2: Fundamental input signal enters into resonator. 
\[ |P_{in} - P_{in}^1| = \text{constant at each off-the-resonance frequency. Therefore, Curve B is an upside down version of Curve A.} \\
Step 3: IMD generation in YBCO. \\
Step 4: IMD output signal is on resonance and exactly traces Curve A in the absence of substrate effect. Experimentally verified.

Figure A-4: Off-the Resonance excitation to generate IMD

on only one side of the resonance peak. \( \Delta f = f_2 - f_1 \) is kept constant. The IMD output power in this case traces a Lorentzian resonance curve, too.

Figure A-4 shows the various power levels in and out of the resonator. In the left side of Figure A-4, when a constant input power \( P_{in}^1 \) is swept in frequency, the circulating power \( P_{cir}^1 \) in resonator traces the familiar Lorentzian resonance curve. Therefore, to keep a constant \( P_{cir}^1 \) as \( f_0 \) is swept we must apply the input power \( P_{in}^1 \) that is the inverse version of the Lorentzian curve, which is the top curve in the right side in Figure A-4. Now, the constant circulating power \( P_{cir}^1 \) generates a constant hypothetical IMD power. In another words, the nonlinear voltage generator in equivalent circuit is constant. But, the circulating IMD power is governed by resonance phenomena. Thus, the measured output IMD power traces the resonance curve (the bottom curve in the right side).
Figure A-5: IMD measurements by off-the-resonance excitation with YBCO on LaAlO$_3$ at 5 K. For both plots, $f_0$=1.47330117 GHz, $f_{3dB} = 16.5$ KHz, and matching power = -51.6 dBm

### A.2 Effects of LaAlO$_3$ on the time response of IMD generation

Figure A-5 shows the measurement data for YBCO on LaAlO$_3$. IMD power curve closely traces the Lorentzian resonance curve since $\tau_{IMD} \leq \tau_{input}$. This experiment not only explores the response time scale $\tau_{IMD}$ of IMD generation compared to modulation time scale $\tau_{input}$, but also confirms that the IMD is indeed coming from the resonator. Other sources of IMD such as the spectrum analyzer would not show the frequency dependence that is observed.
Figure A-6: IMD measurements by off-the-resonance excitation with YBCO on MgO at 5 K.

A.3 Effects of MgO on the time response of IMD generation

Figure A-6 shows the measurement data for YBCO on MgO at 5 K. At this temperature, YBCO on MgO at low power does not trace the resonance curve since there is a slow time process in IMD generation ($\tau_{IMD} > \tau_{input}$). On the other hand, at high power, this slow time process disappears. In another word, $\tau_{IMD} \leq \tau_{input}$. So, we are able to investigate the time scale in IMD generation involving the substrate. This MgO substrate effect increases as the temperature decreases below 20 K and input power decreases. We already know that MgO is not linear at low power [58]. Our off-the-resonance excitation measurements indicate that generation of nonlinearities in MgO is a slow process.
A.4 Conclusion

Off-the-resonance excitation showed that $\tau_{IMD} \leq \tau_{input}$ as long as the substrate is LaAlO$_3$. Generation of a Lorentzian distribution curve with the same "$Q$" as resonator by the IMD output power conclusively confirmed that the only source of the IMD is the resonator. When $\tau_{IMD} > \tau_{input}$, the same method showed that IMD output power is lower than that of Lorentzian resonance curve. YBCO on MgO substrate at low temperature ($T < 20K$) and low power ($P_{out} < -30dBm$) showed this property. This indicates that generation of nonlinearities in MgO is a slow process.
Appendix B

Tables
### Dewar 1 (From 1.7 K to 4.2 K)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>*1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.3</th>
<th>2.5</th>
<th>2.7</th>
<th>3</th>
<th>4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>I (sec)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D (sec)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Heater usage (%)</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Heater capacity (W)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

### Dewar 2 (From 4.2 K to T_c)

<table>
<thead>
<tr>
<th>T</th>
<th>4.3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>80</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>600</td>
<td>600</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>13</td>
<td>27</td>
<td>68</td>
<td>16</td>
<td>21</td>
<td>35</td>
<td>44</td>
<td>33</td>
<td>43</td>
<td>12</td>
<td>34</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>W</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table B.1: Typical values of P, I, and D coefficients.
Table B.2: Off-the-excitation frequency values for input and IMD.
Appendix C

Figures
Isolator

Combiner (power divider)

Directional coupler

Figure C-1: Passive microwave devices
Figure C-2: General TEM transmission lines: cross-section does not vary along the direction of wave propagation
where \( J \) (A/m\(^2\)) : volume current
\( K \) (A/m) : surface current
\( A \) (m\(^2\)) : crosssectional area

Power dissipation per unit area

\[
P_{\text{diss}} = \frac{1}{2} \frac{l^2R}{l \cdot w} = \frac{1}{2} \frac{(K \cdot w)^2}{\sigma \cdot l \cdot w} \cdot \frac{l}{\sigma \cdot l \cdot w} = \frac{1}{2} K^2 \frac{l}{\sigma \cdot t \cdot w} = \frac{1}{2} \cdot \frac{1}{2} K^2 R_s
\]

Therefore, surface resistance \( R_s(\Omega/\square) = \frac{R}{l} \)

Figure C-3: Comparison between the resistance and the surface resistance
2-port microwave network

\[
\begin{bmatrix}
V_1^- \\
V_2^-
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix}
\begin{bmatrix}
V_1^+ \\
V_2^+
\end{bmatrix}

V_1^- = S_{11}V_1^+ + S_{12}V_2^+ \\
V_2^- = S_{21}V_1^+ + S_{22}V_2^+
\]

Transmission coefficient

\[T = S_{21} = \frac{V_2^-}{V_1^+} \mid V_r = 0 \text{ means matched load}\]

Insertion loss

\[IL = -20\log(T)\, dB = -20\log(S_{21})\, dB = 10\log\left(\frac{P_{\text{inc}}}{P_{\text{load}}}\right)\, dB\]

Figure C-4: Definition of S-parameters
\[ Q_L = \frac{f_0}{\Delta f} \]
\[ \frac{1}{Q_L} = \frac{1}{Q_0} + \frac{1}{Q_{\text{ext}1}} + \frac{1}{Q_{\text{ext}2}} \]
\[ \therefore \frac{1}{Q_L} = \frac{1}{Q_0} + \frac{\beta_1}{Q_o} + \frac{\beta_2}{Q_o} \rightarrow Q_o = Q_L(1 + \beta_1 + \beta_2) \]

**Prove** \[ Q_o = Q_L(1 + \beta_1 + \beta_2) = Q_L \frac{1}{1 - S_{21}} \]

**Definition:** Insertion loss (in dB) at resonance = \( 10 \log_{10}(P_o/P_L) \)

where, power transmission = \[
\frac{\text{power delievered to load}}{\text{available power from source}} = \frac{P_L}{P_o} = \frac{4\beta_1\beta_2}{(1 + \beta_1 + \beta_2)}
\]
\[ S_{21} = T = \left[ \frac{P_L}{P_o} \right] = \frac{2\sqrt{\beta_1\beta_2}}{(1 + \beta_1 + \beta_2)} \quad \text{--- (A)} \]

**Therefore, Insertion loss, \( IL = -20 \log |T| \) dB**

**Substitute (A) into** \[
\frac{1}{1 - S_{21}}
\]

**Then,** \[
\frac{1}{1 - S_{21}} = \frac{1}{1 \frac{2\sqrt{\beta_1\beta_2}}{(1 + \beta_1 + \beta_2)} + \frac{1}{1 + \beta_1 + \beta_2} - \frac{\sqrt{\beta_1\beta_2}}{(1 + \beta_1 + \beta_2)} + \frac{1}{1 + \beta_1 + \beta_2}} = \left( \frac{\sqrt{\beta_1\beta_2}}{(1 + \beta_1 + \beta_2)} \right)^2 = 1 + \beta_1 + \beta_2
\]

**if \( \beta_1 = \beta_2 \)

Figure C-5: Derivation of the unloaded quality factor \( Q_o \) from the loaded quality factor \( Q_L \).
Stripline Resonator (Smaller and planar)

150 μm

\[ j(x) \]

Position from Center (μm)

\[ J_{\text{max}} \sim 1.6 \times 10^8 \text{ A/cm}^2 \]

Dielectric Resonator

2" Diameter Wafer

\[ \vec{J}(r) \]

\[ \vec{H}_r(r) \]

Position from Center (mm)

\[ J_{\text{max}} \sim 4.0 \times 10^6 \text{ A/cm}^2 \]

Figure C-6: Comparison of the current density distribution between stripline resonator and dielectric resonator.
Using \( IL = \frac{P_{out}}{P_{in}} = r_v^2 \) \hspace{1cm} \text{eq (1)}

\[
IL = \frac{4Q_L^2}{Q_{coup}^2} \hspace{1cm} \text{eq (2)}
\]

by equating eq (1) and eq (2)

We have \( r_v^2 = \frac{4Q_L^2}{Q_{coup}^2} \).

Rearranging gives \( \frac{Q_L}{r_v} = \frac{Q_{coup}}{2} \approx \text{constant} \)

Figure C-7: Derivation of \( Q/r_v \approx 10^6 \) nearly constant in our resonator regardless of input power and temperature. Eq (2) was obtained from combining eq (2.17b) and eq (2.24) in p.151, Matthias Hein, High-Temperature-Superconductor Thin Films at Microwave Frequencies, Springer-Verlag, Berlin, Germany, 1999.
where $A$ is a constant

\[ A \cdot \omega^2 \cdot L^2 \cdot Q_o^2 \cdot f\left(\frac{1}{P_{\text{cir}}^1}\right) \]

\[ \frac{r_v(1-r_v)}{Q_o} \]

\[ P_{\text{out}}^{\text{IMD}} \propto \omega^2 \cdot L^2 \cdot Q_o \cdot r_v (1-r_v) \cdot f\left(\frac{1}{P_{\text{cir}}^1}\right) \]

\[ \propto \omega^2 \cdot L^2 \cdot Q_o \cdot r_v (1-r_v) \left(\frac{1}{P_{\text{cir}}^1}\right)^3 \]

Normalized \[ P_{\text{out}}^{\text{IMD}} \propto \frac{P_{\text{out}}^{\text{IMD}}}{\omega^2 \cdot Q_o \cdot r_v (1-r_v)} \]

Normalized IMD independent of $Q$, Insertion loss

Current in resonator \[ |I_{\text{cir}}|^2 = \frac{4Q_o \cdot r_v (1-r_v) P_{\text{in}}}{\pi Z_o} \]

Figure C-8: IMD generation diagram.
In combiner \( I(t) = I_1(t) + I_2(t) = A \cos \omega_1 t + B \cos \omega_2 t \)

\[
I^2(t) = (A \cos \omega_1 t + B \cos \omega_2 t)(A \cos \omega_1 t + B \cos \omega_2 t) = A^2 \cos^2 \omega_1 t + B^2 \cos^2 \omega_2 t + 2AB \cos \omega_1 t \cos \omega_2 t = A^2 \cos^2 \omega_1 t + B^2 \cos^2 \omega_2 t + AB \left( \cos(\omega_1 + \omega_2) t + \cos(\omega_1 - \omega_2) t \right)
\]

\[
I^3(t) = (A \cos \omega_1 t + B \cos \omega_2 t)(A^2 \cos^2 \omega_1 t + B^2 \cos^2 \omega_2 t + 2AB \cos \omega_1 t \cos \omega_2 t) = A^3 \cos^3 \omega_1 t + B^3 \cos^3 \omega_2 t + 3AB \left( \cos(\omega_1 + \omega_2) t \cos(\omega_1 - \omega_2) t \right)
\]

Therefore \( I^3(t) = \frac{3}{4} A^2 B \cos(2\omega_1 - \omega_2) t + \frac{3}{4} A^2 B^2 \cos(2\omega_2 - \omega_1) t + \cdots \)

from 4 and 6

from 2 and 8

Figure C-9: The derivation of IMD frequencies.
1. Measure $f_o$, $Q_L$ as a function of input power and $T$.

$$f_o(T) = f_o(T_c) \sqrt{\frac{L(\lambda(T))}{L(\lambda(T_c))}} \quad : \quad f_o = \frac{1}{2\pi \sqrt{LC}}$$

$$L(\lambda) = \frac{\mu_o}{I^2} \int (H^2 + \lambda^2 j^2(x))dS = \frac{\mu_o}{I^2} \int (H^2 + \lambda^2 j^2(x))dS$$

$$\lambda(T) = \frac{\lambda_o(T_c)}{\sqrt{1 - \left(\frac{T}{T_c}\right)^4}} \quad \text{Get } \lambda_o(T_c) \text{ and } T_c \text{ from fitting all three equations with } f_o \text{ vs } T \text{ data.}$$

2. Get $R$ from $Q_o = \omega_o L / R$ where $Q_o = Q_i \frac{1}{1 - |S_{21}|}$ and $|S_{21}| = \sqrt{\frac{P_{out}}{P_{in}}}$

Get $\sigma_2 = \frac{1}{\omega \mu_o \lambda^2}$

Get $\sigma_1$ from $\frac{1}{2} R \left[ j dS \right]^2 = \frac{1}{2} R |j|^2 = \frac{1}{2} \left( \frac{\sigma_1}{\sigma_2} \right) |j|^2 dS$

3. Using $\sigma_1, \lambda$, get $R_s = \frac{\omega^2 \mu_o^2 \sigma_2 \lambda^3}{2}$ and $X_s(T) = \omega \mu_o \lambda(T)$ from Two Fluid Model

Figure C-10: Summary of the extraction of $R_s$ and $X_s$ from $Q$ and $f_o$ vs Power and $T$. 
Appendix D

Selected Reprints
Intermodulation Distortion and Third-Harmonic Generation in YBCO Films of Varying Oxygen Content


Abstract—We have measured the nonlinear surface impedance, intermodulation distortion (IMD), and third-harmonic generation (THG) in a series of identically prepared YBaCuO films that have been carefully annealed to produce a controlled oxygen stoichiometry. These are also compared with an unannealed film. The measurements were performed using a stripline-resonator technique as a function of temperature at a fundamental frequency of 2.3 GHz; the IMD tone separation was 10 kHz. We have found that overdoping with oxygen substantially lowers the IMD relative to optimally and underdoped films. We have also observed differences in the slopes of the THG and IMD, with IMD slope of close to 2:1 while the same film shows THG slope of 3:1. A possible explanation of the differences lies in the different time scales to which IMD and THG are sensitive.

Index Terms—Intermodulation distortion, microwave surface impedance, nonlinear surface impedance, YBCO films.

I. INTRODUCTION

NONLINEAR effects are still one of the limits to more widespread application of high-\(T_c\) materials in microwave frequency devices. Two-tone intermodulation distortion (IMD) and third-harmonic generation (THG) are deleterious effects observed in all superconducting materials, especially high-\(T_c\) superconductors. In practical devices such as filters, these effects can degrade performance, even at relatively low power for filters with narrow bandwidth or very sharp skirts. The IMD and THG are believed to arise from the same nonlinear current–voltage characteristic that also leads to the nonlinear surface impedance. Understanding of their origins, however, is lacking. It has been generally accepted that measured IMD is larger than intrinsic values inferred from theoretical considerations. We present measurements of IMD and THG for some representative films from the series of films of varying oxygen content that we have been characterizing [1], [2]. We find that oxygen content strongly influences the nonlinear effects, and overdoped films perform substantially better than optimally or underdoped material.

II. FILM DEPOSITION AND ANNEALING

The 350-nm-thick single-sided epitaxial YBCO films used in this study were electron-beam coevaporated at 700 \(^\circ\)C, close to the 1:2:3 cation stoichiometry, onto commercially available 1 cm x 1 cm x 0.5 mm MgO substrates [3], [4]. The oxygenation level of the as-grown films was adjusted by sequential annealing in argon or plasma-activated oxygen, and characterized by DC magnetization measurements of the critical temperature \(T_c\) and current density \(J_c\). The doping level could be inferred from the qualitatively different dependences of \(T_c\) and \(J_c\) on the oxygen deficiency. In addition, the c-axis lattice parameter was determined by the usual 6–28 X-ray scans. While the absolute value of the c-axis parameter depends on the film deposition technique, it has been found to be a reliable indicator of relative changes of the oxygenation level [5]. The films of each of three batches were deposited simultaneously in the same run, ensuring equivalent deposition and growth conditions. The final oxygenation level of the films ranged from strongly underdoped (strongly reduced \(T_c\), low \(J_c\)) to overdoped (moderately reduced \(T_c\), high \(J_c\)). Nine samples from 3 different batches have been characterized, ranging from strongly underdoped (69 K) to strongly overdoped (85 K) including as-grown and annealed samples. The different batches have slightly different stoichiometry, and we see small differences in microwave properties from batch to batch, but the behavior is quite similar, especially the differences due to varying oxygen content. Space does not permit a full report of the findings on all films. Here we summarize the most important results on representative films.

III. MEASUREMENT TECHNIQUES

The films were patterned using standard photolithography and wet etching in dilute phosphoric acid. After patterning, they were assembled as stripline resonators with two YBCO ground planes on MgO substrates, mounted in a connectorized copper package, and characterized at microwave frequencies. Detailed resonator description can be found in [6]. For MgO substrates, the fundamental frequency of the stripline resonator is 2.3 GHz. The characterization comprises measurement of the nonlinear surface impedance \(Z_{\text{S}}(T, f, I_f)\) as a function of temperature, frequency, and \(rf\) current. The resonator is weakly-coupled so that the unloaded \(Q\) is measured directly. The same resonator is also used for the IMD and THG measurements. In the following, it will be important to note that the THG measurements, in contrast to the IMD measurements, are nonresonant. While the stripline geometry is a TEM structure, and the third-over-
tone resonance is expected at $3f_0$, three times the fundamental resonance, in practice, enough dispersion is present due to fabrication imperfections that the third overtone does not correspond to $3f_0$. The difference is large enough that the third harmonic can be considered completely nonresonant. This limits the sensitivity of the THG measurements as compared with IMD.

IV. EXPERIMENTAL RESULTS

A. Nonlinear Surface Impedance

Fig. 1 shows typical results of $R_S$ vs $I_{rf}$ for four films: overdoped, $T_c = 90.7$ K, optimally doped $T_c = 91.7$ K, slightly underdoped $T_c = 89$ K, and highly underdoped $T_c = 69$ K. The temperature of the measurements was 50 K except for the film with $T_c = 69$ K, which was measured at 40 K giving a reduced temperature $t \approx 0.57$ for all films. Clearly, underdoping increases the nonlinear $R_S$ but affects the low power linear surface impedance very little if at all. The optimally doped film and the overdoped film exhibit nearly the same nonlinearity, but the underdoped film shows a slight indication of better performance at high power. Similar results were obtained for other temperatures [1].

B. Intermodulation Distortion

The third-order intermodulation distortion was measured in the usual way, in which two closely spaced tones of equal power at frequencies $f_1$ and $f_2$ are combined and applied to the resonator. The frequencies are centered about the resonant frequency and within the 3-dB bandwidth of the resonator. In our case, the tone separation $\Delta f$ of approximately 10 kHz was used. The third-order mixing products at frequencies $2f_1 - f_2$ and $2f_2 - f_1$ are then measured in a spectrum analyzer as a function of the input power to the resonator.

Fig. 2 shows the results of the measurements for three films from a batch for which IMD measurements are available. These are from a different batch than those shown in Fig. 1, whose IMD measurements have not been analyzed as completely yet.

These films include a slightly over-doped film with $T_c = 91.8$ K, an as-grown film with near optimal doping with $T_c = 90.5$ K, and an under-doped film with $T_c = 69$ K. In this case, we have used the c-axis lattice parameter rather than $T_c$ as the measure of overdoping. Those values are 1.1702, 1.1734, and 1.1752 nm, respectively.

To present the data, we plot $P_{IMD}$, the measured output power at the third-order IMD, as a function of $P_{out}$, the output power at the fundamental frequencies $f_1$ and $f_2$. The $P_{out}$ is proportional to the circulating power at the fundamental $P_{circ}$. The usual assumption is that the IMD is proportional to the third power of $P_{circ}$. Therefore, plotting $P_{IMD}$ vs $P_{out}$ is a more meaningful way to compare different films, which might be studied using resonators with different $Q$ and different coupling.

As can be seen in Fig. 2, the IMD of the overdoped film is substantially lower than the IMD of the underdoped and as-grown film. The difference is greater than 10 dB over most of the range, and approaches 20 dB in many places. This improvement by overdoping is the first observation of a method to lower IMD by means of steps in the film fabrication process. In addition, none of the data sets show the 3:1 slope expected from simple arguments for the third order IMD. The slope lines shown on the plot are only for reference. In particular, the overdoped film does not show a well-defined slope.

To further understand the differences in IMD among these films, we have also measured the nonlinear surface impedance of the films. Fig. 3 shows the results of those measurements. These results are similar to those in Fig. 1, which came from a different batch. Although the composition of the two batches is slightly different and the films were deposited in different runs, the behavior is quite similar indicating reproducible behavior form batch to batch. Plotted in Fig. 3 on the same vertical scale is the $R_S$ and $\Delta X_S$ vs $I_{rf}$ for the films. The $R_S$ and $\Delta X_S$ values show considerable differences in nonlinearity. There is at this time no accepted detailed theory relating IMD to $Z_S$. Since presumably the IMD arises from the nonlinear $Z_S$, however, an estimate of the magnitude of the IMD can be made by comparing the corresponding coefficients of a quadratic fit to the $Z_S$ vs $I_{rf}$ measurements. The fits are shown in Fig. 3(a) and (b).
the output coupling of the resonator should also require an ad-

to first divide the PIMD

surements are enhanced

because as derived

is an overdoped film with

sentative film are shown in Fig. 4 along with measurements of

the third overtone resonance of the resonator.

The third-harmonic generation is measured

applying a CW

e -4

Output power at fundamental (dBm)

Output power at fundamental (dBm)

Fig. 4. Measurements of THG and IMD at various temperatures. The open
symbol are the IMD and the solid symbols are the THG. Legend: •, △, and
△, T = 80, 60, 40, and 20 K, respectively. The dashed line is slope = 2 and
the solid line is slope = 3, both for reference.

Fig. 5. Comparison of measured THG with the IMD reduced by the resonator
Q. Legend is the same as Fig. 4.

and the coefficients of the fits for the three films are given in the
caption. Since we assume that

$$Z_0 = Z_{00} + a I_{rf}^2$$ (1)

where

$$a = a_R + j a_x$$ (2)

and

$$V_{IMD} = I_{rf}(Z_{00} + a I_{rf}^2)$$ (3)

the third-order IMD power is proportional to $a^2$. The difference in the quadratic coefficients of the fits to the reactance data in
Fig. 3 for the overdoped and as-grown films is approximately
the same as the difference in IMD power that is observed experimentally in Fig. 2. The IMD difference is greater than 20 dB. However, more detailed models are required to make a convic-

C. Third-Harmonic Generation

The third-harmonic generation is measured by applying a CW

tone at the center frequency $f_0$ of the resonator and measuring
the power out at both $f_0$ and $3f_0$. As noted above, the frequency of the third harmonic does not correspond to the frequency of the third overtone resonance of the resonator.

Measurements of THG at a series of temperatures on a repre-

sentative film are shown in Fig. 4 along with measurements of the IMD for the same film at the same temperatures. This film
is an overdoped film with $T_C = 84$ K. As seen, the THG measurements are much less sensitive than the IMD measurements, because as derived by Dahm and Scalapino [7], the IMD measurements are enhanced by the $Q$ of the resonator. Thus, to make a direct comparison between the THG and IMD, it is necessary to first divide the $P_{IMD}$ by the $Q$ of the resonator. In principle, the output coupling of the resonator should also require an ad-

justment for the different frequencies. This is a small adjustment for the weakly coupled resonator and is neglected here.

The result of dividing the IMD by $Q$ is shown in Fig. 5. While the IMD and THG are now comparable, agreement is nonetheless absent. The reduced IMD does show similar temperature dependence to the THG in that the measurements of IMD at $T = 80$ K show an increase which is not evident in the raw data of Fig. 4. The IMD seems to be higher than the THG for all temperatures, and more importantly, the IMD at $T \leq 60$ K exhibits a slope of approximately two while the THG for all temperatures shows a slope of approximately three. The dashed line in the figure has a slope of two to indicate the trend of the data. The solid line has a slope of three. While neither IMD nor THG shows exactly slope two or three, respectively, the data do show a disparity in slope. While not a detailed explanation, we suggest that the source of the disparity lies in the different time scales that are relevant to the two signals. The IMD is gov-

ered by processes on the time scale of the difference frequency

96
of the two input tones, in this case approximately 10 kHz. The third-harmonic generation on the other hand requires processes that respond to the frequency of the third harmonic, which is 6.9 GHz in this case.

As has been suggested by Willemsen et al. [8], a slope of two for the IMD dependence on power can be explained by a nonlinear impedance of the form

\[ Z_s = Z_{s0} + a|J_{f}| \] (4)

rather than the usual form of

\[ Z_s = Z_{s0} + aJ_{f}^2 \] (5)

which produces the usual slope-three dependence. As we have noted previously [2] the slope of the IMD is correlated to the oxygen content of these films with overdoping tending to produce slope close to two and underdoping and optimum producing slopes close to three. This is an experimental observation without any explanation at this time, suggesting that a simple power law \( I-V \) characteristic is not sufficient to describe the IMD in YBaCuO.

V. CONCLUSION

The most important finding of this investigation so far is that overdoping reduces the nonlinearities when compared to identical films with optimal doping or underdoping. This to our knowledge is the first indication of a controllable parameter that can be used to reduce the nonlinearities. There is as yet no theoretical explanation why overdoping reduces nonlinearities and especially IMD. We have, however, previously shown [1] that impurities strongly enhance nonlinear effects. We suggest that the enhanced nonlinearities from impurities result from crystalline disorder at the atomic scale, and oxygen deficiency plays a similar role to the impurities. Thus, it may be that full oxygen content (overdoping) gives better crystalline order and thus lower nonlinearities. Clearly further study of the effects of overdoping is required.

We have also observed substantial differences between IMD and THG in the same overdoped film. After normalization for the resonator \( Q \) the level of the IMD is higher than the THG and the slope of the IMD vs output power is close to 2:1 while the THG slope is close to 3:1. These differences can possibly be attributed to the different time scales that govern the two processes.

ACKNOWLEDGMENT

The authors would like to thank R. Heath and D. Elliner for film growth and annealing, D. Baker for device fabrication, R. P. Konieszka for device assembly, and G. Fitch for programming.

REFERENCES

Nonlinear Microwave Response of Epitaxial YBaCuO Films of Varying Oxygen Content on MgO Substrates


Received September 30, 2002

We have investigated the nonlinear microwave properties of electron-beam coevaporated YBa$_2$Cu$_3$O$_{7-x}$ films on MgO, using stripline resonators at 2.3 GHz and temperatures 1.7-80 K. The oxygen content of the films ranged from strongly underdoped to overdoped. Above 20 K, the nonlinear response of the resonators was dominated by the superconductor. We could establish clear correlations between the nonlinear surface resistance, two-tone intermodulation (IMD), and oxygen content of the films, which indicate that the superconducting order parameter is important for the nonlinearities. A power-law representation of the nonlinear current-voltage relation would not be appropriate to explain our results phenomenologically.

Below 20 K, the dielectric loss tangent of MgO dominated the nonlinear response of the resonators. With increasing power, the dissipation losses decreased markedly, accompanied by enhanced IMD. The surface reactance passed through a shallow minimum at about 5 K, independent of power. We attribute these effects to resonant absorption by impurity states in MgO.

KEY WORDS: surface impedance; frequency intermodulation; dielectric loss tangent; high-temperature superconductor.

1. INTRODUCTION

While passive high-temperature superconductor (HTS) microwave devices are finding applications in systems for wireless communication, signal recognition, and medical diagnostics [1], the nonlinear surface impedance $Z_s(I_{dc})$ and third-order intermodulation distortion (IMD) limit wider application. This limitation applies especially to resonant devices in which the oscillating power $P_{osc}$ is high, due to, e.g., enhanced group delay, high quality factors, or high operating power [2]. Understanding and controlling the nonlinear microwave response of HTS films is, therefore, important for narrowband, sharp cutoff, receive filters, which are susceptible to intermodulation, and high-power transmit filters, which suffer from power-dependent absorption. The sources of nonlinear $Z_s$ and IMD, while related, are not well understood at present. In addition, the possible contribution of the substrates to the nonlinear response has been widely neglected until recently [3], although the dielectric loss tangent and permittivity are important parameters for the design and operation of compact microwave devices [2,4].

We have investigated the nonlinear surface impedance $Z_s(I_{dc})$ and IMD of epitaxial YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) films of different oxygen deficiency $x$, using stripline resonators at ~2.3 GHz and temperatures 1.7-80 K. We have established clear correlations between the onset of nonlinear $R_s$, the dependence of the IMD power $P_{IMD}$ on $P_{osc}$, and the oxygen content of the YBCO films. The results help to understand the nonlinear response theoretically, by pointing to quasiparticle scattering from defects and pair breaking. In addition, we have identified a nonlinear loss mechanism in MgO, which becomes prominent below about 20 K. This result may have important implications for the fabrication and use of MgO, which has become the substrate material of choice for HTS microwave applications.

1Department of RFQ Microwave Techniques, Technical University of Ilmenau, Germany.
2QinetiQ Malvern, Worcestershire, United Kingdom.
3M. I. T. Lincoln Laboratory, Lexington, Massachusetts.
2. EXPERIMENTAL TECHNIQUE

2.1. Film Preparation

The 350-nm-thick single-sided epitaxial YBCO films were electron-beam coevaporated at 690°C, close to the 1:2:3 cation stoichiometry, onto commercially available 1 cm x 1 cm x 0.5 mm MgO substrates [5,6]. The oxygenation level of the As-grown films was adjusted by sequential annealing in argon or plasma-activated oxygen, and characterized by DC magnetization measurements of the critical temperature $T_c$ and current density $J_c$. The relative doping level could be inferred from the qualitatively different dependences of $T_c$ and $J_c$ on the oxygen deficiency $x$. In addition, the $c$-axis lattice parameter was determined by the usual $\theta$--20 X-ray scans. While the $c$-axis parameter depends on the substrate and film deposition technique, it has been found to be a reliable indicator of relative changes of the oxygenation level under otherwise unchanged deposition conditions [7]. The data obtained for nine YBCO films from three batches are summarized in Table I. The films of each batch were deposited simultaneously in the same run, ensuring equivalent deposition and growth conditions. The final oxygenation of the films was found to depend on film morphology and the annealing history, ranged from strongly underdoped (strongly reduced $T_c$, low $J_c$) to overdoped (moderately reduced $T_c$, high $J_c$).

To separate dissipation losses in the superconductor from losses in the dielectric substrate, 400-nm-thick Nb films were fabricated for reference measurements [3]. These films were magnetron sputtered at ambient temperature onto 2-inch-diameter MgO wafers [8] and subsequently diced into 1 cm x 1 cm pieces.

2.2. Microwave Measurements

After patterning the superconductor films into 150-μm-wide meander lines by wet chemical etching, they were clamped with two equivalent ground planes to form a stripline resonator [9]. The quality factor $Q$ and resonant frequency were measured at the fundamental resonance $f = \omega/2\pi = 2.27$ GHz for input power levels $P_{in} = -85 - +30$ dBm. For the fixed geometry of the input and output coupling capacitors, this power range corresponds to electric fields between the center strip and ground planes of $E_{ef} = 0.5 - 5 \times 10^5$ V/m, or to total microwave currents flowing along the superconducting strip of $I_f = 3 \times 10^{-6}$-3 A.

The effective surface resistance derived from the unloaded quality factor comprises losses in the superconductor and the dielectric and is given by [2]:

$$R_{ef} = R_{s} + G \times \tan \delta,$$

where $R_{s}$ is the surface resistance of the superconductor, $\tan \delta$ the loss tangent of the dielectric, and $G$ a geometry factor, which depends on the ratio of penetration depth to film thickness [9,10] and, hence, weakly on temperature ($G \sim 0.8\Omega$ is typical for $T < T_c/2$). Changes of the effective reactance are similarly composed of changes of the penetration depth and dielectric permittivity [2]:

$$\Delta X_{eff} = \Delta X_{s} + G \times \Delta \varepsilon / \varepsilon,$$

where $\Delta X_{s} = \mu_0 \omega \Delta \lambda$, $\lambda$ is the temperature-dependent superconducting penetration depth and $\varepsilon$ the dielectric permittivity of the substrate.

IMD measurements with a noise floor of -130 dBm were performed with two tones of equal input power, separated by 10 KHz. This frequency spacing approached the full width at half maximum

---

**Table I. Overview of the YBaCuO Films on MgO**

<table>
<thead>
<tr>
<th>Sample batch/ID</th>
<th>$T_c$ (K)$^a$</th>
<th>$J_c$(60 K) (MA/cm²)</th>
<th>$J_c$(50 K) (MA/cm²)</th>
<th>$\Delta c$ (pm)</th>
<th>Oxygen doping level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>90.45</td>
<td>2.67</td>
<td>4.23</td>
<td>11.5</td>
<td>As-grown</td>
</tr>
<tr>
<td>1C</td>
<td>90.20</td>
<td>2.23</td>
<td>3.88</td>
<td>11.6</td>
<td>under</td>
</tr>
<tr>
<td>1D</td>
<td>89.00</td>
<td>---</td>
<td>---</td>
<td>10.3</td>
<td>~optimum</td>
</tr>
<tr>
<td>2A</td>
<td>91.74</td>
<td>11.40</td>
<td>16.20</td>
<td>10.3</td>
<td>~optimum</td>
</tr>
<tr>
<td>2B</td>
<td>90.68</td>
<td>5.82</td>
<td>8.62</td>
<td>12.5</td>
<td>under</td>
</tr>
<tr>
<td>2C</td>
<td>84.18</td>
<td>10.40</td>
<td>16.85</td>
<td>8.6</td>
<td>over</td>
</tr>
<tr>
<td>3A</td>
<td>90.54</td>
<td>2.40</td>
<td>4.01</td>
<td>13.4</td>
<td>As-grown</td>
</tr>
<tr>
<td>3C</td>
<td>69.3</td>
<td>0.18</td>
<td>0.81</td>
<td>15.2</td>
<td>under</td>
</tr>
<tr>
<td>3D</td>
<td>91.80</td>
<td>8.10</td>
<td>12.00</td>
<td>10.2</td>
<td>slightly over</td>
</tr>
</tbody>
</table>

$^aT_c$ = critical temperature, $J_c$ = critical current density at 60 and 50 K, $\Delta c$ = deviation of the c-axis lattice parameter from the value 1.16 nm. All but the As-grown films were postannealed, in successive steps, in argon or plasma-activated oxygen. The oxygenation level of the As-grown films was near optimum doping.
Nonlinear Microwave Response of YBaCuO on MgO

of the resonance for the highest measured Q-values, but it is considered still narrow enough to provide a reliable qualitative picture of the IMD behavior. More accurate modeling of the nonlinear response including the bandpass characteristic of the resonator is in progress.

3. NONLINEAR MICROWAVE RESPONSE OF YBCO (T ≥ 20 K)

3.1. Power Handling and Oxygenation Level

Figure 1 compares the dependence of the surface resistance on the total RF current for three YBCO films with different oxygen deficiencies, all from batch #3, at two representative temperatures T = 20 K and 50 K. The plots show how the onset for a current-dependent \( R_s(I_{rf}) \) moves to lower currents, and the steepness of \( R_s(I_{rf}) \) increases, as the films become more oxygen deficient. The steep onset of the nonlinear response is displayed on logarithmic scales in panel b. This plot also illustrates the high quality of the films studied. The surface resistance of, e.g., the overdoped film #3D at 20 K remains constant at \( R_s \approx 4 \mu\Omega \) up to \( I_{rf} \approx 1 \) A, which corresponds to a magnetic flux density of about 30 mT. This value is only about a factor of 2.5 below the lower critical field expected for bulk YBCO with the RF currents flowing entirely within the Cu–O planes [2].

The RF current dependence of the surface reactance, \( \Delta X_s(I_{rf}) \), displayed qualitatively the same behaviour as the surface resistance, with the differential loss tangent \( r \equiv (\partial R_s/\partial I_{rf})/(\partial X_s/\partial I_{rf}) \) approaching at high power constant values between about 1 and 3. The constancy of \( r \) indicates that both \( R_s \) and \( X_s \) follow the same functional dependence on \( I_{rf} \) at sufficiently high power.

The observed correlation between oxygen deficiency and nonlinear surface impedance agrees with the common expectation that fully oxygenated films display superior electronic performance, and has accordingly been speculated for some time. However, due to the complicated interdependence of deposition technique, film morphology, and oxygenation level, it has neither been studied systematically nor observed until now.

3.2. Scaling of the Power Handling, Critical RF Current

In order to explore the nature of the nonlinear mechanism in greater detail, it is necessary to distinguish between qualitative changes of the \( R_s(I_{rf}) \)-dependence brought about by different oxygenation levels, and mere changes of the current scales, on which the nonlinearities occur. For this purpose, Fig. 2 (a) shows typical \( R_s(I_{rf}) \)-data for a set of temperatures. Figure 2b shows the same data after rescaling \( I_{rf} \) at every temperature such that the scaled \( R_s(I_{rf}) \)-curves merged onto, say, the data for \( T = 20 \) K. The obvious success of this procedure demonstrates that the temperature dependence of the nonlinear \( Z_s \) is caused by that of the scaling current alone. The data in Fig. 2b are consistent with a quadratic current dependence, e.g., in the form of:

\[
R_s(I_{rf}, T) = R_{s0}(T) \quad \text{for } I_{rf} < I_0, \quad \text{and} \quad (3)
\]

\[
R_s(I_{rf}, T) = R_{s0}(T) + \alpha \times \left[ \frac{I_{rf}}{I_0(T)} - 1 \right]^2 \quad \text{for } I_{rf} \geq I_0. \quad (4)
\]
Fig. 2. (a) RF-current dependence of $R_s$ for sample #2B at $f = 2.27$ GHz and various temperatures as indicated (different symbols and interpolation curves). (b) Same data after scaling $I_{RF}$ such that all curves merge with the results for $T = 20$ K. The solid line represents the quadratic fit of Eq. (4).

where $\alpha$ is a constant and $I_0$ defines the appropriate current scale. The two parts of Eq. (3) emphasize the existence of a threshold current, below which $R_s(I_{RF})$ is constant. We note that at high currents $I_{RF} > I_0$ Eq. (3) is consistent with the simple quadratic approach $R_s = R_0 \times (1 + bR \times I_{RF}^2)$ used in previous work [11]. The current-scaling of the $R_s(I_{RF})$-dependences of all other samples listed in Table I worked equally well, so that we can exclude functional changes of the $Z_s(I_{RF})$-dependence for varying oxygen deficiency $x$.

So far, the discussion has focused on changes of the current scale relative to that at 20 K. To derive absolute values for the scaling current, one has to define an appropriate criterion. We have found the following, implicit, definition useful for both low and high-$T_c$ superconductors [12]:

$$R_s(I_{crit}) = 2.5 \times R_0(I_{RF} \rightarrow 0).$$  \hspace{1cm} (5)

Using $I_{crit}$ as a criterion for a critical RF current is more versatile than using $I_0$ in Eq. (4). Equation (5) includes a possible variation of the surface resistance

at low currents, $I_{RF} < I_0$, and combines the two parameters $\alpha$ and $I_0$ into the single parameter $I_{crit}$. There are obviously more possibilities to define a characteristic current scale, which, however, will not alter the conclusions to be drawn.

Figure 3 displays the results for $I_{crit}$ versus reduced temperature $t = T/T_c$, for all films studied. The properties of the samples discussed so far provide insufficient information to relate the absolute $I_{crit}(0)$-values to the film preparation. However, almost all curves have in common a nearly linear temperature dependence of $I_{crit}$ for $T/T_c > 0.5$. Such a behaviour is expected and was observed for various types of grainboundary Josephson junctions, where the coupling between the superconducting electrodes is believed to occur via localized states [13,14]. However, in view of the high quality of the films (high $J_c$-values and good power handling), we don't expect granular effects to be relevant in our samples. Another, more likely, explanation is based on the observation of a linear temperature dependence of the magnetic field at which flux penetrated a superconducting stripline [15]. We are thus led to speculate that the RF critical current $I_{crit}$ could be related to the DC critical current density $J_c$. This is indeed the case, as illustrated in more detail in the following section.

3.3. Correlations Between DC and RF Nonlinearities

The critical current density $J_c$ is a key parameter to describe the nonlinear current-voltage characteristics (IVC) of superconductors at DC or low
Fig. 4. Typical power dependence of the effective surface resistance (circles, dashed interpolation), change of surface reactance (squares, dotted), and IMD signal (diamonds, solid) for YBCO on MgO (sample #2B) at $f = 2.3$ GHz and $T = 5$ K.

frequencies. We have therefore examined our microwave data for correlations between characteristic RF parameters and $J_c$. The first parameter considered is the critical RF current introduced by Eq. (5). The other two parameters are derived from our results for IMD as follows:

1. The third-order intercept (TOI) quantifies the power level at which the extrapolated IMD signal equals the input power. To avoid complications related to the geometry of our resonators and the nonlinear compression of $P_{\text{out}}(P_{\text{in}})$, we have derived TOI-data from the power measured at the two symmetric third-order IMD-sidebands, $P_{\text{IMD}}$, versus output power at the fundamental tone, $P_{\text{out}}$. We note that $P_{\text{out}}$ is proportional to the oscillating power. Under certain experimental conditions, the measured $P_{\text{IMD}}(P_{\text{out}})$-curves were not simple straight lines but displayed curvature (for an example, see Fig. 4 and related discussion in Sec. 4). The TOI was determined in such cases from the asymptotic behavior of $P_{\text{IMD}}$ at high power levels (e.g., above $-20$ dB m in Fig. 4). TOI values could be derived graphically or numerically, according to the condition $P_{\text{IMD}} = P_{\text{out}}$, using the entire set of IMD data, or just one point on the $P_{\text{IMD}}(P_{\text{out}})$-curve and the slope at that point. Both techniques yielded almost identical results (filled and open symbols in Fig. 5b), confirming the consistency of our analysis. If the IV-relation effective at microwave frequencies were described by a power series expansion, the TOI (in dB m) should scale logarithmically with the square of the characteristic current $[2,16]$.

2. The slope $m$ of the $P_{\text{IMD}}(P_{\text{out}})$-curves, plotted on logarithmic scales, measures the exponent of the functional dependence of $P_{\text{IMD}}$ on $P_{\text{out}}$, $m = \partial \log P_{\text{IMD}} / \partial \log P_{\text{out}}$. In case of a power-series representation of the IVC, third-order effects like frequency intermodulation or harmonic generation lead to a constant slope, $m = 3$.

Fig. 5. Correlation between the DC critical current density $J_c(50 \text{ K})$ and the RF critical current $J_{\text{crit}}(50 \text{ K})$ (panel (a)), high-power third-order intercept TOI(20 K) (panel (b)), and high-power IMD slope (40 K) (panel (c)) for the samples indicated. The TOI-data were determined numerically (filled symbols) and graphically (open symbols) as explained in Sec. 3.3. The dashed and dotted lines illustrate a linear and logarithmic relation between TOI and $J_c(50 \text{ K})$, respectively.
Figure 5 summarizes our results for \( I_{\text{eff}} (50 \text{ K}) \), TOI(20 K), and \( m(40 \text{ K}) \) versus the critical DC current density \( J_c(50 \text{ K}) \). The different temperatures at which these parameters were evaluated are due to experimental considerations. They do not affect our conclusions, especially since we don’t attempt a quantitative analysis of our results. The diagrams of Fig. 5 have two features in common: 1. We observe clear correlations between all three RF parameters and \( J_c \), indicating that the physical significance of \( J_c \) persists well into the microwave region. 2. The samples of batch #1 fall apart from the general trends. This important result proves that good RF performance and good DC performance are not equivalent. We attribute the out-of-sequence results for batch #1 to the different annealing parameters compared to those used for batches #2 and #3. The annealing temperatures for the films of batch #1 remained below 400°C, and the final oxygenation level was approached from the as-grown state. In contrast, the films of batches #2 and #3 were sequentially de- and re-oxygenated by annealing in argon and activated oxygen, at temperatures up to 540°C. These differences certainly affect the density and homogeneity of oxygen vacancies, and hence the local variation of the superconducting order parameter. We are presently trying to reproduce the results for batch #1 with a new set of films, to achieve deeper insight into the mechanisms which are necessary to achieve good RF performance.

While the \( I_{\text{eff}}-J_c \)-correlation (top panel of Fig. 5) conforms to our intuitive expectation, the TOI-\( J_c \)-correlation (middle panel) is quite surprising. The TOI, expressed in units of dBm, should depend on the logarithm of \( J_c \) (dotted curve) if the IV-relation were given by a power-series. This is in contrast with the linear dependence of the TOI on \( J_c \) we observe (dashed curve). Our result implies that a simple power-series expansion with real coefficients is not sufficient to describe the nonlinear microwave response of HTS films. A possible solution of this dilemma is the assumption of an exponential IV-dependence like \( V_d(I_d) \propto \exp(I_d/I_{\text{scale}}) \), which could be associated with flux creep. However, such a speculation lacks theoretical justification at present. More sophisticated models of the IMD behavior are also under development.

Another surprising result is the systematic variation of the slope \( m \) with \( J_c \) (bottom panel of Fig. 5), which indicates that the IMD slope decreases for increasing sample quality. Such a variation of \( m \) is, again, not compatible with an IV-relation given by a power-series. Furthermore, slopes \( m > 3 \) seem to be possible (#3A and #3C), while the most strongly overdoped film #2C shows \( m \sim 2 \). A quadratic power dependence of \( R_{\text{IMD}} \) was previously observed for TlBaCaCuO films [17]. Such a behavior can result, theoretically, from a nonlinear surface impedance that depends on the modulus of the RF current, in sharp contrast to the quadratic behavior discussed in Sec. 3.2 [17,18]. The only physical mechanism known at present, which could lead to \( \Delta Z_e(I_d) \propto |I_d| \), is the Yip-Sauls regime of \( d \)-wave superconductors, which can be experimentally accessed only at very low temperatures [18]. The persistence of \( m < 3 \) up to such high temperatures like 40 K is presently not understood but definitely deserves further attention.

4. NONLINEAR MICROWAVE RESPONSE OF MgO (T < 20 K)

In Sec. 3, \( T = 20 \text{ K} \) was the lowest temperature analyzed. The reason for this choice is the occurrence of unexpected microwave properties below 20 K, which are associated with the nonlinear dielectric microwave impedance of MgO [3,19],

\[
Z_{\text{eff}} = \sqrt{\frac{\mu_0}{\epsilon_0 \sigma_r}} \left( 1 + \frac{1}{2} i \tan \delta \right). \tag{6}
\]

As a consequence, the effective surface impedance \( Z_{\text{eff}} \) according to Eqs. (1) and (2), can no longer be identified with \( Z_e \) of the superconductor, as in the previous section. Since our first observation and tentative interpretation in [3], we have refined our analysis and complemented by new results, as described in the following three subsections.

4.1. Temperature Dependence

Figure 6 summarizes typical results for the temperature dependence of \( Z_{\text{eff}} \), measured for YBCO films on MgO. The different symbols represent the asymptotic behavior observed at very low and moderate power levels, respectively, as illustrated in more detail by the circles in Fig. 4. \( R_{\text{eff}}(T) \) decreased at the higher power and approached 2 \( \mu \Omega \). Expecting \( R_c \geq 1 \mu \Omega \), for high-quality epitaxial YBCO films [2], we estimate from the \( R_{\text{eff}}(20 \text{ K}) \)-value an upper-limit for the loss tangent of about \( 10^{-6} \), consistent with measured tan \( \delta \)-data for MgO at 20 K [20,21]. At very low power, \( R_{\text{eff}}(T) \) increased and became dominated by dielectric losses. This could be confirmed by the very similar temperature and power dependences of \( R_{\text{eff}} \) for Nb on MgO (see [3] and Figs. 7–9 below). Such an agreement for the two totally different
superconductors on MgO, and the absence of this nonlinear behavior for other substrates like sapphire and LaAlO$_3$, proves that our observations are caused by the dielectric response of MgO. Using $R_s \sim 2 \, \mu \Omega$ for YBCO and the effective value, $R_{\text{eff}} \sim 20 \, \mu \Omega$, we derive $\tan \delta(1.7 \, \text{K}) \approx 2 \times 10^{-5}$, which is about 20 times above $\tan \delta(20 \, \text{K})$ (c.f., Fig. 7a).

Complementary to the loss tangent, the dielectric permittivity, monitored by changes of the effective surface reactance $\Delta X_{\text{eff}}(T)$, displayed a shallow minimum at $T \sim 5 \, \text{K}$, but remained independent of power up to moderate power levels (Fig. 6b and squares in Fig. 4). Reflecting again the growing influence of $Z_d(T)$ on $Z_{\text{eff}}(T)$ at low temperatures, the increase of $\Delta X_{\text{eff}}(T)$ in Fig. 6 can be entirely associated with the dielectric permittivity of MgO. Such an extremal behavior must not be confused with anomalous effects in the cuprate superconductor, which could be misinterpreted, e.g., as an indication of Andreev bound states at interfaces in $d$-wave superconductors [22].
4.2. Power Dependence

Figure 4 compares typical results for the power dependence of $R_{\text{eff}}, \Delta X_{\text{eff}},$ and $P_{\text{IMD}}$ at $T = 5$ K, here plotted versus input power. The $R_{\text{eff}}$ decreased markedly as $P_{\text{in}}$ increased, for the given resonator geometry and coupling above $-60$ dBm, reached a plateau around $-40$ dBm, and increased again at around $-10$ dBm. The difference between the low-power value of $R_{\text{eff}}$ and its minimum increased strongly for decreasing temperature, in accordance with Fig. 6a. In contrast to the resistance, $\Delta X_{\text{eff}}$ was independent of power at low power and increased smoothly above $-30$ dBm. The increase of $R_{\text{eff}}$ and $\Delta X_{\text{eff}}$ in the power range above $-10$ dBm is attributed to the nonlinear response of YBCO (Sec. 3). The IMD signal passed through a plateau in the region where $R_{\text{eff}}$ decreased, and rose again more steeply where both $X_{\text{eff}}$ and $R_{\text{eff}}$ increased. It is worth noting that the frequency intermodulation, caused by the nonlinear reactance. Obviously, the dielectric microwave impedance of MgO induces enhanced frequency intermodulation, which could strongly degrade the performance of microwave devices.

4.3. Theoretical Description and Comparison Between YBCO/MgO and Nb/MgO

The unique temperature and power dependences of the dissipative and reactive response of MgO (Figs. 6 and 4) helped us to identify the underlying mechanism. Very similar features were observed for amorphous glasses and highly disordered crystalline solids in similar ranges of frequency and temperature [23, 24]. The observed behavior was attributed to tunneling of atoms or molecules between nearly equivalent positions in the solid. This scientific area is subject to ongoing experimental and theoretical research [25]. Nevertheless, many features can be understood in the framework of a simple quantum mechanical two-level system. Phenomenologically, this model has similarities with the double-well potential underlying the Debye equations for dielectric relaxation [3, 26].

The major difference between the two models is the resonant character of the transitions in the former, in contrast to the relaxational character in the latter. Dielectric resonances of isolated defects usually occur in the sub-mm wave range or at even higher frequencies, but recent theoretical studies have shown that clustering of defects can reduce the resonant frequencies very strongly, so that they may even reach into the microwave range [27].

The temperature dependence of the loss tangent can be easily derived from Fermi’s golden rule. The temperature dependence of the dielectric permittivity, then, follows from that of $\tan \delta$ through the Kramers-Kronig-relation, which requires additional information on the frequency range over which resonances occur. Different results have to be expected for solids with rather dilute defects, where the resonances remain sharp and limited to a well-defined frequency interval, and for highly disordered systems. According to Ref. [24], one gets for resonant absorption

$$\tan \delta(T) = \frac{\pi}{\varepsilon_0 \varepsilon_r} \times n_d \mu^2 \times \tanh \left( \frac{hf}{2kT} \right)$$

for the dielectric loss tangent at low intensities, and

$$\frac{\Delta \varepsilon_r(T)}{\varepsilon_r} = \frac{\varepsilon_r(T) - \varepsilon_r(T_0)}{\varepsilon_r(T_0)} = \frac{2}{\varepsilon_0 \varepsilon_r} \times n_d \mu^2 \times \ln \left( \frac{T}{T_0} \right)$$
Nonlinear Microwave Response of YBaCuO on MgO

for the fractional change of the permittivity in highly disordered systems, with $T_0$ a reference temperature. In Eqs. (7) and (8), $n_d$ and $\mu$ describe the density and the electric dipole moment of the defects. The frequency dependences of $\tan \delta$ and $\Delta \varepsilon / \varepsilon_r$ will be different if relaxation effects have to be taken into account additionally.

The two-level model also explains in a natural way the anomalous power dependence, as resulting from saturation effects due to enhanced population of the higher energy level for increasing intensity of the microwave field. To derive the power dependence of the complex permittivity requires a more sophisticated mathematical framework, which bears similarities with the Bloch-equations for a spin-1/2-particle in a magnetic field [23]:

$$\tan \delta(S_{rf}) = \tan \delta(0) \times \left(1 + \frac{S_{rf}}{S_0}\right)^{-1/2}, \quad (9)$$

where $S_{rf}$ denotes the intensity of the RF field, $S_{rf} \propto E_{rf}^2$, and the real part of the permittivity is independent of power. The threshold intensity $S_0$ depends on $\mu$ but not on $n_d$. It bears also information on the characteristic relaxation times of the excited defect states [24]. In Ref. [3], the interpretation of the anomalous power dependence of $\tan \delta$ in terms of a microwave field-dependent dielectric relaxation time was obviously oversimplified. Equation (9) provides a more accurate explanation, connecting the experimental data now with a microscopic mechanism.

We compare our experimental results with the theoretical expectation in Figs. 7 and 8. In Fig. 7a we have plotted the difference between the two curves shown in Fig. 6a, normalized by $G$, versus the temperature function expected from Eq. (7). We have also included in this figure our results for an Nb film on MgO (diamonds). Both data sets are consistent with the expected linear relationship. The similar slopes indicate very similar properties, $n_d \mu^2$, of the MgO substrates, although these were bought from different suppliers. Fig. 7b shows the corresponding result for the fractional variation of $\varepsilon_r$ expected from Eq. (8). The data derived for the YBCO film were not corrected for changes of the superconducting penetration depth, since $\lambda(T)$ can be safely assumed to be constant below 20 K. The situation is different for Nb with $T_c = 9.2$ K, where we accounted for $\Delta \varepsilon(T)$ according to BCS theory. As for the loss tangent, we find very similar results for both superconductors. The slopes in Figs. 7a and 7b, which should differ for a highly disordered system by a factor of $-\pi/2 \sim -1.6$, differ by $-5.5 \times 10^{-4}/6.5 \times 10^{-5} \sim -8.5$. The difference of a factor of $\sim 5$ is attributed to the nature of the defects in a highly crystalline material like MgO.

A typical measured power dependence of $\tan \delta$ is compared with Eq. (9) in Fig. 8 for a YBCO film and an Nb film, both on MgO. The symbols represent the measured data, the curves denote the result of a single-parameter fit

$$R_{\text{eff}}(E_0) = R_0 + \Delta R_{\text{eff}} \times \left(1 + \frac{E_{\text{rf}}^2}{E_0^2}\right)^{-1/2}, \quad (10)$$

which is equivalent to Eq. (9). The parameters $R_0$ and $\Delta R_{\text{eff}}$ are given by the experimental data, while $E_0$ can be varied within a narrow range to optimize the fit. The data in Fig. 8 indicate similar $E_0$-values for the two types of films on MgO substrates used, which implies similar types of defects. The $\Delta R_{\text{eff}}$-values for Nb/MgO seem a bit higher than for YBCO/MgO, which could hint for a larger defect density in the substrate.

Finally, in Fig. 9, we summarize the temperature dependences of $\Delta R_{\text{eff}}$ (panel a) and $E_0$ (panel b) for all samples studied. Figure 9a illustrates the increase of the loss tangent for decreasing temperatures. All samples lead to comparably high and temperature dependent $\Delta R_{\text{eff}}$-values, except for two films of batch #1 (C and D), and the as-grown film #3A. It is tempting to attribute this behavior to the different annealing schedules (see discussion in Sec. 3.3), as these can well change the density of defects in MgO. Possible candidate defects were identified in Ref. [19] to be OH$^-$-ions, which can be released from grain boundaries upon heating. Further studies are planned to verify our assumption.

The temperature variation of $E_0$ displayed in Fig. 9b results mainly from the temperature-dependent relaxation times of the defects in MgO. There is only one exceptional result among all others, namely for #1B. The reason for this peculiarity is not known at present. Complementary experiments like specific-heat measurements are required to extract more detailed information on the defect density and, in turn [24], the relaxation times of the defects in MgO that cause the nonlinearities.

5. CONCLUSIONS

We have investigated the nonlinear microwave properties of electron-beam coevaporated YBa$_2$Cu$_3$O$_{7-\delta}$ films on MgO of varying oxygen content, at 2.3 GHz and temperatures 1.7–80 K. Above
20 K, the nonlinear response of the resonators was dominated by the HTS films for both substrate materials. We have established clear correlations between the onset of nonlinear $R_n$, the dependence of $P_{\text{IMD}}$ on the oscillating power $P_{\text{osc}}$, and the oxygen deficiency $x$ of the YBCO films. With increasing $x$, the critical currents and third-order intercepts decreased, while the exponent of the power-law relation between $P_{\text{IMD}}$ and $P_{\text{osc}}$ increased from 2 to 3. This observation defines a route to optimize the linear response of HTS films for microwave applications. Beside overdoping by adjusting the oxygenation level, Ca-doping could be another promising approach, which is presently under investigation (see also [28]).

In MgO, at temperatures below 20 K, the dielectric loss tangent was found to dominate the nonlinear response of the resonators. The dissipation losses decreased with increasing power by up to one order of magnitude. This anomaly was accompanied by enhanced IMD. The surface reactance passed through a shallow minimum at about 5 K, but remained independent of power. The results were very similar for all investigated YBaCuO films as well as for Nb films on MgO made for reference. We attribute these effects to resonant absorption by impurity states in MgO. While proper identification of the impurities is lacking at present, OH$^-$-ions are considered the most likely candidates, since they are greatly abundant in melt-fused MgO.

ACKNOWLEDGMENTS

We gratefully acknowledge valuable contributions from J. Derov, P. Droste, T. Dahm, C. Enss, B. Henderson, S. Hunklinger, K. Peters, and D. Seron. The work at QinetiQ was supported by the MOD (UK). The work at Lincoln Laboratory was supported by the AFOSR (U.S.A.). The work at Wuppertal was supported by the European Office of Aerospace Research and Development, AFOSR/AFRL, under Contract No. F61775-01-WE033.

REFERENCES

1. See, e.g., other contributions to this symposium.
8. The niobium was deposited as described in K.K. Berggren et al., IEEE Trans. Appl. Supercond. 9, 3271 (1999).
Temperature dependence of intermodulation distortion in YBCO

D E Oates¹, S-H Park¹,², D Agassi³ and G Koren⁴

¹ MIT Lincoln Laboratory, Lexington, MA 02420, USA
² MIT Department of EECS, Cambridge, MA 02139, USA
³ Naval Surface Warfare Center, Carderock Division, Bethesda, MD 20817, USA
⁴ Technion—Israel Institute of Technology, Haifa 32000, Israel

Received 20 October 2003
Published 6 April 2004
Online at stacks.iop.org/SUST/17/S290 (DOI: 10.1088/0953-2048/17/5/039)

Abstract
Measurements of the intermodulation distortion (IMD) as a function of temperature from 1.7 K to Tc in YBa2Cu3O7-δ are presented. Films of the highest quality show an increase in IMD as the temperature decreases for temperatures below approximately 30 K. Films of lower quality do not show the increase in the temperature range measured. The increase is in qualitative agreement with that predicted by the nonlinear Meissner effect in d-wave superconductors. The temperature dependence of the measurements is compared with a new calculation of the nonlinear penetration depth.

1. Introduction
Nonlinear effects are still one of the limits to more widespread application of high-Tc materials in microwave frequency devices. Two-tone intermodulation distortion (IMD) is a deleterious effect observed in all superconducting materials, especially high-Tc superconductors. In practical devices such as filters, the IMD can degrade performance, even at relatively low power for filters with narrow bandwidth or very sharp skirts. The IMD is likely to arise from the same nonlinear current–voltage characteristic that also leads to the nonlinear surface impedance. Understanding of its origins, however, is lacking. It has been generally accepted that measured IMD is larger than intrinsic values inferred from theoretical considerations [1].

In the HTS materials it is well known that intrinsic nonlinearities are present. Dahm and Scalapino showed in a series of papers [2, 3] that the intrinsic nonlinear properties of the HTS materials would lead to IMD. It was found that the predicted IMD would increase at low temperatures due to the nonlinear Meissner effect [4]. Until now these effects of intrinsic nonlinearities have not been observed experimentally. It is likely that extrinsic nonlinearities arising from defects in the films were larger than the intrinsic effects and effectively masked the behaviour of the intrinsic effects. In this report, we demonstrate the upturn of IMD at low temperature in the best-quality films and show how films with more fabrication defects do not show evidence for the intrinsic behaviour.

The demonstration of intrinsic nonlinearities obviously has important consequences for practical devices. Although

the measurements reported here concentrate on the low-temperature IMD, the performance at cryocooler temperatures can still be limited by the intrinsic values. However, we conclude that even the best-quality films measured in this study may not exhibit IMD at the intrinsic limit. A significant component of extrinsic nonlinearity might still be present at the temperatures of operation of practical devices.

2. Experiment
2.1. Films
The IMD measurements reported here have been carried out with six films from various sources. All of the films were YBCO and some had dopants added during the growth process. Table 1 gives the details of the films.

2.2. Surface impedance measurement
The films were patterned using standard photolithography and wet etching, were assembled with ground planes to form stripline resonators, and measured by a technique that has been described previously [8, 9], in which the Q and resonant frequency $f_0$ of the resonator are measured as a function of the microwave power at various temperatures between 1.7 K and Tc. The results are converted into the effective surface resistance $R_s(I_c)$ and reactance $X_s(I_c)$ where $I_c$ is the microwave current. The measurements were made at the fundamental frequency of 1.5 GHz for the case of the LaAlO3 substrates and 2.3 GHz for the Al2O3 substrate.
Power $P_{IMD}$ is given by [11], which is the total rf current in the resonator, the expression for the IMD power in the resonator shown in Figure 1, where $L_2$ has been derived by several authors [3, 10, 11]. If one assumes that the nonlinear inductance dominates the generation of the IMD, we make the usual assumption that the IMD arises from the nonlinear surface impedance, and that the nonlinear inductance dominates the generation of the IMD [3].

Expressions for the IMD power, given a value of the nonlinear inductance, have been derived by several authors [3, 10, 11]. If one assumes that the nonlinear inductance is given by

$$L = L_0 + L_2 f^2,$$

where $L$ is the inductance in the equivalent circuit of the resonator shown in Figure 1 [12], $L_0$ is a constant, and $f^2$ is the total rf current in the resonator, the expression for the IMD power $P_{IMD}$ is [11]

$$P_{IMD} = \frac{1}{4} \omega^2 L_2^2 (2r_v(1 - r_e))^4 Q_l^4 P^3 \frac{\pi^2 L_0^4}{Z_0^4}$$

where $\omega$ is the angular frequency, $r_v$ is the voltage insertion ratio, related to the insertion loss IL in dB by

$$r_v = 10^{-\frac{IL}{10}},$$

and then

$$P_{norm} = \frac{r_v (1 - r_e) Q_l P}{r_v (1 - r_e) Q}.$$

where $P_{norm}$ is the normalized IMD power that is used to compare the data from various resonators.

3.2. IMD Results

3.2.1. Power Dependence. Figure 2 shows the measurements of the IMD as a function of the circulating power in the resonator. The circulating power $P_{circ}$ is given by

$$P_{circ} = \frac{4r_v (1 - r_e) Q_l P}{\pi^2},$$

and then

$$P_{norm} = \frac{r_v (1 - r_e) Q_l P}{r_v (1 - r_e) Q}.$$

where $Q_l$ is the unloaded $Q$, $P$ is the input power, and $Z_0$ is the characteristic impedance of the resonator. Thus, to compare different resonators, the IMD data are scaled by the factors involving $r_v$, $Q_l$, and $Z_0$. This scaling is also used to compare different temperatures in the same resonator, since the $Q$ and $r_v$ change with temperature. The other derivations of equation (2) [3, 10] give the same functional form for the power of the IMD as a function of the experimental quantities $\omega$, $L_2$, $r_v$, $Q_l$, $P$ and $Z_0$. They differ only by multiplicative constants. This difference does not matter here because we are making relative comparisons.

It is also most illustrative to plot the IMD results versus the circulating power in the resonator. The circulating power is given by

$$P_{circ} = \frac{4r_v (1 - r_e) Q_l P}{\pi^2},$$

and then

$$P_{norm} = \frac{r_v (1 - r_e) Q_l P}{r_v (1 - r_e) Q}.$$
The actual range of temperature is from temperature dependence of the measured IMD of each film at a circulating power of approximately 5 dBm for the various films listed in Table 1. O YBCO no 1, △ Ni doped YBCO no 2, ● Zn doped YBCO no 3, ○ Ca doped YBCO no 4, □ sputtered YBCO no 5, ▼ YBCO on sapphire no 6.

Figure 3. Measurements of the IMD at the fixed circulating power of 5 dBm for the various films listed in Table 1. O YBCO no 1, △ Ni doped YBCO no 2, ● Zn doped YBCO no 3, ○ Ca doped YBCO no 4, □ sputtered YBCO no 5, ▼ YBCO on sapphire no 6.

resonator for the pulsed laser deposited (PLD) YBa$_2$Cu$_3$O$_{y-4}$ film, no 1 in Table 1, for several temperatures. The behaviour as a function of power is quite complex. The simple ansatz of equation (1) predicts a dependence on circulating power of $P_{IMD} \sim P_{c}^3$ yielding a slope of three in a log-log plot. This simple dependence is only shown in isolated parts of the power range. A dashed line in Figure 2 shows a slope of three and is included as a reference. At low powers the dependence is of slope three, but at intermediate power the slope changes over to two for the lowest temperatures and subsequently at the highest powers the slope becomes three once again. Note that at the lowest powers the normalized IMD increases as the temperature decreases. This is counter to the normal expectation that superconductivity improves as the temperature is lowered.

For temperatures below approximately 70 K, the curves merge at approximately 20 dBm circulating power. The curves merge because the lower-temperature values, after initially showing slope three, change over to a slope-two regime. The slope-two behaviour is an indication that the simple ansatz of equation (1) no longer holds and the behaviour shows a modulus dependence on current, that is,

$$L = L_0 + L_2 \|j\|.$$  

(6)

This will be discussed in more detail in Section 4. At powers higher than the intersection point the slope becomes three once again, and the temperature dependence is approximately what one would expect, in that the IMD is monotonically increasing with increasing temperature.

3.2.2. Temperature dependence. Figure 3 shows the temperature dependence of the measured IMD at low power for the collection of films that is shown in Table 1. Plotted is the IMD, scaled as described above, versus the reduced temperature. To obtain these data, each of the films was characterized like PLD YBCO film no 1 shown in Figure 2. The actual range of temperature is from 1.7 to 85 K. These data were extracted from the IMD-versus-power measurements for each film at a circulating power of approximately 5 dBm.

The film with the lowest IMD at the middle temperature range, which is thus the highest-quality film, PLD YBCO no 1, shows a significant upturn at low temperatures. This is the film shown in Figure 2. The other films show either a smaller upturn or none at all in the case of the YBCO film on sapphire and the Ca doped film. All films, however, show a tendency to arrive at the same low-temperature IMD. The high-temperature values also tend to merge to similar levels. A possible explanation for the lack of, or smaller, upturn at low temperatures seen in some of these films is the presence of defects or impurity dopants. Films on sapphire are known to have more defects, and in particular microcracks, than YBCO films on other substrates. The sputtered film, no 5, was also judged to be of lower quality than the best sputtered films. This was the conclusion of $Z_n$ measurements on this film. Other sputtered films, not shown, from the same 5 cm diameter wafer showed almost identical behaviour.

3.3. IMD measurements on niobium

To verify our results on YBCO, comparable measurements were made on a resonator fabricated from a sputtered niobium film [13] on an LaAIO$_3$ substrate. It is predicted [2, 3] that s-wave superconductors show an IMD power decreasing exponentially at low temperatures, because of the finite energy gap. The IMD data versus temperature indicate that niobium does not show an upturn, and becomes independent of temperature at low $T$ as might be expected if it is limited by extrinsic effects. However, the measurements on niobium do not reach the same reduced temperature as YBCO because of the lower $T_c$. The data are not of low enough reduced temperature to show unambiguously the expected s-wave behaviour. To fully verify the theory, lower-temperature measurements should be performed. However, the most important result of the niobium IMD measurements is that the temperature-independent IMD response rules out any substrate effects in the observed increase of IMD in YBCO at low temperatures.

4. Comparison with intrinsic d-wave theory

4.1. Theory of d-wave nonlinearity

To compare the data with theory, calculations of the lowest-order correction to the penetration depth have been carried out. The calculation derives the third-order response of a d-wave superconductor to a transversal microwave field under the assumption of a global equilibrium temperature. This is achieved by starting from the Gorkov equations and analytic evaluation of the proper terms in the Green function perturbative expansion [14]. Several simplifying approximations are made; in particular, frequency dependence is neglected in keeping with experimental evidence. The final expression is without free parameters except for a factor whose range is strictly limited. This approach yields a spatially independent penetration-depth expansion in terms of the averaged current density

$$\lambda(T, j) = \lambda_0(T) + \lambda_2(T) j^2$$  

(7)

where $T$ is the temperature, $j$ is the current density, and $\lambda_2$ is the nonlinear part of the penetration depth. The material
parameters of the superconductor that were used are $T_c = 90 \, \text{K}$, $\lambda_0 = 0.2 \, \mu\text{m}$, and the energy gap $\Delta(0) = 3kT_c$. The result of equation (7) is the same functional form as that obtained by Dahm and Scalapino [3]. As discussed below, the predicted low-temperature behaviour of the IMD using our calculation is the same as that predicted by Dahm and Scalapino.

As discussed in [3] the IMD of a resonator is proportional to $\lambda_2^2$ of the material in the resonator. This is plotted in relative units as the solid curve in the log-log plot in figure 4 as a function of the reduced temperature $T/T_c$. The long-dashed line of figure 4 is proportional to $1/T^2$, which seems to agree well with the asymptotic behaviour of the calculation at low temperatures. Calculations by Dahm and Scalapino [2] produce very similar behaviour, with the same $1/T^2$ divergence at low temperatures.

4.2 Temperature dependence

Figure 4 also shows, as the open circles, the measured IMD of PLD YBCO film no 1 measured at a circulating power of 5 dBm, as a function of the reduced temperature. This is the highest-quality film of those shown in figure 3. The IMD is plotted in relative units. These data are not too sensitive to the exact value of the circulating power used to generate the plot because, as seen in figure 2, the different temperature curves are parallel in the low-power region. The temperature dependence of the measured data agrees well with the calculations that we have performed in that both show very similar $1/T^2$ behaviour at low temperature. These data also agree well with the model of Dahm and Scalapino [2, 3]. Thus the data agree with models of $d$-wave superconductors. This increase in $\lambda_2$ and IMD at low temperature is the signature of the nonlinear Meissner effect. Measurements at lower temperatures might be important to determine how low in temperature this dependence on $T$ persists. It is obvious that the other films depicted in figure 3 do not agree well with the theory. The origins of the disagreement are discussed in the following section.

5. Discussion

We are convinced that the experimental data presented here are a result of the nonlinear electrodynamics of the YBCO material and not a result of heating, which has been ruled out as discussed in earlier publications from this group [15]. The sample is measured in a helium exchange-gas atmosphere, and other checks have been carried out, such as observing the same measured results with power increasing and with power decreasing. We have also compared frequency-domain and time-domain measurements of the surface impedance and seen no difference. Most importantly, the significant results of this paper concern the behaviour at very low power. The data of figure 4, for example, were measured with circulating powers of 5 dBm, which implies a dissipated power of $\sim 45 \, \text{dBm}$ in a resonator with a $Q$ of $10^3$. This level of dissipated power will not cause any significant temperature rise.

The effects of stress due to the mismatch in thermal expansion between the film and substrate are not considered to be important in the temperature dependence of the IMD in the temperature range presented here. We expect that the change in stress due to thermal expansion mismatch is minimal at low temperatures because almost all of the thermal expansion takes place between elevated temperatures and approximately 40 K. Thus, while the films may well be under stress due to mismatch of thermal expansion of the substrate and film between the growth and the operating temperature, we believe that changes in stress between 30 and 1.7 K are minimal and do not affect our conclusions.

While an earlier report [16] showed an indication of an increase in IMD at low temperatures, we believe that the data presented here are the observation of the nonlinear Meissner effect, which is the intrinsic nonlinearity resulting from the $d$-wave symmetry of the order parameter of the HTS materials. Most of the data of figure 3 show a significant departure from the theoretical behaviour. The departure can be explained by assuming that the measured IMD is the sum of the intrinsic values, calculated as outlined in section 4.1, and an extrinsic term that exhibits weak temperature dependence at low temperatures. The origin of the extrinsic term is not identified at this time but could arise from defects and impurities as suggested by the data from the Zn and Ni doped films. That the sapphire film shows no minimum and actually shows a slight decrease in IMD as the temperature approaches the lowest measured here is also very suggestive, since films on sapphire are known to contain more defects than those on LAO due to the large mismatch in thermal expansion between YBCO and sapphire. It is also true that the films showing weak or no minimum in the IMD-versus-$T$ behaviour showed higher surface resistance and larger $\lambda_0$ than the best film, which shows the deepest minimum.

This hypothesis of an extrinsic contribution with very weak temperature dependence also explains the tendency of the data to approach a convergence point at very low temperatures. Because of the $1/T^2$ divergence of the intrinsic IMD at sufficiently low temperatures, all films will eventually exhibit a dominant intrinsic contribution. This naturally suggests that measurements at lower temperatures could be definitive in supporting this speculation.
The measurements presented here have used the IMD to observe the nonlinear Meissner effect. This can be considered an indirect way to measure the effect because the IMD is proportional to the square of the nonlinear part of the penetration depth \( \lambda^2 \). It is in principle possible to measure \( \lambda^2 \) directly. In the resonator measurements this can be done by measuring the change of resonant frequency as a function of the microwave current. From this change in frequency, we can make an estimate of the change in penetration depth in the usual way [17] by assuming a uniform change in \( \lambda \) across the resonator centre conductor.

Figure 5 shows \( \Delta \lambda \) versus circulating power for laser ablated film no 1 at 1.7 K. These values of \( \Delta \lambda \) were derived from the measured change in resonant frequency versus circulating power. The dotted lines show changes in \( \lambda \) of 0.01 nm. This amount of change is only seen for circulating powers greater than 20 dBm, and below that power no measurable change in \( \lambda \) can be seen. To see the increase of IMD shown in figure 4, we presented the data from the IMD measurements in figure 2 at a circulating power of 5 dBm. At 20 dBm circulating power in figure 2, the low-temperature increase of IMD is not evident. Thus, at the power level where the increase in IMD at low temperature is seen (5 dBm), figure 5 shows that the changes in penetration depth are smaller than the experimental resolution. Thus, if we relied on the measured \( \Delta \lambda \), we would not have seen the low-temperature increase of nonlinearity that is the signature of the nonlinear Meissner effect. Another way to understand the situation is to realize that we are measuring changes in \( \lambda \) of one part in \( 10^5 \). Since \( \lambda \) at low temperatures is proportional to \( T \), this implies that a necessary condition for a direct measurement with this resolution is a temperature stability of the same amount. Thus the IMD measurements, although indirect, are a very sensitive method to measure the nonlinear penetration depth.

6. Conclusions

We have observed clear evidence of the nonlinear Meissner effect in YBCO thin films by measurements of the IMD as a function of temperature extended to low temperatures. This is an indication that we are observing intrinsic nonlinearities in the HTS materials. The films also show evidence of extrinsic effects as well. For the best film, comparisons with theory yield good agreement with the temperature dependence. Other films show a low-temperature increase in IMD, but significant departures from the theory result from extrinsic contributions to the IMD.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research. We thank A C Anderson and M Lorenz for supplying films used in this study. We thank R P Konieczka and D Baker for technical support, and G Fitch for computer programming.

References

[15] Agassi D and Oates D E 2004 to be submitted
Bibliography


[30] G. Koren, A. Gupta, R. J. Beserman, M. I. Lutwyche, and R. B. Laibowitz. Laser wavelength dependent properties of YBa$_2$Cu$_3$O$_{7-\delta}$ thin films deposited by laser ablation. *Appl. Phys. Lett.*, 55(23):2450–2452, Dec. 1989. The high quality epitaxial PLD films used in the present study, were produced using the 355 nm laser wavelength. They have a room temperature resistivity of $0.2\, m\Omega\, cm$, $T_c = 90-91K$, and dc $j_c (77K) = 4-5 \times 10^6 A/cm^2$. 

115


