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Abstract

Background: If we are to successfully treat cancer, we must understand the biologic
underpinnings in conjunction with early diagnosis. Genome-wide expression studies
have advanced the research of many cancers. Nevertheless, understanding which
genes are expressed in a tumor is not equivalent to knowing which proteins are being
produced. Proteomics hold great promise for careful examination of the proteins in
complex biologic fluids and tissues, and it may be possible to detect disease from a
patient’s serum, long before it would otherwise be clinically evident. Although there
have been steady advances in all the steps of a proteomic analysis, much remains to
be standardized. Because of some high-profile problems with the initial analysis of
ovarian cancer proteomic data, early exuberance has now been tempered and replaced
by a more methodical approach to these studies. Hypothesis: My hypothesis in this
thesis is that proteomics is a valuable tool in the diagnosis and study of cancer, as will
be demonstrated in several steps. Methods: First, I describe the current field of pro-
teomics, specifically as it applies to early detection of cancer and biomarker discovery.
I lay out the current state-of-the-art technologies for preparing samples and enumer-
ating the proteins in complex fluids and tissues, giving special treatment to the main
threats to validity-chance and bias. I also describe the bioinformatic tools necessary
for analyzing the large amounts of data produced. Through the example of a mouse
model of colorectal carcinoma, I demonstrate the steps involved in a proteomic study,
from procuring samples to peptide and protein determination to bioinformatic analy-
sis. Finally, I discuss these findings in light of the proteomic considerations discussed
earlier. Results: From this work, I discovered that proteomic profiling can describe
the proteins in serum from mice both with and without colon cancer. Furthermore,
I developed a naive Bayes classifier that could distinguish between the serum of mice
with colorectal carcinoma and their normal litter-mates. Contributions: Through
this work, I have contributed the following. I described the field of proteomics with
special emphasis on cancer biomarker discovery and early detection. I enumerated
the challenges and pitfalls to developing early detection schemes for cancer based on
high-dimensional proteomic analyses. I described a set of experiments on mice har-
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boring a gene mutation that predisposes them to colorectal carcinoma. I detailed the
bioinformatic analysis of this data, including the development of a naive Bayes clas-
sifier to differentiate the cancerous state from the normal state. Finally, I discussed
the caveats of the current work, in reference to the initial discussion on the challenges
and pitfalls of early detection schemes and cancer biomarker discovery.

Thesis Supervisor: Isaac Kohane, M.D., Ph.D.
Title: Associate Professor
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Chapter 1

Introduction and Background

In order to successfully treat cancer, we must understand its biology as well as be

able to diagnose it before it has spread. The completion of the sequencing of the

human genome and concurrent explosion in expression array technologies have led to

unprecedented exuberance regarding the potential to understand and cure disease.

Nevertheless, this excitement is tempered by the realization that while quantitating

gene expression levels is an important piece of the puzzle, an essential component

will be studying the actual expressed protein complement of cells and tissues, a field

known as proteomics [7]. The science of proteomics involves not only the acquisition

of data about the expression of proteins in cells and tissues, but also the analysis

of protein expression and integration of these data with existing knowledge, both

in related and disparate fields. The aim of this thesis is to describe the field of

proteomics, giving details about both the technology as well as the bioinformatics

with a special emphasis on cancer biomarkers. Included will be an example of my own

work illustrating one potential application of this technology - identifying biomarkers

for human cancer using mouse models. Following this example will be a description

of the pitfalls involved.
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1.1 Proteomic Technologies and Data Analysis

Until recently, the study of proteins and their interactions was a time-intensive and

expensive endeavor often requiring the production of specific antibodies to the pro-

teins in question. Relatively recent technological advances in the sensitive and spe-

cific separation and identification of proteins have transformed proteomics into a

high-throughput science. Discussed below are the three major components of any

proteomics experiment: sample preparation, protein separation, and protein identifi-

cation.

1.1.1 Sample Preparation

Before proteins can be separated, the sample must first be collected and prepared. For

a proteomic study, the sample may be fluid such as serum, plasma, urine or seminal

fluid. The study of solid tumors and tissues represents a challenge, as contamination

from surrounding normal cells and tissues can make it difficult to interpret results.

One way to minimize stromal contamination is through laser capture microdissection

(LCM), a method by which a relatively pure population of tumor cells can be isolated

for further study [14].

Although not commonly discussed at great length in most methods sections, the

sample isolation and preparation is a critical factor in a proteomics experiment. The

central principle of most experiments is to keep constant all variables between groups,

except for the particular agent being examined, thus allowing any difference between

the groups to be attributed to the agent itself. Bias is a significant threat to validity

in proteomics experiments, and it can often be explained by errors or inconsistencies

during sample preparation [33, 34]. When samples are handled differently, this intro-

duces noise into the signal for one of the compared groups. When this happens, it is

very difficult, if not impossible, for post-processing or post-experimental data manip-

ulation to validate the results. Some important steps in preparation include types of

collection tubes, the time from collection to spinning and/or freezing, differences in
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storage temperature, number of freeze/thaw cycles, and/or all the factors involved in

the analysis on the mass spectrometry (MS) instrument. Reproducibility in results

does not assure that there is no bias, as the same inconsistencies may be present from

one experiment to the next. Therefore, in the design of an experiment, there must be

careful planning to ensure consistent sample collection and preparation between and

among the study and control groups [4].

1.1.2 Protein Separation

Separation of proteins is a key step in any proteomic experiment. The greater the

separation achieved prior to protein or peptide identification, the greater the resolving

power of the study. Common methods of protein separation include one- and two-

dimensional electrophoresis and liquid chromatography [7]. While one-dimensional

electrophoresis (1-DE) separates proteins based on their sizes, two-dimensional elec-

trophoresis (2-DE) separates first based on the isoelectric point (pI) followed by sepa-

ration based on size. Gel-based separation methods are rapidly becoming replaced by

methods that involve peptide separation by liquid chromatography (LC) techniques

linked to a mass spectrometer [10]. The most basic form of LC involves separation

of digested peptides through a C18 resin. More complex separations can be achieved

through the use of other in-line methods, such as a cation exchange resin (multi-

dimensional protein identification technology, MudPIT). These separations can also

be run ”off-line,” that is, not in series with the MS. Performing these methods off-line

is advantageous as it allows sample manipulation and optimization between dimen-

sions [10].

1.1.3 Peptide and Protein Identification

Protein identifications are almost always achieved through mass spectrometry. A

mass spectrometer consists of an ion source, a gas analyzer that can measure the

mass-to-charge ratio (m/z ), and a detector that can measure the number of ions

at each m/z value [1]. The two techniques commonly used to volatilize and ionize
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the proteins and peptide source are electrospray ionization (ESI) and matrix-assisted

laser desorption/ionization (MALDI). Because ESI ionizes the peptides right out of

a solution, it is easily coupled to liquid-based separation techniques, such as LC.

MALDI, on the other hand, sublimates and then ionizes the samples out of a solid

crystalline matrix and is therefore suited to more relatively simple peptide mixtures.

The mass analyzer measures the mass-to-charge ratio of the ionized analytes. The

four main types of mass analyzers are the ion trap, time-of-flight, quadrupole, and

Fourier transform ion cyclotron (FT-MS). While ion traps are relatively inexpensive

and sensitive, a disadvantage is their low mass accuracy. On the other hand, the FT-

MS captures ions under high vacuum in a high magnetic field and has high resolution,

mass accuracy, sensitivity and dynamic range. Nevertheless, the expense and oper-

ational complexity of the FT-MS has slowed its acceptance. Whereas ESI is usually

coupled to ion traps and used to generate fragment ion spectra, MALDI is usually

coupled to TOF analyzers that measure the mass of intact peptides.

The peak patterns in the collision-induced (CID) spectra are compared against a

comprehensive protein sequence database to compile a ”hit list” of peptide matches.

These peptide matches are then analyzed to produce the most probable list of pro-

teins that could have been the source of the particular set of peptides.

One of the difficulties inherent to high-throughput proteomics is filtering the peptide

assignments to derive a list of highly-likely correct identifications. In small exper-

iments, an expert in MS can examine the spectra and determine which peaks are

likely to lead to robust identifications. Because of time and personnel constraints,

this method is infeasible for larger experiments. In these cases, peptide lists can be

compared against databases of known protein identifications, though this may lead

to many false positives.
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1.1.4 Methods of Quantification

Identifying the quantity of proteins in a complex mixture remains an unsolved prob-

lem. Most solutions involve some sort of multi-step separation / fractionation fol-

lowed by a procedure for identifying the components in each separated fraction. For

instance, one method is to separate a complex mixture via 2-DE, to quantify the in-

tensity of each spot and then identify the proteins with MS. While both MALDI and

ESI-MS/MS are efficient and tested technologies for identifying gel-separated pro-

teins, the results of these studies often show similar lists of proteins. This indicates

that this technique has a limited resolving capability [18].

The mainstay for protein identification and quantification remains LC-MS/MS (re-

viewed here: [28]). Aebersold and Mann identify three hurdles to accurate protein

quantification through LC-MS/MS [1]. First, single dimension chromatography does

not provide sufficient separation for complex mixtures. Second, the relationship be-

tween peak signal intensity and peptide amount is not clear. Finally, there is a large

amount of data collected from a mass spectrometer, making analysis cumbersome.

Despite the difficulties, each of these technological hurdles has been tackled to such

an extent that the platforms emerging constitute a robust system for protein identi-

fication and quantification.

Quantification is commonly achieved through site-specific isotope tagging chemistries,

lending access to various sub-proteomes. A newer method involves metabolically la-

beling one class of cells with one stable isotope, while the other is labeled with another.

Sensitive MS can then distinguish between the two molecular weights of the differen-

tially labeled proteins, and the differences in protein abundance can be quantitated

based on the peak heights. This method, known as stable-isotope labeling with amino

acids in cell culture (SILAC), is described in [21].
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1.1.5 Pitfalls

Regardless of the technology chosen, great care must be taken to ensure that there

is uniformity between experiments. In fact, some researchers advocate several well

thought-out small pilot studies to show validity before venturing on to larger studies

[33]. As discussed above, the greatest threat to validity is chance and bias, and bias

can be minimized by devoting considerable time and effort to planning experiments.

1.2 Bioinformatic Considerations

Any proteomics experiment will generate large amounts of data for analysis. Collect-

ing, organizing, storing, and analyzing this data should be performed in an orderly

and methodical manner. The basic approach to each of these steps will be outlined

below.

1.2.1 Data storage

Many systems have been developed for the storage (and often concurrent analysis) of

MS data, such as the open-source initiative, the Computational Proteomics Analysis

System (CPAS) [35]. While CPAS has an established following of devotees, there are

some drawbacks to the system, namely the manipulation required to admit certain

data formats into the data pipeline. Nevertheless, it is becoming a widely accepted

benchmark for MS data storage and analysis.

There are several features desirable in any storage system. First, it must be extensi-

ble. In other words, as the technology changes, the system must be easily adaptable

to new tools and techniques. Second, it must be fast. The best systems run on dis-

tributed hardware, thus improving the performance many times over, when compared

to an individual machine. Also, it should promote collaboration and data sharing be-

tween and among scientists. Ideally, a system can have both a rigid access system

and also a robust method of data sharing.
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The primary output of an MS experiment is raw spectral data. In most cases, though,

the data is immediately searched and matched to peptides and proteins. Therefore,

while the raw data is routinely stored and available for subsequent analysis, the bulk

of data retrieval and analysis will be on the peptide and protein matches. In many

instances, however, the original spectra will need to be examined for quality. This is

especially useful when considering a peptide match with a relatively low score. An

expert should be able to examine the MS spectra and make a judgement about the

quality of the match. Again, given the relative large amount of data, such a system

must be nimble and fast enough to allow real-time manipulation of spectra.

In addition to storing the raw spectral data, the system must be able to house all

relevant information about an experiment, including the sample collection and prepa-

ration, as well as the details of the separation and MS. This is especially important,

as consistency between MS runs is one of the keys to a valid study. Some examples

of essential data include the type of specimen, how it was collected, patient demo-

graphics, time between collection and freezing, any centrifugation, separation prior

to MS (including separation conditions, column details, fraction size), as well as all

the details about the MS itself. Failure to include any of these may bias the study

and therefore weaken the validity.

1.2.2 Data Analysis

There has been a push towards data ”pipelines.” A data pipeline is a coordinated

set of analysis steps run in series, often with little user interaction. For instance, the

Trans-Proteomic Pipeline (TPP), an open-source initiative developed at the Institute

for Systems Biology (Seattle, WA), is an analysis package that can be integrated

into the CPAS system [25]. This set of tools is designed to facilitate the database

search, validation, peptide quantification and protein quantification steps and requires

that proprietary data be converted into an open-source format (mzXML). One of the

drawbacks of this method is that in its initial implementation, it required a commer-
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cial license (SEQUEST) to one of the MS platforms in order to do the initial search

steps. Subsequent incarnations allow for alternative open-source search platforms (eg.

XTandem).

Regardless of whether or not a pipeline is used, analysis of proteomic data usually

has two major phases. First, there needs to be a determination as to which peptides

and proteins were present in the mixture and (if applicable) in what quantities, as

related to some control. Once the peptide and protein identifications are made, the

second step is to compare the study and the control population, using appropriate

statistical measures.

1.2.3 Pitfalls

As with any biomedical informatic analysis, care should be taken to ensure that the

most appropriate metrics are used at each step. In many cases, there is not a clear

standard (for example, the distance metric used in a clustering algorithm). In these

cases, there may need to be trial-and-error as well as optimization to determine the

most appropriate algorithms. Thorough and detailed reporting of methods will help

assure that analysis is reproducible.

1.3 Cancer Biomarkers

A biomarker is a chemical or substance in the blood, other body fluid, or tissue that

may signal the presence of a disease state. Identification of biomarkers of disease

may lead to early detection or prevention. One approach to biomarker discovery

involves the separation and analysis of proteins in samples taken from those with

and without a particular disease. While analysis of the genome and transcriptome

may give hints as to important proteins in the development of disease, only analysis

of the proteome will give an accurate representation of protein expression. Many

biomarkers for cancer are already known, and these makers are present in high and

detectable amounts in the disease state, such as prostate-specific antigen [3]. Tumors
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are highly vascular, and it is likely that tumor-specific proteins are secreted into the

bloodstream. Furthermore, tumors induce a state of inflammation, and the plasma

proteome may reflect the body’s response to cancer in some specific way. Therefore,

it is reasonable to suspect that it will be possible to discover proteins unique to

cancer by examining the plasma proteome of organisms with and without tumors. To

understand the current state of cancer biomarker discovery, it is useful to understand

the history of biomarker discovery in ovarian cancer.

1.3.1 Ovarian Cancer Biomarkers - Lessons learned

In 2002, Petricoin and colleagues reported that they used MS to develop a classifier

that could identify serum from patients with ovarian cancer with 100% sensitivity

and 95% specficity [31]. Petricoin and colleagues made their data publicly available

on their website. In a follow up to this study by Zhu, et al., reported similar results

[45] using the Petricoin data set. When applied to another publicly available data set

from Petricoin, Zhu reported that their classifier for ovarian cancer had 100% sensi-

tivity and 100% specificity, remarkable for any clinical test. This initial excitement

led to predictions that a clinical test would be available as early as 2004. But plans

were halted by the FDA when questions were raised about the tests reproducibility

and reliability [41, 11, 16]. A review of the Zhu data by Baggerly, et al. showed prob-

lems with the analysis, and that the method used performs no better than chance

[2]. Liotta, et al., authors of the originally posted public data, explain that this un-

fortunate situation arose because of poor communication between study groups [27].

They attributed the discrepancy to lack of communication. Furthermore, they claim

that they are not surprised by the discrepancy because of the lack of standardization

between the two sets of data. Ransohoff briefly summarized the story and comments

on serum proteomics as a whole [33], giving special attention to the biggest threats

to validity, chance and bias.
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Chance and Bias

In Ransohoff’s view, the biggest challenge to proteomics is reproducibility, and the

biggest threats to reproducibility are chance and bias. To answer whether or not

chance (or over-fitting) can explain results, the same experiement can be duplicated

under the same conditions (but with different subjects). Bias is more difficult to

ascertain. As explained by Ransohoff, even under the most controlled circumstances,

bias may be unavoidable. For instance, tumor samples may need to be harvested

in the operating room, while normal tissue may not, and this difference may be

impossible to overcome. Finally, he suggests that more carefully planned studies may

help avoid a similar situation,

”The solution is not to post more raw data on the Web, although doing

so may be useful for some purposes. Rather, the solution is to provide

appropriate attention to the process of design, conduct, and interpretation

of research and to thoroughly report that process in rigorously reviewed

journal articles. In other words, what needs to be reported is not raw

data but rather the process of how patients, specimens, and analyses were

handled that lead to those data. Rules of evidence may then be applied

to determine whether bias or chance provides an alternate explanation for

results.”

1.4 Motivation

The motivation for this thesis is to explore the process of performing a complicated

and detailed proteomic analysis. In doing so, each of the above factors will be explored

and analyzed. Through a specific example, I will demonstrate some of the problems

inherent to these types of analyses, and I will offer some possible solutions. Finally, I

will comment on future work I am planning and will outline some of the risk factors

and how they are being addressed to help ensure success.
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Chapter 2

Mouse Models of Colorectal Carcinoma

During 2005 and 2006, I collaborated with Dr. Raju Kucherlapati and the gastroen-

terology research group at the Partners Healthcare Center for Genetics and Genomics

(HPCGG). I was responsible for working with the mass spectrometry core to collect

and analyze data for their project which focussed on mouse models of colon can-

cer. The following is a summary of that work, with special attention to the topics

discussed above.

2.1 Background - Colorectal Carcinoma

Worldwide, there were over 750,000 new cases of colorectal cancer diagnosed in 1990,

the most recent year with international estimates [6]. Colorectal cancer is a leading

cause of mortality and morbidity, affecting men and women equally, and is the third

most frequent cause of cancer-related death. Estimated annual incidence in the US

for 2004 was more than 150,000 new cases with over 56,000 deaths [24]. The five-year

survival rate for colorectal cancer remains less than 70% [24], with the chance of sur-

vival correlating with the stage of disease at the time of detection. Five-year survival

is 90% for those with cancer detected at an early stage and under 10% for late-stage

disease [5]. Only a minority of colorectal cancer is detected at an early stage [19],

probably due to a combination of inadequate screening [13] and the occult nature of

the disease.
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Colorectal cancer screening includes digital rectal examination, fecal occult blood test-

ing [38], flexible sigmoidoscopy, and colonoscopy. Because of the costs and discomfort

associated with sigmoidoscopy and colonoscopy, computed tomography-based virtual

colonography is being explored as an alternative option [15, 22]. Fecal DNA muta-

tional analysis is also being studied [9]. While these newer methods hold promise,

the confluence of recent advancements in mass spectrometry and mouse models of

colon cancer along with the ever-increasing amounts of genomic and proteomic data

have made plasma proteomic analysis an attractive tool for both colorectal cancer

biomarker discovery as well as a possible tool for early detection.

2.2 Mouse Model of Colorectal Carcinoma

Much is known about the molecular mechanisms underlying colorectal carcinoma.

Inactivation of the adenomatous polyposis coli (APC) gene on chromosome 5q21

has been found to be responsible for familial adenomatous polyposis (FAP) [26, 29],

a cancer predisposition syndrome. We have studied a well-characterized intestinal

tumor model, ApcMin [40], and have identified a novel plasma proteomic profile in

mice harboring this mutation [20]. This APC gene mutation makes the mice more

susceptible to adenomas of the small intestine. The original APC mutant harbored

a stop codon at position 850. We have constructed a new mutation of the APC gene

which leads to a larger transcript, due to a stop codon at position 580. We have

found that mice with this mutation are more likely to develop carcinomas of the large

intestine, and this mouse model should more closely mimic human colon cancer than

prior mouse models.

2.3 Study Design

Plasma samples from individual tumors bearing Apc∆580 mice and their wild-type

litter-mates were isolated on two different days. A total of 20 mice were sampled -
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10 with the mutation and 10 normal litter-mates. Samples were separated by liquid

chromatography, and peptides were identified by FT-MS. Peptide identifications were

filtered and used to generate a list of proteins. This list was used to develop a classifier.

2.4 Materials and Methods

2.4.1 Animal Husbandry

Mice were purchased from Jackson Laboratories. Apc ∆580 mice were generated in

our laboratory through standard techniques. A similar mouse has been described in

the literature [8]. Heterozygous Apc ∆580 mice were mated with wild-type B6 mice.

The resulting offspring were screened by PCR of tail DNA using standard methods.

Heterozygous Apc ∆580 mice from these matings were used for subsequent studies.

Wild-type age- and sex-matched litter-mates were used as controls.

2.4.2 Plasma Harvest and Tumor Quantification

At the time of sacrifice, a lethal coma was induced by intraperitoneal injection of

Avertin anesthetic. Blood was removed from the right ventricle by cardiac puncture

using a 22-gauge straight needle to prevent hemolysis. Blood was placed in EDTA-

coated tubes to prevent coagulation and proteolysis. After centrifugation, the plasma-

containing supernatants were removed and aliquoted in individual freezer vials. The

vials were initially placed at -20C for one to two hours and then transferred to -80C

for storage prior to mass spectrometry analysis. The small and large bowel of the

mice were removed and opened longitudinally. The number of tumors was counted

using a dissecting microscope.

2.4.3 Plasma Sample Preparation

Twenty-five µl aliquots of either total plasma or glycoprotein-enriched plasma were

mixed with 100 µl of 6M urea 1% SDS 100 mM ammonium bicarbonate 10 mM DTT

and heated to 37C for one hour. Iodoacetamide was added to 30 mM and the sample
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placed in the dark for one hour. Residual iodoacetamide was quenched with 2 M

DTT. Samples were then diluted to 1.5 ml with 20 µg of Promega sequencing-grade

modified trypsin in 5 mM CaCl2, and allowed to digest overnight at 37C. Post-digest,

samples were acidified with formic acid to pH ¡3.0. Digests were cleaned up using

cation-exchange cartridges, 30 mg MCX cartridges (Waters), and eluted with 250 mM

ammonium formate and 6% ammonium hydroxide in 50% acetonitrile. The samples

were lyophilized to dryness and re-dissolved in 50 µl 5% acetonitrile 0.1% formic acid.

2.4.4 Mass Spectrometry (MS)

The peptides were separated into 12 fractions using off-line cation-exchange chro-

matography. The peptide fractions were then normalized and 5-15% of each fraction

plated in a 96-well plate, a standard peptide mixture (ovalbumin) was added to each

sample at constant concentration, and the peptides from each of these fractions were

then separated further over 150 minutes on a 75 µm x 16 cm nanospray chromatogra-

phy column with direct spray into the FT-MS. The FT was run using a ”top nine” run

configuration at 200K resolution. Peptide identifications were made using SEQUEST

through the BioWorks Browser 3.2 (Thermo Scientific).

2.4.5 Data Analysis

Data analysis consisted of the following steps: (1) filtering of MS results, (2) data

parsing and database storage, (3) peptide searching, protein identification, protein

list optimization, and (4) analysis of peptide and protein differences between classes.

Since our program had no existing infrastructure or software for mass spectrome-

try filtering, data storage, retrieval and analysis, I developed a custom system using

Python scripts and MySQL.
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Mass Spectrometry, Data Filtering and Database Storage

Sequential database searches were made using the NCBI RefSeq Murine database con-

taining a reverse dummy protein database that assessed the statistical significance of

the results. A consensus file for each mouse sample was exported from BioWorks.

The data was parsed using custom-designed Python scripts and then stored in a local

MySQL database for easy retrieval and analysis.

The database was constructed to allow storage of the data in the most granular

fashion. All data elements from the BioWorks output were stored and indexed. The

peptide database was keyed on raw peptide sequence. A secondary peptide table

was created after replacing all isoleucine residues with leucine residues, as MS cannot

distinguish between these two. Also, the peptide sequences stored in this secondary

table had all modifications removed. These two simplifications allowed for peptide

matching more quickly and easily.

A script was written that allowed the following parameters to be easily varied: (1)

peptide cutoff scores based on charge state and XCorr, (2) removing proteins iden-

tified by a single peptide, and (3) counting identical peptides with different charge

states as unique peptides. By varying these parameters, the false-discovery rate was

calculated for a variety of conditions, and the most appropriate parameters were

chosen for subsequent data analysis.

Protein Rank List Creation

Given a list of peptides, there are many possible protein lists that could be con-

structed to explain the list of peptides. I chose the approach of finding the protein

list that was most parsimonious. In other words, if three peptides could belong to

three proteins or all belong to the same protein, the most parsimonious choice is that

they all belong to the same protein. In general, when there are multiple possibilities

for a peptide match, the choices are usually from the same family of protein, so this
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assumption seems to be a safe and valid one.

A script was written that would query each peptide against the most recent In-

ternation Protein Index (IPI) murine database (http://www.ebi.ac.uk/IPI). Every

possible protein match was tallied. Once all peptides were queried, the most parsi-

monious non-redundant protein list was constructed, and the final list was saved.

This list of proteins was utilized to create two matrices for subsequent analysis. Each

is a list of non-redundant protein matches with the corresponding twenty-mouse sam-

ples. In the first matrix, the protein was scored as either present or absent in that

sample (0 or 1). In the second matrix, for each mouse sample, the number of peptides

used to identify that particular protein was tallied.

Protein rank lists were constructed by ordering the proteins by two different cri-

teria. In the protein matrix built using the on-off status of the protein, the list was

ranked using a frequency difference ratio (FDR), calculated simply as the normalized

difference of the frequency of each protein in each class. The number of times a par-

ticular protein occurred in the wild-type samples was subtracted from the number of

times that protein occurred in the samples from mice with cancer, and the absolute

value of this difference was divided by the number in each class. In the second matrix,

where the peptide contribution to each protein was tallied, the proteins were ranked

according to a Mann-Whitney U statistic. The rank lists of proteins were saved for

subsequent analysis.

Hierarchical Clustering and Principal Component Analysis

Principle component analysis (PCA) is a common method used to quantify the dom-

inant global variance structures in high dimensional feature space (eg. proteins or

peptides). Using subsets of varying size, PCA was applied to the rank list of proteins.

Although all data manipulation was performed using Python scripting, the PCA and

hierarchical clustering (HC) was performed in Matlab (http://www.mathworks.com).
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Prior to analysis, the data was first normalized to a mean of zero and a standard

deviation of one. Hierarchical clustering and PCA were first performed in an unsu-

pervised manner. Subsequently, the same analysis was performed on a subset of the

top-ranked proteins.

Naive Bayes Classifier

In order to determine if one class of mice could be distinguished from the other

class based only on their MS profiles, a Bayesian classifier was developed and tested.

Among the supervised learning methods, Bayesian analysis is commonly employed

for very-high dimensional data sets. A classifier is trained on a subset of the data and

used to predict the class of unknown samples. Bayesian analysis was accomplished

using the Biopython Module for Python (http://www.biopython.org). The protein

rank list based on peptide tallies was used for this analysis. A Bayesian classifier

was trained on the data. Cross validation was performed by leaving out 10% of the

samples on each run and running all possible combinations. In other words, for 20

samples, all 190 combinations of 18 selected from 20 were used to train the classifier

and the remaining two were tested. The results from all these trials were averaged.

This analysis was repeated starting with the most differentially expressed protein and

adding in proteins one at a time from the rank list, until the group contained the top

100 proteins. Finally, a greedy-search algorithm was used to determine a minimal

discriminating set of proteins. A script was employed that tested every combination

of three proteins from the top fifty (19,6000 sets). This analysis was performed to

determine a minimally discriminating set of proteins that could be used to distinguish

one class from the other.

29



2.5 Results

2.5.1 Characterization of Proteins

Peptide identifications were made according to the following criteria: Delta correlation

(∆CN) ¿ 0.1, and Ranking of Primary Score (Rsp) = 1. The Cross Correlation Score

(XCorr) varied based on charge state and several ranges were studied. In all cases,

the protein identifications were optimized to create the most parsimonious list of

proteins. Table 2.1 shows several samples, and in each case, the XC cut-off varied

with the charge state. Also varied was whether or not multiple charge states for the

same peptide were considered unique identification.

Cut-Offs Charge Unique? 1 >1 >2 >3 FPR

1.8/2.0/2.5 Y 1111 368 249 206 2.5%
1.8/2.0/2.5 N 1143 336 227 188 2.5%
2.0/2.5/3.0 Y 762 328 234 201 1.7%
2.0/2.5/3.0 N 789 301 224 182 1.7%
2.5/3.0/3.5 Y 392 273 216 183 0.9%
2.5/3.0/3.5 N 408 257 202 166 0.9%

Table 2.1: Filtering Criteria and False-Positive Rate
Results are shown for several sets of filtering criteria. The cut-offs refer to the cross
correlation score based on a charge state of +1/+2/+3, respectively. Indicated is
whether or not the same peptide with different charge states was considered unique.
The number of proteins identified by one, more than one, more than two, and more
than three peptides are shown. Finally, the false-positive rate for the given filtering
criteria is shown. Further details can be found in the text.

The list of peptides found was used to create a list of proteins. As described above,

each peptide was searched against the most recent IPI Murine Database. The protein

possibilities were tallied, and the most parsimonious list of proteins to explain the

data was created. The number of proteins identified by one unique peptide as well

as the number identified by two or more, three or more, or four or more peptides are

also shown. Finally, the false positive rate was calculated by dividing the number of

reverse hits by the total number of peptide rows. For XC cut-offs of 1.8, 2.0, and 2.5
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for charge states +1, +2 and +3, respectively, the false positive rate was 2.5%. This

rate decreased to 0.9% for cut-offs of 2.5, 3.0, and 3.5. But even though the false

positive rate decreased substantially, so did the number of peptides identified. Based

on a false positive rate of 2.5%, as well as published cut-offs for other studies, the

parameters chosen for all subsequent analysis were XC cut-offs of 1.8, 2.0, and 2.5 for

charge states +1, +2 and +3, respectively.

2.5.2 Protein Rank List

Two protein rank lists were created. In one list, each protein was scored as one

or zero based on whether or not a peptide was present in a particular sample. For

each protein, a frequency difference ratio statistic was calculated as described above.

This statistic is a measure of the differential expression of that protein between the

two classes (cancer, normal). The protein list was sorted, and the top 50 proteins

are shown in Table 2.2 on page 37. For the second list, each protein was scored by

tallying the number of peptides contributing to the identification of that protein in

each sample. A Mann-Whitney U statistic was used to calculate the likelihood that

the two populations were different, and the protein list was sorted according to the

score. The top 50 most differentially expressed proteins (by this metric) are shown in

Table 2.3 on page 38. There were nine proteins found unique to the mice with cancer

and ten proteins unique to the control mice (Table 2.4 on page 39).

2.5.3 Hierarchical Clustering and PCA

For each protein, the number of peptides assigned to that protein were tallied in each

sample. The data was normalized to a mean of zero and a standard deviation of one.

These data were used for subsequent clustering and PCA. Using Matlab, hierarchical

clustering and PCA were first performed on the entire list of proteins (see Figure 2-1

on page 34). The distance metric used was correlation, and the linkage method was

average. Then, a Mann-Whitney U test was used to rank the proteins based on their

peptide tally in one class (cancer) vs. the other class (wild-type). The top 50 proteins
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were subjected to hierarchical clustering and PCA as above (Figure 2-2 on page 35).

2.5.4 Naive Bayes Classifier

One of the goals of this study is to determine if it is possible to distinguish the mice

with cancer from the normal controls. Using the peptide tally protein rank lists, a

Bayesian classifier was trained on the data, and the accuracy of the classifier was

determined by leave-one-out cross-validation, as described in the Methods. The clas-

sifier was trained on an increasing number of top-ranked proteins, and the results are

shown in Figure 2-3 on page 36. Using only the top-ranked protein yields a predictive

accuracy of more than 80%. Adding in sequential top-ranked proteins increases the

predictive accuracy to as high as 95% (for 30 proteins). Adding in further proteins

does not improve the accuracy. In fact, the accuracy declines as lower-ranked, unin-

formative proteins are added into the classifier. For comparison, two runs of randomly

selected proteins are shown, and as expected, average predictive accuracy is about

50% (chance).

Since the linear combination of features determines the accuracy of the classifier, the

top-ranked most differentially expressed proteins may not yield the best classifier.

Therefore, a minimal discriminating set of proteins was sought. For the top-ranked 50

proteins, every set of three were chosen (19,600 sets in total) and a Bayesian classifier

was trained and tested. The top performing sets of proteins are shown in Figure 2.5

on page 40. Nine sets of three proteins were found that, when used to train a Bayesian

classifier, yielded a predictive accuracy of 98.9% or better. The top-ranked protein,

intestinal maltase-glucoamylase was found in all sets. But the other two proteins

existed throughout the top 50 proteins. It is important to note that the proteins

themselves in each of the minimal discriminating sets are not necessarily important

in the genesis, maintenance or metastasis of colon cancer. It is the linear combination

of these proteins that give the classifier its predictive power. Nevertheless, several of

these proteins merit further validation and study.
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2.6 Discussion - Mouse Models of Colon Cancer

Treatment advances have helped increase survival in colorectal carcinoma. However,

the greatest gains will likely be made through early detection of occult malignancy.

A direct correlation exists between survival and early detection, and any technologies

that facilitate early identification will lead to increased survival. These experiments

demonstrate that mass spectrometry can be used to reliably differentiate plasma sam-

ples from mice with and without colorectal carcinoma.

These experiments demonstrate that it is relatively easy to train a classifier to identify

the class of an unknown sample. Because of the paucity of samples, cross validation

was used to predict the accuracy of the classifier. A greedy search algorithm was used

to find the minimal discriminating set of proteins, and results indicate that using as

few as three proteins is enough to predict class with 99% accuracy. Further study will

be needed to test whether or not these findings generalize to other Apc∆580 mice,

and eventually, human subjects

The ultimate goals of these studies are two-fold. First is to identify novel proteins and

pathways in tumorigenesis. A second goal is to increase our ability to diagnosis col-

orectal carcinoma at an earlier stage. Serum testing as a diagnostic marker for occult

malignancy will be difficult because of the low abundance of tumor-secreted proteins

in the blood. Tests that are not sensitive enough will miss a significant proportion

of tumors, while those that are not specific enough will lead to unnecessary invasive

confirmatory diagnostic procedures. Using mass spectrometry profiles to identify in-

dividuals with early-stage colorectal carcinoma is an attractive prospect. While these

results are encouraging, studies will need to be extended to human samples. Ulti-

mately, a diagnostic test could be developed that may quickly and accurately detect

malignancy long before it would become clinically evident.
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(a) Hierarchical Clustering - All

(b) PCA - All

Figure 2-1: Hierarchical Clustering and PCA of All Proteins
Peptides were filtered at XC cutoffs of 1.8, 2.0, and 2.5 for charge states +1, +2
and +3, respectively. Peptides with different charge states were considered identical.
Single peptide identifications were excluded. For each protein, the number of peptides
assigned to that protein were tallied in each sample and the data normalized to a
mean of zero and a standard deviation of one. Using Matlab, hierarchical clustering
was performed on the entire list of proteins with distance metric correlation and the
linkage method average (Panel a). A graph of PC1 vs. PC2 is shown in (Panel
b). The percent variance along each principal component is given for PC1 and PC2.
Samples 1-10 represent the animals with cancer (green) and samples 11-20 the wild-
type animals (magenta).
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(a) Hierarchical Clustering - All

(b) PCA - All

Figure 2-2: Hierarchical Clustering and PCA of Top 50 Proteins
The protein list was created as in Figure 2-1. Proteins were ranked by a Mann-
Whitney U test based on the peptide tally in each class (cancer vs. wild-type). The
top 50 proteins were used for this analysis. Using Matlab, hierarchical clustering
was performed on the list of 50 proteins with distance metric correlation and the
linkage method average (Panel a). A graph of PC1 vs. PC2 is shown in (Panel
b). The percent variance along each principal component is given for PC1 and PC2.
Samples 1-10 represent the animals with cancer (green) and samples 11-20 the wild-
type animals (magenta).
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Figure 2-3: Naive Bayes Classifier
In order to predict the class of an unknown sample, a naive Bayes classifier was trained
on the data. For testing, a leave-two-out analysis was used, in which all permutations
of two samples were left out and the classifier was trained on the remaining data.
The naive Bayes classifier was trained on the protein list of tallied peptides ranked
by Mann-Whitney z-score. An increasing number of proteins were used to train the
classifier, and the data are displayed in the graph (top line). For comparison, two
runs of randomly selected proteins are shown. While even a small number of proteins
predicts with high accuracy, increasing the number of features does not improve the
accuracy beyond 95%.
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RefSeq Name Expression

14861842 G7e protein Up
94394534 PREDICTED: similar to Ig heavy chain V region 102 precursor Down
51873060 eukaryotic translation elongation factor 1 alpha 1 Up
84871986 glutathione peroxidase 1 Down
34328108 procollagen type I alpha 1 Down
31981822 cystatin C Up
71361676 complement factor H-related protein B Down
47059073 thrombospondin 1 Up
22122483 epidermal growth factor-containing fibulin-like extracellular matrix protein 1 Down
7242197 proteasome (prosome macropain) subunit beta type 1 Down
6755995 WD repeat domain 1 Down
94378746 PREDICTED: similar to Ig kappa chain V-V region L7 precursor Down
94377281 PREDICTED: maltase-glucoamylase Down
94378711 PREDICTED: similar to Ig kappa chain V-V region MOPC 41 precursor Down
6679509 parotid secretory protein Down
6754698 multiple inositol polyphosphate histidine phosphatase 1 Down
7657429 osteoblast specific factor 2 (fasciclin I-like) Down
7363449 serum amyloid P-component Up
94378742 PREDICTED: similar to Ig kappa chain V-IV region S107B precursor Up
6679749 fibroblast activation protein Down
21359820 myoglobin Up
94394520 PREDICTED: similar to Ig heavy chain V-I region V35 precursor Up
94393196 PREDICTED: similar to Ig heavy chain V region M167 precursor Down
6679813 FMS-like tyrosine kinase 4 Down
6753966 glycerol-3-phosphate dehydrogenase 1 (soluble) Down
94378734 PREDICTED: similar to Ig kappa chain V-VI region XRPC 44 Down
111120329 procollagen type I alpha 2 Down
94376463 PREDICTED: similar to Alpha-fetoprotein precursor (Alpha-fetoglobulin) (Alpha-1-fetoprotein) Down
31982260 insulin-like growth factor binding protein 2 Up
94399993 PREDICTED: similar to zinc finger protein 36-like 3 Up
22094119 myosin XVIIIa Up
22129037 olfactory receptor 167 Up
30840990 Rho GTPase activating protein 24 isoform 1 Up
15082218 secreted phosphoprotein 24 Up
63543414 PREDICTED: similar * Up
6754390 inositol 145-triphosphate receptor 1 Up
33859482 eukaryotic translation elongation factor 2 Up
94384435 PREDICTED: similar to Protein C16orf7 homolog (5-day ovary-specific transcript 1 protein) isoform 15 Down
94419495 PREDICTED: similar to Ig heavy chain V region VH558 A1/A4 precursor Down
7656969 complement factor H-related protein Up

111607471 amylase 2-1 pancreatic Down
6754524 lactate dehydrogenase 1 A chain Up
94378692 PREDICTED: similar to Ig kappa chain V-II region RPMI 6410 precursor Down
8850219 haptoglobin Up
6753220 complement component 1 q subcomponent B chain Up
6755040 profilin 1 Down
63543420 PREDICTED: similar * Up
27370126 carboxylesterase 5 Down
111074529 procollagen type XII alpha 1 Down
6755821 C-type lectin domain family 3 member b Down

Table 2.2: Top 50 proteins as determined by the Frequency Difference Ratio
The on-off status of each protein was tallied for each sample. Any proteins identified
by a single peptide were excluded. The Frequency Difference Ratio (FDR) was calcu-
lated by subtracting the number of ’on’ samples in the normal group from the number
of ’on’ samples in the cancer group and dividing by the number of samples in each
group. The proteins were then ranked by absolute value of the FDR. For expression,
’Up’ refers to increased in the mice with cancer, and ’Down’ refers to increased in the
control mice.
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RefSeq Name Expression

94378500 PREDICTED: similar to Maltase-glucoamylase intestinal Down
11596855 transferrin receptor Up
94393200 PREDICTED: similar to Ig heavy chain V region 441 precursor Down
31982300 hemoglobin beta adult major chain Down
6671650 complement component 1 q subcomponent A chain Down
9055252 inter alpha-trypsin inhibitor heavy chain 4 Up
67010045 hypothetical protein Up
14861842 G7e protein Up
6680175 hemoglobin alpha 1 chain Down
6680496 inter-alpha trypsin inhibitor heavy chain 3 Up
7363449 serum amyloid P-component Up

115430101 complement component 4 binding protein Up
33859636 serine (or cysteine) proteinase inhibitor clade A member 3K Down
38348520 hypothetical protein Down
7304875 alpha-2-HS-glycoprotein Up
94394534 PREDICTED: similar to Ig heavy chain V region 102 precursor Down
63629958 PREDICTED: apolipop* Up
33859506 albumin 1 Down
6753822 fibulin 1 Down
94378692 PREDICTED: similar to Ig kappa chain V-II region RPMI 6410 precursor Down
13624321 coagulation factor XIII beta subunit Down
6680608 pregnancy zone protein Down
6679182 orosomucoid 1 Up
30578393 coagulation factor XIII A1 subunit Down
110347473 apolipoprotein A-IV Up
51873060 eukaryotic translation elongation factor 1 alpha 1 Up
84871986 glutathione peroxidase 1 Down
7304911 alpha-2-glycoprotein 1 zinc Down
15011841 glutathione peroxidase 3 Down
110347564 ceruloplasmin isoform b Down
59709439 serine (or cysteine) proteinase inhibitor clade D member 1 Up
34328108 procollagen type I alpha 1 Down
16418335 leucine-rich alpha-2-glycoprotein Up
110347406 complement component factor i Up
6754132 histocompatibility 2 Q region locus 10 Up
8850219 haptoglobin Up
6671501 apolipoprotein C-IV Up
31981822 cystatin C Up
71361676 complement factor H-related protein B Down
136429 RYP PIG TRYPSIN PRECURSOR Up
6753220 complement component 1 q subcomponent B chain Up
94378742 PREDICTED: similar to Ig kappa chain V-IV region S107B precursor Up
6678093 serine (or cysteine) proteinase inhibitor clade A member 3N Up
47059073 thrombospondin 1 Up
22122483 epidermal growth factor-containing fibulin-like extracellular matrix protein 1 Down
7242197 proteasome (prosome macropain) subunit beta type 1 Down
6755995 WD repeat domain 1 Down
6679749 fibroblast activation protein Down
6681257 extracellular matrix protein 1 Down
6754384 inter-alpha trypsin inhibitor heavy chain 2 Up

Table 2.3: Top 50 Proteins as Determined by the Mann-Whitney U Test
For each protein, the number of peptides found matching that protein were tabulated
for each sample. The Mann-Whitney U test was used to determine which proteins
are most differentially expressed. For expression, ’Up’ refers to increased in the mice
with cancer, and ’Down’ refers to increased in the control mice.
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Found Only in Cancer

GI Name

22094119 myosin XVIIIa
22129037 olfactory receptor 167
30840990 Rho GTPase activating protein 24 isoform 1
6753556 cathepsin D
9507247 interleukin 17b
9789931 diaphanous homolog 3
94364089 PREDICTED: similar to ciliary rootlet coiled-coil rootletin
94384421 PREDICTED: similar to Zinc finger protein 469
6679373 serine (or cysteine) proteinase inhibitor clade E member 1

Found Only in Normal

GI Name

7710010 cartilage oligomeric matrix protein
6678189 seminal vesicle secretion 5
6754360 insulin receptor
6755198 proteasome (prosome macropain) subunit alpha type 6
21389311 intercellular adhesion molecule
33468869 seminal vesicle protein 2
63485066 PREDICTED: similar to translocated promoter region protein isoform 3
94390964 PREDICTED: hypothetical protein LOC69926
6753966 glycerol-3-phosphate dehydrogenase 1 (soluble)
6755995 WD repeat domain 1
84871986 glutathione peroxidase 1

Table 2.4: Proteins Found in One Population Only
The proteins found exclusively in either the mice with cancer or the normal mice are
shown. If a protein was identified by a single peptide, it was excluded.
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Accuracy GI (rank)/Name GI (rank)/Name GI (rank)/Name

99.7
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

1873060 (25)
Eukaryotic Translation

Elongation Factor

30578393 (23)
Coagulation Factor XIII A1

Subunit

99.4
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

3057893 (23)
Coagulation Factor XIII A1

Subunit

110347473 (24)
Apolipoprotein A-IV

99.4
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

51873060 (25)
Eukaryotic Translation

Elongation Factor

6679749 (47)
Fibroblast Activation Protein

99.2
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

6671650 (4)
Complement Component 1 q

51873060 (25)
Eukaryotic Translation

Elongation Factor

99.2
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

30578393 (23)
Coagulation Factor XIII A1

Subunit

71361676 (38)
Complement Factor H-Related

Protein B

99.2
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

110347473 (24)
Apolipoprotein A-IV

31981822 (37)
Cystatin C

99.2
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

51873060 (25)
Eukaryotic Translation

Elongation Factor

7304911 (27)
Alpha-2-Glycoprotein 1 Zinc

99.2
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

7304875 (12)
Alpha-2-HS-Glycoprotein

6753822 (17)
Fibulin 1

98.9
94378500 (1)

Intestinal Maltase-Glucoamylase
(predicted similar)

6671650 (4)
Complement Component 1 q

110347564 (30)
Ceruloplasmin Isoform b

Table 2.5: Naive Bayes Minimal Discriminating Set
In order to find a minimal discriminating set of proteins, a greedy algorithm was
used. For the top-ranked 50 proteins, every possible combination of three proteins
was tested using the leave-two-out analysis. The top ranking sets of proteins are
displayed, along with the average accuracy of the classifier, and are all more than
98.9%.
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Chapter 3

Proteomics for Cancer Biomarker

Discovery

3.1 Cancer is a Significant Cause of Mortality

Between 1974 and 1992, the incidence of cancer in the United States rose from 400

cases per 100,000 to 510 cases per 100,000 Ries; 2007aa. Since then the rate has fallen

to 457 per 100,000 (2004), still well above the incidence in 1974. Despite apparent

advances in diagnosis, treatment and ancillary care, death rates continued to climb

from 199 per 100,000 in 1974 to a high of 215 per 100,000 in 1991. From 1991 until

2004, the mortality rate fell slightly to 186 per 100,000. Cancer is the leading cause

of death in those aged 45-64 and the second leading cause of death in both age groups

35-44 and greater than 65 (http://www.CDC.gov). It is the third leading cause of

death in young adults. In 2004, cancer was responsible for 1.1 million deaths in the

US, making it the second leading cause of death behind heart disease.

3.2 Early Detection Improves Outcome

More than 60% of patients with breast, colon, lung and ovarian cancer have metastatic

disease at presentation, severely limiting the success of conventional therapeutics [42].

For example, 2/3 of cases of ovarian cancer are detected only after the disease has

spread beyond the peritoneal cavity [36]. Despite this, women usually have little or
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no specific diagnostic symptoms. With advanced disease, 5-year survival rates are

just 35-40%, while survival rates are over 95% when disease is detected when it is

still confined to the ovary. Clearly, early detection of ovarian cancer would have a

profound impact on the survival of this disease.

3.3 Proteomics for Early Cancer Detection

As described above, work published in 2002 demonstrated that mass spectrometry

could be used to distinguish between the sera of two groups of women - those with

ovarian cancer and those without. Subsequently, it was found that this early exuber-

ance was premature, and that the validity of the initial data had suffered from bias

and chance. Nevertheless, proteomics is emerging as a significant tool in both the

early detection of cancer as well as in biomarker discovery.

3.4 Lessons from the Current Work

I describe above a mouse model of colorectal carcinoma. Ten mice with colon cancer

were compared to ten of their wild-type litter mates. Their plasma was collected and

separated by liquid chromatography and subjected to mass spectrometry to identify

proteins. Several thousand peptides were identified in each class (cancer, wild-type),

and these peptide lists were used to create non-redundant protein lists. Based on the

peptide tally for these proteins, a Bayesian classifier was developed that could reliably

distinguish between the cancer and non-cancerous state. Furthermore, several sets

of just three proteins were identified that, when used to train a Bayesian classifier,

yielded 99% accuracy. This experiment demonstrates some of the pitfalls in designing

and implementing a proteomic study, and these are outlined below.

3.4.1 Bias

Bias is broadly defined as ”the systematic erroneous association of some characteristic

of a group in a way that distorts a comparison with another group.” [33] It is difficult
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to control for bias, and many factors are inherent to the study design [33]. In the

current work, there are many opportunities for bias to have been introduced. For

instance, the mice sera was collected on two different days and in two batches. These

two batches were separated and run on the MS separately. In fact, while unsuper-

vised analysis did not show a natural separation of cancer from non-cancer mice, it

did show some separation based on the day on which the study was performed (data

not shown). This indicates that there was a significant amount of bias, and that this

may have impacted the validity of the results.

In order to control for bias as much as possible, great care must be taken to standard-

ize as many aspects of the experiment as possible. The way in which the mice are

handled and sacrificed must be consistent. The way in which the plasma is isolated

and frozen must be standardized. More importantly, the sample preparation, liquid

chromatography and MS must all be done in a strictly designed fashion, minimizing

the variability of each step. Each of the steps from sacrifice to MS can add an el-

ement of bias to the final result, and in the current work on colorectal carcinoma,

there appears to have been a significant amount of such variability.

3.4.2 Chance

If a study has insufficient power, there can be Type I (false-positive) or Type II

(false-negative) errors. But the application of multi-variable models to proteomics

(and genomics) introduces another type of chance error-overfitting. When a model is

designed to discriminate between two classes, and this model fits the data perfectly,

this is likely a case of overfitting. This is a common problem with high-dimensional

data, and it occurs when the classifier is ”over trained” for the data. When the

classifier is applied to a separate new set of data, it will likely have no discriminatory

ability. To test for overfitting, a validation set is preferred. In this experimental

design, a separate set of data is ”held back” from the primary analysis. When the

analysis is complete and the classifier is derived, it is applied to the separate validation

set of data. If the accuracy is the same, then the result is more likely to be valid.
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In the current study, there was no validation set, and this significantly weakened the

validity of the result.

3.4.3 Peptide and Protein Identification

Proteomics is still an emerging field, and many aspects of these experiments remain

to be standardized. The current work illustrates some of the pitfalls in designing and

implementing these types of studies.

Animal Husbandry

Ideally, mice from both classes (cancer, wild-type) will be handled and raised in an

identical manner. But since the ∆580 mice harbor a germ-line mutation, it is possible

that their proteome is different at baseline, irrespective of their tumor burden. This

type of bias is very difficult to control. One way to study this would be to repeat the

experiment on mice before they have developed tumors.

Sample Isolation

As described above, the mice were sacrificed and bled into tubes containing EDTA.

Then the blood was centrifuged to isolate the plasma. The samples were stored at

-20C for one to two hours before transferring to -80C. Although this appears to be

a consistent and reasonable way to isolate and store plasma, several variables could

be responsible for bias and should be optimized and controlled. Any variability in

handling time could account for an increased amount of proteolysis. If the samples

from mice with cancer are handled any differently (for instance, spending more time

on ice while the intestine is examined), then those samples may have more proteolysis

and thus will exhibit a different proteome. A small pilot study could be performed to

show that samples from both classes are handled the same way and display internal

validity.
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Protein Digestion and Separation

Again, any variability in the digestion of separation of the samples could lead to bias.

Care should be taken to ensure that samples from both classes are handled in exactly

the same manner (eg. same amounts of trypsin, same temperature, same digestion

time).

Mass Spectrometry

The dynamic range of proteins in serum is 1010 [23]. It is likely that any candidate

biomarker has been severely diluted in the plasma from its original localized concen-

tration. To overcome this problem, there are several possible solutions as outlined

below.

Depletion First, prior to MS, the sample may be depleted. For instance, albu-

min and immunoglobulin represent a significant amount of the protein in a plasma

proteome. If these are removed, then the resolution of the lower-abundance proteins

may improve. A criticism of this technique is that any depletion strategy may also re-

move low-abundance proteins as well, especially if they are using albumin as a carrier

protein.

Detection in Primary Tumor Another strategy is to use first use the primary

tumor source for biomarker detection and then to attempt to find this biomarker in

the plasma sample. This was the method employed by Ding, et al. in their study

of cytokeratin 19 in hepatocellular carcinoma [12]. They first showed differential

expression in tumor cell lines and subsequently demonstrated detectability in serum

samples.

Increased Fractionation One can increase dynamic range prior to MS by per-

forming more extensive fractionation. In the current study, each sample was split

into 12 fractions using cation-exchange chromatography. An analysis by Hanash, et

al. of the same samples was performed, first pooling and then fractionating the sam-
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ples into 240 fractions. As expected, their analysis identified more low-abundance

proteins (personal communication, data not shown). The main drawbacks of this

approach are: (1) it takes much longer to analyze the samples, and (2) it requires

much more sample.

Enrichment Strategies An alternative is to target a subset of proteins through

enrichment. For instance, targeting an amino acid residue found only in a subset of

peptides (eg. cysteine), thus decreasing the overall complexity of the sample [37].

This is often accompanied by isotopic labeling to facilitate quantification. Another

method of enrichment is to target phosphorylated peptides [44] or specific N-terminal

labeling [17]. One more alternative method is to specifically target the glycoprotein

sub-proteome (glycoproteome), since the lower abundance proteins in plasma often

arise from outer membrane shedding events [43]. All of these enrichment strategies

are imperfect. In some cases, molecules of interest may not be in the enriched fraction.

In the current study, there was no enrichment. It is likely that most lower-abundance

proteins were not resolved because of the preponderance of high-abundance proteins.

Quantitative Strategies Although not employed in the current study, new meth-

ods are being adopted that allow for quantification of proteins from MS experiments.

Commonly employed techniques include metabolic labeling using heavy amino acids,

enzymatic transfer of 18O from water to peptides or proteins via chemical reactions

using isotope-coded affinity tags (reviewed in [1]).

Peptide Identification

One of the challenges for high-throughput experiments is to use databases with large

numbers of MS spectra to derive a list of peptides and corresponding proteins [1].

For small datasets, researchers can manually validate each peak and peptide assign-

ment, but this is not feasible for high-throughput work. Instead, incorrect peptide

assignments can be removed using various filtering algorithms and by examining the

number of hits using a reverse database [32, 30], the technique used in the current
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work. As the filtering criteria were made more stringent, the number of false hits went

down, but this was at the expense of removing some potentially relevant peptides.

Bioinformatic Analysis

As is evident, once the data reaches the point of analysis, there is ample room for

bias and chance to affect validity. Furthermore, care must be taken to not introduce

further uncertainty into the analysis. A robust data storage and retrieval system is

essential for performing reproducible experiments. Ideally, one has access to the raw

MS spectra, as examining the spectra for a controversial peptide identification may

be useful. In the current work, I developed a database for storage and easy retrieval

of MS data, though the raw MS data was not included. A subsequent incarnation of

this system should include storage of the raw spectra as well as built-in conversion

utilities to open-source formats, such as mzXML.

Constructing the most parsimonious set of proteins from the peptide identifications

can be a challenge. In the current work, the SEQUEST algorithm built a list of

proteins for each sample. But after the twenty samples were run, it made sense to

take advantage of the accumulated data in order to make a protein list that could

most simply explain the set of peptides. A possible criticism of this method is that

it might make better sense to develop the protein lists individually (for cancer and

non-cancer). While this would be easy to implement, I chose to use the most parsi-

monious explanation for all the data.

Deciding how to tally the proteins is another important decision. Possibilities in-

clude analysis at the peptide level or tallying the on-off state of each protein. In

addition to using the on-off state of each protein for each sample, I chose to use a

tally of the peptide counts for each protein as a semi-quantitative measure. This

decision is based on recent work by David States, et al., that showed that the number

of peptide hits was proportional to the amount of protein in the mixture [39].
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Choosing the appropriate metric for comparing classes is essential. For instance,

using a T-statistic would not be appropriate because the data is not from a normal

distribution. In the current study, a Mann-Whitney U test was used to compare the

two populations, which is a non-parametric test for assessing whether two samples of

observations derive from the same distribution.

It is essential to note whether or not an analysis is supervised or unsupervised. In

the current work, unsupervised hierarchical clustering and PCA were performed, and

unfortunately, did not show a good separation of the data into disease classes. Once

the data was ranked, these analyses (now supervised) did show a separation.

Finally, and most importantly, a naive Bayes classifier was trained and used to dif-

ferentiate with high accuracy the profiles of mice with cancer from those that were

healthy. In any such high-dimensional analysis, one must immediately be suspicious

of chance as a threat to validity. In this case, it is likely that such a high predictive

accuracy is a result of over-training the classifier. A way to test this is to hold out a

separate validation set of data and to test the classifier on this set. Unfortunately, as

with many experiments, time and cost constraints did not permit this. Another way

to help control for over-fitting is to use another artificial intelligence learning method,

such as neural networks or support vector machines.

3.5 Future Directions

I plan on applying these techniques to the study of pediatric solid tumors. Initially,

I will be studying neuroblastoma, the most common pediatric extra-cranial tumor.

I will first perform proteomic analyses of neuroblastoma tissue culture cells followed

by analyses of blood and tumors from patients with this disease. From this work, I

will learn about the biology of neuroblastoma and develop criteria for early diagnosis

and better risk stratification. Ultimately, this work will hopefully improve outcome

by providing a method of evaluating disease response to novel therapies.
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3.6 Summary

The field of proteomics holds great promise for biomarker discovery and early cancer

detection. Currently, there is a need for standardization of everything from sample

collection to protein digestion and separation to peptide and protein identification

to bioinformatic analysis. There is a growing body of work to support such stan-

dardization, and in the coming years, we will likely see many of these areas develop

standards of practice, much like the field of genomics saw during the last decade.

Carefully planned proteomic analyses can be used for cancer biomarker discovery as

well as for developing methods of early detection, a key to extending survival after

cancer. Such methods will be applied to an increasing array of tumors, and the data

will be a powerful orthogonal adjunct to the current genomic data sets.

3.7 Contributions

Through the current work, I have contributed the following.

• I have described the current field of proteomics as it relates to cancer biomarker

discovery and early detection.

• I enumerated the challenges and pitfalls to developing early detection schemes

for cancer based on high-dimensional proteomic analyses.

• I described a set of experiments on mice harboring a gene mutation predisposing

them to colorectal carcinoma.

• I detailed the bioinformatic analysis of this data, including the development of a

naive Bayes classifier to differentiate the cancerous state from the normal state.

• I discussed the caveats of the current work, in reference to the initial discussion

on the challenges and pitfalls of early detection schemes and cancer biomarker

discovery.
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