Report on the Probabilistic Language Scheme
Alexey Radul
Report on the Probabilistic Language Scheme

Alexey Radul
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
axch@mit.edu

Abstract
Reasoning with probabilistic models is a widespread and successful technique in areas ranging from computer vision, to natural language processing, to bioinformatics. Currently, these reasoning systems are either coded from scratch in general-purpose languages or use formalisms such as Bayesian networks that have limited expressive power. In both cases, the resulting systems are difficult to modify, maintain, compose, and interoperate with. This work presents Probabilistic Scheme, an embedding of probabilistic computation into Scheme. This gives programmers an expressive language for implementing modular probabilistic models that integrate naturally with the rest of Scheme.

Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features

General Terms Algorithms, Design, Languages

Keywords Scheme, embedding, probability

1. Introduction
Some of the most challenging tasks faced by computers today involve drawing conclusions from noisy or ambiguous data. These tasks range from deciding whether an email message is spam based on the words it contains [11], to predicting whether a piece of ground is safe to drive on based on camera and laser range-finder readings [15], to discovering patterns of gene expression based on microarray data [12]. Probabilistic modeling has become the technique of choice for tackling many of these tasks (as illustrated by the papers just cited). Probability theory provides a well-understood mathematical framework for combining multiple sources of evidence, but the computational tools available to programmers wishing to avail themselves of it are limited.

Probabilistic Scheme is a library for implementing probabilistic models in Scheme. Probabilistic Scheme deals with models of phenomena in arbitrarily structured but discrete and countable possibility spaces. The main contributions of Probabilistic Scheme are that it is an embedding of probabilistic computation into a general-purpose programming language; that it offers anytime approximation with provable upper and lower bounds via restartable partial search; and that it can be implemented with continuations, without using a meta-circular evaluator, so that it can interoperate seamlessly with much of the rest of the language.

The central concept in Probabilistic Scheme is that of a probability distribution. A probability distribution, in this context, is a belief about the value that an expression could have when evaluated in some environment. Suppose, for example, that I were about to roll a mathematically perfect six-sided die. Then you should believe that each of the six faces is equally likely to come up as the final result, and no other results are possible. This belief is a probability distribution, which assigns probability one-sixth to each of the faces of the die. Suppose, then, that you asked me the parity of the result and I informed you that the number rolled on the die were odd. Then you should believe that each of the six faces is equally likely to come up as the final result, and no other results are possible. This belief is a probability distribution, which assigns probability one-sixth to each of the faces of the die. Suppose, then, that you asked me the parity of the result and I informed you that the number rolled on the die were odd. Then, assuming you had no doubts about my perceptiveness or veracity, your belief about the result of the roll would change to one that assigned probability one-third to each of the faces with odd numbers, and zero to the others.

Probabilistic Scheme permits one to represent such beliefs, from the simple to the complex; to compute their transformations; and to extract definite, quantitative information from them. As a preview, the beliefs in the preceding paragraph can be represented as follows

(define die-roll-distribution
 (make-discrete-distribution
 '((1 1/6) (2 1/6) (3 1/6)
  (4 1/6) (5 1/6) (6 1/6))))

(define odd-die-roll-distribution
 (conditional-distribution
 die-roll-distribution odd?))

(distribution/determine!
Conceptually, distributions in Probabilistic Scheme are lists of the possibilities, and the probabilities assigned to them. If some object does not appear in the list, its probability is zero. To permit large (or infinite) distributions which are not needed in their entirety at any one time, this is actually a stream\(^1\) of possibilities. The representation of probability distributions will be further detailed in Section 5 and Section 6.

Probabilistic Scheme offers two “languages” for creating and transforming distributions. There is a language for constructing probability distributions by writing nondeterministic Scheme programs, described in Section 3. There is also a language for explicitly creating and manipulating objects that represent probability distributions, described in Section 4. The explicit language is easier to think about, because there are no weird control structures or strange nondeterministic programs, but the nondeterministic language is better suited to defining complex distributions, because it makes the structure of the distribution much clearer and its expression much more natural.

Probabilistic Scheme also offers a language for querying distributions to extract definite information from them. This turns out to be somewhat nontrivial, and is discussed in Section 5. We discuss our implementation of these languages in Section 6, with a detailed walkthrough in Section 6.3, exemplify some unusual distributions definable in Probabilistic Scheme in Section 7, and summarize in Section 8. First, though, some background, in Section 2.

2. Background

Bayesian networks have been a mainstay of probabilistic modeling since the late 1980s, e.g. [10]. They are a wonderful basic tool, and well implemented by off-the-shelf inference packages such as BUGS [13], but they are not very good at capturing the structure present in a domain. Recent work has moved in the direction of increased structure, for instance capturing relational structure as in [5] and [3], or first-order logical structure as in [7].

Probabilistic Scheme goes beyond this work, in the sense that programs in a general-purpose programming language are as structured as it is possible to be. The modeler is not constrained to expressing the model as a finite list of individual variables, as in a standard Bayes net; nor as a fixed object graph with known interobject links, as in standard relational models; nor as a fixed set of formulas that are only first order. Any construct expressible in Scheme, be it objects, functions, recursion, higher-order routines, etc can be subject to uncertainty and reasoned about.

The closest modern relative to Probabilistic Scheme is a stochastic programming language based on OCaml, called IBAL [8]. Probabilistic Scheme differs from IBAL in being an embedding of inference into an existing programming language, rather than a new programming language in its own right, permitting Probabilistic Scheme to benefit from all of the extant Scheme constructs. Another piece of related work is by Ramsey and Pfeffer [9], who explore denotational semantics for a form of stochastic lambda calculus similar to the stochastic sublanguage of Probabilistic Scheme. We take a more operational approach to semantics in the present work. The stochastic sublanguage of Probabilistic Scheme owes a great intellectual debt to McCarthy’s amb operator (see, e.g. [6], [1]).

3. Stochastic Language

Probabilistic Scheme embeds probabilistic computation by allowing Scheme expressions to have uncertain values, and maintaining an implicit probability distribution over what those values might be. The primitives for handling implicit distributions are

- \texttt{discrete-select} introduces uncertainty
- \texttt{observe} constrains the implicit distribution
- \texttt{stochastic-thunk->distribution} encloses a nondeterministic computation and returns the implicit distribution explicitly.

We now discuss each of these primitives in detail.

\texttt{(discrete-select possibility ...)}

Takes any number of literal two-element lists representing object-probability pairs. Returns one of the objects, implicitly distributed according to the distribution specified by the probabilities, which are expected to sum to 1. The evaluation of each object is deferred until it needs to be returned.

As expressions combine, their implicit distributions transform according to the rules of probability theory. For example, we can

\begin{verbatim}
(define (roll-die)
  (discrete-select (1 1/6) (2 1/6) (3 1/6)
                  (4 1/6) (5 1/6) (6 1/6)))
\end{verbatim}

Then every call to the \texttt{(roll-die)} function will independently return one of the numbers from 1 through 6, implicitly uniformly distributed. In that case, the expression \texttt{(cons \((\texttt{roll-die}) \ (\texttt{roll-die})\))} returns one of the 36 cons cells that have one of those numbers in the car slot and one in the cdr slot, also implicitly uniformly distributed. The expression \texttt{(+ \((\texttt{roll-die}) \ (\texttt{roll-die})\))} will return one of the numbers from 2 through 12, implicitly distributed according to the probability of getting that sum when rolling two fair dice.
six-sided dice. These rules of combination allow one to define arbitrarily complex distributions over arbitrarily structured objects.

\[(\text{observe! boolean})\]

Modifies the current implicit distribution by conditioning it on the argument being true. Returns an unspecified value.

Consider, for example, the expression

\[
\begin{align*}
\text{(let ((face (roll-die))) ;; Line 1} \\
\text{(observe! (> face 2)) ;; Line 2} \\
\text{face) ;; Line 3}
\end{align*}
\]

In line 1, the expression \(\text{roll-die}\) returns one of the numbers from 1 through 6, implicitly uniformly distributed. Let then binds it to the name face, whose value is then implicitly uniformly distributed over 1 through 6. The expression \((> \text{face} 2)\) on line 2 has one of the values \#t, \#f, implicitly distributed as 2/3 for \#t and 1/3 for \#f. \text{Observe!} modifies this implicit distribution to require \#t. This modifies the implicit distribution for face to be consistent with \((> \text{face} 2)\) returning \#t, that is it conditions \(p(\text{face})\) on \((> \text{face} 2)\). The distribution of return values from this whole \text{let} form is then \(p(\text{face}|(> \text{face} 2))\), in other words uniform over the numbers from 3 through 6.

\[(\text{stochastic-thunk->distribution thunk})\]

Returns, as an explicit probability distribution, the implicit distribution over the possible return values of the given thunk (nullary procedure).

For example, \((\text{stochastic-thunk->distribution roll-die})\) would return an explicit distribution object that represented the distribution that assigns equal mass to the numbers 1, 2, ..., 6. Stochastic-thunk->distribution captures and contains the nondeterminism occurring inside its argument thunk and perfectly deterministically returns an object representing a probability distribution.\(^2\)

One way to think of the semantics of the stochastic language is to imagine a possible implementation by rejection sampling. One could implement rejection sampling for this stochastic language by having \text{discrete-select} just use a random number generator, having \text{observe!} raise a distinguished exception if its argument is false, and having \text{stochastic-thunk->distribution} run its thunk many times, recording every successful return as a sample, and throwing away runs that raised the exception. In the limit of running the thunk an infinite number of times, the samples thus produced would constitute the distribution defined by such a program.

The actual implementation systematically searches the space of possibilities instead. The choice points introduced by \text{discrete-select} define a tree of possible computations. Computations that successfully return from the thunk given to \text{stochastic-thunk->distribution} result in acceptable possibilities, whereas computations that lead to \((\text{observe! \#f})\) result in impossibilities. The details of the implementation are discussed in Section 6, but they have one important effect on the specification: Since searching the space of possibilities may entail calls to \text{discrete-select} returning fewer or more times than once, the results of intermixing \text{discrete-select} with side effects are unspecified.

### 4. Explicit Distribution Language

As well as specifying distributions with nondeterministic thunks given to \text{stochastic-thunk->distribution}, one can create and operate on explicit probability distributions directly. The primitives\(^3\) for handling explicit distributions are

- \text{make-discrete-distribution} creates an explicit probability distribution from a list of possibilities
- \text{dependent-product} combines two distributions
- \text{conditional-distribution} transforms a distribution by conditioning it on a predicate
- \text{distribution-select} makes an explicit distribution implicit

\[(\text{make-discrete-distribution possibility ...})\]

Interprets each possibility argument as a two-element list of an object and its probability. Returns the probability distribution that assigns those probabilities to those objects, and zero to all others. Expect the set of possibilities to be normalized, i.e. for the given probabilities to sum to 1.

\[(\text{dependent-product distribution function combiner})\]

A distribution \(p(y|X)\) that depends on the value of some variable \(X\) can be represented as a function of \(X\) that, when given any particular value \(x\), returns the distribution \(p(y|X = x)\). Given a distribution

\[
\begin{align*}
\text{(dependent-product distribution function combiner)}
\end{align*}
\]

will return an explicit probability distribution weighted 1/5 to 4/5, whose two data are two different explicit probability distributions.

\(^2\)Nondeterministic computations can be nested:

\[
\begin{align*}
\text{(stochastic-thunk->distribution} \\
\text{(lambda ()} \\
\text{(discrete-select} \\
\text{((stochastic-thunk->distribution} \\
\text{(lambda ()} \\
\text{(discrete-select (‘heads 1/2) (‘tails 1/2))}) 1/5) \\
\text{(stochastic-thunk->distribution} \\
\text{(lambda ()} \\
\text{(discrete-select} \\
\text{(1 1/3) (2 1/3) (3 1/3))}) 4/5)))
\end{align*}
\]

\(^3\)Actually, \text{distribution-select} is enough for everything, because these operations are readily implementable by falling through to the stochastic language. This list is primitive in the sense that these operations are a sufficient base even without reference to the stochastic language.
dependent-product returns the distribution \( p(x, y) = p(x)p(y|X = x) \). Instead of trying to represent a distribution over multiple values, dependent-product takes a combiner to apply to the values \( x \) and \( y \), to return \( p(\text{combiner } x \ y) \). An oft-useful combiner is cons, though the right summation will happen if the combiner maps multiple pairs to the same combined value.

\[
(\text{conditional-distribution distribution predicate})
\]

Given a distribution \( p(x) \) and a predicate \( A(x) \), returns the distribution over \( x \)'es that satisfy the predicate, which is given by

\[
p(x|A(x)) = \begin{cases} 
  p(x)/p(A) & \text{if } A(x) \text{ is true} \\
  0 & \text{if } A(x) \text{ is false}
\end{cases}
\]

where \( p(A) \) is the probability that \( A \) is true. Since the \( x \)'es are mutually exclusive and exhaustive, we know that

\[
p(A) = \sum_{x:A(x)} p(x).
\]

The behavior of the system is unspecified if the predicate \( A(x) \) is impossible to satisfy. The present implementation will either enter an infinite loop if the underlying stream is infinite, or fail with an error if it is finite.

\[
(\text{distribution-select distribution})
\]

Returns one of the possible values from the given explicit distribution, implicitly distributed according thereunto.

For example, \texttt{roll-die}, above, could have been defined as

\[
(\text{define (roll-die)}
\text{(distribution-select}
\text{(make-discrete-distribution}
\text{"(1 1/6) (2 1/6) (3 1/6) (4 1/6) (5 1/6) (6 1/6))")}
\]

5. Querying Distributions

Probability distributions are occasionally infinite, as for instance a Poisson distribution over the integers, and often technically finite but large enough that we do not wish to compute them fully, as for instance a distribution over the possible parses of some sentence. Exact answers to questions about the probabilities of things in such distributions are therefore unobtainable in general, and we must turn to approximations. Probabilistic Scheme offers an API that leads to an anytime approximation\(^2\) strategy, and has the advantage of giving exact upper and lower bounds on its approximate answers.

Probabilistic Scheme achieves anytime approximation with a lazy representation of distributions. On initial creation, a distribution is a completely unforced stream of possibilities, each of which names a value and some amount of probability that the distribution assigns to it. On user request, this internal stream can be (partially) forced, whereupon the distribution object caches the assignments that came out of it. Therefore, at any one time, a distribution will have some cache of the possibilities that came out of the stream so far, which it can use to answer questions, and an upper bound on the amount of probability remaining in the rest of the stream.

It is convenient to permit the internal stream of a distribution to emit impossibilities as well as possibilities. An impossibility has the meaning that some amount of probability “vanishes;” in which case the distribution object implicitly renormalizes. This happens, for instance, if some \texttt{observe!} statement forces some condition that otherwise had some probability of being false. In the sequel, we use the word ‘density’ to refer to the actual numbers in the possibilities and impossibilities, and the word ‘mass’ to refer to probabilities derived from them by normalization. It is an invariant of Probabilistic Scheme that the total density in the possibilities and impossibilities in any stream from which a distribution is made is 1.

5.1 Questions

The following queries can be applied to explicit probability distributions without further forcing:

\[
(\text{distribution? thing})
\]

Returns \#t if the given thing is an object explicitly representing a probability distribution, and \#f otherwise.

\[
(\text{distribution/determined? distribution})
\]

Returns whether the given distribution object has already been fully determined, as opposed to having more computation it could do to further refine its internal representation of the distribution it represents.

\[
(\text{distribution/undetermined-mass distribution})
\]

Returns the amount of probability mass that remains in the unforced segment of the internal possibility stream in this distribution.

\[
(\text{distribution/datum-min-probability distribution datum})
(\text{distribution/datum-max-probability distribution datum})
(\text{distribution/datum-probability distribution datum})
\]

Returns bounds on the probability that the given datum could have in this distribution. The minimum value

---

\(^2\) Anytime approximation is a buzzword meaning that the client can choose how much time to invest in a computation and receive the best answer the system can give in the allotted time.
will be realized if all the remaining undetermined mass goes to other data. The maximum value will be realized if all the remaining undetermined mass goes to this datum. The unqualified function will signal an error if any undetermined mass remains, because then the probability of the datum is as yet unknown.

5.2 Forcing
The following functions cause explicit probability distribution objects to perform more of their computations:

(distribution/refine! distribution)

Runs the computation in the given distribution for the smallest detectable increment, which is either until a possibility is discovered or until some undetermined mass is lost to an impossibility. If the former comes to pass, the min-probability of the datum of the discovered possibility increases, and the max-probability of every other datum decreases. In the latter case, the min-probability of every thus far discovered datum increases and the max-probability of every datum decreases, unless there could be only one datum. The undetermined-mass decreases unless no data have yet been found, in which case it remains 1.

If the computation has been finished, i.e. no undetermined mass remains, distribution/refine! does nothing and returns #f. If distribution/refine! did anything, it returns #t. Higher-level forcing functions can be built by iterating distribution/refine! for some desired amount of time or until some desired condition has been met.

(distribution/determine! distribution)

Runs the computation in the given distribution all the way to the end. This is useful primarily for testing.

(distribution->density-stream distribution)

Returns a stream of the possibilities in the given distribution. The stream is permitted to contain impossibilities and repeated data at the discretion of the underlying implementation. This is an effective way to iterate over all the possibilities of a distribution, without requiring it to compute any beyond those that the client deems interesting. The returned stream starts with values from the distribution’s cache, but will begin to force the distribution’s internal stream when necessary (which forcing will be correctly cached for future access).

6. Implementation
We first discuss our implementation of the explicit probability distribution objects, and then proceed to the implementation of the stochastic language. We present a detailed example of the workings of the present implementation Probabilistic Scheme in Section 6.3.

6.1 Distributions
As mentioned in Section 5, a probability distribution is fundamentally a stream of possibilities and impossibilities. A possibility assigns some density to some particular datum, and an impossibility asserts that some density “disappears”, and the rest should be renormalized to account for that. Our distribution objects do not perform the renormalization eagerly, but instead track the total density of the impossibilities, and perform the renormalization on the fly as clients ask for the probabilities of various data.

A distribution is then a record containing four components:

- a lazy stream of the possibilities and impossibilities that form the distribution;
- a hash table mapping the data that we have encountered so far to their respective densities;
- a measure of how much density remains in the stream, the undetermined density; and
- the total density of the impossibilities we have encountered, the discarded density.

The probability of some datum in a given distribution is its normalized density — density divided by the distribution’s normalization constant, which is one minus the density that has been discarded due to impossibilities. If a distribution has not been completely determined, i.e. the possibility stream has not been exhausted, the probability of any datum is not completely certain. It can, however, be bounded from above by assuming that all the undetermined density will go to this datum, and from below by assuming it will all go to other data. Consequently, a distribution object can compute the bounds on the probability of a given datum in constant time.

The lazy stream allows us to incrementally refine the distribution. As the stream is forced, the elements are recorded in the distribution; possibilities are stored in the hash table, summing the densities of multiple occurrences of the same datum as needed, and densities of impossibilities are added to the discarded density field.

The distribution object described above is effective for answering questions about distributions. To implement distribution transformations, such as dependent-product and conditional-distribution, we only need the raw representation as streams of possibilities and impossibilities. Conditional-distribution is particularly simple, as all it needs to do is check each datum against the predicate, and replace it with an impossibility of the same density if the predicate rejects it.

5 We use the word density here instead of probability to emphasize the need for normalization.
6.2 Stochastic Language

A program written with discrete-select defines a search tree of possible values that calls to discrete-select could return. Probabilistic Scheme systematically searches this tree to produce a stream of possible result values and their probabilities.

This search is actually implemented by discrete-select capturing its return continuation using one invocation of call-with-current-continuation6 and saving it in a schedule of unexplored branch points. Discrete-select likewise saves the possible options and their given probabilities in this schedule. Exploring an edge in the search tree consists of asking the schedule to pick a saved branch point and option, and escape into that continuation with that value. The computation then proceeds normally until it reaches another discrete-select or until it returns a value to the enclosing stochastic-thunk->distribution. Said enclosing stochastic-thunk->distribution can then return that value to the client, and suspend the search until another value is requested.

During the progress of the search, Probabilistic Scheme maintains the density (since observations in other branches do not eagerly renormalize it) of reaching the current point in the program. Discrete-select saves this density along with its continuation, and when returning an option, updates it to be the density for getting to that choice point times the probability of choosing that option once there. This is the bookkeeping necessary to allow the search to yield possibilities and impossibilities with associated densities.

Calls to observe! either do nothing if the observed condition happens to be true in the current branch, or abort consideration of the current branch if the observed condition proves false, supplying an impossibility to the enclosing stochastic-thunk->distribution.

Stochastic-thunk->distribution sets up the background state necessary to execute a search through such a tree (such as the escape continuation for detecting an impossibility) and lazily launches the search, returning a stream of the possibilities and impossibilities the search will discover.

Distribution-select is just like discrete-select, except that it derives its list of options from the given distribution instead of from an explicit list in its arguments.

6.3 Detailed Example

Suppose one were playing some strange game of chance, and interested in the distribution of possible total outcomes of two (mathematically ideal) dice, given that the total exceeds nine. One might implement this in Probabilistic Scheme with the code in Figure 1. Let us trace through what the current implementation of Probabilistic Scheme will do with this definition.

When the code in Figure 1 is evaluated, the thunk is not run at all at first, and stochastic-thunk->distribution immediately returns a distribution object with a completely unforced stream of possibilities. As far as the object knows, the min-probability of any datum in the distribution is 0, and the max-probability of any datum is 1.

Refining the distribution in Figure 1 causes Probabilistic Scheme to carry out a search through the tree in Figure 2. When the (roll-die) marked A is first encountered,7 it will save its continuation and remaining options on a search schedule, set the current density to 1/6 and return 1. When the (roll-die) marked B is subsequently encountered, it will save its continuation, current density, and remaining options on the schedule, set the current density to 1/6 * 1/6 = 1/36, and return 1. From there, the evaluation will proceed according to the standard rules of Scheme: + will compute (+ 1 1), let will bind num to 2, and the observe! marked C will be evaluated. Since 2 is not greater than 9, (> num 9) will return false, and observe! will abort this branch of the computation.

A failed observation translates into an impossibility in the distribution’s stream. Since the density at the point of entry into observe! was 1/36, the stream emits an impossibility that says that 1/36 of the density is gone. The cache records this, and if one were to stop refining now, one would have a probability distribution object that had a min-probability of 0 for every datum, a max-probability of 1 for every datum, and a discarded density of 1/36.

If one refined the distribution further, the search would resume at the last saved point. This means that the scheduler would remove 2 from the list of options available at B, set the current density to 1/6 * 1/6 = 1/36, and escape into the continuation captured at B. In effect, the (roll-die) marked B would now return 2. Then the computation would proceed as normal: + would compute (+ 1 2), num would get bound to 3, (> 3 9) would return #f, and observe!

---

6 This is a wonderful but mindbending Scheme control construct, which this footnote lacks the space to explain. It is defined, for instance, in the Scheme Report [4], and explanations and tutorials abound on the Web.

7 Actually, which (roll-die) is encountered first depends on the order in which one’s Scheme implementation evaluates function arguments. For the sake of the exposition, I assume that function arguments are evaluated left-to-right.
would fail again. This would cause the stream to emit another impossibility, again for density 1/36, which would get cached, and would leave one with a probability distribution object that had a min-probability of 0 for every datum, a max-probability of 1 for every datum, and a discarded density of 2/36.

With further refinement, this would continue to happen until B ran out of saved options. If refined beyond that point, Probabilistic Scheme will backtrack to A. The scheduler will remove B from the schedule, remove 2 from the list of options remaining at A, set the current density to 1 * 1/6 = 1/6 (1 for the density of reaching A and 1/6 for the density of 2 given A), and escape into the continuation associated with A. In other words, the (roll-die) marked A will return 2. Then execution proceeds normally, so we invoke the (roll-die) marked B again. It will save its continuation, place its options on the schedule, set the current density to 1/6 * 1/6 = 1/36, and return 1. + will compute (+ 2 1), the > at C will decide that 3 is still not more than 9, and the observe! at C will fail again. This will cause the stream to emit another impossibility of density 1/36, and leave the distribution with a discarded density of 7/36.

With yet further refinement, Probabilistic Scheme will search through all six return values of B for A having returned 2, will backtrack to A and have A return 3, and look through all six of B’s options again. The first interesting event will occur when A returns 4 and B returns 6. Since 4 plus 6 is 10, (> 10 9) will return #t, and the observe! will let the computation proceed. There isn’t much computation left, so the thunk will return, and stochastic-thunk->distribution will record a possibility whose value is 10 and whose density is 1/36. At this point, a total of 24/36 of the density is accounted for, leaving 12/36 unexplored. If all 12/36 of that density went to data other than 10, then the distribution would have 13/36 density in all, 1/36 of it allocated to 10, so the min-probability of 10 is at this point (1/36)/(13/36) = 1/13. The min-probability of all other data is still 0, as we have not encountered them, and the max-probability of 10 is 1, whereas the max-probability of data besides 10 is 12/13.

If we refine the distribution again, it will backtrack to A since B is done, A will return 5, B will return 1, and C will fail. The stream will emit another impossibility. The undiscovered density will decrease to 11/36, so the min-probability of 10 will rise to (1/36)/(12/36) = 1/12, and the max-probability of data other than 10 will drop to 11/12. If we keep refining until B returns 5, then C will pass again, and the thunk will return 10 again. The distribution will record the total density of 10 as 1/18. Since at that point 7/36 of the density is still not accounted for, the min-probability of 10 is now 2/36/(2/36+7/36) = 2/9, whereas its max-probability is still 1. The min-probability of other data is still 0, but their max-probability now decreases to 7/9.

If we refine the distribution again, B will next return 6, let will bing num to 11, and the observe! at C will pass again, allowing the stream to emit a possibility signalling density 1/36 for the datum 11. The min-probability of 10 remains 2/9, the min-probability of 11 becomes 1/9, but the max-probability of 10 is now less than 1, because the distribution knows that some density went to 11. Specifically, if all 6/36 of the remaining density went to 10, its density would be 8/36 out of 9/36, so the max-probability of 10 is now 8/9 (whereas the max-probability of 11 is 7/9, and the max-probability of other data is 6/9).
If we refine the distribution again, Probabilistic Scheme will backtrack to A again, A will now return 6, B will return 1, C will note that 7 is less than 9, and the stream will emit another impossibility of density 1/36. Less density now remains unaccounted for, so the min-probability of each of 10 and 11 rise (to 2/8 and 1/8, respectively) and their max-probability fall (to 7/8 and 6/8, respectively). The max-probability of unseen data falls to 5/8.

Further refining will yield two more impossibilities, and then three possibilities, for 10, 11, and 12. The answer, in the end, is that the probability of 10 is (3/36)/(6/36) = 1/2, of 11 is 1/3, of 12 is 1/6, and of all other data is 0. If we try to refine the distribution beyond that, the scheduler will try to backtrack past A and note that nothing remains on the schedule. The stream will therefore emit the empty stream, and nothing will change.

7. Examples

For our second example, consider the definitions in Figure 3. The geometric-select function will return some integer greater than or equal to start, implicitly distributed according to a geometrically receding distribution parametrized by alpha. Limitations of time and computer memory aside, this distribution is infinite, but the lazy nature of the implementation permits stochastic-thunk->distribution to return a perfectly good distribution object. One could then call distribution/refine! on it until satisfaction, and distribution/min-probability would tell one that 0 has probability at least 1/4 in this distribution. The upper bound, returned by distribution/max-probability, would decrease as one refined the distribution further and further, tending to 1/4 in the limit.

(define (geometric-select alpha start) (discrete-select (start alpha) (lambda () (geometric-select alpha (+ start 1)) (- 1 alpha))))

(define receding-distribution (stochastic-thunk->distribution (lambda () (geometric-select 1/4 0))))

Figure 3. A recursive definition of an infinite distribution

The infinite nature of the distribution does no harm to compositional operations either. For instance, one could require that the integers be odd either explicitly with

(conditional-distribution receding-distribution odd?)

or implicitly with

(let ((number (geometric-select 1/4 0))) (observe! (odd? number)) ...) In this situation, the min-probability of 0 would remain 0 forever, because it is ruled out by the predicate odd?, and both the min and max probabilities of 1 would tend, as they should, to 7/16, from below and above, respectively, as one refined the resulting distribution further.

The fun doesn’t end there! Figures 4, 5 and 6 exemplify definitions of distributions over arbitrary, structured objects.

(stochastic-thunk->distribution (lambda () (make-list (geometric-select 1/4 0) 'a))))

Figure 4. A distribution over lists whose elements are references to the symbol a, and whose lengths are distributed according to the geometric distribution.

(stochastic-thunk->distribution (lambda () (map (lambda (ignore) (let ((size (geometric-select 1/4 0))) (observe! (odd? size)) (make-list size 'a))) (make-list (geometric-select 1/2 0))))))

Figure 5. A distribution over lists of lists, all of unbounded lengths, with the inner lists constrained to have an odd number of elements.

8 Which is probably preferable to the denominator explosion that plagues exact rational arithmetic

8 Numerical roundoff error is important since extremely small numbers are known to arise in the practice of probabilistic modeling. What are the right techniques for dealing with it?

8 Is it possible to discover no-good sets of discrete selections and avoid them in some dependency directed manner, e.g. [2], [14]?

8 What are the right decision-theoretic constructs that naturally refine distributions only as far as is useful?
(define (tree-structure alpha)
  (discrete-select
   ('() alpha)
   ((cons (tree-structure alpha) (tree-structure alpha)) (- 1 alpha))))

(stochastic-thunk->distribution (lambda () (tree-structure 1/3)))

**Figure 6.** A recursive distribution over tree structures.

- Can Probabilistic Scheme be extended to continuous probability distributions?
- Can Probabilistic Scheme be extended to reasoning over first-order and other more general propositions, rather than just distributions?

9. Acknowledgments

The author would like to thank Yu-hsin Chen and Taylor Campbell for assistance with the implementation; the anonymous reviewers for their feedback; and Gregory Marton, Brian Milch, Gerald Sussman, Rebecca Frankel, Tanya Kho-vanova, and Boris Katz for many useful discussions.

References


