SUBMARINE MOTION SIMULATION INCLUDING ZERO FORWARD SPEED
AND PROPELLER RACE EFFECTS

by

ROBERT IVES HICKEY

B.S. APPLIED MATHEMATICS,
The University of New Hampshire
(1983)

SUBMITTED TO THE DEPARTMENT OF
OCEAN ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE IN OCEAN ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
FEBRUARY 1990

Copyright Massachusetts Institute of Technology 1990
All Rights Reserved

Signature of Author

Department of Ocean Engineering
January 17, 1989

Certified by

Professor Martin Abkowitz
Thesis Supervisor

Accepted by

Professor A. Douglas Carmicheal
Chairman, Department Graduate Committee
ABSTRACT

A submarine motion simulation study was performed for the maneuvering characteristics of Draper Laboratories Unmanned Underwater Vehicle (UUV). The Revised Standard Submarine Equations of Motion (EOM), usually used by the Navy, were augmented to incorporate the case of very high angle of attack and the propeller race-control surface interaction.

The crossflow drag integral was modified, making the drag coefficient a function of the axial location of the hull section. The local Reynolds number was calculated based on hull diameter and crossflow velocity, taking into account lateral velocity and yaw rate. The Revised Standard EOM were used for angles of attack less than 30 degrees, the high angle of attack model for angles greater than 60 degrees. The forces and moments were interpolated to transition from the high angle of attack model to the low angle of attack model. The modified crossflow integrals predict superior trajectories during ballasting.

The influence of the propeller race on the effective angle of attack and the velocity over the control surfaces was modeled. The contribution of the control surfaces was separated from the Revised Standard coefficients Yv, Yr, Nv, and Nr and non-linear control surface coefficients were added. The response of the submarine during large rudder maneuvers is completely different due to stalling being modeled. Proximity of the propeller to the control surfaces has considerable influence on maneuvering and stability, especially during crashbacks.

Thesis Supervisor: Martin Abkowitz, Phd. title: Professor Emeritus of Ocean Engineering
ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to my thesis advisor, Dr. Martin Abkowitz, for his invaluable guidance and patient support throughout the development of this thesis. Thanks are also due to my thesis reader, Dr. Douglas Carmicheal at MIT, and Dr. Thomas Tureaud, a staff member at CSDL, for his effort in the development of the text.

My appreciation is extended towards CSDL for providing this outstanding academic and professional opportunity.

Publication of this report does not constitute approval by the Draper Laboratory or the sponsoring agency of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

I hereby assign my copyright to this thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

Signed ____________________________

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to the Massachusetts Institute of Technology to reproduce any or all of this thesis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>1.1 BACKGROUND</td>
<td>10</td>
</tr>
<tr>
<td>1.2 LITERATURE SEARCH</td>
<td>11</td>
</tr>
<tr>
<td>1.3 OBJECTIVE OF PRESENT WORK</td>
<td>12</td>
</tr>
<tr>
<td>2. MOTION SIMULATION</td>
<td>14</td>
</tr>
<tr>
<td>2.1 WHAT IS SIMULATION</td>
<td>14</td>
</tr>
<tr>
<td>2.2 USES OF SIMULATION</td>
<td>14</td>
</tr>
<tr>
<td>2.3 PRESENTATION AND SPECIAL FEATURES OF REVISED STANDARD SUBMA-RINE EQUATIONS OF MOTION (EOM)</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 REVISED STANDARD EOM</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 CROSS FLOW</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3 PROPULSION MODEL</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4 VORTEX</td>
<td>20</td>
</tr>
<tr>
<td>2.3.5 NOMENCLATURE AND INTERPRETATION OF TERMS</td>
<td>22</td>
</tr>
<tr>
<td>2.4 IMPLEMENTATION OF EOM</td>
<td>22</td>
</tr>
<tr>
<td>2.5 SHORT COMINGS OF REVISED STANDARD EOM</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1 EXPERIMENTAL AND ANALYTIC BACKGROUND</td>
<td>26</td>
</tr>
<tr>
<td>2.5.2 REALISTIC HYDRODYNAMICS</td>
<td>27</td>
</tr>
<tr>
<td>3. ZERO FORWARD SPEED CROSS FLOW</td>
<td>30</td>
</tr>
<tr>
<td>3.1 INTRODUCTION</td>
<td>30</td>
</tr>
<tr>
<td>3.2 ZERO FORWARD SPEED EOM</td>
<td>32</td>
</tr>
<tr>
<td>3.3 ZERO FORWARD SPEED RUNS</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 BUOYANT RISE MANEUVER</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.</td>
<td>Representative Kt vs J.</td>
<td>18</td>
</tr>
<tr>
<td>2-2.</td>
<td>Representative Kq vs J.</td>
<td>19</td>
</tr>
<tr>
<td>2-3.</td>
<td>A representative sail trailing vortex</td>
<td>21</td>
</tr>
<tr>
<td>2-4.</td>
<td>Relation Between Earth Reference Frame and Body Reference Frame</td>
<td>24</td>
</tr>
<tr>
<td>3-1.</td>
<td>Drag Coefficient vs Reynolds number for 2-D cylinder</td>
<td>30</td>
</tr>
<tr>
<td>3-2.</td>
<td>Pressure Distribution About an Unappended Submarine Hull</td>
<td>31</td>
</tr>
<tr>
<td>3-3.</td>
<td>Trajectories of Buoyant Rise, Runs made on RIHSIM</td>
<td>36</td>
</tr>
<tr>
<td>3-4.</td>
<td>Trajectories of Buoyant Rise, Runs made on RIHSIM</td>
<td>37</td>
</tr>
<tr>
<td>3-5.</td>
<td>Trajectories of Heavy Sink, Runs made on RIHSIM</td>
<td>39</td>
</tr>
<tr>
<td>3-6.</td>
<td>Trajectories of Heavy Sink, Runs made on RIHSIM</td>
<td>40</td>
</tr>
<tr>
<td>4-1.</td>
<td>Mean Axial Velocity</td>
<td>42</td>
</tr>
<tr>
<td>4-2.</td>
<td>Relative Proportions of Rudder In and Out of Race</td>
<td>43</td>
</tr>
<tr>
<td>4-3.</td>
<td>Trajectories of +15 Degree Turn, Runs made on RIHSIM</td>
<td>48</td>
</tr>
<tr>
<td>4-4.</td>
<td>Trajectories of +15 Degree Turn, Runs made on RIHSIM</td>
<td>49</td>
</tr>
<tr>
<td>4-5.</td>
<td>Trajectories of 10-10 Zig Zag, Runs made on RIHSIM</td>
<td>51</td>
</tr>
<tr>
<td>4-6.</td>
<td>Trajectories of 10-10 Zig Zag, Runs made on RIHSIM</td>
<td>52</td>
</tr>
<tr>
<td>4-7.</td>
<td>Trajectories of Crashback, Runs made on RIHSIM</td>
<td>54</td>
</tr>
<tr>
<td>4-8.</td>
<td>Trajectories of Crashback, Runs made on RIHSIM</td>
<td>55</td>
</tr>
</tbody>
</table>
NOMENCLATURE

SMALL LETTER

c : propeller race velocity at control surface
dr : deflection of rudder
dsp : deflection of port stern plane
dss : deflection of starboard stern plane
g : acceleration due to gravity 32.2 (ft/s²)
k : non dimensional ratio \(k = u/u_\infty \)
n : revolutions per second propeller
p : roll rate
q : pitch rate
r : yaw rate
t : thrust deduction
u : surge velocity
v : sway velocity
va : velocity of advance = \(u(1-w) \)
w : normal velocity
w : wake fraction

CAPITAL LETTER

BG : distance between CB and CG
CB : center of buoyancy
CG : center of gravity
D : propeller diameter
EHP : effective horsepower
EOM : equations of motion
J : non dimensional advance ratio \(J = (1-w)u/nD \)

K : roll moment

L : length of submarine

L/D : length diameter ratio of hydrodynamic hull

LHS : left hand side

M : pitch moment

N : yaw moment

Q : propeller torque

Re : Reynolds number \(= uL/v \)

RHS : right hand side

SNAME : Society of Naval Architects and Marine Engineers

SOE : submerged operating envelope

T : propeller thrust

U : linear velocity \(= \sqrt{u^2+v^2+w^2} \)

X : axial force

Y : lateral force

Z : normal force

SHP : shaft horsepower

6-DOF : six degrees of freedom

GREEK LETTER

\(\alpha \) : angle of attack \(\tan^{-1}(w/u) \)

\(\beta \) : angle of sideslip \(\sin^{-1}(-v/U) \)

\(\eta \) : ratio of command speed to forward speed \(\text{rpm}_c/\text{rpm} \)

\(\nu \) : kinematic viscosity

\(\rho \) : mass density of water
SUBSCRIPT

\(A_r \) : projected area of rudder
\(C_D \) : drag coefficient
\(C_L \) : lift coefficient
\(A_p \) : projected area of rudder in propeller race
\(F_{xp} \) : force, axial direction, propulsion
\(I_{DT} \) : drive train mass inertia
\(K_T(J) \) : non dimensional propeller thrust = \(T/\rho n^3 D^4 \)
\(K_Q(J) \) : non dimensional propeller torque = \(Q/\rho n^3 D^5 \)
\(u_A \) : induced local velocity of the propeller
\(u_{oo} \) : induced far field velocity of the propeller
\(v_{FW} \) : velocity of sail
\(x_B \) : axial location of center of buoyancy
\(x_G \) : axial location of center of gravity
\(X_{SL} \) : axial location of center of sail
\(z_B \) : normal location of center of buoyancy
\(z_G \) : normal location of center of gravity
\(Z_{SL} \) : normal location of sail
1.1 BACKGROUND

The prediction of submarine trajectories has its roots based in pre-WWII maneuvering coefficient estimation of dirigibles [17]. At that time, the computing power was not available to do the tedious work of solving equations with 6 degrees of freedom over many time steps. These equations were derived from potential theory and were kept simple with 2 degrees of freedom, encompassing either the vertical or horizontal planes. The axial and roll equations could be added to observe the effects of speed or the coupling between planes.

The Standard Equations of Motion for Submarine Simulation [7], also referred to as the 2510 equations, were written in 1967. The form was conceived to be general enough to simulate the motion of all submarines. Since the hydrodynamics of a submarine do not lend themselves to easy analysis, Taylor Series expansions of the forces and moments is a natural starting point to formulate equations of motion for simulation. The forces and moments of a submarine model were measured in a tow tank and were curve fitted using Least Squares. These Taylor Series expansions were added to the rigid body dynamics to yield a six degree of freedom model.

In the period that followed, a great deal was learned about submarine maneuvering hydrodynamics in the towing tank and at sea. The 2510 equations were not capable of accurately predicting trajectories of all maneuvers. By 1979, new expressions aimed at remedying these shortcomings were developed and made public in the Revised Standard Submarine Equations of Motion [4]. The three improvements are an integral form of cross-
flow drag, a sail/hull interaction integral, and a propeller model based on propeller shaft
dynamics using propeller curves of thrust and torque. The special features of the Revised
EOM features will be covered in detail in section 2.3.

As greater accuracy was demanded in simulation prediction, mathematical expressions
in the EOM were added as needed, to improve correlation with some important maneuvering
characteristics. These mathematical expressions may be found in unique math models
developed for a single submarine. The special curve fits of a given submarine improve the
simulated trajectories when compared with real trajectories. However, they are mathemat-
ical in nature and are not based on valid hydrodynamics.

1.2 LITERATURE SEARCH

As a starting point, current literature was reviewed to establish the current level of
technology. The Defense Technical Information Center (DTIC) and technical journals were
searched going back 20 years using the key words: math model, simulation, and equations
of motion. There was surprisingly little available oriented towards submarines. The Aero-
space industry has published a great deal and is useful to estimate maneuvering coeffi-
cients. However, the simulation of missiles use different conventions and is not considered
in this study. Also, the Aerospace literature tends to compare the difference between aero-
dynamic theory and wind tunnel measurements and not the difference between simulation
trajectories.

Lamb (1932) is an important background for the math model. Potential theory is a pow-
erful technique to determine the added mass terms and subtle cross coupling between
planes of motion. Symmetry considerations play an important part in simplifying the
equations. Noble (1969) predicts the trajectories of 4 vessels using a simplified math model. Different coefficients are used for each vessel and the validity of the trajectories produced is discussed. Romero (1972) primarily emphasizes the implementation of the math models, taking the control engineers' perspective. However, the math model used was pre-Revised Standard. Smitt and Chislett (1975) address the merits of Large Amplitude Planar Motions Mechanism for measuring the stability derivatives as well as maneuvering coefficients for surface ships. These coefficients include third order terms and were used in simulations to verify that accurate measurements can be made using a Large Amplitude Planar Motions Mechanism. Pretty and Hookway (1979) and Flax (1979) discuss the origins and differences between math models for airships. Mendenhall (1985) is breaking new ground in submarine motion simulation. Using rational flow modelling, an axial marching scheme is used to predict forces and moments. This technique is extremely computer intensive and not directly applicable in this study. Goodman et al (1987) apply PMM technology to the flow of high angle of attack static and dynamic stability characteristics. Humphreys (1988) addresses the impact of speed-varying hydrodynamic coefficients on maneuvering performance. Several sets of coefficients were estimated based on speed and the difference between trajectories discussed. Larson (1988) focuses on the influence each coefficient has on the trajectory produced. The relative importance of each coefficient is expressed as an error relative to the unchanged math model. The 2510 EOM and the Revised Standard EOM have covered the state of the art for submarine motion simulation when they were published.

1.3 OBJECTIVE OF PRESENT WORK

Understanding the tow-tank to math-model to simulation process, several points of weakness become apparent. While the Revised Standard EOM were intended to be valid for all maneuvers, the constraints under which the coefficients were derived, severely limits the
usefulness of the model. The two points addressed by this study are the lack of fidelity of the Revised Standard EOM with respect to the very high angle of attack motion regime and to the propeller-flow to control-surface interaction.

The first objective of this work is to develop a new crossflow drag integral which uses an axially varying drag coefficient based on crossflow Reynold’s number. The Crossflow drag of the control surfaces is represented separately as a function of yaw rate and lateral velocity. Ballasting is a maneuver that is difficult to predict trajectories for. Adding a new crossflow integral will model this motion regime.

The second objective is to modify the existing EOM by separating the effect of the control surfaces with new coefficients. Control surfaces are normally represented with a single linear term as a function of forward speed and deflection. Instead, they are replaced with nonlinear terms as a function of the propeller race velocity and the effective angle of attack. The proximity of the propeller to the control surface and the percentage of the control surface in the propeller race is important when backing the propeller. The flow from the propeller race may cancel the flow over that portion of the control surface, zeroing its contribution to the maneuver and stability. This approach was developed for surface ship motion simulation [2].

Augmenting the Revised Standard EOM with terms expressly addressing the very high angle of attack crossflow and addressing the propeller race velocity will greatly improve a submarine motion simulation. The augmented Revised Standard EOM are intuitively satisfying as are the 2510 EOM when Propeller, Crossflow and Vortex models were added. The current trend of developing custom math models that ignore hydrodynamics is unnecessary. By adding these two expressions, the range of applicability is expanded. Before and after trajectories are presented to compare the math models.
CHAPTER 2

MOTION SIMULATION

2.1 WHAT IS SIMULATION

Submarine Motion Simulation will be defined for the sake of this study to be a math model of a submarine representing six degrees of freedom (6-DOF) coded on a computer for the purpose of predicting trajectories. It is open loop, i.e., no automatic control inputs being fed back. The trajectories are realistic when compared with the real submarine provided that the inputs of propeller rpm, control surface deflections, and ballast changes are realistic.

2.2 USES OF SIMULATION

A motion simulation may be used to determine the best response to a dive jam. The submerged operating envelope (SOE) identifies the safe operating domain in terms of depth, speed, and control surface deflections. The boundaries of the SOE are dictated by the recovery limits for stern plane jams. These limits are based on motion simulations for a particular boat using all pertinent systems affecting the recovery of the boat such as propulsion characteristics, ballast system, boat orientation, and control surface deflection.

A comprehensive motion simulation is also needed to accurately model the dynamics and develop appropriate responses to the sternplane jam. For example, a correct response to a stern plane jam may be to put the rudder hard over to induce snap roll. This changes the plane of motion towards the horizontal reducing the depth loss. At the same time, the
propeller rpm may be slowed or reversed to slow the boat as fast as possible. The forward ballast may be blown to get a pitch up moment. The sequence of events that best recovers from a jam is determined from systematic permutations of control inputs [8].

The use of autopilots and control algorithms are based on high fidelity math models able to accurately predict the trajectories of a submarine. A controls engineer linearises the math model about some operating point and optimizes gains using a motion simulation. In this way, an unstable vehicle may be turned into a high performance vehicle, provided that it is not overly unstable.

Simulations are also used for ship pilot training. A motion simulation that has been tuned to real time is interfaced with a mock up of a real control station. A trainee inputs control commands using video feedback as a reference and flies the submarine. Harbor pilots are an example of highly skilled people who benefit from motion simulation training.

2.3 PRESENTATION AND SPECIAL FEATURES OF REVISED STANDARD SUBMARINE EQUATIONS OF MOTION (EOM)

2.3.1 REVISED STANDARD EOM

This study builds on the special features documented in the Revised Standard EOM. While the Vortex integral and the effects of the sail trailing vortex are not considered in this study, the crossflow and propeller model are improved. The Crossflow integral is changed to accommodate the very high angle of attack motion regime. The propeller model variables and dynamics are needed to implement the propeller race effects. The Revised Standard
EOM are included in Appendix A for reference, however aspects of the special features are covered below.

2.3.2 CROSS FLOW

This crossflow integral uses strip theory where a 3-dimensional body is approximated with many sections of a 2-dimensional body. The drag coefficient C_o is assumed to be constant over the whole body and is determined from curve fits of the towing tank data.

\[
Y = \frac{\rho}{2} C_D \int v(x) h(x) \sqrt{v^2(x) + w^2(x)} \, dx
\]

\[
Z = \frac{\rho}{2} C_D \int w(x) b(x) \sqrt{v^2(x) + w^2(x)} \, dx
\]

\[
M = \frac{\rho}{2} C_D \int x w(x) b(x) \sqrt{v^2(x) + w^2(x)} \, dx
\]

\[
N = \frac{\rho}{2} C_D \int x v(x) h(x) \sqrt{v^2(x) + w^2(x)} \, dx
\]

Local crossflow velocities are calculated at each station by the following.

\[
v(x) = v + x_{ref}
\]

\[
w(x) = w - x_{ref} q
\]

x_{ref} is the axial location on hull, r and q are angle rates, and u and v are velocities. $h(x)$ and $b(x)$ are offsets of the hull in the normal and lateral directions respectively, and are equal for
a body of revolution. There have been math models developed that use 4 separate C_0 coefficients for the crossflow integrals for better predictions.

For large, high speed submarines with diameters of 20 feet or more, the crossflow Reynolds number would be high enough to be past the critical value of 5.5×10^5 and therefore C_0 changes only slightly. The above crossflow integrals might be satisfactory for fleet submarines, but for small vehicles, much is overlooked.

2.3.3 PROPULSION MODEL

The propulsion model is of the form

$$ F_{xp} = \rho D^4 n^2 K_T(J)(1 - f) - 550 \frac{EHP}{U} $$

The first term on the RHS is propeller thrust and the second term is drag, where n is rev/sec, D is propeller diameter, and $K_T(J)$ is the nondimensional thrust as a function of J. The drag of the submarine is found from an EHP vs. speed look up table derived from model tests or analytic estimates. The advance ratio $J = \frac{u(1-w)}{nD}$ is calculated each time step and is the search parameter for tables of $K_T(J)$ and $K_D(J)$. See Figure 2-1 on page 18 and Figure 2-2 on page 19 for typical curves of K_T and K_D versus J. The values contained in the curves are for forward speeds only, with positive or negative rpm, see [10].
Figure 2-1. Representative K_t vs J; for forward speed, \pm rpm

Propeller torque is calculated from

$$Q_{prop} = \rho n^2 D^5 K_a(J)$$

The difference of propeller torque and motor torque is used to calculate shaft acceleration from the relation

$$\dot{RPM} = \left(Q_{\text{motor shaft efficiency}} - Q_{prop} \right) \frac{60}{2\pi \omega_{ax}}$$
where I_{dr} is the drive train moment of inertia. The strength of the drive train may also dictate a motor torque-rate limit.

![Figure 2-2. Representative K_q vs J: for forward speed, \pm rpm](image)

The equations needed to implement the propeller race model also need the above equations and variables. With a few new equations, the propeller race control surface interaction can be modelled.
2.3.4 VORTEX

The vortex integral represents the sail trailing vortex interacting with the hull. In this expression, vorticity is considered non-dissipative and stationary with respect to the fluid. \(V_{FW} \) represents the velocity of the sail, referenced to the quarter chord and the 42% span of the sail, taking into account the yaw and roll rate, as well as lateral velocity. Each axial location of the hull can be considered to have a discrete value of vorticity proportional to \(V_{FW} \), delayed by the time required for the shed vorticity to reach that location. The hull is moving under a stationary vorticity distribution created by the sail, see Figure 2-3 on page 21. The integral is a convolution of \(V_{FW} \) with \(w(x) \) or \(v(x) \), from the sail to a point near the end of the hull. In a tight turn, the sail trailing vortex may peel off the hull from a point farther forward than the stern. Thus, the lower limit of integration is a function of side slip angle \(\beta \). The vortex equations are as follows.

\[
Y = \frac{\rho}{2} C_i \int_{x_1}^{x_2} w(x)v_{FW}(t - \tau(x))dx \\
Z = \frac{\rho}{2} C_i \int_{x_1}^{x_2} v(x)v_{FW}(t - \tau(x))dx \\
K = K_\mu v_{FW}(t - \tau_T) + \frac{\rho}{2} Z_1 C_i \int_{x_1}^{x_2} w(x)v_{FW}(t - \tau(x))dx \\
M = \frac{\rho}{2} C_i \int_{x_1}^{x_2} v(x)v_{FW}(t - \tau(x))dx \\
N = \frac{\rho}{2} C_i \int_{x_1}^{x_2} w(x)v_{FW}(t - \tau(x))dx
\]
\[v_{FW} = v + X_{SL} + z_{SL} \]

\(X_1 \) is the axial location of the sail, and \(X_2 \) is the stern of the boat. \(K_i \) is the interaction of the trailing vortex with the controls surfaces, so \(v_{FW}(t-t_i) \) is delayed a bit further aft.

Figure 2-3. A representative sail trailing vortex

Improvements to Vortex are not covered in this study and are mentioned for completeness only. Classified literature is full of sail-trailing vortex research and reports. An improved Vortex model would therefore be the most likely addition for DTRC or some other Naval research facility to make to the Revised Standard EOM. Research indicates that at least 4 distinct vortices are shed from the sail, two at the tip and two at the root. Therefore, an obvious shortcoming of the Revised Standard Vortex Integral is that it keeps track of only one vortex and is 1-dimensional. Perhaps 4 separate vortices kept track of in 3-space would be more accurate. Mendenhall [18], is a key figure in rational flow modelling and is actively doing research in this field.
2.3.5 NOMENCLATURE AND INTERPRETATION OF TERMS

A word of caution should be raised with respect to the interpretation of maneuvering coefficients and nomenclature. Attaching physical meaning to the terms can be misleading and depends on how strictly the analyst adheres to physics. Several terms together may best correlate with hydrodynamics. For example, the following terms in the Revised Standard EOM are often curve fitted together, in an effort to get a best fit.

\[Y_{\nu \nu} + Y_{\nu 1 \nu 1} R \sqrt{v^2 + w^2} + \frac{\partial}{2} C_D \int v(x) \sqrt{v^2(x) + w^2(x)} \, dx \]

The capital R in the above expression stands for remainder and not yaw rate to remind hydrodynamicists to be cautious. Negative drag coefficients are non-dissipative and have sometimes been used for the sake of tow-tank data fidelity, though at the expense of impossible hydrodynamics.

SNAME [25] established a convention where the subscript implies the slope or derivative with respect to that subscript. For this study, coefficient names were created. The H in the term \(Y_{\nu \nu \nu} \) means high angle of attack to distinguish it from \(Y_{\nu 1 \nu 1} \). The term \(Y_{\nu e} \) means \(Y_{\nu e} \) effective angle of attack, and \(Y_{\nu e 3} \) means \(Y_{\nu e \nu e} \). The Fortran compiler used has a constraint of an 8 character variable and influenced the above choices.

2.4 IMPLEMENTATION OF EOM

The motion simulation for this study contains 30 subroutines, is written in Fortran 77 and was developed on an IBM PC. The coordinate system \((x,y,z)\) and \((\phi, \theta, \psi)\) are relative to
body-oriented axes. Velocities in this coordinate system are denoted by \((u,v,w)\), angular velocities by \((p,q,r)\), forces by \((X,Y,Z)\), and moments by \((K,M,N)\).

The equations of motion were rearranged into a matrix format with accelerations on the left hand side (LHS). Appendix A contains the Revised Standard EOM.

\[
\begin{bmatrix}
m - X_u & 0 & 0 & 0 & mz_G & -my_G \\
0 & m - Y_v & 0 & -mz_G - Y_{\dot{p}} & 0 & mx_G - Y_{\dot{r}} \\
0 & 0 & m - Z_w & my_G & -mx_G - Z_{\dot{q}} & 0 \\
0 & -mz_G - K_{\dot{v}} & my_G & I_{xx} - K_{\dot{p}} & -l_{xy} & l_{xz} - K_{\dot{r}} \\
mz_G & 0 & -mx_G - M_{\dot{w}} & -l_{xy} & l_{yy} - M_{\dot{q}} & -l_{yz} \\
-my_G & mx_G & -N_{\dot{v}} & 0 & -l_{zx} - N_{\dot{p}} & -l_{yz} & l_{zz} - N_{\dot{r}}
\end{bmatrix}
\begin{bmatrix}
\dot{u} \\
\dot{v} \\
\dot{w} \\
\dot{p} \\
\dot{q} \\
\dot{r}
\end{bmatrix}
= \begin{bmatrix}
\Sigma X \\
\Sigma Y \\
\Sigma Z \\
\Sigma K \\
\Sigma M \\
\Sigma N
\end{bmatrix}
\]

The right hand side (RHS) vector represents the summation of all forces that are functions of the hydrodynamics, such as the coefficients, the crossflow and vortex integrals, as well as the hydrostatics. The 2510 EOM and the Revised Standard EOM assume the motion dynamics are linear in acceleration.

When the program starts, the Left Hand Side (LHS) or mass properties matrix is inverted once and used for every subsequent \(\Delta t\). The RHS is calculated for two sets of equations, the Revised EOM and the Zero Speed EOM. If the angle of attack is between 30 and 60 degrees, interpolation between the two based on angle of attack gives a single RHS. Accelerations are solved for by calculating the product of the inverse of the LHS matrix and the RHS vector. The accelerations are then integrated twice to find velocities and positions, expressed in two frames of reference. The difference between them being the Euler-coordinate transform, producing an earth-relative set and a body-relative set see Figure 2-4 on page 24.
A 4th order Runge-Kutta integration routine with a Δt of 0.05 seconds was used in vector form, as shown below.

\[
Y_{i}^{n+1} = Y_{i}^{n} + \frac{1}{6} \left[k_{1,i} + 2k_{2,i} + 2k_{3,i} + k_{4,i} \right] = 1 \ldots 6
\]

\[
k_{1,i} = \Delta t f(t, x_{i})
\]

\[
k_{2,i} = \Delta t f(t + \frac{\Delta t}{2}, x_{i} + \frac{1}{2} k_{1,i})
\]

\[
k_{3,i} = \Delta t f(t + \frac{\Delta t}{2}, x_{i} + \frac{1}{2} k_{2,i})
\]

\[
k_{4,i} = \Delta t f(t + \Delta t, x_{i} + k_{3,i})
\]
This routine has a local truncation error of $O(\Delta x^9)$, and was chosen for its ease of application to the vector problem.

There are several types of power plants used on ships, each with unique characteristics. For example, an electric motor may be approximated by a constant HP input to the propeller model. In this simulation, either RPM, HP, or Torque may be specified as needed to duplicate almost any maneuver.

The input data file containing non-dimensional maneuvering coefficients, hull offsets, and propeller data consists of over 500 variables and is read in prior to each run. All of the input data and all calculated variables are echoed to an output date file which is helpful for debugging and comparison purposes.

All control inputs such as dr, dss, dsp, and rpm, are specified at particular times before a run. Control inputs are then linearly interpolated between these points and values passed to the equations of motion. For the 10-10 Zig-Zag maneuvers, the rudder was automatically flipped when the heading angle reached 10 degrees.

The RPM is integrated each time-step using a simple triangular integration routine. When the command torque and prop torque are in equilibrium, shaft acceleration stops.

Look-up tables were used for propeller, EHP, and crossflow drag data. The data taken from the tables is often clustered closely together so the previous location in the table is stored in memory to improve the search efficiency the next call.
Simpsons rule was used for crossflow integration. A very efficient routine was used where as much as possible was calculated before the run begins. Repetitive calls use the precalculated values making execution very fast.

The delay of \(V_{fw} \) is achieved thru two circular stacks in memory, where the \(V_{fw} \) and the axial distance traveled by the submarine for each \(\Delta t \) are stored. By adding up the \(\Delta x_s \) in one stack, the increment can be found in the \(V_{fw} \) stack and integrated.

2.5 SHORT COMINGS OF REVISED STANDARD EOM

2.5.1 EXPERIMENTAL AND ANALYTIC BACKGROUND

The equations of motion are intended to be valid over the whole range of motion for which a submarine is expected to maneuver. Forces and moments of the submarine hull are accurately predicted at small angles of attack using only linear coefficients. However, extrapolation beyond the intended limits is risky because the curve fits used may generate unrealistic forces and moments resulting in bad trajectories at best or numerical instability at worst. At some point, the allowable degree of nonlinearity in a standard math model will be exceeded. A problem occurs because a submarine may not be tank tested at all angles of attack.

At very low forward speeds, the angle of attack can easily exceed 30 degrees. Inspection of the Revised Standard math model shows a majority of coefficients to be a function of \(u \). As a result, with zero forward speed, the simulation doesn’t respond with realistic trajectories. There are ballasting cases where a real submarine would build up speed and angles of attack drop within linear limits. However, in this case, current math models do not
generate realistic trajectories, even with numerical buoyancy forces orders of magnitude larger than possible.

The results from a Large Amplitude Planar Motions Mechanism (PMM) are generally considered marginally accurate above some angle of attack, say 30 degrees. The PMM is a device used to sinusoidally oscillate a model while it is being towed in a straight line. Forces and moments are recorded at several speeds, angles of attack, and frequencies of oscillation. A Rotating Arm is used to measure forces and moments while the model is being towed in a circle, and duplicates the steady yaw rates not measurable on the PMM. There are physical limits as to the angles and frequencies measurable on this equipment as well as practical limits on the ability to resolve the effects of the hydrodynamics into coefficients.

Additionally, scale effects come into play which limit the accuracy of the measured coefficients. In the towing tank, Reynolds number matching is impossible because of the velocity and distance limitations of the towing tank. Corrections must be made to the data to adjust for known scale errors. In the end, there is some uncertainty in the value of the measured coefficients.

2.5.2 REALISTIC HYDRODYNAMICS

The limitations imposed by the PMM and subsequent data analysis suggest that purely mathematical curve fits used to represent the submarine are hydrodynamically weak. It is far better to develop a theoretically sound hydrodynamic expression and measure coefficients of lift, drag, and moment on a submarine model, than to cast aside hydrodynamic principles and use arbitrary mathematical curve fitting. The geometry of the submarine and hydrodynamic principles should determine the form of the math model.
The Revised Standard EOM do not handle very high angles of attack well. The coefficients are not meant for very high angles of attack because towing-tank tests are done at or near 0 degrees. In particular, coefficients addressing the control surfaces at 90 degrees are missing. While a single math model for all angles of attack would be simpler, a separate model focusing on the very high angles of attack that occur during ballasting should be used.

The propeller race effects are not represented in the Revised Standard EOM. Current techniques modify control surface terms by an eta (\(\eta \)) term, the ratio of command rpm to steady state rpm. However, these terms are functions of forward speed, and are inaccurate when forward speed is zero. The proximity of the propeller to the control surfaces is important because the propeller accelerates the flow. The percentage of the control surface in the propeller race as compared to the free stream is of fundamental importance to control authority. By backing the propeller when moving forward, the flow from the propeller race reduces and may cancel the flow over the control surface, zeroing its contribution to the maneuver and stability.

Additionally, the Revised Standard EOM do not take into account the effective angle of attack of the control surfaces. They are easily pushed into the non-linear regime due to their range and speed of deflection. The single coefficient \(Y_{dr} \) is a function of forward speed \(u \), and deflection \(dr \), and can't represent the force on a control surface at all angles of attack. The effective angle of attack is a function of rudder deflection \(dr \), the yaw rate \(r \), the lateral velocity \(v \), and the propeller race velocity \(c \). Further, the propeller race can change sign while backing, reversing the flow over the control surfaces. This has a dramatic influence on trajectories.
Blowing ballast and crashbacks are two maneuvers that submarines do regularly that push the limit of the simulation to model what actually takes place and thus warrant special attention. The Zero-Speed Crossflow model will cause the simulation to transition to the Revised Standard EOM in the range of moderate and small angles of attack and also realistically generate trajectories while ballasting with zero forward speed. The propeller race model will cause the submarine to go unstable during a crashback when the propeller race changes sign. Both phenomena are important and should be represented.
3.1 INTRODUCTION

For small, low speed submersibles with a diameter of about 4 feet, the axial Reynolds number is affected by the angle of attack and by the yaw rate. Thus, the local C_d may vary by as much as 100%, see Figure 3-1.

![Graph showing Drag Coefficient vs Reynolds number for 2-D cylinder]

Figure 3-1. Drag Coefficient vs Reynolds number for 2-D cylinder

and have a significant influence on hydrodynamic forces and moments [12]. The mid section may be in the laminar region while the extremities reach the critical Reynolds Number.
As the velocity varies along the hull, forces and moments develop due to the pressure changes. A pressure distribution due to an angle of attack, without an angle rate, is shown in Figure 3-2 on page 31, with a 2-D section included.

Since the crossflow integral is evaluated at each time \(\Delta t \), a local \(C_0 \) on the hull can be evaluated with a small penalty in computation. Tabulated values of drag versus Reynolds number for a 2-D cylinder were taken from [19] and are used in a lookup table. A simulation implementing the Revised Standard EOM is easily modified to make \(C_0 \) a function of axial location and Reynolds number. The required data is drag versus Reynolds number for a 2-D cylinder, which is readily available.

Figure 3-2. Pressure Distribution About an Unappended Submarine Hull: With Angle of Attack \(\alpha \).
3.2 ZERO FORWARD SPEED EOM

The significant change to the Revised Standard crossflow is that the drag coefficient is now inside the crossflow integral. The high angle of attack equations of motion are as follows:

\[
Y = \frac{\rho}{2} \int_{xb}^{xt} C_D(x)v(x)h(x)\sqrt{v^2(x) + w^2(x)} \, dx + Y_{HIV}v_s|v_s|
\]

\[
Z = \frac{\rho}{2} \int_{xb}^{xt} C_D(x)b(x)\sqrt{v^2(x) + w^2(x)} \, dx + Z_{HIV}w_s|w_s|
\]

\[
K = K_{p1|p|p}v|v|
\]

\[
M = \frac{\rho}{2} \int_{xb}^{xt} XCD(x)v(x)b(x)\sqrt{v^2(x) + w^2(x)} \, dx + M_{HIV}w_s|w_s|
\]

\[
N = \frac{\rho}{2} \int_{xb}^{xt} XCD(x)v(x)b(x)\sqrt{v^2(x) + w^2(x)} \, dx + N_{HIV}v_s|v_s|
\]

where \(C_D\) is a function of axial location, and \(Y_{HIV}, Z_{HIV}, M_{HIV}\) and \(N_{HIV}\) are high angle of attack coefficients for the control surfaces.

\[
v_s = v + x_{stern}f
\]

\[
w_s = w - x_{stern}q
\]

The crossflow Reynolds number is defined for this study as

\[
Re = \frac{\sqrt{v^2(x) + w^2(x)} D(x)}{y}
\]
\[v(x) = v + x_{ref} \]
\[w(x) = w - x_{ref} \]

The forward limit of integration \(x_b \), is moved aft from the forward perpendicular to take into account the 3-D effects of the bow. It is set to \(\frac{1}{2} \) of a maximum hull radius aft of the forward perpendicular which is equivalent to using a hemisphere at the bow. The aft limit of integration \(x_t \), is the axial location of the propeller. The surface area aft of the propeller is very small and is assumed insignificant.

At these high angles of attack, the control surfaces are stalled. For this study, analytic estimates were made for coefficients representing the control surfaces at angles of attack of 90 degrees. The crossflow drag of these appendages was estimated using a flat plate drag coefficient of \(C_o = 1.19 \), based on aspect ratio \([14]\). An area of 1.4 square feet per fin and a moment arm of 18.5 feet was used. These are added to the zero-speed cross flow integral which covers the hull from the bow to the stern. This integral and the estimates for the coefficients are only valid at 90 degrees, plus or minus 30 degrees.

3.3 ZERO FORWARD SPEED RUNS

Two maneuvers were used to test the blending and transition between the Revised EOM and the Zero Speed EOM. Both are set up to accentuate the very high angle of attack hydrodynamics.

The following are a description of variables used in the plots. Fraction is the percentage of High-Angle EOM used to determine the RHS. RHS3 and RHS5 are the sum of the RHS for
the normal and pitch equations respectively. WTINH2O is the change in weight of the submarine in water. Z CROSS and M CROSS are the values of the crossflow integrals. For the augmented model, High-Angle EOM crossflow and the Revised Standard EOM crossflow are blended when the angle of attack is between 60 and 30 degrees.

3.3.1 BUOYANT RISE MANEUVER

The first maneuver for zero speed simulation was buoyant rise. The model is initialized at zero speed steady state which can be defined as

\[u = v = w = p = q = r = \text{rpm} = \phi = \theta = dr = ds = 0. \]
\[x_g = x_b = z_b = 0.0, \text{ and } z_g = 0.04166 \]

Using a step-function input, the buoyancy of the boat is changed by +1% at the center of gravity. This accentuates the hydrodynamics because this buoyancy change has no static moment and causes the submarine to establish an equilibrium with a high angle of attack, see Figure 3-3 on page 36 and Figure 3-4 on page 37. The propeller was allowed to free-wheel. For the first 25 seconds, the run is in the 90-60 degree angle of attack regime and uses only the High-Angle EOM. Due to the contrived nature of the run, the submarine reaches equilibrium with about a 50 degree angle of attack and illustrates the blending of 2 math models.

Note that the Revised Standard EOM do not result in an up pitch and do not gain forward speed. The crossflow drag of the fins acting on an 18 foot momenti arm should result in an up pitch and is not accurately represented in the Revised Standard EOM.

If the location of the buoyancy change were forward of the CG, the static pitch angle would influence the dynamic angle of attack during ascent. For that case, which is not.
shown, the forward speed builds up until the angle of attack drops below 30 degrees and equilibrium is established in the Revised EOM.
Figure 3-3. Trajectories of Buoyant Rise, Runs made on RIHSIM: □ = Augmented EOM,

Ø = Revised Standard EOM
Figure 3-4. Trajectories of Buoyant Rise, Runs made on RIHSIM: □ = Augmented EOM, ○ = Revised Standard EOM
3.4 HEAVY SINK MANEUVER

The second maneuver was a heavy sink. Again, the model is initialized at zero steady state. However this time, x_g is less than x_b by 3 inches.

$$u = v = w = p = q = r = \text{rpm} = \phi = \theta = \Omega = \Omega = 0$$

$x_g = z_g = z_b = 0.$, and $x_b = 0.25$.

Buoyancy was stepped -1/2 %. In heavy sink, the gravitational forces and to a lesser degree the hydrodynamics, cause the pitch angle change. The runs establish equilibrium in the linear regime, both trajectories converging, see Figure 3-5 on page 39 and Figure 3-6 on page 40. The High-Angle EOM come into play in the first 5 seconds only.

An interesting difference with buoyant rise occurs. Because $B_G = 0$, there is no stabilizing roll moment and in both cases, the model spins during descent as a reaction to the propeller free-wheeling torque. This is not shown.
Figure 3-5. Trajectories of Heavy Sink, Runs made on RIHSIM: □ = Augmented EOM.

□ = Revised Standard EOM
Figure 3-6. Trajectories of Heavy Sink, Runs made on RIHSIM: □ = Augmented EOM,
 ○ = Revised Standard EOM
CHAPTER 4

PROPELLER RACE EFFECTS

The Revised Standard EOM take into account the propeller race effects with eta (\(\eta \)) terms, the ratio of rpm / rpm. For example, \(Y_{cl \eta}, N_{cl \eta}, Z_{des \eta}, Z_{des \eta}, M_{des \eta}, \) and \(M_{des \eta} \) would all be multiplied by \((\eta - 1) \). These terms reflect the change in control-surface effectiveness during a maneuver due to the propeller race. However, the \(\eta \) terms are a function of forward speed and not the propeller race speed. As a result, at zero forward speed, the control authority isn’t accurately represented. For maximum maneuverability, control surfaces should be located in the propeller race. For a typical modern submarine, they are located forward of the propeller and are not affected much. However, when the propeller is reversed, the flow is reduced and may also reverse over the control surfaces thereby having a large effect.

From actuator disk theory, it is possible to estimate the propeller race characteristics given the forward speed, propeller rpm, diameter and performance curves \(K_T(J) \), and \(K_0(J) \) vs. \(J \).

4.1 PROPELLER RACE MODEL

\(u_{\infty \infty} \) is the far field induced velocity of the propeller race. It is expressed as [2]

\[
u_{\infty \infty} = -(1 - w)u + \sqrt{(1 - w)^2 u^2 + \frac{8K_T(J)}{\pi} (nD)^2}
\]

and represents the maximum axial velocity that the propeller produces. Note the negative sign on the first term on the RHS. In this way, it is possible to change the flow over the control surfaces. When backing, \(K_T \) is negative and may cancel the forward component.
c is the actual velocity of the propeller race at the control surface as follows.

\[
c = \sqrt{\frac{A_p}{A_R} \left[(1 - w)u + ku_{\infty} \right]^2 + \frac{A_R - A_p}{A_R} (1 - w)^2 u^2}
\]

k is a coefficient, depending on the control surfaces proximity to the propeller, see Figure 4-1. The race is induced by a semi infinite tube of ring vortices and is determined by the Law of Savart. \(A_p \) is the area of the rudder in the prop race, and \(A_R \) is the total area of the rudder, see Figure 4-2 on page 43. This expression represents a weighting of the force of the rudder in the propeller race against the force of the rudder outside the propeller race, based on velocities and areas. The numerical propeller race flow reversal is accomplished by carefully controlling the signs under the square roots. When reversal occurs, the lift characteristics of the control surface are markedly different because the sharp trailing edge of the control surface is now the leading edge. The \(\frac{dC_l}{d\alpha} \) slope is the same, but the angle of maximum lift is approximately 1/2 that in the forward direction [11], and is taken into account. Even with reduced effectiveness, flow reversal over the control surface has an incredible effect at zero forward speed. This occurs because the flow over the submarine has little hydrodynamic effect and the rudder experiences significant velocity.

Figure 4-1. Mean Axial Velocity
Figure 4-2. Relative Proportions of Rudder In and Out of Race: and Wake Contraction
Based on Actuator Disk Theory

4.2 EFFECTIVE ANGLE OF ATTACK MODEL

The body dynamics also play a part in effective control surface deflections. The control surfaces are purposely located some distance away from the CG. The actual velocity vector of the flow is a function of yaw rate and lateral velocities. The effective angles of attack for the rudder and stern planes are represented by

\[
dre = dr - \tan^{-1}\left(\frac{v}{c} + x_{\text{stern}} \frac{f}{c}\right)
\]

\[
dsse = dss - \tan^{-1}\left(\frac{w}{c} - x_{\text{stern}} \frac{q}{c}\right)
\]

\[
dspe = dsp - \tan^{-1}\left(\frac{w}{c} - x_{\text{stern}} \frac{q}{c}\right)
\]

where \(x_{\text{stern}}\) is the axial location of the quarter chord of the control surface. In this way, the stalling that may occur during a zig-zag maneuver when control surface deflections are less than 20 degrees are represented.
In the Revised Standard EOM, control surface coefficients such as Y_{dr}, Z_{ds}, N_{dr}, and M_{ds} are linear. The very nonlinear nature of a low aspect ratio, all movable control surface mounted on the tapering tail cone of a body of revolution is apparent in experimental data. Near stalling, the gap at the root of the fin is quite wide and porting occurs. The lift drops significantly with higher angles of attack as the vorticity is shed at the gap instead of being carried onto the body. The fin's effective aspect ratio drops by about 2/3 as a result [9].

Based on this experimental fact, the third order control surface term Y_{dre3} was calculated. Using Y_{dr} and Y_{dre3} together, 1/3 less lift is generated at 32 degrees as compared to Y_{dr} alone. To stop the control surface lift from numerically changing sign when very high angles of attack occur, the effective angle of attack is limited to 40 degrees for the forward case, and 20 degrees when flow is reversed. In this way, the 3rd order lift coefficient Y_{dre3} isn't extrapolated out of its useful range.

4.3 PROPELLER RACE AND STABILITY

The propeller race velocity and the effective control surface deflections are an important consideration during evasive maneuvers such as a crashback. Recirculation of the propeller race may form a doublet disk which envelopes the control surfaces. During a crashback, the sub has forward speed and the propeller rpm is reversed. Depending on the sequence of events and the particular characteristics of the boat, it is possible to lose control of the boat. If the control surfaces contribute significantly to stability, then the reversal of the propeller may effectively cancel this contribution. Further, when the propeller race changes sign, the contribution of the rudder also changes sign, possibly causing instability.
Stability and turnability work against each other. The more stable the boat is, the more resistance the boat offers to a disturbance. A simple indication of straight line stability is given by the following.

\[G_v = 1 - \frac{M_w(Z_q + m)}{Z_wM_q} \]

\[G_n = 1 - \frac{N_r(Y_r - m)}{Y_rN_r} \]

The mass and stability derivatives are nondimensional. The boat is stable if \(G_v \) is greater than 0, and unstable if less than 0. A negative value of the propeller race destabilizes the boat by changing the sign of the contribution of the rudder. The effect of the rudder is present in the above expressions but not as a function of the propeller race. The status of the propulsion system has a large impact on the stability of a submarine.

According to potential theory, an unappended body of revolution with an angle of attack will experience Munk’s moment. Two stagnation points acting on significant moment arms cause it to yaw and makes up a substantial part of \(N_v \) and \(M_w \). Thus, during a steady state maneuver, the all-moveable rudder is restraining the hull from yawing faster. In this way, a rudder with +10 degrees deflection may actually experience a -10 degree angle of attack. For submarines that are neutrally stable or slightly unstable, reserve control authority can be negated by over deflecting the control surface causing stall.

Also, during crashback, the submarine may not slow down as fast as desired due to the doublet disk changing the effective wake of the hull. The stopping distance can be greater than for a freewheeling propeller. However, this phenomena isn’t normally modeled because the propeller curves are traditionally measured on a propeller boat or in a propeller tunnel to guarantee a uniform inflow. In the Revised Standard EOM, the effects repres-
ented by the thrust deduction and wake fraction are constants and are sometimes a function of sideslip angle at the propeller. However, the change in inflow to the propeller is nonline-
ar with loading and these constants are accurate at one operating point only. This is an area for future work and is not a part of this study.

4.4 EOM FOR RACE EFFECTS

The form of the equations for propeller-race effects removes the control surface from the existing coefficients, making it separate. The coefficients are based on body build up, the bare hull being calculated or measured, and appendages added. For example, Y_v and Y_r have the undeflected rudder Y_{dr} included in its effect. However, the significant nonlinearity of the control surfaces at high angles of attack is omitted in the Revised Standard, limiting the range of validity. The effect of the control surfaces is added back in as a function of $(c-c_0)$, c_0 being the steady state race velocity. The third order term Y_{drew} incorporates stalling into the EOM as indicated in [2].

\[
Y = -Y_{dr}(c - c_0)v - Y_{dr}(c - c_0)r + Y_{dr}c^2dr + Y_{drec^2dred^3}
\]

\[
Z = -Z_{ds}(c - c_0)w - Z_{ds}(c - c_0)q + Z_{ds}c^2ds + Z_{dse}c^2dse^3
\]

\[
M = -M_{ds}(c - c_0)w - M_{ds}(c - c_0)q + M_{ds}c^2ds + M_{dse}c^2dse^3
\]

\[
N = -N_{dr}(c - c_0)v - N_{dr}(c - c_0)r + N_{dr}c^2dr + N_{drec^2dred^3}
\]

Note that in the above equations, $Y_{dv}c$, $Y_{dc}cr$, and Y_{drc^2dr} together are effectively Y_{drew}.

The equations are formed in this manner to easily remove the effect of the undeflected rudder from Y_v and Y_r in the Revised Standard EOM.
4.5 PROPELLER RACE RUNS

Three test cases were studied to demonstrate the importance of the propeller race effects. They are +- 15 degree turn, 10-10 Zig-Zag, and Crashback. For each case, there are 2 runs. One with the Revised Standard EOM being used and the other incorporating the propeller race EOM. The traces are laid one on top of the other.

The effective control surface deflection and the propeller race velocity are calculated and plotted for the Revised Standard EOM runs but are not used to calculate the trajectories.

4.5.1 +- 15 DEGREE TURN

The difference in trajectories due to the effective angle of attack being used instead of the deflection is enormous. The third order term Ydre3 and the limit of 40 degrees are dominating this maneuver. The submarine is not responding to the helm and takes 20 seconds to change direction, see Figure 4-3 on page 48 and Figure 4-4 on page 49. The Propeller Race EOM produce no roll (phi) oscillations because the submarine is in a steady turn. The speed drop for Race EOM is greater because of the dominant X_w term. For the Revised EOM, v crosses zero at one instant and produces a hump in u.
Figure 4-3. Trajectories of ±15 Degree Turn, Runs made on RIHSIM: □ = Augmented EOM, ○ = Revised Standard EOM
Figure 4-4. Trajectories of ±15 Degree Turn, Runs made on RIHSIM: □ = Augmented EOM, □ = Revised Standard EOM
4.5.2 10-10 ZIG-ZAG

The runs for this maneuver are in the linear regime and are qualitatively the same. The differences are due to a slight difference in control surface effectiveness at small angles of attack. Y_{e1} is linear and a compromise over the whole range of deflection. Y_{e2} and Y_{e3} together could have been adjusted to be equivalent to Y_{e1} at some deflection. This would result in smaller differences between the runs with regard to amplitude, but some difference between frequency and phase. See Figure 4-5 on page 51 and Figure 4-6 on page 52.
Figure 4-5. Trajectories of 10-10 Zig Zag, Runs made on RIHSIM: □ = Augmented EOM, ○ = Revised Standard EOM
Figure 4-6. Trajectories of 10-10 Zig Zag, Runs made on RIHSIM: O = Augmented EOM, D = Revised Standard EOM
4.5.3 CRASHBACK

The stability change during a crashback is most dramatic when forward speed is near zero. This is due to the low forward speed at which the propeller race changes sign. At this point, the only significant flow or the submarine hull is the propeller race over the control surfaces. With a low and decreasing speed, the submarine will have sluggish response, see Figure 4-7 on page 54 and Figure 4-8 on page 55. All trajectories produced for the first 40 seconds are identical. However, heading, yaw rate, lateral velocity, and distance offtrack diverge in the last 15 seconds. The reason for this is the change in sign of the effective rudder deflection caused by the flow reversal of the propeller race. Even though the control surface effectiveness is about one half its forward effectiveness, the very low speed of the submarine produces little opposing force compared to lift from the control surface.
Figure 4-7. Trajectories of Crashback, Runs made on RIHSIM: □ = Augmented EOM, ○ = Revised Standard EOM
Figure 4-8. Trajectories of Crashback, Runs made on RIHSIM: \(O \) = Augmented EOM,
\(\bar{O} \) = Revised Standard EOM
CHAPTER 5
CONCLUSION

5.1 SUMMARY

From the comparison of runs, it is clearly seen that the differences between trajectories generated from the Revised Standard and trajectories generated from the augmented model are important. While the Revised Standard EOM were intended to be good for all maneuvers, the constraints under which the coefficients were derived, severely limits the usefulness of the model.

Zero speed crossflow and propeller race effects add a great deal to the math model, expanding the useful non-linear range of applicability and validity. Any comprehensive motion simulation based on the Revised Standard EOM may be augmented provided a K_T-K_Q propeller model is being used. The control surface configuration isn't normally included in a submarine math model and must be available or estimates made.

A shortcoming in the High Angle EOM occurs in the 30 to 60 degree angle of attack region. But there isn't a clear application for a model in this region of motion. The only way to sustain such angles of attack is through ballasting. In reality, either a boat would be maintained at close to 90 degrees for hovering or a significant up pitch angle would be allowed, the submarine gaining forward speed to get to the surface. The zero forward speed crossflow model will hover or undergo transition into the linear regime.

The contribution of the propeller race to the maneuvering characteristics of a submarine are fundamental. The omission of this expression in the math models of the past have
no doubt limited the validity of the trajectories produced in the nonlinear regime. The effective angle of attack model with the third order term Y_{area} was shown to exhibit very different behavior compared with the linear Y_{dr} rudder model. While backing the propeller, the race velocity reversal was shown to cause instability. The control surfaces acting as if on the bow, their effect in the opposite direction.

5.2 RECOMMENDATIONS FOR FUTURE WORK

The UUV will be tested at sea in the Spring and Summer of 1990. At this time, on board sensors will monitor several velocities and positions. These can be used to determine whether or not the math models simulated in this study are accurate and represent the true trajectories. No simulation should be used without comparing the output to the real world.

For the sake of simplicity, the area of the propeller race on the rudder was kept constant, based on continuity. Further fidelity would be gained by changing the respective areas with propeller loading.

For a submarine with a sail, new vortex integrals based on simplified rational flow modelling would be useful.

Also, a dynamically varying wake fraction and thrust deduction would improve fidelity, especially during crashback.
1. Abkowitz, Martin., *Hydrodynamics of Backing Propellers.*, Class notes from 13.08 Motion and Control of Marine Vehicles, Massachusetts Institute of Technology.

3. *Fundamentals of Submarine Hydrodynamics, Motion and Control*, General Dynamics, Electric Boat Division, Naval Architecture Department, NAVSHIPS 0911-003-0810.

APPENDIX A

CONDENSED REVISED STANDARD EOM
DTNSRDC REVISED STANDARD SUBMARINE EQUATIONS OF MOTION

by

J. Feldman

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT

June 1979 DTNSRDC/SPD-0393-09
Sketch Showing Positive Directions of Axes, Angles, Velocities, Forces, and Moments
AXIAL FORCE EQUATION

\[m \left[\dot{u} - vr + wz - x_g (q^2 + r^2) + y_g (pq - q) + z_g (pr + q) \right] = \]

\[+ \frac{\rho \, \tau^4}{2} \left[x_{qq} \, q^2 + x_{rr} \, r^2 + x_{rp} \, r^2 \right] \]

\[+ \frac{\rho \, \tau^2}{2} \left[x_{uu} \, u^2 + x_{vr} \, vr + x_{wu} \, wz \right] \]

\[+ \frac{\rho \, \tau^2}{2} \left[x_{vv} \, v^2 + x_{ww} \, w^2 \right] \]

\[+ \frac{\rho \, \tau^2}{2} \left[x_{\delta \delta} \, \delta^2 + x_{\delta \delta} \, \delta^2 + x_{\delta \delta} \, \delta^2 \right] \]

\[-(W-B) \sin \theta + F_{xp} \]

\[F_{xp} = \begin{cases} T_p - \text{DRAG} \\ \frac{\rho \, \tau^2}{2} \left[(a_1 + \Delta X) \, u^2 + b_1 \, c_{uw} + c_1 \, c_{2u} \right] \end{cases} \]

where \[\Delta X = \Delta X_1 + \frac{\Delta X_2}{(\Delta X_3 + \log_{10} u)^2} \]

\[C = C_6 + (C_7 + C_8 \, \Delta X)^{1/2} \]

Note: \(F_{xp} \) is represented by \(T_p - \text{DRAG} \) when propulsion characteristics are available. Otherwise, the second expression for \(F_{xp} \) is used.
LATERAL FORCE EQUATION

\[
\begin{align*}
\mathbf{m} \left[\mathbf{\ddot{v}} - \mathbf{w p} + \mathbf{u r} - \mathbf{y}_G (r^2 + \mathbf{p}^2) + \mathbf{z}_G (\mathbf{q} r - \mathbf{\dot{p}}) + \mathbf{x}_G (\mathbf{q} \mathbf{p} + \mathbf{\dot{r}}) \right] &= \\
&+ \frac{\partial}{\partial z} \int_0^L \left[\mathbf{y}_r \mathbf{u} + \mathbf{y}_p \mathbf{w} + \mathbf{y}_v \mathbf{v} + \mathbf{y}_x \mathbf{w} \right] \\
&+ \frac{\partial}{\partial z} \int_0^L \left[\mathbf{y}_r \mathbf{u} + \mathbf{y}_p \mathbf{w} + \mathbf{y}_v \mathbf{v} + \mathbf{y}_x \mathbf{w} \right] \\
&+ \frac{\partial}{\partial z} \int_0^L \left[\mathbf{y}_r \mathbf{u} + \mathbf{y}_p \mathbf{w} + \mathbf{y}_v \mathbf{v} + \mathbf{y}_x \mathbf{w} \right] \\
&+ \frac{\partial}{\partial z} \int_0^L \left[\mathbf{y}_r \mathbf{u} + \mathbf{y}_p \mathbf{w} + \mathbf{y}_v \mathbf{v} + \mathbf{y}_x \mathbf{w} \right] \\
&+ \frac{\partial}{\partial z} \int_0^L \left[\mathbf{y}_r \mathbf{u} + \mathbf{y}_p \mathbf{w} + \mathbf{y}_v \mathbf{v} + \mathbf{y}_x \mathbf{w} \right] \\
&- \frac{\partial}{\partial z} \int_0^L \mathbf{h(x)} \mathbf{v(x)} \left\{ \left[\mathbf{w(x)} \right]^2 + \left[\mathbf{v(x)} \right]^2 \right\}^{1/2} \mathbf{dx} \\
&+ \frac{\partial}{\partial z} \int_0^L \mathbf{w(x)} \mathbf{v(x)} \left(\mathbf{\tau} - \mathbf{\tau(x)} \right) \mathbf{dx} \\
&+ (\mathbf{W} - \mathbf{B}) \mathbf{\cos \theta \sin \phi}
\end{align*}
\]
NORMAL FORCE EQUATION

\[
\begin{align*}
\mathbf{w} & = [\dot{u} - uq + v\dot{p} - z_G(p^2 + q^2) + x_G(rp - \dot{q}) + y_G(rq + \dot{p})] = \\
& + \frac{\partial}{\partial z} \mathbf{z}' \dot{q} \\
& + \frac{1}{2} \mathbf{z}^2 [z_{q''} \dot{u} + z_{q'} \dot{u} + z_{v_p} \dot{v}] \\
& + \frac{1}{2} \mathbf{z}^2 [z_{u'} u^2 + z_{w'} uw] \\
& + \frac{1}{2} \mathbf{z}^2 [z_{|u'|} |u'| + z_{|w'|} |w| (v^2 + u^2)]\frac{1}{2}] \\
& + \frac{1}{2} \mathbf{z}^2 [z_{\delta a' } u^2 \delta_a + z_{\delta b' } u^2 \delta_b + z_{\delta a' } u^2 \delta_s (\eta - \frac{1}{c}) c] \\
& - \frac{1}{2} c \int_{x_d} \mathbf{b}(x) \mathbf{w}(x) \left\{ [\mathbf{w}(x)]^2 + [\mathbf{v}(x)]^2 \right\} \frac{1}{2} dx \\
& + \frac{1}{2} \mathbf{z} \int_{x_d} \mathbf{v}(x) \mathbf{\bar{w}}_{FW}(t - \tau(x)) dx \\
& + (W - B) \cos \theta \cos \phi
\end{align*}
\]
ROLLING MOMENT EQUATION

\[I_x \dot{\varphi} + (I_z - I_y)qr - (\dot{t} + pq)I_{xz} + (r^2 - q^2)I_{yz} + (pr - q)I_{xy} \]

\[+ m \left[y_G(\dot{\omega} - uq + vp) - z_G(\dot{\psi} - wp + ur) \right] = \]

\[+ \frac{\rho}{2} l^5 \left[K_{p'} \dot{\varphi} + K_{e'} \dot{t} + K_{qr} qr + K_{p|p'| p|p'|} \right] \]

\[+ \frac{\rho}{2} l^4 \left[K_{p'} up + K_{e'} ur + K_{v'} v' + K_{wp'} wp \right] \]

\[+ \frac{\rho}{2} l^3 \left[K_{s'} u^2 + K_{v_s} uv + K_{v_s} uv_{FW}(t - t_s) \right] \]

\[+ \frac{\rho}{2} l^3 \left[K_{\delta r} u^2 \delta_r + K_{\delta r} u^2 \delta_r \left(\eta - \frac{1}{c} \right) \right] \]

\[+ \frac{\rho}{2} l^3 (u^2 + v_s^2 + v_s^2) \theta_s^2 \left[K_{s'} \sin 4\phi_s + K_{s'} \sin 8\phi_s \right] \]

\[+ \frac{\rho}{2} l^2 z_1 \int_{x_2}^{x_1} \frac{w(x)}{F_W(t - \tau(x))} dx \]

\[+ (y_G - y_B) \cos \theta \cos \phi - (z_G - z_B) \cos \theta \sin \phi \]

\[- \frac{\rho}{2} \]
PITCHING MOMENT EQUATION

\[I_y \ddot{q} + (I_x - I_z) \dot{r}p - (\dot{\phi} + qr)I_{xy} + (p^2 - r^2)I_{zx} + (qp - \dot{r})I_{yz} \]

\[+ m \left[x_G(\dot{u} - vr + wq) - x_G(\dot{w} - uq + vp) \right] = \]

\[+ \frac{p}{2} L^3 \left[H_q \dot{q} + M_{rp} \dot{r}p \right] \]

\[+ \frac{p}{2} L^4 \left[H_q \dot{u} + M_{q} \dot{u} \right] \]

\[+ \frac{p}{2} L^3 \left[H_{uu} u^2 + H_{w} uw + H_{w} w \right] \frac{w(v^2 + w^2)^{1/2}}{w(v^2 + w^2)^{1/2}} \]

\[+ \frac{p}{2} L^3 \left[H_{uw} u w + H_{ww} w \right] \frac{w(v^2 + w^2)^{1/2}}{w(v^2 + w^2)^{1/2}} \]

\[+ \frac{p}{2} L^3 \left[M_{s} u^2 \delta_s + M_{s} u^2 \delta_b + M_{s} u^2 \delta_s \right] \left(\frac{1}{C} \right) \]

\[+ \frac{p}{2} C_d \int_L x b(x) w(x) \left\{ \frac{w(x)}{v(x)} \right\}^{1/2} \ dx \]

\[- \frac{p}{2} \tilde{C}_L \int_{x_1}^{x_2} x v(x) \tilde{v}_F(t - \tau(x)) \ dx \]

\[- (x_G \ W - x_B \ B) \ \cos \theta \ \cos \phi - (z_G \ W - z_B \ B) \ \sin \theta \]
YAWING MOMENT EQUATION

\[I_{z} \ddot{t} + (I_{y} - I_{x}) pq - (\dot{q} + rp) I_{yz} + (q^2 - p^2) I_{xy} + (rq - \dot{p}) I_{zx} \]

\[+ \mathbf{a} \left[x_G (\dot{\phi} - wp + ur) - y_G (\dot{u} - vr + wq) \right] = \]

\[+ \frac{\rho}{2} \xi^5 \left[N_{x'} \dot{t} + N_{p'} \dot{p} + N_{pq'} pq \right] \]

\[+ \frac{\rho}{2} \xi^4 \left[N_{p'} up + N_{x'} ur + N_{\dot{v}}' \dot{v} \right] \]

\[+ \frac{\rho}{2} \xi^3 \left[N_{x'} u^2 + N_{v'} uv + N_{v}|v|_R ^v (v^2 + u^2)^{1/2} \right] \]

\[+ \frac{\rho}{2} \xi^3 \left[N_{\delta r'} u^2 \delta_r + N_{\delta r''} u^2 \delta_r \left(\eta - \frac{1}{C} \right) C \right] \]

\[- \frac{\rho}{2} C_d \int_{x}^{1} x h(x) v(x) \left\{ [w(x)]^2 + [v(x)]^2 \right\}^{1/2} dx \]

\[- \frac{\rho}{2} k \xi \int_{x_2}^{x_1} x w(x) \nabla_{FW} (\tau - \tau[x]) dx \]

\[+ (x_G W - x_B B) \cos \Theta \sin \phi + (y_G W - y_B B) \sin \Theta \]
APPENDIX B

PARTIAL SOURCE CODE FOR RIHSIM
SUBROUTINE MOTION
C - THIS SUBROUTINE USES 4TH ORDER RUNGE KUTTA INTEGRATION
C - IT CALCULATES THE 1ST & 2ND STATE DERIVATIVES
C - USING THE INVERSE OF THE 'E' MATRIX
C - SUBROUTINE HYDRO IMPLEMENTS DTNSRDC 2510 EQUATIONS
C
EDOT(1) EDOT(2) EDOT(3) EDOT(4) EDOT(5) EDOT(6) E
C C C C C C F L
UDOT VDOT WDOT PDOT QDOT RDOT R
C C C C C C I D V
U V W P Q R E
PDOT(1) PDOT(2) PDOT(3) PDOT(4) PDOT(5) PDOT(6) R
C C C C C C E E
U V W P Q R A L
P(1) P(2) P(3) P(4) P(5) P(6) T T
C C C C C C H I
X Y Z PHI THETA PSI V
C-------------------------------ROBERT HICKEY---------9/89-------------
C IMPLICIT NONE
 REAL*8 CTRN(6,6),AINV(6,6),RHS(6),EDOT(6,4),EO(6),E(6),PDOT(6,4)
 REAL*8 PO(6),P(6),DTO2,DT,DTO6,TA
 REAL*8 DS4,DC4,DS5,DC5,DS6,DC6,DT5,DS5DC6,DS5DS6
 INTEGER*2 I,J,K,JJJ
C REAL*8 DD(1800)
 COMMON /COMDOD/ DD
C EQUIVALENCE (DD(1), DT),(DD(6), DTO6)
 EQUIVALENCE (DD(7), DTO2),(DD(11), JJJ)
 EQUIVALENCE (DD(10), TA)
 EQUIVALENCE (DD(31),EDOT(1,1))),(DD(55), E(1))
 EQUIVALENCE (DD(61), P(1))),(DD(71), RHS(1))
 EQUIVALENCE (DD(77),PDOT(1,1))
 EQUIVALENCE (DD(107),AINV(1,1))),(DD(143),CTRN(1,1))
C DO 160 I = 1,6
 EO(I) = E(I)
 PO(I) = P(I)
 DO 170 J = 1,4
 EDOT(I,J) = 0.0
 PDOT(I,J) = 0.0
 170 CONTINUE
 160 CONTINUE
C START 4TH ORDER RUNGE KUTTA INTEGRATION
C DO 100 JJJJ=1,4
C CALCULATE THE RIGHT HAND SIDE OF THE HYDRODYNAMIC EQUATIONS
CALL HYDRO

SOLVE FOR ACCELERATIONS
AINV 6X6 * RHS 6X1 = EDOT 6X1 (JJJ)

DO 310 K=1,6
DO 320 I=1,6
EDOT(I,JJJ) = EDOT(I,JJJ) + AINV(I,K) * RHS(K)
320 CONTINUE
310 CONTINUE

CALCULATE COORDINATE TRANSFORM FROM FLUID RELATIVE TO BODY RELATIVE

DS4 = DSIN(P(4))
DC4 = DCOS(P(4))
DS5 = DSIN(P(5))
DC5 = DCOS(P(5))
DS6 = DSIN(P(6))
DC6 = DCOS(P(6))
DT5 = DTAN(P(5))

DS5DC6 = DS5*DC6
DS5DS6 = DS5*DS6

CTRN(1,1) = DC5*DC6
CTRN(1,2) = -DC4*DS6 + DS4*DS5DC6
CTRN(1,3) = DS4*DS6 + DC4*DS5DC6
CTRN(2,1) = DC5*DS6
CTRN(2,2) = DC4*DC6 + DS4*DS5DS6
CTRN(2,3) = -DS4*DC6 + DC6*DS5DS6
CTRN(3,1) = -DS5
CTRN(3,2) = DC5*DS4
CTRN(3,3) = DC5*DC4

CTRN(4,4) = 1.0
CTRN(4,5) = DS4*DT5
CTRN(4,6) = DC4*DT5
CTRN(5,4) = 0.0
CTRN(5,5) = DC4
CTRN(5,6) = -DS4
CTRN(6,4) = 0.0
CTRN(6,5) = DS4/DC5
CTRN(6,6) = DC4/DC5

PREP BODY RELATIVE PDOT FOR INTEGRATION
CTRN 6X6 * E 6X1 = PDOT 6X1

DO 340 K=1,6
DO 350 I=1,6
PDOT(I,JJJ) = PDOT(I,JJJ) + CTRN(I,K) * E(K)
350 CONTINUE
340 CONTINUE

WEIGHT ESTIMATES EACH PASS

IF(JJJ .EQ. 1 .OR. JJJ .EQ. 2) THEN
DO 191 I = 1, 6
 E (I) = EO (I) + EDOT (I, JJJ) * DTO2
 P (I) = PO (I) + PDOT (I, JJJ) * DTO2
191 CONTINUE
ELSE
 DO 192 I = 1, 6
 E (I) = EO (I) + EDOT (I, JJJ) * DT
 P (I) = PO (I) + PDOT (I, JJJ) * DT
192 CONTINUE
ENDIF
C
100 CONTINUE
C
ADD UP THE 4 PRE-ESTIMATES TO YIELD THE FINAL ESTIMATE
C
DO 210 I = 1, 6
 E (I) = EO (I) + (EDOT (I, 1) + 2 * (EDOT (I, 2) + EDOT (I, 3)) + EDOT (I, 4)) * DTO6
 P (I) = PO (I) + (PDOT (I, 1) + 2 * (PDOT (I, 2) + PDOT (I, 3)) + PDOT (I, 4)) * DTO6
210 CONTINUE
C
RETURN.
END
SUBROUTINE HYDRO

DTRC 2510 HYDRODYNAMIC COEFFICIENTS
NOW INCLUDES ZERO FORWARD SPEED COEFFICIENTS

IMPLICIT NONE
INTEGER*2 JJJ,II
INTEGER*2 IDTAR
REAL*8 TEMP1,TEMP2,TEMP3,TEMP
REAL*8 UPFRAC,LOFRAC,URACER,URACERO,URACES,URACESO
REAL*8 DRE3,DSPE3,DSSE3,DRE,DSPE,DSSE
REAL*8 DRHS1,DRHS2,DRHS3,DRHS4,DRHS5,DRHS6
REAL*8 ZRHS1,ZRHS2,ZRHS3,ZRHS4,ZRHS5,ZRHS6
REAL*8 BRHS1,BRHS2,BRHS3,BRHS4,BRHS5,BRHS6
REAL*8 DD (1800)
COMMON /COMDD/ DO
REAL*8 URUR,USUS,DELRCR,DELRCS
REAL*8 DSP,DSS,DR,DB,UC,DT,RHS (6),E (6),P (6),QPROP,TA,YG,YB
REAL*8 PHISTERN,VATS,WATS,ETA,CETA,ETAM1,BETAS,KBETA,WT,BOUY
REAL*8 ARAPPHI2,ARAPPHI4,CROSSLIM,SINTHETA,COSTHETA,SINPHI,COSPHI
REAL*8 UU,WW,PP,QQ,RR,PR,PQ,QR,UV,UV,UP,UR,VATTAIL,UUDB
REAL*8 VP,VR,WP,WQ,VSQRVWW,WSQRVVWW,CROSS (6),VORT (6)
REAL*8 DRDR,DSDS,UDUD,UDUR,UDAB,UAAB,WAAB,QAB,QABV,RAAB,FXP
REAL*8 PABP,DPPP,UDUP,UT,BETA,ALPHA,WR,ARRAY (6),WTINH20,DBDB

REAL*8 XDUDOT,XQQ,XRP,XVR,XWW,XRDOR,XDSSDSS,XDSPDSP,XDBDB
REAL*8 XW,XQ,XWDSP,XWSS,XQDSP,XVDOR,XWW,XXR
REAL*8 XDRE2,XDSS2,XDSS2
REAL*8 YYDOT,YRDOT,YRU,YVU,YVABVU,YVU,YDRN,YURAR,YVARBV
REAL*8 YPU,YWP,YPABP,YPP,YSTAR,YVABVR,YVABVR,YVABVR,YVABVR
REAL*8 ZWDOT,ZQDOT,ZQU,ZWU,ZABWU,ZWU,ZDSS,ZDSS,ZQABQ,ZWABW
REAL*8 ZVP,ZSTAR,ZPR,ZDSP,ZDSP,ZWABW,ZDB
REAL*8 ZDSS,ZDSP,ZDSS,ZDSS3,ZDSS3R,ZDSP3R
REAL*8 KPDOT,KVDOT,KRDOT,KQ,KP,KRU,KW,KV,K4S,K5S,K6S,KDSP,KDSS
REAL*8 KPARP,KW,KK,KQ,KR,KD,K Strand,KSTAR
REAL*8 KDRE,KDRE3,KDSS,KDSP,KDSS3,KDSP3,KDSS3R,KDSP3R
REAL*8 MQDOT,MWDOT,MQU,MUU,MAMABR,NABWU,MWW,MDSP,MDSS,MDSSN,MQABQ,MWABW
REAL*8 MRP,MSTAR,MVP,MDSP,MDSPN,MHABW,MDB
REAL*8 MDSSE,MDSP,MDSSE3,MDSP3,MDSP3R,MDSPE3R
REAL*8 NRDOT,NVDO,NRU,NVU,NVABVR,NABVU,NVU,NDR,NDRN,NVABV,NAVR
REAL*8 NWP,NPQ,NSTAR,NPU,NHAVBV,NDRE,NDR3,NDRE3R
REAL*8 IYY,IZZ,IXX,SLEN,MASS,ZB,ZG,XB,XG,XSTERN

EQUIVALENCE (DD (1), DT), (DD (10), TA)
EQUIVALENCE (DD (11), JJJ), (DD (16), BETA)
EQUIVALENCE (DD (15), ALPHA)
EQUIVALENCE (DD (17), FXP), (DD (18), QPROP)
EQUIVALENCE (DD (19), ETA), (DD (20), CETA)
EQUIVALENCE (DD (55), E (1)), (DD (61), P (1))
EQUIVALENCE (DD (67), DSS), (DD (68), DSP)
EQUIVALENCE (DD (69), RA), (DD (71), RHS (1))
EQUIVALENCE (DD (179), DB)
EQUIVALENCE (DD (260), CROSS (1)), (DD (266), VORT (1))
EQUIVALENCE (DD (272), VATTAIL)

EQUIVALENCE (DD (301), XUDOT), (DD (303), XW)
EQUIVALENCE (DD (305), XQ), (DD (307), XQQ)
EQUIVALENCE (DD (309), XRR), (DD (311), XRP)
EQUIVALENCE (DD (313), XVR), (DD (315), XWQ)
EQUIVALENCE (DD (317), XVV), (DD (319), XW)
EQUIVALENCE (DD (321), XDBDB), (DD (323), XDRDR)
EQUIVALENCE (DD (325), XDSSDSS), (DD (327), XDSPDSP)
EQUIVALENCE (DD (329), XDRE2), (DD (331), XDSE2)
EQUIVALENCE (DD (333), XDSPES2)
EQUIVALENCE (DD (1703), TXWSP), (DD (1705), TXWSS)
EQUIVALENCE (DD (1707), TXDSP), (DD (1709), TXQDSS)
EQUIVALENCE (DD (1711), TXVOR), (DD (1713), TXRDR)

EQUIVALENCE (DD (338), YVDOT), (DD (340), YPDOT)
EQUIVALENCE (DD (342), YRDOT), (DD (344), YPABP)
EQUIVALENCE (DD (346), YPQ), (DD (348), YRU)
EQUIVALENCE (DD (350), YPU), (DD (352), YVU)
EQUIVALENCE (DD (354), YVABVR), (DD (356), YVABVU)
EQUIVALENCE (DD (358), YVV), (DD (360), YDR)
EQUIVALENCE (DD (362), YDRN), (DD (364), YRABR)
EQUIVALENCE (DD (366), YVABV), (DD (368), YWP)
EQUIVALENCE (DD (370), YSTAR), (DD (372), YHVABV)
EQUIVALENCE (DD (374), YDRE3), (DD (376), YDRE)
EQUIVALENCE (DD (378), YDRE3R)

EQUIVALENCE (DD (390), ZWDOT), (DD (392), ZQDOT)
EQUIVALENCE (DD (394), ZQU), (DD (396), ZVP)
EQUIVALENCE (DD (398), ZSTAR), (DD (400), ZWU)
EQUIVALENCE (DD (402), ZABWU), (DD (404), ZBW)
EQUIVALENCE (DD (406), ZDB), (DD (408), ZDS)
EQUIVALENCE (DD (410), ZDSSN), (DD (412), ZDSP)
EQUIVALENCE (DD (414), ZDSPN), (DD (416), ZQABQ)
EQUIVALENCE (DD (418), ZHABW), (DD (420), ZHWABW)
EQUIVALENCE (DD (422), ZDSSE3), (DD (424), ZDSPE3)
EQUIVALENCE (DD (426), ZDSS), (DD (428), ZDSPE)
EQUIVALENCE (DD (430), ZDSS3R), (DD (432), ZDSPE3R)
EQUIVALENCE (DD (1717), ZPR)

EQUIVALENCE (DD (440), KVDOT), (DD (442), KPDOT)
EQUIVALENCE (DD (444), KRDOT), (DD (446), KQKR)
EQUIVALENCE (DD (448), KPAB), (DD (450), KPU)
EQUIVALENCE (DD (452), KRU), (DD (454), KWP)
EQUIVALENCE (DD (456), KSTAR), (DD (458), KVU)
EQUIVALENCE (DD (460), KI), (DD (462), K4S)
EQUIVALENCE (DD (464), KBS), (DD (466), KDR)
EQUIVALENCE (DD (468), KDRN), (DD (470), KDSS)
EQUIVALENCE (DD (472), KDSP), (DD (474), KDRE)
EQUIVALENCE (DD (476), KDRE3), (DD (478), KDSSE)
EQUIVALENCE (DD (480), KDSPE), (DD (482), KDSSE3)
EQUIVALENCE (DD (484), KDSPE3), (DD (486), KDSSE3R)
EQUIVALENCE (DD (488), KDSPE3R)
EQUIVALENCE (DD (1721), KWR)

EQUIVALENCE (DD (494), MWDOT), (DD (496), MQDOT)
EQUIVALENCE (DD (498), MRP), (DD (500), MQU)
EQUIVALENCE (DD (502), MWU), (DD (504), MSTAR)
EQUIVALENCE (DD (506), MWABWR), (DD (508), MABWU)
EQUIVALENCE (DD (510), MWW), (DD (512), MDSS)
EQUIVALENCE (DD (514), MDSSN), (DD (516), MDSP)
EQUIVALENCE (DD (518), MDSPN), (DD (520), MDB)
EQUIVALENCE (DD (522), MQABQ), (DD (524), MWABW)
EQUIVALENCE (DD (526), MMWABW), (DD (528), MDSSSE3)
EQUIVALENCE (DD (530), MDSPE3), (DD (532), MDSSE)
EQUIVALENCE (DD (534), MDSPE), (DD (536), MDSSSE3R)
EQUIVALENCE (DD (538), MDSPE3R)
EQUIVALENCE (DD (1723), MVP)

EQUIVALENCE (DD (548), NVDOT), (DD (548), NPDO T)
EQUIVALENCE (DD (550), NRDOT), (DD (552), NPQ)
EQUIVALENCE (DD (554), NPU), (DD (556), NRU)
EQUIVALENCE (DD (558), NSTAR), (DD (560), NVU)
EQUIVALENCE (DD (562), NVABVR), (DD (564), NABVU)
EQUIVALENCE (DD (566), NVV), (DD (568), NDR)
EQUIVALENCE (DD (570), NDRN), (DD (572), NVABV)
EQUIVALENCE (DD (574), NRA BR), (DD (576), NWP)
EQUIVALENCE (DD (578), NHVABV), (DD (580), NDRE3)
EQUIVALENCE (DD (582), NDRE), (DD (584), NDRE3R)

EQUIVALENCE (DD (593), SLEN), (DD (596), IYY)
EQUIVALENCE (DD (598), IZZ), (DD (600), IXX)
EQUIVALENCE (DD (602), IXZ), (DD (604), IYZ)
EQUIVALENCE (DD (606), IXY), (DD (608), MASS)
EQUIVALENCE (DD (610), WT), (DD (612), BOUY)
EQUIVALENCE (DD (614), ZB), (DD (616), ZG)
EQUIVALENCE (DD (618), XB), (DD (620), XG)
EQUIVALENCE (DD (622), XSTERN), (DD (624), XFORWARD)
EQUIVALENCE (DD (626), YG), (DD (628), YB)
EQUIVALENCE (DD (629), WTINH20)
EQUIVALENCE (DD (630), CROSSLIM)
EQUIVALENCE (DD (631), LOFRAC), (DD (632), UPFRAC)

EQUIVALENCE (DD (848), KTAINF), (DD (849), UAINF)
EQUIVALENCE (DD (850), URACERO), (DD (851), URACESO)
EQUIVALENCE (DD (858), URACER), (DD (859), URACES)
EQUIVALENCE (DD (866), DRE), (DD (867), D SSE)
EQUIVALENCE (DD (868), DSPE)
EQUIVALENCE (DD (1758), ARRAY(1))

C FOR EFFICIENCY THE FOLLOWING VARIABLES ARE CALCULATED

UU = E (1)*E (1)
VV = E (2)*E (2)
WW = E (3)*E (3)
UT = DSQRT(UU+VV+WW)
PP = E (4)*E (4)
QQ = E (5)*E (5)
RR = E (6)*E (6)
PR = E (4)*E (6)
PQ = E (4)*E (5)

C
QR = E(5) * E(6)
UV = E(1) * E(2)
UW = E(1) * E(3)
UP = E(1) * E(4)
UQ = E(1) * E(5)
UR = E(1) * E(6)
VP = E(2) * E(4)
VR = E(2) * E(6)
WP = E(3) * E(4)
WQ = E(3) * E(5)
WR = E(3) * E(6)
URUR = URACER * URACER
USUS = URACES * URACES
DELRCR = URACER - URACERO
DELRC = URACES - URACESO
CDBG WRITE(6,*), DELRCR, URACER, URACERO
CDBG WRITE(6,*), DELRC, URACES, URACESO
VATS = E(2) + XSTERN * E(6)
WATS = E(3) - XSTERN * E(5)
C
IF (DABS (URACER) .GT. 0.1) THEN
 DRE = DR - DATAN2 (VATS, URACER)
ELSE
 DRE = DR
ENDIF
C
IF (DABS (URACES) .GT. 0.1) THEN
 DSSE = DSS - DATAN2 (WATS, URACES)
 DSPE = DSP - DATAN2 (WATS, URACES)
ELSE
 DSSE = DSS
 DSPE = DSP
ENDIF
C
IF (URACER .GT. 0.0) THEN
 IF (DABS (DRE) .GT. 0.7) DRE = DSIGN (0.700, DRE)
 ELSE
 IF (DABS (DRE) .GT. 0.43) DRE = DSIGN (0.4300, DRE)
 ENDIF
C
IF (URACES .GT. 0.0) THEN
 IF (DABS (DSSE) .GT. 0.7) DSSE = DSIGN (0.700, DSSE)
 IF (DABS (DSPE) .GT. 0.7) DSPE = DSIGN (0.700, DSPE)
 ELSE
 IF (DABS (DSSE) .GT. 0.43) DSSE = DSIGN (0.4300, DSSE)
 IF (DABS (DSPE) .GT. 0.43) DSPE = DSIGN (0.4300, DSPE)
 ENDIF
C
DRE3 = DRE * DRE * DRE
DSPE3 = DSPE * DSPE * DSPE
DSSE3 = DSSE * DSSE * DSSE
DRDR = DR * DR
DBDB = DB * DB
DSDS = DS * DS
DPDP = DSP * DSP
UUUDR = UU * DR

78
IF (DABS(VATS) .GT. 0.001) .OR. (DABS(WATS) .GT. 0.001)) THEN
 TEMP1 = VATS*VATS
 TEMP2 = WATS*WATS
 TEMP3 = TEMP1+TEMP2
 ARAPPHI2 = TEMP3*2.*VATS*WATS/TEMP3
 ARAPPHI4 = TEMP3*4.*VATS*WATS*(TEMP2 - TEMP1)/(TEMP3*TEMP3)
 BETAS = DATAN2(DSQRT(TEMP3),E(1))
 PHISTERN = DATAN2(WATS,-VATS)
ELSE
 ARAPPHI2 = 0.0
 ARAPPHI4 = 0.0
 BETAS = 0.0
 PHISTERN = 0.0
ENDIF

C
IF ((DABS(E(3)) .GT. 0.1D-10) .AND. (DABS(E(1)) .GT. 0.01)) THEN
 ALPHA = DATAN2(E(3),E(1))
ELSE
 ALPHA = 0.0
ENDIF

C
IF ((DABS(E(2)) .GT. 0.1D-20) .AND. (DABS(UT) .GT. .01)) THEN
 BETA = DASIN(-E(2)/UT)
ELSE
 BETA = 0.0
ENDIF

C
FOR EFFICIENCY CALL THESE SUBROUTINES ONLY ONCE

C
IF (JJJ .EQ. 1) THEN
 CALL VORTEX
 CALL CROSFLOW
 CALL PROP
END IF

C
DO 345 IDTAR = 1,10
C
CALL TOWDARRY(IDTAR)
C
345 CONTINUE
ENDIF

C CETA
 ETAM1 = ETA - 1.0

C CALCULATE RIGHT HAND SIDES OF EQUATIONS OF MOTION
C AXIAL FORCES ZERO SPEED MODEL
C ZRHS1 = 0.0
C LATERAL FORCE ZERO SPEED MODEL
C ZRHS2 = YHVABV*VATS*DABS(VATS)
C NORMAL FORCE ZERO SPEED MODEL
C ZRHS3 = ZHWABW*WATS*DABS(WATS)
C ROLL MOMENT ZERO SPEED MODEL
C ZRHS4 = KPABP*PABP
C PITCH MOMENT ZERO SPEED MODEL
C ZRHS5 = MHWABW*WATS*DABS(WATS)
C YAW MOMENT ZERO SPEED MODEL
C ZRHS6 = NHVABV*VATS*DABS(VATS)
C CALCULATE DTRC HYDRODYNAMIC FORCES
C HYDRODYNAMIC AXIAL FORCES
C
 DRHS1 = XQQ*QQ + XRR*RR + XRP*PR + XVR*VR + XWQ*WQ + XVV*VV
 1 + XW*UW + XWW*WW + XQ*UQ
 1 + (XDSS*DS + XDSP*DP + XRDR*DR + XDRD*RD + XDBB*DB)*UU
 1 + (XQDSP*DSP + XQDSS*DS)*UW + (XVDR*UV + XVDR*VD)*UR
C
C HYDRODYNAMIC LATERAL FORCE
C
 DRHS2 = YPABP*PABP + YPQ*PQ
 1 + YRU*UR + YPU*UP + YUV*UV + YVABV*UABV + YVV*VV + YWP*WP
 1 + (YDR + YDRN*ETAM1)*UUDR + YVABV*VABV + YRABR*RABR + YSTAR*UU
 1 + YVABVR*VABVR
C
C HYDRODYNAMIC NORMAL FORCE
C
 DRHS3 = ZQU*UQ + ZWU*UW + ZABWU*UABW + ZVP*VP + ZSTAR*UU
 1 + (ZDSS + ZDSSN*ETAMI) * UUDS + (ZDSP + ZDSPN*ETAM1) * UDP
 1 + ZDB*UDB
 1 + ZQABQ*QABQ + ZWABW*WABW + ZPR*PR + ZW*WABS(E(3))*SQRVVWW
C
C HYDRODYNAMIC ROLL MOMENT
\[
\begin{align*}
\text{KBETA} &= \text{BETAS}\text{BETAS}*(\text{UU} + \text{VATS}\text{VATS} + \text{WATS}\text{WATS}) \\
\text{DRHS4} &= \text{KPU}\text{UP} + \text{KRU}\text{UR} + \text{KQR}\text{QR} + \text{KWP}\text{WP} \\
1 + (\text{KDR} + \text{KDRN}\text{ETAM1})\text{DR} + \text{KDSS}\text{DSP} + \text{KDSP}\text{DSP} + \text{KSTAR}\text{UU} \\
1 + \text{KBETA}(\text{K4S}\text{DSIN}(4.*\text{PHISTERN}) + \text{K8S}\text{DSIN}(8.*\text{PHISTERN})) \\
\text{HYDRODYNAMIC PITCH Momenrt} \\
\text{DRHS5} &= \text{MQU}\text{UQ} + \text{MQABQ}\text{QABQ} + \text{MWABW}\text{WABW} \\
1 + \text{MVP}\text{VP} + \text{MRP}\text{PR} + \text{MSTAR}\text{UU} + \text{MDB}\text{UUDB} \\
1 + \text{MWU}\text{UW} + \text{MWABWR}\text{WQRVWW} + \text{MABWU}\text{UABW} + \text{MWWW}\text{DABS}(E(3))*\text{SQRVVWW} \\
1 + (\text{MDSS} + \text{MDSSN}\text{ETAM1})\text{UUUD} + (\text{MDSP} + \text{MDSPN}\text{ETAM1})\text{UUUP} \\
\text{HYDRODYNAMIC YAW Momenrt} \\
\text{DRHS6} &= \text{NPQ}\text{PQ} + \text{NPU}\text{UP} + \text{NWP}\text{WP} + \text{NSTAR}\text{UU} \\
1 + \text{NRU}\text{UR} + \text{NVU}\text{UV} + \text{NVA}\text{VR}\text{WQRVWW} + \text{NABVU}\text{UABV} + \text{NVV}\text{VV} \\
1 + (\text{NDR} + \text{NRDN}\text{ETAM1})\text{UUDD} + \text{NNABR}\text{RABR} \\
\text{CALCULATE BODY FORCES, AND SUM FORCES INDEPENDENT OF ALPHA OR BETA} \\
\text{USED FOR BOTH LOW AND HIGH ANGLE OF ATTACK MODELS} \\
\text{BODY AXIAL FORCE} \\
\text{BRHS1} &= -\text{MASS}((\text{WQ} - \text{VR} - \text{XG}*(\text{QQ} + \text{RR}) + \text{ZG}\text{PR}) \\
1 + \text{WTINH20}\text{SINTHETA} + \text{FXP} + \text{ARRAY}(1) \\
1 + \text{XDSSE}\text{DRE}\text{DFR}\text{URUR} \\
1 + (\text{XD} + \text{DSSE}\text{ETAM1})\text{UUUR} + \text{XDSPE}\text{DSPE}\text{DSPE}\text{USUS} \\
\text{BODY LATERAL FORCE} \\
\text{BRHS2} &= -\text{MASS}((\text{UR} - \text{WP} + \text{XG}\text{PQ} + \text{ZG}\text{QR}) \\
1 + \text{WTINH20}\text{SINTHETA}\text{SINPHI} \\
1 + \text{CROSS}(2) + \text{VORT}(2) + \text{ARRAY}(2) \\
1 + \text{YDRE}((-\text{XSTERN}E(6) - E(2)) + \text{DRURUR}) \\
1 + \text{YDRE}\text{DRE}\text{URUR} \\
\text{BODY NORMAL FORCE} \\
\text{BRHS3} &= -\text{MASS}((\text{VP} - \text{UQ} + \text{XG}\text{PR} - \text{ZG}\text{PP} + \text{QQ}) \\
1 + \text{WTINH20}\text{SINTHETA}\text{COSPHI} \\
1 + \text{CROSS}(3) + \text{VORT}(3) + \text{ARRAY}(3) \\
1 + \text{ZDSSE}\text{DSTERN}\text{E} (5) - E(3) + \text{DSSUSUS}) \\
1 + \text{ZDSPE}\text{DSTERN}\text{E} (5) - E(3) + \text{DSPUSUS}) \\
1 + (\text{ZDSPE}\text{DSPE}\text{DSPE}\text{DSPE})\text{USUS} \\
\text{BODY ROLL MOMENT} \\
\text{BRHS4} &= \text{MASSZG}((\text{UR} - \text{WP}) \\
1 - (\text{ZG}\text{WT} - \text{ZBOUY})\text{SINTHETA}\text{SINPHI} \\
1 + (\text{YG}\text{WT} - \text{YBOUY})\text{SINTHETA}\text{COSPHI} \\
1 + \text{QPROP} + \text{VORT}(4) + \text{ARRAY}(4) \\
1 + \text{KDR}\text{DRE}\text{DFRURUR} \\
1 + \text{KDR}\text{DRE}\text{DRE}\text{URUR} \\
1 + \text{KDSSE}\text{DSTERN}\text{E} (5) - E(3) + \text{DSSUSUS}) \\
1 + \text{KDSPE}\text{DSTERN}\text{E} (5) - E(3) + \text{DSPUSUS}) \\
1 + (\text{KDSPE}\text{DSPE}\text{DSPE}\text{DSPE})\text{USUS}
\end{align*}
\]
C BODY PITCH MOMENT
C
BRHS5 = (-IXX + IZZ)*PR + MASS*(-ZG*(WQ - VR) + XG*(VP - UQ))
1 - (XG*WT - XB*BOUY)*COSTHETA*COSPHI
1 - (ZG*WT - ZB*BOUY)*SINTHETA
1 + CROSS(5) + VORT(5) + ARRAY(5)
1 + MDSE * (DELRCS*(XSTERN*E(5) - E(3)) + DSS*USUS)
1 + MDPE * (DELRCS*(XSTERN*E(5) - E(3)) + DSP*USUS)
1 + (MDSE3*DSPE3 + MDSE3*DSPE3)*USUS
C BODY YAW MOMENT
C
BRHS6 = (-IYY + IXX)*PQ - MASS*(XG*(UR - WP))
1 + (XG*WT - XB*BOUY)*COSTHETA*SINPHI
1 + (YG*WT - YB*BOUY)*SINTHETA
1 + CROSS(6) + VORT(6) + ARRAY(6)
1 + NDRE*(DELRCR*(-XSTERN*E(6) - E(2)) + DR*URUR)
1 + NDRE3*DRE3*URUR
C SUM ALL FORCES
C
RHS (1) = BRHS1 + LOFRAC*DRHS1 + UPFRAC*ZRHS1
RHS (2) = BRHS2 + LOFRAC*DRHS2 + UPFRAC*ZRHS2
RHS (3) = BRHS3 + LOFRAC*DRHS3 + UPFRAC*ZRHS3
RHS (4) = BRHS4 + LOFRAC*DRHS4 + UPFRAC*ZRHS4
RHS (5) = BRHS5 + LOFRAC*DRHS5 + UPFRAC*ZRHS5
RHS (6) = BRHS6 + LOFRAC*DRHS6 + UPFRAC*ZRHS6
C
RETURN
END
SUBROUTINE CROSSFLOW

C CROSSFLOW FORCE AND MOMENT ROUTINES.
C DTRC 2510 METHOD USES CONSTANT CD
C ZERO SPEED MODEL USES LOCAL REYNOLDS NUMBER ON EACH 'STRIP' OF HULL
C TO ESTIMATE A CD
C SIMPSONS RULE FOR INTEGRATION.
C TABLE LOOK UP SRCHTAB1.FOR FOR CDCTAB LOOKUP
C CROSOPT 1, 2, 3, 4 OR 5
C 1 NO CROSSFLOW W/ 2510 EOM
C 2 DTRC 2510 CROSSFLOW W/ 2510 EOM
C 3 DTRC 2510 EOM + CROSSFLOW AT ALPHA + BETA LT CROSSFLOW LIMIT AND
C A BLEND OF DTRC 2510 EOM + ZERO SPEED EOM AT ALPHA OR BETA
C GREATER LOWER THAN CROSS LIMIT AND LESS THAN UPPER LIMIT
C AND ZERO SPEED EOM + CROSSFLOW WHEN
C ALPHA OR BETA GT CROSSFLOW LIMIT
C -------------------------------- ROBERT HICKEY ---------10/12/89---------

IMPLICIT NONE
INTEGER*2 I, J, IXOFF, ICDC, INDEX, IA, IB
PARAMETER (IXOFF = 50, ICDC = 31)
REAL*8 E(6), CROSS(6), XXOFF(IXOFF), YYOFF(IXOFF), ZZOFF(IXOFF), TA
REAL*8 UPFRAC, LOFRAC
REAL*8 VZ, VY, UATXI, TEMP, RHOQ2, REYNUM, VISCOS, RHO, PI
REAL*8 YF (IXOFF), ZF (IXOFF), NM (IXOFF), NM (IXOFF), SUM
REAL*8 CDRE, CDCTAB(ICDC), RETAB(ICDC), FRAC, AINTLIM, BINTLIM
REAL*8 DTEMP2, DTEMP3, DTEMP5, DTEMP6, ZTEMP2, ZTEMP3, ZTEMP5, ZTEMP6

INTEGER*2 NXOFF, CROSOPT, JJJ
REAL*8 CDY, CDZ, CDM, CDN, CROSSLIM, ALPHA, BETA
REAL*8 XOFF (IXOFF), YOFF (IXOFF), ZOFF (IXOFF), XFORWARD

REAL*8 DD (1800)
COMMON / COMDD/ DD
SAVE / COMDD/, IA, IB

EQUIVALENCE (DD (2), PI)
EQUIVALENCE (DD (8), RHO), (DD (11), JJJ)
EQUIVALENCE (DD (10), TA), (DD (55), E (1))
EQUIVALENCE (DD (15), ALPHA), (DD (16), BETA)
EQUIVALENCE (DD (260), CROSS (1)), (DD (624), XFORWARD)
EQUIVALENCE (DD (630), CROSSLIM)
EQUIVALENCE (DD (631), LOFRAC), (DD (632), UPFRAC)
EQUIVALENCE (DD (645), CDY), (DD (646), CDZ)
EQUIVALENCE (DD (647), CDM), (DD (648), CDN)
EQUIVALENCE (DD (649), CROSOPT)
EQUIVALENCE (DD (650), NXOFF), (DD (651), XOFF (1))
EQUIVALENCE (DD (701), YOFF (1)), (DD (751), ZOFF (1))
EQUIVALENCE (DD (1636), AINTLIM)

DATA RETAB / 1.04, 1.42504, 2.04, 3.04, 4.04, 5.04, 6.04, 7.04,
1 8.04, 9.04, 1.05, 1.42505, 2.05, 3.05, 4.05, 5.05, 6.05, 7.05,
2 8.05, 9.05, 1.06, 1.42506, 2.06, 3.06, 4.06, 5.06, 6.06, 7.06,
3 8.06, 9.06, 1.07 /
C DATA CDCTAB / 1.125, 1.176, 2.1*1.2, 1.208, 1.215, 1.218,
1 4*1.223, 1.218, 1.150, 0.924, 0.662, 0.319, 0.324, 0.335, 0.350,
2 0.376, 0.397, 0.491, 0.579, 0.662, 0.704, 0.725, 0.740, 0.751,
3 0.758, 0.761, 0.763 /
C DATA VISCOS / 1.20-5 /
C IF((TA .EQ. 0.0) .AND. (JJJ .EQ. 1)) THEN
C RHOO2 = RHO/2.
C IF(NXOFF .GT. IXOFF) STOP ' CROSFLOW: NXOFF GT 50 '
C DO 10 I = 1,NXOFF
XOFFSET(I) = XFORMAX - XXOFF(J)
YOFFSET(I) = YOFFSET(J)*2.0
ZOFFSET(I) = ZZOFFSET(J)*2.0
J = J - 1
10 CONTINUE
C MAKE X-OFFSETS INCREASING AND CENTER THEM WRT CG USING XFORMAX
C J NXOFF
DO 20 I = 1,NXOFF
XOFFSET(I) = XFORMAX - XXOFFSET(J)
YOFFSET(I) = YOFFSET(J)*2.0
ZOFFSET(I) = ZZOFFSET(J)*2.0
J = J - 1
20 CONTINUE
C BOW INTEGRATION LIMIT IS 1/2 OF BODY DIAM BACK FROM BOW PERPENDICULAR
C NXOFF/2 IS ABOUT WHERE PMB IS
C BINTLIM = XOFFSET(NXOFF) - 0.52YOFFSET(NXOFF/2)
WRITE(8,197) AINTLIM,BINTLIM
197 FORMAT(1X, ' AINTLIM ',E13.6,' BINTLIM ',E13.6,/)
C DO 11 I = 1,NXOFF
WRITE(8,198) I, XOFFSET(I), I,YOFFSET(I), I,ZOFFSET(I)
198 FORMAT(1X, 'XOFFSET(',I2,')=',E11.4,' YOFFSET(',I2,')=',E11.4,
1 ' ZOFFSET(',I2,')=',E11.4)
11 CONTINUE
C SUM = 0.0
CALL SIMPSON(YOFFSET,SUM)
WRITE(8,*) ' SECTION AREA OF SUB FT**2 ', SUM
C DO 12 I = 1,NXOFF
YOFFSET(I) = PI/4.*YOFFSET(I)**2
12 CONTINUE
CALL SIMPSON(YOFFSET,SUM)
WRITE(8,*) ' VOLUME OF SUB FT**3 ', SUM
C DO 14 I = 1,NXOFF
YYOFF(I) = RHO*PI/4.000*YYOFF(I)**2*XOFF(I)**2
CONTINUE
CALL SIMPSON(YYOFF,SUM)
WRITE(8,*) 'IVY MOMENT OF INERTIA SLUG FT**2 ', SUM
WRITE(8,*)
DO 123 I = 1,6
CROSS(I) = 0.0
123 CONTINUE
UPLIM = PI/2.000 - CROSSLIM
FRACLIM = PI/2.000 - 2.000*CROSSLIM
WRITE(8,*) 'CROSSLIM ',CROSSLIM
WRITE(8,*) 'UPLIM ',UPLIM
WRITE(8,*) 'FRACLIM ',FRACLIM
WRITE(8,* 'I RETAB CDCTAB'
DO 789 I = 1,ICDC
WRITE(8,*) I,RETAB(I),CDCTAB(I)
789 CONTINUE
WRITE(8,*)
C IF((CROSOPT .EQ. 1).OR. (CROSOPT .EQ. 2)) THEN
LOFRAC = 1.000
UPFRAC = 0.000
ENDIF
C IF((CROSOPT .EQ. 3) THEN
IF((DABS(BETA) .LE. CROSSLIM) .AND.
1 (DABS(ALPHA) .LE. CROSSLIM)) THEN
UPFRAC = 0.000
LOFRAC = 1.000
ELSEIF ((DABS(BETA) .GT. CROSSLIM)
1 .AND. (DABS(BETA) .LT. UPLIM))
1 .OR. ((DABS(ALPHA) .GT. CROSSLIM)
1 .AND. (DABS(ALPHA) .LT. UPLIM))) THEN
IF(DABS(BETA) .GT. CROSSLIM) THEN
LOFRAC = 1.000 - (DABS(BETA) - CROSSLIM)/FRACLIM
UPFRAC = 1.000 - LOFRAC
ELSEIF(DABS(ALPHA) .GT. CROSSLIM) THEN
LOFRAC = 1.000 - (DABS(ALPHA) - CROSSLIM)/FRACLIM
UPFRAC = 1.000 - LOFRAC
ENDIF
ELSEIF((DABS(BETA) .GE. UPLIM)) .OR.
1 (DABS(ALPHA) .GE. UPLIM)) THEN
LOFRAC = 1.000
UPFRAC = 0.000
ENDIF
ENDIF
WRITE(8,*) 'UPFRAC ',UPFRAC
WRITE(8,*) 'LOFRAC ',LOFRAC
C ENDIF
IF(CROSOPT .EQ. 1) GOTO 111

IF((CROSOPT.EQ.2) .OR. (CROSOPT.EQ.3)) GOTO 222

C

111 LOFRAC = 1.000
UPFRAC = 0.000
CROSS(1) = 0.0
CROSS(2) = 0.0
CROSS(3) = 0.0
CROSS(4) = 0.0
CROSS(5) = 0.0
CROSS(6) = 0.0
RETURN

C

222 DO 30 I = 1,NXOFF
VZ = E(3) - XOFF(I)*E(5)
VY = E(2) + XOFF(I)*E(6)
UATXI = DSQRT(VZ*VZ + VY*VY)
TEMP = VY*UATXI*ZOFF(I)
YF(I) = -CDY*TEMP
NM(I) = -XOFF(I)*CDN*TEMP
TEMP = VZ*UATXI*YOFF(I)
ZF(I) = -CDZ*TEMP
MM(I) = XOFF(I)*CDM*TEMP
30 CONTINUE

C

CALL SIMPSON(YF,DTEMP2)
CALL SIMPSON(ZF,DTEMP3)
CALL SIMPSON(MM,DTEMP5)
CALL SIMPSON(NM,DTEMP6)

C

333 DO 40 I = 1,NXOFF
VY = E(2) + XOFF(I)*E(6)
VZ = E(3) - XOFF(I)*E(5)
UATXI = DSQRT(VZ*VZ + VY*VY)
REYNUM = UATXI*0.5*(YOFF(I)+ZOFF(I))/VISCOS
CALL SRCHTAB1(INDEX,RETAB,ICDC,REYNUM,FRAC)
CDRE = CDCTAB(INDEX) + (CDCTAB(INDEX+1) - CDCTAB(INDEX))*FRAC
TEMP = CDRE*VY*UATXI*ZQFF(I)
YF(I) = -TEMP
NM(I) = -XOFF(I)*TEMP
TEMP = CDRE*VZ*UATXI*YOFF(I)
ZF(I) = -TEMP
MM(I) = XOFF(I)*TEMP
CDBG WRITE(6,*) CORE, INDEX, REYNUM, UATXI
40 CONTINUE

C

CALL SIMPSON2(YF,ZTEMP2,AINTLIM,IA,BINTLIM,IB)
CALL SIMPSON2(ZF,ZTEMP3,AINTLIM,IA,BINTLIM,IB)
CALL SIMPSON2(MM,ZTEMP5,AINTLIM,IA,BINTLIM,IB)
CALL SIMPSON2(NM,ZTEMP6,AINTLIM,IA,BINTLIM,IB)

C

IF(CROSOPT .EQ. 2) THEN
CROSS(2) = DTEMP2
CROSS(3) = DTEMP3
CROSS(5) = OTEMP5
CROSS(6) = OTEMP6
LOFRAC = 1.000
UPFRAC = 0.000
ENDIF
C
IF(CROSOPT .EQ. 3) THEN
 IF((DABS(BETA) .LE. CROSSLIM) .AND.
 (DABS(ALPHA) .LE. CROSSLIM)) THEN
 GOTO 444
 ELSEIF((DABS(BETA) .GT. CROSSLIM) .AND.
 (DABS(ALPHA) .GT. CROSSLIM)) THEN
 IF(DABS(BETA) .GT. CROSSLIM) THEN
 LOFRAC = 1.000 - (DABS(BETA) - CROSSLIM)/FRACLIM
 ELSEIF(DABS(ALPHA) .GT. CROSSLIM) THEN
 LOFRAC = 1.000 - (DABS(ALPHA) - CROSSLIM)/FRACLIM
 ENDIF
 UPFRAC = 1.000 - LOFRAC
 GOTO 555
 ELSEIF((DABS(BETA) .GE. UPLIM) .OR.
 (DABS(ALPHA).GE. UPLIM)) THEN
 GOTO 666
 ENDIF
ENDIF
C
C CATCH ANY THING LEFT OVER
 GOTO 111
C
C +++
C
C 444 UPFRAC = 0.000
LOFRAC = 1.000
CROSS(2) = DTEMP2
CROSS(3) = DTEMP3
CROSS(5) = DTEMP5
CROSS(6) = DTEMP6
RETURN
C
555 CROSS(2) = LOFRAC*DTEMP2 + UPFRAC*ZTEMP2
CROSS(3) = LOFRAC*DTEMP3 + UPFRAC*ZTEMP3
CROSS(5) = LOFRAC*DTEMP5 + UPFRAC*ZTEMP5
CROSS(6) = LOFRAC*DTEMP6 + UPFRAC*ZTEMP6
RETURN
C
666 UPFRAC = 1.000
LOFRAC = 0.000
CROSS(2) = ZTEMP2
CROSS(3) = ZTEMP3
CROSS(5) = ZTEMP5
CROSS(6) = ZTEMP6
RETURN
C
END
SUBROUTINE PROP

PROPOPT ALLOWS CHOICE OF MOTOR MODEL

1 RAMP TORQUE (FT/LBS) IN TORPI.DAT
2 RAMP HORSEPOWER (HP) IN TORPI.DAT
3 RAMP RPM (RPM) IN TORPI.DAT
4 RAMP COMMAND SPEED FXP (FT/S) IN TORPI.DAT

IMPLICIT NONE

REAL*8 DRAG,FXPDIV(3),T1,T2,T3,T4,T5,FXPCON,SLEN
REAL*8 UK,DT,PI,CHP2,KTT(99),KQQ(99),JB(99),E(6),TEMP,RPS
REAL*8 PROPCON2, PROPCON3, KNTOF, DTO2, RHO, TA, COMMAND, TEMP2, TEMP3
REAL*8 PROPRPM, VPROP, WPROP, BETAPROP, VELOAV, CIDT, ETA, CETA, FXP
REAL*8 WAKE, THRSDFED, EHPC, SHPC, RPMC, SHPDOE, QDEL, RPMDL, DELX
REAL*8 RPSDOT, RPSDOTO, CQ, CT, JAC, QPROP, FPSTORPM, PROPTHST, THST, VA
REAL*8 RPSTAB(0:33), RPS, JBFRAC, FRAC2, WAKEFACT, JAA, JBTEMP, JAFRAC
INTEGER*2 I, RPMINDEX, JBINDEX, JJJ

INTEGER*2 NRPM, NPROP, PROPOPT, IKTAB
PARAMETER (IKTAB = 31)
REAL*8 IT, PROPIDAM, WAKEFRAC, THSTFACT, ETAC6, ETAC7, ETAC8, ETAC9
REAL*8 XPROP, XSTERN, KTAINF, SHAFTEFF, WAKEBETA, THSTBETA
REAL*8 EHP(0:32), SHP(0:32), RPM(0:32), DELX1, DELX2, DELX3
REAL*8 JA(99), KQ(99), KT(99), FXPA(4), FXPB(4), FXPC(4), KTSS
REAL*8 UXFXPA(4), UXFXPB(4), UXFXPC(4), UAINFSS, UAINFO, RACER, RACES
REAL*8 RACET1, RACET2, RACET3, RACET4, RACET5, RACET6
REAL*8 AREATR, AREABR, AREATE, ARRCRT, ARRCBR, ARRCST
REAL*8 URAKER, URAK, URAKERO, URAKES0
REAL*8 XPRPTAB(IKTAB), KTAB(IKTAB), KUFOR, KUAF, KRACE

REAL*8 DD(1800)
COMMON /COMDD/ DD

SAVE /COMDD/, JBINDEX, RPMINDEX

EQUIVALENCE (DD(1), DT), (DD(2), PI)
EQUIVALENCE (DD(4), RTD)
EQUIVALENCE (DD(5), DTR), (DD(6), DTO6)
EQUIVALENCE (DD(7), DTO2), (DD(8), RHO)
EQUIVALENCE (DD(10), TA)
EQUIVALENCE (DD(11), JJJ), (DD(12), KNTOF)
EQUIVALENCE (DD(13), CHP2)
EQUIVALENCE (DD(17), FXP), (DD(18), QPROP)
EQUIVALENCE (DD(19), ETA), (DD(20), CETA)
EQUIVALENCE (DD(21), DRAG), (DD(22), PROPTHST)
EQUIVALENCE (DD(23), SHPC), (DD(24), PROPRPM)
EQUIVALENCE (DD(25), RPSDOT)
EQUIVALENCE (DD(55), E(1)), (DD(70), COMMAND)

EQUIVALENCE (DD(593), SLEN)
EQUIVALENCE (DD(622), XSTERN)

EQUIVALENCE (DD(848), KTAINF), (DD(849), UAINFO)
EQUIVALENCE (DD(850),URACERO),(DD(851),URACESO)
EQUIVALENCE (DD(853),AREATR),(DD(855),AREABR)
EQUIVALENCE (DD(857),AREAST)
EQUIVALENCE (DD(858),URACER),(DD(859),URACES)
EQUIVALENCE (DD(861),ARRCTR),(DD(863),ARRCBR)
EQUIVALENCE (DD(865),ARRCST)

C
EQUIVALENCE (DD(900),NPROP)
EQUIVALENCE (DD(901),RPM (0)),(DD(934),EHP (0))
EQUIVALENCE (DD(967),SHP (0))

EQUIVALENCE (DD(1000),NPROP),(DD(1001),JA (1))
EQUIVALENCE (DD(101),KT (1)),(DD(1201),KQ (1))
EQUIVALENCE (DD(1301),JB (1)),(DD(1401),KTT (1))
EQUIVALENCE (DD(1501),KQQ (1))

C
EQUIVALENCE (DD(1621),PROPOPT),(DD(1622),ETAC6)
EQUIVALENCE (DD(1623),ETAC7),(DD(1624),ETAC8)
EQUIVALENCE (DD(1625),ETAC9),(DD(1626),DELX1)
EQUIVALENCE (DD(1627),DELX2),(DD(1628),DELX3)
EQUIVALENCE (DD(1629),UIDT),(DD(1630),IDT)
EQUIVALENCE (DD(1631),UPROPDIM),(DD(1632),PROPIAM)
EQUIVALENCE (DD(1633),WAKEFRAC),(DD(1634),THSTFACT)
EQUIVALENCE (DD(1635),UXPROP),(DD(1636),XPROP)
EQUIVALENCE (DD(1637),SHAFTEFF),(DD(1638),WAKEBETA)
EQUIVALENCE (DD(1639),THSTBETA)
EQUIVALENCE (DD(1641),UFXPA(1)),(DD(1645),UFXPB(1))
EQUIVALENCE (DD(1649),UFXPC(1))
EQUIVALENCE (DD(1653),FXPDIV(1))

C
DATA XPRPTAB/ -4.0,-3.0,-2.5,-2.0,-1.5,-1.0,-0.9,-0.8,-0.7,-0.6, -0.5,-0.4,-0.3,-0.2,-0.1,-0.0,0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0,1.5,2.0,2.5,3.0,4.0/
DATA KTAB/ 1.0,0.988,0.973,0.955,0.926,0.882,0.875,0.863,0.847, 1.0,0.824,0.804,0.776,0.733,0.682,0.604,0.500,0.396,0.318,0.267,0.224, 1.0,0.196,0.176,0.153,0.137,0.125,0.118,0.074,0.045,0.027,0.012, 0.000/

C
IF(TA .EQ. 0.0) THEN
C
FXPCON = 0.5*RHO*SLEN*SLEN
IF (PROPOPT .EQ. 4) GOTO 50
C
C REFORMAT ADVANCE COEF, THRUST AND TORQUE TABLES TO AVOID PROBLEMS WHEN RPS = 0.0
C
WRITE (8,*) 'JB' KTT KQQ
DO 20 I = 1,NPROP
 JB (I) = 1.0/(DSQRT(1.000+JA (I)**2)) *DSIGN(1.000,JA (I))
 KTT (I) = KT (I)*JB (I)**2
 KQQ (I) = 0.1*KQ (I)*JB (I)**2
 WRITE (8,234) JB (I),KTT (I),KQQ (I)
20 CONTINUE
234 FORMAT(1X,3(E13.6,1X))
C
C LINEARIZE EHP(*),SHP(*) FOR BETTER LOOKUP
C NOTE EHP AND SHP ARE REALLY F(V**2)

89
C CREATE RPS TABLE
C
 EHP(0) = 0.0
 SHP(0) = 0.0
 RPSTAB(0) = 0.0
 DO 10 I = 1,NRPM
 TEMP = (2. * FLOAT(I))**2
 EHP(I) = EHP(I)/TEMP
 SHP(I) = SHP(I)/TEMP
 RPSTAB(I) = RPM(I)/60.0
10 CONTINUE
C
C INITIALIZE SPEEDS
C
 UK = DMIN1 (DABS (E(1)/KNTOF), 40.000)
 I = DINT (0.5*UK)
 FRAC2 = 0.5 * UK - FLOAT(I)
 RPS = (RPSTAB(I) + (RPSTAB(I+1) - RPSTAB(I)) * FRAC2)
 PROPRPM = RPS*60.
 RPSDOT = 0.0
 RPSDOTO = 0.0
C
C PREP SOME CONSTANTS
C
 CIDT = 1./(IDT*2.0*PI)
 PROPCON2 = PROPDIA**2*RHO
 PROPCON3 = PROPDIA**3*RHO
 WAKEFACT = 1. - WAKEFRAC
 THRSTDED = 1. - THRSTFACT
C
 JAA = (E(1)*WAKEFACT)/(RPS*PROPDIA)
 JBTMP = 1.0/(OSQRT(1.0D0+JAA**2)*DSIGN (1.000,JAA))
 JBINDEX = NPROP/2
 CALL SRCHTAB1 (JBINDEX, JB, NPROP, JBTMP, JBFRAC)
 CALL SRCHTAB2 (RPHINDEX, RPM, NRPM, PROPRPM, FRAC2)
C
 WRITE (8,*) ' I XPRPTAB KTAB'
 DO 675 I = 1,IKTAB
 WRITE (8,*) I,XPRPTAB(I),KTAB(I)
675 CONTINUE
 TEMP = 2.*(XSTERN - XPROP)/PROPDIA
 CALL SRCHTAB1 (I, XPRPTAB, IKTAB, TEMP, TEMP)
 KUFOR = KTAB(I) +(KTAB(I+1) - KTAB(I)) * TEMP
 KUAFT = 1.-KUFOR
 WRITE (8,*) ' I X-PROP-QUARTER-CHORD '
 WRITE (8,*) I,TEMP
 WRITE (8,*) ' FRAC KUAFT KUFOR'
 WRITE (8,*) TEMP2,KUAFT,KUFOR
C
 RACET3 = (ARRCTR + ARRCBR)/(AREATR+AREABR)
 RACET4 = 0.5* (AREATR-ARRCTR)/AREATR + (AREABR-ARRCBR)/AREABR
 RACET5 = (ARRCST/AREAT)
 RACET6 = (AREAST-ARRCST)/AREAST
 WRITE (8,*) ' AREAS OF RUDDERS ',RACET3,RACET4
 WRITE (8,*) ' AREAS OF STERN ',RACET5,RACET6
KTSS = (SHP(NRPM-1)*(2*(NRPM-1))**2*550.*60.*60.*SHAFTEFF)
1 / (2.*(NRPM-1)*KNTOF*RHO*RPM(NRPM-1)**2*PROPDIA**4)
WRITE(8,*)' KTSS ',KTSS

C INITIALIZE PROPELLER RACE
C
C VA = WAKEFACT*E(1)
C UAINFSS = -VA + DSQRT(VA**2 + 8.*KTSS*(PROPDIA*RPS)**2/PI)
C URACERO = DSQRT(RACET3*(VA+KUFOR*UAINFSS)**2 + RACET4*VA**2)
C URACER = URACERO
C WRITE(8,*) RPS,VA
C WRITE(8,*) UAINFSS,URACERO
C
50 CONTINUE
C ENDIF
C IF(PROPOPT .EQ. 4) GOTO 400
C
C LIMIT SPEED TO 40 KNOTS
C UK = DMIN1(DABS(E(1)/KNTOF),40.000)
I = DINT(0.5*UK)
FRAC2 = 0.5 * UK - FLOAT(I)
C NOTE EHP AND SHP ARE REALLY F(V*V*V)
TEMP = UK**2
EHPC = (EHP(I) + (EHP(I+1) - EHP(I)) * FRAC2)* TEMP
SHP = (SHP(I) + (SHP(I+1) - SHP(I)) * FRAC2)* TEMP
RPMC = (RPM(I) + (RPM(I+1) - RPM(I)) * FRAC2)
RPSC = (RPSTAB(I) + (RPSTAB(I+1) - RPSTAB(I)) * FRAC2)
C C SELECT MOTOR MODELS
C GOTO (100,200,300) PROPOPT
C
100 QDEL = COMMAND
SHPDEL = QDEL*PROPRPM/CHP2
GOTO 450
200 SHPDEL = COMMAND
QDEL = SHPDEL*CHP2/PROPRPM
GOTO 450
300 RPS = COMMAND/60.
PROPRPM = COMMAND
QDEL = QPROP/SHAFTEFF
SHPDEL = QDEL*PROPRPM/CHP2
GOTO 500
400 IF(E(1) .EQ. 0.000) THEN
ETA = 0.0
ELSE
ETA = COMMAND/E (1)
IF(ETA .GT. 5.000) ETA = 5.000
ENDIF
C APPLY REYNOLD'S NUMBER CORRECTION TO FXP THRUST MODEL
C
DELX = DELX1 + DELX2 / (DELX3 + DLOG10(E(1)))**2
CETA = ETAC6 + ETAC9*(DSQRT(DABS(ETAC7*ETAC8*DELX)))
IF(ETA .GE. FXPDIV(1)) THEN
 I = 1
ELSEIF ((ETA .GE. FXPDIV(2)) .AND. (ETA .LT. FXPDIV(1))) THEN
 I = 2
ELSEIF ((ETA .GE. FXPDIV(3)) .AND. (ETA .LT. FXPDIV(2))) THEN
 I = 3
ELSEIF (ETA .LT. FXPDIV(3)) THEN
 I = 4
ENDIF

C

FXP = FXPCON*(((UFXPA(I) + DELX)*E(1)**2
 + UFXPB(I)*CETA*COMMAND*E(1)
 + UFXPC(I)*CETA*CETA*COMMAND**2)
QPROP = 0.0
RPS = 0.0
GOTO 999

C

450 RPSDOT = (SHAFTEFF*QDEL - QPROP)*C3DT
RPS = RPS + (RPSDOT + RPSDOTO)*DTO2
RPSDOTO = RPSDOT
500 PROPRPM = RPS*60.
C

C STRICT SIGN CONVENTION APPLIED HERE
C

VPROP = E(2) + XPROP*E(6)
WPROP = E(3) - XPROP*E(5)
TEMP = DSQRT(VPROP*VPROP + WPROP*WPROP)

C IF(E(1) .GT. 0.01) THEN
 BETAPROP = ATAN2(TEMP,E(1))
ELSE
 BETAPROP = 0.0
ENDIF
TEMP = DSIN(BETAPROP)
WAKE = WAKEFACT + WAKEBETA*TEMP
THST = THRSTD + THSTBETA*TEMP
VA = WAKE*E(1)
C
C A DISCREPANCY BETWEEN RIHSIM AND SLIME
C

C TEMP = DSQRT(VA**2 + (RPS*PROPDIAM)**2)
C JBTMP = (RPS*PROPDIAM)/TEMP
C JAA = VA/(RPS*PROPDIAM)
C JBTMP = 1.0/(DSQRT(1.000+JAA**2)*DSIGN(1.000,JAA))
C
CALL SRCHTAB1(JBINDEX,JB,NPROP,JBTMP,JBFrac)
C
KTAINF = (KT(JBINDEX) + (KT(JBINDEX+1) - KT(JBINDEX))*JBFrac)
UAINFSS = -VA + DSQRT(VA**2 + 8.*KTSS*(PROPDIAM*RPS)**2/PI)
URACERO = DSQRT(RACET3 * (VA+KUFOR*UAINFSS)**2 + RACET4*VA**2)
URACESO = DSQRT(RACET3 * (VA+KUFOR*UAINFSS)**2 + RACET6*VA**2)
C
C CHECK FOR FLOW REVERSAL
C

C TEMP = VA**2 + 8.*KTAINF*(PROPDIAM*RPS)**2/PI
C WRITE(6,*)
WRITE(6,*) TA, TEMP
UAINF = -VA + DSIGN(1.000, TEMP) * DSQRT(DABS(TEMP))
IF(UAINF.GT.0.000D) THEN
 KRACE = KUFOR
ELSE
 KRACE = KUAFT
ENDIF
TEMP = VA + KRACE * UAINF
TEMP3 = RACET3 * DSIGN(1.000, TEMP) * TEMP**2 + RACET4 * VA**2
URACER = DSIGN(1.000, TEMP3) * DSQRT(DABS(TEMP3))
TEMP3 = RACET5 * DSIGN(1.000, TEMP) * TEMP**2 + RACET6 * VA**2
URACES = DSIGN(1.000, TEMP3) * DSQRT(DABS(TEMP3))
WRITE(6,*) KTAINF, E(1), VA
WRITE(6,*) UAINF, URACER

CT = (KTT(JBINDEX) + (KTT(JBINDEX+1) - KTT(JBINDEX)) * JBFRAC)
CQ = (KQQ(JBINDEX) + (KQQ(JBINDEX+1) - KQQ(JBINDEX)) * JBFRAC)
JAC = JA(JBINDEX) + (JA(JBINDEX+1) - JA(JBINDEX)) * JBFRAC

TEMP2 = VA**2 + (PROPIDAM*RPS)**2
PROPTHST = PROPCON2 * TEMP2 * CT*THST
QPROP = PROPCON3 * TEMP2 * CQ

C CALCULATE ETA
C
IF(PROPRPM.LE.0.000D) THEN
 TEMP2 = -PROPRPM
ELSE
 TEMP2 = PROPRPM
ENDIF

CALL SRCHTAB2(RPMINDEX, RPM, NRPM, TEMP2, FRAC2)

FPSTORPM = PROPRPM / ((2.0 * (FLOAT(RPMINDEX) + FRAC2)) * KNTOF)
ETA = (PROPRPM / FPSTORPM) / E(1)

IF(DABS(E(1)).GT.1.0D-2) THEN
 DRAG = EHPC*550./E(1)
ELSE
 DRAG = 0.000
ENDIF
FXP = PROPTHST - DRAG

CDBG WRITE(6,*)
CDBG WRITE(6,*) E(1), UK, SHPC
CDBG WRITE(6,*) TA, PROPTHST, DRAG
CDBG WRITE(6,*) QDEL, QPROP, RPSC
CDBG WRITE(6,*) RPS, PROPRPM, RPMINDEX
CDBG WRITE(6,*) FPSTORPM, ETA, JAC
CDBG WRITE(6,*) JBINDEX, SHPDEL, RPSDOT
CDBG WRITE(6,*) CT, CQ, JBTEMP

C 999 CONTINUE

C RETURN
END
SUBROUTINE VORTEX

VORTEX expresses the interaction of the sail vortex with the aft portion of the hull. VATTAIL is the 3-D total velocity of the fairwater delayed until it reaches the propeller. The delay is done with circular stacks DXSAV, V25, AVDXSAV.

VORTFLAG
1 - NO VORTEX
2 - VORTEX NO SHEDDING
3 - VORTEX WITH SHEDDING

-- ROBERT HICKEY ------ 12/89 ------

IMPLICIT NONE
INTEGER*2 ISIZE, IV, JV, II, I
PARAMETER (ISIZE = 500)
REAL*8 E(6), VORT(6), DXSAV(ISIZE), V25(ISIZE), AVDXSAV(ISIZE)
REAL*8 DXNEW, UFLAST, TEMP1, TEMP2, MOMARM, XSTOP
REAL*8 XEFFTAIL, UMIN, VFWI, VFWO, V25I, V25O, BETA
REAL*8 XHULL, SUMY, SUMZ, SUMM, SUMN, TA, DT
REAL*8 VATHULL, WATHULL, FRAC, VATTAIL

INTEGER*2 VORTFLAG
REAL*8 START1, START2, BETAST, XFW, X25, ZFW
REAL*8 XVEND, XTAIL, ZHCL, CL

REAL*8 DD(1800)
COMMON / COMDD / DD
EQUIVALENCE (DD(55), E(1)), (DD(266), VORT(1))
EQUIVALENCE (DD(272), VATTAIL)
EQUIVALENCE (DD(16), BETA)
EQUIVALENCE (DD(10), TA)

EQUIVALENCE (DD(1601), USTART1), (DD(1602), START1)
EQUIVALENCE (DD(1603), USTART2), (DD(1604), START2)
EQUIVALENCE (DD(1605), BETAST)
EQUIVALENCE (DD(1607), UXFW), (DD(1608), XFW)
EQUIVALENCE (DD(1609), UX25), (DD(1610), X25)
EQUIVALENCE (DD(1611), UZF), (DD(1612), ZFW)
EQUIVALENCE (DD(1613), UXVEND), (DD(1614), XVEND)
EQUIVALENCE (DD(1615), UXTAIL), (DD(1616), XTAIL)
EQUIVALENCE (DD(1617), UZHCL), (DD(1618), ZHCL)
EQUIVALENCE (DD(1619), CL), (DD(1620), VORTFLAG)

DATA DT, UMIN / 0.05, 8.44 /

IF (TA .EQ. 0.0) THEN
IV = 1
UFLAST = E(1)
XEFFTAIL = XTAIL - (X25 - XFW)
TEMP1 = E(1) * DT
DO 20 II = 1, ISIZE

-94
DXSAV(II) = TEMP1

20 CONTINUE

ENDIF

C

IF(E(1) .LT. UMIN) GOTO 999
IF(VORTFLAG .EQ. 0) GOTO 999
XSTOP = XVEND
IF((VORTFLAG .EQ. 2) .AND. (ABS(BETA) .GT. BETA2)) THEN
 XSTOP = (START1 + START2*ABS(BETA))*XTAIL
ENDIF

C

C STORE DISTANCE TRAVELED IN 1 DT IN DXSAV(*)
C AND VELOCITIES OF FAIRWATER AND QUARTER CHORD TO BE DELAYED
C

IV = IV - 1
IF(IV .LT. 1) IV = ISIZE
DXSAV(IV) = 0.5* (E(1) + UFLAST)*DT
UFLAST = E(1)
VFWI = E(2) + XFW*E(6) - ZFW*E(4)
AVDXSAV(IV) = 0.5* (VFWI +VFWO)*DXSAV(IV)
VFWO = VFWI
V25I = E(2) + X25*E(6) - ZFW*E(4)
V25(IV) = 0.5* (V25I + V250)
V250 = V25I

JV = IV - 1
XHULL = XFW
SUMY = 0.0
SUMZ = 0.0
SUMM = 0.0
SUMN = 0.0

C

C INTEGRATION BY RECTANGULAR SUMMATION FROM XFW TO XVEND
C

DO 30 II = 1, ISIZE
 JV = JV + 1
 IF(JV .GT. ISIZE) JV = 1
 MOMARM = XHULL + 0.5*DXSAV(JV)
 TEMPI = AVDXSAV(JV)* (E(3) - XHULL*E(5))
 TEMP2 = AVDXSAV(JV)* (E(2) + XHULL*E(6))
 SUMY = SUMY + TEMPI
 SUMN = SUMN + TEMPI*MOMARM
 SUMZ = SUMZ + TEMP2
 SUMM = SUMM + TEMP2*MOMARM
 XHULL = XHULL - DXSAV(JV)
 IF(XHULL .LT. XSTOP) GOTO 40
30 CONTINUE

40 FRAC = (XSTOP - XHULL)/(-DXSAV(JV))
VATHULL = E(2) + XSTOP*E(6)
WATHULL = E(3) - XSTOP*E(5)
SUMY = SUMY + WATHULL*AVDXSAV(JV)
SUMN = SUMN + WATHULL*AVDXSAV(JV)*FRAC*XSTOP
SUMZ = SUMZ + WATHULL*AVDXSAV(JV)
SUMM = SUMM + WATHULL*AVDXSAV(JV)*FRAC*XSTOP

GOTO 999
C
C LOCATE SAVED VELOCITY AT TAIL SURFACE
C
DO 60 II = 1, ISIZE
 JV = JV + 1
 IF (JV .GT. ISIZE) JV = 1
 XHULL = XHULL - DXSAV(JV)
 IF (XHULL .LT. XEFFTAIL) GOTO 50
60 CONTINUE
GOTO 999

50 VATTAIL = V25(JV)
GOTO 999

C
VORT (2) = -CL*SUMY
VORT (3) = CL*SUMZ
VORT (4) = -VORT (2)*ZHCL
VORT (5) = -CL*SUMM
VORT (6) = -CL*SUMN
RETURN

999 DO 10 II = 1, 6
 VORT (II) = 0.0
10 CONTINUE
 VATTAIL = 0.0
RETURN

END