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ABSTRACT

A submarine motion simulation study was performed for the maneuvering character-
istics of Draper Laboratories Unmanned Underwater Vehicle (UUV). The Revised Standard
Submarine Equations of Motion (EOM), usually used by the Navy, were augmented to incor-
porate the case of very high angle of attack and the propeller race-control surface inter-
action.

The crossflow drag integral was modified, making the drag coefficient a function of the
axial location of the hull section. The local Reynold's number was calculated based on hull
diameter and crossflow velocity, taking into account lateral velocity and yaw rate. The
Revised Standard EOM were used for angles of attack less than 30 degrees, the high angle
of attack model for angles greater than 60 degrees. The forces and moments were interpo-
lated to transition from the high angle of attack model to the low angle of attack model. The
modified crossflow integrals predict superior trajectories during ballasting.

The influence of the propeller race on the effective angle of attack and the velocity over
the control surfaces was modeled. The contribution of the control surfaces was separated
from the Revised Standard coefficients Yv, Yr, Nv, and Nr and non-linear control surface
coefficients were added. The response of the submarine during large rudder maneuvers is
completely different due to stalling being modeled. Proximity of the propeller to the control
surfaces has considerable influence on maneuvering and stability, especially during crash-
backs.

Thesis Supervisor: Martin Abkowitz, Phd. title: Professor Emeritus of Ocean Engineering
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NOMENCLATURE

SMALL LETTER

c : propeller race velocity at control surface

dr : deflection of rudder

dsp : deflection of port stern plane

dss : deflection of starboard stern plane

g : acceleration due to gravity 32.2 (ft/s2)

k : non dimensional ratio k = u/uoo

n : revolutions per second propeller

p : roll rate

q : pitch rate

r : yaw rate

t : thrust deduction

u : surge velocity

v : sway velocity

va velocity of advance = u(1-w)

w : normal velocity

w : wake fraction

CAPITAL LETTER

BG distance between CB and CG

CB : center of buoyancy

CG : center of gravity

D : propeller diameter

EHP effective horsepower

EOM : equations of motion



J : non dimensional advance ratio J = (1-w)u/nD

K : roll moment

L : length of submarine

L/D : length diameter ratio of hydrodynamic hull

LHS : left hand side

M : pitch moment

N : yaw moment

Q : propeller tcirque

Re Reynclds number =uL/v

RHS :right hand side

SNAME : Society of Naval Architects and Marine Engineers

SOE : submerged operating envelope

T : propeller thrust

U : linear velocity = sqrt( u2 +v2 +w 2)

X : axial force

Y : lateral force

Z : normal force

SHP : shaft horsepower

6-DOF : six degrees of freedom

GREEK LETTER

a : angle of attack tan-'(w/u)

8 : angle of sideslip sin-'(-v/U)

R : ratio of command speed to forward speed rpmIrpm

y : kinematic viscosity

p : mass density of water



SUBSCRIPT

AR : projected area of rudder

CD : drag coefficient

CL : lift coefficient

Ap : projected area of rudder in propeller race

Fxp : force, axial direction, propulsion

TOT : drive train mass inertia

KT(J) : non dimensional propeller thrust = T/pn2 D4

KQ(J) : non dimensional propeller torque = Q/pn2D5

uA :induced local velocity of the propeller

u0o : induced far field velocity of the propeller

vFW : velocity of sail

xB : axial location of center of buoyancy

XG : axial location of center of gravity

XSL : axial location of center of sail

zB : normal location of center of buoyancy

ZG : normal location of center of gravity

ZSL : normal location of sail



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The prediction of submarine trajectories has its roots based in pre-WWII maneuvering

coefficient estimation of dirigibles [17]. At that time, the computing power was not available

to do the tedious work of solving equations with 6 degrees of freedom over many time steps.

These equations were derived from potential theory and were kept simple with 2 degrees of

freedom, encompassing either the vertical or horizontal planes. The axial and roll equations

could be added to observe the effects of speed or the coupling between planes.

The Standard Equations of Motion for Submarine Simulation [7], also referred to as the

2510 equations, were written in 1967. The form was conceived to be general enough to simu-

late the motion of all submarines. Since the hydrodynamics of a submarine do not lend

themselves to easy analysis, Taylor Series expansions of the forces and moments is a

natural starting point to formulate equations of motion for simulation. The forces and

moments of a submarine model were measured in a tow tank and were curve fitted using

Least Squares. These Taylor Series .xpansions were added to the rigid body dynamics to

yield a six degree of freedom model.

In the period that followed, a great deal was learned about submarine maneuvering

hydrodynamics in the towing tank and at sea. The 2510 equations were not capable of accu-

rately predicting trajectories of all maneuvers. By 1979, new expressions aimed at remedy-

ing these shortcomings were developed and made public in the Revised Standard

Submarine Equations of Motion [4]. The three improvements are an integral form of cross-



flow drag, a sail/hull interaction integral, and a propeller model based on propeller shaft

dynamics using propeller curves of thrust and torque. The special features of the Revised

EOM features will be covered in detail in section 2.3.

As greater accuracy was demanded in simulation prediction, mathematical expressions

in the EOM were added as needed, to improve correlation with some important maneuvering

characteristics. These mathematical expressions may be found in unique math models

developed for a single submarine. The special curv.e fits of a given submarine improve the

simulated trajectories when compared with real trajectories. However, they are mathemat-

ical in nature and are not based on valid hydrodynamics.

1.2 LITERATURE SEARCH

As a starting point, current literature was reviewed to establish the current level of

technology. The Defense Technical Information Center (DTIC) and technical journals were

searched going back 20 years using the key words; math model, simulation, and equations

of motion. There was surprisingly little available oriented towards submarines. The Aero-

space industry has published a great deal and is useful to estimate maneuvering coeffi-

cients. However, the simulation of missles use different conventions and is not considered

in this study. Also, the Aerospace literature tends to compare the difference between aero-

dynamic theory and wind tunnel measurements and not the difference between simulation

trajectories.

Lamb (1932) is an important background for the math model. Potential theory is a pow-

erful technique to determine the added mass terms and subtle cross coupling between

planes of motion. Symmetry considerations play an important part in simplifying the



equations. Noble (1969) predicts the trajectories of 4 vessels using a simplified math model.

Different coefficients are used for each vessel and the validity of the trajectories produced is

discussed. Romero (1972) primarily emphasizes the implementation of the math models,

taking the control engineers' perspective. However, the math model used was pre-Revised

Standard. Smitt and Chislett (1975) address the merits of Large Amplitude Planar Motions

Mechanism for measuring the stability derivatives as well as maneuvering coefficients for

surface ships. These coefficients include third order terms and were used in simulations to

verify that accurate measurements can be made using a Large Amplitude Planar Motions

Mechanism. Pretty and Hookway (1979) and Flax (1979) discuss the origins and differences

between math models for airships. Mendenhall (1985) is breaking new ground in submarine

motion simulation. Using rational flow modelling, an axial marching scheme is used to pre-

dict forces and moments. Thi:; technique is extremely computer intensive and not directly

applicable in this study. Goodman et al (1987) apply PMM technology to the flow of high

angle of attack static and dynamic stability characteristics. Humphreys (1988) addresses the

impact of speed-varying hydrodynamic coefficients on maneuvering performance. Several

sets of coefficients were estimated based on speed and the difference between trajectories

discussed. Larson (1988) focuses on the influence each coefficient has on the trajectory pro-

duced. The relative importance of each ccefficient is expressed as an error relative to the

unchanged math model. The 2510 EOM and the Revised Standard EOM have covered the

state of the art for submarine motion simulation when they were published.

1.3 OBJECTIVE OF PRESENT WORK

Understanding the tow-tank to math-model to simulation process, several points of

weakness become apparent. While the Revised Standard EOM were intended to be valid for

all maneuvers, the constraints under which the coefficients were derived, severely limits the



usefulness of the model. The two points addressed by this study are the lack of fidelity of

the Revised Standard EOM with respect to the very high angle of attack motion regime and

to the propeller-flow to control-surface interaction.

The first objective of this work is to develop a new crossflow drag integral which uses

an axially varying drag coefficient based on crossflow Reynold's number. The Crossflow

drag of the control surfaces is represented separately as a function of yaw rate and lateral

velocity. Ballasting is a maneuver that is difficult to predict trajectories for. Adding a new

crossflow integral will model this motion regime.

The second objective is to modify the existing EOM by separating the effect of the con-

trol surfaces with new coefficients. Control surfaces are normally represented with a single

linear term as a function of forward speed and deflection. Instead, they are replaced with

nonlinear terms as a function of the propeller race velocity and the effective angle of attack.

The proximity of the propeller to the control surface and the percentage of the control sur-

face in the propeller race is important when backing the propeller. The flow from the propel-

ler race may cancel the flow over that portion of the control surface, zeroing its contribution

to the maneuver and staiblity. This approach was developed for surface ship motion simu-

lation [2].

Augmenting the Revised Standard EOM with terms expressly addressing the very high

angle of attack crossflow and addressing the propeller race velocity will greatly improve a

submarine motion simulation. The augmented Revised Standard EOM are intuitively satisfy-

ing as are the 2510 EOM when Propeller, Crossflow and Vortex models were added. The cur-

rent trend of developing custom math models that ignore hydrodynamics is unnecessary. By

adding these two expressions, the range of applicability is expanded. Before and after trajec-

tories are presented to compare the math models.



CHAPTER 2

MOTION SIMULATION

2.1 WHAT IS SIMULATION

Submarine Motion Simulation will be defined for the sake of this study to be a math

model of a submarine representing six degrees of freedom (6-DOF) coded on a computer for

the purpose of predicting trajectories. It is open loop, ie no automatic control inputs being

fed back. The trajectories are realistic when compared with the real submarine provided

that the inputs of propeller rpm, control surface deflections, and ballast changes are realis-

tic.

2.2 USES OF SIMULATION

A motion simulation may be used to determine the best response to a dive jam. The

submerged operating envelope (SOE) identifies the safe operating domain in terms of depth,

speed, and control surface deflections. The boundaries of the SOE are dictated by the

recovery limits for stern plane jams. These limits are based on motion simulations for a par-

ticular boat using all pertinent systems affecting the recovery of the boat such as propulsion

characteristics, ballast system, boat orientation, and control surface deflection.

A comprehensive motion simulation is also needed to accurately model the dynamics

and develop appropriate responses to the sternplane jam. For example, a correct response

to a stern plane jam may be to put the rudder hard over to induce snap roll. This changes

the plane of motion towards the horizontal reducing the depth loss. At the same time, the



propeller rpm may be slowed or reversed to slow the boat as fast as possible. The forward

ballast may be blown to get a pitch up moment. The sequence of events that best recovers

from a jam is determined from systematic permutations of control inputs [6].

The use of autopilots and control algorithms are based on high fidelity math models

able to accurately predict the trajectories of a submarine. A controls engineer linearises the

math model about some operating point and optimizes gains using a motion simulation. In

this way, an unstable vehicle may be turned into a high performance vehicle, provided that it

is not overly unstable.

Simulations are also used for ship pilot training. A motion simulation that has been

tuned to real time is interfaced -with a mock up of a real control station. A trainee inputs con-

trol commands using video feedback as a reference and flies the submarine. Harbor pilots

are an example of highly skilled people who benefit from motion simulation training.

2.3 PRESENTATION AND SPECIAL FEATURES OF REVISED STANDARD SUBMARINE

EQUATIONS OF MOTION (EOM)

2.3.1 REVISED STANDARD EOM

This study builds on the special features documented in the Revised Standard EOM.

While the Vortex integral and the effects of the sail trailing vortex are not considered in this

study, the crossilow and propeller model are improved. The Crossflow integral is changed

to accommodate the very high angle of attack motion regime. The propeller model variables

and dynamics are needed to implement the propeller race effects. The Revised Standard



EOM are included in Appendix A for reference, however aspects of the special features are

covered below.

2.3.2 CROSS FLOW

This crossflow integral uses strip theory where a 3-dimensional body is approximated

with many sections of a 2-dimensional body. The drag coefficient Co is assumed to be con-

stant over the whole body and is determined from curve fits of the towing tank data.

Y CD v(x)h(x) v2(x) + W2(x) dx

Z = -- w(x)b(x) v2(x) +- w2(x) dx

M = CDXw(x)b(x)/ v2(x) + W2(x) dx
2 C

N=- C Xv(x)h(x) iý-i(x) +,v(x) d x2 J,

Local crossflow velocities are calculated at each station by the following.

v(x) = v + Xref

w(x) = w - Xretq

xref is the axial location on hull, r and q are angle rates, and u and v are velocities. h(x) and

b(x) are offsets of the hull in the normal and lateral directions respectively, and are equal for



a body of revolution. There have been math models developed that use 4 separate CD coef-

ficients for the crossflow integrals for better predictions.

For large, high speed submarines with diameters of 20 feet or more, the crossflow Rey-

nolds number would be high enough to be past the critical value of 5.5 x 101 and therefore Co

changes only slightly. The above crossflow integrals might be satisfactory for fleet subma-

rines, but for small vehicles, much is overlooked.

2.3.3 PROPULSION MODEL

The propulsion model is of the form

Fp = pD4n 2 KT(J)(1 - t) - 550 EHP

The first term on the RHS is propeller thrust and the second term is drag, where n is

rev/sec, D is propeller diameter, and KT(J) is the nondimensional thrust as a function of J.

The drag of the submarine is found from an EHP vs. speed look up table derived from model

tests or analytic estimates. The advance ratio J= u(1-w)/nD ,, calculated each time step and

is the search parameter for tables of KT(J) and K,(J). See Figure 2-1 on page 18 and

Figure 2-2 on page 19 for typical curves of KT and KQ versus J. The values contained in the

curves are for forward speeds only, with positive or negative rpm, see [10].
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Figure 2-1. Representative Kt vs J,: for forward speed, +- rpm

Propeller torque is calculated from

Qprop =pn 2 DSKQ(J)

The difference of propeller torque and motor torque is used to calculate shaft acceleration

from the relation

RPM = (Qmotorshaftefficiency - Qprop) 260t2n.Tdt



where ýT is the drive train moment of inertia. The strength of the drive train may also dic-

tate a motor torque-rate limit.

-0.

o J o

Figure 2-2. Representative Kq vs J,: for forward speed,+- rpm

The equations needed to implement the propeller race model also need the above

equations and variables. With a few new equations, the propeller race control surface inter-

action can be modelled.

Ko



2.3.4 VORTEX

The vortex integral represents the sail trailing vortex interacting with the hull. In this

expression, vorticity is considered non-dissipative and stationary with respect to the fluid.

VFW represents the velocity of the sail, referenced to the quarter chord and the 42% span of

the sail, taking into account the yaw and roll rate, as well as lateral velocity. Each axial

location of the hull can be considered to have a discrete value of vorticity proportional to

V., delayed by the time required for the shed vorticity to reach that location. The hull is

moving under a stationary vorticity distribution created by the sail, see Figure 2-3 on page

21. The integral is a convolution of VFW with w(x) or v(x), from the sail to a point near the end

of the hull. In a tight turn, the sail trailing vortex may peel off the hull from a point farther for-

ward than the stern. Thus,the lower limit of integration is a function of side slip angle 8. The

vortex equations are as follows.

Y = -- C, w(x)vFw(t - r(x))dx

Z =- 2Cix v(x)vFw(t - r(x))dx
X1

P x2

K = K,uVFW(t - TT) + 2- Z1 C I  w(x)vFw(t - r(x))dx
X1

P fx

M = 2 Ci  v(x)vFw(t - T(x))dx
x1

2 If 1WX)wt

N = -2- CX w(x)v(t - T(x))dx2 I1Xl



VFW - V + XSLr + ZsLP

X, is the axial location of the sail, and X2 is the stern of the boat. K, is the interaction of the

trailing vortex with the controls surfaces, so vm(t-rT) is delayed a bit further aft.

Figure 2-3. A representative sail trailing vortex

Improvements to Vortex are not covered in this study and are mentioned for complete-

ness only. Classified literature is full of sail-trailing vortex research and reports. An

improved Vortex model would therefore be the most likely addition for DTRC or some other

Naval research facility to make to the Revised Standard EOM. Research indicates that at

least 4 distinct vortices are shed from the sail, two at the tip and two at the root. Therefore,

an obvious shortcoming of the Revised Standard Vortex Integral is that it keeps track of only

one vortex and is 1-dimensional. Perhaps 4 separate vortices kept track of in 3-space would

be more accurate. Mendenhall [18], is a key figure in rational flow modelling and is actively

doing research in this field.



2.3.5 NOMENCLATURE AND INTERPRETATION OF TERMS

A word of caution should be raised with respect to the interpretation of maneuvering

coefficients and nomenclature. Attaching physical meaning to the terms can be misleading

and depends on how strictly the analyst adheres to physics. Several terms together may

best correlate with hydrodynamics. For example, the following terms in the Revised Stand-

ard EOM are often curve fitted together, in an effort to get a best fit.

Yuv +YvilVIRV V2 +W2 +2 Cv(x) v2(x) +w2(x) dx

The capital R in the above expression stands for remainder and not yaw rate to remind

hydrodynamicists to be cautious. Negative drag coefficients are non-dissipative and have

sometimes been used for the sake of tow-tank data fidelity, though at the expense of impos-

sible hydrodynamics.

SNAME [25] established a convention where the subscript implies the slope or deriva-

tive with respect to that subscript. For this study, coefficient names were created. The H in

the term YHVIVI means high angle of attack to distinguish it from Yv1V1 The term Ydre means

Ydr effective angle of attack, and Ydre3 means Ydredrdre.r The Fortran compiler used has a con-

straint of an 8 character variable and influenced the above choices.

2.4 IMPLEMENTATION OF EOM

The motion simulation for this study contains 30 subroutines, is written in Fortran 77 and

was developed on an IBM PC. The coordinate system (x,y,z) and (,9,qi) are relative to



body-oriented axes. Velocities in this coordinate system are denoted by (u,v,w), angular

velocities by (p,q,r), forces by (X,Y,Z), and moments by (K,M,N).

The equations of motion were rearranged into a matrix format with

left hand side (LHS). Appendix A contains the Revised Standard EOM.

m - X

0

0

0

mzG

-myG

0

m - Yý

0

-mz G - K

0

mxG - N,

0

0

m -- Zwmy-Z

mYG

-mx G - Mv,

0

0

-mz G Y -

myG

lIxx - K

-lxy-
-lx- N ,

mzG -myG

0 mxG-Y Y

-mxG - Zq- 0

-Ixy -xz - Kr

ly - M4 -lyz
-lyz IZZ - Ni

accelerations on the

E•X

EY

_z

EK

XM

.N

The right hand side (RHS) vector represents the summation of all forces that are functions of

the hydrodynamics, such as the coefficients, the crossflow and vortex integrals, as well as

the hydrostatics. The 2510 EOM and the Revised Standard EOM assume the motion dynam-

ics are linear in acceleration.

When the program starts, the Left Hand Side (LHS) or mass properties matrix is inverted

once and used for every subsequent At. The RHS is calculated for two sets of equations, the

Revised EOM and the Zero Speed EOM. If the angle of attack is between 30 and 60 degrees,

interpolation between the two based on angle of attack gives a single RHS. Accelerations

are solved for by calculating the product of the inverse of the LHS matrix and the RHS vec-

tor. The accelerations are then integrated twice to find velocities and positions, expressed in

two frames of reference. The difference between them being the Euler-coordinate transform,

producing an earth-relative set and a body-relative set see Figure 2-4 on page 24.
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Figure 2-4. Relation Between Earth Reference Frame and Body Reference Frame

A 4th order Runge-Kutta integration routine with a A t of 0.05 seconds was used in vec-

tor form, as shown below.

Y1n + 1= yin + " [k l ' + 2k2,i + 2k3,i + k4,ji = 1 ....6

k6,i= tf(txi)

kj= Atf(t,x,)

Atk2,; = Atf(t + -t , x + 1Skl,,)

at 1
k,, = Atf(t + 2 , x + k2,,)

k4,j = Atf(t + At,xi + k3,i)

X
•Z •..

I _



This routine has a local truncation error of O(Ax,5). and was chosen for its ease of applica-

tion to the vector problem.

There are several types of power plants used on ships, each with unique characteristics.

For example, an electric motor may be approximated by a constant HP input to the propeller

model. In this simulation, either RPM, HP, or Torque may be specified as needed to dupli-

cate almost any maneuver.

The input data file containing non-dimensional maneuvering coefficients, hull offsets,

and propeller data consists of over 500 variables and is read in prior to each run. All of the

input data and all calculated variables are echoed to an output date file which is helpful for

debugging and comparison purposes.

All control inputs such as dr, dss, dsp, and rpm, are specified at particular times before

a run. Control inputs are then linearly interpolated between these points and values passed

to the equations of motion. For the 10-10 Zig-Zag maneuvers, the rudder was automatically

flipped when the heading angle reached 10 degrees.

The RPM is integrated each time-step using a simple triangular integration routine.

When the command torque and prop torque are in equilibrium, shaft acceleration stops.

Look-up tables were used for propeller, EHP, and crossflow drag data. The data taken

from the tables is often clustered closely together so the previous location in the table is

stored in memory to improve the search efficiency the next call.



Simpsons rule was used for crossflow integration. A very efficient routine was used

where as much as possible was calculated before the run begins. Repetitive calls u.se the

precalculated values making execution very fast.

The delay of Vw is achieved thru two circular stacks in memory, where the VF and the

axial distance traveled by the submarine for each At are stored. By adding up the Axs in

one stack, the increment can be found in the Vw stack and integrated.

2.5 SHORT COMINGS OF REVISED STANDARD EOM

2.5.1 EXPERIMENTAL AND ANALYTIC BACKGROUND

The equations of motion are intended to be valid over the whole range of motion for

which a submarine is expected to maneuver. Forces and moments of the submarine hull

are accurately predicted at small angles of attack using only linear coefficients. However,

extrapolation beyond the intended limits is risky because the curve fits used may generate

unrealistic forces and moments resulting in bad trajectories at best or numerical instability

at worst. At some point, the allowable degree of nonlinearity in a standard math model will

be exceeded. A problem occurs because a submarine may not be tank tested at all angles of

attack.

At very low forward speeds, the angle of attack can easily exceed 30 degrees.

Inspection of the Revised Standard math model shows a majority of coefficients to be a func-

tion of u. As a result, with zero forward speed, the simulation doesn't respond with realistic

trajectories. There are ballasting cases where a real submarine would build up speed and

angles of attack drop within linear limits. However, in this case, current math models do not



generate realistic trajectories, even with numerical buoyancy forces orders of magnitude lar-

ger than possible.

The results from a Large Amplitude Planar Motions Mechanism (PMM) are generally

considered marginally accurate above some angle of attack, say 30 degrees. The PMM is a

device used to sinusoidally oscillate a model while it is being towed in a straight line. Forc-

es and moments are recorded at several speeds, angles of attack, and frequencies of oscil-

lation. A Rotating Arm is used to measure forces and moments while the model is being

towed in a circle, and duplicates the steady yaw rates not measurable on the PMM. There

are physical limits as to the angles and frequencies measurable on this equipment as well

as practical limits on the ability to resolve the effects of the hydrodynamics into coefficients.

Additionally, scale effects come into play which limit the accuracy of the measured coef-

ficients. In the towing tank, Reynolds number matching is impossible because of the velocity

and distance limitations of the towing tank. Corrections must be made to the data to adjust

for known scale errors. In the end, there is some uncertainty in the value of the measured

coefficients.

2.5.2 REALISTIC HYDRODYNAMICS

The limitations imposed by the PMM and subsequent data analysis suggest that purely

mathematical curve fits used to represent the submarine are hydrodynamically weak. It is far

better to develop a theoretically sound hydrodynamic expression and measure coefficients of

lift, drag, and moment on a submarine model, than to cast aside hydrodynamic principles

and use arbitrary mathematical curve fitting. The geometry of the submarine and hydrody-

namic principles should determine the form of the math model.



The Revised Standard EOM do not handle very high angles of attack well. The coeffi-

cients are not meant for very high angles of attack because towing-tank tests are done at or

near 0 degrees. In particular, coefficients addressing the control surfaces at 90 degrees are

missing. While a single math model for all angles of attack would be simpler, a separate

model focusing on the very high angles of attack that occur during ballasting should be

used.

The propeller race effects are not represented in the Revised Standard EOM. Current

techniques modify control surface terms by an eta (r1) term, the ratio of command rpm to

steady state rpm. However, these terms are functions of forward speed, and are inaccurate

when forward speed is zero. The proximity of the propeller to the control surfaces is impor-

tant because the propeller accelerates the flow. The percentage of the control surface in the

propeller race as compared to the free stream is of fundamental importance to control

authority. By backing the propeller when moving forward, the flow from the propeller race

reduces and may cancel the flow over the control surface, zeroing its contribution to the

maneuver and stability.

Additionally, the Revised Standard EOM do not take into account the effective angle of

attack of the control surfaces. They are easily pushed into the non-linear regime due to their

range and speed of deflection. The single coefficient Ydr is a function of forward speed u,

and deflection dr, and can't represent the force on a control surface at all angles of attack.

The effective angle of attack is a function of rudder deflection dr, the yaw rate r, the lateral

velocity v, and the propeller race velocity c. Fur,,.er, the propeller race can change sign

while backing, reversing the flow over the control surfaces. This has a dramatic influence on

trajectories.



Blowing ballast and crashbacks are two maneuvers that submarines do regularly that

push the limit of the simulation to model what actually takes place and thus warrant special

attention. The Zero-Speed Crossflow model will cause the simulation to transition to the

Revised Standard EOM in the range of moderate and small angles of attack and also realis-

tically generate trajectories while ballasting with zero forward speed. The propeller race

model will cause the submarine to go unstable during a crashback when the propeller race

changes sign. Both phenomena are important and should be represented.



CHAPTER 3

ZERO FORWARD SPEED CROSS FLOW

3.1 INTRODUCTION

For small, low speed submersibles with a diameter of about 4 feet, the axial Reynolds

number is affected by the angle of attack and by the yaw rate. Thus, the local Co may vary

by as much as 100%; see Figure 3-1,

Figure 3-1. Drag Coefficient vs Reynolds number for 2-D cylinder

and have a significant influence on hydrodynamic forces and moments [12]. The mid sec-

tion may be in the laminer region while the extremities reach the critical Reynolds Number.



As the velocity varies along the hull, forces and moments develop due to the pressure

changes. A pressure distribution due to an angle of attack, without an angle rate, is shown

in Figure 3-2 on page 31, with a 2-D section included.

Since the crossflow integral is evaluated at each time At, a local Co on the hull can be

evaluated with a small penalty in computation. Tabulated values of drag versus Reynolds

number for a 2-D cylinder were taken from [19] and are used in a lookup table, A simulation

implementing the Revised Standard EOM is easily modified to make C0 a function of axial

location and Reynolds number. The required data is drag versus Reynolds number for a 2-D

cylinder, which is readily available.

U

Figure 3-2. Pressure Distribution About an Unappended Submarine Hull: With Angle of

Attack a.

_ __



3.2 ZERO FORWARD SPEED EOM

The significant change to the Revised Standard crossflow is that the drag coefficient is

now inside the crossflow integral. The high angle of attack equations of motion are as fol-

lows:

xb
Y =Px C,(x)v(x)h(x) v2(x) + W2(x) dx + YHvlvlIVVs

xt

xb

xb 2(X 2(Z=j2 XCD(x)w(x)b(x) v (x) + w (x) dx + MHWIwlWslsxt K = KMplppl +Kvlvivlvl

xbM = 2fXCo(x)w(x)b(x)V/v2(x) +w 2(x) dx+ MHWIwvsI wsxt

N =-- XCD(x)v(x)h(x) v (x) +w (x) dx+NHVIVIVs Vs
xt

where Co is a function of axial location, and YHvIV, ZHWIwI, MHWIWI and NHVIV, are high angle of

attack coefficients for the control surfaces.

vs = v + xsternr

ws = w -xsternq

The crossflow Reynolds number is defined for this study as

v (x) + w (x) D(x)
Re = V



v(x) = v + Xre "

w(x) = w- Xretq

The forward limit of integration xb, is moved aft from the forward perpendicular to take

into account the 3-D effects of the bow. It is set to 1/2 of a maximum hull radius aft of the for-

ward perpendicular which is equivalent to using a hemisphere at the bow. The aft limit of

integration xt, is the axial location of the propeller. The surface area aft of the propeller is

very small and is assumed insignificant.

At these high angles of attack, the control surfaces are stalled. For this study, analytic

estimates were made for coefficients representing the control surfaces at angles of attack of

90 degrees. The crossflow drag of these appendages was estimated using a flat plate drag

coefficient of Co = 1.19, based on aspect ratio [14]. An area of 1.4 square feet per fin and a

moment arm of 18.5 feet was used. These are added to the zero-speed cross flow integral

which covers the hull from the bow to the stern. This integral and the estimates for the coef-

ficients are only valid at 90 degrees, plus or minus 30 degrees.

3.3 ZERO FORWARD SPEED RUNS

Two maneuvers were used to test the blending and transition between the Revised EOM

and the Zero Speed EOM. Both are set up to accentuate the very high angle of attack hydro-

dynamics.

The following are a description of variables used in the plots. Fraction is the percentage

of High-Angle EOM used to determine the RHS. RHS3 and RHS5 are the sum of the RHS for



the normal and pitch equations respectively. WTINH20 is the change in weight of the sub-

marine in water. Z CROSS and M CROSS are the values of the crossflow integrals. For the

augmented model, High-Angle EOM crossflow and the Revised Standard EOM crossflow are

blended when the angle of attack is between 60 and 30 degrees.

3.3.1 BUOYANT RISE MANEUVER

The first maneuver for zero speed simulation was buoyant rise. The model is initialized

at zero speed steady state which can be defined as

u=v=w=p=q =r=rpm = =0=dr=ds=0.

xg = xb = zb = 0.0, and zg = 0.04166

Using a step-function input, the buoyancy of the boat is changed by +1% at the center

of gravity. This accentuates the hydrodynamics 'because this buoyancy change has no static

moment and causes the submarine to establish an equilibrium with a high angle of attack,

see Figure 3-3 on page 36 and Figure 3-4 on page 37. The propeller was allowed to free-

wheel. For the first 25 seconds, the run is in the 90-60 degree angle of attack regime and

uses only the High-Angle EOM. Due to the contrived nature of the run, the submarine

reaches equilibrium with about a 50 degree angle of attack and illustrates the blending of 2

math models.

Note that the Revised Standard EOM do not result in an up pitch and do not gain for-

ward speed. The crossflow drag of the fins acting on an 18 foot moment arm should result

in an up pitch and is not accurately represented in the Revised Standard EOM.

If the location of the buoyancy change were forward of the CGthe static pitch angle

would influence the dynamic angle of attack during ascent. For that case, which is not.



shown, the forward speed builds up until the angle of attack drops below 30 degrees and

equilibrium is established in the Revised EOM.
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3.4 HEAVY SINK MANEUVER

The second maneuver was a heavy sink. Again, the model is initialized at zero steady

state. However this time, xg is less than xb by 3 inches.

u=v=w= p=q =r=rpm=0=6=dr=ds=O

xg = zg = zb = 0., and xb= 0.25.

Buoyancy was stepped -1/2 %. In heavy sink, the gravitational forces and to a lesser degree

the hydrodynamics, cause the pitch angle change. The runs establish equilibrium in the lin-

ear regime, both trajectories converging, see Figure 3-5 on page 39 and Figure 3-6 on page

40. The High-Angle EOM come into play in the first 5 seconds only.

An interesting difference with buoyant rise occurs. Because BG = 0, there is no stabi-

lizing roll moment and in both cases, the model spins during descent as a reaction to the

propeller free-wheeling torque. This is not shown.
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CHAPTER 4

PROPELLER RACE EFFECTS

The Revised Standard EOM take into account the propeller race effects with eta (17)

terms, the ratio of rpm.rpm. For example, Ydrq, Ndr , Zdas, Zds~, Mds.7, and Mdsp/ would all

be multiplied by (q - 1). These terms reflect the change in control-surface effectiveness dur-

ing a maneuver due to the propeller race. However, the 1 terms are a function of forward

speed and not the propeller race speed. As a result, at zero forward speed, the control

authority isn't accurately represented. For maximum maneuverablity, control surfaces

should be located in the propeller race. For a typical modern submarine, they are located

forward of the propeller and are not affected much. However, when the propeller is

reversed, the flow is reduced and may also reverse over the control surfaces thereby having

a large effect.

From actuator disk theory, it is possible to estimate the propeller race characteristics

given the forward speed, propeller rpm, diameter and performance curves KT(J), and K,(J)

vs. J.

4.1 PROPELLER RACE MODEL

Uoo is the far field induced velocity of the propeller race. It is expressed as [2]

/ 2 8KT(J) nD2

Uaoo = - (1 - w)u + (1 - w)2 u + (nD)

and represents the maximum axial velocity that the propeller produces. Note the negative

sign on the first term on the RHS. In this way, it is possible to change the flow over the con-

trol surfaces. When backing, KT is negative and may cancel the forward component.



c is the actual velocity of the propeller race at the control surface as follows.

fAp-,u 2  ARAR Ap 21 --w2u

c = [(1 - w)u +kuaoo 2  AR +(1-w)u

k is a coefficient, depending on the control surfaces proximity to the propeller, see

Figure 4-1. The race is induced by a semi infinite tube of ring vortices and is determined by

the Law of Savart. Ap is the area of the rudder in the prop race, and A. is the total area

of the rudder, see Figure 4-2 on page 43.

This expression represents a weighting of the

force of the rudder in the propeller race

against the force of the rudder outside the

propeller race, based on velocities and areas.

The numerical propeller race flow reversal is

accomplished by carefully controlling the

signs under the square roots. When reversal

occurs, the lift characteristics of the control

surface are markedly different because the

sharp trailing edge of the control surface is
-2.0 -1.0 0.0 1.0 2.0 .... ..

x/0.50 now the leading edge. The dCL/da slope is

the same, but the angle of maximum lift is

Figure 4-1. Mean Axial Velocity

approximately 1/2 that in the forward direction [11], and is taken into account. Even with

reduced effectiveness, flow reversal over the control surface has an incredible effect at zero

forward speed. This occurs because the flow over the submarine has little hydrodynamic

effect and the rudder experiences significant velocity.
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Figure 4-2. Relative Proportions of Rudder In and Out of Race: and Wake Contraction

Based on Actuator Disk Theory

4.2 EFFECTIVE ANGLE OF ATTACK MODEL

The body dynamics also play a part in effective control surface deflections. The control

surfaces are purposely located some distance away from the CG. The actual velocity vector

of the flow is a function of yaw rate and lateral velocities. The effective angles of attack for

the rudder and stern planes are represented by

dre= dr - tan- ( + Xstern)

dsse = dss - tan- 1 ( Xstern. q

dspe = dsp - tan- 1 ( -xtern )

where Xste,,rn is the axial location of the quarter chord of the control surface. In this way, the

stalling that may occur during a zig-zag maneuver when control surface deflections are less

than 20 degrees are represented.

_ __ Y



In the Revised Standard EOM, control surface coefficients such as Ydr, Zds,, Ndr, and Mds

are linear. The very nonlinear nature of a low aspect ratio, all movable control surface

mounted on the tapering tail cone of a body of revolution is apparent in experimental data.

Near stalling, the gap at the root of the fin is quite wide and porting occurs. The lift drops

significantly with higher angles of attack as the vorticity is shed at the gap instead of being

carried onto the body. The fin's effective aspect ratio drops by about 2/3 as a result [9].

Based on this experimental fact, the third order control surface term Yd,,3 was calcu-

lated. Using Ydr and Ydre3 together, 1/3 less lift is generated at 32 degrees as compared to

Ydr alone. To stop the control surface lift from numerically changing sign when very high

angles of attack occur, the effective angle of attack is limited to 40 degrees for the forward

case, and 20 degrees when flow is reversed. In this way, the 3rd order lift-coefficient Ydr,,e3

isn't extrapolated out of its useful range.

4.3 PROPELLER RACE AND STABILITY

The propeller race velocity and the effective control surface deflections are an impor-

tant consideration during evasive maneuvers such as a crashback. Recirculation of the pro-

peller race may form a doublet disk which envelopes the control surfaces. During a

crashback, the sub has forward speed and the propeller rpm is reversed. Depending on the

sequence of events and the particular characteristics of the boat, it is possible to loose con-

trol of the boat. If the control surfaces contribute significantly to stability, then the reversal

of the propeller may effectively cancel this contribution. Further, when the propeller race

changes sign, the contribution of the rudder also changes sign, possibly causing instability.



Stability and turnablity work against each other. The more stable the boat is, the more

resistance the boat offers to a disturbance. A simple indication of straight line stability is

given by the following.

G=1.Mw(Zq + m)

Nv(Yr - m)
Gh = 1. - Yr

YvNr

The mass and stability derivatives are nondimensional. The boat is stable if Gv is greater

than 0, and unstable if less than 0. A negative value of the propeller race destablizes the

boat by changing the sign of the contribution of the rudder. The effect of the rudder is pres-

ent in the above expressions but not as a function of the propeller race. The status of the

propulsion system has a large impact on the stability of a submarine.

According to potential theory, an unappended body of revolution with an angle of attack

will experience Munk's moment. Two stagnation points acting on significant moment arms

cause it to yaw and makes up a substantial part of N, and M,. Thus, during a steady state

maneuver, the all-moveable rudder is restraining the hull from yawing faster. In this way, a

rudder with +10 degrees deflection may actually experience a - 10 degree angle of attack.

For submarines that are neutrally stable or slightly unstable, reserve control authority can

be negated by over deflecting the control surface causing stall.

Also, during crashback, the submarine may not slow down as fast as desired due to the

doublet disk changing the effective wake of the hull. The stopping distance can be greater

than for a freewheeling propeller. However, this phenomena isn't normally modeled

because the propeller curves are traditionally measured on a propeller boat or in a propel-

ler tunnel to guarantee a uniform inflow. In the Revised Standard EOM, the effects repres-



ented by the thrust deduction and wake fraction are constants and are sometimes a function

of sideslip angle at the propeller. However, the change in inflow to the propeller is nonline-

ar with loading and these constants are accurate at one operating point only. This is an

area for future work and is not a part of this study.

4.4 EOM FOR RACE EFFECTS

The form of the equations for propeller-race effects removes the control surface from

the existing coefficients, making it separate. The coefficients are based on body build up,

the bare hull being calculated or measured, and appendages added. For example, Y, and

Yr have the undeflected rudder Y~dr included in its effect. However, the significant nonlinear-

ity of the control surfaces at high angles of attack is omitted in the Revised Standard, limit-

ing the range of validity. The effect of the control surfaces is added back in as a function of

(c-c0), co being the steady state race velocity. The third order term Ydre3 incorporates stall-

ing into the EOM as indicated in [2].

Y = - Ydr(C - CO)V - Ydr(C - Co)r + Ydc 2 r + Ydre3C 2dre3

Z = - Zds(c - co)w - Zds(c - co)q + Zdsc 2ds + Zdse3C 2 dse3

2 3M = - Mds(C - cO)w - Mds(c - co)q + Mdsc2ds + Mdse 3Cdse

N - Ndr(C - CO)V - Ndr(C -co)r + Ndrc2 dr + Ndre3C 2dre3

Note that in the above equations, YdrCV, Ydrcr, and Ydrc 2dr together are effectively Ydrecldre.

The equations are formed in this manner to easily remove the effect of the undeflected rud-

der from Y, and Y, in the Revised Standard EOM.



4.5 PROPELLER RACE RUNS

Three test cases were studied to demonstrate the importance of the propeller race

effects. They are +- 15 degree turn, 10-10 Zig-Zag, and Crashback. For each case, there

are 2 runs. One with the Revised Standard EOM being used and the other incorporating the

propeller race EOM. The traces are laid one on top of the other.

The effective control surface deflection and the propeller race velocity are calculated and

plotted for the Revised Standard EOM runs but are not used to calculate the trajectories.

4.5.1 +- 15 DEGREE TURN

The difference in trajectories due to the effective angle of attack being used instead of

the deflection is enormous. The third order term Ydre3 and the limit of 40 degrees are domi-

nating this maneuver. The submarine is not responding to the helm and takes 20 seconds to

change direction, see Figure 4-3 on page 48 and Figure 4-4 on page 49. The Propeller

Race EOM produce no roll (phi) oscillations because the submarine is in a steady turn. The

speed drop for Race EOM is greater because of the dominant Xvr term. For the Revised

EOM, v crosses zero at one instant and produces a hump in u.
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4.5.2 10-10 ZIG-ZAG

The runs for this maneuver are in the linear regime and are qualitatively the same. The

differences are due to a slight difference in control surface effectiveness at small angles of

attack. Ydr is linear and a compromise over the whole range of deflection. Ydr and Ydr, 3

together could have been adjusted 10 be equivalent to Ydr at some deflection. This would

result in smaller differences between the runs with regard to amplitude.but some difference

between frequency and phase. See Figure 4-5 on page 51 and Figure 4-6 on page 52.
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4.5.3 CRASHBACK

The stability change during a crashback is most dramatic when forward speed is near

zero. This is due to the low forward speed at which the propeller race changes sign. At

this point, the only significant flow or the submarine hull is the propeller race over the con-

trol surfaces. With a low and decreasing speed, the submarine will have sluggish response,

see Figure 4-7 on page 54 and Figure 4-8 on page 55. All trajectories produced for the first

40 seconds are identical. However, heading, yaw rate, lateral velocity, and distance offtrack

diverge in the last 15 seconds. The reason for this is the change in sign of the effective rud-

der deflection caused by the flow reversal of the propeller race. Even though the control

surface effectiveness is about one half its forward effectiveness, the very low speed of the

submarine produces little opposing force compared to lift from the control surface.
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CHAPTER 5

CONCLUSION

5.1 SUMMARY

From the comparison of runs, it is clearly seen that the differences between trajectories

generated from the Revised Standard and trajectories generated from the augmented

model are important. While the Revised Standard EOM were intended to be good for all

maneuvers, the constraints under which the coefficients were derived, severely limits the

usefulness of the model.

Zero speed crossflow and propeller race effects add a great deal to the math model,

expanding the useful non-linear range of applicability and validity. Any comprehensive

motion simulation based on the Revised Standard EOM may be augmented provided a

KT-KQ propeller model is being used. The control surface configuration isn't normally

included in a submarine math model and must be available or estimates made.

A shortcoming in the High Angle EOM occurs in the 30 to 60 degree angle of attack

region. But there isn't a clear application for a model in this region of motion. The only way

to sustain such angles of attack is through ballasting. In reality, either a boat would be

maintained at close to 90 degrees for hovering or a significant up pitch angle would be

allowed, the submarine gaining forward speed to get to the surface. The zero forward

speed crossflow model will hover or undergo transition into the linear regime.

The contribution of the propeller race to the maneuvering characteristics of a subma-

rine are fundamental. The omission of this expression in the math models of the past have



no doubt limited the validity of the trajectories produced in the nonlinear regime. The effec-

tive angle of attack model with the third order term Ydre3 was shown to exhibit very different

behavior compared with the linear Ydr rudder model. While backing the propeller, the race

velocity reversal was shown to cause instability. The control surfaces acting as if on the

bow, their effect in the opposite direction.

5.2 RECOMMENDATIONS FOR FUTURE WORK

The UUV will be tested at sea in the Spring and Summer of 1990. At this time, on board

sensors will monitor several velocities and positions. These can be used to determine

whether or not the math models simulated in this study are accurate and represent the true

trajectories. No simulation should be used without comparing the output to the real world.

For the sake of simplicity, the area of the propeller race on the rudder was kept con-

stant, based on continuity. Further fidelity would be gained by changing the respective

areas with propeller loading.

For a submarine with a sail, new vortex integrals based on simplified rational flow mod-

elling would be useful.

Also, a dynamically varying wake fraction and thrust deduction would improve fidelity,

especially during crashback.
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AXIAL FORCE EQUATION

a [i - vr + wq - xG(q 2 r 2) + yG(pq - ) + zG(pr + 4)1

+ 4 [Xqq ' 2 .+ Xrr' 2 + Xrp' rp]

L+ 4 ' 2 + Xvr' vr + X] vq

+ (2 Xr2  2+221L vv .,
r+ 2 dr ru2 eX6s6  2 2a Xb6b'U22

-(W-B) sin 8 + Fxp

Tp - DRAG

Xp 2 (a+AX) U2 + b Cuu + c C212

21 c i

dX2where AX - UX1 +2
(AX3 + l101 u)2

C - C6 + (C7 + C8 AX)1/2

Note: FXP is represented by T - DRAG when propulsion characteristics
xp are available. Otherwise the second expression for Fp is used.are available. Otherwise the second expression for F is used.

xp

65



LATERAL FORCE EQUATION

u v.p + ur -yG(r 2+ p2 )+ zG(qr - ) + x,(qp+t)

+ A 1 4 [7*'i, 4+ yo,+ I I' I I+ Ypq' P~

+ A t3 (yf r' + Y' up + Y I i + y 1' ~
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2 [ drUSr+ Y6 rnl 6 r (n, C]

- Cd f h(x) v(x) (x ) ] 2

x 2

x2

S[v(x) ]21 1/2 dx

V(X) v FW(- -(xj.) dx

+ (W - B) cose sin<
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NORMAL FORCE EQUATION

a [ - uq + vp - zG(p 2  2) + xG(rp ) + YG(rq + )

+ e t4 Z•'41
+9.t'z'

212

+ e 3[Z i, uq + , .Z v
4.- L 'Z

+ 2 1 2

+ t2 [Zi vuw + Zw' jv(v2 +52"1/2

+ ~2 [2z6s' u
2~ +Zdb' U2b +zar,.' u26 ( n )C]

- IC b(x) ix [v()2+ )2 / dx
xl

+ L J v(x) (t - T[x]) dx

x2

+ ( - B) co(aG cosX t



ROLLING MOMENT EQUATION

I~ ~ . I I + (r2  2
I + (I lIy)qr - ( + pq)Ix + (r q)I + (pr - x)I

+a[yG(-uq+vp) zG(- vp + ur)] -
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t[Kart u26r + K ' u2 r -~.) c]

+ L3(u2  S2 2 S2 ) 2jS' sin 4S + KS'sin 8S
+2"S'S"S ~S 58S S]

x2

v(x) vW(t - T[x]) dx

+ (yGW - yBB) cose cosO - (zGW - zBB) cosO sino
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PITCHING MOMENT EQUATION

I 4+(I - I )rp -(o+qr)+(p 2 -2

+ a zG (i - vr + wq) - xG(Nr
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dx



YAWING MOMENT EQUATION
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C **********************************************************************
SUBROUTINE MOTION

C **********************************************************************
C - THIS SUBROUTINE USES 4TH ORDER RUNGE KUTTA INTEGRATION
C - IT CALCULATES THE 15T & 2ND STATE DERIVATIVES

- USING THE INVERSE OF THE 'E' MATRIX
- SUBROUTINE HYDRO IMPLEMENTS OTNSRDC 2510 EQUATIONS

EDOT(1) EOOT(2) EDOT(3) EDOT(4) EDOT(5) EDOT(6)
€ € € € € €

VDOT WOOT

E (2)
C.
V

POOT (2)
C
V

P(2)
YC
y

E (3)
C,
W

PDOT (3)
C
w

P (3)
C.
z€
Z

POOT QDOT

E (4)
C
P

PDOT (4)
C
P

P(4)
PHC
PHI

E (5)
C
Q

PDOT(5)
C

Q

P (5)
C

THETA

ROOT

E (6)

R

POOT (6)

R

P (6)

PSI

C UDOT

E(1)
C
U

POOT (1)
C
U

P(1)
C
X

R
E

F L
L A
U T
I I
D V

E

R
E E
A L
R A
T T
H I

V

C------------------------------ ROBERT HICKEY---------9/89--------------
-IMPLICIT NONE
REAL*8 CTRN(6,6),AINV(6,6),RHS(6),EOOT(6,4),EO(6),E(6),PDOT(6,4)
REAL*8 PO(6),P(6),0TO2,DT,0TO6,TA
REAL*8 0S4,0C4,DS5,DCS,DS6,DC6,0T5,DS5DC6,DS5DS6
INTEGER*2 I,J,K,JJJ

REAL*8 DD00(1800)
COMMON /COMDOD/ 00

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(DO( 1), DT),(DD( 6),
(DD( 7), DTO2),(DOD( 11),
(DO ( 10), TA)
(D ( 31),EDOT(1,1)),(DOD( 55)
(DD(( 61),. P(1)),(DD( 71),
(D0( 77),PDOT(1,1))
(DD (107),AINV(1,1)),(DD (143),

0T06)
JJJ)

E (1))
RHS(1))

CTRN(1,1))

DO 160 I - 1,6
EO(I) - E (I)
PO(I) - P(I)
00D 170 J - 1,4
EDOT(I,J) - 0.0
PDOT(I.J) - 0.0

170 CONTINUE
160 CONTINUE

C START 4TH ORDER RUNGA KUTTA INTEGRATION

DO 100 JJJ-1,4

C CALCULATE THE RIGHT HAND SIDE OF THE HYDRODYNAMIC EQUATIONS

C
C
C
C
C
C
C
C
C
C
C



CALL HYDRO
C
C SOLVE FOR ACCELERATIONS
C AINV 6X6 * RHS 6X1 a EDOT 6X1 (JJJ)
C

DO 310 K=1,6
DO 320 1-1,6
EDOT(I, JJJ) =EDOT(I,JJJ)+AINV(I,K)*RHS(K)

320 CONTINUE
310 CONTINUE

C
C CALCULATE COORDINATE TRANSFORM FROM FLUID RELATIVE TO BODY RELATIVE
C

DS4 - DSIN(P(4))
DC4 aDCOS(P(4))
DS5 - DSIN(P(5))
OC5 nDCOS(P(5))
DS6 aDSIN(P(6))
DC6 =DCOS(P(6))
DT5 = DOTAN(P(5))
OS5DC6 = DS5*0C6
DS5DS6 = DS5*DS6

C
CTRN(1,1) - DC5*DC6
CTRN(1,2) - -0C4*DS6 + DS4*DS5DC6
CTRN(1,3) - DS4*DS6 + DC4*DS5DC6
CTRN(2,1) - DC5*DS6
CTRN(2,2) - DC4*DC6 + DS4*DS5DS6
CTRN(2,3) - -DS4*DC6 + DC6*DS5DS6
CTRN(3,1) - -DS5
CTRN(3,2) - DC5*DS4
CTRN(3,3) - DC5*DC4

C
CTRN(4,4) - 1.0
CTRN(4,5) = DS4*DT5
CTRN (4,6) DC4*DT5
CTRN(5,4) - 0.0
CTRN(5,5) - DC4
CTRN(5,6) - -DS4
CTRN(6,4) * 0.0
CTRN(6,5) - DS4/DC5
CTRN(6,6) - DC4/DC5

C
C PREP BODY RELATIVE POOT FOR INTEGRATION
C CTRN 6X6 * E 6X1 - PDOT 6X1
C

DO 340 K=1,6
00 350 1=1,6
PDOT(I,JJJ)-=PDOT(I,JJJ)+CTRN(I,K)*E(K)

350 CONTINUE
340 CONTINUE

C
C WEIGHT ESTIMATES EACH PASS
C

IF( JJJ .EQ. 1 .OR. JJJ .EQ. 2) THEN



00 191 I
E(I) -

P(I) -

191 CONTINUE
ELSE

00 192 I
E(I) -

P(I) -

192 CONTINUE
ENDIF

a 1,6
EO(I)
PO(I))

= 1,6
EO(I)
PO(I)

+ EDOT(I,JJJ)*DTO2
+ PDOT(I,JJJ)*DT02

+ EDOT(I,JJJ)*DT
+ POOT(I,JJJ)*DT

100 CONTINUE

C ADD UP THE 4 PRE-ESTIMATES TO YIELD THE FINAL ESTIMATE
C

00 210 I - 1,6
E (I) EO(I)+(EDOT(I,1)+2.*(EDOT (I,2)+EDOT(I,3))+EDOT(I,4))*DT06
P(I) - PO(I) + (PDOT(I,1) +2.*(PDOT(I,2)+PDOT(I,3))+PDOT(I,4) ) *DT06

210 CONTINUE

RETURN.
END



C **********************************************************************
SUBROUTINE HYDRO

C **********************************************************************
C DTRC 2510 HYDRODYNAMIC COEFFICIENTS
C NOW INCLUDES ZERO FORWARD SPEED COEFFICIENTS
C -------------------------ROBERT HICKEY---12/89------------------------

IMPLICIT NONE
INTEGER*2 JJJ,II
INTEGER*2 IDTAR
REAL*8 TEMP1,TEMP2,TEMP3,TEMP
REAL*8 UPFRAC,LOFRAC,URACER,URACERO,URACES,URACESO
REAL*8 DRE3,DSPE3,DSSE3,DRE,DSPE,DSSE
REAL*8 DRHS1,DRHS2,DRHS3,DRHS4,DRHS5,DRHS6
REAL*8 ZRHS1,ZRHS2,ZRHS3,ZRHS4,ZRHS5,ZRHS6
REAL*8 BRHSI,BRHS2,BRHS3,BRHS4,BRHS5,BRHS6

C
REAL*8 00(1800)
COMMON /COMDD/ DO

C
REAL*8 URUR,USUS,DELRCR,DELRCS
REAL*8 DSP,DSS,DR,DB,UC,DT,RHS(6),E(6),P(6),QPROP,TA,YG,YB
REAL*8 PHISTERN,VATS,WATS,ETA,CETA,ETAM1,BETAS,KBETA,WT,BOUY
REAL*8 ARAPPHI2,ARAPPHI4,CROSSLIM,SINTHETA,COSTHETA,SINPHI,COSPHI
REAL*8 UU,VV,WW,PP,QQ,RR,PR,PQ,QR,UV,UW,UP,UQ,UR,VATTAIL,UUDB
REAL*8 VP,VR,WP,WQ,SQRVVWW,VSQRVVWW,WSQRVVWW,CROSS(6),VORT(6)
REAL*8 DRDR,DSDS,UUDS,UUDR,UABW,UABV,WABW,QABQ,VABV,RABR,FXP
REAL*8 PABP,DPDP,UUDP,UT,BETA,ALPHA,WR,ARRAY(6),WTINH20,DBDB

C
REAL*8 XUDOT,XQQ,XRP,XVR,XWQ,XVV,XDRDR,XDSSDSS,XDSPDSP,XDBDB
REAL*8 XW,XQ,XWDSP,XWDSS,XQDSS,XQDSP,XVDR,XRDR,XWW,XRR
REAL*8 XDRE2,XDSSE2,XDSPE2
REAL*8 YVDOTYRDOT,YRU,YVU,YVABVU,YVV,YDR,YDRN,YRABR,YVABV
REAL*8 YPU,YWP,YPABP,YPQ,YSTAR,YVABVR,YHVABV,YDRE,YDRE3,YDRE3R
REAL*8 ZWDOT,ZQDOT,ZQU,ZWU,ZABWU,ZWW,ZDSS,ZDSSN,ZQABQ,ZWABW
REAL*8 ZVP,ZSTAR,ZPR,ZDSP,ZDSPN,ZHWABW,ZDB
REAL*8 ZDSSE,ZDSPE,ZDSPE3,ZDSSE3,ZDSSE3R,ZDSPE3R
REAL*8 KPDOT,KVDOT,KRDOT,KQR,KPU,KRU,KWP,KVUK4S,K8S,KI,KDSP,KDSS
REAL*8 KPABP,KWR,KDR,KDRN,KSTAR
REAL*8 KDRE,KDRE3,KDSSE,KDSPE,KDSSE3,KDSPE3,KDSSE3R,KDSPE3R
REAL*8 MQDOT,MWDOT,MQU,MWU,MWABWR,MABWU,MWW,MDSS,MDSSN,MQABQ,MWABW
REAL*8 MRP,MSTAR,MVP,MDSP,MOSPN,MHWABW,MDB
REAL*8 MDSSE,MDSPE,MOSSE3,MDSPE3,MDSSE3R,MDSPE3R
REAL*8 NRDOT,NVDOT,NRU,NVU,NVABVR,NABVU,NVV,NDR,NDRN,NVABV,NRABR
REAL*8 NWP,NPQ,NSTAR,NPU,NHVABV,NDRE,NDRE3,NDRE3R
REAL*8 IYY,IZZ,IXX,SLEN,MASS,ZB,ZG,XB,XG,XSTERN

C
EQUIVALENCE (DO( 1), DT), (DD( 10), TA)
EQUIVALENCE (DO( 11), JJJ), (DO( 16), BETA)
EQUIVALENCE (DD( 15), ALPHA)
EQUIVALENCE (DD( 17), FXP ), (DD( 18), QPROP)
EQUIVALENCE (DO (19), ETA ), (DO ( 20), CETA)
EQUIVALENCE (DD( 55), E(1)),(D00( 61), P(1))
EQUIVALENCE (DO( 67), DSS), (DD( 68), DSP)
EQUIVALENCE (OD( 69), OR),(DO( 71), RHS(1))
EQUIVALENCE (D00(179), 08)
EQUIVALENCE (D0(260),CROSS(1)), (D00(266), VORT(1))



EQUIVALENCE (00(272) ,VATTAIL)

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(00(301),XUDOT
(00 (305),XQ
(00 (309),XRR
(00 D(313),XVR
(00 (317),XVV
(00(321),XOBOB
(00(325),XDSSDSS
(00(329),XORE2
(0D0 (333),XDSPE2
(00(1703),XWOSP
(00(1707),XQOSP
(DO (1711) ,XVDR

(D0 (338)
(DD (342)
(00D (346)
(0D (350)
(00DD (354)
(00DD (358)
(00 (362)
(00 (366)
(00D (370)
(0D (374)
(DD (378)

YVOOT
YROOT
YPQ
YPU
,YVABVR
YVV
YDRN
,YVABV
,YSTAR
,YDRE3
,YORE3R

(00DD(390) ,ZWDOT )
(00DD(394),ZQU )
(00(398),ZSTAR )
(0D(402),ZABWU )
(00(406),ZDB )
(DD00(410),ZDSSN )
(00D(414),ZDSPN )
(00D (418),ZWABW )
(DO( 422),ZDSSE3 )
(DD( 426),ZDSSE )
(DD( 430),ZDSSE3R)
(DO (1717) ,ZPR

(D0 (440) ,KVDOT
(D 00(444),KRDOT
(DD(448),KPABP
(00 (452),KRU
(00(456),KSTAR
(00 (460),KI
(DD (464),K8S
(DD(468) ,KDRN
(00(472),KDSP
(00 (476),KDRE3
(00(480),KDSPE
(DO (484),KOSPE3
(00 (488),KDSPE3R
(00 (1721),KWR

(DD (303),XW
(00 (307),XQQ
(00(311),XRP
(00(315),XWQ
(00 DD(319),XWW
(00(323),XDRORDR
(DO (327),XDSPOSP
(00D(331),XOSSE2

(00 (1705),XWOSS
(00 (1709), XQDSS
(00(1713),XRDR

(DD (340),YPDOT
(DD (344),YPABP
(00 (348),YRU
(DD(352),YVU
(00 DD(356),YVABVU
(DD (360),YOR
(DD(364),YRABR
(00(368),YWP
(D0 (372),YHVABV
(00 (376),YORE

(00DD(392),ZQOOT )
(00(396),ZVP )
(D00(400),ZWU )
(00(404),ZWW )
(00(408),ZDSS )
(DD(412),ZDSP )
(00 (416) ZQABQ )
(00(420),ZHWABW )
(0D0( 424),ZDSPE3 )
(DO( 428),ZDSPE )
(00D( 432),ZDSPE3R)

(DD0 (442)
(00 (446)
(00D (450)
(0D (454)
(00 (458)
(D (462)
(DD (466)
(00(470)
(00(474)
(00 (478)
(DD (482)
(D0 (486)

,KPDOT
KQR
KPU
KWP
KVU
K4S
KDR
KDSS
KORE
KDSSE
,KDSSE3
,KDSSE3R

EQUIVALENCE (00(494),MWOOT ),(00(493) ,MQDOT



EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(DO (498),MRP )
(DO (502),MWU )
(00 (506),MWABWR )
(DO (510) MW )W
(00 (514),MDSSN )
(00(518) ,MDSPN )
(DO (522) ,MQABQ )
(DD( 526) ,MHWABW )
(DO( 530) ,MDSPE3 )
(DD( 534),MDSPE )
(DO ( 538),MDSPE3R)
(00 (1723) ,NMVP

(00 (546)
(DO (550)
(00(554)
(DD (558)
(DO (562)
(Do (566)
(00D (570)
(DO (574)
(DD (578)
(00D (582)

(00D (593)
(00D (598)
(D00 (602)
(0D (606)
(00(610)
(DO (614)
(DD (618)
(DD (622)
(00(626)
(00 (629)
(OD (630)
(00D (631)

NVDOT
NRDOT

,NPU
,NSTAR
,NVABVR

NVV
NDRN
,NRABR
,NHVABV
,NORE

,SLEN )
,IZz )
,IXz )
,IXY )
,WT )
,ZB )
,XB )
,XSTERN )
,YG )
,WTINH20 )
,CROSSLIN)
,LOFRAC )

(00DD(848),KTAINF),
(DD(850),URACERO ),
(D00(858),URACER),
(00DD(866),DRE ),
(DD(868),DSPE )
(DO (1758),ARRAY(1))

(DD (500)
(DO (504)
(DD (508)
(D00 (512)
(DD (516)
(DO (520)
(DO (524)
(00(528)
(DO (532)
(DO (536)

(DO (548)
(D 00(552)
(DO (556)
(DO (560)
(DO (564)
(DO (568)
(DO (572)
(00(576)
(DO (580)
(D00 (584)

(DO (596)
(00D (600)
(DO (604)
(DO (608)
(DO (612)
(DO (616)
(00D (620)
(DD (624)
(DO (628)

,MQU
,MSTAR
MABWU
,MDSS
,DMOSP
HDB
,MWABW
,MDSSE3
,DOSSE
,MDSSE3R

,NPDOT
NPQ

,NRU
NVU
NABVU
NDR
NVABV
NWP
NDRE3
,NDRE3R

IYY )
,IXX )
,IYZ )
MASS )
BOUY )

,ZG )
,XG )
,XFORWARD)
,YB )

,(00(632),UPFRAC

(00(849)
(DO (851)
(DO (859)
(D 00(867)

,UAINF
,URACESO
,URACES
,DSSE

C
C FOR EFFICIENCY THE FOLLOWING VARIABLES ARE CALCULATED

E(1)*E(1)
E(2)*E(2)
E(3)*E(3)
DSQRT(UU+VV+WW)
E(4)*E(4)
E (5) *E (5)
E(6)*E(6)
E (4) *E (6)
E (4) *E (5)



QR = E (5)*E(6)
UV = E (1)*E (2)
UW - E(1)*E (3)
UP - E (1)*E (4)
UQ - E (1)*E (5)
UR - E (1)*E (6)
VP - E(2)*E(4)
VR n E(2)*E (6)
WP a E(3)*E(4)
WQ *E (3)*E (5)
WR - E(3)*E(6)
URUR - URACER*URACER
USUS * URACES*URACES
DELRCR - URACER - URACERO
DELRCS - URACES - URACESO

CDBG WRITE(6,*) DELRCR,URACER,URACERO
CDBG WRITE(6,*) DELRCS,URACES,URACESO

VATS nE (2) + XSTERN*E(6)
WATS - E(3) - XSTERN*E(5)

IF( DABS(URACER) .GT. 0.1) THEN
ORE - DR - DATAN2( VATS,URACER )

ELSE
ORE = DR

ENDIF

IF( DABS(URACES)
OSSE - DSS -
OSPE = DSP -

ELSE
OSSE - DSS
OSPE - DSP

ENDIF

.GT. 0.1) THEN
DATAN2( WATS,URACES )
DATAN2( WATS,URACES )

IF(URACER .GT. 0.0) THEN
IF( DABS(DRE) .GT. 0.7)

ELSE
IF( DABS(DRE) .GT. 0.43)

ENDIF

IF(URACES .GT. 0.0) THEN
IF( DABS(OSSE) .GT. 0.7)
IF( DABS(DSPE) .GT. 0.7)

ELSE
IF( DABS(OSSE)
IF( DABS(DSPE)

ENOIF

ORE3
DSPE3
DSSE3
DROR -
OBD08 -
OSOS -
OPDP -
UUDR -

DRE - DSIGN(0.7D00,DRE)

ORE - DSIGN(0.4300,DRE)

DSSE - DSIGN(0.7D00,DSSE)
DSPE =- DSIGN(0.700D,DSPE)

.GT. 0.43) DSSE - DSIGN(0.4300,DSSE)

.GT. 0.43) DSPE - DSIGN(0.4300,DSPE)

- DRE*DRE*DRE
- DSPE*DSPE*DSPE
- DSSE*OSSE*DSSE
OR*OR
DB*DB
DSS*DSS
DSP*DSP
UU*DR



UU08D - UU*DB
UUDP a UU*DSP
UUDS UU*DSS
UABW a E(1)*ABS(E (3))
UABV n E(1)*ABS (E(2))
WABW a E(3)*ABS(E(3))
QABQ a E(5)*ABS(E(5))
VABV - E(2)*ABS(E(2))
PABP - E(4)*ABS(E(4))
RABR - E(6)*ABS(E(6))
SQRVVWW - DSQRT(VV+WW)
VSQRVVWW - E(2) * SQRVVWW
WSQRVVWW = E(3) * SQRVVWW
WTINH20 * WT - BOUY
SINPHI - DSIN(P(4))
COSPHI - DCOS(P(4))
SINTHETA - OSIN(P(5))
COSTHETA a DCOS(P(5))

IF( (DABS(VATS) .GT. 0.001) .OR. (DABS
TEMP1 - VATS*VATS
TEMP2 - WATS*WATS
TEMP3 - TEMPI+TEMP2
ARAPPHI2 - TEMP3*2.*VATS*WATS/TEMP3
ARAPPHI4 - TEMP3*4.*VATS*WATS*(TEMP2
BETAS - OATAN2(DSQRT(TEMP3),E(1))
PHISTERN - DATAN2(WATS,-VATS)

ELSE
ARAPPHI2 - 0.0
ARAPPHI4 - 0.0
BETAS - 0.0
PHISTERN - 0.0

ENDIF

(WATS) .GT. 0.001)) THEN

- TEMP1)/ (TEMP3*TEMP3)

IF((DABS(E(3)) .GT. 0.10-10)
ALPHA , DATAN2(E(3),E(1))

ELSE
ALPHA - 0.0

ENDIF

.AND. (DABS(E(1)) .GT. 0.01)) THEN

IF( (DABS(E(2)) .GT. 0.10-20) .AND. (DABS(UT) .GT. .01)) THEN
BETA - DASIN(-E(2)/UT)

ELSE
BETA - 0.0

ENDIF

FOR EFFICIENCY CALL THESE SUBROUTINES ONLY ONCE

IF ( JJJ .EQ. 1) THEN
CALL VORTEX
CALL CROSFLOW
CALL PROP

DO 345 IDTAR n 1,10
CALL TOWDARRY(IDTAR)

345 CONTINUE

C
C
C
C



ENDIF
C
C CETA

ETAMI - ETA - 1.0
C
C CALCULATE RIGHT HAND SIDES OF EQUATIONS OF MOTION
C
C AXIAL FORCES ZERO SPEED MODEL
C

ZRHSI " 0.0
C
C LATERAL FORCE ZERO SPEED MODEL
C

ZRHS2 - YHVABV*VATS*DABS(VATS)
C
C NORMAL FORCE ZERO SPEED MODEL
C

ZRHS3 ZHWABW*WATS*DABS(WATS)
C
C ROLL MOMENT ZERO SPEED MODEL
C

ZRHS4 - KPABP*PABP
C
C PITCH MOMENT ZERO SPEED MODEL
C

ZRHS5 - MHWABW*WATS*DABS(WATS)
C
C YAW MOMENT ZERO SPEED MODEL
C

ZRHS6 = NHVABV*VATS*DABS(VATS)
C
C CALCULATE DTRC HYDRODYNMIC FORCES
C HYDRODYNAMIC AXIAL FORCES
C

DRHS1 - XQQ*QQ + XRR*RR + XRP*PR + XVR*VR + XWQ*WQ + XVV*VV
1 + XW*UW + XWW*WW + XQ*UQ
1 + (XDSSDSS*DSDS + XDSPDSP*DPDP + XDRDR*DRDR + XDBDB*DBDB)*UU
1 + (XWDSP*DSP + XWDSS*DSS)*UW + (XQDSP*DSP + XQDSS*DSS)*UQ
1 + (XVDR*UV + XROR*UR)*DR

C
C HYDRODYNAMIC LATERAL FORCE
C

DRHS2 - YPABP*PABP + YPQ*PQ
1 + YRU*UR + YPU*UP + YVU*UV + YVABVU*UABV + YVV*VV + YWP*WP
1 + (YDR + YDRN*ETAM1)*UUDR + YVABV*VABV + YRABR*RABR + YSTAR*UU
1 + YVABVR*VSQRVVWW

C
C HYDRODYNAMIC NORMAL FORCE
C

DRHS3 = ZQU*UQ + ZWU*UW + ZABWU*UABW + ZVP*VP + ZSTAR*UU
1 + (ZDSS + ZDSSN*ETAMI) * UUDS + (ZDSP + ZDSPN*ETAM1) * UUDP
1 + ZDB*UUDB
1 + ZQABQ*QABQ + ZWABW*WABW + ZPR*PR + ZWW*DABS(E(3))*SQRVVWW

C
C HYDRODYNAMIC ROLL MOMENT
C



KBETA - BETAS*BETAS*(UU + VATS*VATS + WATS*WATS)
DRHS4 - KPU*UP + KRU*UR + KQR*QR + KWP*WP
1 + ((KDR + KORN*ETAMI)*DR + KDSS*DSS + KDSP*DSP + KSTAR)*UU
1 + KWR*WR + KVU*UV + KPABP*PABP + KI*VATTAIL + ARAPPHI4*K4S

C 1 + KBETA*(K4S*DSIN(4.*PHISTERN) + K8S*DSIN(8.*PHISTERN))
C
C HYDRODYNAMIC PITCH MOMENT
C

ORHS5 - MQU*UQ + MQABQ*QABQ + MWABW*WABW
1 + MVP*VP + MRP*PR + MSTAR*UU + MDB*UUDB
1 + MWU*UW + MWABWR*WSQRVVWW + MABWU*UABW + NWW*DABS(E(3))*SQRVVWW
1 + (MOSS + MOSSN*ETAM1)*UUDS + (MOSP + MDSPN*ETAM1)*UUDP

C
C HYDRODYNAMIC YAW MOMENT
C

DRHS6 - NPQ*PQ + NPU*UP + NWP*WP + NSTAR*UU
I + NRU*UR + NVU*UV + NVABVR*VSQRVVW + NABVU*UABV + NVV*VV
i + (NOR + NDRN*ETAM1)*UUDR + NVABV*VABV + NRABR*RABR

C
C CALCULATE BODY FORCES, AND SUM FORCES INDEPENDENT OF ALPHA OR BETA
C USED FOR BOTH LOW AND HIGH ANGLE OF ATTACK MODELS
C
C BODY AXIAL FORCE

BRHS1 = -MASS*( WQ - VR - XG*(QQ + RR) + ZG*PR)
1 - WTINH20*SINTHETA + FXP + ARRAY(1)
1 + XDRE2*DRE*ORE*URUR
1 + (XDSSE2*DSSE*DSSE + XDSPE2*DSPE*DSPE)*USUS

C
C BODY LATERAL FORCE
C

BRHS2- -MASS*(UR - WP + XG*PQ + ZG*QR )
1 + WTINH20*COSTHETA*SINPHI
1 + CROSS(2) + VORT(2) + ARRAY(2)
1 + YDRE*( DELRCR*(-XSTERN*E(6) - E(2)) + DR*URUR)
1 + YORE3*DRE3*URUR

C
C BODY NORMAL FORCE
C

BRHS3 - -MASS*(VP - UQ + XG*PR - ZG*(PP + QQ))
-1 + WTINH20*COSTHETA*COSPHI
1 + CROSS(3) + VORT(3) + ARRAY(3)
1 + ZDSSE*( DELRCS*(XSTERN*E(5) - E(3)) + DSS*USUS)
1 + ZDSPE*( DELRCS*(XSTERN*E(5) - E (3)) + DSP*USUS)
1 + (ZDSPE3*DSPE3 + ZDSSE3*OSPE3)*USUS

C
C BODY ROLL MOMENT
C

BRHS4 - MASS*ZG*(UR - WP)
I - (ZG*WT - ZB*BOUY)*COSTHETA*SINPHI
1 + (YG*WT - YB*BOUY)*COSTHETA*COSPHI
1 + QPROP + VORT(4) + ARRAY(4)
1 + KDRE*( DELRCR*(XSTERN*E(6) - E(2)) + DR*URUR)
1 + KDRE3*DRE3*URUR
1 + KDSSE * (DELRCS*(XSTERN*E(5) - E(3)) + DSS*USUS)
1 + KDSPE * (DELRCS*(XSTERN*E(5) - E(3)) + DSP*USUS)
1 + (KOSPE3*DSPE3 + KDSSE3*DSPE3)*USUS



BODY PITCH MOMENT

BRHS5 - (-IXX + IZZ)*PR + MASS*(-ZG*(WQ -
- (XG*WT - XB*BOUY)*COSTHETA*COSPHI
- (ZG*WT - ZB*BOUY)*SINTHETA
+ CROSS (5) + VORT(5) + ARRAY(5)
+ MOSSE * (DELRCS*(XSTERN*E(5) - E (3)) +
+ MDSPE * (DELRCS*(XSTERN*E(5) - E(3)) +
+ (MDSPE3*DSPE3 + MDSSE3*OSPE3)*USUS

VR) + XG*(VP - UQ))

DSS*USUS)
DSP*USUS)

C BODY YAW MOMENT

BRHS6 - (-IYY + IXX)*PQ - MASS*(XG*(UR
+ (XG*WT - XB*BOUY)*COSTHETA*SINPHI
+ (YG*WT - YB*BOUY)*SINTHETA
+ CROSS(6) + VORT(6) + ARRAY(6)
+ NDRE*(DELRCR*(-XSTERN*E(6) - E(2))
+ NDRE3*DRE3*URUR

- WP))

+ DR*URUR)

C
C SUM ALL FORCES

LOFRAC*DRHSI
LOFRAC*DRHS2
LOFRAC*DRHS3
LOFRAC*DRHS4
LOFRAC*DRHS5
LOFRAC*DRHS6

UPFRAC*ZRHSI
UPFRAC*ZRHS2
UPFRAC*ZRHS3
UPFRAC*ZRHS4
UPFRAC*ZRHS5
UPFRAC*ZRHS6

BRHSI
BRHS2
BRHS3
BRHS4
BRHS5
BRHS6

RHS(1)
RHS (2)
RHS(3)
RHS (4)
RHS (5)
RHS (6)

RETURN
END



C **********************************************************************
SUBROUTINE CROSFLOW

C **********************************************************************
C 2 CROSSFLOW FORCE AND MOMENT ROUTINES.
C DTRC 2510 METHOD USES CONSTANT CD
C ZERO SPEED MODEL USES LOCAL REYNOLDS NUMBER ON EACH 'STRIP' OF HULL
C TO ESTIMATE A CD
C SIMPSONS RULE FOR INTEGRATION.
C TABLE LOOK UP SRCHTAB1.FOR FOR CDCTAB LOOKUP
C CROSOPT 1,2,3,4 OR 5
C 1 NO CROSSFLOW W/ 2510 EOM
C 2 DTRC 2510 CROSSFLOW W/ 2510 EOM
C 3 DTRC 2510 EOM + CROSSFLOW AT ALPHA + BETA LT CROSSFLOW LIMIT AND
C A BLEND OF DTRC 2510 EOM + ZERO SPEED EOM AT ALPHA OR BETA
C GREATER LOWER THAN CROSS LIMIT AND LESS THAN UPPER LIMIT
C AND ZERO SPEED EOM + CROSSFLOW WHEN
C ALPHA OR BETA GT CROSSFLOW LIMIT
C ---------------------------- ROBERT HICKEY---------10/12/89-----------

IMPLICIT NONE
INTEGER*2 I, J, IXOFF, ICDC, INDEX, IA, IB
PARAMETER (IXOFF - 50,ICDC - 31)
REAL*8 E(6),CROSS(6),XXOFF(IXOFF),YYOFF(IXOFF),ZZOFF(IXOFF),TA

C
REAL*8 UPFRAC,LOFRAC
REAL*8 UPLIM, FRACLIM
REAL*8 VZ,VY,UATXI,TEMP,RHOO2,REYNUM,VISCOS,RHO,PI
REAL*8 YF(IXOFF),ZF (IXOFF),MM(IXOFF),NM(IXOFF),SUM
REAL*8 CDRE,CDCTAB(ICDC),RETAB(ICDC),FRAC,AINTLIM,BINTLIM
REAL*8 DTEMP2,DTEMP3,DTEMP5,DTEMP6,ZTEMP2,ZTEMP3,ZTEMP5,ZTEMP6

C
INTEGER*2 NXOFF,CROSOPT,JJJ
REAL*8 CDY,CDZ,CDM,CDN,CROSSLIM,ALPHA,BETA
REAL*8 XOFF(IXOFF),YOFF(IXOFF),ZOFF (IXOFF),XFORWARD

C
REAL*8 DD(1800)
COMMON /COMDD/ DD
SAVE /COMDD/ ,IA,IB

C
EQUIVALENCE (DD( 2), PI)
EQUIVALENCE (00D( 8), RHO), (DD( 11), JJJ)
EQUIVALENCE (D00( 10), TA), (DD( 55), E(1))
EQUIVALENCE (DD ( 15), ALPHA ), (DD( 16), BETA)
EQUIVALENCE (D00 (260),CROSS(1)), (DD00(624), XFORWARD)
EQUIVALENCE (D (630),CROSSLIM)
EQUIVALENCE (DD(631),LOFRAC ), (DD(632),UPFRAC )
EQUIVALENCE (DD00(645),CDY ), (DD00(646),CDZ )
EQUIVALENCE (DD (647),CDM ), (DO (648),CDN )
EQUIVALENCE (DD(640),CROSOPT )
EQUIVALENCE (DD(650),NXOFF ), (DD(651),XOFF(1) )
EQUIVALENCE (0D(701) .YOFF(1) ), (DD(751),ZOFF(1) )
EQUIVALENCE (D00(1636),AINTLIM)

C
DATA RETAB / 1.04, 1.42504, 2.04, 3.04, 4.04, 5.04, 6.04, 7.04,
1 8.04, 9.04, 1.05, 1.42505, 2.05, 3.05, 4.D5, 5.05, 6.05, 7.05,
2 8.D5, 9.05, 1.06, 1.42506, 2.06, 3.06, 4.D6, 5.06, 6.06, 7.06,



3 8.06, 9.06, 1.07 /
C

DATA CDCTAB / 1.125, 1.176, 2*1.2, 1.208, 1.215, 1.218,
1 4*1.223, 1.218, 1.150, 0.924, 0.662, 0.319, 0.324, 0.335, 0.350,
2 0.376, 0.397, 0.491, 0.579, 0.662, 0.704, 0.725, 0.740, 0.751,
3 0.758, 0.761, 0.763 /

C
DATA VISCOS / 1.20-5 /

C
IF((TA .EQ. 0.0) .AND. (JJJ .EQ. 1)) THEN

C
RHOO2 - RHO/2.

C
IF( NXOFF .GT. IXOFF ) STOP ' CROSFLOW: NXOFF GT 50 '

C
DO 10 I - 1,NXOFF
XXOFF (I) - XOFF (I)
YYOFF (I) - YOFF (I)
ZZOFF(I) - ZOFF (I)

10 CONTINUE
C
C MAKE X-OFFSETS INCREASING AND CENTER THEM WRT CG USING XFORWARD
C

J NXOFF
DO 20 I - 1,NXOFF

XOFF(I) - XFORWARD - XXOFF(J)
YOFF(I) - YYOFF(J)*2.0
ZOFF(I) = ZZOFF(J)*2.0
J =-J -1

20 CONTINUE
C
C BOW INTGRATION LIMIT IS 1/2 OF BODY DIAM BACK FROM BOW PERPENDICULAR
C NXOFF/2 IS ABOUT WHERE PMB IS
C

BINTLIM - XOFF(NXOFF) - 0.5*YOFF(NXOFF/2)
WRITE(8,197) AINTLIM,BINTLIM

197 FORMAT(IX, ' AINTLIM ',E13.6,' BINTLIM ',E13.6,/)
C

DO 11 I = 1,NXOFF
WRITE(8,198) I, XOFF(I), I,YOFF(I), I,ZOFF(I)

198 FORMAT(1X,'XOFF(',I2,')=',E1I.4,' YOFF(',I2,')=',EII.4,
1 ' ZOFF(',I2,')-',E11.4)

11 CONTINUE
C

SUM - 0.0
CALL SIMPSON(YOFF,SUM)
WRITE(8,*) ' '
WRITE(8,*) ' SECTION AREA OF SUB FT**2 ', SUM

C
00 12 I - 1,NXOFF
YYOFF(I) - PI/4.*YOFF(I)**2

12 CONTINUE
CALL SIMPSON(YYOFF,SUM)
WRITE(8,*) ' VOLUME OF SUB FT**3 ', SUM

C
DO 14 I 1,NXOFF



YYOFF(I) * RHO*PI/4.000DO*YOFF(I)**2*XOFF(I)**2
14 CONTINUE

CALL SIMPSON(YYOFF,SUM)
WRITE(8,*) 'IYY HOMENT OF INERTIA SLUG FT**2 ', SUM
WRITE(8,*) ' '

C
00 123 I - 1,6
CROSS(I) - 0.0

123 CONTINUE
C

UPLIM = PI/2.000 - CROSSLIM
FRACLIM - PI/2.000 - 2.000*CROSSLIM

C
WRITE(8,*) ' CROSSLIM ',CROSSLIM
WRITE(8,*) ' UPLIM ',UPLIM
WRITE(8,*) ' FRACLIM ',FRACLIM
WRITE(8,*) '

C
WRITE(8,*) 'I RETAB CDCTAB'
00 789 I * 1,ICOC
WRITE(8,*) I,RETAB(I),CDCTAB(I)

789 CONTINUE
WRITE(8,*)

C
IF((CROSOPT .EQ. 1).OR. (CROSOPT .EQ. 2)) THEN

LOFRAC = 1.000
UPFRAC - 0.000

ENDIF
C

IF(CROSOPT .EQ. 3) THEN
IF( (DABS(BETA) .LE. CROSSLIM ) .-AND.

1 (DABS(ALPHA) .LE. CROSSLIM ) ) THEN
UPFRAC * 0.000
LOFRAC - 1.000D

ELSEIF( ( (DABS(BETA) .GT. CROSSLIM)
1 .AND. (DABS(BETA) .LT. UPLIM) )
1 .OR. ( (DABS(ALPHA) .GT. CROSSLIM)
1 .AND. (DABS(ALPHA) .LT. UPLIM) ) ) THEN

IF( DABS(BETA) .GT. CROSSLIM) THEN
LOFRAC - 1.D000 - (DABS(BETA) - CROSSLIM)/FRACLIM
UPFRAC * 1.000 - LOFRAC

ELSEIF( DABS(ALPHA) .GT. CROSSLIM ) THEN
LOFRAC - 1.000 - (DABS(ALPHA) - CROSSLIM)/FRACLIN
UPFRAC * 1.000 - LOFRAC

ENDIF
ELSEIF( (DABS(BETA) .GE. UPLIM ) .OR.

1 (DABS(ALPHA).GE. UPLIN ) ) THEN
LOFRAC - 1.000
UPFRAC - 0.000D

ENDIF
ENDIF

C
WRITE(8,*) ' UPFRAC ',UPFRAC
WRITE(8,*) ' LOFRAC ',LOFRAC

C
ENDIF



IF(CROSOPT .EQ. 1) GOTO 111

IF( (CROSOPT.EQ.2).OR.(CROSOPT.EQ.3)) GOTO 222
C

111 LOFRAC - 1.0D00
UPFRAC - 0.000
CROSS(1) - 0.0
CROSS(2) , 0.0
CROSS(3) = 0.0
CROSS(4) * 0.0
CROSS(S) * 0.0
CROSS(6) = 0.0

RETURN
C
222 00 30 I = 1,NXOFF

VZ a E(3) - XOFF (I)*E (5)
VY - E(2) + XOFF (I)*E (6)
UATXI - DSQRT(VZ*VZ + VY*VY)
TEMP - VY*UATXI*ZOFF (I)
YF (I) - -CDY*TEMP
NM(I) - -XOFF(I)*CDN*TEMP
TEMP - VZ*UATXI*YOFF (I)
ZF (I) - -CDZ*TEMP
MM(I) - XOFF(I)*CDM*TEMP

30 CONTINUE
C

CALL SIMPSON(YFDTEMP2)
CALL SIMPSON(ZF,DTEMP3)
CALL SIMPSON (MM,DTEMP5)
CALL SIMPSON(NH,DTEMP6)

C
333 DO 40 I 1,NXOFF

VY - E(2) + XOFF (I)*E (6)
VZ - E(3) - XOFF(I)*E(5)
UATXI - DSQRT(VZ*VZ + VY*VY)
REYNUM = UATXI*0.5*(YOFF (I)+ZOFF(I))/VISCOS
CALL SRCHTABI1(INDEX,RETAB,ICDC,REYNUM,FRAC)

CDRE - CDCTAB(INDEX) +(CDCTAB(INDEX+1) - CDCTAB(INDEX))*FRAC
TEMP -= CDRE*VY*UATXI*ZQFF (I)
YF (I) = -TEMP
NM(I) - -XOFF(I)*TEMP
TEMP = CDRE*VZ*UATXI*YOFF(I)
ZF(I) " -TEMP
MM(I) - XOFF(I)*TEMP

CDBG WRITE(6,*) CORE, INDEX, REYNUM, UATXI
40 CONTINUE

C
CALL SIMPSON2(YF,ZTEMP2,AINTLIM,IA,BINTLIM,IB)
CALL SIMPSON2(ZF,ZTEMP3,AINTLIM,IA,BINTLIM,IB)
CALL SIMPSON2(MM,ZTEMP5,AINTLIM,IA,BINTLIM,IB)
CALL SIMPSON2(NH,ZTEMP6,AINTLIM,IA,BINTLIM,IB)

C
IF(CROSOPT .EQ. 2) THEN

CROSS(2) = DTEMP2
CROSS(3) - DTEMP3



CROSS(5) - DTEMP5
CROSS(6) - DTEMP6
LOFRAC * 1.0D00
UPFRAC 0.000

RETURN
ENDIF

C
IF(CROSOPT .EQ. 3) THEN
IF( (DABS(BETA) .LE. CROSSLIM ) .AND.
S (DABS(ALPHA) .LE. CROSSLIM ) ) THEN

GOTO 444
ELSEIF( ( (DABS(BETA) .GT. CROSSLIM)

1 .AND. (DABS(BETA) .LT. UPLIM) )
1 .OR..( (DABS(ALPHA) .GT. CROSSLIM)
1 .AND. (DABS(ALPHA) .LT. UPLIM) ) ) THEN

IF( DABS(BETA) .GT. CROSSLIM) THEN
LOFRAC - 1.000 - (DABS(BETA) - CROSSLIM)/FRACLIM
UPFRAC - 1.000 - LOFRAC

ELSEIF( DABS(ALPHA) .GT. CROSSLIM ) THEN
LOFRAC * 1.0D00 - (DABS(ALPHA) - CROSSLIM)/FRACLIM
UPFRAC - 1.000 - LOFRAC

ENDIF
GOTO 555

ELSEIF( (DABS(BETA) .GE. UPLIM ) .OR.
1 (DABS(ALPHA).GE. UPLIM ) ) THEN

GOTO 666
ENDIF

ENDIF
C
C CATCH ANY THING LEFT OVER

GOTO 111
C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C
444 UPFRAC - 0.000

LOFRAC - 1.0D00
CROSS(2) - DTEMP2
CROSS(3) - DTEMP3
CROSS(S) = OTEMP5
CROSS (6) - DTEMP6

RETURN
C

555 CROSS(2) - LOFRAC*DTEMP2 + UPFRAC*ZTEMP2
CROSS(3) - LOFRAC*DTEMP3 + UPFRAC*ZTEMP3
CROSS(S) = LOFRAC*OTEMP5 + UPFRAC*ZTEMP5
CROSS(6) * LOFRAC*OTEMP6 + UPFRAC*ZTEMP6

RETURN
C

666 UPFRAC - 1.0D00
LOFRAC - 0.000
CROSS(2) - ZTEMP2
CROSS(3) - ZTEMP3
CROSS(5) - ZTEMP5
CROSS(6) - ZTEMP6

C
RETURN

END



C **********************************************************************
SUBROUTINE PROP

C **********************************************************************
C
C PROPOPT ALLOWS CHOICE OF MOTOR MODEL
C 1 RAMP TORQUE (FT/LBS) IN TORPI.DAT
C 2 RAMP HORSEPOWER (HP) IN TORPI.DAT
C 3 RAMP RPM (RPM) IN TORPI.DAT
C 4 RAMP COMMAND SPEED FXP (FT/S) IN TORPI.DAT
C ---------------------------ROBERT HICKEY-----------------11/89--------
C

IMPLICIT NONE
REAL*8 DRAG,FXPDIV(3) ,T,T2,T3,T4,T5,FXPCON,SLEN
REAL*8 UK,DT,PI,CHP2,KTT(99),KQQ(99),JB(99),E(6),TEMP,RPS
REAL*8 PROPCON2, PROPCON3,KNTOF,DTO2,RHO,TA,.COMMAND,TEMP2,TEMP3
REAL*8 PROPRPM, VPROP,WPROP,BETAPROP,VELADV,CIDT,ETA,CETA,FXP
REAL*8 WAKE,THRSTDED,EHPC,SHPC,RPMC,SHPDEL,QDEL,RPMDEL,DELX
REAL*8 RPSOOT,RPSDOTO,CQ,CT,JAC,QPROP,FPSTORPM,PROPTHST,THST,VA
REAL*8 RPSTAB(0:33),RPSC,JBFRAC,FRAC2,WAKEFACT,JAA,JBTEMP,JAFRAC
INTEGER*2 I,RPMINDEX,JBINDEX,JJJ

C
INTEGER*2 NRPM, NPROP, PROPOPT,IKTAB
PARAMETER (IKTAB - 31)
REAL*8 IDT, PROPOIAM, WAKEFRAC, THSTFACT, ETAC6,ETAC7,ETAC8,ETAC9
REAL*8 XPROP,XSTERN,KTAINF,SHAFTEFF,WAKEBETA,THSTBETA
REAL*8 EHP(0:32), SHP(O:32), RPM(0:32), DELX1, DELX2,DELX3
REAL*8 JA(99),KQ(99),KT(99),FXPA(4),FXPB(4),FXPC (4),KTSS
REAL*8 UFXPA(4),UFXPB(4),UFXPC(4),UAINFSS,UAINF,RACER,RACES
REAL*8 RACETI ,RACET2,RACET3,RACET4,RACET5,RACET6
REAL*8 AREATR,AREABR,AREAST,ARRCTR,ARRCBR,ARRCST
REAL*8 URACER,URACES,URACERO,URACESO
REAL*8 XPRPTAB(IKTAB),KTAB(IKTAB),KUFOR,KUAFT,KRACE

c
REAL*8 00(1800)
COMMON /COMDD/ DD

C
SAVE /COMDD/,JBINDEX, RPHINDEX

C
EQUIVALENCE (00D( 1), DT),(D ( 2), PI)
EQUIVALENCE (00( 4), RTD)
EQUIVALENCE (DO ( 5), DTR), (DO ( 6), DT06)
EQUIVALENCE (DO( 7), DTO2),(DD( 8), RHO)
EQUIVALENCE (00DD( 10), TA)
EQUIVALENCE (DD( 11), JJJ),(DD( 12), KNTOF)
EQUIVALENCE (D00( 13), CHP2)
EQUIVALENCE (DD( 17), FXP),(00DD( 18), QPROP)
EQUIVALENCE (DO (19), ETA), (00DD( 20), CETA)
EQUIVALENCE (DD( 21), DRAG),(DD( 22),PROPTHST)
EQUIVALENCE (DD( 23), SHPC),(00DD( 24),PROPRPM )
EQUIVALENCE (DO (25), RPSOOT)
EQUIVALENCE (DO( 55), E(1) ),(DD( 70) ,COMMAND )

C
EQUIVALENCE (DO (593), SLEN )
EQUIVALENCE (D00 (622), XSTERN)

C
EQUIVALENCE (DD(848),KTAINF ),(DD(849),UAINF )



EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(DD(850),URACERO
(DD0 (853), AREATR
(D 00(857),AREAST
(00(858),URACER
(DD(861),ARRCTR
(DD(865),ARRCST

(D00 (900),NRPM
(D00 (901),RPM(0)
(00 (967),SHP(0)

(DO (1000)
(00 (1101)
(00D(1301)
(D00 (1501)

(DD (1621)
(00 (1623)
(00 (1625)
(00D (1627)
(00D (1629)
(D00 (1631)
(DD (1633)
(DO (1635)
(00D (1637)
(00D (1639)
(00D (1641)
(00D (1649)
(00D (1653)

,NPROP
,KT(1)
,JB(1)
,KQQ(1)

,PROPOPT ),
,ETAC7 ),
,ETAC9 ),
,DELX2 ),
,UIDT ),
,UPROPDIM),
,WAKEFRAC),
,UXPROP ),
,SHAFTEFF),
,THSTBETA)
,UFXPA(1)),
,UFXPC(1))
,FXPDIV(1))

), (DD(851) ,URACESO
.),(00 (855),AREABR
)
,(DD00(859),URACES
,(00DD(863),ARRCBR

,(OD(934) ,EHP() ()

(DO (1001)
(DO (1201)
(00(1401)

,JA(1)
,KQ(1)
,KTT (1)

(D (1622),ETAC6 )
(00 (1624),ETAC8 )
(DD(1626),DELX1 )
(DD(1628),DELX3 )
(00 (1630) ,IDT )
(D (1632) ,PROPOIAM)
(00D(1634),THSTFACT)
(00 (1636) ,XPROP )
(DD(1638),WAKEBETA)

(00D (1645),UFXPB(1))

DATA XPRPTAB /-4.0,-3.0,-2.5,-2.0,-1.5,-1.0,-0.9,-0.8,-0.7,-0.6,
I -0.5,-0.4,-0.3,-0.2,-0.1,-0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
I ,1.0,1.5,2.0,2.5,3.0,4.0/
DATA KTAB /1.0,0.988,0.973,0.955,0.926,0.882,0.875,0.863,0.847,

I 0.824,0.804,0.776,0.733,0.682,0.604,0.500,0.396,0.318,0.267,0.224
I ,0.196,0.1760.153,0.137,0.125,0.118,0.074,0.045,0.027,0.012,
1 0.000/

IF(TA .EQ. 0.0) THEN

FXPCON - 0.5*RHO*SLEN*SLEN
IF( PROPOPT .EQ. 4 ) GOTO 50

REFORMAT ADVANCE COEF, THRUST AND TORQUE TABLES TO AVOID
PROBLEMS WHEN RPS - 0.0

WRITE(8,*) ' JB KTT KQQ '
00 20 I - 1,NPROP

JB(I) - 1.0/(DSQRT(1.000+JA(I)**2)*DSIGN(1.000,JA(I)))
KTT(I) - KT(I)*JB(I)**2
KQQ(I) 0.1*KQ(I)*JB(I)**2
WRITE(8,234) JB(I) ,KTT(I),KQQ(I)

20 CONTINUE
234 FORMAT(1X,3(E13.6,1X))

C LINEARIZE EHP(*),SHP(*) FOR BETTER LOOKUP
C NOTE EHP AND SHP ARE REALLY F(V*V*V)



C CREATE RPS TABLE
C

EHP(0) - 0.0
SHP(0) - 0.0
RPSTAB(0) - 0.0
00 10 I = 1,NRPM-1

TEMP - (2. * FLOAT(I))**2
EHP(I) , EHP(I)/TEMP
SHP(I) - SHP(I)/TEMP
RPSTAB(I) - RPM(I)/60.0

10 CONTINUE
C
C INITIALIZE SPEEDS
C

UK - OMIN1 (DABS (E (1)/KNTOF) ,40.D000)
I - DINT(0.5*UK)
FRAC2 , 0.5 * UK - FLOAT(I)
RPS - (RPSTAB(I) + (RPSTAB(I+1) - RPSTAB(I)) * FRAC2)
PROPRPM - RPS*60.
RPSDOT - 0.0
RPSDOTO m 0.0

C
C PREP SOME CONSTANTS
C

CIDT - 1./(IDT * 2.0 * PI)
PROPCON2 - PROPDIAH**2*RHO
PROPCON3 , PROPDIAHM**3*RHO
WAKEFACT - 1. - WAKEFRAC
THRSTDED - 1. - THSTFACT

c
JAA - (E(1)*WAKEFACT)/(RPS*PROPDIAM)
JBTEMP - 1.0/ (OSQRT(1.0D00+JAA**2)*DSIGN (1.000,JAA))
JBINDEX - NPROP/2
CALL SRCHTAB1 (JBINDEX,JB,NPROP,JBTEMP,JBFRAC)
CALL SRCHTAB2(RPHINDEX,RPM,NRPM,PROPRPM,FRAC2)

C
WRITE(8,*) ' I XPRPTAB KTAB'
D00 675 I = 1,IKTAB
WRITE(8,*) I,XPRPTAB(I),KTAB (I)

675 CONTINUE
TEMP - 2.*(XSTERN - XPROP)/PROPDIAM
CALL SRCHTAB1 (I,XPRPTAB,IKTAB,TEMP,TEMP2)
KUFOR - KTAB(I) +(KTAB(I+1) - KTAB(I))*TEMP2
KUAFT - 1 .-KUFOR
WRITE(8,*) ' I X-PROP-QUARTER-CHORD '
WRITE(8,*) ITEMP
WRITE(8,*) ' FRAC KUAFT KUFOR'
WRITE(8,*) TEMP2,KUAFT,KUFOR

C
RACET3 - (ARRCTR + ARRCBR)/(AREATR+AREABR)
RACET4 - 0.5*( (AREATR-ARRCTR)/AREATR + (AREABR-ARRCBR)/AREABR )
RACET5 - (ARRCST/AREAST)
RACET6 - (AREAST-ARRCST)/AREAST
WRITE(8,*) ' AREAS OF RUDDERS ',RACET3,RACET4
WRITE(8,*) ' AREAS OF STERN ',RACET5,RACET6

C



KTSS - (SHP(NRPM-1)*(2*(NRPM-1))**2*550.*60.*60.*SHAFTEFF)
1/ (2.* (NRPM-1) *KNTOF*RHO*RPM (NRPM-1) **2*PROPDIAM**4)

WRITE(8,*) ' KTSS ',KTSS
C
C INITIALIZE PROPELLER RACE
C VA- - WAKEFACT*E(1)
C UAINFSS - -VA + DSQRT( VA**2 + 8.*KTSS*(PROPDIAM*RPS)**2/PI )
C URACERO a DSQRT(RACET3*(VA+KUFOR*UAINFSS)**2 + RACET4*VA**2)
C URACER - URACERO
C WRITE(6,*) RPS,VA
C WRITE(6,*) UAINFSS,URACERO
C

50 CONTINUE
C

ENDIF
C

IF( PROPOPT .EQ. 4) GOTO 400
c
C LIMIT SPEED TO 40 KNOTS

UK * DMINI (DABS(E(1)/KNTOF),40.000)
I - DINT(0.5*UK)
FRAC2 - 0.5 * UK - FLOAT(I)

C NOTE EHP AND SHP ARE REALLY F(V*V*V)
TEMP - UK**2
EHPC - (EHP(I) + (EHP(I+1) - EHP(I)) * FRAC2)* TEMP
SHPC - (SHP(I) + (SHP(I+1) - SHP(I)) * FRAC2)* TEMP
RPMC * (RPM(I) + (RPM(I+1) - RPM(I)) * FRAC2)
RPSC - (RPSTAB(I) + (RPSTAB(I+1) - RPSTAB(I)) * FRAC2)

C
C SELECT MOTOR MODELS
C

GOTO (100,200,300) PROPOPT
C

100 QDEL - COMMAND
SHPDEL - QDEL*PROPRPM/CHP2
GOTO 450

200 SHPOEL - COMMAND
QDEL = SHPDEL*CHP2/PROPRPM
GOTO 450

300 RPS - COMMAND/60.
PROPRPM - COMMAND
QDEL QPROP/SHAFTEFF
SHPDEL = QDEL*PROPRPM/CHP2
GOTO 500

400 IF( E(1) .EQ. 0.ODO ) THEN
ETA - 0.0

ELSE
ETA - COMMAND/E(1)
IF( ETA .GT. 5.ODO) ETA - 5.000

ENDIF
C
C APPLY REYNOLD'S NUMBER CORRECTION TO FXP THRUST MODEL
C

DELX DELX1 + DELX2 / ( DELX3 + DLOGIO(E(1)) )**2
CETA * ETAC6 + ETAC9*(DSQRT(DABS(ETAC7+ETAC8*DELX)))

C



IF( ETA .GE. FXPDIV(1)) THEN
I-I
ELSEIF ( (ETA .GE. FXPOIV(2)) .AND. (ETA .LT. FXPDIV(1)) ) THEN
I = 2
ELSEIF ( (ETA .GE. FXPOIV(3)) .AND. (ETA .LT. FXPDIV(2)) ) THEN
In-3
ELSEIF (ETA .LT. FXPDIV(3)) THEN
I -41-4

ENDIF
C

FXP a FXPCON*(( UFXPA(I) + DELX )*E(1)**2
1 + UFXPB(I)*CETA*COMMAND*E(1)
1 + UFXPC(I)*CETA*CETA*COMMAND**2)
QPROP - 0.0
RPS - 0.0
GOTO 999

C
450 RPSDOT = (SHAFTEFF*QDEL - QPROP)*CIDT

RPS - RPS + (RPSDOT + RPSDOTO)*DTO2
RPSDOTO - RPSDOT

500 PROPRPM - RPS*60.
C
C STRICT SIGN CONVENTION APPLIED HERE
C

VPROP - E(2) + XPROP*E (6)
WPROP = E (3) - XPROP*E(5)
TEMP = OSQRT(VPROP*VPROP + WPROP*WPROP)

C
IF(E(1) .GT. 0.01) THEN
BETAPROP - ATAN2(TEMP,E(1))
ELSE
BETAPROP- 0.0

ENDIF
TEMP - DSIN(BETAPROP)
WAKE - WAKEFACT + WAKEBETA*TEMP
THST - THRSTDED + THSTBETA*TEMP
VA - WAKE*E(1)

C
C A DISCREPANCY BETWEEN RIHSIM AND SLIME
C
C TEMP - DSQRT( VA**2 + (RPS*PROPDIAM)**2)
C JBTEMP - (RPS*PROPDIAM)/TEMP

JAA - VA/(RPS*PROPDIAM)
JBTEMP , 1.0/(DSQRT(1.000+JAA**2) *DSIGN(1.000,JAA))

C
CALL SRCHTABI1(JBINDEX,JB,NPROP,JBTEMP,JBFRAC)

C
KTAINF - (KT(JBINDEX) + (KT(JBINDEX+1) - KT(JBINDEX))*JBFRAC)
UAINFSS - -VA + DSQRT( VA**2 + 8.*KTSS*(PROPDIAM*RPS)**2/PI )
URACERO - DSQRT( RACET3 * (VA+KUFOR*UAINFSS)**2 + RACET4*VA**2 )
URACESO - DSQRT( RACET5 * (VA+KUFOR*UAINFSS)**2 + RACET6*VA**2 )

C
C CHECK FOR FLOW REVERSAL
C

TEMP - VA**2 + 8.*KTAINF*(PROPDIAM*RPS)**2/PI
C WRITE(6,*)



C WRITE(6,*) TA,TEMP
UAINF , -VA + OSIGN(1.ODO,TEMP)*DSQRT( DABS(TEMP) )
IF( UAINF .GT. 0.000D) THEN

KRACE - KUFOR
ELSE

KRACE - KUAFT
ENDIF
TEMP - VA + KRACE*UAINF
TEMP3 - RACET3*DSIGN(1.000,TEMP)*TEMP**2 + RACET4*VA**2
URACER " DSIGN(1.0ODO,TEMP3)*DSQRT(DABS(TEMP3))
TEMP3 - RACET5*DSIGN(1.ODO,TEMP)*TEMP**2 + RACET6*VA**2
URACES - DSIGN(1.000DO,TEMP3)*DSQRT(DABS(TEMP3))

C WRITE(6,*) KTAINF,E(1),VA
C WRITE(6,*) UAINF,URACER
C

CT - (KTT(JBINDEX) + (KTT(JBINDEX+1) - KTT(JBINDEX))*JBFRAC)
CQ - (KQQ(JBINDEX) + (KQQ(JBINDEX+1) - KQQ(JBINDEX))*JBFRAC)
JAC - JA(JBINDEX) + ( JA(JBINDEX+1) - JA(JBINDEX))*JBFRAC

C
TEMP2 = VA**2 + (PROPOIAM*RPS)**2
PROPTHST = PROPCON2*TEMP2*CT*THST
QPROP = PROPCON3*TEMP2*CQ

C
C CALCULATE ETA
C

IF( PROPRPM .LE. 0.000D) THEN
TEMP2 = -PROPRFM

ELSE
TEMP2 - PROPRPM

ENDIF
C

CALL SRCHTAB2(RPMINDEX,RPM,NRPM,TEMP2,FRAC2)
C

FPSTORPM - PROPRPM/((2.0 * (FLOAT(RPMINDEX) + FRAC2))*KNTOF)
ETA = (PROPRPM/FPSTORPM)/E(1)

C
IF( DABS(E(1)) .GT. 1.D00-2) THEN

DRAG = EHPC*550,./E(1)
ELSE

DRAG =- 0.000
ENDIF
FXP - PROPTHST - DRAG

C
CDBG WRITE(6,*)
CDBG WRITE(6,*) E(1),UK,SHPC
CDBG WRITE(6,*) TA,PROPTHST,DRAG
CDBG WRITE(6,*) QDEL,QPROP,RPSC
CDBG WRITE(6,*) RPS,PROPRPM,RPMINDEX
CDBG WRITE(6,*) FPSTORPM,ETA,JAC
CDBG WRITE(6,*) JBINDEX,SHPDEL,RPSDOT
CDBG WRITE(6,*) CT,CQ,JBTEMP
C
999 CONTINUE

C
RETURN
END



C **********************************************************************
SUBROUTINE VORTEX

C SUBROUTINE VORTEX(E,VORT,VATTAIL,BETA,TA)
C **********************************************************************

VORTEX EXPRESSES THE INTERACTION OF THE SAIL VORTEX WITH THE AFT
PORTION OF THE HULL
VATTAIL IS THE 3-0 TOTAL VELOCITY OF THE FAIRWATER DELAYED UNTIL IT
REACHES THE PROPELLER
THE DELAY IS DONE WITH CIRCULAR STACKS DXSAV,V25,AVDXSAV

VORTFLAG
1 - NO VORTEX
2 - VORTEX NO SHEDDING
3 - VORTEX WITH SHEDDING

---------------------------------- ROBERT HICKEY---------12/89-------

IMPLICIT NONE
INTEGER*2 ISIZE, IV, JV, II, I
PARAMETER (ISIZE - 500)
REAL*8 E(6),VORT(6),DXSAV(ISIZE),V25(ISIZE),AVDXSAV(ISIZE)
REAL*8 DXNEW,UFLAST,TEMP1,TEMP2, MOMARM, XSTOP
REAL*8 XEFFTAIL,UMIN, VFWI,VFWO,V25I,V250,BETA
REAL*8 XHULL,SUMY,SUMZ,SUMM,SUMN,TA,DT
REAL*8 VATHULL, WATHULL, FRAC,VATTAIL

INTEGER*2 VORTFLAG
REAL*8 START1, START2,BETAST,XFW, X25 ,
REAL*8 XVEND, XTAIL, ZHCL, CL

ZFW

REAL*8 DD00(1800)
COMMON /COMDD/ 0DO
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(D00( 55), E(1) )
(DO (272), VATTAIL)
(00 (16), BETA)
(D00( 10), TA)

(D00 (1601) ,USTARTI

(DD(1603),USTART2
(DO (1605),BETAST
(D 00(1607),UXFW
(DO (1609),UX25
(00(1611),UZFW
(DO (1613),UXVEND
(DD (1615),UXTAIL
(00(1617) ,UZHCL
(00(1619) ,CL

,(DD(266), VORT(1))

),(DD (1602) ,START1 )
),(D (1604),START2 ))
),(DD(1608),XFW )
),(DD00(1610),X25 )

,(DD (1612) ,ZFW )
),(DD(1614),XVEND )
), (DO (1616),XTAIL )
),(DD(1618),ZHCL )
), (00 (1620),VORTFLAG)

DATA DT,UMIN / 0.05, 8.44 /

IF( TA .EQ. 0.0) THEN
IV- I1
UFLAST , -(1)
XEFFTAIL = XTAIL - (X25 - XFW)
TEMPI n E(1) * ODT
00 20 Il - 1, ISIZE

,94



DXSAV(II) - TEMPI
20 CONTINUE

GOTO 999
ENDIF

C
IF( E(1) .LT. UMIN) GOTO 999
IF(VORTFLAG .EQ. 0) GOTO 999
XSTOP - XVEND
IF((VORTFLAG .EQ. 2) .AND. (ABS(BETA) .GT. BETAST)) THEN

XSTOP -= (START1 + START2*ABS(BETA))*XTAIL
ENDIF

C
C STORE DISTANCE TRAVELED IN 1 DT IN DXSAV(*)
C AND VELOCITIES OF FAIRWATER AND QUARTER CHORD TO BE DELAYED
C

IV = IV - I
IF( IV .LT. I) IV = ISIZE
DXSAV(IV) - 0.5* (E(1) + UFLAST)*DT
UFLAST = E(1)
VFWI - E(2) + XFW*E(6) - ZFW*E (4)
AVDXSAV(IV) = 0.5*(VFWI + VFWO)*DXSAV(IV)
VFWO = VFWI
V25I =- E(2) + X25*E(6) - ZFW*E (4)
V25(IV) = 0.5*(V25I + V250)
V250 = V25I

C
JV = IV - I
XHULL = XFW
SUMY = 0.0
SUMZ = 0.0
SUMM = 0.0
SUMN - 0.0

C
C INTEGRATION BY RECTANGULAR SUMMATION FROM XFW TO XVEND
C

DO 30 II a 1, ISIZE
JV - JV + I
IF( JV .GT. ISIZE) JV - 1
MOMARM = XHULL + O.5*DXSAV(JV)
TEMPI = AVDXSAV(JV)*(E(3) - XHULL*E (5))
TEMP2 = AVDXSAV(JV)*(E(2) + XHULL*E (6))
SUMY - SUMY + TEMP1
SUMN - SUMN + TEMPI*MOMARM
SUMZ = SUMZ + TEMP2
SUMM = SUMM + TEMP2*MOMARM
XHULL = XHULL - DXSAV(JV)
IF(XHULL .LT. XSTOP) GOTO 40

30 CONTINUE
GOTO 999

40 FRAC = (XSTOP - XHULL)/(-DXSAV(JV))
VATHULL - E (2) + XSTOP*E (6)
WATHULL - E(3) - XSTOP*E(5)
SUMY - SUMY + WATHULL*AVDXSAV(JV)
SUMN = SUMN + WATHULL*AVDXSAV(JV)*FRAC*XSTOP
SUMZ n SUMZ + VATHULL*AVDXSAV(JV)
SUMM * SUMMN + VATHULL*AVDXSAV(JV)*FRAC*XSTOP



C LOCATE SAVED VELOCITY AT TAIL SURFACE
C

DO 60 II - 1,ISIZE
JV - JV + 1
IF( JV .GT. ISIZE) JV - I
XHULL * XHULL - DXSAV(JV)
IF( XHULL .LT. XEFFTAIL) GOTO 50

60 CONTINUE
GOTO 999

50 VATTAIL , V25(JV)
C

VORT(2) - -CL*SUMY
VORT(3) - CL*SUNZ
VORT(4) - -VORT(2)*ZHCL
VORT(5) - -CL*SUMM
VORT (6) - -CL*SUMN

RETURN
C

999 DO 10 II - 1,6
VORT(II) - 0.0

10 CONTINUE
VATTAIL - 0.0

C
RETURN

END


