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Fast Analysis of Scattering by Arbitrarily  
Shaped Three-Dimensional Objects Using the 

Precorrected-FFT Method  
       Xiaochun Nie and Le-Wei Li

 
     Abstract--This paper presents an accurate and efficient 
method-of-moments solution of the electrical-field integral 
equation (EFIE) for large, three-dimensional, arbitrarily 
shaped objects. In this method, the generalized conjugate 
residual method (GCR) is used to solve the matrix equation 
iteratively and the precorrected-FFT technique is then 
employed to accelerate the matrix-vector multiplication in 
iterations.  The precorrected-FFT method eliminates the 
need to generate and store the usual square impedance 
matrix, thus leading to a great reduction in memory 
requirement and execution time. It is at best an 

( )NNO log  algorithm and can be modified to fit a wide 
variety of systems with different Green’s functions without 
excessive effor1t. Numerical results are presented to 
demonstrate the accuracy and computational efficiency of 
the technique.  
 
    Indexs--precorrected-FFT method, method-of-moments, 
electrical-field integral equation, electromagnetic scattering  

I. INTRODUCTION 
    Integral equation methods are widely used for the 
solution of electromagnetic scattering problems. In this 
approach, the problem is first formulated in terms of an 
appropriate integral equation and then reduced to system 
of linear equations using the method of Moments 
(MoM). If iterative methods are used to solve the linear 
system, the application of the coefficient matrix to 
sequence of vectors is required in the solution process. 
Each of these evaluations requires ( )2NO  operations, 
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where N  is the number of unknowns, making it 
prohibitively expensive for large problems. 
    In recent years, a number of techniques have been 
proposed to speed up the evaluation of matrix-vector 
multiplications, including the fast multipole method 
(FMM), the adaptive integral method (AIM), the 
conjugate gradient-fast Fourier transform method (CG-
FFT), etc.. The fast multipole method (FMM) [1,2] and 
its extension, the multilevel fast multipole algorithm 
(MLFMA) [3] reduce the computation complexity to 

( )5.1NO  and ( )NNO log  respectively by performing 
the non-near-field interactions efficiently with the aid of 
the multipole expansion of the fields. Their dependence 
on the Green’s functions restricts their applications to 
some extent. The adaptive integral method (AIM) [4] 
achieves its central processing unit (CPU) and memory 
reduction by mapping the original moment method 
discretization onto a uniform grid and then applying the 
fast Fourier transform (FFT) to carry out the matrix-
vector multiplication. This approach can be used to a 
wide variety of kernels and reduces the computational 
complexity and memory requirement to ( )5.1NO  and 

( )NNO log5.1  respectively. The CG-FFT [5] is a 
powerful fast algorithm except that it requires the integral 
equation be discretized on uniform rectangular grids. 
Since modeling an arbitrary geometry with uniform 
rectangular grids necessitates a stair-case approximation 
which makes the final solution inaccurate, this is 
considered as the most serious drawback of the CG-FFT.  
    One approach which can overcome this drawback is 
the precorrected-FFT method. This technique was 
originally proposed by Philips and White [6,7] to solve 
electrostatic integral equation associated with 
capacitance extraction problems and extended to 2-
dimensional scattering problems by the authors [8] 
recently. In this paper, the precorrected-FFT method is 
used to solve scattering from 3-dimensional arbitrary 
objects.  Like the AIM, the precorrected-FFT method 
uses discretization based on Rao-Wilton-Glisson (RWG) 
[9] functions and then projecting the triangular 
subdomain basis functions onto a uniform grid. Then the 
long-range part of the field is represented by current 
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distributions lying on this uniform grid, rather than by 
series expansions as in fast multipole algorithms. This 
grid representation allows the Fast Fourier Transform 
(FFT) to be used to efficiently perform the matrix-vector 
multiplication. The resulting algorithm has at best a 
memory requirement proportional to )(NO  and an 
operation count for the matrix-vector multiplication 
proportional to )log( NNO . In comparative to the 
AIM, the projection operator of the precorrected-FFT is 
in a much simpler form and has higher accuracy. The 
precorrected-FFT method employs δ  functions on the 
uniform grid and generates the projection operators 
between the uniform and irregular meshes via multipole 
expansions of the vector and scalar potentials while the 
AIM generates projections by equating a finite number of 
multipole moments of the basis functions, which is a 
quite complex procedure. And since the fields at any 
point can be fully determined by the vector and scalar 
potentials, the projections of the precorrected-FFT 
method have better accuracy than those of the AIM. Due 
to this, the precorrected-FFT can have much coarser grid 
and smaller near-field threshold distance than the AIM, 
thus resulting in much lower memory requirement and 
computational cost. Numerical results will be presented 
to demonstrate this advantage. It should be noted that the 
precorrected-FFT method can also be applied to any 
integral equation as long as the convolution property is 
retained.   

II. PROBLEM FORMULATION 
    Because the electric field integral equation (EFIE) has 
the advantage of being applicable to both open and 
closed bodies, whereas the MEIE only to closed surfaces, 
we initiate our analysis from the EFIE. Consider an 
arbitrarily shaped 3-D conducting object illuminated by 
an incident plane wave iE . The EFIE is given by  

 )(ˆ)]()([ˆ rErrA injn ×=Φ∇+ω×             (1) 
where the magnetic vector potential A  and electric 
scalar potential Φ  are defined as follows, respectively, 
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In the above equations, n̂  is the unit normal vector of the 
surface S  of the conducting object, and J  is the 
unknown current on S . A harmonic time dependence 

tje ω  is assumed and suppressed. 
    For numerical solution of the EFIE, the surface is 
discretized into small triangular patches, and the current 

J  is expanded using the Rao-Wilton-Glisson (RWG) 
basis functions ( )rfn  [9] 
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where N  denotes the number of unknowns, and nI  
stands for the unknown coefficients. Applying the 
method of moments results in a linear system 

VZI =                              (5) 
In Eqn. (5)  the impedance matrix Z  and the vector V  
have the elements given by, respectively,  
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where it  and jf  represent the testing and basis 

functions, respectively, iT  and jT  denote their supports, 

and G  is the scalar Green’s function in free space. Since 
the impedance matrix Z  is fully populated, demanding 

( )2NO  storage, the solution of Eqn. (5) requires 

( )3NO  operations in a direct scheme or ( )2NO  
operations per iteration in an iterative scheme. This 
memory requirement and computational complexity will 
cause serious memory limitations and make the method 
computationally intractable when the geometrical 
dimension is electrically large. The difficulties can be 
overcome by utilizing the precorrected-FFT method.  
Since the efficiency of the method is also determined by 
the convergence of the iterative algorithm, the 
generalized conjugate gradient method [10] is used to 
solve the matrix equation for a faster convergence. 

 
III. THE PRECORRECTED-FFT APPROACH 

 
    Like other fast algorithms, the precorrected-FFT 
method is also based on the idea of directly computing 
only those portions of ZI  associated with the near-zone 
interactions and evaluating those with far-zone 
interactions in an approximate manner. 
    Application of the precorrected-FFT method requires 
that the whole geometry be enclosed in a uniform right-
parallelepiped grid after it has been discretized into 
triangular elements. The elements are sorted into the cells 
formed by the grid, with each cell containing only a few 
elements. Figure 1 shows a discretized sphere, with the 
associated space subdivided into a 888 ××  grid. Based 
on the fact that fields at evaluation points distant from an 
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element can be accurately computed by representing the 
given element’s current and charge distributions using a 
small number of weighted point currents and charges, the 
matrix–vector multiplication can be approximated in a 
four-step procedure as follows: (1) to project the element 
singularity distributions to point singularities on the 
uniform grid, (2) to compute the fields at the grid points 
due to the singularities at the grid points using the FFT, 
(3) to interpolate the grid point fields onto the elements, 
and (4) to directly compute nearby interactions. This 
process is summarized in Figure 2.  
 

               

        Figure 1. Side view of the P-FFT grid for a 
discretized sphere ( 3=p ) 
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Figure 2.  2-D representation of the procedures of the 

precorrected-FFT algorithm ( 2=p ) 

 
3.1 Projecting the element singularity distributions to 
point singularities on the uniform grid 

    Firstly, we describe the construction of the projection 
operator W . Assume the thm  RWG basis function 
defined on the thm  edge is contained in a given cell k . 
So the point current and charge distributions on the grid 
surrounding the thm  edge are used to represent the 
current and charge distributions of the two m th RWG 
patches. Point singularities on the grid can be set at the 
cell vertices (grid-order 2=p ), or at half the spacing of 
the vertices (grid-order 3=p ), etc, as desired for 

accuracy. cN  test points are selected on the surface of a 

sphere of radius cr  whose center is coincident with the 

center of the cell k . We first consider the projection of 
the current. Enforcing the magnetic vector potential due 
to the currents at the 3p  points on the grid to match that 
due to the original current distribution on the element at 
the test points, we obtain 

cNq L,2,1       ,~ == gt
q

pt
q AA             (8) 

where pt
qA  denotes the vector potential at the thq  test 

point due to the original patch current and gt
qA~  

represents that due to the grid currents. They can be 
computed by 
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where t
qr  and nr  are the position vectors at the thq  test 

point and the thn  grid point, respectively, ( )xδ  is the 

Dirac delta function, and nxJ , , nyJ ,  and nzJ ,  are the 

three components of the current at the thn  grid point. 
Substituting (9) and (10) into (8) for all cN  test points 
and decomposing the patch currents into three 
components yield  

m
pt

xx
gt

x IJ PP =ˆ                     (11a) 

m
pt
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gt
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m
pt

zz
gt
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where 13
)ˆ,ˆ,ˆ( ×∈ p

zyx RJJJ  are the vectors consisting 
of the current components in the grid points, 
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grid currents and test point potentials, given by 
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By construction, the relative positions of the grid currents 
and the test points are identical for each cell, and 
therefore gt

zyx ,,P  are the same for each cell.  
( )kNNpt

zyx
cR ×∈,,P  are the mappings between patch 

currents and test point potentials, ( )kN  is the number of 

the basis functions contained in cell k . pt
xP  is given by 
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while pt
yP  and pt

zP  have a form similar to pt
xP . Since 

the collocation in (11) is linear in the patch and grid 
current distributions, the contribution of the thm basis 

function in cell k  to xĴ , yĴ , zĴ  can be represented by 

three column vectors ( )mkW zyx ,,,  given by 

( ) [ ] mpt
zyx

gt
zyxzyx mkW ,

,,,,,, , PP +=            (14) 

where jpt
zyx

,
,,P  denotes the mth column of pt

zyx ,,P  and 

[ ]+gt
zyx ,,P  indicates the generalized inverse of  gt

zyx ,,P . 

Since the matrices gt
zyx ,,P  are small and the same for each 

cell, the relative computational cost of computing 

[ ]+gt
zyx ,,P  is insignificant. By using the vectors 

( )mkW zyx ,,, , we can project the current basis function 

mf  onto the 3p  grid points surrounding cell k . 

    For any patch current mfmI  ( ( )),2,1 kNm L=  in 

cell k , this projection operation generates a subset of the 

grid currents xĴ , yĴ , zĴ . The contribution to 

xĴ , yĴ , zĴ  from the currents in cell k  is generated by 
summing over all the currents in the cell. Note that patch 
currents outside cell k  may contribute to some of the 

elements of xĴ , yĴ , zĴ  in the case of shared grid 
currents.  
    Similarly, by enforcing the electric scalar potential due 
to the 3p  grid charges to match that due to the actual 

patch charge distribution at the test points, we can 
construct the charge projection operator   
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It should be noted that the mapping gt
cP  is similar to 

gt
xP  except for a constant, so the general inverse of 

gt
cP , [ ]+gt

cP can be readily obtained from [ ]+gt
xP .  

    The accuracy of the above projection scheme depends 
on the proper selection of the test points tr . For high 
accuracy, the test points should be chosen to be abscissas 
of a high-order quadrature rule. It can be shown that the 
error in potentials due to the grid-singularity 
approximations of the singularity distributions contained 
within a sphere of radius a , at a distance r  from the 
center of the distribution, is of order 2)1()( +Mra  if the 
test points are chosen to be the nodes of a quadrature rule 
accurate to order M [6,7]. 
 
3.2 Computing grid fields due to grid singularities using 
FFT 
    Once the patch currents and charges have been 
projected to uniform grids, the vector potentials at the 
grid points due to the grid currents can be computed by 
the following 3-dimensional convolutions 
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where ),,( kji  and ),,( kji ′′′  are triplets specifying 

the grid points and ( )kjih ,,  is given by 
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with ),,( zyx ∆∆∆  being the edge lengths of the grid. 

( )0,0,0h  can be arbitrarily defined, but is usually set to 
zero for simplicity. The convolutions in Eqn. (18) can be 
rapidly computed by using the Fast Fourier Transform 
(FFT) [11] , 
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where 1−F  denotes the inverse FFT, while H~  and J~  
are the FFT forms of ( )kjih ,,  and ( )kjiJ ,,

)
, 

respectively.  The scalar potentials at the grid points due 
to the grid charges can be computed in the same way,  
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In practice, each convolution requires one forward and 
one inverse 3-D FFT. The discrete Fourier transform of 
the kernel matrices, H~ , needs to be computed only once 
through out the algorithm because ( )kjih ,,  and 

( )kjihq ,,  are the same except for a constant and are 
only decided by the grid distribution.  
   
3.3 Interpolating grid potentials onto elements 
    Once the grid potentials have been computed, they 
must be interpolated to the element in each cell. This 
process is essentially the same as the projecting process. 
It has been proved that the projection and interpolation 
operators have comparable accuracies [7].  

    Assume ( )[ ]TjkV ,  denotes the operator which 
interpolates potentials at the grid points onto the patch 
coordinates. Thus, projection, followed by convolution 
and interpolation, gives the grid approximation GA  and 

GΦ  to the patch potentials which can be represented as 

HWJVA T
G =                         (23) 

)( JHWV T
G ⋅∇=Φ                    (24) 

 
3.4 Computing near-zone interactions directly 
    Since the error due to the grid approximation is 
inversely proportional to the interaction distance, the 
interactions between nearby patches have been poorly 
approximated in the above three steps. To get accurate 
results, it is necessary to compute the near-zone 
interactions directly and remove the inaccurate 
contribution from the use of the grid. This process is 
referred to as “precorrection”. 
    Define a “precorrected” direct interaction operator 

( ) ( ) ( ) ( ) ( )lWlkHkVlkPlkP T ,,,~ −= .     (25) 
The exact vector potemtial )(kA  and scalar potential 

)(kΦ for each cell k  can be obtained by 
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where )(kAG  and )(kGΦ  are the grid-approximations 

to )(kA  and )(kΦ , respectively, including the 
inaccurate near-zone portions. )(kM  denotes the 
indices of the set of cells which are “close to” cell k . 
The second term each in (26) and (27) represents the 
near-zone interactions that can be computed directly. 
Because for each k , )(kM  is a small set and each 

matrix ( )lkP ,~
 is also small, the precorrection process is 

also a sparse operation. 
    Combining the above steps leads to the precorrected-
FFT algorithm. The effect of this algorithm is so made as 
to replace the dense matrix-vector product PJ  with the 
sparse operation JHWVP T ]~[ + .  
 

 
VI. NUMERICAL RESULTS AND DISCUSSIONS 

 
    In this section, several numerical results are presented 
to demonstrate the accuracy and efficiency of the method 
described above. Fig. 3 shows the bistatic RCS computed 
by the precorrected-FFT method and the analytic solution 
(Mie-series) [15] for a sphere of 15=ka . The sphere is 
discretized into 14160 triangles and has 21240 
unknowns. The dimension of the FFT is 262626 ×× . 
We choose λ= 5.0thrr , so nearN  is 12855328. The 
precorrected-FFT requires about 130 MB memory and 
takes 9 hours to compute the solution a Pentium 1G PC.  
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           Figure 3. Bistatic RCS for a sphere of 15=ka  
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It is estimated that the conventional MoM requires 
approximately 3.36 GB of memory and will take about 
80 hours for the same problem. It can be seen that, for 
this example, the precorrected-FFT yields a memory 
saving of about 97% and an over 88% reduction in the 
CPU time.  
    The last example shown in Fig. 4 is a benchmark cone-
sphere with gap. The geometry parameters can be found 
in  [16]. Fig. 5 and 6 give its monostatic RCS in two 
polarizations in the plane of o90=θ  at 3 GHz. The 
object is discretized into 14100 unknowns and enclosed 
in a 121248 ××  grid. To accelerate the convergence, 
we use the current solution from the previous angle with 
phase correction as the initial guess for the next angle. 
For a λ5.0  threshold distance, nearN  is 17355998, 

about %73.8  that of 2N . The total memory 
requirement is about %93.9  that of the conventional 
MoM. The memory saving is not as dramatic as in last 
example because that the elements of this object 
distribute in a denser manner. The P-FFT takes 60 hours 
for 91 incident angles on a Pentium 1G PC while the 
MoM is estimated to require 900 hours by extrapolation. 
A reasonably good agreement is observed between the P-
FFT solution and the measured results, demonstrating the 
P-FFT algorithm has a good accuracy. Fig.7 shows the 
number of iterations as a function of the incident angles 
required for a relative error of 3108.0 −× . It can be seen 
that the appropriate initial guess reduces the number of 
iterations significantly. 
    Furthermore, we also found that, unlike some other 
fast algorithms such as FMM, both the convergence rate 
and condition of the P-FFT system remains unchanged 
from the original MoM system. This is of critical 
importance for fast iterative solutions because an 
increase in the iteration count would annul the faster 
computation of the matrix-vector product.   
 
 

Figure 4. The benchmark cone-sphere with gap 
 

Figure 5. The monostatic RCS ( θ  polarization) 
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   Figure 6. The monostatic RCS ( ϕ  polarization) 

 
 

Figure 7. Number of iterations ( θ  polarization) 
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CONCLUSIONS 

    In this paper, the precorrected-FFT algorithm is 
successfully extended to the analysis of electromagnetic 
scattering problems in three dimensions. The generalized 
conjugate residual method (GCR) is used to solve the 
matrix equation derived from the discretization of the 
integral equation, then the precorrected-FFT technique is 
used to accelerate the matrix-vector multiplication in 
iterations. The memory requirement and computation 
complexity of the matrix-vector multiplication is reduced 
to ( )gNO  and ( )gg NNO log , respectively, where 

gN  denotes the number of the grid. Numerical examples 
demonstrated that the P-FFT yields a dramatic reduction 
of memory requirement and computational cost for large 
problems while remaining a good accuracy. 
Investigations also show that the P-FFT can have much 
coarser grid than AIM for the same error, thus leads to 
lower computational requirements than AIM. Besides, 
the P-FFT employs a multipole-based projection operator 
which is identical for every cell, so avoiding the complex 
and time consuming computations of the multipole 
moments of the basis functions for each cell as in the 
AIM. This also helps to save some computational costs. 
    Since the P-FFT is based on the fast Fourier transform 
and local interpolation operators, rather than on 
sphereical-harmonics based shifting operators as in the 
fast multipole method, a large range of kernels can be 
treated by this method while the high order of accuracy 
of fast multipole-based representations is still preserved. 
This implies that the algorithm can be readily further 
extended to more complicated problems with appropriate 
modifications.  
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