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Abstract  
     Data quality is crucial for operational efficiency and sound decision making. This paper focuses on believability, 
a major aspect of data quality. The issue of believability is particularly relevant in the context of Web 2.0, where 
mashups facilitate the combination of data from different sources. Our approach for assessing data believability is 
based on provenance and lineage, i.e. the origin and subsequent processing history of data. We present the main 
concepts of our model for representing and storing data provenance, and an ontology of the sub-dimensions of data 
believability. We then use aggregation operators to compute believability across the sub-dimensions of data 
believability and the provenance of data. We illustrate our approach with a scenario based on Internet data. Our 
contribution lies in three main design artifacts (1) the provenance model (2) the ontology of believability sub-
dimensions and (3) the method for computing and aggregating data believability. To our knowledge, this is the first 
work to operationalize provenance-based assessment of data believability. 
 
1. Introduction  

Data quality is crucial for operational efficiency and sound decision making. This paper focuses on the 
assessment of data believability. Wang and Strong [1] define this concept as “the extent to which data are 
accepted or regarded as true, real and credible”. Their survey shows that data consumers consider 
believability as an especially important aspect of data quality. Furthermore, the issue of data believability 
is particularly relevant in the context of Web 2.0 with the advent of mashups, defined as “web 
applications that combine data from more than one source into an integrated experience” (source: 
http://www.wikipedia.org). Data users need to be able to assess the believability of the data sources and 
of the data resulting from their combination. 

Clearly, the believability of a data value depends on its origin (sources) and subsequent processing 
history. In other words, it depends on the data provenance (aka lineage), defined in [2] as “information 
that helps determine the derivation history of a data product, starting from its original sources”. Data 
provenance is the subject of several papers (see [2] for a literature review on this topic). Several papers, 
e.g. [3], stress the relationship between data quality assessment and provenance information. However, a 
computational model of provenance-based data quality, and more specifically believability, is still 
missing. Our work aims at addressing this issue.  
 
2. Data provenance and lineage 

We present the main concepts of our provenance model, defined to represent and store provenance 
information for subsequent computation of believability. The complete UML [4] model is described in 
[5], the key elements are explained in this section. Data values are central to our model. Our research 
focuses on numeric, atomic data values (complex values, e.g. tuples or relations, will be considered in 
further research). A data value may be a source or resulting data value, where a resulting data value is the 
output of a process run (instantiation of a process). Processes may have several inputs and only have one 
output. Processes are executed by agents. This concept also represents the providers of the source data 
values. Our model uses the database concepts of valid time and transaction time (more details are 
provided in [5]). Finally, the concept of trustworthiness is essential for assessing data believability. It is 
defined for an agent, for a specific knowledge domain. It is measured by a trustworthiness value. The 



determination of these values is outside the scope of our work. We assume they are computed or obtained 
from outside sources, e.g. reputation systems.  

The terms “data lineage” and “provenance” are often used interchangeably. We define the lineage of a 
data value v (noted Lineage(v)) as a labeled, directed acyclic graph representing the successive data 
values and processes leading to v. The data values are the vertices of the graph (noted V(Lineage(v))), 
and the processes are the labeled edges. Therefore, lineage is a specific, graph-based view on provenance 
information, focused on the chaining between data values and processes. 

To illustrate our representation of data lineage and provenance, we will use the following scenario: A 
communication group considers launching a new TV channel in Malaysia and Singapore, aimed at the 
Indian community. The group needs to know the total Indian population in Malaysia and Singapore. This 
figure is computed from source data found on Internet. We wish to assess the believability of this figure 
(the value v). The lineage of v is represented in the left part of Figure 1. In this case, P1 is the 
multiplication and P2 the sum; the values in v’s lineage and their characteristics (provenance information) 
are shown in the right part of Figure 1. 

 
 
 
 
 
 
 

Figure 1. Example scenario 
 
3. Ontology of believability sub-dimensions 

A dimension of data quality, believability is itself decomposed. [6] proposes three sub-dimensions, 
namely believability: (1) of source, (2) compared to internal commonsense standard, and (3) based on 
temporality of data. Our ontology of believability refines this typology, decomposing the three initial sub-
dimensions of believability : 

 
Figure 2. Sub-dimensions of believability (UML notation) 
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In [5], we have defined specific metrics for each of the 6 elementary sub-dimensions of data 
believability. Each of these metrics is based on the semantics of the believability sub-dimension for which 
it is defined.  The present paper focuses on aggregation and, to this end, applies the theory of aggregation 
operators. 
 
4. Aggregation operators 

The formal theory of aggregation operators [7] [8] consolidates contributions from various fields, 
primarily fuzzy logic. We summarize the main characteristics of these operators. 

An aggregation operator with n arguments is a function A(n): [0,1]n → [0,1] verifying the following 
conditions: 

1. Monotonicity.   
2. Boundary conditions, namely (2.1) A(n)(0,…,0)=0, (2.2) A(n)(1,…,1)=1, and (2.3) ∀  x ∈ [0,1], 

A(1)(x)=x. 
Among the properties that aggregation operators may or may not possess, we should mention the 

following characteristics, which are relevant for aggregating data believability: 
3. Continuity, which is an important property when combining (quality) measures. Continuity 

ensures that small errors in input values cannot cause a big error in the aggregated result. To 
this respect, it should be noted that the arithmetic means is the most stable aggregation 
operator under possible input errors. 

4. Neutral element and annihilator (aka absorbing element). For example, for the operator ∏ 
(product), 1 is the neutral element while 0 is the annihilator. 

5. Dual: the dual of A(n), noted A(n)d, is defined by: A(n)d(x1,…,xn)=1 - A(n)(1-x1,…,1-xn). 
6. Idempotency: an aggregation operator is idempotent if A(n)(x,…,x)=x. Min and Max are 

examples of idempotent operators, while ∏ is a counter-example. 
7. Reinforcement: an operator exhibits downward reinforcement if when all the xi are 

disaffirmative (i.e. inferior to the neutral element), A(n)(x1,…,xn) ≤ Mini (xi). ∏ is an example 
of downward reinforcement operator. Upward reinforcement operators are defined similarly. 
Uninorms, defined by Yager and Rybalov, may exhibit both upward and downward 
reinforcement. The 3-∏-operator (applied below) is an example. 

8. Different weights of criteria: If the xi have different weights, and if these weights are known or 
can be determined, an aggregator such as the weighted arithmetic means may be used. OWA 
operators (Ordered Weighted Average), introduced by Yager, are a variation of the weighted 
arithmetic means: the weights are not pre-assigned to criteria, but affected dynamically based 
on the value of criteria: the xi which has the highest value gets the highest weight, etc. 

Unfortunately, several of these characteristics are antagonistic. For example, idempotency is not 
compatible with strict reinforcement. Consequently, the choice of the adequate operator should be based 
on the required properties, depending on context. In the following section, we make some initial 
suggestions regarding choice of aggregation operators to be used. 

 
5. Aggregating data believability across quality sub-dimensions and data lineage 

The believability of a data value v (noted B(v)) is assessed by computing the “elementary” measures 
of believability and then aggregating the results across the sub-dimensions of believability and the lineage 
of v. An “elementary” measure of believability is the computation of an elementary sub-dimension of data 
believability for a data value in the lineage of v. Therefore, we have: 
B(v)= Aggregation Qj ∈ elementary sub-dimensions of data believability (Aggregation vi ∈ v’s Lineage(Qj(vi)))   

The measures for computing the Qj(vi) are developed in [5]. It should be noted that only one operator 
is required to aggregate believability across the lineage of v, while several different operators may be 
used to perform aggregation across the different sub-dimensions of believability (depending on the level 
in the ontology of Figure 2). Observe that aggregation is performed first across the lineage of v and then 
across the sub-dimensions of believability. The reverse is not possible, since the weights used for 



aggregating believability across data lineage may differ depending on the considered believability sub-
dimension (as explained below). 

For aggregating believability across the graph of v’s lineage, two types of weights emerge: 
• For a process Pk in v’s lineage, the weight of an input data value vki on the output value is 

computed similarly to [9]: we compute the derivative dPk/dxki (the “slope”) and multiply by vki. 
(We assume that the partial derivatives of Pk exist, and take absolute values to avoid negative 
weights). The weights need to be composed along the whole process chain.  

• Furthermore, as often proposed in graph-based algorithms, we introduce an “attenuation factor” 
[10], reflecting the intuition that the influence of a vertex on another decreases with the length of 
the path separating the two vertices. In our case, the influence of vki on the believability of data 
value v diminishes with the length of the path from  vki to v. Note that contrary to the first type of 
weight, the attenuation factor may differ depending on the sub-dimension of believability, 
reflecting different degrees of attenuation depending on the semantics of the sub-dimension of 
believability and its mode of computation. 

Combining these two types of weights, we compute an influence vector Gj(v), reflecting the influence 
of v’s lineage on the aggregated believability of v (since the influence vector may depend on the sub-
dimension of believability Qj, it is suffixed by j): 

 

From the graph Lineage(v), build the matrix M(v)  defined as follows: 
M(v)  is a square matrix of order Card(V(Lineage(v))) * Card(V(Lineage(v))) 
The rows/columns of M(v) represent the vertices of Lineage(v). (The last row/column represents v.) 
Call vr and vc  the vertices corresponding to row r and column c respectively. 
The content of element Mr,c(v), where r and c ∈  1..Card(V(Lineage(v))), is defined as follows: 
 
If ∃ an edge e  from vr to vc in Lineage(v)  
Then  Call P the label of e. 

Mr,c(v)= rr
r

vv
dx
dP *)(  

Else Mr,c(v)=0 
Endif 
For each column c, divide each element Mr,c(v) by the sum of the elements of column c. 

 

Let Nj(v)= ∑
=

eage(v))length(Lin

0k

kM(v))*( jγ  

 (γj∈[0..1[ is an attenuation factor; length(Lineage(v)) is the length of the longest process chain from a source 
data value to v; the first term of the sum ∑ , i.e. for k=0, is the identity matrix). 

 
The final vector Gj(v) is the transpose of the last column of Nj(v), divided by the sum of elements of this column 

in order to normalize weights. (U is the unit column vector). 
Oj(v)= (Nj(v) [1.. Card(V(Lineage(v))); Card(V(Lineage(v)))])T  
Gj(v)=(1/ (Oj(v) *U))* Oj(v) 
 

Observe that in the algorithm above, the propagation of weights is performed through matrix 
multiplication, reflecting a known property of adjacency matrices [10]: the square of an adjacency matrix 
propagates links one level (the “friends of friends”), etc. We also note, following [10], that the attenuation 
factor γj should be such that γj <(1/λ), where λ is the largest absolute value of any eigenvalue of matrix 
M(v). 

Figure 3 illustrates the computation of the influence vector for our application scenario. The matrix 
M(v) is shown in the top, and the influence vector Gj(v) for a particular sub-dimension of believability is 
shown in the bottom. Observe that M(v) has only 0s on the diagonal (reflecting that the same data value 
cannot be both the input and output of the same process run); also, M(v) is a triangular matrix, which may 
not necessarily be the case in general. The computed values for the elements of the matrices are shown, 



assuming a value of 0.5 for γj (an arrow points from each computed value to the corresponding matrix 
element).  

As an illustration of the computations of the values in Figure 3, consider the value of M3,5(v) (i.e. the 
value noted as c in Figure 3). From Figure 1, we get the values for v21 and v22, and we know that 

P2(v21,v22)=v21+v22. Therefore, the derivative 2
21

21

( ) 1dP v
dx

=  and, similarly, 2
22

22

( ) 1dP v
dx

= . It follows that 

M3,5(v)= (1*1816180) / (1*1816180 + 1*319100) = 0.85 
Note that in our example, M(v) being a triangular matrix with 0s on the diagonal, the eigenvalues are 

all 0 and do not provide an upper bound for the value of γj.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Application scenario: matrix M(v) (top) and example influence vector (bottom) 
 
 For a given elementary sub-dimension Qj of data believability, we may now perform aggregation 

across the lineage of v. Since we have weights (computed in the influence vectors Gj(v) above), the 
choice of the weighted arithmetic means seem natural. More precisely, we choose the dual of the 
weighted arithmetic means, following similar lines as [9], which combines errors based on derivatives. 
Errors are interpreted as lack of quality, hence the dual: 

Call MatQj(v) the column vector containing the Qj(vi), where vi  ∈ v’s lineage (each row of MatQj(v) 
represents a vertice vi of Lineage(v), in the same order as in matrix M(v) above). 

Aggregation vi ∈ v’s Lineage(Qj(vi))=1-Gj(v)*(U - MatQj(v)) 
We pursue with aggregation across the sub-dimensions of believability. To this end, as a general rule, 

we use the arithmetic means. This is justified by the fact that (as mentioned above) this operator is the 
most stable aggregation operator. Furthermore, we don’t have weights for the sub-dimensions of 
believability (although in practice, the determination of these weights could be considered, e.g. by 
interviewing data users). We make two exceptions to the use of the arithmetic means: the first exception 
concerns aggregation along the reasonableness sub-dimension. Here, we use the OWA operator, counting 
the lowest value (among possibility and consistency) twice as much as the highest value. This choice 
reflects the particular semantics of possibility and consistency. We want to combine both possibility and 
consistency when computing reasonableness, but are more confident in small values. The second 
exception is the choice of the 3-∏-operator at the highest aggregation level (final computation of B(v)). 
We make this choice because it provides a downward reinforcement effect for values under 0.5 
(penalizing bad quality) and, conversely, an upward reinforcement effect for values above 0.5. We use the 
following notation convention for the sub-dimensions of believability: the index of each sub-dimension 
corresponds to its position in the hierarchy of sub-dimensions, as represented in Figure 2 (e.g. Q1 stands 
for trustworthiness and Q222 stands for consistency over time): 

Q1(v)=1-G1(v)*(U – MatQ1(v)) 
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Q21(v)=1-G21(v)*(U – MatQ21(v)) 
Q22(v)=0.5*[(1-G221(v)*(U – MatQ221(v)))+ (1-G222(v)*(U – MatQ222(v)))] 
Q2(v)= 0.67*Min(Q21(v), Q22(v)) + 0.33*Max(Q21(v), Q22(v)) 
Q3(v)=0.5*[(1-G31(v)*(U – MatQ31(v)))+ (1-G32(v)*(U – MatQ32(v)))] 
B(v)= (Q1(v)* Q2(v)* Q3(v)) / [ Q1(v)* Q2(v)* Q3(v) + (1-Q1(v))* (1-Q2(v))* (1-Q3(v))] 
Table 1 applies our method to the example scenario. The table shows the elementary sub-dimensions 

of believability, with the corresponding values computed with the metrics of  [5] (for the sake of brevity, 
the sub-dimension reasonableness and its sub-dimensions are ignored). For each of these sub-dimensions, 
a different value may be chosen for the attenuation factor γ, depending on the semantics of the sub-
dimension. Here, we take the default value 0.5 for the attenuation factor, except for the sub-dimension Q1 
(Q1 denotes trustworthiness, and the metrics defined in [5] already take full consideration of a value’s 
lineage when computing its trustworthiness, making it unnecessary to consider this lineage again in the 
aggregation phase). Observe that for Q31, aggregation across v’s lineage decreases v’s score, but not 
radically (due to the low weight of v22). On the contrary, for Q32, taking v’s lineage into consideration 
improves v’s score (although not radically). 

 
 
 
 
 
 

Table 1. Application to the example scenario 
 
6. Conclusion 

Data quality is a crucial issue. A dimension of data quality, believability is itself an increasingly 
important topic. Although believability is closely related to data provenance and lineage, operational 
models and methods for evaluating and aggregating provenance-based believability are still missing. Our 
work is a contribution in this domain. Our computational, quantitative approach for assessing data  
believability is a step towards automation of this assessment, thereby contributing to the repeatability of 
the evaluation process and consistency of results. Future work will include further testing of the approach 
and of its scalability on (real world) case studies, and explore alternative aggregation operators. 
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Id Q1  (γ=0) Q21 Q221 Q222 Q31 (γ=0.5) Q32 (γ=0.5)
v11 0.9 1 1
v12 0.8 1 1
v21 0.85 1 1 Final result : B(v)=0.929
v22 0.9 0.159 1
v 0.857 1 0
Aggregation accross v's lineage 0.857 0.96 0.41


