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Abstract—The optimization, control, and characterization of
engineering components or systems require fast, repeated, and
accurate evaluation of a partial-differential-equation-induced
input – output relationship. We present a technique for the
rapid and reliable prediction of linear–functional outputs of el-
liptic partial differential equations with affine parameter de-
pendence. The method has three components: (i) rapidly
convergent reduced–basis approximations; (ii) a posteriori er-
ror estimation; and (iii) off–line/on–line computational proce-
dures. These components — integrated within a special net-
work architecture — render partial differential equation solu-
tions truly “useful”: essentially real–time as regards operation
count; “blackbox” as regards reliability; and directly relevant
as regards the (limited) input–output data required.

Keywords— reduced–basis, a posteriori error estimation, out-
put bounds, elliptic partial differential equations, distributed
simulations, real–time computing

I. Introduction

The optimization, control, and characterization of an engi-
neering component or system requires the prediction of cer-
tain “quantities of interest,” or performance metrics, which
we shall denote outputs — for example, deflections, maxi-
mum stresses, maximum temperatures, heat transfer rates,
flowrates, or lift and drags. These outputs are typically
expressed as functionals of field variables associated with a
parametrized partial differential equation which describes the
physical behavior of the component or system. The param-
eters, which we shall denote inputs, serve to identify a par-
ticular “configuration” of the component: these inputs may
represent design or decision variables, such as geometry —
for example, in optimization studies; control variables, such
as actuator power — for example, in real–time applications;
or characterization variables, such as physical properties —
for example, in inverse problems. We thus arrive at an im-
plicit input–output relationship, evaluation of which demands
solution of the underlying partial differential equation.

Our goal is the development of computational methods
that permit rapid and reliable evaluation of this partial-
differential-equation-induced input-output relationship in the
limit of many queries — that is, in the design, optimization,
control, and characterization contexts. Our particular ap-
proach is based upon the reduced–basis method, first intro-
duced in the late 1970s for nonlinear structural analysis [1],

[10], and subsequently developed more broadly in the 1980s
and 1990s [3], [5], [12], [13], [17]. Our work differs from these
earlier efforts in several important ways: first, we develop
(in some cases, provably) global approximation spaces; sec-
ond, we introduce rigorous a posteriori error estimators; and
third, we exploit off–line/on–line computational decomposi-
tions. These three ingredients allow us — for a restricted but
important class of problems — to reliably decouple the gener-
ation and projection stages of reduced–basis approximation,
thereby effecting computational economies of several orders
of magnitude.

In this paper, we discuss these components in the context
of symmetric coercive problems. We begin in Section II by
introducing an abstract problem formulation and an illustra-
tive instantiation: a microtruss problem. In Section III we
describe the reduced-basis approximation; and in Section IV
we develop associated a posteriori error estimators. Finally,
in Section V we discuss the system architecture in which these
numerical objects reside.

II. Problem Statement

A. Abstract Formulation

We consider a suitably regular domain Ω ⊂ IRd, d = 1, 2, or
3, and associated function space X ⊂ H1(Ω), where H1(Ω) =
{v | v ∈ L2(Ω), ∇v ∈ (L2(Ω))d}, and L2(Ω) is the space of
square integrable functions over Ω. The inner product and
norm associated with X are given by ( ·, · )X and ‖ · ‖X =
(·, ·)1/2, respectively. We also define a parameter set D ∈ IRP ,
a particular point in which will be denoted µ. Note that Ω
does not depend on the parameter.

Our abstract problem may be stated as: for any parameter
µ ∈ D, find s(µ) ∈ IR given by

s(µ) = `(u(µ)), (1)

where `(v) is a linear functional, and u(µ) ∈ X satisfies the
partial differential equation (in weak form)

a(u(µ), v;µ) = f(v), ∀ v ∈ X. (2)

We assume that the bilinear form a( · , · ;µ) is symmetric,

a(w, v;µ) = a(v, w;µ), ∀ w, v ∈ X; (3)



continuous,

a(w, v;µ) ≤ γ(µ) ‖w‖X ‖v‖X (4)
≤ γ0 ‖w‖X ‖v‖X , ∀ µ ∈ D; (5)

and coercive,

0 < α0 ≤ α(µ) = inf
w∈X

a(w,w;µ)
‖w‖2X

, ∀ µ ∈ D; (6)

we also require that the linear functionals f(v) and `(v) are
bounded. The choice of output `(v) = f(v) — termed com-
pliance — considerably simplifies the formulation; in Sec-
tions III and IV we first present the compliance case before
proceeding to the noncompliance case (i.e., `(v) 6= f(v)).

We shall also make certain assumptions on the parametric
dependence of a, f , and `. In particular, we shall suppose
that, for some finite (preferably small) integer Q, a may be
expressed as

a(w, v;µ) =
Q∑
q=1

σq(µ) aq(w, v), (7)

∀ w, v ∈ X, ∀ µ ∈ D, for appropriately chosen functions σq

and associated µ-independent bilinear forms aq, q = 1, . . . , Q.
For simplicity of exposition, we assume that f and ` do not
depend on µ; in actual practice, affine dependence is readily
admitted.

We note that we pose our problem on a fixed reference
domain Ω (i.e., Ω does not depend on µ) to ensure that the
parametric dependence on geometry enters through a( · , · ;µ)
and ultimately through the σq(µ).

B. Motivation: A Particular Instantiation
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A Truss Structure

To further motivate and illustrate our methods we consider
a particular example: a truss structure. Truss structures are
used in a variety of applications such as actuation (see, for
example, [6]) and multifunctional components (see, for ex-
ample, [4], [19]). Truss structures are typically designed for
minimum weight subject to certain strength constraints; that
is, the structure must be able to support the prescribed loads
without buckling, yielding, or undergoing excessive deforma-
tion.

We consider here the prismatic truss structure shown in
Figure 1 which consists of a frame (upper and lower faces, in
dark gray) and a core (trusses and middle sheet, in light gray).
The structure transmits a force per unit depth F̃ uniformly
distributed over the tip of the middle sheet, Γ̃3, through the
truss system to the fixed left wall, Γ̃0. The physical model
is simple plane–strain (two-dimensional) linear elasticity: the
displacement field ũi(µ), i = 1, 2, satisfies∫

Ω̃

∂ṽi
∂x̃j

Ẽijkl
∂ũk
∂x̃l

= −

(
F̃

t̃c

)∫
Γ̃3

ṽ2, ∀ v ∈ X̃, (8)

where Ω̃(µ) is the truss domain, Ẽijkl is the elasticity tensor,
t̃c is the (dimensional) thickness of the core sheet, and X̃
refers to the set of functions in H1(Ω̃(µ)) which vanish on
Γ̃0(µ). We assume summation over repeated indices.

We now (i) nondimensionalize the weak equations (8), and
(ii) apply a continuous piecewise-affine transformation to
map Ω̃(µ) to a fixed (µ-independent) reference domain Ω.
The abstract problem statement (2) is then recovered [18]. It
is readily verified that a is continuous, coercive, and symmet-
ric; and that the “affine” assumption (7) obtains for Q = 44.

The truss structure is characterized by four design pa-
rameters, or “inputs,” µ ∈ D ⊂ IRP=4, where µ1 = tf ,
µ2 = tt, µ3 = H, and µ4 = θ. Here tf and tt are the
thicknesses of the frame and trusses, respectively; H is the
total height of the structure; and θ is the angle between the
trusses and the faces; tf , tt, and H are normalized relative
to the core thickness. The design or parameter set is given
by D = [0.08, 1.0]× [0.2, 2.0]× [4.0, 10.0]× [30.0◦, 60.0◦]. The
material properties — Poisson’s ratio, ν = 0.3; the frame
Young’s modulus, Ef = 75 GPa; and the core Young’s mod-
ulus, Ec = 200 GPa — are held fixed.

We choose our performance metrics, or “outputs,” to be
(i) the average downward deflection (compliance) at the core
tip, Γ3, nondimensionalized by F̃ /Ẽf ; and (ii) the average
normal stress across the critical (yield) section Γs1 in Fig-
ure 1, nondimensionalized by F̃ /t̃c. We denote our outputs
as s1(µ) = `1(u(µ)) and s2(µ) = `2(u(µ)), respectively, where

`1(v) = −
∫

Γ3

v2, (9)

`2(v) =
1
tf

∫
Ωs

∂χi
∂xj

Eijkl
∂uk
∂xl

(10)

are bounded linear functionals; here χi is any suitably smooth
function in H1(Ωs) such that χin̂i = 1 on Γs1 and χin̂i = 0 on
Γs2, where n̂ is the unit normal. Note that s1(µ) is a compliant
output, whereas s2(µ) is “noncompliant”.

III. Reduced Basis Approach

We discuss in this section the formulation, properties, and
computational realization of the reduced basis method for
both compliant and noncompliant outputs.



A. Compliant Outputs

A.1 Reduced–Basis Approximation

To define our reduced-basis procedure, we first introduce
a sample set in parameter space, SN = {µ1, . . . , µN}, where
µi ∈ D, i = 1, . . . , N . We then define our reduced–basis
approximation space as

WN = span {ζn ≡ u(µn), n = 1, . . . , N}, (11)

where u(µn) ∈ X is the solution to (2) for µ = µn. In actual
practice, u(µn) is replaced by a finite element approximation
on a suitably fine truth mesh. For any µ ∈ D, our reduced–
basis approximation uN (µ) ∈WN satisfies

a(uN (µ), v;µ) = f(v), ∀ v ∈WN ; (12)

we then evaluate our reduced-basis output approximation as

sN (µ) = f(uN (µ)). (13)

Recall that compliance implies `(v) = f(v).

A.2 A Priori Convergence Theory

It can readily be shown that our approximation uN (µ) is
optimal in the sense that

|||u(µ)− uN (µ)||| ≤ min
wN∈WN

|||u(µ)− wN ||| (14)

where ||| · (µ)||| = a( · , · ;µ) is the energy norm. Furthermore,
for our compliant output,

s(µ) = sN (µ) + f(u− uN )
= sN (µ) + a(u, u− uN ;µ)
= sN (µ) + a(u− uN , u− uN ;µ) (15)

from symmetry and Galerkin orthogonality. It follows that
s(µ)− sN (µ) converges as the square of the error in the best
approximation and, from coercivity, that sN (µ) is a lower
bound for s(µ).

It now remains to bound the dependence of the error in
the best approximation as a function of N . It can be proven
[9] — although only for special problems — that if the µn,
n = 1, . . . , N, are logarithmically distributed over D, then:

|||u(µ)− uN (µ)||| ≤ c1e−c2N , ∀ µ ∈ D, (16)

where c2 depends only weakly on the range of the parameter.
That is, the best approximation uN (µ) converges to the the
exact solution u(µ) exponentially.

We present in Table I the error |s(µ) − sN (µ)|/s(µ) as a
function of N , at a particular representative point µ in D, for
the truss problem of Section II-B. Since tensor-product grids
are prohibitively exorbitant as P increases, the µn are chosen
“log-randomly” over D: we sample from a multivariate uni-
form probability density on log(µ). We observe, as the the-
ory suggests, that the error is remarkably small even for very

N |s(µ)− sN (µ)|/s(µ) ∆N (µ)/s(µ) ηN (µ)
10 3.26× 10−2 6.47× 10−2 1.98
20 2.56× 10−4 4.74× 10−4 1.85
30 7.31× 10−5 1.38× 10−4 1.89
40 1.91× 10−5 3.59× 10−5 1.88
50 1.09× 10−5 2.08× 10−5 1.90
60 4.10× 10−6 8.19× 10−6 2.00

TABLE I

Error, error bound, and effectivity as a function of N , at a

particular representative point µ ∈ D, for the truss problem

(compliant output) and a logarithmic distribution.

N |s(µ)− sN (µ)|/s(µ) ∆N (µ)/s(µ) ηN (µ)
10 1.91× 10−2 2.56× 10−2 1.34
20 6.29× 10−3 1.21× 10−2 1.93
30 1.56× 10−3 2.94× 10−3 1.88
40 2.19× 10−4 4.00× 10−4 1.83
50 1.45× 10−4 2.64× 10−4 1.82
60 9.17× 10−5 1.72× 10−4 1.87

TABLE II

Error, error bound, and effectivity as a function of N , at a

particular representative point µ ∈ D, for the truss problem

(compliant output) and a uniform distribution.

small N , and that very rapid convergence obtains as N →∞.
In numerous numerical tests [18], the logarithmic distribution
suggested by theory performs considerably better than other
obvious candidates, in particular for large ranges of the pa-
rameter. For instance, the results presented in Table II —
for the same point µ in D, but based on a (non–log) uniform
random point distribution — exhibit slower convergence than
that for the logarithmic distribution of Table I.

A.3 Computational Procedure

The theoretical and empirical results of Sections III-A.1
and III-A.2 suggest that N may, indeed, be chosen very small.
We now develop off–line/on–line computational procedures
that exploit this dimension reduction.

We first express the reduced-basis approximation uN (µ) as

uN (µ) =
N∑
j=1

uN j(µ) ζj = (uN (µ))T ζ, (17)

where uN (µ) ∈ IRN ; we then choose for test functions v = ζi,
i = 1, . . . , N . Inserting these representations into (12) yields
the desired algebraic equations for uN (µ) ∈ IRN ,

AN (µ) uN (µ) = FN , (18)



in terms of which the output can then be evaluated as

sN (µ) = FTN uN (µ). (19)

Here AN (µ) ∈ IRN×N is the SPD matrix with entries
AN i,j(µ) ≡ a(ζj , ζi;µ), i, j = 1, . . . , N , and FN ∈ IRN is
the “load” (and “output”) vector with entries FN i ≡ f(ζi),
i = 1, . . . , N .

We now invoke (7) to write

AN i,j(µ) = a(ζj , ζi;µ) =
Q∑
q=1

σq(µ) aq(ζj , ζi) , (20)

or

AN (µ) =
Q∑
q=1

σq(µ)AqN , (21)

where AqN i,j = aq(ζj , ζi), i, j = 1, . . . , N , q = 1, . . . , Q. The
off–line/on–line decomposition is now clear. In the off–line
stage, we compute the u(µn) and form the AqN and FN :
this requires N (expensive) “a” finite element solutions and
O(QN2) finite-element-vector inner products. In the on–line
stage, for any given new µ, we first form AN from (21), then
solve (18) for uN (µ), and finally evaluate sN (µ) = FTN uN (µ):
this requires O(QN2)+O( 2

3N
3) operations and O(QN2) stor-

age.
Thus, as required, the incremental, or marginal, cost to

evaluate sN (µ) for any given new µ is very small: first, be-
cause N is very small, typically O(10) — thanks to the good
convergence properties of WN ; and second, because (18) can
be very rapidly assembled and inverted — thanks to the affine
dependence of a on µ and the associated off–line/on–line de-
composition (see [2] for an earlier application of this strat-
egy within the reduced–basis context). For the problems
discussed here and (for instance) in [14], the resulting com-
putational savings relative to standard (well-designed) finite-
element approaches are significant — at least O(10), typically
O(100), and often O(1000) or more.

B. Noncompliant Outputs

In the previous section we formulate the reduced-basis
method for the case of compliant outputs, `(v) = f(v), ∀v ∈
X. We briefly summarize here the formulation and theory
for more general linear bounded output functionals.

As a preliminary, we first generalize the abstract formula-
tion of Section II-A. As before, we define the “primal” prob-
lem as in (2). However, we now also introduce an associated
adjoint or “dual” problem: for any µ ∈ X, find ψ(µ) ∈ X
such that

a(v, ψ(µ);µ) = `(v), ∀ v ∈ X; (22)

recall that `(v) is our output functional.

B.1 Reduced-Basis Approximation

To develop the reduced-basis space, we first choose — ran-
domly or log-randomly as described in Section III-A.2 —
a sample set in parameter space, SN/2 = {µ1, . . . , µN/2},
where µi ∈ D, i = 1, . . . , N/2 (N even); we then de-
fine an “integrated” reduced-basis approximation space as
WN = span {(u(µn), ψ(µn)), n = 1, . . . , N/2} (see [14] for
discussion of a somewhat more efficient “non-integrated” ap-
proach).

For any µ ∈ D, our reduced-basis approximation is then
obtained by standard Galerkin projection onto WN . To
wit, for the primal problem, we find uN (µ) ∈ WN such
that a(uN (µ), v;µ) = f(v), ∀ v ∈ WN ; and for the adjoint
problem, we define (though, for the particular formulations
described here, do not compute) ψN (µ) ∈ WN such that
a(v, ψN (µ);µ) = `(v), ∀ v ∈ WN . The reduced-basis output
approximation is then calculated from sN (µ) = `(uN (µ)).

B.2 A Priori Convergence Theory

Turning now to the a priori theory, it follows from standard
arguments that uN (µ) and ψN (µ) are optimal in the sense
that

|||u(µ)− uN (µ)||| ≤ min
wN∈WN

|||u(µ)− wN |||,

|||ψ(µ)− ψN (µ)||| ≤ min
wN∈WN

|||ψ(µ)− wN |||.

The best approximation analysis is then similar to that pre-
sented in III-A.2. As regards our output, we now have

|s(µ)− sN (µ)| = |`(u(µ))− `(uN (µ))|
= |a(u− uN , ψ;µ)|
= |a(u− uN , ψ − ψN ;µ)|
≤ |||u− uN ||| |||ψ − ψN |||

from Galerkin orthogonality, the definition of the primal and
the adjoint problems, and the Cauchy-Schwartz inequality.
We now understand why we include the ψ(µn) in WN : to
ensure that |||ψ(µ) − ψN (µ)||| is small. We thus recover the
“square” effect in the convergence rate of the output, albeit
at the expense of some additional computational effort — the
inclusion of the ψ(µn) in WN .

B.3 Computational Procedure

Finally, we very briefly address computational issues. The
off–line/on–line decomposition is similar to that described
in Section III-A.3 for the compliant problem. In the off–
line stage, however, we need to additionally compute the
ψN (µ), n = 1, . . . , N/2, as well as form LN , where LN i ≡
`(ζi). In the on–line stage, we calculate uN (µ) by solving
AN (µ) uN (µ) = FN ; we then evaluate the output as
sN (µ) = LTN uN (µ). As before, the essential point is that
the on–line complexity and storage are independent of the



N |s(µ)− sN (µ)|/s(µ) ∆N (µ)/s(µ) ηN (µ)
20 2.35× 10−2 4.67× 10−2 1.99
40 1.74× 10−4 3.19× 10−4 1.83
60 5.59× 10−5 1.06× 10−4 1.90
80 1.44× 10−5 2.73× 10−5 1.89
100 7.45× 10−6 1.40× 10−5 1.88
120 2.92× 10−6 5.85× 10−6 2.00

TABLE III

Error, error bound, and effectivity as a function of N , at a

particular representative point µ ∈ D, for the truss problem

(noncompliant output) and a logarithmic distribution.

N |s(µ)− sN (µ)|/s(µ) ∆N (µ)/s(µ) ηN (µ)
20 1.52× 10−2 2.06× 10−2 1.36
40 4.90× 10−3 9.42× 10−3 1.92
60 1.31× 10−3 2.46× 10−3 1.88
80 1.90× 10−4 3.50× 10−4 1.84
100 1.12× 10−4 2.07× 10−4 1.84
120 7.82× 10−5 1.48× 10−4 1.89

TABLE IV

Error, error bound, and effectivity as a function of N , at a

particular representative point µ ∈ D, for the truss problem

(noncompliant output) and a uniform distribution.

dimension of the very fine (“truth”) finite element approxi-
mation.

We present in Tables III (logarithmic distribution) and IV
(uniform distribution) the error |s(µ)−sN (µ)|/s(µ) as a func-
tion of N , at a particular representative point µ in D, for
the noncompliant output associated with the truss problem
of Section II-B. We again observe the rapid convergence as
N → ∞, and the superior performance of the logarithmic
point distribution.

IV. A Posteriori Error Estimation: Output

Bounds

From Section III we know that, in theory, we can ob-
tain sN (µ) very inexpensively: the on–line stage scales as
O(N3) + O(QN2); and N can, in theory, be chosen quite
small. However, in practice, we do not know how small N
can be chosen: this will depend on the desired accuracy, the
selected output(s) of interest, and the particular problem in
question; in some cases N = 5 may suffice, while in other
cases, N = 100 may still be insufficient. In the face of this
uncertainty, either too many or too few basis functions will be
retained: the former results in computational inefficiency; the
latter in unacceptable uncertainty. We thus need a posteriori
error estimators for sN .

We present in [7], [8], [11], [14] and [16] an approach to out-
put error estimation which guarantees rigorous error bounds.

We present here an alternative method which provides greater
computational efficiency, albeit at the loss of complete cer-
tainty. As in Section III, we first discuss the method for the
compliant case, then extend the formulation to the noncom-
pliant case.

A. Compliant Outputs

A.1 Formulation

To begin, we set M > N , and introduce a parameter
sample SM = {µ1, . . . , µM} and associated reduced–basis
approximation space WM = span {ζm ≡ u(µm), m =
1, . . . ,M} ; both for theoretical and practical reasons we re-
quire SN ⊂ SM and therefore WN ⊂ WM . The procedure is
simple: we first find uM (µ) ∈WM such that a(uM (µ), v;µ) =
f(v),∀ v ∈ WM ; we then evaluate sM (µ) = f(uM (µ)); and,
finally, we compute our upper and lower output estimators
as

s±N,M (µ) = s̄N (µ)± 1
2

∆N,M (µ), (23)

where s̄N is the improved predictor and 1
2∆N,M (µ) is the

half-bound gap; s̄N and ∆N,M (µ) are given by

s̄N (µ) = sN (µ) +
1
2

∆N,M (µ), (24)

∆N,M (µ) =
1
τ

(sM (µ)− sN (µ)) (25)

for some τ ∈ (0, 1). For our purposes here, we shall consider
M = 2N .

A.2 Properties

We consider in this section the validity of our lower and
upper estimators, and the sharpness of our output bound
gap ∆N,M (µ). We would like to prove the lower and upper
effectivity inequalities

1 ≤ ηN,2N (µ) ≤ Const, (26)

where the effectivity of the approximation, η, is defined as

ηN,2N (µ) =
∆N,2N (µ)

s(µ)− sN (µ)
·; (27)

the lower effectivity inequality ensures bounds; the upper ef-
fectivity inequality ensures sharp bounds. In fact, we will
only be able to demonstrate an asymptotic form of this in-
equality; and furthermore, we shall require the hypothesis
that

εN,2N (µ) ≡ s(µ)− s2N (µ)
s(µ)− sN (µ)

→ 0 as N →∞. (28)

This assumption is certainly plausible: if our a priori bound
of (16) in fact reflects asymptotic behavior, then s(µ) −
sN (µ) ∼ c1e

−c2N , s(µ) − s2N (µ) ∼ c1e
−2c2N , and hence

εN,2N (µ) ∼ e−c2N , as desired.



We can then prove the lower effectivity inequality (bound-
ing property): s−N,2N (µ) ≤ s(µ) ≤ s+

N,2N (µ), as N → ∞. To
prove the lower bound we again appeal to (15) and the co-
ercivity of a; indeed, this result (still) obtains for all N . To
demonstrate the right inequality, we write

s+
N,2N = s+

(
1
τ
− 1
)

(s− sN )− 1
τ

(s− s2N )

= s+
(

1
τ

(1− εN,2N )− 1
)

(s− sN ). (29)

We now recall that s(µ)− sN (µ) ≥ 0, and that 0 < τ < 1 —
that is, 1/τ > 1; it then follows from (29) and our hypothesis
(28) that there exists a finite N∗ such that

s+
N,2N (µ)− s(µ) ≥ 0, ∀ N > N∗. (30)

This concludes the proof: we obtain asymptotic bounds.
We now prove the upper effectivity inequality (sharpness

property). From the definitions of ηN,2N (µ), sN,2N (µ) and
εN,2N (µ), we directly obtain

ηN,2N (µ) =
1
τ

s2N (µ)− sN (µ)
s(µ)− sN (µ)

(31)

=
1
τ

(s2N (µ)− s(µ))− (sN (µ)− s(µ))
(s(µ)− sN (µ))

(32)

=
1
τ

(1− εN,2N (µ)). (33)

Since, from (15), we know that εN,2N (µ) is strictly non-
negative, it follows that ηN,2N (µ) is bounded from above by
1/τ for all N . It can also readily be shown that ηN,2N (µ) is
non-negative: since WN ⊂ W2N , it follows from (14), (15),
and standard variational arguments that s(µ) ≥ s2N (µ) ≥
sN (µ). We thus conclude that 0 ≤ ηN,2N (µ) ≤ 1/τ for all
N . Furthermore, from our hypothesis on εN,2N (µ), (28), we
know that ηN,2N (µ) will tend to 1/τ as N increases.

The essential approximation enabler is exponential con-
vergence: we obtain bounds even for rather small N and
relatively large τ . We thus achieve both “near” certainty
and good effectivities. We demonstrate this claim in Ta-
bles I and II in which we present the bound gap and effectivity
for our truss example of Section II-B; the results tabulated
correspond to the choice τ = 1/2. We clearly obtain bounds
for all N ; and we observe that ηN,2N (µ) does, indeed, rather
quickly approach 1/τ , particularly for the logarithmic (ran-
dom) distribution.

A.3 Computational Procedure

Since the error bounds are based entirely on evaluation
of the output, we can directly adapt the off–line/on–line
procedure of Section III-A.3. Note that the calculation of
the output approximation sN (µ) and the output bounds are
now integrated: AN (µ) and LN (µ) (yielding sN (µ)) are a
sub-matrix and sub-vector of A2N (µ) and L2N (µ) (yielding

s2N (µ), ∆N,2N (µ) and s±N,2N (µ)) respectively. The on–line
effort for this predictor/error estimator procedure (based on
sN (µ) and s2N (µ)) will require eightfold more operations
than the predictor procedure of Section III.

The essential computation enabler is again exponential
convergence, which permits us to choose M = 2N — hence
controlling the additional computational effort attributable
to error estimation — while simultaneously ensuring that
εN,2N (µ) tends rapidly to zero. Exponential convergence also
ensures that the cost to compute both sN (µ) and s2N (µ) is
“negligible”. In actual practice, since s2N (µ) is available,
we can of course take s2N (µ), rather than sN (µ), as our
output prediction; this greatly improves not only accuracy,
but also certainty — ∆N,2N (µ) is almost surely a bound for
s(µ)− s2N (µ), albeit an exponentially conservative bound as
N tends to infinity.

We note that the computational complexity and storage for
this method increases like O(Q); this represents a factor of Q
reduction in expense compared to our earlier approaches [7],
[8], [11], [14] and [16]. This approach is therefore particularly
advantageous in cases in which Q is large.

B. Noncompliant Outputs

We briefly discuss here the extension of the method of
Section IV-A to noncompliant outputs. As in Section III-
B, we begin by setting M > N , M even, and introduce
a parameter sample SM/2 = {µ1, . . . , µM/2} and associ-
ated “integrated” reduced-basis approximation space WM =
span {u(µn), ψ(µn), n = 1, . . . ,M}. We first find uM (µ) ∈
WM such that a(uM (µ), v;µ) = f(v), ∀v ∈ WM ; we then
evaluate sM (µ) = `(uM (µ)); and finally, we compute our up-
per and lower output estimators as

s±N,M (µ) = s̄N (µ)± 1
2

∆N,M (µ), (34)

where

s̄N (µ) = sN (µ) +
1
2τ

(sM − sN ) (35)

∆N,M (µ) =
1
τ
|sM (µ)− sN (µ)| (36)

and τ ∈ (0, 1). The effectivity of the approximation is defined
as

ηN,M (µ) =
∆N,M (µ)

|s(µ)− sN (µ)|
· (37)

We shall again only consider M = 2N .
As before, can prove that

1 ≤ ηN,2N (µ) ≤ Const as N →∞. (38)

The proof parallels that in Section IV-A.2. In particular, it
can again be shown [14] that

ηN,2N (µ)→ 1
τ

as N →∞; (39)



however, ηN,2N is no longer strictly bounded from above by
1/τ .

We present in Tables III (logarithmic distribution) and IV
(uniform distribution) the error, bound gap, and effectivity
for the noncompliant output of the truss example of Sec-
tion II-B; the results tabulated correspond to the choice
τ = 1/2. We clearly obtain bounds for all N ; and the ef-
fectivity rather quickly approaches 1/τ (in particular, for the
logarithmic (random) distribution, ηN,2N remains fixed at
1/τ = 2.0 for N ≥ 120).

V. System Architecture

A. Introduction

The numerical methods proposed are rather unique relative
to more standard approaches to partial differential equations.
Reduced–basis output bound methods — in particular the
global approximation spaces, a posteriori error estimators,
and off–line/on–line computational decomposition — are in-
tended to render partial–differential-equation solutions truly
“useful”: essentially real–time as regards operation count;
“blackbox” as regards reliability; and directly relevant as re-
gards the (limited) input–output data required.

But to be truly useful, the methodology — in particular
the inventory of on–line codes — must reside within a special
framework. This framework must permit a User to spec-
ify — within a native applications context — the problem,
output, and input value of interest; and to receive — quasi–
instantaneously — the desired prediction and certificate of fi-
delity (error bound). We describe such a (fully implemented,
fully functional) framework here: we focus primarily on the
User point of view; see [15] for a more detailed description of
the technical foundations and ingredients.

B. Overview of Framework
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A Sample Use Case of the Framework

We show in Figure 2 a virtual schematic of the frame-
work. The key components are the User, Computers, Net-
work, Client software, Server software, and Directory Ser-
vice. Each User interacts with the system through a selected
Client (interface) which resides, say, on the User’s Computer;
we shall describe briefly below two Clients. Based on direc-
tives from the User, the Client broadcasts over the Network
a Problem Label–Output Label Pair (e.g., Truss–Deflection).
This Pair is received by the Directory Service — a White
Pages — which informs the Client of the Simulation Resource
Locator “SRL” — the physical location on a particular Com-
puter — of a Server which can respond to the request. The
Client then sends the Input (µ P–tuple) Value to the desig-
nated SRL. The Server — essentially a suite of on–line codes
and associated input–output utilities — is awaiting queries
at all times; upon receipt of the Input it executes the on–line
code for the designated Output Label and Input Value, and
responds to the Client with the Output Value (s̄N ) and the
Half Bound Gap ( 1

2∆N ). The Client then displays or acts
upon this information, and the cycle is complete.

Typically many identical (as well as different) Servers will
be available, typically on many different Computers: there
are multiple instances of the on–line codes. The Directory
Service indicates to the Client the least busy Server so as to
provide the fastest response possible. In some cases Clients
may issue several Input Values — that is, L sets of P–tuples.
In this case the Directory Service will distribute the calcula-
tions over multiple (e.g., as many as L) Servers — in particu-
lar, Servers on multiple Computers — so as to respond more
quickly to this multiple–input query.

Our framework is clearly an example of “grid” computing,
similar to GLOBUS, NetSolve, and Seti@HOME, to name
but a few. Indeed, we exploit several generic tools upon which
grid and network computing applications may be built; for
example, we appeal to CORBA1 (standardized by OMG2)
to seamlessly manipulate the Server software as if it resided
on the Client Computer. We remark that our reduced–basis
output bound application is particularly well–suited to grid
computing: the computational load on participating Com-
puters (on which the Servers reside) is very light; and the
Client–Server input/output load on the Network is very light.
The network computing paradigm also serves very well the
archival, collaboration, and integration aspects of standard-
ized input–output objects.

C. Clients

We briefly describe here two Clients: SimTEX, which is a
PDF–based “dynamic text” interface for interrogation, ex-
ploration, and display; and SimLaB, which is a MATLAB–
based “mathematical” interface for manipulation and inte-
gration.

1Common Object Request Broker Architecture —
http://www.corba.org

2Object Management Group — http://www.omg.org



C.1 SimTEX

SimTEX combines several standardized tools so as to pro-
vide a very simple interface by which to access the Servers. It
consists of an authoring component, a display and interface
component, and an “intermediary” component. A particu-
larly nice feature of SimTEX is the natural context which
it provides — in essence, defining the input–output relation-
ship and problem definition in the language of the applica-
tion. The SimTEX Client should prove useful in a number
of different contexts: textbooks and technical manuscripts;
handbooks; and product specification and design sheets.

The actionable PDF version of an extended version of this
paper [14] (in which is embedded an actionable equation)
may be found on our website3; readers are encouraged to
access the electronic version [14] and exercise the SimTEX

interface; a brief users manual for which may be found again
on our website4. A more involved description of the SimTEX

client may be found in [15].

C.2 SimLaB

The main drawback of SimTEX is the inability to manipu-
late the on–line codes. SimLaB is a suite of tools that permit
Users to incorporate Server on–line codes as MATLAB func-
tions within the standard MATLAB interface; and to gener-
ate new Servers and on–line codes from standard MATLAB
functions (which themselves may be built upon other on–
line codes). In short, SimLaB permits the User to treat the
inputs and outputs of our on–line codes as mathematical ob-
jects that are the result of, or an argument to, other functions
— graphics, system design, or optimization — and to archive
these higher level operations in new Server objects available
to all Clients once registered in the Directory Service.

For example, once the Truss input–output relationship has
been incorporated into MATLAB (this is done by calling a
MATLAB script st2m), we may set the values for the four
components of the parameter vector by entering

p.values(1).value = 10;
p.values(1).name = ’H’;
p.values(2).value = 2.0;
p.values(2).name = ’t_t’;
p.values(3).value = 1.0;
p.values(3).name = ’t_f’;
p.values(4).value = 45;
p.values(4).name = ’theta’;

within the MATLAB command window. To determine the
output value and bound gap for this value of the 4–uple pa-
rameter, we then enter

[Stress, Bound_Stress] = Truss_Stress( p )

which returns

3http://augustine.mit.edu/jfe/jfe.pdf
4http://augustine.mit.edu/guided tour.pdf

Stress = 12.6354
Bound_Stress = 0.0037

where Stress corresponds to the improved predictor s̄2
N (µ)

(given by (24), our definition of s2
N (µ), and (10)) and

Bound Stress represents the half bound gap, 1
2∆N,M (µ). It

is also now possible of course to find all values of Stress
greater than 12.0 for θ in the range [30◦, 60◦] and all other
parameters fixed as in the list above. To wit, we enter

for i=1:100
p.values(4).value = 30+i*30/100;
t(i)=p.values(4).value;
[o(i),e(i)] = Truss_Stress(p);

end
plot(t(o<12.0),o(o<12.0),’b’); hold on; grid on;
plot(t(o>=12.0),o(o>=12.0),’r--’);

which generates Figure 3. Note that, through the expression
t(o<12.0), we now have the values of θ for which the stresses
are less than the specified critical value (here chosen to be
12.0).

30 35 40 45 50 55 60
8

10

12

14

16

18

20

Stress >= 12.0 

Stress < 12.0 

Fig. 3

(Nondimensionalized) Stress as a function of the truss-angle θ.

Obviously, once the on–line code is incorporated within
the MATLAB environment, we have the full functionality
of MATLAB at our disposal; and the rapid response of the
reduced–basis output bounds maintains the immediate re-
sponse expected of an interactive environment, even though
we are in fact solving — and solving reliably — partial dif-
ferential equations.
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