
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-002 January 14, 2008

Theories in Practice: Easy-to-Write
Speciﬁcations that Catch Bugs
David Saff, Marat Boshernitsan, and Michael D. Ernst

Theories in Practice: Easy-to-Write Specifications that
Catch Bugs

David Saff
MIT CSAIL

saff@mit.edu

Marat Boshernitsan
Agitar Software Laboratories

marat@agitar.com

Michael D. Ernst
MIT CSAIL

mernst@csail.mit.edu

ABSTRACT
Automated testing during development helps ensure that
software works according to the test suite. Traditional test
suites verify a few well-picked scenarios or example inputs.
However, such example-based testing does not uncover errors
in legal inputs that the test writer overlooked. We propose
theory-based testing as an adjunct to example-based testing.
A theory generalizes a (possibly infinite) set of example-
based tests. A theory is an assertion that should be true
for any data, and it can be exercised by human-chosen data
or by automatic data generation. A theory is expressed in
an ordinary programming language, it is easy for developers
to use (often even easier than example-based testing), and it
serves as a lightweight form of specification. Six case studies
demonstrate the utility of theories that generalize existing
tests to prevent bugs, clarify intentions, and reveal design
problems.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
tools

General Terms
Verification, Human Factors

Keywords
Theories, JUnit, testing, partial specification

1. Introduction
The traditional practice of testing is to execute software

on a few specific inputs and to check that the software’s
output or behavior is as expected for each input; often, this
process is automated in a testing framework. For example, a
developer could write a JUnit1 test for a square root routine:

1http://www.junit.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

@Test sqrRootExamples() {
assertTrue(sqrRoot(4) == 2);
assertTrue(sqrRoot(9) == 3);

}

Such example-based testing can be very effective at ex-
posing misunderstandings of the code, where a developer
believes the code to behave in one way but in fact it does
something different. Tests that can be run during software
development (due to use of regression testing or test-driven
development [10]) can be especially valuable for quickly de-
tecting code errors and clarifying designs.

Because it only uses developer-supplied data, example-
based testing falls short in two ways. First, the tester may
overlook important inputs, so bugs may remain in unex-
plored regions of the input space. Second, future maintain-
ers and clients may have insufficient information to correctly
generalize the intended behavior. Continuing the square root
example, what is the intended behavior when sqrRoot re-
ceives a negative input? Are inputs that are not perfect
squares permitted, and if so, how accurate is sqrRoot? May
sqrRoot ever return a negative square root?

We propose that testing frameworks should support, in
addition to example-based tests, the writing and execution
of theories,2 which are partial specifications of program be-
havior. Theories are written much like like test methods,
but are universally quantified: all of the theory’s assertions
must hold for all arguments that satisfy the assumptions.
Our implementation of theories appears in JUnit (version
4.4 and later). A developer using JUnit can write:

@Theory defnOfSquareRoot(double n) {
// Assumptions
assumeTrue(n >= 0);

double result = sqrRoot(n) * sqrRoot(n);

// Assertions
assertEquals(n, result, /* precision: */ 0.01);
assertTrue(result >= 0);

}

The assumeTrue clause states the assumption of the theory:
sqrRoot is intended to work on any non-negative double. If

2Theories are named by analogy with the scientific method:
whereas a test is a single repeatable experiment, a theory
is a general statement that may be invalidated by the right
future experiment. To paraphrase Karl Popper [17], “Good
test [data] kills flawed theories.”

sqrRoot has defined behavior on negative inputs, this may
be expressed in a separate theory.

A theory can be viewed in several ways. It is a universally-
quantified (“for-all”) assertion, as contrasted to an assertion
about a specific datum. It is a generalization of a set of
example-based tests. It is a (possibly partial) specification
of the method under test.

Likewise, a theory can be used in several ways. It can
be executed on a developer-provided set of data points. It
can be explored by automated tools to discover new data
points. It can be read by maintainers as documentation of
the original developer’s intent.

The goal of our research is to help developers find more
errors without expending any additional effort. We believe
that theories can be as easy to write as example-based tests
(especially when complemented by automatic data genera-
tion tools such as the one we have built: see Section 3.2)
Theories permit developers to express as little or as much
of the intended software behavior as they wish. Developers
need not interrupt their thought process to create a specific
example or a long series of examples, unless that is the easiest
way to approach the problem at the time. In our experience
(see Section 4), theories were the natural mode of expressing
a unit’s behavior twice as often as example-based tests.

Beyond our implementation of theory execution in JU-
nit, we have developed Theory Explorer, a tool that iden-
tifies overlooked theory inputs. We have collected experi-
ences from a development project using JUnit theories in
test-driven development. Finally, we have written theories
and used Theory Explorer to investigate released versions of
several popular open-source projects, finding bugs that ini-
tial development with theories would have prevented with
no additional effort.

Section 2 describes how the tests that developers write
often relate to the specifications they have in their heads.
Section 3 details the features of our tools for writing, run-
ning, and exploring theories. Section 4 reports the patterns
of development observed from one project using theories, and
Section 5 shows how theories would have benefited several
open source projects. Section 6 reviews related work. We
then wrap up with section 7.

2. Patterns of representing specifications in tests
A developer beginning to write an example-based test for

a feature may have in mind only a single example of what
should occur (“The absolute value of -3 is 3”), or a specifi-
cation that applies to many concrete values (“The absolute
value of a positive number is itself”), or all possible values
(“The absolute value of any number is non-negative”, or“The
absolute value of x is equal to the absolute value of -x”).

If the developer has a specific example in mind, an example-
based unit testing framework can capture it well. If, how-
ever, the developer has a more general specification in mind,
she must translate it to example-based tests. Sometimes,
this translation from general specification to specific tests
can be enlightening: the developer may find out that the
specification in mind was inadequate to fully determine the
proper result for a particular input. However, this transla-
tion loses information: the individual tests may suggest, but
cannot state or prove, how the feature should behave when
presented inputs other than those tested.

Reviewing the testing literature and existing JUnit tests,
we have found a number of ways that general specifications
are translated into JUnit tests. Software projects referenced
below are further described in Section 5

1. A happy path test provides one example of proper exe-
cution, but leaves room for bugs in error handling and
processing unexpected input.

2. Simple triangulation [1] provides several different in-
put/output pairs that clarify the specification of a pro-
cedure or method. The first test below appears to
intend that foo is the identity function. Adding the
second makes it clearer that foo may be the absolute
value function:

@Test public void fooThree() {
assertEquals(3, foo(3));

}

@Test public void fooNegThree() {
assertEquals(3, foo(-3));

}

This approach can be seen in Apache Commons Val-
idator’s ByteTest, which has test methods testByte,
testByteMin, testByteBeyondMin, testByteMax, testByte-
BeyondMax, and testByteFailure.

3. An abstract test case defines a common contract to be
upheld by several different instances of a class, in an
abstract class such as this:

public abstract class AbstractObjectTest {
public abstract Object getInstance();
@Test public void equalsItself() {
Object obj = getInstance();
assertTrue(obj.equals(obj));

}
}

Concrete test fixture classes can be extended from this
abstract base, overriding getInstance() to provide new
objects to be checked against the contract. In its most
common form, each class that implements the contract
will be tested by a single concrete subclass of the ab-
stract base. This pattern is seen in the Apache Com-
mons Collections project, in classes like AbstractTest-

Object, AbstractTestBag, and AbstractTestSortedBag.

4. Data-driven testing. Sometimes the desired behavior
of a feature can be easily represented as a table of re-
lated data in a database, file, or in-memory data struc-
ture. This table can be looped through, asserting that
the desired relationship between the data (for exam-
ple, calling a certain function on the inputs leads to
the outputs). A test written this way has little dupli-
cation, new tests are easily added by augmenting the
table, and scanning the table may be useful in under-
standing the method, if the rows are well chosen and
well arranged.

There are many possible implementations of this pat-
tern, including an explicit loop in a standard test method
(such as used in Jetty’s BufferTest.testBuffer, which
loops over three different implementations of Buffer), a

separate table-driven framework like FIT3, or explicit
support for data-driven tests in the most recent ver-
sions of frameworks like JUnit or TestNG.4

Both the abstract test case pattern and data-driven testing
pattern separate the data being tested from the assertions
being made about the data. Each can be used to support
one of two different styles of providing test data. A provided-
answer style depends on the desired output being explicitly
provided along with each set of input. This assertion method
uses provided-answer-style data:

public void assertAdditionWorks(int x, int y, int z) {
assertEquals(z, x + y);

}

Given a provided-answer-style test data set, it is impossi-
ble to automatically determine additional input parameters,
without referencing an external specification or reference im-
plementation.

A specification-style data set is used to verify a self-contained
specification, which contains within itself a description of the
correct behavior:

public void additionIsInverseOfSubtraction(int x, int y) {
assertEquals(x, (x + y) - y);

}

A specification-style data set can be infinitely extended:
the assertion should hold over the entire valid input space,
and the data chosen is recognized as an interesting subset.
This means that specification-style test data could be ex-
tended by automatic tools, given a common language for
specifications and test data. Theories are written in just
such a language, and are described in the next section.

3. Theory implementation
We have created two tools that support Java developers

who wish to write theories. JUnit 4.4 supports writing and
evaluating theories against defined data points. Theory Ex-
plorer explores theories to find new violating data points.

3.1 JUnit’s theory runner
We have added the ability to write and evaluate theories

in the core JUnit library, starting with version 4.4. A theory
is written as a method annotated with @Theory, and taking
one or more parameters. The method must be defined in
a class annotated with @RunWith(Theories.class), which can
contain both theory methods and traditional test methods
intermixed.

The body of a theory method states an assertion that is
universally quantified over every possible type-compatible
assignment of all the parameters. Theories hold over infinite
data sets, but test execution should be deterministic and
fast, so JUnit executes theories on a finite set of data points
written by the developer. These data points must be defined
in the same class, or one of its superclasses, as the values of
fields annotated with @DataPoint.5

3http://fit.c2.com
4http://www.testng.org
5Data points can also be gathered from the return values of
methods annotated with @DataPoint or the elements of arrays

For example, this theory says that every Object equals
itself, and it will be tested on a String, an empty List, and
a Date:

@RunWith(Theories.class) {
@DataPoint public static String DIGITS = "0123456789";
@DataPoint public static List EMPTY = new ArrayList();
@DataPoint public static Date TODAY = new Date();

@Theory public void equalsItself(Object object) {
assertTrue(object.equals(object));

}
}

Assumptions may be added to the beginning of a theory
method to further restrict which inputs are valid for evalu-
ating the assertion:

@Theory void equalObjectsEqualHashes(Object a, Object b) {
assumeTrue(a.equals(b));
assertTrue(a.hashCode() == b.hashCode());

}

If an assume* call fails, it throws an AssumptionViolatedEx-

ception. JUnit intercepts this exception, and silently moves
on to the next datapoint.6

With assumptions in place, the specification for every the-
ory method m is simple:

For any parameters pi with appropriate types,
m(p1, p2, ...) either returns normally or throws an
AssumptionViolatedException.

To verify that this specification holds, JUnit invokes the
theory with every possible supplied data point, and takes
one of three possible actions:

• If all possible parameter assignments violate the method’s
assumptions, the entire theory is marked as invalid, to
prompt the developer to look for valid inputs.

• If some parameter assignment causes an assertion to
fail, or an exception to be thrown, the failure is indi-
cated to the developer.

• If the theory passes on all assignments, the theory is
marked as passing.

We have also enriched JUnit’s support for example-based
tests with features originally intended to support theories.
JUnit tests can use assumptions to state the external con-
ditions on which a test relies, such as implicit inputs to the
tested example, which in theories may sometimes be made
explicit.

in fields annotated with @DataPoints. Finally, parameters can
be annotated with a custom value supplier, which can use
an arbitrary input-generation strategy (for an example, see
Section 4).
6The most common assumption is that the parameters to a
theory are not null, for example assumeNotNull(a, b). Future
versions of the theory tools will allow this assumption to
be implicitly applied in appropriate situations. The current
versions do require it to be explicitly included, but we have
left it out of our example theories for readability.

@Test public void filenameIncludesUsername() {
assumeTrue(File.separatorChar == ’/’);
assertEquals("configfiles/optimus.cfg",

new User("optimus").configFileName());
}

Here, the test assumes it is being run on a system that
uses a particular file path format. A test may also assume
it is being run while connected to the Internet, or against a
particular version of the domain code. When the assump-
tion does not hold, the test is “ignored”, indicating that the
assertions are meaningless in the current context.

Developers using previous JUnit versions have often writ-
ten their own custom assertion methods, such as assert-

ValidEmailAddress. It is cumbersome to require each such
assertion method to have several corresponding assumption
methods, such as assumeValidEmailAddress and assumeNot-

ValidEmailAddress. To make this easier, JUnit has adopted
the Matcher interface from the Hamcrest project7. This al-
lows all assertions and assumptions to be made as compar-
isons between a tested value and a testing Matcher, using
either the assertThat or assumeThat methods:

assertThat(output, validEmailAddress());
assumeThat(output, not(validEmailAddress()));
assertThat(output, both(validEmailAddress())

.and(containsString(".com")));

JUnit is widely used by Java developers—anecdotal ev-
idence from industry research [15] indicates that JUnit is
used by about 50% of end-user companies, 75% of open-
source projects, and 100% of independent software vendors
(ISV’s). Adding support for writing theories in JUnit has
the possibility of substantially raising the number of main-
stream developers accustomed to writing and reading partial
specifications, and amplifying the usefulness of new and ex-
isting tools for verifying those specifications.

3.2 Theory Exploration
Theory exploration is an automated process of discovering

new data points that violate a theory. This is accomplished
using a new tool, separate from JUnit, called Theory Ex-
plorer. When invoked on a theory, Theory Explorer uses an
input generator to find inputs that will cause the theory to
fail. If a failing input is found, the developer can add it to
the accepted data points, and determine how to make the
theory pass. This may mean fixing a bug in the tested code,
or making an implicit assumption from the implementation
explicit in the theory. By iterating through the developer’s
theories until no violating inputs are found, the theories are
made more precise, bugs are found, and the developers’ confi-
dence increases. Theory Explorer can also optionally report
inputs which cause the theory to pass, but which exercise
new paths through the tested code.

The input generator for Theory Explorer uses the Agitator
engine [2] from Agitar Software through its free web service,
JUnit Factory8. Traditionally Agitator is used to test imple-
mentation code. By contrast, we used its ability to analyze
code and create test inputs to search for theory violations.

The Agitator engine generates test inputs to achieve ba-
sis path coverage, while attempting to exercise every pos-

7http://code.google.com/p/hamcrest/
8http://junitfactory.com

sible outcome of theory execution (normal and assertion-
violating). The Agitator engine uses a combination of static
and dynamic analyses to iteratively explore a particular unit
of code. The dynamic analysis uses data values and cover-
age information from the preceding iteration to direct ex-
ecution along a particular code path. The static analysis
uses heuristic-driven path analysis to collect and solve input
value constraints that can cause execution to take a different
path from the one previously explored.

To achieve scalability and performance, the Agitator en-
gine makes several simplifications to traditional test-input
generation algorithms found in literature. These simplifica-
tions are supported by profiling and experimentation. For
instance, rather than trying to solve constraints for the en-
tire execution path, Agitator may consider only a part of
that path. While such an approach may not always direct
execution down the expected path, experimentation shows
it works well in practice and cuts down analysis time. Also,
Agitator unrolls loops and recursive calls until the control-
flow graph reaches a the size experimentally determined to
give the best trade-off between the completeness of the re-
sults and Agitator’s performance.

Agitator solves path constraints using a wide array of
generic and specialized constraint solvers. For instance, Agi-
tator includes a string solver for java.lang.String objects,
producing strings that satisfy constraints imposed by the
String API (e.g., a string that .matches(...) a regular ex-
pression). Similarly, Agitator includes several solvers for the
Java Collections classes.

In addition to using constraint solving and other sophis-
ticated methods for generating test inputs, Agitator uses a
few heuristics that often allow it to explore otherwise un-
reachable paths. Some of these include:

• For integer values Agitator tries to use 0, 1, -1, any
constants found in the source code, the negation of
each such constant, and each constant incremented and
decremented by 1.

• For string values Agitator generates random text of
varying lengths, varying combinations of alpha, nu-
meric, and alphanumeric values, empty strings, null
strings, any specific string constants occurring in the
source code.

• For composite objects Agitator achieves interesting ob-
ject states by calling mutator methods with various
auto-generated arguments.

• For objects in general, Agitator tries to reuse some of
the instances created during execution of the program.
Agitator uses heuristics to capture (and discard over
time) objects that are created during dynamic analysis.

In some cases, the Agitator engine lacks the information to
construct an object, or to put an object in the specific state
required to test a class. In those cases, users can define
“helper” methods that construct objects to seed test-input
generation.

3.3 Process
Developers who already use tests should find that theories

fit well into their workflow, with two modifications. First,

when a developer would have written a test for a feature,
it may be written either as an example-based test, a new
theory, or a data point for an existing theory, depending on
which best captures the developer’s intent.

Second, before writing a new test for a feature or checking
in the feature’s code, all theories for that feature should be
explored to make sure that no unexpected data points will
violate the existing specifications. If violations are found,
just one of the violating data points should be added to the
set of accepted data points. The developer should then work
on getting the theories to pass: the violating data point may
indicate a bug in the implementation that needs to be fixed,
or an assumption of the implementation that needs to be
explicitly stated in the theories.

Theories can be an especially useful addition to the toolkit
of a developer practicing test-driven development. A tradi-
tional starting point for test-driven development [1] is a very
simple failing example such as this:

@Test public void reverseAbc() {
assertEquals("edcba", reverse("abcde"));

}

Although this is an evocative example for a human reader,
it can be easily made to pass by a method that always returns
"edcba", or a method that sorts the characters in descend-
ing ASCII value. While such an implementation is obviously
wrong from inspection, it is often the case that well-meaning
maintainers can make such mistakes if they do not under-
stand the original intent of a method, or do not read the
tests. Another test goes a long way toward preventing such
errors.

With previous JUnit versions, the developer’s next step
may have been to introduce a new example reversing a dif-
ferent string, say "esuoh". It is more expressive, and useful,
to instead state a general theory, like this:

@Test public void reverseMakesTheFirstLast(String s) {
assertTrue(reverse(s).endsWith(s.substring(0, 1)));

}

Exploring this theory will automatically add three more
data points like these:

@DataPoint String STRING_2007_09_13_161154 = "testString";
@DataPoint String STRING_2007_09_13_161154_1 = "";
@DataPoint String STRING_2007_09_13_161154_2 = null;

This leads the developer to improve the definition of re-

verse, and also add new assumptions that s is neither null
nor empty, leading to new tests for these corner cases.

4. Test-Driven Development with Theories
To evaluate the use of theories (and to guide development

of the tools), we used theories in the development of Glinda,
a utility for reading and analyzing a log of developer activity.
Glinda displayes reports that can show that a developer is
running tests less often than the their own stated goal, or
that the number of compile warnings has increased since
yesterday.

Glinda is developed using test-driven development [10],
including theories (see Section 3.3): before starting any pro-
gramming task such as adding new functionality or fixing a
bug, the Glinda developer first writes a new test or theory.

This test or theory must fail at the time of writing, but pass
after the task is complete.

After two months of part-time development, Glinda con-
sists of 1700 non-test, non-comment, non-blank lines of code.
The test suite contains 51 acceptance tests (which assert the
exact textual output after reading an example log file, and
are therefore example-based) and 88 unit tests, of which 29
are example-based tests (JUnit @Test annotations) and 59
(67%) are theories (JUnit @Theory annotations).

We had assumed that a minority of unit tests would be
theories, and were surprised to find the opposite. Writing
theories was often easier than writing tests.

For example, a Goal such as “Run tests every hour” can be
paused, indicating that the developer has suspended the goal
to achieve some other, more urgent task. While this condi-
tion holds, any line in a status report about this goal should
contain the goal’s name, and a ’z’ character that serves as a
reminder that the goal should be eventually resumed. This
is true regardless of the previous state of the goal and the
time at which the status is requested. This is expressed in
this theory:

@Theory pausedStatus(GlindaTimePoint t, Goal goal) {
goal.pause();
assertThat(goal.status(t), containsStrings(’z’, goal));

}

Parameterizing over the time of the request and the goal is
a convenience for the developer, who does not have to deal
with the tedium of choosing a specific time point or goal
name. It also makes the theory more expressive, and enables
Theory Explorer to find more bugs. Likewise, it’s easier
to assert a few substrings from the desired result than to
construct the entire correct status line. It’s also more robust
in the face of changes to the status line format that should
not concern this theory. Those changes can be reflected in a
single example-based test like this:

@Test
public void pauseProjects() {

// input
read("#startGoal SecurityAudit");
read("#pause SecurityAudit");

run("status");

// output
assertWrote("status:");
assertWrote("z SecurityAudit (paused)");

}

When testing with theories, designs that make writing the-
ories easier are more attractive. For example, Glinda’s log
scanning and parsing functionality is encapsulated in less
than 300 lines of code, meaning that the remainder of the
model classes never deal with any unparsed strings. While
this is desirable in a well-designed system, we found that we
were much more vigilant in maintaining this division of re-
sponsibilities than we have been in similar, earlier systems.
When only example-based tests are available, being able to
pass literal strings to domain code can actually make the
tests easier to write. With theories, one would rather quan-
tify by the parsed data type than make complicated assump-
tions about the format of a String.

Theory Explorer helped to push important design deci-
sions earlier. For example, we originally wrote one theory

that said that any goal in good standing should have a ’>’

prefix character in its status line. Another theory (shown
above) says that any paused goal should have a ’z’ in its
status line. Theory Explorer quickly suggested a goal that
was both paused and in good standing, which must violate
one theory or the other. With example-based tests, this con-
flict in assumptions might have persisted much longer.

We now present some additional observations based on our
use of theories.

Example-based tests triangulate to theories. We
often started with a few concrete examples, especially when
the final specification was not obvious early in development,
or when the specification was not easy to fully capture.
Then, we generalized from those examples to a theory.

A simple example was this test for the toString method
on a Matcher for a time interval:

@Test atLeastToString() {
assertThat(atLeast(hours(3)).before(2007jan1()).toString(),

is("at least 3 hours before 2007-01-01 12:00:00"));
}

Providing a second hard-coded example would be tedious,
would add nothing to the human understanding of the method,
and would be unlikely to cover important corner cases, so we
next added this theory:

@Theory allDataInAtLeastToString(int h, GlindaTimePoint date) {
assertThat(atLeast(hours(h)).before(date).toString(),

containsStrings(hours, date.getYear()));
}

We retained or added example-based tests even after writ-
ing theories. An example can quickly lead a reader to an in-
tuitive grasp of the desired functionality, but a theory helps
make clear which aspects of the example are necessary, and
which are arbitrary.

Declarative and constructive theories. Typically, a
theory is declarative: it states a property that holds for any
inputs to a method that satisfy certain assumptions. Alter-
nately, a theory can be constructive: it constructs a specific
concrete input for one or more of a method’s parameters. A
constructive theory can be thought of as combining example-
based testing (use of specific values for some parameters,
with the attendant loss of generality) with theories (use of
arbitrary values for other parameters). Constructive theo-
ries were most valuable when the given object was complex,
when multiple objects needed to be in a certain relation to
one another, or when it was not possible to concisely describe
the value’s state.

Our theories constructed inputs more often for the receiver
than for other parameters. Here is an example of a construc-
tive theory that creates a Goal and then mutates it into a
desired state.

@Theory trackedValuesPersist(GlindaTimePoint now,
String goalName, double value) {

Goal goal = new Goal(goalName);
goal.track(now.minus(DAYLENGTH).minus(hours(1)), value);
assertThat(goal.yesterdaysValue(now).value(), is(value));

}

Using data points in multiple theories. A data point
that was useful for one test class (for example, a string with
a space in it) often revealed bugs in other classes. JUnit 4.4
allows each test class to have its own set of datapoints to be

checked against theories, but most of our test classes inherit
from a base class, GlobalDataPoints, which contains 14 data
points representing several important data types in our sys-
tem. Some test subclasses add data points to exercise their
particular theories. Since JUnit automatically throws out
any data point that fails a theory’s assumptions, providing
extra data points does not produce false failures, although
too many data points could conceivably slow down execution
of a large test suite.

Stub generation. In some cases, Glinda’s analysis de-
pends on input from the developer beyond what is indicated
in the log. For example, Glinda may ask the developer
whether a particular task in the log benefited a particular
stakeholder, in order to determine which stakeholders are
benefiting most from the developer’s efforts.

When testing features that require user interaction, it is
too expensive to require a human tester to provide all the
desired answers. Thus, all user questions are submitted to an
instance of the Correspondent interface, which may ask the
user for an answer, or calculate the answer in some other
way.

Traditionally, a test of a method that depends on the Cor-
respondent interface would use a hand-written stub imple-
mentation. However, understanding such a test requires un-
derstanding the stub, which gets in the way of understanding
the actually-tested functionality. For example, it is not ob-
vious what the result of this call should be, without learning
more about StubCorrespondent:

new StubCorrespondent("bug137", "true").getAnswer("bug138");

Instead, the Glinda test suite registers a custom parameter
value supplier (named Diabol) with JUnit to generate values
for parameters annotated with @Stub. This enables a theory
like this:

@Theory public void asksToEvaluateBenefit(
@Stub Correspondent correspondent) {

assumeThat(correspondent.getAnswer(
"Does the king benefit from bug137?",
IdeaList.INTEREST_ANSWERS),

is("true"));

book.idea("bug137");
book.setCorrespondent(correspondent);
assertThat(book.evaluateBenefit("the king"),

hasItem(containsString("true")));
}

First, Diabol supplies a Correspondent to the theory that
simply guesses at the right return value to each method call.
If the supplied guess fails an assumption, JUnit supplies Dia-
bol with the details of the value supplied and the assumption
that failed, available from the parameters to the assumeThat

method. The custom runner builds a new Correspondent

based on this feedback, which will make guesses that are
more likely to satisfy the theory’s assumptions. This iter-
ation continues until either all assumptions are satisfied or
the value supplier gives up.

We call this method of generating collaborators for theo-
ries “diabolic execution”. It is similar to concolic execution,
as proposed by Sen et al. [20], but uses run-time dynamic
information instead of static analysis, allowing it to be run
on-the-fly during test execution.

In future work, we hope to make this automatic stub gen-
erator generally available outside of Glinda.

5. Case Studies in Bug Finding
Section 4 discussed our experience using theories during a

software development project. This section presents five ad-
ditional case studies of projects that were developed without
theories, but with JUnit tests. We wish to answer whether
use of theories could have improved the code quality of these
projects without requiring any more effort.

Our methodology is to examine the project’s existing JU-
nit tests, looking for sets of tests that obviously suggest an
easily-stated general principle. In other words, we looked for
a test or set of tests that easily generalized to a corresponding
theory. We rejected any theory that would have taken more
time to write than the original example-based tests. We
found that theories were easiest to write against code with a
loosely-coupled, object-oriented design, and that clear con-
tracts in the code were often reflected in clear specifications
translated to tests. Averaged across all code, we found that
about about 25% of tests were immediately generalizable to
theories. Again, we did not write any new tests or theories,
but simply wrote theory versions of already-existing tests.

We then ran Theory Explorer to find violating data points.
In some cases, the data points indicated assumptions that
were implicit in the test, but needed to be made explicit for
the theory. For example, a specification-style data-driven
test for implementations of the Buffer class in Jetty (Sec-
tion 5.3) looped over three Buffer implementations. By con-
struction, each had a capacity of 10 bytes, and the corre-
sponding theory failed if any larger or smaller Buffer was
submitted. So the theory needed an assumption stating that
the capacity was 10 bytes.

We worked for four hours or until we found a new, un-
documented bug. In three of the cases, a bug was found in
under three hours, with no more than five theories written;
two of these bugs were unknown to the projects’ maintain-
ers. In the other two, characteristics of the test suite and the
domain code resulted in either no tests that could be made
into theories, or theories that our Theory Explorer could not
generate input for.

Three hours may seem a long time to find a bug. However,
we spent most of the time understanding the code base and
test suite, which we were seeing for the very first time. The
theories theories were in many cases smaller than the tests
they were based on. Our experience suggests the following:

1. Many developers do think in terms of general specifi-
cations and contracts, which translate more easily to
theories than to specific tests.

2. Writing theories, when appropriate, need take no longer
than writing the tests a developer would have written
without theories available.

3. In some cases, writing and exploring a theory will catch
a bug that would otherwise have been released to users.

5.1 Time and Money
Time and Money9 is a library implementing time and cur-

rency domains in a fluent interface based on Domain-Driven
Design.[7]. We began looking at tests for implementations of
Interval. An Interval defines a range of values between two
endpoints, which may be inclusive or exclusive. We found a

9http://timeandmoney.domainlanguage.com/

test that asserted that the complement of a particular Inter-
val relative to itself is empty:

public void testRelativeComplementEqual() {
Interval c1_7c = Interval.closed(new Integer(1),

new Integer(7));
List complement = c1_7c.complementRelativeTo(c1_7c);
assertEquals(0, complement.size());

}

This is true not only of closed intervals between 1 and 7,
but of any Interval. The theory version was easier to write
than the test:

@Theory
public void relativeComplementOfSelfIsEmpty(Interval i) {

List complement = i.complementRelativeTo(i);
assertEquals(0, complement.size());

}

Theory Explorer found a violating Interval, an instance of
the subclass ConcreteCalendarInterval whose lower limit is
higher than its upper limit. The implementation of Interval
maintains the invariant that the lower limit of Interval is less
than the upper limit of Interval, which is assumed through-
out its implementation. ConcreteCalendarInterval circum-
vents this protection by calling a protected constructor of
Interval that is marked as follows:

//Only for use by persistence mapping frameworks
//<rant>These methods break encapsulation
//and we put them in here begrudgingly</rant>

This bug has been submitted to the maintainers of Time
and Money.

5.2 Commons Collections
Apache Commons Collections10 enhances the JDK collec-

tion classes by providing new interfaces, implementations,
and utilities. Our study focused on implementations of the
Bag interface, for collections that have a number of copies
of each object. After writing three theories, we discovered a
bug. The following theory throws a ClassCastException when
bag is a TreeBag, and item does not implement Comparable:

@Theory
public void bagAddItemToContainIt(Bag bag, Object item) {

try {
bag.add(item);

} catch (Exception e) {
assumeNoException(e);

}
assertTrue(bag.contains(item));

}

TreeBag is a SortedBag, so its elements must implement
Comparable. According to the Collection documentation,
contains may optionally throw a ClassCastException if item

is not of the right type. However, add is required to throw an
exception under the same conditions, and it does not. Thus,
bag can be put into an inconsistent state. This bug has been
submitted to, and accepted by, the Collections committers.

10http://commons.apache.org/collections/

5.3 Jetty
Jetty11 is a HTTP Server and Servlet container. We looked

at the tests written for implementations of the BufferCache

cache and Buffer interface for read-write buffers of bytes
and the and used those to write five theories. Many of the
tests for the Buffer classes were written as specification-style
data-driven tests, making theorization easy.

We found a bug in View, which implements Buffer. View.compact

has an empty implementation (consisting only of the com-
ment “// TODO”), which means that the underlying buffer
is uncompacted, leading future calls to the View to break
their contract. Since View is not supposed to change the
underlying buffer, it should probably throw an Unsupported-

OperationException. Instead, it silently accepts the method
call, leading clients to falsely believe the state has changed.
This problem is not indicated in the documentation or bug
database, and the uninformative comment does not make
it clear if the developer realized that leaving the implemen-
tation blank violated the Buffer contract. We notified the
developers and asked for verification.

We found no bugs in BufferCache, but replacing the tests
with theories made them much more readable. The existing
tests constructed an array and a long string that had non-
trivial relationships to each other: all elements of the array
were in the string except array[0], and the string in array[i]

could always be found at index string[i*2-2]. By general-
izing over all String arrays, explicitly constructing a large
string containing the array elements, and making separate
theories for cache hits vs. cache misses, the intent was made
much clearer to future maintainers.

Finally, writing theories for the Buffer implementations
exposed the fact that it is very easy in Jetty to construct a
Buffer with an inconsistent internal state: for example, with
its read index larger than the total size. While this is a com-
mon design decision made for performance reasons, it can
lead to confusing bugs-at-a-distance for clients: developing
with theories may have led the Jetty developers to either
disallow constructing Buffers with inconsistent states, or at
least provide an isInValidState method to simplify clients
and tests.

5.4 Commons Validator
The Apache Commons Validator12 project provides a con-

figurable engine for validating user input against a set of
validation rules, which may vary by locale.

Validator has few tests that are easily translated into the-
ories. Although Validator uses the abstract test case pat-
tern in several places, (such as an AbstractNumberValida-
torTest superclass of all NumberValidator implementations)
the tests are written in a provided-answer style, rather than
a specification style. This is a reasonable choice given the
largely procedural code being tested, but it isn’t the only
possible choice. If, for example, the e-mail validation tests
had been written with theories based on the standard (RFC
822), the following theory could have been written, and read
as “an e-mail address can contain a space only if it the ad-
dress also contains quotes”:

@Theory addressWithSpaceHasQuotes(String address) {
assumeThat(address, containsString(’ ’));

11http://www.mortbay.org/
12http://commons.apache.org/validator/

assumeTrue(validEmailAddress(address));
assertThat(address, containsString(’"’));

}

5.5 Eclipse JDT
We looked at the QuickAssist functionality of the Eclipse

IDE’s Java Development Tools13. This code has deep de-
pendencies on static state and would require heavy mocking
to isolate and test. Although the input generator for Theory
Explorer does support creating mock objects for some col-
laborators, the theories written for the JDT would require
many more mocked method calls than are allowed by Agita-
tor’s heuristic limits.

There are two lessons learned from this. First, handling
code that requires more extensive mocking is an important
challenge for future work. However, the untestability of the
code is more a function of its structure: to get one of the
objects on which this feature depends requires a chain of
seven static method calls, which would be even harder for a
human developer to find than an automated tool. Thus, an
improved design would be easier to use by future program-
mers, and easier to manually and automatically test.

6. Related work
Design by contract [14] (DbC) and, more recently, contract-

driven development [13] attempt to make it easy and prof-
itable for developers to write general specifications for pro-
gram components, by writing preconditions and postcondi-
tions on methods that are enforced at runtime. Java devel-
opers can use a suite of tools based on the Java Modeling
Language (JML) [12] to write and verify contracts in Java
comments. The jmlunit [3] tool is similar to the JUnit the-
ory runner, in that it loops through a set of user-supplied
data points to look for contract violations.

However, whereas a contract must describe the behavior of
every conceivable invocation of a method, a theory can tackle
just the subset the developer wishes to think about now.
Theories can construct, rather than describe, some of their
inputs, possibly using mutators (see Section 4), an option
not available in a contract. Theories can be independently
“scoped” by assumptions, whereas general contracts are re-
quired (by design) to apply in all cases. Finally, theories are
specified in a separate code unit, where they can be added,
removed, executed, hypothesized, read, and explored with-
out changing or cluttering the implementation code. These
advantages make it easier for a developer’s intentions to be
written and verified in theories than in contracts.

Theories are closely related to parameterized unit tests [21]
(PUT), first investigated by Tillman and Schulte as a tech-
nique for unit test generation. A PUT is very similar to
what we have called a theory: a true statement parameter-
ized over possible inputs. Tillman and Schulte found that
using symbolic execution and an exhaustive set of PUT’s
for all of a method’s collaborators, a minimum set of test
cases can be generated that will exercise all code paths in
the tested implementation. By writing fresh PUTs based on
documentation, they found three bugs in the implementa-
tion of collection classes from the .NET Framework. They
do not compare the difficulty of writing the complete set of

13http://www.eclipse.org/jdt/

required PUTs to creating the original tests for the frame-
work, or whether product groups had the skills to write ef-
fective PUTs.

Where Tillman and Schulte generate provably minimal
test suites based on complete specifications, we accept heuris-
tics that generate data points designed to exercise as many
code paths as possible in a short time. This allows us to drop
the requirement for complete specification of a method’s
collaborators. We are also using JUnit’s theory support,
which is built into a popular, widely available unit-testing
framework, and enables several syntactical shortcuts for con-
venience, including reusing a single declared datapoint for
many different theory parameters. By minimizing the effort
required to begin seeing feedback from the technique, it may
become more profitable for a wider range of developers and
programs.

Specification-based static analysis tools have long been
a favorite topic for research. Tools such as Alloy [9], Bo-
gor [18], JPF [11], and ESC/Java [8] traditionally rely on a
separate specification language or built-in contracts to de-
tect bugs in the code. Built-in contracts provide a useful
but limited form of specification, mostly describing obvi-
ously faulty conditions: deadlocks, in-line assertion viola-
tions, or uncaught exceptions. Programmer-written speci-
fications can be more revealing in catching errors, but are
rarely supplied. Theories offer a mid-point: while not as ex-
pressive as most specification languages, they are designed
to be lightweight and more palatable to programmers.

Random testing, most recently implemented for Java by
Pacheco et al. in a tool called Randoop [16], offers a tech-
nique for searching large input spaces for contract violations.
The contracts checked by Randoop consist of a handful of
built-in invariants, such as checking the reflexivity of the
equals method. JCrasher [5], another random-testing tool
for Java, checks only a single contract that no method is
permitted to throw an undeclared runtime exception. Both
Randoop and JCrasher can benefit from the existence of the-
ories, functioning essentially as tools for theory exploration.
The QuickCheck tool for Haskell [4] applies random inputs
to developer-written specifications to find errors. However,
it does not incorporate example-based testing as JUnit does.

Generating stubs for an object’s collaborators, as our Dia-
bol value generator does (see Section 4), is a recurring theme
in unit test generation. Stubs may be generated from ob-
serving program executions [19], JML specifications [6], or
symbolic execution of the test that uses them [22].14 One
advantage of Diabol is that the assumptions it attempts to
use for stub generation can be re-used to verify hand-written
stubs, or assumption-passing data points from the data pool
can be used as stubs, if the automatic generation fails.

7. Conclusion
We have found bugs that resulted from overlooked valid

inputs in open-source projects. Each bug violates a specifi-
cation that can be easily guessed from examining the exam-
ples chosen in unit tests written by the developer. It is very
likely that writing a theory would have required no more

14Many of these generated test doubles are called mocks, but
a true mock object verifies the calls made to it, which is
only done in [19]. The others actually generate stubs, as
does Diabol.

effort than writing the tests, and using a tool like Theory
Explorer would have caused these bugs to be recognized and
fixed before release.

Many efforts have been proposed to make writing specifi-
cations profitable for developers. By building theories into
JUnit, we have made writing a specification no harder than,
and as immediately useful as, writing a test. An exploration
tool, Theory Explorer, uses an intelligent, heuristically-driven
input generator to find oversights, amplifying the developer’s
testing effort.

We enjoy developing with theories, and are continuing to
find new ways to use them, such as Diabol, a natural way
to generate stubs. We look forward to learning more from
other developers who begin using the theory support already
in JUnit, and the upcoming Theory Explorer release.

8. Acknowledgement
This work is supported by an Agitar Research Fellowship.

9. References
[1] K. Beck. Test-Driven Development: By Example.

Addison-Wesley, Boston, 2002.

[2] M. Boshernitsan, R. Doong, and A. Savoia. From
Daikon to Agitator: lessons and challenges in building
a commercial tool for developer testing. In ISSTA ’06:
Proceedings of the 2006 international symposium on
Software testing and analysis, pages 169–180, New
York, NY, USA, 2006. ACM Press.

[3] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
B. Magnusson, editor, ECOOP 2002 - Object-Oriented
Programming, 16th European Conference, Malaga,
Spain, June 10-14, 2002, Proceedings, volume 2374 of
Lecture Notes in Computer Science, pages 231–255.
Springer, 2002.

[4] K. Claessen and J. Hughes. QuickCheck: A lightweight
tool for random testing of Haskell programs. In Proc.
of International Conference on Functional
Programming (ICFP). ACM SIGPLAN, 2000.

[5] C. Csallner and Y. Smaragdakis. JCrasher: an
automatic robustness tester for Java. SPE 2004,
34(11):1025–1050, Sept. 2004.

[6] X. Deng, Robby, and J. Hatcliff. Kiasan/kunit:
Automatic test case generation and analysis feedback
for open object-oriented systems. Technical report,
Kansas State University, 2007.

[7] E. Evans. Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-Wesley
Professional, 2004.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for java. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 234–245,
New York, NY, USA, 2002. ACM Press.

[9] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, 2002.

[10] D. Janzen and H. Saiedian. Test-driven development:
Concepts, taxonomy, and future direction. Computer,

38(9):43–50, 2005.

[11] S. Khurshid, C. S. Pasareanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. In H. Garavel and J. Hatcliff, editors,
Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference,
TACAS 2003, Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003,
Proceedings, volume 2619 of Lecture Notes in
Computer Science, pages 553–568. Springer, 2003.

[12] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of jml: a behavioral interface specification
language for java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

[13] A. Leitner, I. Ciupa, O. Manuel, B. Meyer, and
A. Fiva. Contract driven development = test driven
development: writing test cases. In ESEC-FSE ’07:
Proceedings of the 6th joint meeting of the european
software engineering conference and the 14th ACM
SIGSOFT symposium on Foundations of software
engineering, pages 425–434, New York, NY, USA,
2007. ACM Press.

[14] B. Meyer. Eiffel: the language. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1992.

[15] T. Murphy. personal communication from Research
Director with Gartner, 2007.

[16] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE
’07, pages 75–84, Washington, DC, USA, 2007. IEEE
Computer Society.

[17] K. R. Popper. Knowledge and the Mind-Body Problem.
Routledge, 1993.

[18] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an
extensible and highly-modular software model checking
framework. In ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 267–276,
New York, NY, USA, 2003. ACM Press.

[19] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst.
Automatic test factoring for java. In ASE ’05:
Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages
114–123, New York, NY, USA, 2005. ACM Press.

[20] K. Sen, D. Marinov, and G. Agha. Cute: a concolic
unit testing engine for c. SIGSOFT Softw. Eng. Notes,
30(5):263–272, 2005.

[21] N. Tillmann and W. Schulte. Parameterized unit tests.
SIGSOFT Softw. Eng. Notes, 30(5):253–262, 2005.

[22] N. Tillmann and W. Schulte. Mock-object generation
with behavior. In ASE ’06: Proceedings of the 21st
IEEE International Conference on Automated
Software Engineering (ASE’06), pages 365–368,
Washington, DC, USA, 2006. IEEE Computer Society.

