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Abstract

Production planning in premium fresh produce supply chains is challenging due to the

uncertainty of both supply and demand. A two-stage planning algorithm using mixed integer

linear programming and Monte Carlo simulation is developed for production planning in the case

of a premium branded tomato. Output from the optimization model is sequentially input into the

simulation to provide management with information on expected profit and customer service

levels at the grocery retail distribution center. The models are formulated to incorporate

uncertainty in demand, yield, and harvest failure. The outcome of the algorithm is an annual

production plan that meets minimum customer service requirements, while optimizing profit.

The resulting timing, location, and quantity of acres suggested by the algorithm are evaluated

against the current industry heuristic of performing deterministic calculations, based on average

yield and demand, and then planting double the required acreage. The suggested two-stage

planning algorithm achieves 90 percent customer service with 20 percent less planted acres and

almost three times as much profit than the industry heuristic of doubling the acreage.

Thesis Advisor: Ed Schuster

Title: Research Engineer, Laboratory for Manufacturing and Productivity - Data Center Program
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1 Introduction

Trends in consumer preferences and production innovations are changing the agriculture and

food marketplace. There are an increasing number of differentiated food products that appeal to

specific consumer values, such as environmental-friendliness or locally grown. Furthermore the

success of specialty retailers, such as Trader Joe's @ and Whole Foods Market@', demonstrates

that high-quality, high-margin agriculture can be sustainable and successful in mainstream

grocery retail.

The growth of successful niche agriculture markets brings both opportunities and risks to

agriculture and food supply chains. The opportunity to differentiate agriculture produce and earn

price premiums provides a welcome alternative to producers who lack the scale to compete

effectively in commodity markets. On the other hand, high product value and limited market

demand creates greater incentives to avoid under or over-supply situations. These premium fresh

produce supply chains must balance customer service requirements against costly agriculture

production investment. Targeting a specific quantity of demand makes production planning

particularly challenging, given the inherent biological and environmental uncertainties in

agriculture. This research suggests a more sophisticated production planning approach that will

help production managers make better decisions that increase profitability while recognizing

demand and supply risks.

Trader Joe's@ and Whole Foods Market @ are registered trade marks of the respective companies
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1.1 Growth in premium food and agriculture supply chains

The market opportunity for premium food products is being driven from both ends of the food

and agriculture supply chain (Figure 1). Agricultural input suppliers are developing and

providing seeds with superior genetic traits to meet the needs of food processors and consumers.

A current example is soybeans with an improved fatty acid profile that allows food producers to

lower or eliminate trans-fatty acids when frying (using the soy oil). At the same time, consumers

are increasingly aware of how their food is being produced and are willing to pay a premium for

products produced in alignment with their individual values. These market trends are creating

opportunities for smaller farmers who do not have the economies of scale to compete with large

corporate commodity farms. Farmers who are able to implement unique processes in production

and post-harvest handling of produce can brand their products and earn price premiums at the

wholesale and retail levels. In the fresh produce market segment, organics are a successful

example of product differentiation through unique production processes and branding. Other

examples include differentiation by geography, such as being "local" or from a specific region,

or specialization in less common species, varieties, or breeds, such as Indian River citrus or Kobe

beef.

Ag Input Intermediate Retail/
Suppliers A Processing Consumption

Figure 1: Simplified food and agriculture supply chain
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1.2 Risks in premium food and agriculture supply chains

In traditional U.S. commodity agriculture, the primary goal is to maximize production at the

minimal cost - assuming nearly unlimited demand. U.S. farmers are accustomed to a well

functioning commodity market where they sell everything they produce at a price that usually

covers their cost of production. De-commoditization of a market, through differentiated premium

products, provides welcome opportunities for earning higher margins, but also brings increased

risks.

One major risk of differentiated production is mismatching supply and demand. Differentiated

products no longer have seemingly unlimited demand, due to their premium price, or unique

characteristics that appeal only to select customer segments. These products often require higher

investment in planting, producing, processing, and distribution, so overproduction is more costly

than with a commodity product. Excess production will spoil, be sold at undesirable margins, or

may appear in alternate unapproved channels. The last two of these three consequences can have

far reaching negative impacts on the product brand image. Furthermore, when demand is not

met, customer satisfaction will suffer more with a differentiated premium product than it would

with a commodity product because of the inherent lack of substitutes. Economically, the

opportunity cost of unsold items is also much greater with a premium product, simply because of

the higher product margin.

Matching supply and demand is an important problem across all industries. The ability to

correctly scale production and distribution of goods to meet market needs can define success or
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failure for a company. In agriculture and food supply chains, this problem is exacerbated by the

biological nature of the production process. Production planning decisions are made months

before actual demand is realized, with little to no flexibility to change the production system

during the growing season. Few industrial products have such inflexible production schedules

combined with long lead times. Additional production planning difficulties arise from

unpredictable environmental conditions that influence the quantity actually produced, if

production occurs at all. High winds, frost, hail, and even excessive amounts of rain, for

example, can decimate a farmer's crop in a matter of hours. In addition, the increasing variability

in fuel cost must be considered as many crops are transported significant distances to reach

consumers.

1.3 Research question

This thesis seeks to improve the process of matching supply to demand in differentiated premium

food and agriculture supply chains, by focusing on supply decisions. The supply decisions in

agricultural production are:

" How many acres to plant

" Which crops to plant

" Where to plant

" What times to plant.

These decisions are under control of the production manager, whereas demand is typically

determined by the market. Alternatively, demand management in food and agriculture supply
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chains is also a very effective lever for matching supply and demand and is an area that warrants

further research. For the scope of this analysis, however, it is assumed that demand will not be

proactively managed.

This research focuses on the reality of managing the risk from both demand and supply

uncertainties in food and agriculture supply chains. For traditional commodity agriculture,

demand is less of a concern because the market will adjust by finding a market-clearing price.

Therefore, price variability is traditionally the primary marketing concern for commodity

agriculture. The opposite problem exists for premium agriculture supply chains because niche

products command a premium price, but demand may be highly unpredictable, particularly for

new products. Furthermore, since there may be no direct substitutes for a premium product,

producers must consider the impact of their decisions on customer service levels.

A specific case of managing risk in a real premium fresh fruit and vegetable supply chain is

analyzed. A two-stage planning algorithm, involving mathematical modeling for decision-

making, is presented that enables a supply chain integrator to make production decisions that

maximize profit through better alignment of supply with demand. A unique aspect of this model

is that it incorporates the various risks associated with food production and distribution. The

model output is the optimal number and timing of acres to plant among different geographies to

meet a minimum customer service level at the grocery retail distribution center.
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1.4 Motivation

The primary motivation of this thesis research is to help fresh produce supply chains become

more profitable. Improved profitability will be achieved by better matching supply to demand

through improved recognition and management of risk. In addition, there are also indirect

benefits from improving the profitability of premium food and agriculture supply chains. These

include sustainable opportunities for farmers, particularly smaller family farms, and improved

access, in terms of pricing and availability, to high quality fresh fruits and vegetables for

consumers.

This research thesis is specifically focused on developing tools that help premium fresh produce

supply chains make more money with less risk. This increased profitability is achieved through

improved production planning that reduces waste throughout the system, ensures a consistent

supply, and better quantifies risks from supply and demand uncertainties.

It should be emphasized that if oversupply occurs, produce will go to waste. Excess production

will most likely be left in the field to rot or be tilled into the soil. If this happens, the objective

becomes a minimization of cost associated with the unused perishable product. If it is possible to

find a market for this produce, it will be sold at a discounted price. Not only is oversupply of

product a financial loss, but there is also the chance that the premium product might enter

uncontrolled alternative channels. This could hurt the premium brand image, as well as

relationships with contracted growers.
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If undersupply occurs, low customer service levels may damage important retail relationships

and business. Grocery retailers demand a minimum customer service level, just for the right to

do business with them. Any premium fresh produce firm must be able to achieve this minimum

standard, while minimizing the oversupply risks as stated in the previous paragraph.

Undersupply issues could also tarnish the supplier's image to expand their business further with

existing and new grocery retail customers.

The ability to understand and quantify risk in a premium fresh produce supply chain, through the

two-stage planning algorithm proposed in this thesis, is valuable in helping the production

managers better allocate risk management resources. The working model not only helps them to

better understand the risks in the system, but allows them to measure the relative impact of

different uncertainties.

In summary, managing risk in premium fresh produce supply chains is a challenging issue that

can limit future business growth. The proposed two-stage planning algorithm involves modeling

the premium supply chain to determine a optimal and scalable solution that includes recognition

of inherent risks in the system. The proposed solution allows the supply chain to increase

profitability with less risk.
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2 The case of a premium branded tomato

The research analysis for this thesis is performed on behalf of a firm operating in the fresh

produce industry. The firm is introducing a new premium agriculture product and is seeking to

improve their production planning ability. The proposed methodology and analysis, however, is

applicable to other food and agriculture supply chains, or any supply chain where both

production and demand uncertainty exist.

2.1 Description of the product and supply chain

The production planning approach suggested in this research is applied to a U.S. based premium-

branded tomato production and marketing venture, forthwith referred to as "MaterCo." The

tomatoes marketed by MaterCo are grown under strict controls and protocols, segmented through

the supply chain, and only sold at select retail locations. The value offering from MaterCo to the

grocery retailer is consistent high quality, including superior taste, full traceability,

environmental stewardship, good agricultural practices employed on the farm, and retail-

merchandising support. The premium-branded tomatoes from MaterCo will be referred to as

"SuperT" throughout the remaining sections of this paper.

Whereas traditional commercial tomato varieties are chosen for their vigor and hardiness in the

field, as well as the ability to withstand transport over significant distances, the SuperT tomatoes

are carefully selected for desirable consumer traits. It is often the case in the fresh produce

industry that desirable traits from a grower, repacker, and shipper standpoint may not necessarily

make the tomato desirable for consumers. For example, a thick skinned meaty tomato, picked
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early, will travel much better than a thin skinned juicy ripe tomato. Less damage, or shrink,

during shipment is obviously more profitable to both the grower and shipper. Consumers, on the

other hand, typically prefer a thin skinned juicy ripe tomato, as opposed to the shipper-friendly

variety. Furthermore, commercial tomatoes are increasingly grown in greenhouses to provide

year round consistent quality. Consumers, however, are more likely to prefer the taste of

traditional field-grown tomatoes

Consumer-minded decision making in agricultural production is a growing trend, and as stated

above, the SuperT tomato is a proprietary variety carefully chosen for its consumer traits, instead

of its growing and shipping traits. Growing and marketing these premium tomatoes requires

more care and cost than traditional commercial production. It requires a grower who is willing to

provide extra care to produce a premium variety economically. Many premium varieties are

more sensitive to environmental factors, such as soil types, pests, and weather conditions than

their commercial counterparts. It also takes an added incentive for agricultural producers to

change their traditional farming practices and experiment with novel varieties. In the SuperT

production system, growers are given the costly proprietary seed for free and receive top market

prices for their produce.

The SuperT producers are also protected from low demand or high supply. If production exceeds

demand for the SuperT tomato in any given week, MaterCo pays the contracted producers a

portion of the average market price for those tomatoes that go to waste. This market protection is

important due to the specialty nature of this tomato. With traditional commodity varieties there

are alternative channels that can be used to move excess production. Since the SuperT is a
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branded product, MaterCo does not want this tomato to be sold through secondary channels,

because of the potential harmful impact on brand image and price points. Furthermore, the

SuperT is sold under contract to specific grocery retailers for semi-exclusive distribution.

Another alternative to leaving the excess fruit in the field would be to promote the sales through

price discounts. This can be a very effective demand management tool, but will not work in

every case of excess production. Too many promotions damage the ability of MaterCo to keep

the high price point necessary to economically produce and market the SuperT.

The SuperT is also an indeterminate variety, meaning that it will produce fruit for multiple

pickings. Pickings typically occur once or twice per week. Alternatively, the most common

variety of tomatoes grown, called "Rounds," are picked only once. Multiple weeks of picking

increase the difficulty of modeling the expected yields, because environmental conditions that

affect yield and harvest can change from week to week. Furthermore, the harvest window, or

potential weeks where picking is possible, may be dictated by external factors such as the labor

availability of picking crews. The schedule of picking crews is driven by large commercial

acreage, not specialty niche varieties. Once the large commercial acreage has been picked in a

region, the picking crews are likely to move to another geographic region for picking, even if it

is still possible to pick fruit from the SuperT plants. Since the SuperT is a premium tomato and

an indeterminate variety, it doesn't require a large number of acres, and therefore doesn't have

the economic power to dictate picking schedules.
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Another characteristic of the SuperT tomato is that the production is solely in geographies east of

the Mississippi river. It is not unusual to have tomatoes grown in Florida, but the finest quality

SuperT tomatoes are produced as far north as Michigan. Other potential production geographies

include Tennessee, Georgia, and North and South Carolina. Each of these geographies has

different planting and harvesting windows (i.e. range of weeks) that must be considered when

making production planning decisions. In addition, each of the geographies has different

production economics in terms of local market prices, cost of production, and cost of

transportation to the repacking facility.

Once the SuperT tomatoes are harvested from the field they are shipped in boxes, by truck, to a

central repacking facility. The tomatoes undergo a quick quality inspection before they are

picked from the vine, to determine appropriate size and maturity, and again when they are loaded

on the trucks. At the repacking facility, the tomatoes are once again inspected for quality, and

only those that meet the SuperT brand standards are carefully cleaned and placed into plastic

clamshells with the appropriate retail labeling. Once the tomatoes are placed in the clamshells

they are essentially ready for retail sales. The clamshells are then packed into cases for further

transportation to the retailer distribution centers. Unless there is a full truckload of SuperT

tomatoes, which is unlikely since they are a specialty item, the tomatoes will travel to the grocery

retailer with other tomatoes and assorted produce. The consolidation of fresh produce into full

truckloads is an important value-added service of the repacker that keeps transportation costs to a

minimum. In other fresh produce supply chains, it is possible for the repacking function to be at

the farm. In that case, the produce is shipped from the field directly to the grocery retailer.
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The SuperT tomatoes are sold to grocery retailers by a marketing agent who represents the

repacker. The repacker is responsible for the financial transactions with the SuperT growers and

with the grocery retail customers, on behalf of MaterCo. Grower prices are determined based on

a percentage markup of local market prices. Retail prices are negotiated with each weekly or bi-

weekly shipment of produce. The prices are set at a level that ensures appropriate margins for

both the retail customer and the MaterCo supply chain. The repacker's operating expenses

(materials, labor, shipping, administration, and raw product costs) are reimbursed at cost from

MaterCo's profit. The remaining net profit is shared between MaterCo and the repacking partner,

at a previously agreed upon split.

2.2 Role of supply chain integrator

MaterCo's role in the SuperT supply chain is supply chain integrator. MaterCo owns and

licenses the proprietary SuperT genetics (seeds) to select growers, with whom they maintain

close relationships. MaterCo works with the repacker(s) to select and sell appropriate growers on

the SuperT concept. MaterCo also jointly sells the SuperT tomatoes to new retail customers and

provides on-going sales and marketing support. MaterCo takes ownership of the SuperT

tomatoes when they leave the farmer's field until they are sold and delivered to the grocery

retailer. They also oversee the SuperT supply chain to ensure that the brand standards are being

upheld, in terms of quality, consistency, and environmental consciousness. In addition, MaterCo

organizes and facilitates the SuperT in-store merchandising support at the retail level and takes

full ownership and stewardship responsibility of the SuperT brand on each package of tomatoes.
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To be an effective agriculture and food supply chain integrator, MaterCo's primary challenge is

to spread the risk and profits of the system fairly among the supply chain participants. Many

coordinated supply chains in food and agriculture fail because of imbalances of risk and reward

among the supply chain participants. The farmers need an incentive to change their traditional

production practices. They must also be compensated for the augmented yield risk, as the

specialty variety is not as hardy in the field as traditional varieties. Furthermore, the farmer faces

the potential market risk that the demand for the specialty tomato does not meet expectations.

The repacker is also risking their valuable and long-standing relationships with growers and

grocery retailers if the new venture fails. Damaging these relationships could also potentially

damage the remainder of the repacker's business. The repacker, therefore, deserves to be

compensated for their change of behavior and increased risk as well. At the same time, MaterCo

must determine an appropriate level of risk and return from the new venture that they are willing

to accept.

Arguably the most important supply chain participant in this premium fresh produce system is

the grocery retailer. Without sufficient sales of the new product to consumers, the new venture

would never even start. For the grocery retailer to support the SuperT supply chain, they also

need a financial advantage to deviate from their traditional suppliers and products. This

advantage can be a higher retail margin on the product, or in the case of SuperT, extensive retail

merchandising support. On the other hand, premium branded products also bring new customers

into the store and can enable the retailer to maintain higher price points and sales throughout the

entire retail merchandising category. Quantifying these externalities is an area in need of further
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research. It may be the case that a grocery retailer can accept lower margins on a premium

branded product due to the positive revenue effect on the category as a whole.

2.3 Current production planning practices

To test the validity of the proposed approach, it is important to understand how current supply

decisions, i.e. production plans, are made within MaterCo. Similar to other agriculture-based

businesses, planning decisions are made primarily with industry accepted heuristics and

knowledge based on past experience. Though this may seem like simple gut-level decision

making, the years of experience and expansive knowledge influencing production decisions

should not be underestimated. Many agricultural production businesses have been successful at

managing the inherent business risks for generations. Nevertheless, while the current decision-

making framework appears to work, it may not be finding optimal solutions in all cases. Though

risks are recognized and managed under the current decision-making systems, they are seldom

quantified enough to be used in making even more effective decisions. Often, current production

planning practices neither quantify risk on the demand side nor the supply side.

The SuperT sales forecasts are currently extracted from the business plan. The business plan is

used to justify investment in the new product venture, and the assumptions and data used to

forecast SuperT's sales are the best available. Since SuperT is a new product, no historical sales

data is available. Once a sales history is established, more sophisticated demand forecasting

techniques may be employed, but that is not the focus of this thesis. The primary issue with the

business plan's sales forecast is that it is a point forecast.
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On the supply side, yield forecasts and simple heuristics are used to determine the appropriate

planted acreage to meet forecast demand. The weekly yield forecasts are point forecasts derived

from the average weekly yield of growing trials. The number of potential harvest weeks, since

this is an indeterminate variety, is also derived from the trial data. To account for yield

variability from week to week and the uncertainty of a large scale crop failure because of

unpredictable weather, a common heuristic used by production managers is to plant redundant

acreage. Often this "double" acreage is in another location of the same latitude. The tomato

producers call this "pairing" because plantings occur in pairs, starting on opposite coasts of

Florida and moving up the Eastern U.S. in parallel. For example, plantings in Tennessee and

North Carolina occur roughly on the same dates, as well as plantings in Michigan and New York

State. Doubling may also occur within the same geography. As long as the redundant acreage is

not in the same field, the chance of the entire crop being destroyed is reduced. Although this is

the observed practice, more sophisticated models do exist for production planning in agriculture.
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3 Literature Review

Many mathematical programming approaches to production planning are suggested in academic

literature, but it is unclear how many of them, if any, are widely used in industry. This may be

due to the complexity of the modeling approaches, lack of computing power available to

producers, or lack of reliable data for inputting into the models. Most likely, limited acceptance

of mathematical programming by farm-level production managers is because of few widely

known practical applications that demonstrating the financial benefits. The majority of

theoretical math programming approaches suggested in literature are not applied pragmatically

for relevance to producers.

This research is builds upon mathematical programming theory in literature and provides a

practical tool that production managers can use. The suggested approach adds to existing

literature by taking a holistic supply chain view of production planning and incorporating real

life uncertainties in both demand and supply. Profit maximizing production plans, for supply

chain integrators (e.g. MaterCo), are tied to customer service levels at the grocery retail level. In

this way, the two stage planning algorithm, on which this research is based, provides production

managers an understanding of the trade-off between expected profit and customer service for

better decision-making. Previous research in this area either lacks the inclusion of both

agriculture supply and demand risk, or ignores the impact of production decisions on customer

service.
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3.1 Operations research in production planning

It is now over 50 years since Thornthwaite (1953) published a practical operations research

approach to production planning. His approach survives the test of time, as Kreiner suggests in

1994 that practices based on Thorntwaite's methodology "have remained in use unchanged for

over forty years" (Kreiner, 1994, p. 987). Thomwaite (1953) proposed using information of

downstream demand to determine appropriate planting dates, based on measured growth rates

and environmental factors. His approach is sound, but self-proclaimed to be limited by the

exclusion of uncertainty.

3.2 Incorporating uncertainty

This thesis seeks to include uncertainty (random variables) in the production planning process to

demonstrate the potential impact of uncertainty on profitability and the trade-offs between

various production planning decisions. By recognizing and quantifying uncertainties, it is argued

that management will be able to make better decisions. This approach is supported in literature.

For example, Antle argues with his risk-efficiency hypothesis that "it is necessary to model and

measure the dynamic structure of agricultural production to be able to evaluate the effects risk

has on agricultural production and income" (Antle, 1983, p. 1102). Jolly concurs, by advocating

agricultural managers' thinking in a "distributional" sense, but stresses the difficulty of

estimating the relevant probability distributions, and the danger of overconfidence in a

manager's ability to judge variance (Jolly, 1983, pp. 1110-1111).

The suggested two-stage planning algorithm in this thesis represents the probability distributions

of demand and yield by their means and standard deviations. Demand and yield are represented
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with a normal distribution, where expected values are used to approximate the means and the

variances are derived from empirical analysis of similar products. Other authors suggest that the

random variables can be better approximated using more advanced analysis techniques and

empirical data, such as Gaussian Quadrature (Lambert & McCarl, 1985; Preckel & DeVuyst,

1992). This can be particularly helpful with non-linear optimization models. Though using

Gaussian Quadrature is arguably a more accurate approach, the product modeled in this thesis

research is a new product and lacks the empirical data to perform this analysis. In the future,

when adequate historical data exists, more accurate distributions for demand and yield can be

substituted. Furthermore, maintaining simplicity of the suggested approach is important to

achieve management buy-in. Therefore, the use of normal distributions can be justified.

3.3 Game theory

Some literature suggests a game theoretical approach to production planning, where a number of

states of nature are defined and the optimal farm plan is determined for each potential state of

nature. The payoff matrix can be used by the production manager (i.e. farmer) to evaluate the

production plans based on their performance under the different states of nature, as well as the

production manager's risk tolerance and business obligations (Tadros & Casler, 1969).

Essentially, this is the suggested approach of this research thesis. The states of nature are

different levels of demand and yield, determined by various certainty levels on their respective

cumulative distribution functions. In the suggested two-stage planning algorithm, the production

strategies (i.e. planting quantity, timing, and location) are determined in the first stage of the

algorithm as the result of mixed integer linear programming optimization for each demand and
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yield level combination. In the second stage of the algorithm, the pay-off for each of the different

potential production strategies is determined using simulation, which allows the user to evaluate

each strategy's probability-weighted performance across all states of nature, as opposed to each

state of nature discretely.

3.4 Risk programming

Other literature for farm planning under uncertainty suggests a risk programming approach,

using different utility maximizing functions to determine the optimal farm plan among

alternative solutions based on assumed risk-neutrality or risk-aversion of farmers. Examples of

these risk programming approaches include Quadratic Risk Programming, MOTAD, Target

MOTAD, and Mean-Gini programming. In these methods, a set of solutions are generated that

meet a certain output criteria, such as minimum income or utility, and then the solution is

selected with the least variance around the expected outcome (Hardaker, Pandey, & Patten,

1991).

Other literature suggests an approach that directly maximizes the producer's utility through non-

linear programming, such as the Utility Maximization approach, if the farmer's utility function is

known, and the Utility-Efficient Programming method if the utility function is not exactly known

(Hardaker et al., 1991). Both of these approaches attempt to determine the optimum solution by

modeling the producer's attitude towards risk.
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Discrete Stochastic Programming (DSP) appears to be an approach to risk modeling much

favored by literature, because it can incorporate sequential decisions (Hardaker et al., 1991). The

problem noted with DSP is how the size of the problem can quickly become unmanageable.

An alternative to DSP, while still incorporating sequential decisions, is a combination of

simulation and stochastic programming, suggested by Trebeck and Hardaker (1972). They

utilize stochastic linear programming, simulation, and parametric stochastic programming to

make optimal cattle production decisions regarding sequential stocking and pasture utilization

decisions.

Though the tomato production planning researched in this thesis could similarly be analyzed as a

sequential decision problem, it is instead suggested that the planting decisions be considered as a

single-period problem. The model can then be re-run multiple times throughout the actual year

with updated inputs, as better demand and yield information become available. This makes the

model simpler to program and use.

The purpose of this research is not to provide a tool that predicts the future profit for the

manager, but aid the manager to make a set of profit maximizing decisions. The suggested

approach in this research does not attempt to determine the optimum production plan for the

producer, but instead provides the information necessary for the manager (i.e. producer) to make

a better decision based on their own individual circumstances and objectives, similarly to Tadros

and Casler's (1969) suggested approach. This point is also made in Antle's (1983) paper, where

he argues that it is not as important to determine the exact risk profile of the producer, but that
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tools should be developed to help the producer better understand the risks, so they can make

better decisions based on a set of individual preferences, regardless of those exact preferences.

3.5 Chance constrained programming

Another method suggested is chance-constrained programming, where critical levels of

probabilities are chosen for each random variable, thus rendering the random variables

deterministic for inputting in to the optimization constraints (Charnes & Cooper, 1959).

Hardaker et al. (1991) dismisses this approach because selections of the critical levels of

probabilities are part of the decision input, and considered arbitrary. On the other hand, these

critical probabilities don't have to be arbitrary, as this thesis suggests correlating the critical

probabilities to meaningful customer service levels through simulation in the second stage of the

algorithm. Yano and Lee (1995) voice surprise at the fact that more "constraints on various

measures of service have not been considered in lieu of shortage costs," especially considering

how important a measure this is in literature when considering situations of random demand.

3.6 Newsvendor approach

In fact, customer service levels were chosen as the primary constraints in the suggested

approach, because of their importance in maintaining customer relationships and the difficulty of

the alternative newsvendor approach. A newsvendor-model approach assumes that the overage

and underage costs can be estimated. The overage costs for perishable item can be estimated

easily, but estimating the life-time value of a lost customer due to poor service levels (i.e.

underage) is very difficult.
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Nevertheless, Jones, Lowe, Traub, and Kegler (2001) use a newsvendor-model approach with

seed corn planting decisions and estimate the underage cost as two years of lost sales (Jones,

Lowe, Traub, & Kegler, 2001; Jones, Kegler, Lowe, & Traub, 2003). The Jones et al. (2001)

model is interesting, as it also involves allocating production acreage optimally between multiple

regions, including the different costs involved between production regions. It is the only model

that appeared in the reviewed literature to determine the optimum location and quantity of

planted acreage for one crop, similar to the problem addressed in this research.

Allen and Schuster (2004) also use a newsvendor approach to determine the appropriate harvest

rate of grapes. The Allen and Schuster (2004) article is important because it is unique in

considering the risk of harvest failure. Risk is addressed in their model through the analysis of

joint probability distributions. This research seeks to build on the work of Allen and Schuster by

incorporating the chance of harvest failure, but evaluating uncertainty through simulation.

3.7 Minimum customer service levels

In production planning decisions for a traditional farm, as most of the available literature appears

to address, service levels are not of importance, because the producers are selling to the

commodity market. In these cases, the uncertainty of price is more important than the uncertainty

in demand. Perhaps the two most cited papers for stochastic programming in farm planning both

include price or margin uncertainty, but neither include demand uncertainty (Cocks, 1968; Rae,

1971). In Lowe and Preckel's (2004) review of operations research applications in agricultural
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business, only the Jones et al. (2001) paper is cited as incorporating demand uncertainty, as

opposed to price uncertainty. For niche premium agriculture, the focus of the problem is

reversed. Prices are premium with these products and have less variance compared to commodity

products, but consumer demand, at least in the initial growth stages of the product life-cycle, is

more unpredictable. Plus demand is limited, which is not usually the case with traditional

commodity agriculture.

Many case studies exist in literature that use risk modeling techniques to evaluate farm

production planning decisions, but most are concerned with cropping mix decisions under price

uncertainty. For example, Manos and Kitsopanidis (1986) look at the appropriate cropping mix

for Central Macedonian farms using a quadratic programming model. Musshoff and Hirschauer

(2007) actually use empirical data to test the performance of risk programming as a decision tool

for crop mix decisions as compared to traditional heuristics on German farms. A well publicized

case, since it was submitted to the Edelman competition, is the Jan de Wit optimization of

greenhouse space to the production of different lily flowers (Caixeta-Filho, van Swaay-Neto, &

de Padua Wagemaker, 2002). In the Jan de Wit case straight linear programming is used, with no

inclusion of uncertainty in the model.

Alternatively, Trebeck and Hardaker (1972) focus on one commodity and look at cattle stocking

levels and pasturing decisions using a mix of simulation and stochastic programming. Ludena,

McNamara, Hammer, and Foster (2003) look at a single cultivar, for greenhouse flower

production, to demonstrate the benefits of simulation for decision analysis and budgeting. None
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of the farm planning research reviewed, however, considers customer service levels as a

constraint in the programming.

3.8 Adding to the literature

Recognizing that this is not a comprehensive review of risk programming literature as it applies

to agricultural production planning, the research in this thesis is considered unique in terms of

the focus and constraints. First, no mathematical farm planning models in the reviewed literature

address the case of premium fruit and vegetable production. This is probably because of the

recent development of this market. Therefore, none of the proposed models truly consider

limited demand of a perishable product. Even the Jones et al. (2001) research allows the seed

corn to be carried over for one year and sold in the next planting season.

Without considering limited demand, the existing research does not provide production plans

that target specific customer service levels. By recognizing customer service as a planning goal,

the suggested two-stage planning algorithm takes a unique holistic supply chain view for

agriculture production planning. Increasingly agricultural production managers must understand

and consider the needs of their downstream customers. The farm-level focus of risk

programming, as covered in existing literature, still has value for commodity producers, but

premium crop producers need broader planning tools.
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Furthermore, the existing literature typically suggests single stage models for problem solving,

whereas this research suggests a two-stage mixed integer linear programming (MILP) and Monte

Carlo simulation. The simulation, as a second stage to the proposed algorithm, is a relatively

simple way to test the expected customer service levels of production plans output from the first

stage MILP. The complexities of including customer service constraints into a one-stage

optimization did not appear practical for widespread application by agricultural production

managers. In addition, instead of trying to define a particular production manager's optimal

solution based on their perceived risk preferences, the suggested two-stage planning algorithm

allows production managers to determine their own acceptable risk levels. Details of the

suggested two-stage planning algorithm follow in the next section.
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4 Methodology

The core of this research is a two-stage planning algorithm, but preliminary work is necessary to

understand and model the SuperT supply chain, as well as populate the model with relevant data.

First, information is gathered about the existing supply chain structure from production managers

at MaterCo, particularly the dynamics and risks.

Second, the understanding gained in the first step is used to develop a model of the SuperT

supply chain. Through the model building process, the production managers must quantify the

cost and volume relationships in the fresh produce supply chain, including the uncertainties. The

core of the modeling approach is to incorporate the random nature of demand, yield, and harvest

failure and understand their impact on realized customer service levels.

Third, the inputs are defined for the model. The inputs include relative costs for different

production decisions. The distributions of demand and yield are represented in the model by their

respective means and standard deviations.

Fourth, an algorithm is used that alternates between a mixed integer linear program (MILP) and a

Monte Carlo simulation until a desired level of customer service is reached. In the first stage of

the algorithm, certainty levels are chosen for the random demand and yield. These certainty

levels are probabilities on their respective cumulative distribution functions. The corresponding

targeted levels of demand and yield are used as deterministic inputs in the optimization model.
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Fifth, in the second stage of the algorithm, the solution from the optimization model is run

through a simulation where the realized Type I Customer Service Level can be observed. The

Type I CSL is the percentage of demand cycles where demand is expected to be met in full.

The process is repeated with an adjustment to the certainty levels until desired customer service

is achieved. This idea is illustrated in Figure 2.

The following steps are a broad outline of the proposed process:

1. Understand the current supply chain dynamics and risks

2. Model the supply chain dynamics and risks

3. Define necessary inputs and assumptions

4. Stage One of Algorithm: Find optimal solution based on critical levels of demand and

yield

5. Stage Two of Algorithm: Run solution through a simulation to develop probability

distribution of customer service and profitability

6. Repeat steps 4 and 5 until desired customer service level is achieved
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Demand

Type I CSL

1. Optimize at
Critical Levels
of Demand and
Supply

2. Simulate to see
Customer
Service Levels/
Profit

Demand Yield

Adjust Critical Levels and repeat process Increase Type I CSL

until desired CSU Profit is reached Decrse Type ICSL

Figure 2: Two-stage planning algorithm
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4.1 Understanding the current fresh produce supply chain dynamics and risks

The first step in developing a better solution to the challenges in the fresh produce supply chain

is to gain a deeper understanding of how the supply chain is structured and operates. This is best

accomplished starting with a thorough mapping of the physical supply chain. Following the

mapping, information on the decision-making process and cost and service trade-offs can be

gathered from supply chain participants. It is also important to understand how costs, risks, and

profits are distributed among supply chain participants. For this thesis, all the information

regarding the SuperT supply chain was gained through conversation with MaterCo management.

Figure 3 is a representative map of the SuperT tomato physical supply chain. The dotted lines

represent MaterCo's relationships. The solid lines represent the physical flow of product.

Licensed

Licensed

ol Grower
itpckI Retail

Pa r Grocer
Licensed
Grower Retail

Licensed Goe
Grower

Figure 3: Overview of SuperT supply chain
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4.2 Modeling the fresh produce supply chain

The second step is to develop a mixed integer linear programming model that represents the

supply chain dynamics and risks, as accurately as possible. The model is input into Excel where

the interaction between quantity, location, and timing of planted acres with costs, revenues, and

satisfaction of demand can be programmed. This allows the user to both optimize the model for a

given set of inputs and simulate uncertainty through random trials. A visual representation of the

model is shown in Figure 4. The shaded figures are inputs. The clear figures are calculations.

The striped figure is the objective function.

The number of acres to plant in a given geography is designated as the decision variables in the

model. The model is formulated so that the planted acreage decisions will compute an expected

pack out quantity, which has been adjusted for risk and shrink. Yield is input as a normally

distributed random variable. Though yield may not be normally distributed in reality, it is

assumed normal for simplification of the model. The expected yield level is calculated based

upon a predetermined critical level, referred to as the Production Certainty Level (PCL), related

to a probability on the cumulative distribution function of yield.

The Production Certainty Level (PCL) is not an existing convention in production planning

decisions. Traditional production planning decisions are based upon a deterministic yield level

approximating the average. This modeling approach attempts to capture both the reality of

uncertain yields and the associated risks. The PCL gives the producer a yield level for decision

making purposes at a pre-determined level of confidence.
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(shaded = inputs, clear = calculations, striped = objective)

PCL Risk of Harvest Shrink DCL Demand (p,a)
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Transpotation Repacking and Dson o
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Figure 4: Overview of the model
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This adjusted yield is multiplied by the acres planted to determine an expected pack out quantity.

Eligible weeks of harvest are constrained by a Risk of Harvest Failure that adjusts the yield to

zero in weeks outside of a realistic planting window. The expected pack out quantity is then

compared to the quantity necessary to meet demand at a predetermined critical level, referred to

as the Demand Certainty Level (DCL). Demand is also input as a normally distributed random

variable. Though demand may not be normally distributed in reality, it is assumed to be normal

for simplification of the model. The mathematical formulation follows:
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Objective function

max profit = WSi

n ,n

L + Ebi Xbj +Zj
I=Uj1 r 3) )r("b=1

n XMJ n
-JU, (1-9)1 jEbj Xj +Z9 ]

i=1 _ j=1 b=1

b=1 j=1

+10i (1-5)1 YE X,+Z_ Si

i=I j=1 b=1

Subject to:

(1.1) (1-9)E ZEbij X +Zi S Vi
j=1 b=1

(1.2) Xbj 0 forb+L1  i<b+L +Hj

(1.3) Xb > 0 Vb, j

(1.4) X b - MYj ! 0 Vb, j

(1.5) Xb -- YYj 0 Vb, j

Decision variables

X j= acres planted in location j in week b

Yj =1 if planting occurs in location j in week b, 0 if planting

does not occur in location j in week b

Subscripts

i = harvest week of year (1 to 72)

b = planting week of year (1 to 72)

j = potential planting geography
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Other Variables

W = wholesale price in week i (per case)
S= percent product volume shrink due to transportation and handling
Eb = adjusted yield per acre during harvest week i from location j for planting in week b (lbs)

Z= harvested quantity expected in week i from plantings occuring in prior year from location j (lbs)

P% = product cost in week i in location j (per lb)

T. = transportation cost from field to repacker in week i from location j (per lb)

U = cost to repack product and distribute from repacker to retail customers in week i (per finished case)

Cbj = cost of seed in week b at location j (average per acre)

0, = cost adjustment for oversupply quantity in week i (per case)

Si = targeted total system wide packout quantity in week i (cases)

H1 = harvest length in location j (weeks)

L= lead time for plant growth in location j (weeks)

M = a sufficiently large number to ensure logic constraints for binary variable Y

(M should be at least as large as the maximum number of acres for each planting)

M= max [X,] Vb,j

y = a minimum quantity of acres required for a planting to occur

The objective of the model is to maximize total profit over the planning horizon. The objective

function has five terms. The first term captures the revenue gained from produce harvested and

sold. The second term captures the product and transportation costs associated with harvested

produce. The third term captures the cost of distribution from the repacking facilities to the

actual customer locations, as well as a shrinkage factor. The fourth term captures the cost of seed

for growing the produce. The fifth and final term is a cost adjustment for excess production that

is purchased at a discounted price, and never sold, transported, or repacked.

Constraints (1.1) ensure that the total quantity of produce grown meets the quantity demanded

for each week. Constraints (1.2) ensure that planting and harvesting for a specific location

follows prescribed harvest windows and lead times. Constraints (1.3) ensure non-negativity.
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Constraints (1.4) ensure the binary logic, that Y will equal 1 if a planting occurs. Constraints

(1.5) ensure that any planting meets a minimum quantity of acres. This threshold acreage level is

based on realistic production practices.

Following is a detailed description of how the elements are developed.

Description of Objective Function

The objective of the model is to maximize profit. The total revenue is calculated from the

targeted packout quantity, based on demand. It is not calculated on total production, because in

cases of oversupply not all of the product will be sold. Furthermore, the model is constrained so

that demand is met in each week. Total cost includes the seed cost, product cost at farmgate

price, the transportation cost from the field to repacker, the repacking cost, and the cost to

distribute from the repacker to the retail customers (payment to re-packer).

The product cost and transportation cost to the repacker are multiplied by the production from

each region in a given week of harvest(i). In contrast, the cost to repack the product and

distribute to the retail customer is multiplied by the finished cases that are delivered to the retail

customer. Finished cases include a shrink factor. The seed cost is the cost of seed per acre

multiplied by the number of acres (i.e. decision variable) in a given week of planting (b).

The last cost is the adjustment for oversupply. Oversupply is determined by the difference in the

total adjusted packout quantity and the targeted pack out quantity. The adjustment for oversupply

is equal to a discount of the average grower price and average costs of transportation, repacking,

and distribution. The grower price is included at a discount because producers will likely demand

40



a payment close to what they would have received if their product were actually sold. The

oversupply adjustment is in dollars per finished case.

Description of Decision Variables

The primary decision variable is how many acres to plant in each geography (j) in which planting

weeks (b). The second decision variable is a binary integer that indicates whether or not a

planting has occurred. The binary variable is necessary for constraining the minimum number of

acres for each planting. The minimum acreage threshold ensures that the model outputs more

realistic planting patterns.

Description of Subscripts

This is an indeterminate tomato variety (multiple weeks of harvest) so the planting week is

separate from the harvest week in order to determine the sequential week of harvest. The weeks

go to 72, instead of 52, to allow a cool down period to the model. Without the extra weeks, the

model would not plant any acres in the last part of the current year and result in inadequate

supply for the following year (i.e. weeks 53-72).
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Description of Demand InDuts

D = forecast demand in week i

f(D1 ) = p.f. of demand in week i with mean, p' D, and standard deviation o,
DCL = Demand Certainty Level

p, (k) =- DCL

Si = targeted packout quantity in week i, based on DCL

Su=p1) +kUD,

The targeted pack out quantity is defined based on a random, but normally distributed, demand

and a desired Demand Certainty Level (DCL). The level of demand is from a predetermined

sales forecast.

Description of Price and Cost Inputs

W= Wholesale price in week i (per case)

Pi= product cost in week i in location j (per lb)

T1= transportation cost from field to repacker in week i from location j (per lb)

U, = cost to repack product and distribute from repacker to retail customers

in week i (per finished case)

CbI = cost of seed in week b at location j (average per acre)

The wholesale price is the price that the firm receives from the retailer during weekly price

negotiations in week i. This price is dollars per case.

The product cost is the price that the firm must pay to the growers to procure the tomatoes in

harvest week i. This cost is dollars per pound.
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The transportation cost from the field to the repacker is the amount of money that the firm must

reimburse the repacking partner for transporting the crop from the field to their repacking

facilities in harvest week i. This cost is dollars per pound. In this model, transportation cost is

assumed to be deterministic.

The repacking and distribution cost is the money paid to the repacking partner to reimburse them

for repacking the product and distributing to the retail customers. The repacking cost includes the

cost of the materials (e.g. boxes, stickers, clamshells) and the cost of labor. This cost is paid to

the repacker per finished case.

The cost of seed is the internal cost of the seed that the firm gives free to growers as an incentive

to produce. This cost is dollars per acre in planting week b. This can also be representative of any

"setup" cost that a firm must pay to a supplier for a production run.

O, = cost adjustment for oversupply quantity in week i

0, = a$Pi +IT + U,
a = % of average product cost (grower market price) discounted on oversupply purchases

$= number of lbs in one case

= average product cost (grower market price) in week i (per lb)

The adjustment for oversupply subtracts those costs that would not be incurred for excess

production that is left in the field. This cost is dollars per case. First, only a proportion of the

average product cost, i.e. average market price in harvest week i, which the grower would have

received if the crop had been actually sold to retailers, is paid to growers. An average market

price is used across all regions, because it is not possible to allocate oversupply to a particular
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region. Secondly, the transportation, repacking, and distribution costs are subtracted, as they

would not be incurred. An average across all regions is also used for these costs to avoid the

need to allocate oversupply to a particular region.

Description of Supply Inputs

H1 = harvest length in location j (weeks)

L= lead time for plant growth in location j (weeks)

week i (of D,) - 1 = harvest week i V j

nbij = sequential week of harvest for planting in week b and harvesting in week i in location j
ngb = i(harvest week) - Lj - b(planting week of Xj)
O<nbj Hi V n

Pr[Hij] = probability of successful harvest in harvest week i

from location j for planting in week b (100% for all eligible weeks)

The probability of a successful harvest depends on the eligible weeks of harvest. The eligible

weeks must have a sequential week of harvest greater than zero and less than or equal to the

maximum harvest length. The sequential week is calculated based on the planting week (b),

harvest week (i), and the lead time needed for plant growth (L).

= ield per acre during harvest week i in location j (lbs)

f(A )=pdf of yield per acre during harvest week i in location j with meanp,

and standard deviation a

PCL = Production Certainty Level

p, (k) = 1- PL

B = assured yield level during harvest week i from location j, based on PCL

B =u, -kaA, where n,,1 >r

B =2(p4 -ku) where n tr

r= length of ramp-up period where full yield is not achieved in location j (weeks)

2= ramp-up factor (percentage of full yield potential achieved during ramp-up period)
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The yield used for the planning purposes of the model is based on a normally distributed yield

and a desired Production Certainty Level (PCL).

The assured yield is a level that the firm can be assured of achieving at the desired level of

certainty. The units for this are lbs per acre. A ramp-up period is included to account for the

reduced yield during the initial weeks of harvest.

EbUj = adjusted yield per acre during harvest week i from location j for planting in week b (lbs)

Ebi = Bj Pr[H ]

The assured yield is multiplied by the probability of a successful harvest to give an adjusted yield

per acre for all planting week-harvest week combinations. The units for this are lbs per acre.

S = percent product volume shrink due to transportation and handling

Total assured quantity packed out during harvest week i from all locations

=(1-()1 0EbyX +Z 1'j
i=1 (b=1

The adjusted yield for that planting week-harvest combination is multiplied by the number of

acres planted in that location for that planting week. Then, the harvested quantities in that

location, from all plantings that can be harvested that week, are summed. This includes any

expected harvest quantities from plantings occurring in the prior year. Finally, the total assured

quantity packed out during a given harvest week is the sum of the assured quantities harvested

from all locations, discounted for estimated product shrink.
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4.3 Inputs and Assumptions

The data for this model is from management at MaterCo. The data is transformed for reasons of

confidentiality. The data is categorized into four primary pieces: demand, supply, costs, and

revenue.

Demand

The demand data is taken directly from the SuperT sales forecast (Figure 5). Analysis of the

sales forecasting process is not in the scope of this research, so the expected sales volumes per

week are input directly into the model as the mean demand. The standard deviation of demand is

derived from historical sales of a similar premium tomato, since there was no sales history for

the SuperT at the point in time that this thesis was written. The coefficient of variation for this

similar product is calculated and applied to the mean demand for SuperT to determine an

appropriate standard deviation. This model considers a single aggregate demand input, because

tomatoes from different geographic locations are mixed at the repacker to meet customer

demand.

Target Demand Certainty Level (DCL)
DCL= probability on cumulative demand distribution

Demand

0O 0

(5 0
o 0 LLCL C 0-o h a. ae

Week# U.
V

1 155 32
2 340 69
3 41 405 82
42Fie 5D in 508 102

Figure 5: Disguised demand inputs
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Supply

On the supply side, the mean and standard deviation for yield, as well as the expected harvest

length, is based on trial data for the SuperT. Since limited trials were completed, it is assumed

that the tomato plant would have similar yield distribution in all geographic locations. This is not

likely to be accurate, but management does not believe that yield differences between

geographies are significant enough to justify a more sophisticated yield forecasting approach. In

the future, these inputs can be based upon actual historical data for the SuperT.

To account for the different growing periods in the various geographies, yield data is only input

for potential harvest weeks appropriate for the latitude of the growing region. All non-eligible

weeks of the year for the geography (i.e. not included in the harvest window) have yield inputs

of zero. Harvest windows in this model were determined based on management and grower

experience within the geographies. These potential harvest weeks, i.e. harvest windows, are

primary dictated by climate, but can also be decided by picking crew schedules. The majority of

the harvest weeks within the pre-determined window have such a high probability of success that

the chance for harvest failure is ignored.

When using the model for the second stage simulation, however, a Bernouli distribution is

utilized to represent the chance of harvest failure occurrence. The simulation tool generates a 1

(100 percent) for a successful harvest or a 0 (zero percent) for a harvest failure in each week,

according to the probability for a successful harvest that is input into the model. The chance of

harvest failure is only significant in the first and last few weeks of the harvest window.

The length of harvest, i.e. number of potential weeks of harvest for each planting, is assumed to

be the same across all geographies because data does not exist to indicate otherwise. In the trial
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data, the yield within the first two weeks of harvest is approximately half of the full expected

yield potential, so this ramp-up period length and a ramp-up factor is also included in the

calculations. An example of the supply inputs into the model is in Figure 6.

The last supply estimate is for the percentage of shrink that occurs to the product volume during

transportation and repacking. During distribution from the repacking facility to the grocery

retailer, the product is packed in small plastic clamshells which offer a high degree of protection

and therefore shrink after repacking can be effectively ignored. The estimated percentage of

shrink is based on management experience.

Production Certainly Level (PCL)
PCL= probability on cumulative yield distribution

Name Cit State
Geography

Region 1 # of weeks

Harvest Length (mean)
Lead time for plant growth

Harvest RampUp
Yield During RampUp

*
0 0
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Figure 6: Disguised supply inputs

Costs

Cost inputs for the model are estimates from the MaterCo management team (Figure 7). In the

case of SuperT, the tomato seed is given to the growers at no expense to control the distribution
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of the proprietary genetics. This also serves as an additional incentive for growers to grow the

new unproven product. Growers are very concerned with the yield risk since they have no

experience growing this tomato variety. The cost of the seed is based on an internal transfer price

at MaterCo.

The product cost, which is the payment to the growers for their harvested produce, is estimated

based on historic regional market prices for a similar product. All the transportation and

repacking costs incurred by the repacking partner are reimbursed by MaterCo and are estimated

using historical data. The transportation costs from the field to the repacking facility are

estimated using known costs per pound per loaded truck mile, and an estimate of the road

mileage between the fields and the repacking facility. The costs for physically repacking the

product, i.e. boxes, clamshells, stickers, labor, etc., are based on historic costs. Historic average

distribution costs are also used to determine the amount paid per finished case to distribute

SuperT to grocery retail customers.

In oversupply situations, where the quantity supplied is in excess of the retail demand, growers

are reimbursed partially for the product they would have sold. Since the SuperT growers have no

alternative channels to sell these specialty tomatoes, MaterCo shares the risk of oversupply.

MaterCo agrees to pay growers a percentage of the product price they would have received if the

product had been sold. The product price is determined based on the average among all the

growing regions at that time. This is because it is not fair to allocate the oversupply volume to a

specific region, since tomatoes are mixed at the repacking facility to meet an aggregate demand.

In reality, there may be certain weeks of the year where supply is only coming from one region.

In those cases, a specific local market price can be used. The price discount percentage used in
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this model for oversupply situations is from MaterCo management. Oversupply volume also

does not have any associated transportation, repacking, or distribution costs. In an oversupply

situation, the product is disposed of at the farm.

An alternative method for addressing the oversupply situation is to discount the product through

promotions at the retail level, in order to bring demand and supply back into alignment.

Depending on the degree of oversupply this may be the preferred method for handling these

situations. In reality, the wholesale price is negotiated weekly with the grocery retail customers

in order to ensure that the maximum product is sold profitably. These techniques are considered

demand management. Since demand management is not in the scope of this thesis research, these

price and volume adjustments are not included in the model.

Costs

aL
C:

U)a) (C

c,

,0 a >

0)

0
0

Region 1

.03
CL

WU

0

Ca

C a

0)f
.2 ~ ~

L)
a

0
C0

0

Region 2

0 (D) C 0.

.L.0

U~) C .- a

C a a 0)
n~r rr .1

10 -k&

Figure 7: Disguised cost inputs
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Revenue

Estimates for the wholesale price, paid by grocery retail customers to MaterCo are based on

MaterCo management's discretion and the competitive environment for similar premium

tomatoes. Analysis of historic data for premium tomato prices shows less seasonal fluctuation

than comparable "commodity" tomatoes, such as rounds. It is assumed by MaterCo management

that SuperT tomato prices will remain fairly stable over the calendar year, except during

promotional periods.

4.4 Optimization (Initial Stage of Algorithm)

After development of the model and determination of appropriate inputs, the model is optimized

to determine the most profitable quantity, timing, and location of planted acres. The optimization

is constrained so that demand is met in any given week and planted acres are positive. The

optimization is a mixed integer linear program (MIELP) and is solved using What's Best@ 2. Run

time is less than five minutes. In order to account for horizon issues with the model, an

additional 20 weeks into the following year are also optimized, so that the model accurately

suggests planting towards the end of the calendar year to meet demand in the beginning of the

following year. The planted acreage decisions are constrained by a minimum quantity threshold.

Multiple optimizations are run for this research to compare the current deterministic planning

process and a planning process that incorporates uncertainty in yield and demand. The current

deterministic planning process is tested by setting the standard deviation for demand and yield to

a low enough number that the variability is washed out during rounding. This represents the

current practice of using point estimates of demand and yield for planning purposes.

2 What's Best@ is a product of Lindo Systems, Chicago, Illinois
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The optimization model is also run at different certainty levels of demand and yield (DCL and

PCL) based on their estimated distributions. This is the first stage of the suggested algorithm.

The corresponding levels of demand and yield are used as deterministic inputs into the

optimization model. Table 1 shows the demand and yield certainty levels (DCL and PCL) that

were tested in the stage one optimization. The solutions from the optimization are input into the

simulation to observe the resulting Type I Customer Service Level and profitability. The

optimization is repeated with adjusted DCL and PCLs dependent on the outcome of the

simulation.

Table 1: Optimization runs

Inputs for Optimization Runs

Run Demand and Yield Certainty Levels
A Avg Yield and Demand (DCL = 50%, PCL = 50%)
A2 (Doubling) Same inputs as A (with acreage output doubled)
B DCL = 70%, PCL = 70%
C DCL = 75%, PCL = 75%
D DCL = 80%, PCL = 80%
E DCL = 85%, PCL = 85%
F DCL = 86%, PCL = 86%
G DCL = 87%, PCL = 87%
H DCL = 88%, PCL = 88%

4.5 Simulation (Second Stage of Algorithm)

The next step in the modeling analysis is to perform a simulation on the optimal production

planning solution at a given DCL and PCL. The simulation provides the management of

MaterCo a more realistic distribution of possible outcomes, as opposed to a point estimate

forecast. This information is used to compare the risk and robustness of various solutions. The

primary attributes of the various solutions under evaluation are the forecasted profit to MaterCo
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and the resulting customer service levels to the grocery retailers. Type I Customer Service, which

is the percentage of weeks that demand is met in full, is considered.

To run a simulation, one of the resulting solutions from the optimization model is entered into

the simulation model as a fixed input. With the planting acres fixed, the demand, yield, and

probability of harvest failure are replaced with random variables adhering to the established

mean and standard deviation parameters. The simulation is run using Crystal Ball@ 3 with 500

iterations. The resulting distributions for profit and customer service (Type I) are evaluated. If a

desirable Type I CSL is not achieved, the optimization is repeated with adjusted DCL and PCLs,

and the new solution is run through the simulation.

For this research, the following potential production plan solutions were compared:

1. The outcome of the optimization model with deterministic assumptions of average

demand and yield (Run A)

2. The outcome of the optimization model with deterministic assumptions of average

demand and yield, with each suggested acreage multiplied by two to represent the current

risk management heuristic of planting redundant acreage (Run A2)

3. The outcome of the suggested production planning algorithm, where the optimal solution

for various PCL and DCLs is simulated, until a desired Type I CSL is achieved

(Runs B-H).

The resulting profit and customer service level distributions from the suggested algorithm are

compared to the outcome of the simple "doubling" heuristic. The hypothesis is that the suggested

3 Crystal Ball@ is a product of Decisioneering, Inc., Denver, Colorado
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algorithm can outperform the simple heuristic by achieving an acceptable level of customer

service with higher profitability. Though the desired level of customer service will vary for

different business cases, a Type I Customer Service Level of 90 percent is considered adequate

for grocery retail customers.
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5 Results and Analysis

The results of various optimizations are first analyzed to observe differences in planting patterns

resulting from different certainty levels of demand and yield. Even though harvest windows are

relatively fixed in the model, subtle differences in planting patterns emerge, as well as

predictable changes in planted acreage. The production plans from the various optimization runs

are then simulated to see if an acceptable level of customer service can be achieved with less

planted acres than the industry heuristic of doubling the acreage. The more sophisticated two-

stage risk-incorporating algorithm demonstrates significant savings to MaterCo, when compared

to the doubling heuristic.

5.1 Optimization Results (Stage One of Algorithm)

The results of the optimization models (i.e. feasible solution set) are analyzed for differences in

planting patterns, only. The integrator's (MaterCo) share of profit and the resulting customer

service level distributions are explored through simulation.

The planting patterns across the feasible solution, in terms of timing and geography, do change

as certainty levels are increased. As higher levels of certainty are desired, intuitively, the planted

acreage increases, as well as the optimal planting locations and timing. The relative change in

planted acreage and planting patterns is illustrated for a few of the optimization runs in Tables 2,

3, and 4.

It is also interesting to observe the total planted acres required under the various solution sets

(Table 5). When average demand and yield are used, 13.15 acres total are required to be planted
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during the year. To follow the simple risk management heuristic of the industry, this is doubled

to a requirement of 26.29 acres. The production plan for Optimization Run H, however, achieves

the target 90 percent Type I Customer Service Level with approximately 20 percent less acres,

i.e. 20.95 acres (Table 5).

The acres required to meet the minimum service level will increase as the variability of demand

or yield (input into the model) is increased. It is more likely, however, that demand and yield

variability will decrease as more historical data is collected for growing and selling the SuperT.
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Table 2: Production pWan for Optimization Run A (Average Demand and Yield)
Planting Decisions (acres)

N-C~ C) It LO U
c c c c c <
0 0 0 0 0 -

.7~ ~
Week cc c
Last week of Previous Year

1 0.47 -

2 - -
3 -
4 - -
5 - -
6 0.48 -

7 - -

8 0.51 -

9 - -
10 - -

11 - -

12 -
13 -

14 - -

15 - -

16 -

17 - -

18 - -

19 0.93 -

20 0.56 -

21 - -
22 - -
23 - -
24 - -
25 - -
26 - -
27 - -
28 - -
29 - -
30 - -

31 - -
32 - -
33 - -
34 - 1.49
35 - -
36 -
37 - -

38 - -
39 - -
40 - -

41 - -

42 -

43 -

44 - -

45 - -
46 0.74 -

47 - -
48 0.74 -

49 - -

50 - -
51 - -

52 - -

0.28

0.49
0.25
0.49
0.25

1.12
0.37

CC crI.-

0.46

0.37
0.37

0.37

0.74

0.74

0.34

0.28

0.28

'-I-I.-

0.47

0.28

0.48

0.51

0.34

0.28

0.74

0.93
0.56

0.37
0.37

0.37

0.74

0.74

1.49
0.49
0.25
0.49
0.25

1.12
0.37

0.74

0.74
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Table 3: Production plan from Optimization Run B (DCL & PCL = 70%)
Planting Deisions (acres)

0 0 0 0 02' 2 ' ' 2
Week j Cc
Last week of Previous Year

1 0.58 -

2
3
4
5 - -
6 0.77
7 - -
8 0.46
9 - -

10 - -
11 - -
12 - -
13 - -
14 -
15 - -
16 - -
17 0.63 -

18 - -

19 0.63 -

20 0.59 -

21 - -
22 - 0.63
23 - -
24 - -
25 - -
26 - -
27 - -
28 - -
29 - -
30 - -
31 - -
32 - -
33 - -
34 - 1.84
35 - -
36 - -
37 - -
38 - -
39 - -
40 - -
41 - -
42 - -
43 - -
44 - -
45 - -
46 0.92 -
47 - -
48 0.92 -
49 - -
50 - -
51 - -
52 -

%M W Ia 0Im cc Cc~

0.26

0.31

0.25
0.25
0.25

0.92

0.42
0.50

0.67
0.25
0.67
0.25

1.38
0.46

0.62

0.31

0.29

0.58

0.26

0.77

0.46

0.62

0.31

0.61

0.63

0.63
0.59

0.63
0.25
0.25
0.25

0.92

0.42
0.50

1.84
0.67
0.25
0.67
0.25

1.38
0.46

0.92

0.92
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Table 4: Production Dian from Optimization Run H (DCL & PCL = 88%)

Week
Last week of

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
521

Planting Decisions (acres)

CL

C C 4
0 0 0 0 0
0) 0) 0) Cm) 0)

cc CE a: Cc c~
Previous Year

0.63

0.25

0.93

0.42

0.51

1.11
0.77

1.20

1.20

0.51

2.39

0.25

0.90

1.20

0.30

1.80

0.60,

0.25

0.00

0.34
0.35
0.25
0.35

1.20

0.50
0.70

0.28
0.45

0.40
0.55
0.39

0.63

0.25
0.25

0.93
0.25
0.42
0.28
0.45

0.40
0.55
0.39

0.51

1.11
0.77

0.85
0.35
0.25
0.35

1.20

0.50
0.70

2.39
0.90

1.20

0.30

1.80

0.60

1.20

1.20
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5.2 Simulation Results (Stage Two of Algorithm)

The solutions from the stage one optimization are run through a simulation where they can be

evaluated on two primary dimensions: profit to the integrator (i.e. MaterCo) and Type I

Customer Service Level (percentage of weeks where demand is met in full). Running the

solutions through the simulation gives a forecast distribution of the range and probability of

various profit and customer service levels occurring.

5.3 Integrator profit and customer service levels

The highest profits are observed for the lowest customer service levels. Figure 8 shows how the

mean profit decreases as mean customer service levels are increased. It also illustrates the gap in

service levels and profitability between the production plan based on expected (average) demand

and yield and any of the risk-inclusive optimizations that were tested. Though the profitability is

attractive, the customer service levels are not realistically acceptable if no risk management

measures are taken. In the current model formulation, there are no negative consequences for low

customer service. Poor service in one week does not impact the ability to sell product in the

following week. This is an area for further development of the model.
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Figure 8: Mean profit versus customer service trade-off curve
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Intuitively, the risk of poor service to the customer decreases as the planted acreage base

increases. Nevertheless, as the customer service level increases, the profitability decreases

because a higher level of production is required to service the tails of the demand distribution

and to account for the tails of the yield distribution. Furthermore, the variability of profit

increases along with the higher customer service levels (Table 5). With the simple doubling

heuristic, there is even the possibility of losing money, which is not the case for Optimization

Run H (Figures 9 and 10). This reinforces the importance of finding the right balance between

customer service and profitability.

Given a minimum customer service level of 90 percent, the optimal production plan suggested

from the algorithm is from Optimization Run H. This production plan achieves at least 90

percent customer service with the least amount of acres. Compared to the doubling heuristic, the
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mean profit from Optimization Run H is approximately $40,000 more. Therefore, higher

profitability can be achieved in this instance using the suggested production planning algorithm

and models, versus the simple doubling heuristic. Statistical tests validate the significance of the

results.

Test 1: Is the Type I Customer Service Level from Optimization Run E above 90 percent?

Ho:pCSLH <.9

HA : pCSLH
. 9

I-S p 409
Test Statistic (z) = . H

UCSLH

P value of -4.09 < .001

Can reject the null hypothesis

The P value is very significant. Therefore, the Type I Customer Service Level from Optimization

Run H is higher than 90 percent. The production plan from Optimization Run H is a feasible

solution.

Test 2: Is the profit from Optimization Run H greater than the profit from Optimization Run A2

(i.e. Doubling Heuristic)?

H0 : UprOfit H - JUPrOfl= 0

HA : UprofitH - -PrpfHtAH 0

Test Statistic (z) - = -118.70
ProfitH UProfltA

n. nA2

P value of -118.70 < .001

Can reject the null hypothesis
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The P value is very significant. Therefore, the profit from Optimization Run H is greater than the

profit from the doubling heuristic. The production plan suggested by the algorithm is preferred to

the production plan resulting from the simple industry heuristic.

This test shows that MaterCo can save unnecessary production expenses while still providing

acceptable service to their retail customers. With better understanding of the trade-off between

profitability and customer service, MaterCo can also make more informed promises to

customers. A further benefit of this approach is that it can give managers better information

around the expected distribution of profitability for a given production plan, allowing them to

make better budget decisions.

Table 5: Acres, profit, and customer service levels

Mean St. Dev. Mean St. Dev.
Run Acres Profit Profit CSL CSL

A 13.15 $99,736 $7,422 60.49% 5.72%
B 16.05 $91,679 $8,913 75.24% 5.03%
C 17.03 $87,345 $9,366 78.92% 4.74%
D 18.22 $81,486 $9,876 82.75% 4.33%
E 19.89 $72,613 $10,786 89.53% 3.82%
F 20.22 $70,409 $10,872 89.88% 3.73%
G 20.58 $67,952 $10,963 90.25% 3.68%
H 20.95 $65,330 $11,050 90.64% 3.50%
A2 26.29 $22,639 $12,349 95.47% 2.50%
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Figure 9: Histogram of Profit from Optimization Run A2 (Doubling Heuristic)
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Figure 10: Histogram of Profit from Optimization Run H (DCL & PCL =88%)
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6 Conclusion

The primary objective of this thesis is to find the optimal production plan (i.e. timing, quantity,

and location) for planting a premium tomato. The optimal production plan is defined as that

which maximizes profitability while recognizing the inherent uncertainty in the fresh produce

supply chain. These are mainly yield, demand, and harvest failure risks. The optimal solution

depends upon the level of uncertainty in service that the retail customer is willing to accept.

Lower customer service levels will result in higher profitability to the integrator, but it may be

impossible to maintain business relationships.

The most basic value that the two-stage planning algorithm provides is determination of the

optimal planting pattern (amount, location, timing), which can be difficult to calculate manually

in a complex planning environment. If the demand level is constant and few planting

geographies are available, it may be possible to determine the planting pattern by hand or with

simple spreadsheets. On the other hand, when many planting location choices exist, with varying

harvest windows, and varying levels of demand, determining a feasible planting pattern is

difficult without optimization. Not only does the amount of acres need to be considered, but also

the staggered timing of plantings, and the relative costs of each decision. It is relatively easy to

foresee production planning situations where the number of variables to consider is beyond the

scope of unaided decision making.

The primary contribution to agricultural decision making from the suggested two-stage planning

algorithm is the incorporation of risk into the premium fruit and vegetable production planning

process. Through modeling and quantification of the inherent uncertainties in both supply and
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demand, these risks can be better managed to more efficiently match supply with demand. This

brings more sustainable profitability to premium agriculture supply chains. In the case of

MaterCo, a better understanding of these uncertainties, alone, is already improving the

company's ability to make supply chain decisions. With the tools provided, management can

find the production planning solution that maximizes their potential profit while meeting the risk

profile of their customers, in terms of acceptable service levels. These tools also allow

management to better prepare for worst-case and best-case scenarios by indicating both the

potential consequences and the probability of occurrence.

Some limitations in the suggested models are that they do not consider variability in fuel prices

or commodity prices. In the simulation runs documented in this thesis, the price of fuel, farm-

gate tomato prices, and wholesale tomato prices (to grocers) were considered to be deterministic,

for purposes of simplification. They can, however, be entered in separately for each individual

week. Nevertheless, it would not be a difficult adjustment to the simulation model to substitute

random variables in the place of these inputs.

The two-stage planning algorithm also does not consider the risk pooling benefit of planting

redundant acreage in two different locations. If the yield distributions in each region can be

considered identical and independent, less acreage will be needed in total to meet a

predetermined customer service level, because variation in one location will offset variation in

the other location.

It is important to note that significant efforts were made throughout this thesis research to

develop a model and approach that maintain enough simplicity for practical use. Though the
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proposed additions mentioned above could be incorporated in the models, the models could

become too complex for regular use by production managers. It is suggested that this production

planning algorithm is used repeatedly throughout the growing season to adjust the production

plan as new data becomes available. It is relatively simple for managers to fix values for planting

decisions that have already been made, and rerun the algorithm to determine a new optimal

solution.
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7 Further Research
Further research can improve the optimization and simulation models to more accurately reflect

reality. For example, the simulation model can be further developed to incorporate negative

consequences for poor service, such as decreasing the level of potential sales following a week of

shortages.

It may also be useful to quantify and incorporate the risk of complete crop failure (e.g. due to

adverse weather conditions) in this model, if possible. This implies that no further harvest is

conducted in a location after a complete crop failure occurs.

Further research also needs to be conducted regarding forecasting and demand management in

fresh produce supply chains. More sophisticated demand and yield forecasting techniques will

improve the accuracy and profitability of production planning decisions. Producers can also

benefit from a better understanding of how pricing decisions impact sales, which they can use to

institute better price negotiation processes. In addition, research is lacking that helps grocery

retailers understand the true value that a premium branded product brings to their entire produce

category.
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