
The iFlame Client-Based Instantaneous Datagram
Communication Substrate

by

David Michael LaMacchia

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

and

Bachelor of Science in Computer Science and Engineering

at the

The author

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1996

@David M. LaMacchia, MCMXCVI. All rights reserved.

hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document.

A uthor
Department of Electrical Engineering and Computer Science

May 17, 1996

Certified by

Accepted by.............

Chairman, Departmental

Barker

Walter Bender
Principal Research Scientist

Thesis Supervisor

t. Morgenthaler\omTnittee on Graduate Students

Eng

CHJUN 11 !Tj996

JUN I 1. 1996

The iFlame Client-Based Instantaneous Datagram

Communication Substrate

by

David Michael LaMacchia

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 1996, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Computer Science and Engineering

Abstract

This thesis investigates a new protocol, IFLAME, designed to provide highly scalable,
distributed, real-time communication systems for the Internet. Scalability is achieved
by using a client-oriented model rather than a more traditional server-centric one.
The protocol specifies that servers maintain the locations of clients, but transactions
are committed in a client-to-client fashion. IFLAME is unique because it requires
each client to be responsible for handling the load associated with the transactions it
initiates. The claims of the protocol are demonstrated in an implementation called
the iFlame Message System which combines the ability to send audio, video, text,
and other MIME-encapulated data with dynamic client configuration via the Tcl/Tk
scripting language. The system achieved several goals: scalability, efficiency, porta-
bility, and concurrency.

Thesis Supervisor: Walter Bender
Title: Principal Research Scientist

To my family

Acknowledgments

This thesis could not have been completed without the support of a great many
people. I wish to take this opportunity to express my appreciation for their help
throughout this project. In particular:

Walter Bender, my thesis advisor, for taking a chance and making this all possible.

Gerald J. Sussman and Harold Abelson for their advice and assistance in all things.

Brian D. Carlstrom, with whom I developed the original IFLAME project, for many
hours of support, comments, and more support. This project would not have existed
without him.

Brian A. LaMacchia, for doing more for me than any brother has ever been expected
to do, and for coming through for me time and time again. He taught me honor,
character, and brought strength to me when no one else could.

Pascal Chenais, for his wise advice and for giving me a chance when no one else
would.

My parents Robert and Sherry LaMacchia, for being damn fine parents who were
completely understanding.

Harvey Silverglate, David Duncan, Andy Good, and Sharon Beckman, for being willing
to fight and for teaching me a few things.

Paul Butkiewicz, for always being the first one to hear everything and not complaining,
and also for all the coffee.

Ryan Smith, for being a great friend, for sharing my sense of humor, and for all the
road trips, Stuckey's, camping expeditions, and cephalopods.

Larry Goldfinger, Wendy Tuggle, and Jonathan Frome, for staying with me and un-
derstanding that I was with them in heart, if not in body.

Michael Blair, Philip Greenspun, Bill Rozas, Kleanthes Koniaris, and Jason Wilson,
who made work at the AI Lab special.

Anca Mosiou, for her spirit and urging to get this thesis completed.

Joe W. Barco, for understanding what I was going through, and for the Cheez-its.

Chris Pezzee, for putting up with me as a roommate.

Bahman Rabii, Jordan Share, Dan Hurda, Mike Stephens, and Weip Chen, for friend-
ship and all the games that kept me sane.

Hani Sallum, for his sense of humor.

Stephanie Spavaro, for being wise beyond her years, and for not being vapid nor
blonde.

"Big" Jimmy Roberts, for knowing nothing, seeing nothing, and being a friend.

Trey Anastasio, Mike Gordon, Page McConnell, and Jon Fishman, for musical inspi-
ration during the long hours writing code.

and to Helen, who was with me during two difficult years. I'll miss you.

Contents

1 Introduction 10

1.1 Evolution of the Delocalized Community 10

1.2 Asynchronous Communication 13

1.2.1 The World Wide Web 14

1.2.2 Electronic M ail 14

1.2.3 Usenet News 15

1.3 Synchronous Communication 15

1.4 iF lam e 16

1.4.1 Motivations for the IFLAME Protocol 16

1.4.2 Clients and Scalability: the IFLAME Mantra 17

2 The IFLAME Communication Protocol 19

2.1 The Basics: Forums, Locations, and Users 20

2.1.1 Forum s. 20

2.1.2 Locations .. . 22

2.1.3 U sers 24

2.2 A Simple IFLAME Interaction 25

2.2.1 A Typical Session 29

2.2.2 Analysis and Advantages 35

3 The iFlame Message System 38

3.1 Client Implementation 38

3.1.1 iflamec and iflame 39

3.1.2 if lame Architecture 43

3.1.3 Flamage 45

3.1.4 idisplay and iwindow 46

3.2 Server Implementation 49

3.2.1 if lamed Initialization 49

3.2.2 Data Structures 50

3.2.3 Scheduling Client Cache Updates 51

4 Problems, Analysis, and the Future 52

4.1 Problem s. 52

4.1.1 IF LAM E 53

4.1.2 The iFlame Message System 53

4.2 A nalysis 54

4.2.1 Small message, continuous conversation 54

4.2.2 Large message, continuous conversation 55

4.2.3 Small message, subscription messages sent 56

4.2.4 Large message, subscription messages sent 56

4.2.5 A Comparison Between iFlame, IRC, and Zephyr 56

4.3 The Future of iFlame 57

4.3.1 Improvements to the iFlame Message System 57

4.3.2 Migration of iFlame to an open system 58

4.3.3 Other implementations of the protocol 58

4.4 Conclusion 59

A Code Samples 62

List of Figures

1-1 The Communication Grid 13

2-1 The IFLAME Forum Structure 21

2-2 A typical location structure 23

2-3 The IFLAME Datapath 27

2-4 Generally defined client/server response codes 28

2-5 Outgoing client - server messages 36

2-6 Outgoing server -+ client messages 37

3-1 Implementation of red-black trees in iFlame 40

3-2 iflamec caches 41

3-3 The iflamec connection structure 42

3-4 Sample .iflamec initialization file 43

3-5 if lame user commands 44

3-6 A Typical iFlame Message System Screen Dump 48

4-1 Test 1: 200 short messages, no subscriptions, average of 10 trials . . . 55

4-2 Test 2: 200 long messages, no subscriptions, average of 10 trials . . . 55

4-3 Test 3: 200 short messages, plus subscriptions, average of 10 trials . 56

4-4 Test 4: 200 long messages, plus subscriptions, average of 10 trials . 56

4-5 A comparison of iFlame, Zephyr, and IRC 61

A-1 if lamec Client/Server socket initialization 63

A-2 iflamec Unix socket initialization 64

A-3 The iflamec select () system call setup 65

A-4 iflamec's openserver() function 66

A-5 if lamed Database Access 67

A-6 The .iflamec.tcl file 68

Chapter 1

Introduction

Things fall apart; the center cannot hold;

Mere anarchy is loosed upon the world.

- W.B. Yeats

Yeats fussed about things falling apart and the center not being able to hold.

What really happened was that the center ceased to exist all together.

- John Barnes

1.1 Evolution of the Delocalized Community

As the Internet continues to invade the popular press and gain acceptance among

people as a viable commodity, communities continue to be both created and enhanced

by the network. Online communities are inherently delocalized; they are not limited

by geography. The Internet holds the promise of allowing large numbers of delocalized

people to communicate in ways that have been previously impossible. Unfortunately,

technologies available on the network do not scale well, hindering the development

of many of these new forms of communication. Solving this scalability problem is

critical if we wish new and more varied communities to exist online. In order to

do so, however, we must first understand how communities will survive and take

advantage of a networked world.

It is no surprise that there is much confusion about how communities form in

a networked environment: the notion of community is thousands of years old. In

ancient times, a community often consisted of a single village in which each person

might have had contact with at most one hundred others during his entire life. In the

period following the agricultural revolution, one person may have had contact with

as many as one thousand other people. By the early part of the twentieth century, a

technically-minded person would had the chance to contact several thousand people

on a moment's notice by simply taking a train to the next town over and stopping at

one of many local pubs. And in the "Age of Information?" Millions of disembodied

voices contacted through use of electronic mail[5], Usenet news[9], the World Wide

Web[2], and hundreds of other options. Is this the modern community?

Some futurists might like to think so. In the past, communities were often formed

in part by geography: people were thrown together in a particular suburb and sud-

denly they gained the classification of "neighbors." In the electronic world, without

the constraints of geography, common interests drive the formation of communities.

Communities may be composed of one's high school friends, the people seen on the

subway every day riding to work, the people who watch the television show Babylon

5, or countless other groups of associations made every day. Any of these associa-

tions can exist offline, and any of these associations could be supported online. In

the networked world, the difference is that geographically distant people can converse

and publish information for each other in means that would be infeasible in the real

world.1

A delocalized community is any grouping of people with a common interest who

may not be geographically near each other. Delocalized communities can exist offline,

such as in telephone chat lines, but frequently they are formed via a method of

communication involving the Internet. The Internet is the direct descendent of the

ARPAnet, which was developed 25 years ago and was used exclusively by scientists

1Just imagine if electronic mail, like a telephone, was associated with a monthly long distance
bill!

for scientific research. These scientists created their own communities to better share

information regarding their work. Now, a quarter-century later, access to the Internet

is almost a commodity and includes people who decide that access is worth a monthly

charge. They, too, find friends in the online world and arrange themselves into special

interest groups, just as they do now in the real world.

Delocalized communities are defined in part by the method of communication

upon which they are based. In the online world, this means that these communities are

severely limited by the available technology. Most large groups of Internet users with

shared interests associate via store-and-forward applications, which store the contents

of a message authored by one user for retrieval by others at some later time. Prime

examples of store-and-forward applications are electronic mail and Usenet news. Un-

fortunately, the Internet currently ignores another important form of communication:

the ability to hold conversations in real-time.

Communication is, of course, the heart of the Internet, and it is therefore ex-

tremely surprising to discover that the evolution of online communication has been

notably lopsided. Two forms of association exist on the network: asynchronous and

synchronous. Asynchronous communication includes those methods where a party

provides information to another party without knowledge of when that data will

be received, as in the store-and-forward applications mentioned above. Synchronous

communication revolves around real-time data transactions between two or more par-

ties. Considering that the Internet's communities try their best to mimic real world

associations, it is startling that almost all development has centered on improving

asynchronous communication.

Prof. William Mitchell, Dean of the School of Architecture and Planning at

MIT, has been examining the difference between communities online and offline for

some time.[13] Mitchell's claim is that over time, communication has migrated away

from synchronous conversations that occur face-to-face to other forms. These other

forms of communication, he claims, are enhancements to the way people have dis-

cussions rather than replacements for the older methods. Considering the (usually

intuitive) economics of time and space, people are able to choose which method of

communication best suits them at any particular time. He demonstrates this via a

grid comparing popular forms of synchronous and asynchronous communication with

presence (localization) and telepresence (delocalization). An example of his grid is

depicted in Figure 1-1.

Synchronous Asynchronous

Presence Face Note/letter

Telepresence Phone, Voice message,

shared virtual electronic mail

environment

Figure 1-1: The Communication Grid

The IFLAME protocol is an attempt to create a synchronous form of Internet

communication that can be used to create communities as varied as those in the real

world. Most online communities are currently based on asynchronous communication;

in the real world the analogous situation would be if all conversations took place

over telephone answering machines, a store-and-forward technology. To best simulate

conversations and form true communities online, users desire to converse in real time.

1.2 Asynchronous Communication

Historically, the Internet has focused on providing efficient asynchronous communi-

cation services. Asynchronous applications allow a corporation with fast machines

and a good network connection to serve data easily to clients. In the past it has been

necessary for slow clients to allow a remote server to do intensive work for them. This

type of client-server system is a server-centralized one, because clients depend on one

or more servers to process and provide data.

1.2.1 The World Wide Web

The best example of asynchronous communication is the development of the Hy-

pertext Transfer Protocol (HTTP) and, along side it, the World Wide Web. The

Web itself is a conglomerate of old and new technologies, including the File Trans-

fer Protocol[15] (FTP, arguably the oldest form of moving files over the network),

Gopher[12] (developed in 1992 as a better means of serving files over the Internet),

Usenet news, and HTTP, as well as many others. In this medium the user has the

option of being publisher, consumer, or both. Unlike other asynchronous mediums

like newsprint or television, it is extremely easy and inexpensive for individuals to

provide useful services on the network.2 The development of asynchronous Internet

communication technology has been explosive; there is an increasing number of prod-

ucts such as Netscape plug-ins and positions for artists and computer programmers

every day.

1.2.2 Electronic Mail

Electronic mail (email) is a venerable form of asynchronous communication with

which almost all online users have experience. Email also often defines delocalized

communities in ways the Web cannot. While more Web browsers are enabled every

day to allow users to send electronic mail from within them, electronic mail is generally

not considered to be part of the Web. This is because most mail messages are not

available to a general unknown audience in the same way that other information

might be provided by anonymous FTP or HTTP. On the ARPAnet, scientists used

mailing lists to discuss current research projects. Not much has changed since the

1970s for email, except perhaps for the growth of the general user base and the variety

of mail agents. One might argue that mailing lists each represent a single community,

literally categorizing users as members of a group with a particular interest.

2Some might argue that an entire industry has developed around individuals hoping to make
money by selling their popular small services to big companies, such as Webcrawler's alliance with
America Online.

1.2.3 Usenet News

Like electronic mail, Usenet news ("netnews") is an interactive yet asynchronous form

of Internet communication. Unlike email, netnews has the distinct advantage that the

recipients of a message need not be specified; it is possible to "lurk" on a newsgroup, to

read messages and be effected by them, without disclosing one's presence to anyone

else. Users post messages in hierarchically-organized groups; an attempt is made

(though often not successfully) to limit discussion in particular groups to particular

topics. Each group is a community in itself, defined by its topic of discussion, led by

prominent personalities (frequent posters), adhering to guildlines of behavior (rules

of netiquette), and documenting a history (Frequently Asked Questions lists).

1.3 Synchronous Communication

Synchronous communication has undergone few changes over the past ten years. Net-

work aware versions of the write[16] command and various talk programs are the

oldest forms of synchronous network communication and are still widely used today to

allow two (or sometimes more) users to establish a virtual pipeline that can send and

receive text. There is little technological difference between these programs and, say,

Internet phone programs that allow two people to have long distance "telephone" con-

versations using the Internet as the transport mechanism. Communications systems

like the Internet Relay Chat (IRC) [14], MIT's Zephyr Notification Service (Zephyr) [8],

and the Multicast Backbone (MBONE)[11] allow users to talk to other users of the

system, either individually or in groups, in real-time. IRC and Zephyr are inherently

limited because they revolve around routing all data through a central server (or net-

work of central servers) which means that they are not scalable and can only support

a finite number of users 3 Zephyr, because of its dependence on three central servers,

is only feasible within a single Kerberos[10] realm. At MIT, Zephyr has a difficult

3For IRC this number, according to recent studies, is about 12,000 users. In fact, IRC, because
of various political battles over how the web of servers should be connected, has divided itself into
two main networks, the EFNet, and the Undernet, which together comprise the majority of IRC
servers, although some "island" servers exist that are not connected to either.

time supporting the student body, which is about 10,000 students.4 Similar to IRC,

the MBONE uses a multicast network[6] with a specific topology to route informa-

tion. Unfortunately, MBONE's multicast protocol is extremely unportable and not

viable on many systems.

Communication on the Internet is certainly more varied than suggested by this

simplistic attempt to divide data transfer into two groups; delocalized communities

revolve around hybrids of asynchronous and synchronous technologies as well. For

example, in 1993 the MIT Media Laboratory developed a system for an electronic

personalized newspaper, originally dubbed the Freshman Fishwrap5 . The Fishwrap[3]

(which was later made available to the entire MIT student body) claimed to make

each student reader, editor, and contributor; not only did the user input the general

format of newspaper he desired and select the news he would receive, but he could

also submit articles (and comments on articles) that other people in the Fishwrap

community would see and could comment on as well. By involving the entire read-

ership in the creation of the newspaper, a shared association that revolved around

these submissions evolved into a community of students.

1.4 iFlame

1.4.1 Motivations for the IFLAME Protocol

Every day there is a greater demand for the creation of larger delocalized commu-

nities able to commit faster and more efficient transactions. Network-aware games,

from popular action games such as id Software's Quake to Origin's Ultima Online ex-

emplify the growing desire for synchronous communication substrates that can scale

to an unlimited number of people. If bandwidth-intensive applications such as vir-

tual reality simulations and video conferencing are to ever be developed, synchronous

4This number is misleading. Considering the number of Athena workstations and private com-
puters that support Zephyr, the system rarely handles above 1,500 users at any one time. Zephyr,
in reality, has much difficulty servicing more users than this.

5 As the saying in the newspaper industry goes, "Yesterday's news wraps today's fish."

Internet communications must undergo great changes.

The "Internet Flame," or IFLAME, protocol is the next logical step in the evo-

lution of synchronous communication. IFLAME supports a scalable network that

emphasizes the creation of communities of people located anywhere on the Internet.

Because it is scalable, these communities are not restricted either by physical or vir-

tual locality, or, most importantly, by the number of IFLAME users online at any

given time. People using the system send "flames" 6 to each other; each flame consists

of packets of data containing anything from simple text to video. Each user controls

a local client; clients use a network of servers to locate other clients, but client-client

communication does not in general involve the servers. We encourage long-term users

of IFLAME to establish a permanent address for themselves on a server so that, as

with email addresses, a user can be consistently found by others.' As in IRC, dis-

cussion groups can be created with access control to allow users to better shape their

community. Because the IFLAME protocol is primarily client-client communication,

the load sharing necessary to create efficient applications from network games to video

conferencing is possible.

1.4.2 Clients and Scalability: the IFLAME Mantra

The basic tenet of IFLAME is simple: while servers must exist to keep track of clients'

locations and maintain authentication information, the client itself should do the

work of sending messages to other clients. If a user decides to send a copy of a home

movie he made of his child learning to walk to a group of 200 other users, his client

directly bears the burden of sending a large amount of data to a large number of

people, not a centralized server s . In addition, if a person wants to have an extensive

6Historically a flame is, according The Hacker's Dictionary, an instance of one who "speak[s]
incessantly and/or rabidly on some relatively uninteresting subject or with a patently ridiculous
attitude."

7As we'll see later, an IFLAME address appears much like an email address, as in
dmlif lame .mit . edu.

8If a centralized server did have to send out 200 copies of that movie, other users would find
themselves penalized, as their messages would not be handled while the server completed this load-
intensive task

private conversation with someone across the country (or across the world!) there is

no reason the activities of other users should hamper their discussion.

IFLAME is able create a client-based network by locally caching the locations of

remote clients with whom a user is communicating. If a remote client is added to or

removed from a forum to which a user has subscribed, then the server is able to update

this subscription information in the client's local cache in the background while that

client continues to communicate with other clients. In a typical transaction, the

majority of the work performed by the server is done the first time a user decides to

write to a forum, since the server must initially tell that client the location of every

subscriber to that forum. After the client has been initialized, the server need only

update the writing client as other clients subscribe to or desubscribe from that forum.

Because of the simplicity of its design, the IFLAME protocol easily supports

higher-level networked applications. While the first half of this paper describes the

protocol itself, the feasibility of the IFLAME protocol is investigated in an implemen-

tation described in the second half. The system consists of a server, iflamed, a client,

iflamec, a user interface to the client, iflame, as well as display handlers (for the X

Window System) and various helper applications (for such tasks as server-side user

database manipulation and interpretation of client-side user-definable Tcl scripts to

control data presentation). The result is a substrate that allows for an extremely

scalable system.

To best illustrate our findings, the remainder of this paper is divided into three

sections. Chapter 2 describes the IFLAME protocol in great detail as well as the

design decisions that led to its final form. Chapter 3 introduces the IFLAME Message

System, a chat network built using IFLAME. This chapter also discusses the practical

issues involved in designing other similar systems. Chapter 4 concludes the thesis

by investigating whether or not the communication system succeeded as a scalable

system. Suggestions for future development and other synchronous communication

systems are also included.

Chapter 2

The IFLAME Communication

Protocol

The goal of the IFLAME protocol is scalability. Unlike systems such as IRC or Zephyr,

where a static group of servers can handle a finite number of clients, IFLAME allows

for a dynamic number of servers to exist at any time and thus puts no constraints

on the number of simultaneous users. Because IFLAME is proposed as a solution to

a scalable integrated message system, this tenet defines the protocol. Although par-

ticular services built on top of IFLAME will vary greatly, there are some fundamental

claims concerning the network environment we may assume are true. First and fore-

most, each user potentially wishes to commit transactions with other users who may

be an arbitrary distance away on the network. Second, the user is willing to take re-

sponsibility for his actions but should not be penalized for the actions of others; that

is, a user's client should handle the bulk of the load generated by a resource-intense

transaction. Third, the user should be willing to have his client interact with at least

one server he trusts to know about his location.

The heart of iFlame resides in forums and users; a forum is a place were com-

munication takes place between users. Forums are both single clients and groups of

clients. Once a client subscribes to read the contents of a forum (by informing the

server where that forum resides), the client will continue to receive the messages re-

mote clients direct to that forum directly from other clients until it unsubscribes from

the forum. The client does not have to worry about how remote clients will locate it;

this task is handled by the server upon which the forum is hosted. Passive readers

of IFLAME forums do little work outside of receiving connections from other clients

and displaying the received data in an appropriate fashion. Active clients that wish

to send data, called writers, must keep track of the locations of all clients subscribed

to forums to which it sends messages and also receive updates from servers when new

locations are added or old ones are deleted.

This chapter describes the details of the IFLAME protocol, taking into account

the assumptions we have made above concerning the conditions under which the client

and server operate. Arguments for and against each design decision are presented and

the reasoning behind choosing a particular implementation are described. Section 2.1,

The Basics: Forums, Locations, and Users, examines issues surrounding the funda-

mental concepts of the IFLAME protocol. Section 2.2, A Simple IFLAME Interaction

which presents the basic transactions that might occur between a client and a server

as well as multiple clients. A sample implementation of the protocol in the form of

a chat system and the design decisions inherent to its construction are described in

the Chapter 3.

2.1 The Basics: Forums, Locations, and Users

2.1.1 Forums

Forums are the key to IFLAME. A forum is a similar concept to an IRC "channel"

or Zephyr "class," in that it is the protocol's means of subgrouping clients. Unlike

channels or classes, however, IFLAME forums are hosted by a particular server much

like an email mailing list. Thus, the babylon-5 forum on iflame. mit. edu is distinct

from the one located on iflame.foo.org. 1 Similarly, for a forum associated with a

particular username (called a personal forum though they differ in no way from other

forums), dml at if lame .mit. edu represents a different forum then the dml forum

1Assuming, of course, these are different machines!

on iflame.foo. org A forum consists of three distinct parts: a collection of Access

Control Lists, a list of forum readers, and a list of forum writers. The forum structure

is shown in Figure 2-1.

typedef struct forum
{

char *name;
tree_t *readers;
tree_t *writers;
tree_t *acl[NUM_ACL_TYPES];
int refcount; /* reference count for GC */

} forum_t;

Figure 2-1: The IFLAME Forum Structure

There are several reasons IFLAME is organized around the forum structure; the

best way to exemplify these is to distinguish the protocol from a relay system like

IRC. IRC uses the channel structure to group users; a channel is a globally recognized

set of information that contains a list of users reading the channel and a list of the

access controls for that channel. This model works well for IRC since the system does

not try to conserve bandwidth or try to push any load off of servers onto clients. In

IFLAME, however, readers are distinguished from writers because only forum writers

require cache updates. Furthermore, since a forum resides on exactly one server, no

inter-server communication is required and cache updates depend only on the forum's

host server.

IFLAME forums are the result of lessons learned from the mistakes of other sys-

tems. For instance, IRC's generally recognized problems with global name resolution

do not exist in the IFLAME model. Similarly, the race conditions that exist because

a relay network can have servers receive updates at different times2 are not present a

2Also, updates are arriving from a multitude of servers at once

system built using IFLAME because servers do not have to talk to each other.

Access Control Lists

A forum's Access Control Lists (ACLs) constrain who can perform various operations

with respect to that particular forum. There are six distinct ACLs per forum: read,

write, admin, deny read, deny write, and deny admin. These ACLs allow an ad-

ministrator of a forum (a member of the forum's admin ACL) unlimited customization

of that forum. For example, the administrator could make a forum available to ev-

eryone but, say, a user who for some reason needed to be denied access (say, if the

group was planning a surprise birthday party, or if a user had become unruly).

ACLs permit some interesting results, such as "personal" forums. A personal

forum is one upon which a user wants to receive private messages. Such forums may

be implemented by allowing anyone to write to the forum but only the user to read

from the forum. A login forum, announcing the fact that a particular user has logged

in, might allow only one writer yet multiple readers (the writer being the person

logging in; the readers would be those interested in knowing this information). Of

course, if a user does not wish to announce when he was logging in or out, he could

set the ACLs appropriately. Forums with multiple readers and writers are, of course,

suitable for group communication.

Forum Readers and Writers

Forums also contain lists of clients currently reading from or writing to the forum.

Each list is generally updated only after receiving a cache update from a server. Note

that a user who has subscribed to a forum as a reader, but not as a writer, does not

receive lists of writers because they are only receiving data from other clients.

2.1.2 Locations

When a user joins a forum, his location is added to the list of locations of active

readers both on the server and his own client's end. A location uniquely identifies

the user's client within the IFLAME system. It is the job of a server to maintain the

locations of the clients authenticated to it.

A location is simply an Internet address and set of two ports; one to receive client

connections and one to receive server connections.3 An example of a client location

is shown in Figure 2-2.

IP address Client Port Server Port

iflame.media.mit.edu 36356 36612

Figure 2-2: A typical location structure

Using this scheme, it is possible for a user to join a forum from various loca-

tions without conflict. Further, multiple users on a single machine may have their

own IFLAME clients, as these port numbers are chosen dynamically by the client at

runtime. It is not necessary for any part of the client to run with special privileges

(e.g. as "root") in order to dynamically establish these connections.

The server needs to maintain a cache of the locations of all clients reading forums

that server manages. This cache includes both clients authenticated to the server as

well as unauthentic clients. Clients, however, need only maintain locations of other

clients to which it needs to send data. Initially, a client's local cache of these locations

is empty, although each server managing forums that client is writing to has the

ability to dynamically update the client as other client's add and delete themselves

from forum reader lists.

The server also has an additional task besides just keeping track of which clients

are reading and writing forums it manages. The server must also keep a database

containing information about each forum it hosts. This database necessarily includes

the ACLs for each hosted forum.

Locations are kept simple for pragmatic reasons. When a server sends cache

updates to clients, it sends a series of locations to either add to or delete from a

3As we'll see in Chapter 3, it is important for security reasons that a client not accept untrusted
server connections on the server port, otherwise that client's caches could be maliciously updated.

particular cache. As the size of a forum grows, logically more people join and leave

that forum; when new users join that forum as writers they are sent more locations as

the cache is brought up to date. Since a location sent to clients is just an IP address

and a client connection port, relatively few bytes need be sent per location update,

thus reducing the bandwidth required to update a client's forum cache.

2.1.3 Users

An IFLAME user is simply the identification a client presents to a server to maintain

authentication data. IFLAME users forum the basis for the persistent identity a person

maintains over time and shares with others. Each authentic location is associated

with a user. When a forum request is made from an authentic location to a server,

that location's associated user is compared to that forum's ACLs to determine if the

request should be allowed to denied. No particular form of authentication is required

by the protocol; the choice of whether to use authentication at all, and the particular

method of authentication to use if desired, is left to the discretion of applications

built on top of IFLAME. 4

Addresses

One of the goals of IFLAME is persistence of users. Like a long-term email address, we

hope that individual people will want to maintain a consistent identity on a particular

server so their friends and coworkers can find them from session to session. Persistence

of identity is accomplished via IFLAME users. A user may have no persistent client

but instead have a "home server" where others can attempt to find him. For example,

dml@if lame .mit. edu, a proper IFLAME address, designates that user dml is located

on the server if lame .mit.edu. Of course, the only difference between a personal

forum and a public forum (or any other type) is the set of ACLs associated with it.

Thus, the address for a public forum, such as a discussion of one's garden, will have

a similar format (such as gardening@if lame .mit. edu.

4 Chapter 3 describes some of these in use in the IFLAME Message System.

One of the considerations when designing the IFLAME protocol was whether or

not servers should have a global view of the entire system. That is, should there be

a single gardening forum or should gardening@iflame.mit.edu be distinct from

gardening@if lame .microsoft .com? 5 It was eventually decided that if IFLAME was

going to support a dynamic system then forums should reside on a particular server

and no other server should necessarily know about its existence. This model also

supports a decentralized system and does not reduce scalability since servers have no

dependence on each other.

User authentication

Since users authenticate to a particular server, it makes sense for the home server to

maintain authentication data.' If a user establishes any authentication method for a

session besides UNAUTHENTIC, the server must access data about the user (submitted

via some outside mechanism) each time a client opens a connection to a server. Un-

der the PASSWORD scheme this initialization transaction might involve just a simple

transfer of a username and/or password, while PGP authentication could require a

more complex encryption key exchange and authentication protocol. A sample of the

authentication protocol is described in Section 2.2, below.

2.2 A Simple IFLAME Interaction

While forums, locations, and users are central to iFlame's protocol and support the

scalability of its clients and servers, the benefits of the system begin with the protocol

used for message passing. Because transactions are committed in a client-to-client

fashion and servers are only used for tracking location information, transactions en-

cumber servers with much less load than in a centralized-server environment. In this

5As an example, IRC uses global name resolution so every IRC channel is required to have a
unique name in the system.

6When discussing authentication types, designations from the implementation described in Chap-
ter Three are used. There are four methods described there: UNAUTHENTIC or unauthenticated trans-
actions, PASSWORD, or simple password validation, KERBEROS, designating the MIT Kerberos authen-
tication scheme, and PGP, verification of users using Pretty Good Privacy (PGP) key exchange.

section we present a step-by-step examination of the message passing protocol.

The main delivery path transfers a message first from a user to an IFLAME client,

then between IFLAME clients, and finally from the destination client to its user, as

illustrated in Figure 2-3. The server is not involved at all in these transactions so

long as the topology of the system is maintained. One of three situations may require

the server to connect to the client or vice-versa. First, the client could become a new

reader on a forum; in this case, the server must be notified so that it can update

its cache. Second, the client could become a new writer on a forum, in which case

the server must notify the new client of all current readers on that forum so the new

writer knows whom to connect to when writing to the forum. Third, if someone joins

or leaves a forum' the server will have been notified and will subsequently relay that

information to every client that is a writer to the forum.

7This includes a client crash.

Figure 2-3: The IFLAME Datapath

27

Client-issued commands

User clients may issue commands on behalf of the user to remote servers and other

clients. These commands are described briefly in Figure 2-5. Each command is

accompanied by a description of its functionality as well as the behavior associated

with the various return codes with which the server could respond. In general, the

IFLAME protocol's return codes are defined in a manner similar to FTP. Return code

are detailed in Figure 2-4. s

Response Code Definition

100 unspecified action; left for expansion

200 OK; action completed; action acknowledged

300 more data required

400 local data error

500 failure or command incomplete

Figure 2-4: Generally defined client/server response codes

Client-issued commands are more verbose than what a user might directly in-

struct the client to send. For example, a user should never need to specifically tell

a client to send a LOC message as this should automatically be done each time it is

necessary. Similarly, a +/- w would never be sent from the user to the client; this

command would be sent to a server the first time a user sent data to a forum to which

he was not previously writing (as determined by his local writer cache).

Server-issued commands

The IFLAME protocol also specifies a set of server-issued commands; in general, they

allow the server to perform cache updates on the client side.' These commands are

sAs is evidenced by Figure 2-4, we have left some room for further development of the protocol.
Possible directions for future work are described in Chapter Four.

9Chapter Four addresses the security concern regarding malicious servers modifying other clients'
caches.

directly outlined in Figure 2-6. Server-issued commands are always sent in response

to client activity.

2.2.1 A Typical Session

An example of a typical IFLAME session is illustrated below. The session represents

the client-side interaction with a server and another client. The user in this session,

dml, initializes his client and subscribes to a sample forum, iflame_help, located on

the default server. 10 Once subscribed, the client then sends a text message to the

forum.

1. Client initialization

dml@Slip-Dml% iflamec
Using unix socket: /tmp/iflamec.Slip-Dml17213.0
iFlameC client initialized

At this point the client has been started. Initialization includes reading data from

local configuration files, environment variables, establishing sockets, defining aliases,

and other similar activities. The details regarding this procedure are described in

Chapter Three.

2. The client is informed to begin reading a forum

Reply : 200 I flame, you flame, we all flame for iFlame.
Command : +r iflame_help
Reply : 200 +r complete
GCing connection

The above interaction demonstrates how a connection is accepted from our user-

level client-side application. This user-level abstraction is used to gather commands

10The default server for this example, as designated in the session when we start to receive cache
updates from it, is alphaville.media.mit.edu.

from the user and then send them to the client. In the implementation described in

Chapter Three, this program is also used to send data to remote clients. 11

Once the connection has been accepted, the standard 200 response code is re-

turned via the unix socket with the welcoming banner, I flame, you flame, we

all flame for iFlame. Again, this is a model similar to that of FTP. The com-

mand +r iflame_help is received by the client and the user-level program is told

that the command was received. Afterwards, the unix socket is garbage collected, as

designated by the debugging output, GCing connection.

3. The client connects to a server

Command : 200 I flame, you flame, we all flame for iFlame.
Request : LOC 36356 36612
Command : 200 Location set.
Request: AUTH PASSWORD
Command : 200 Authentication type set.

Request: USER dml
Command : 200 User set.

Request: PASS mypass

Command : 200 Password accepted.

Request : +r iflamehelp
Command : 200 Now reading forum.
GCing connection

As the client wants to begin reading forum iflame_help, it needs to subscribe

by sending a +r command to the server. This is done by first opening a connection

to the server and then sending the command and awaiting a response.

We follow the standard procedure for opening a connection to the server. The

client connects and waits for the opening server banner, 200 I flame, you flame,

we all flame for iFlame. 12 . Because this is a new server connection, the client

needs to identify itself to the server by sending its location via the LOC command.

11There is no reason this user-level program, if lame could not have been combined with our client
application, iflamec, as we show in Chapter Three. This two-tier model was chosen specifically to
resemble one MIT students would be familiar with, that of the MIT Zephyr system.12As in our user-level banner example, the text doesn't matter, just the response code

Receiving a response that the location has been accepted and noted, the client desig-

nates the authentication protocol PASSWORD for this session with the server. As this

protocol requires a username and password to be sent to the server, USER and PASS

commands follow with respective responses. Finally, the +r command is sent to the

server.

4. Data is input for sending to a forum

Reply : 200 I flame, you flame, we all flame for iFlame.
Command : iflame_help
CACHE:

The client receives the command if lame_help from the user-level application.

This designates that the user wishes to send some sort of data to the if lame_help

forum. Because we're operating in debugging mode, we get additional data output to

the display; the CACHE: line is a result of this, and displays the contents of the forum

cache local to the client, which is at this point empty.

Although not displayed here, at this point the user is prompted for data to send

to the forum. This is binary data and thus can be of any particular format. The

implementation described in Chapter Three uses MIME encoding for messages and

we recommend MIME as a standard format for IFLAME datagrams.

5. A new writer is added to a forum

Command : 200 I flame, you flame, we all flame for iFlame.
Request : LOC 36356 36612
Command : 200 Location set.
Request: AUTH PASSWORD
Command : 200 Authentication type set.
Request: USER dml
Command : 200 User set.
Request: PASS mypass
Command : 200 Password accepted.

Request : +w iflamehelp
Command : 200 Now writing forum.

The above process is similar to a client sending a +r command to the server.

The client has determined that it is not currently writing to the if lamehelp forum

so it needs to subscribe as a writer; if successful, the server will add this client to

the forum's writers cache and then update the caches of other writers for that forum.

Notice that the server does not need to update the caches of forum readers, since they

do not send any data but only accept connections from other clients. When the client

receives 200 Now writing forum the writer subscription was completed successfully

and the client waits for a cache update in order to send data to if lame_help.

6. The server updates the new writers cache

iflamec: Connection from : alphaville.media.mit.edu 37391
Reply : 200 I flame, you flame, we all flame for iFlame.
Command : +F iflame_help 18.23.1.128 36356
CACHE:

This section demonstrates how a client receives a cache update. A connection

is established from another machine, alphaville .media.mit.edu on remote port

37391. In our implementation, the client checks to see if it should be accepting con-

nections from this machine on its server port by examining a cache of allowed servers.

Finding alphaville.media .mit.edu in this cache, the client allows the connection

to succeed and receives the command +F if lamehelp 18. 23. 1. 128 36356. Again,

we display the local cache which, since this update hasn't been handled yet, is still

empty.

7. The client accepts the cache update

CACHE:

cache key: iflame_help
cache data: 18.23.1.128 36356

Reply : 200 Cache update successful
Command : QUIT
Reply : 200 Quit: command complete, closing connection

This transaction illustrates a client updating its local cache. In our implemen-

tation, we use simple red-black trees as the cache structure; for the client's forums,

the key is simply the forum name and the associated data are the IP addresses and

connect ports of the clients reading the forums. Since the client only received one

update the cache only contains one location (which happens to be itself, since it is

the only reader).

When the cache update has succeeded, the server sends a QUIT command. Had

there been other readers, the client would have received additional +F commands

designating other cache updates.

8. Sending data to a forum

Sending location info...
GCing connection
GCing connection
iflamec: Connection from : slip-dml.lcs.mit.edu 37892
GCing connection
To: iflame_help
From: dml

Having extracted the reader clients for if lame_help from the client's local cache,

the client connects to each location in turn and sends the data. Once a connection

from another client is received,13 the data is sent from the local user-level program

to the remote machine. The To: and From: fields are here displayed here only to

show that this data is included in the header of the data that is sent. If the client was

13In this case, however, it is our own user-level program

being run in terminal mode these would appear at this point along with the actual

text of the message. In this case, however, we are using the implementation's display

code, so the remote client forwards the received data to that subsystem.

9. The displayer for the X Window System is initialized

---Executing: idisplay
Error: couldn't open unix socket
Attempting to start displayer
iwindow: Using unix socket: /tmp/iwindow.Slip-Dml17213.0
iwindow client initialized
Reply : 200 I flame, you flame, we all flame for iFlame.
Using unix socket: /tmp/iwindow.Slip-Dml17213.0
idisplay client initialized

Since the client is using the X display code described in Chapter Three, it passes

the incoming data to the idisplay program which uses metamail to decode the

MIME-encoded message; the iwindow display program is also executed since one is

not already running and the transmitted text data is displayed in a small Tk window

on the screen. Again, this is described in detail in the following chapter.

10. Data is displayed on the X terminal

Sending location info...
GCing connection
iflamec: Connection from : slip-dml.lcs.mit.edu 38148
GCing connection
To: iflame_help
From: dml

---Executing: idisplay
Reply : 200 I flame, you flame, we all flame for iFlame.
Using unix socket: /tmp/iwindow.Slip-Dml17213.0
idisplay client initialized
GCing connection

This last segment demonstrates how the client is able to remove load from the

server in the common case. The server is loaded only when the state of the system

changes; otherwise, the clients can operate independently from it. The user has

decided to send another message to the iflame-help forum, but since no other users

have joined or left the forum, the local reader cache has not been updated (thus the

reason no other server connections are evident). We take the short client-to-client

path by simply sending the remote locations to the user-level application which then

sends the data to the remote clients, as described above.

2.2.2 Analysis and Advantages

A protocol like IFLAME has numerous inherent advantages over server-centric systems.

In the common case, the datapath does not involve any servers so the clients bear

the entirety of the load. Even when changes need to propagate from a server to its

clients, the overhead of sending such messages is minimal in comparison to the work a

server would have to do to not only maintain this information but to route messages

as well.

The overhead of the IFLAME protocol resides in cache updates. When a forum

is composed of a small number of locations, the assumption is not only that most of

the readers are also writers but also that there are few new readers joining and old

readers leaving. Even if the forum is fairly volatile, the number of clients that must be

contacted for cache updates is still small so the overhead generated by these updates

is almost non-existent. In larger forums that tend to be more volatile by nature, the

overhead of cache updates is still acceptable since the amount of data that must be

managed and sent to clients is relatively small in comparison to the data that would

otherwise have to be routed through a network of relayed servers.

Command Syntax Description Return Code

LOC <client connect port> Location; identifies the 200 OK, 400 memory error or

<server connect port> connecting client to repeated command, 500 argument

the server. failure or bad port.

USER <user string> User; identifies username. 200 OK, 400 memory or database

failure, 500 argument failure.

AUTH <authentication string> Authentication; identifies 200 OK, 400 type already set, 500

authentication scheme. unknown type or argument failure.

PASS <password> Password; sends 200 OK or not using PASSWORD

cleartext password. type, 500 no user set or

argument failure.

+/- r <forum string> Add/Delete reader 200 OK, 400 memory error,

500 location not set, access denied,

or argument failure.

+/- w <forum string> Add/Delete writer 200 OK, 400 memory error,

500 location not set, access denied,

or argument failure.

+/- a[r,w,a] Add/Delete READ, WRITE, 200 OK, 400 memory error,

<forum string> <user string> ADMIN ACL 500 access denied

or argument failure.

+/- an[r,w,a] Add/Delete NOREAD, 200 OK, 400 memory error,

<forum string> <user string> NO_WRITE, NOADMIN ACL 500 access denied

or argument failure.

QUIT Quit, end data transmission 200 OK, 300 request connection,

500 argument failure.

Figure 2-5: Outgoing client -- server messages

Command Syntax Description Return Code

+/- F <forum name> Add/Delete forum 200 OK,

<ip address> from client cache 500 argument failure.

<client connect port>

QUIT Quit connection 200 OK,

500 argument failure

Figure 2-6: Outgoing server -+ client messages

Chapter 3

The iFlame Message System

The iFlame Message System is an implementation of a communication system built

using the IFLAME protocol. It illustrates many of the advantages of a client-based

system while combining the flexibility of various net-aware applications. The result

is a chat mechanism that allows users to exchange audio, text, video, and other types

of data in real-time.

3.1 Client Implementation

The iFlame Message System client corresponds to the client described in Chapter 2;

that is, it is the half of the system with which the user interacts that sends data

to other clients and receives cache updates from servers. The client consists of a

networking kernel and two display components. The kernel is the portion of the

client that talks to remote clients and servers; it itself is of a low-level network piece

(iflamec) that maintains cache information and talks to servers as well as a higher-

level application (if lame) that communicates with the user and delivers messages to

other remote if lamec's. In addition to the basic client the Message System adds two

display components: idisplay and iwindow. The display programs handle incoming

data, parse it, and display it graphically. The implementations of each of these

subsystems are described below.

3.1.1 if lamec and if lame

if lamec is the system's cache maintainer, display handler, and authentication over-

seer, whereas if lame is the user interface to iflamec. Users are able to type com-

mands to if lame which it interprets and uses to join or leave forums or to send flames

to other users. We first describe the initialization phase of each system and then detail

how the two programs work together to implement the IFLAME protocol. C code (in

which the system is written), included in Appendix A, is referenced to illustrate how

particular portions of the protocol are implemented.1 In Section 3.1.4 we describe the

display programs idisplay and iwindow. Coordinating with the display programs

iflamec and if lame create the entire iFlame Message System.

Data Structures

State within iflamec keeps track of the forums to which a user is subscribed (either

as reader, writer, or both) and the locations associated with those forums. Forums

are cached locally as collections of the locations subscribed to them using red-black

trees. [4]

iflamec Initialization

The initialization of the client is a three-step process: clear the caches, initialize

sockets, and then configure the local user environment.

We tend to search caches in the iFlame Message System far more often than we

insert or delete into or from them, thus we want to implement caches using a data

structure that is optimized for searching. For our purposes red-black trees are ideal;

Our red-black tree structure is shown in Figure 3-1.

The client maintains four caches, described in Figure 3-2. Each is initialized to

be empty.

1C was chosen as the implementation language because portability is extremely important if we
wish to have as many people using the system as possible. C was chosen as the implementation
language because there are implementations of C for virtually every platform we wish to support
that allow us the versatility we desire.

typedef struct tree
{
void *key;
void *data;
struct tree *left;
struct tree *right;
struct tree *parent;
int color;

} tree_t;

void inorder_tree_walk(tree_t *x, void (*f)(tree_t *));
tree_t *tree_search(treet *x,

void *k,
int (*compare)(const void *,const void *));

void rb_insert(treet **T,
treet *x,
int (*compare)(const void *,const void *));

tree_t *rb_delete(tree_t **T,
tree_t *z,
int (*compare)(const void *,const void *));

Figure 3-1: Implementation of red-black trees in iFlame

iflamec is connected to if lame via a Unix socket. Shared memory was con-

sidered as a possible implementation mechanism for this connection, but Unix sock-

ets were chosen for the client end to preserve portability and minimize complexity.

iflamec also has a number of TCP sockets: one for incoming connection from clients,

one for incoming connections from servers and one for outgoing connections to servers.

Socket initialization is fairly straightforward, and uses standard network interface

code; in Appendix A contains detailed code listings.

On the iflamec side, an open socket is managed as a connection. A connection

is simply a structure that contains information concerning the socket's file descriptor,

its active state in the dispatch loop, and storage space for incoming and outgoing

data. The connection structure is illustrated in Figure 3-3.

The local user environment is read from configuration files located in a direc-

Figure 3-2: if lamec caches

tory of the user's choice. iflamec uses one of these files, . iflamec, which contains

information about the client's default server, username, possible authentication in-

formation, and forum aliases. The format of all variables except for aliases consists

of the variable name and the data separated by an "=" character. If not specified in

the . iflamec file, these values can also be established as environment variables. An

example .iflamec file is shown in Figure 3-4.

Main Dispatch Loop

The iFlame dispatch loop is a large finite state machine that uses multiplexed TCP/IP

to handle multiple connections from different remote hosts.2 Once a connection has

been accepted, arbitration of work is decided by a standard select () system call.

The iflamec-specific setup for this call is depicted in Appendix A.

Concurrency

A large part of engineering the client was designing and building the I/O system. The

client maintains a table for all file descriptors associating each open file descriptor

with a connection structure. This system appears complex when compared to the

interface to a threads package but it was felt that in this case portability was more

important than code simplicity. In retrospect, we made the right choice, as the system

was easier to build and debug than had been expected. Time was also saved by not

2The server has precedence over remote clients and the Unix socket.

Cache Name Description

readers Local forums client is reading

writers Forums client is writing and their members

aliases Forum aliases read from configuration files

servers Hosts client allows server commands from

typedef struct connection
{

int state;

time_t connection_time;
time_t command_time;

char in_buf [CHAR_BUF_SIZE];
int in_cnt;
char out_buf [CHAR_BUF_SIZE];
int out_cnt;
int extra;
int old_fd;

queue_t queue;

/* state we left connection in */

/* connection start time */
/* current command time */

/* input line buffer */
/* index into input buffer */
/* output line buffer */
/* index into output buffer */
/* checked extra input flag */
/* last fd */

/* client read buffer queue */

} connectiont;

Figure 3-3: The iflamec connection structure

having to seek out, evaluate, and comprehend the various issues in current user-level

thread systems.

States within the finite state machine are divided into two subsets: read states

and write states. For the most part, read states filter into write states and vice-versa.

A general diagram of the state machine can be found in [FIGURE NAME HERE];

the I/O code used to control the machine is demonstrated in Appendix A. Use of a

concurrent state machine was required by the dynamic nature of the remote clients.

Since clients and servers could go up or down at any time, a single-threaded model

would halt other work while timing out on crashed systems. This was unacceptable

behavior for the iFlame Message System.

iflame_server=iflame.media.mit.edu
iflame_username=dml
iflame_signature=David M. LaMacchia
iflame_password=mypass
if lame_authentication=PASSWORD
alias bdc bdc@iflame.mit.edu

Figure 3-4: Sample .if lamec initialization file

3.1.2 iflame Architecture

The if lame program acts as a user interface to if lamec and is responsible for sending

flames to remote clients. The interface is easy to use and allows users to join or leave

forums, set ACLs for forums, and send flames.

if lame Initialization

Initialization of if lame differs from iflamec in that we have only one socket to

bind, the Unix socket. The . iflamec file is used here to determine certain variable

definitions but we also read an . ianyone file (if it exists) that allows users to locate

other people online. Otherwise initialization only consists of parsing the command

line for various switches and options.

User commands

Figure 3-5 shows the command-line options if lame. The user types "if lame command-name

argl ... argn." For the most part, the if lame's behavior in handling the com-

mands listed in Figure 3-5 is not interesting; adding the client as a reader and making

ACL modifications, for example, require that if lame simply send the appropriate

command for each forum (or user) listed to the client, one at a time. The client then

sends these commands to the server and makes all appropriate cache updates.

User Command Syntax Description
+/ - r < forum1 > ... < forum, > Add/Delete client as reader

to/from forums 1 through n.
+/ - ar < forum >< userl > ... < user, > Give/Remove read ACL

for users 1 through n
for named forum.

+/- aw < forum >< userl > ... < usern > Give/Remove write ACL
for users 1 through n
for named forum.

+/ - aa < forum >< userl > ... < usern > Give/Remove admin ACL
for users 1 through n
for named forum.

+/ - anr < forum >< userl > ... < usern > Give/Remove deny read ACL
for users 1 through n
for named forum.

+/ - anw < forum >< user1 > ... < usern > Give/Remove deny write ACL
for users 1 through n
for named forum.

+/ - ana < forum >< user1 > ... < user, > Give/Remove deny admin ACL
for users 1 through n
for named forum.

+/- 1 locate members of forums listed
in . ianyone file

< forum1 > ... < forumn > [-ffilename] Send data to forums 1 through n.
If filename is specified, read
data from there, otherwise from
the console.

Figure 3-5: if lame user commands

Locating forums with users online

Often a user may with to know whether one of his or her friends are currently online,

or perhaps the user wishes to know who is subscribed to a particular forum.3 In the

iFlame Message System, these tasks are accomplished through use of a file that simply

contains names of forums in which the user is interested. When the user gives the

+/- 1 command to iflame, the . ianyone file is examined and a list of subscribers

to each forum is given to the user. Of course, the user can find out this information

only if he is able to access those forums according to their particular ACLs. When

a client tries to locate who is reading a forum, iflamec sends a +w command for

each forum to the server each forum is located on, subscribing the client as a writer

3 This service exists for MIT Athena's Zephyr system and is extremely popular.

without sending any actual data. The server, if the client is allowed to add itself as

a writer, will automatically send cache updates to the client just as if a new writer

had been added. If the client is already a writer, then if lamec can simply report the

current contents of the writer cache for that forum, as it contains who is currently

marked as a reader.

3.1.3 Flamage

Flamage, the sending of messages between clients, is the central purpose of the iFlame

client and its implementation is straightforward. While all messages are sent from a

user's if lame program directly to remote users' iflamec clients in a point-to-point

fashion, there is also significant interaction between the local if lame and iflamec.

iflamec's main dispatch loop handles incoming client and server connections.

When a user desires to send a flame to a forum, if lame checks with iflamec to see if

that forum exists within its local cache. If so, iflamec enqueues the list of locations

of readers of a forum in a single package and transfers this back to if lame which,

as locations are dequeued, sends a copy of the message finger to each remote client.

If the forum is not present in the local cache then the client is not yet a writer and

so has to subscribe and receive cache updates from the server. The forum name is

parsed (in case the remote server is not the default one) and a connection is opened

to the server. In terms of the implementation, we enter a special set of states that

commit these transactions.

Once locations have been received by iflame, the data must be enqueued and

sent to each receiving client. Data to be sent is first encoded using the MIME stan-

dard; in this implementation if lame forms a valid RFC-822 header scheme and adds a

Content-type: header (for textual data we define a new MIME type, text/iflame).

The data is then sent in 2048-byte (POSIX-2 standard) packets to each receiving

client.

On the receiving end of a flame, the remote iflamec accepts an incoming TCP

connection from iflame. The local iflamec can continue to receive flames while

if lame is sending other messages. Well-formed messages are passed to the display

manager.

Once data is received, iflamec calls metamail (this time on the receiving end)

to decode the incoming data. metamail uses a .mailcap file, usually located in the

user's home directory, to determine how to display the particular type of data on the

local machine. If the Content-type header specifies type text/if lame, typically the

data is sent to the idisplay program.

3.1.4 idisplay and iwindow

idisplay is a fairly simple program; it establishes a Unix socket for communicating

with iwindow and starts an iwindow program if one is not already running. Of

course, data is only sent to idisplay if, as mentioned above, it is of MIME content

type text/if lame.

iwindow uses Tcl/Tk as a scripting language for its display procedures; users can

write their own display routines in Tcl/Tk should they so desire. On initialization

iwindow starts a Tcl/Tk interpreter and reads the user's .iflamec. tcl file. A sample

. iflamec .tcl file is displayed in Appendix A.

iflamec supports the ability for users to extend its basic functionality via this

embedded scripting language, much in the same manner as other message programs

like Zephyr. Because many people already use Tcl and there are many good examples

of Tcl applications, we decided using Tcl as our extension language would be optimal.

Furthermore, we use Tk as the default language for graphical displays to provide the

same sort of flexibility. iFlame also supports a terminal mode for non-graphical

displays.4

The use of Tcl/Tk, while having many advantages, has some potential drawbacks.

Tcl allows a friendly configuration environment, but Tk may be slow in comparison

to direct access to the X Window System toolkit. While this performance issue will

be studied in the future, the extensibility of Tk is a great advantage in allowing others

to write customized iFlame clients.

4iwindow currently uses tcl7.3/tk3.6 and will be upgraded to tcl7.4/tk4.0 in the future.

Once the initialization is complete, if iflamec was not run with the -ttymode

argument (specifying terminal mode), then iwindow forks off a child process and

establishes a bidirectional pipe to send data down to the on-screen windows. The

result iwindow achieves is a look and feel similar to Athena Zephyr; the decision to

do this stemmed from the fact that Zephyr's "windowgrams" are not as distracting to

the user as a talk or IRC connection is. An iFlame session does not require the user

to continually concentrate on the various forums to which he is subscribed. Windows

with short messages can appear anywhere on the screen5 , although the default is to

place new messages in some out of the way location, such as the top left or right

corner of the screen. As the default, we also have windows go away when the user

clicks on them with the mouse, again to mimic the look and feel of Zephyr.

In order to accomplish management of lots of window in an efficient manner,

iwindow needs to have the child process manage all the windows while the parent

process receives data from idisplay and sends it down the pipe. Each window has

its own Tcl interpreter to determine when the ButtonDown X event is sent to it so

the window can be destroyed'. We use a user-defined signal to tell the parent process

when the child process is ready to display new data. Future versions of iwindow will

probably not use Unix signals as they are not reliable.

The display of a typical iFlame Message System X session is shown in Figure 3-6

5As defined in the Tcl script in .iflamec.tcl
6Though, again, this behavior is just the default and can be changed in . if lamec.tcl

Figure 3-6: A Typical iFlame Message System Screen Dump

F,ý,ýL•

3.2 Server Implementation

This section describes the current implementation of the if lamed server. The server

runs as a monolithic process that both stores the iFlame forum database and also man-

ages concurrent connections for incoming transactions and outgoing cache updates.

In addition, if lamed also hosts the user authentication database. Like iflamec,

if lamed uses a multiplexed TCP/IP concurrent state machine design.

3.2.1 if lamed Initialization

if lamed initialization is slightly more difficult than iflamec initialization because the

if lamed server needs to interact with the user authentication database in a robust,

corruption-proof manner. Upon startup, if lamed empties its caches, establishes a

socket for client connections, and then reads the database for personal forum infor-

mation. Cache handling and socket creation is done in the same way as described for

iflamec.

Authentication

At the moment, the iFlame Message System supports only two authentication schemes,

UNAUTHENTIC and PASSWORD. UNAUTHENTIC means that no user name is required to

join forums; however, this means that the client cannot alter a forum's ACLs. An

unauthenticated user can still create forums, but any such forums so created are pub-

lic and have no administrators. PASSWORD authentication, on the other hand, requires

the client to have previously established a (user name, password) pair with the home

server. Once a password authentication is complete the user is never required to

reauthenticate or supply passwords during that particular connection. One problem

with this system is that the password is currently sent from the client to the server

in plaintext over the network. Thus, a packet sniffer could conceivably trap those

packets, extract the (user name. password) pair, and then masquerade as another

user. A better authentication scheme is needed to thwart this attack, perhaps using

either MIT Kerberos or a Pretty Good Privacy (PGP) key exchange. We are cur-

rently examining the possibility of incorporating PGP into an authentication scheme

for a future version of iFlame since the keys used for authenticating could also be

used for a transparent encryption scheme as well.

The iflamed Database

For now the if lamed database is a simple relational database implemented using

gdbm, the GNU database library, as a substrate. gdbm was chosen for our implemen-

tation because it allows more flexibility and better hashing than standard Unix dbm

library for large numbers of users. In the future, we may move to dbm as it is more

generally available with standard C library packages.

A small program called iserv, running on the server itself, allows the server

operator to maintain the contents of the database, including user data, passwords,

and PGP information', and other authentication data. By default, when a new

user is added to the database a forum is created and the ACL for that forum is

set to a personal forum, giving admin and read permissions to that user only. On

initialization, iflamed loads the database and creates a new forum in its cache for

each user located in the database; should the server crash during operation, personal

forums residing on that server are immediately established when the server restarts.

Clients using any authentication scheme (except UNAUTHENTIC) are required to contact

the database and authenticate themselves each and time a new connection is opened

to the server.

3.2.2 Data Structures

if lamed, like iflamec, uses a finite state machine to regulate connections and main-

tain caches of forums, locations, users, and user relationships. These caches are

currently manipulated using red-black tree routines, just as was done with iflamec.

Although the server supports simultaneous, concurrent connections, all server opera-

7PGP key sharing support has, however, been left for a future version of the system.

tions on the data structures are processed atomically and in sequential order.8 . The

atomic operations allow for cleaner code and reduce the complexity of the server.

The server is expected to be long lived, and thus special care was taken when

writing all resource-allocation code (such as memory management routines) to prevent

resource leakage. For debugging purposes, we maintain various counters that track

the number of server structures supposedly accessible and compare these values to

what is reachable from walking the data structures. Reference counts are used to

control deallocation of structures. Although we could implement a garbage collector

and walk the data structures periodically, for now routines that decrement reference

counts just check locally released data for deallocation.

3.2.3 Scheduling Client Cache Updates

One final interesting server design note concerns its cache update queue. Instead

of actively opening multiple outgoing connections for updating client caches, the

server processes cache updates sequentially using a single, global queue. We used a

sequential process herein, an attempt to minimize server load; the penalty we incur is

a slight degradation in forum consistency. Since it is difficult to guarantee how quickly

cache updates are distributed, this doesn't seem to be a major issue. The benefit of

the queue system is that multiple updates for a single client combine themselves

and thus reduce the number of required server-client connections. Also, if a client's

transactions have completed and an outgoing message for that client exists on the

queue, the connection can be turned around so that the client immediately receives

cache updates without having to establish a new connection between client and server.

As many updates can be generated when a client's cache is empty, such as when

first joining a forum, this reduces the number of connections a server must make to

a particular client. Similarly, when the server detects that a client has disappeared

from the net while attempting a cache update, the server can free up certain allocated

resources and notify other clients to stop writing to the lost client.

sThe same is true of the if lamec client. The original model didn't support concurrent connections
yet all the operations were atomic

Chapter 4

Problems, Analysis, and the Future

We have described in previous chapters a protocol that can be used to create Internet

communication environments that are both extremely scalable and easy to implement.

We have described how the IFLAME protocol is able to provide these features, a

claim that cannot be made by other recent Internet communication systems. We

have also described a particular communications system, the iFlame Message System,

that uses the IFLAME protocol to provide users both the ability send arbitrary data

(including audio, video, images, and text) and also provides fine-grain control over the

messaging environment through a fully-developed and familiar scripting language. In

this chapter we examine examine possible problems with both the IFLAME protocol

and the iFlame Message System, suggest changes for future versions of both, and

speculate on how iFlame might evolve over time.

4.1 Problems

Problems with the iFlame Message System can be divided into two broad areas:

general technical problems related to the underlying IFLAME protocol and specific

problems encountered while creating the iFlame Message System. Both areas are

addressed in this section.

4.1.1 IFLAME

Delivery and Fan-out

Unlike a system like Athena Zephyr, IFLAME does not use UDP to deliver messages

but instead relies on TCP connection. TCP, in general, has a higher overhead for

each connection established between clients than UDP. In addition, fan-out is low for

the client since workload grows linearly with number of readers on a forum. These

constraints are acceptable given that our primary goal is to reduce server load.

4.1.2 The iFlame Message System

Firewalls

Perhaps the largest problem with the current implementation of the iFlame Message

System is that it does not account for users located behind firewalls. This unfortu-

nately denies Message System access to a vast population of corporate and government

users. The problem is simple: firewalls in general restrict the ability for clients in-

side the firewall to talk to arbitrary clients outside the firewall. Some firewalls, for

instance, do not allow clients to use FTP with outside servers because outside servers

cannot open arbitrary connections to the local machine. Incorporating the iFlame

Message System into a firewall-protected environment is an active area of research;

clients may have to alert other clients of their presence via a common server.

The Display System

There are several problems with the current iFlame display system (idisplay and

iwindow). First of all, the system relies on Unix signals to coordinate the parent and

child processes when new data is received; in general, these signals are unreliable.

Furthermore, the display system requires that the user have access to an external

MIME decoder; while the decoder used in the implementation, metamail, is available

for many platforms, it would be more efficient to include the encoding/decoding

routines in the client to reduce the number of external system calls.

Support and Availability

The implementation of the iFlame Message System discussed in Chapter 3 was written

to be highly portable; such portability was a primary design consideration.1 However,

at this time it is unclear if the implementation was entirely successful in meeting this

goal. We hope that beta testing with hundreds of users on many different platforms,

instead of the relatively few used to develop the system, will illuminate portability

problems in the current implementation. 2 We recognize that the iFlame Message Sys-

tem must run on popular platforms like Microsoft Windows and the Apple Macintosh

if it is to gain widespread acceptance.

4.2 Analysis

As it turns out, the iFlame Message System is at least as efficient as a server-

centralized system like IRC or Zephyr. Four tests were run to compare the per-

formance of iFlame and Zephyr, the system that iFlame most closely resembles in

appearance and functionality. We now detail each of the performed experiments and

discuss the results. Each test was run on an HP 735 running HP/UX.

4.2.1 Small message, continuous conversation

In the first test, a small two-line message, "This is a test of the American broadcasting

system", was sent 200 times from a local client to a remote client. The test was

performed 10 times and the average result calculated. This test was designed to

exercise iFlame's strengths in being a client-client protocol, since once the local client

was established as a writer there would be no further interaction with the server.

Recall that like iFlame, Zephyr was designed for sending small, real-time messages.

The results of this test are given in Figure 4-1.

1We often sacrificed ease of implementation for portability, as in our decision not to use a threads
package.

2At the moment, the versions of the Message System operate under HP/UX 9.01, Digital Unix
(Alpha OSF/3), NetBSD, and Solaris.

iFlame performed much better than Zephyr in this test, which is somewhat sur-

prising given Zephyr's slated design goals. There are possible explanations for the

discrepancy in performance. For example, the Zephyr server we were using while

conducting the tests could have experiencing an uncommon load, while the iFlame

server was not. This could have also been true of the client machines. It is difficult

to keep many variables from severely affecting tests in a dynamic networked environ-

ment. It should also be noted that in this trial both Zephyr and iFlame were running

in terminal mode, so the X server's own latency would not affect the results.

Protocol System time to send 200 short messages

iFlame Message System 3:17 minutes

Zephyr Notification Service 5:45

Figure 4-1: Test 1: 200 short messages, no subscriptions, average of 10 trials

4.2.2 Large message, continuous conversation

In our second test, we increased the size of the message being sent to observe whether

performance is highly dependent on message length. Zephyr supports up to about 10

lines of 80 characters each[8] so a 700-character message was sent in a manner similar

to the first trial. Again, we averaged our results over 10 trials. The results of this

experiment are depicted in Figure 4-2; they do not differ significantly from the "short

message, continuous conversation" test results.

Protocol Time to send 200 long messages

iFlame Message System 4:04 minutes

Zephyr Notification Service 5:55

Figure 4-2: Test 2: 200 long messages, no subscriptions, average of 10 trials

4.2.3 Small message, subscription messages sent

Our third experiment emulated a conversation of 200 messages between two people

within a single iFlame forum/Zephyr class. After every ten messages the sending client

would unsubscribe and then resubscribe to the forum, thus emulating subscription

traffic. The results are presented in Figure 4-3.

Protocol Time to send 200 short messages

iFlame Message System 4:40 minutes

Zephyr Notification Service 6:22

Figure 4-3: Test 3: 200 short messages, plus subscriptions, average of 10 trials

4.2.4 Large message, subscription messages sent

Running experiment three with large messages did not appreciably change response

time, as show in Figure 4-4.

Protocol Time to send 200 long messages

iFlame Message System 4:54 minutes

Zephyr Notification Service 6:34

Figure 4-4: Test 4: 200 long messages, plus subscriptions, average of 10 trials

4.2.5 A Comparison Between iFlame, IRC, and Zephyr

An overview of the similarities and differences among IRC, Zephyr, and iFlame is

shown in Figure 4-5. We intentionally duplicate the format of a similar comparison

chart showing similarities and differences between Zephyr and email taken from The

Zephyr Notification Service[8].

4.3 The Future of iFlame

In this thesis we have described the IFLAME protocol and implemented a demonstra-

tion communication system that used the protocol to provide a scalable and portable

service. There are several directions in which that future work on IFLAME could take.

We discuss three possible directions below.

1. Improvements to the iFlame Message System

2. Migration of iFlame to an open system

3. Other implementations of the protocol

4.3.1 Improvements to the iFlame Message System

As noted throughout this thesis, there are several areas where the iFlame Message

System could be improved. First and foremost, we need to support clients located

behind firewalls; firewalls have become too prevelent in recent years, protecting too

many Internet users to be ignored. In order to support communication through

firewalls, we would most likely need to develop a proxy server for the firewall that

could route iFlame messages. Unfortunately, introducing such proxy servers hinders

our clients from being able to contact each other directly, thus muting the system's

ability to deliver efficient communication. Without some sort of proxy service, though,

iFlame communication cannot cross firewalls.3

Another problem with our implementation is that currently-supported authenti-

cation schemes are neither sufficiently secure nor varied. iFlame should move towards

other authentication protocols, perhaps using a high-grade digital signature, a Diffie-

Hellman encryption key exchange, or even a Kerberos mechanism (each server could

maintain its own Kerberos realm). Use of a system like Pretty Good Privacy (PGP)

for authentication would be optimal since such support in the client could be eas-

ily leveraged into providing encryption for messages if the user desires. There are

3Notice, however, that within the "intranet" behind a firewall the iFlame Message System oper-
ates normally.

presently hooks for handling PGP keys in the server's database code in anticipation

of this evolution.

4.3.2 Migration of iFlame to an open system

The iFlame Message System is, at the present time, a closed system in that users

can only communicate through it to other users of the Message System. While it

would not be difficult to add gateways between iFlame and electronic mail or usenet

news 4, there is little reason to support such asynchronous communication methods

in the iFlame synchronous environment. Eventually, however, we would like to see

interfaces to systems like IRC and (more importantly) the World Wide Web. Not

only do we want the iFlame Message System to perform the simple task of retrieving

and parsing hypertext, but we also want iFlame to interface with network agents

that perform tasks for the user. For example, suppose an iFlame user wishes to find

the top ten documents listed in AltaVista[1] concerning the iFlame Message System.

That user should be able to send the query via iFlame to a local robot perform the

requested query and, when completed, send the results via iFlame to the user.

4.3.3 Other implementations of the protocol

Of course, chat systems are only one class of services that can be implemented on top

of the IFLAME protocol; we chose the Message System as our demonstration/proof-

of-concept because it allows us to both determine if the protocol was scalable and

also compare it to other common real-time communications systems fairly easily.

There are several other directions, however, in which IFLAME could be extended

in the future. For example, real-time networked games currently use client/server

architectures to share state; the server maintains all sorts of information about all

the clients and each client only receives data it needs. A protocol like IFLAME may

be a more efficient means of communicating information; once a game is established

4Notice that these services are not instantaneous and would not make use of iFlame's ability to
carry out real-time conversations.

among clients, the clients directly contact each other to send data. If another client

wishes to dynamically enter the game, it contacts the server being used for location

information; the server then updates the caches on clients already in the game thus

allowing the new client to join. Efficient networked games are but one application that

could benefit from IFLAME; it is easy to see how IFLAME could be used to improve a

wide variety of applications including simulations, banking, sales/retail transactions,

audio/video conferencing, and many others.

4.4 Conclusion

The IFLAME protocol was designed as an evolutionary step in real-time communica-

tion. For many years synchronous transactions have fallen by the wayside as more

efficient asynchronous traffic has taken the industry's favor. Recently, however, users

have demonstrated a desire for better support for and emulation of real-time con-

versations, a task for which traditional store-and-forward systems are unsuitable. In

order to foster delocalized communities founded on real-time conversation, a proto-

col with a high level of scalability and efficiency is required. To date, none of the

synchronous communication tools available on the Internet have the necessary scala-

bility, efficiency, accessibility, and concurrency to make them viable options for serious

delocalized, real-tme communication.

The IFLAME protocol described in this thesis provides a substrate for scalable

systems on the Internet. IFLAME accomplishes this task by being inherently client-

oriented, building a distributed system by shifting as much work as possible from

centralized servers to local clients. Transactions are, in general, directed in a one-to-

many, client-to-client fashion. The specific implementation of the protocol that we

detail several tools to construct a robust, efficient, portable communication system

on top of the IFLAME protocol.

Until recently, the small number of users on the Internet, the general lack of

available bandwidth, and the low power of networked workstations together forced

online communication to evolve into a form that was centralized around a few pow-

erful machines. In the future, the trends that now allow more people to gain online

access, with more powerful computers and greater bandwidth, will make better forms

of communication possible. The demand for better protocols to support real-time

communication among arbitrary groups and users is already here and IFLAME is a

first step towards making distributed real-time communication ubiquitous.

Metric iFlame Zephyr IRC
Addressing Explicit. Addressing for Implicit. Addressing is Implicit. It is not

forums meant to be long- one-to-many and handled by necessary for a user to
lived is static and is the server. A specific user know the location of another
handled by a particular can be messaged through use user. Channels allow users
server. Addressing is of a long-lived ID. to send messages in a
one-to-many in that the one-to-many fashion.
user doesn't have to
name each recipient.

Delivery Messages are delivered Messages are sent by servers. Messages are sent by relayed
by a client directly to A user sends a single copy to servers. A user sends a single
other clients. A user is a server which duplicates it. copy which is duplicated by these
responsible for doing the A user sending to a class servers. A user always knows
work required to send each can inadvertently send data exactly who a message is being
message. A user always unawares to unannounced users. sent to.
knows who messages are
being sent to.

Messages Messages are MIME-encoded Short, fixed, text messages Text-only, messages are in general
binary data; audio, video, of about 10 lines, each line a few lines, with a maximum of 510
text, images, and other containing about 80 characters allowed for commands
formats of unlimited size characters. and parameters.
can be transferred as long
as the client is willing
to send it.

Message Low. Sending to large High for client, low for High for client, low for servers.
Fan-out lists is inefficient for server. Client only needs For each client receiving a message,

the client. Each client to generate one copy of a a server somewhere in the network
generates a copy of a message message. Replicated servers must generate a copy of that message.
for each remote client each generate a message for Every server must receive a message,
it connects to. each client they send to. even if no clients will receive it

from that server.
Group High. Forums can exist Low. Users are persistent None. Unless users are subscribed
Persistence over long periods of time because authentication to a channel, it doesn't exist.

with a set of established information resides on a Users have no persistence from
ACLs and administrators. Kerberos server. Classes and session to session, unless outside

instances have no persistence. "nick servers" are being used.
Configurability High. Users have access High. Zephyr's built-in Low. While users cannot change their

to high-level Tcl scripting scripting language, while not environment, they can create complex
and can dynamically change widely used outside Zephyr, scripts to perform tasks and create
the environment, is powerful. robots to carry these tasks out.

Maintenance Medium. The server must Medium. While the server Low. Since there are no persistent
keep track of authentication has little information to keep subscriptions, the server has little
information in its database. track of, the Kerberos server to maintain.
Both server and client can must handle authentication.
dynamically recover lost
resources.

Figure 4-5: A comparison of iFlame, Zephyr, and IRC

Appendix A

Code Samples

void initialize_sockets(void)
{

int count = 0;
int i;

/* Incoming Client Socket */
addr.sin-family = AFINET;
addr.sin-port = 0;
addr.sin-addr.saddr = INADDR_ANY;
len = sizeof(struct sockaddrin);
sockic = socket(AF_INET, SOCKSTREAM, 0);
bind(sockic, (void *) &addr, len);
getsockname(sockic, (void *) &addr, &len);

#ifdef REALLYDEBUG
fprintf(stderr,"client connect port: 'd\n",addr.sinport);

#endif
listen(sockic, 5); /* max backlog */
if((i=fcntl(sock_ic,F_GETFL))==-1) goto lose;
il=ONONBLOCK;
if(fcntl(sockic,FSETFL,i)==-1) goto lose;

/* Incoming Server Socket */
srvr.sin-family = AFINET;
srvr.sinport = 0;
srvr.sin_addr.saddr = INADDRANY;
len = sizeof(struct sockaddr_in);

sock_is = socket(AF_INET, SOCKSTREAM, 0);
bind(sockis, (void *) &srvr, len);
getsockname(sock_is, (void *) &srvr, &len);

#ifdef DEBUG
fprintf(stderr,"server connect port: 'd\n",srvr.sinport);

#endif
listen(sock_is, 5); /* max backlog */
if((i=fcntl(sockis,F_GETFL))==-1) goto lose;
il=ONONBLOCK;
if(fcntl(sockis,FSETFL,i)==-l) goto lose;

Figure A-1: if lamec Client/Server socket initialization

/* Incoming Unix Socket */

clnt.sun_family = AF_UNIX;

sprintf(clnt.sun_path, "%s%sYd. d", PATH_STRING,
(char *)getenv("HOST"),(int) getuid(), count);

ulen = sizeof(struct sockaddr_un);

sock_iu = socket(AFUNIX, SOCK-STREAM, 0);

while(bind(sockiu, (void *) &clnt, ulen)) {
sprintf(clnt.sun_path, "%s%s%d.%d", PATH_STRING,

(char *)getenv("HOST") ,(int) getuid(), ++count);

}
listen(sock_iu, 5); /* max backlog */

if((i=fcntl(sockiu,F_GETFL))==-1) goto lose;

il=O_NONBLOCK;
if(fcntl(sock_iu,F_SETFL,i)==-l) goto lose;

/* Outgoing Server/Client Socket */

out.sin_family = AF_INET;

out.sinport = 0;

if (sock_ic > sock_is) if (sock_ic > sockiu)

lowestfd = sock_ic;

else lowest_fd = sock_iu;
else

if (sockis > sock_iu) lowest_fd = sock_is;
else lowestfd = sock_iu;

lowest_fd++;

num_fd=lowestfd;

min_fd=lowestfd;

max_fd=lowestfd;

for (i=O;i<NOFILE;i++)
connection[i]=NULL;

return;
lose:

perror("iflamec: init sockets");
exit(1);

Figure A-2: iflamec Unix socket initialization

FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_SET(sockis,&readfds);
FD_SET(sock-ic,&readfds);
FDSET(sockiu,&readfds);
extra=FALSE;

for(fd=minfd;fd<maxfd;fd++)
if(CONNECTIONP)
if (WRITESTATE)
FDSET(fd,&writefds);

else
{
FDSET(fd,&readfds);
if(EXTRA)
extra=TRUE;

if(select(maxfd,&readfds,&writefds,NULL,NULL)==-1)
goto lose;

Figure A-3: The iflamec select () system call setup

int open_server(char *datbuf)
{

int old_fd;

strcpy(namebuf, datbuf);
indx2=strtok(namebuf, "0");
if ((indx2=strtok(NULL, "@")) != NULL) {
out_tmp.sin_family = AF_INET;
out_tmp.sin_port = 0;
strcpy(new_server, indx2);
if((tmphost = gethostbyname(newserver)) == NULL) {
fprintf(stderr, "Couldn't get host %s \n",new_server);
return(FALSE);

}
/* Add new server to server list */
add_server(new_server);
memcpy((char *) &out_tmp.sinaddr,tmphost->h_addr,tmphost->hlength);
len = sizeof(struct sockaddr_in);
out_tmp.sin_port = htons(IFLAMED_PORT);
if(!server_connect(out_tmp)) return(0);

}
else

if(!server_connect(out)) return(0);
/* Checking for 200 OK connection */
read_input();

/* Send location information */
if(sprintf(OUT_BUF,"LOC %d %d\n",

addr.sin_port, srvr.sin_port)<O) goto lose;
STATE = LOC_WRITE;
old_fd = fd; /* store fd */
dispatch();
fd = old_fd;
server_closed=FALSE;
return(1);
lose:
perror("iflamec: server_connect");
return(0);

}

Figure A-4: iflamec's openserver () function

user_t *read_database(datum database_key, datum database_data,
user_t *user_data)

int name_size, authdata_size;
int close_flag = FALSE;
char *name_offset, *authdata_offset;
if (user_data != NULL) {
free(user_data);
user_data = NULL;

}
if ((user_data = make_user(UNAUTHENTICATED))==NULL)
goto lose;

if (dbf==NULL)
dbf = gdbm_open(database_path, CHAR_BUF_SIZE, GDBM_WRCREAT,

(S_IXGRPIS_IROTHIS_IWOTHIS IXOTHISIRGRPIS IWGRPI
S_IRUSRISIWUSRISIXUSR), 0);

else close_flag = TRUE; /* database was open prior to entering */
database_data = gdbm_fetch(dbf, database_key);
if (database_data.dptr == NULL) {
/* User not in database */
free(user_data);
return(NULL);

}
name_size = *(int *)(database_data.dptr);
name_offset = (char *)(database_data.dptr + (sizeof(int) * 4));
if ((userdata->name = malloc(sizeof(char) * name_size + 1)) == NULL)
goto lose;

userdata->refcount = *(int *)(database_data.dptr + sizeof(int));
user_data->authtype = *(int *)(database_data.dptr + (sizeof(int) * 2));
authdata_size = *(int *)(database_data.dptr + (sizeof(int) * 3));
authdata_offset = (char *)(database_data.dptr + (sizeof(int) * 4)

+ (sizeof(char) * (name_size + 1)));
if ((user_data->authdata = malloc(sizeof(char) * authdata_size + 1)) == NULL)
goto lose;

strcpy(user_data->name, name_offset);
strcpy(user_data->authdata, authdata_offset);
if (!close_flag) {
gdbm_close(dbf);
dbf = NULL;

}
return(user_data);
lose:
if (!close_flag) {
gdbm_close(dbf);
dbf = NULL;

}
perror("iflamed: read_database");
return(user_data);

Figure A-5: if lamed Database Access

proc display {} {

global text;

global from;

global forum;

global sig;

global widthl;

global width2;

global ttymode;

switch $ttymode {
"10"1 {

frame .fl -width $width2 ;
frame .f2 -width $width2 ;

frame .f3 -width $width2 ;

wm geometry . +0+0 ;

message .forum2 -relief flat -text "Forum" -width $width2;

message .sig2 -relief flat -text "From" -width $width2;

message .t -text "$text" -width $width2;

message .sig -relief flat -text "$sig" -width $width2;

message .from -relief flat -text "<$from>" -width $width2;
message .forum -relief flat -text "$forum" -width $width2;

pack .fl ;
pack .f2 ;
pack .f3 ;

pack .forum -side right -in .fl ;
pack .forum2 -side left -in .fl ;
pack .sig2 .sig .from -side left -anchor s -in .f2 ;
pack .t -side left -anchor w -in .f3 ;
bind . <Any-ButtonRelease> {destroy .} ;

bind .sig <Any-ButtonRelease> {destroy .}
bind .sig2 <Any-ButtonRelease> {destroy .}
bind .from <Any-ButtonRelease> {destroy .}
bind .forum <Any-ButtonRelease> {destroy .}
bind .forum2 <Any-ButtonRelease> {destroy .}
bind .t <Any-ButtonRelease> {destroy .}
bind .fl <Any-ButtonRelease> {destroy .}
bind .f2 <Any-ButtonRelease> {destroy .}
bind .f3 <Any-ButtonRelease> {destroy .}
return TCL_0K;

}
"I, {

format "Forum: %s\nFrom: %s\n---\ns" $forum $from $text;

}

Figure A-6: The .iflamec.tcl file

Bibliography

[1] The Alta Vista search engine, http://www. altavista.digital. com/.

[2] T. Berners-Lee, RFC1630: Universal Resource Identifiers in WWW: A Unifying

Syntax for the Expression of Names and Addresses of Objects on the Network as

used in the World-Wide Web, June 1994.

[3] Chesnais, P., Mucklo, M., Sheena, J., The Fishwrap Personalized News System.

1995.

[4] Cormer, T., Leiserson, C., and Rivest, R., Introduction to Algorithms. 1990.

[5] D. Crocker, RFC822: Standard for the format of ARPA Internet text messages,

08/13/1982.

[6] Deering, S., RFC1112: Host Extensions for IP Multicasting. August 1989.

[7] C. A. DellaFera, M. W. Eichin, R. S. French, D. C. Jedlinsky, J. T. Kohl, and

W. E. Sommerfeld, Athena Technical Plan Section E.4.1: Zephyr Notification

Service, M.I.T. Project Athena, Cambridge, Massachusetts (June 5, 1989).

[8] C. A. DellaFera, M. W. Eichin, R. S. French, D. C. Jedlinsky, J. T. Kohl, and

W. E. Sommerfeld, The Zephyr Notification Service, M.I.T. Project Athena,

Cambridge, Massachusetts (December 21, 1987)

[9] B. Kantor, P. Lapsley, RFC0977: Network News Transfer Protocol: A Proposed

Standard for the Stream-Based Transmission of News, (February 1, 1986).

[10] Kohl, J., Neuman, C., RFC1510: The Kerberos Network Authentication Service

(V5). September 1993.

[11] Macedonia, M. R., Brutzman, D. P.,"MBone Provides Audio and Video Across

the Internet," IEEE Computer, Vol.27 no. 4, April 1994, pp. 30-36.

[12] McCahill, M. The Internet Gopher: A distributed server information system,

from ConneXions-The Interoperability Report. 1992.

[13] Mitchell, W., City of Bits, available online at

http: //www-mitpress .mit. edu/City_ofBits/, 1995.

[14] J. Oikarinen, D. Reed, RFC1459: Internet Relay Chat Protocol (May 26, 1993).

[15] J. Postel, J. Reynolds, RFC959: File Transfer Protocol (FTP), 1985.

[16] T. Rinne, RFC1756: Remote Write Protocol - Version 1.0 (January 19, 1995).

