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Abstract

The integrated power system has become increasingly important in electric ships due
to the integrated capability of high-power equipment, for example, electromagnetic
rail guns, advance radar system, etc. Several parameters of the shipboard power
system are uncertain, caused by a measurement difficulty, a temperature dependency,
and random fluctuation of its environment. To date, there has been little if any
studies which account for these stochastic effects in the large and complex shipboard
power system from either an analytical or a numerical perspective. Furthermore,
all insensitive parameters must be identified so that the stochastic analysis with the
reduced dimensional parameters can accelerate the process. Therefore, this thesis is
focused on two main issues - stochastic and sensitivity analysis - on the shipboard
power system.

The stochastic analysis of the large and complex nonlinear systems with the non-
Gaussian random variables or processes, in their initial states or parameters, are
prohibited analytically and very time consuming using the brute force Monte Carlo
method. As a result, numerical stochastic solutions of these systems can be effi-
ciently solved by the generalized Polynomial Chaos (gPC) and Probabilistic Colloca-
tion Method (PCM). In the case of the long-time integration and discontinuity in the
stochastic solutions, the multi-element technique of PCM, which refines the solution
in random space, can significantly improve the solutions’ accuracy. Furthermore, the
hybrid gPC+PCM is developed to extend the gPC ability to handle a system with
nonlinear non-polynomial functions. Then, we systematically establish the conver-
gence rate and compare the convergence performance among all numerical stochastic
algorithms on various systems with both continuous and discontinuous solutions as a
function of random dimension and the algorithms’ accuracy governing parameters.

To identify the most significant parameter in the large-scale complex systems,
we propose new sensitivity analysis techniques - Monte Carlo Sampling, Collocation,
Variance, and Inverse Variance methods - for static functions and show that they agree
well with Morris method, which is one of the existing sensitivity analysis techniques
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for a function with large input dimensions. In addition, we extend the capability
of the Sampling, Collocation, Variance, and the Morris methods to study both the
parameters’ sensitivity and the interaction of the ordinary differential equations. In
each approach, both strength and limitations of the sensitivity ranking accuracy and
the convergence performance are emphasized. The convergence rate of the Collocation
and Variance methods are more than an order of magnitude faster than that of Morris
and Sampling methods for low and medium parameters’ dimensions.

At last, we successfully apply both stochastic and sensitivity analysis techniques
to the integrated shipboard power system, with both open-and close-loop control of
the propulsion system, to study a propagation of uncertainties and rank parameters
in the order of their importance, respectively.

Thesis Supervisor: Michael S. Triantafyllou
Title: Professor of Mechanical and Ocean Engineering
Director, Center for Ocean Engineering



ERRATA

In Chapter 5, the convergence formulation in Equation 5.11 and 5.12, defined as a dif-
ference between low and high accuracy solutions for each sensitivity analysis method,
does not represent true convergence characteristics of each technique. The correct
approach to measure and compare the convergence characteristics among these tech-
niques is to compute the absolute difference between estimated and reference solutions
that has a higher accuracy and to normalize with the absolute value of the reference
solution. Similar to Equation 5.11 and 5.12, the RMS values of the normalized ab-
solute difference must be considered for a function or system with n inputs as shown

below (also see two references below)
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These convergence formula can be applied to the variance method by replacing
(E[EE]),o[EE!)) with (VEE!, IEE!). The Morris method required to use its own
solution with highest accuracy as the reference solution because the solution from the
finite difference depends on A. The other gradient-methods can used the solution
from Monte Carlo Sampling and Collocation methods with highest accuracy as the
reference solution. The more accurate convergence results of all methods, particu-
larly for the modified Morris’s function (in Section 5.2.4) and an open-loop induction
machine with an infinite bus (in Section 5.3.3), exhibit faster convergence rates (see

two reference below).

In addition, the references below give the quasi-Monte Carlo Sampling method
and a combined Variance with quasi-Monte Carlo method that provides the fastest

convergence among all sensitivity analysis techniques.
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4-68 Comparison between the full-grid uniform MEPCM with Nc = 5 and
the sparse-grid uniform MEPCM with Level = 5 on the L, error con-
vergence of ; mean (left) and variance (right) solutions as a function

of N/d exhibits the algebraic convergence rate. . . . . . ... ... ..

4-69 The cost per Efys] accuracy of QMC, full-grid PCM, full-grid uniform
MEPCM, sparse-grid PCM, and sparse-grid uniform MEPCM for Ty =
50 sec (left) and Ty = 100 sec (right). . . . . ... ... ..... ...

4-70 A one-line diagram of the induction machine connected to the infinite
bus through a RL tie line (Left). Three realizations of the rotor resis-
tance modeled by the three-term K-L expansion with CL = 10 second
(Right). . . . . . ..

4-71 The PDFs of the g-axis rotor reactance, ¥'(e),,, (left) and the d-axis
stator or tie-line current, %, (right) evolve with time due to the prop-

agation of the rotor resistance uncertainty. . . . .. ... ... . ...

4-72 The reference stochastic mean (left column) and variance (right col-
umn) solutions of five state variables in per unit of the 200-hp induction

machine, obtained from PCM with N¢=2000.. . .. ... ......

4-73 The L norm error of mean (left) and variance (right) solutions as a
function of realization (NN) exhibit the algebraic convergence rate of
O(NN~-/2) using pseudo-Monte Carlo and of O(NN~!) using quasi-
Monte Carlo. . . . ... .. ... ...

4-74 The L, norm error of mean (left) and variance (right) solutions as a
function of N, using the MEPCM, exhibit the algebraic convergence
rate of O(N™*) for Nc = 2, O(N~1) for Nc = 5, and O(N~%) for

156

156

157

160

161

162

163
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5-10

With N, = 4 in the full-grid PCM, the standard deviation of the z;
input is computed at the full-grid collocation points, where z, and
x3 are assumed to be independent random variables, such that the
elementary effect and interaction of z; with the other inputs can be

uncovered. . . . ... e e

For the full-grid PCM with Nc = 4 in the first direction, the standard
deviation of z, and z3 inputs is computed at the sparse-grid collocation
points, where the z; is assumed to be fixed at the full-grid collocation
point. The inverse of the mean of o,, ;, with respect to z, can identify
the elementary effect of z;, while the standard deviation of o, ,, with

respect to z; specifies the coupling effect of z; with the others. . . . .

Function (y;): the mean and standard deviation of EE; from the Morris
method with p = 16 and r = 50 to 100 (top-left), from the Monte
Carlo Sampling with A = 1/2 and NN = 50 to 100 (top-right), the
Collocation method with A = 1/2 and Ne¢ = 10 to 20 (bottom-left),
and from the statistics of the absolute partial derivative (|0y/dz;|)
(bottom-right). . . .. ... ... ...

Function (y,): the mean and standard deviation of EE; from the Vari-
ance method with N¢/d = 10 to 20 (left) and from the Inverse Variance
method with Nc =8 and Level =4 to 5 (right). . . . . ... ... ..

Function (y;): the mean and standard deviation of EE; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the
Monte Carlo Sampling with A = 1/2 and NN = 50,000 to 100,000
(top-right), the Collocation method with A = 1/2 and Nc = 10 to 20
(bottom-left), and from the statistics of the absolute partial derivative

(|0y/0xzi|) (bottom-right). . . . ... ... ... . ... ... . ... .

Function (y,): the mean and standard deviation of EE; from the Vari-
ance method with Nc¢/d = 10 to 20 (left) and from the Inverse Variance
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5-11 Function (y2): the convergence characteristic of RMS(AE[EFE;]) and
RMS(Ac[EE;]), using the Morris, Monte Carlo Sampling, and Collo-
cation methods based on the approximated gradient computation, is

plotted versus the computational time. . . . . .. ... ... ... ..

5-12 Function (y2): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the

statistical computation is plotted versus the computational time. . . .

5-13 Function (y3): the mean and standard deviation of EE; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the
Monte Carlo Sampling with A = 1/2 and NN = 50,000 to 100, 000
(top-right), the Collocation method with A =1/2 and N¢ = 10 to 20
(bottom-left), and from the statistics of the absolute partial derivative

(|0y/0xz;|) (bottom-right). . . . . . ... ... ... ... L.

5-14 Function (y3): the mean and standard deviation of EE; from the Vari-
ance method with N¢/d = 10 to 20 (left) and from the Inverse Variance
method with Nc¢ =8 and Level =4 to 5 (right). . . . . ... ... ..

5-15 Function (ys): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ac|EE;]), using the Morris, Monte Carlo Sampling, and Collo-
cation methods based on the approximated gradient computation, is

plotted versus the computational time. . . . . . ... ... ... ...

5-16 Function (y3): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the

statistical computation is plotted versus the computational time. . . .

5-17 Function (y4): the mean and standard deviation of E E; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the
Monte Carlo Sampling with A = 1/2 and NN = 50,000 to 100,000
(top-right), the Collocation method with A = 1/2 and N¢ = 10 to 20
(bottom-left), and from the statistics of the absolute partial derivative

(|0y/0z;|) (bottom-right). . . . ... ... ... ... ... ...
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5-18 Function (y,): the mean and standard deviation of EF; from the Vari-
ance method with Nc¢/d = 10 to 20 (left) and from the Inverse Variance
method with Nc= 8 and Level =4 to 5 (right). . . .. .. ... ...

5-19 Function (y,): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ao|EE;)), using the Morris,Monte Carlo Sampling, and Collo-
cation methods based on the approximated gradient computation, is

plotted versus the computational time. . . . . ... .. ... .. ...

5-20 Function (y,): the convergence characteristic of RMS(AVEE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the

statistical computation is plotted versus the computational time. . . .

5-21 Function (ys5): the mean and standard deviation of EE; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the
Monte Carlo Sampling with A = 1/2 and NN = 50,000 to 100, 000
(top-right), the Collocation method with A = 1/2 and Nc = 10 to 20
(bottom-left), and from the statistics of the absolute partial derivative

(|oy/0x;|) (bottom-right). . . . ... ... ... ... .. .. .. ...

5-22 Function (ys): the mean and standard deviation of EE; from the Vari-
ance method with Nc¢/d = 10 to 20 (left) and from the Inverse Variance
method with Nc =8 and Level =4 to 5 (right). . . . . ... ... ..

5-23 Function (ys): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ac[EE;]), using the Morris,Monte Carlo Sampling, and Collo-
cation methods based on the approximated gradient computation, is

plotted versus the computational time. . . . ... . ... ... ....

5-24 Function (ys): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the

statistical computation is plotted versus the computational time. . . .
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5-28

5-29

Function (ys): the mean and standard deviation of F'E; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the
Monte Carlo Sampling with A = 1/2 and NN = 50,000 to 100,000
(top-right), the Collocation method with A = 1/2 and Nc¢ = 10 to
20 (bottom-left), and from the absolute partial derivative (|0y/0x;|)
(bottom-right). . . . . .. ...

Function (y): the mean and standard deviation of FF; from the Vari-
ance method with N¢/d = 10 to 20 (left) and from the Inverse Variance
method with Ne =8 and Level =4 to 5 (right). . . . . ... ... ..

Function (yg): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ac[EE;]), using the Morris,Monte Carlo Sampling, and Collo-
cation methods based on the approximated gradient computation, is

plotted versus the computational time. . . . . .. . ... ... ...

Function (yg): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the

statistical computation is plotted versus the computational time. . . .

For the modified Morris function with 6 inputs and w; € [0,1]: the
mean and standard deviation of EFE; from the Morris method with
p = 16 and r = 8000 to 10,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 8000 to 10,000 (top-right), and
the Collocation method with A = 1/2 and Nc¢ = 12 to 14 (bottom). .

5-30 For the modified Morris function with 6 inputs and w; € [0,1]: the

mean and standard deviation of E'E; from the Variance method with
Ne/d = 12 to 14 (left) and from the Inverse Variance method with
Nc=12and Level =4 to 5 (right). . . . . . .. ... ... ... ..
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5-31 For the modified Morris function with 6 inputs and w; € [0,1]: the
convergence characteristics, plotted versus the computational time,
for RMS(AE[EE;]) (Top-Left) and RMS(Ac[EE;]) (Top-Right) us-
ing the Morris, Monte Carlo Sampling, and Collocation methods and
RMS(AV EE;) (Bottom-Left) and RMS(AIEE;) (Bottom-Right) us-
ing the Variance and Inverse Variance methods. . . . . ... ... ..

5-32 For the modified Morris function with 6 inputs and w; € [—1,1]: the
mean and standard deviation of E'E; from the Morris method with
p = 16 and r = 8000 to 10,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 8000 to 10,000 (top-right), and
the Collocation method with A = 1/2 and Nc¢ = 12 to 14 (bottom). .

5-33 For the modified Morris function with 6 inputs and w; € [-1,1]: the
mean and standard deviation of E'E; from the Variance method with
Nc/d = 12 to 14 (left) and from the Inverse Variance method with
Nc=12and Level =4 to 5 (right). . . . . . .. . ... ..... ...

5-34 For the modified Morris function with 6 inputs and w; € [—1,1]: the
convergence characteristics, plotted versus the computational time,
for RMS(AE[EE;)) (Top-Left) and RMS(Ac|[EE;]) (Top-Right) us-
ing the Morris, Monte Carlo Sampling, and Collocation methods and
RMS(AV EE;) (Bottom-Left) and RMS(AIEE;) (Bottom-Right) us-
ing the Variance and Inverse Variance methods. . . . .. .. ... ..

5-35 For the modified Morris function with 12 inputs and w; € [0, 1]: the
mean and standard deviation of FE; from the Morris method with
p = 16 and r = 8000 to 10,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 8000 to 10,000 (top-right), and
the Collocation method with A =1/2 and Nc = 12 to 14 (bottom). .

5-36 For the modified Morris function with 12 inputs and w; € [0,1]: the
mean and standard deviation of EE; from the Variance method with
Nc/d = 12 to 14 (left) and from the Inverse Variance method with
Nc=12and Level =4 to 5 (right). . . . . . . ... ... ... ... ..
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9-38

5-39

5-40

5-41

For the modified Morris function with 12 inputs and w; € [0,1]: the
convergence characteristics, plotted versus the computational time,
for RMS(AE[EE;)) (Top-Left) and RMS(Ac[EE;]) (Top-Right) us-
ing the Morris, Monte Carlo Sampling, and Collocation methods and
RMS(AV EE;) (Bottom-Left) and RMS(AIEE;) (Bottom-Right) us-

ing the Variance and Inverse Variance methods. . . . .. ... .. ..

For the linear ODE dy/dt = —ky: the mean of EE} (left) from the
Morris with p = 16 and r = 50000, Monte Carlo Sampling with A =1
and NN = 50000, and Collocation with A = 1 and N¢ = 30 method
with o, = 0.4 are compared with the absolute local derivative of y
with respect to k and the V EEy, (right) from the Variance method are

compared with the statistical solution |:—Zl ................

For the linear ODE dy/dt = —ky: the absolute ratio of the local
derivative over the statistical solution (left) and the statistical solution

|2| for various 0. . . . ...
k

For the linear ODE dy/dt = —ky: the o[EEg] as a function of time
(left) and the plot of o[EEy] versus E[EEy] (right), using the Morris
method with p = 16 and r = 50000 (solid-line), the Monte Carlo
Sampling with A = 1 and NN = 50000 (dash-line), and Collocation
method with A = 3 and N¢/d =30 (dot-line). . . . .. ........

For the linear ODE dy/dt = —ky + ¢ with only ¢ as a uniform random
variable: the mean of FE, (left) from the Morris with p = 16 and
r = 50000, Monte Carlo Sampling with A = 1 and NN = 50000,
and Collocation with A = 1 and Ne¢ = 30 method with o, = 0.4 are
compared with the absolute local derivative of y with respect to ¢ and
the VEE, (right) from the Variance method are compared with the

statistical solution |2X]. . . .. ... ..o oo
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5-42 For the linear ODE dy/dt = —ky: the o[EEy] as a function of time
(left) and the plot of o[EEy] versus E[EEy] (right), using the Morris
method with p = 16 and r = 50000 (solid-line), the Monte Carlo
Sampling with A = 1 and NN = 50000 (dash-line), and Collocation
method with A = 7 and Nc/d = 30 (dot-line). . . .. ... ... ...

5-43 For the linear ODE dy/dt = —ky + ¢ the mean of FEj (left) and
EE, (right) from the Morris with p = 16, Monte Carlo Sampling with
A = 1, and Collocation with A = 1 method with oy = o, = 0.2 are

compared with the absolute local derivative of y with respect to k£ and

5-44 For the linear ODE dy/dt = —ky + c: the mean of  (left) and 2*
(right) from the Variance method with o = o, = 0.2 are compared

with the absolute local derivative of y with respect to k andc. . . . .

5-45 For the linear ODE dy/dt = —ky + ¢: the absolute ratio of the local
derivative over the solution from the Variance method for k (left) and

c (right) for various og and g, . . . . . ... L

5-46 For the linear ODE dy/dt = —ky + c¢: the normalized E[EE;] and
o|EE;] of k and c as a function of time, ¢t € [0, 1] second, using the
Morris method with p = 16 and r = 50000 (solid-line), the Monte Carlo
Sampling with A = 1 and NN = 50000 (dash-line), and Collocation
method with A =  and N¢/d = 10 (dot-line) in three dimension (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . ... ... ... ...

5-47 For the linear ODE dy/dt = —ky + c: the normalized E[]*] and
o[2] of k and c as a function of time, ¢ € [0,1] second, usi;g the
Vari;mce method with Ne/d = 20 in three dimension (Top-Left), the
Side view (Top-Right) for emphasizing the first-order effect, the Top
view (Bottom-Left) for emphasizing the inputs’ interaction effect, and

the Front view (Bottom-Right). . . .. ... ... .. .........
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5-48

5-49

5-50

5-51

5-32

5-53

For the linear ODE dy/dt = —k — b — c: the normalized E[EE;] and
o[EE;] of k, b, and ¢ as a function of time, ¢ € [0, 1] second, using the
Morris method with p = 16 and r = 80000 to emphasize the first-order
effect (Left) and to emphasize the inputs’ interaction effect (Right). .

For the linear ODE dy/dt = —k — b — c: the normalized E[Z%] and
o[:—;] or VEE; and IEE; of k, b, and ¢ as a function of time, ¢ é [0,1]
second, using the Variance method with N¢/d = 30 to emphasize the
first-order effect (Left) and to emphasize the inputs’ interaction effect

(Right). . . . . . .. .

For the linear ODE dy/dt = —kcy + ¢ the normalized E{EE;] and
o[EE;) of k and ¢ as a function of time, ¢ € [0, 1] second, using the
Morris method with p = 16 and r = 80000 to emphasize the first-order
effect (Left) and to emphasize the inputs’ interaction effect (Right). .

For the linear ODE dy/dt = —kcy + c: the normalized E[ZX] and
o[z%] or VEE; and IEE; of k and c as a function of time, ¢ € [0,1]
second, using the Variance method with N¢/d = 30 to emphasize the

first-order effect (Left) and to emphasize the inputs’ interaction effect

(Right). . . . . . . e

For a % variable, the E[EE;} and o[EE;] of , w, and € as a func-
tion of time, t € [0, 1] second, using the Morris method with p = 16
and r = 5,000 (solid-line), the Monte Carlo Sampling with A = 7
(dash-line), and Collocation method with A = £ (dot-line) in three
dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the in-
puts’ interaction effect, and the Front view (Bottom-Right). . .. . .

The mean and standard deviation of EE; from the Morris method, the
Monte Carlo Sampling and, the Collocation method in the last figure,

when time is fixed at % and % second. . ... ...
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5-54 For a % variable, the VEE; and IEE; of n, w, and ¢ as a function of
time, ¢ € [0, 1] second, using the Variance method with (Nc/d) = 20 in
three dimensions (Top-Left), the Side view (Top-Right) for emphasiz-
ing the first-order effect, the Top view (Bottom-Left) for emphasizing
the inputs’ interaction effect, and the Front view (Bottom-Right). . . 241

5-55 The mean and standard deviation of E'E; from the Variance method

in the last figure, when time is fixed at £ and 2 second. . . . . . . .. 241

5-56 The convergence characteristics of RMS(||AE[EE]|») (Top-Left) and
RMS(||Ac[EE;]|l2) (Top-Right) using the Morris, Monte Carlo Sam-
pling, and Collocation methods and RMS(||AV EE;||;) (Bottom-Left)
and RMS(||AIEE;|») (Bottom-Right) using the Variance methods are

plotted versus the computational time. . . . . . ... ... ... ... 243

5-57 The stochastic solutions of the position and velocity of Duffing’s os-
cillator with the four different variations of random phase shift, o, =

O,m/4,m/2,and 7. . . ... ... 244

5-58 For the ys or i, state variable, the E[EE;] and o[EE;] trajectories of all
10 input parameters as a function of time, ¢ € [0, 3] second, using the
Morris method with p = 16 and r = 80,000 in three dimension (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . .. ... ... ... .. 246

5-59 The mean and standard deviation of E'E; from the Morris method, the
Monte Carlo Sampling, and the Collocation method in the last figure,
when time is fixed at 0.3 and 1.5 seconds, where the electrical and

mechanical transients dominate, respectively. . . . . . . ... ... .. 247

31



5-60

5-61

5-62

For a y5 variable or z':ft, the VEE; and I E'E; trajectories of all 10 input
parameters as a function of time, t € {0, 3} second, using the Variance
method with (N¢/d) = 20 in three dimensions (Top-Left), the Side
view (Top-Right) for emphasizing the first-order effect, the Top view

(Bottom-Left) for emphasizing the inputs’ interaction effect, and the

Front view (Bottom-Right). . .. ... ... ... ... ... ... .. 248
The mean and standard deviation of EE; from the Variance method

in the last figure, when time is fixed at 0.3 and 1.5 seconds, where the
electrical and mechanical transients dominate, respectively. . . . . . . 249
The convergence characteristic of RMS(|AE[EE;]||2) and RMS(||Ac[EE]]|2)

using the Morris, Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation is plotted versus the

computational time. . . . . . . ... ... L 249

5-63 The convergence characteristics of RMS(||AV EE;|;) and RMS(|AIEE],)

using the Variance and Inverse Variance methods, based on the statis-

tical computation, is plotted versus the computational time. . . . . . 250

5-64 The ES; ;) plots using Morris, MC Sampling, Collocation, and Vari-

ance methods for ranking the input sensitivity. Note that the order of
x; inputs on the x-axis are [rs,xls,xm,x;r,r;,rt, L, My, Tioaa, H] from
left to right and the order of y; outputs on the y-axis are [1,0;‘;, 1,0;‘;, Wy, i;‘i, z;‘;]

from top to bottom. . . .. ... Lo 251

5-65 The S5, ;) plots using Morris, MC Sampling, Collocation, and Vari-

ance methods for ranking the input coupling or interaction. Note that
the order of z; inputs on the x-axis are [rs, Zis, Zm, x;T, r;, Tty Lty My, Tioga, H|
from left to right and the order of y; outputs on the y-axis are [1/);5, gb:j,, Wy, z';i, z:ii]

fromtoptobottom. . . ... ... ... . 252



5-66 The E'S ;i plots using Morris, MC Sampling, Collocation, and Vari-
ance methods for ranking the input sensitivity. Note that the order of
x; inputs on the x-axis are [rs,xls,xm,xzr,r;,rt,Lt,Mt,Tload,H] from
left to right and the order of y; outputs on the y-axis are [¢;§, Ve, wr, i;‘;, ig]

from top to bottom. . . . . ... ... 253

5-67 The SS,(;,i) plots using Morris, MC Sampling, Collocation, and Vari-
ance methods for ranking the input coupling or interaction. Note that
the order of z; inputs on the x-axis are [r,, Ti5, T, xzr, 7,14, Ly, My, Tioad, H |
from left to right and the order of y; outputs on the y-axis are [zp;‘;, Ve, wr, i;‘;, 05

from top to bottom. . . . . .. ... 254

5-68 A one-line diagram of the second configuration of the AC power dis-
tribution with the open-loop induction machine for studying the sen-

sitivity analysis with 24 parameters. . . . . . . ... .. ... ... .. 255

5-69 For a yj4 variable or I, gy, of the harmonic filter, the normalized
E[EE;) and o[EE;] trajectories of the 7 induction machine parameters
and 3 bus parameters as a function of time, ¢t € [0, 1] second, using
the MC Sampling method with NN = 1,000 and o,, = 0.1 in three
dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the in-
puts’ interaction effect, and the Front view (Bottom-Right). . . . . . 257

5-70 For a yy4 variable or w, of the IM, the normalized E[EE;] and o[EE)]
trajectories of the 7 induction machine parameters and 3 bus param-
eters as a function of time, ¢ € [0, 1] second, using the MC Sampling
method with NN = 1,000 and o,, = 0.1 in three dimensions (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . ... ... ... ... 258

5-71 For 10 percent increase in Ly, the deterministic responses of I, 4 . riter,

Yqds, and g, with and without change in the L; nominal values. . . 259

33



5-72 For 10 percent increase in r;, the deterministic responses of I, 4 . fiter,

Yyds, and Y, with and without change in the r; nominal values. . . . 259

5-73 The ES; () plot (Left) and 55, ;) plot (Right) using the Monte Carlo
Sampling method with NN = 1,000 for ranking the input sensitivity
for o0,, = 0.1 and ¢ € [0, 1] second. Note that the order of z; inputs on
the x-axis are [r5, Xis, Xma, Ximg, T5dr Xtd, Thar Xikdy Thaty Xikql,Thq2,
Xikq2, Ts20 Xis2, Xm2, Xir2, Tr2, J, Qoad; C, R, Cf, r5, L] from left to
right and the order of y; states or outputs on the y-axis are [z/)gs, 1/1;511,
Yias Vs Vfir Yritr Yior 0, €xgar VE, Van, Von, Ve, s &, ey Ve, Vo,
Vs Wesr Uty ¥osr Yk YEsr wy] from top to bottom. . . . . . .. .. .. 260

5-74 The ES ) plot (Left) and SS. ;i) plot (right) using the Monte
Carlo Sampling method with NN = 1,000 for ranking the input sen-
sitivity for o,, = 0.1 and ¢ € [0, 1] second. Note that the order of z;
inputs on the x-axis are [rs, Xis, Xmd» Xmg» Tfdy Xfds Tkdy Xikd Thqts
Xikq1,Tkq2y Xikgz Ts2, Xis2) Xm2, Xiray Tr2, J, Qoaa; C, R, Cf, 74, Ly]
from left to right and the order of y; states or outputs on the y-axis
are (Y., Vi, Vi Yo Vi Yty Y6us 05 €atas VFs Vans Vims Vim, Ga B,
ic, Ver, Ve, Vs Wlsr ¥y ¥ ¥k, Ve, wr] from top to bottom. . . . . 261

5-75 For a yy4 variable or I, sy of the harmonic filter, the normalized
E[EE;] and o[ EE;] trajectories of the 7 induction machine parameters
and 3 bus parameters as a function of time, ¢ € [0,1] second, using
the MC Sampling method with NN = 2,500 and o,, = 0.3 in three
dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the in-
puts’ interaction effect, and the Front view (Bottom-Right). . .. . . 262

34



5-76 For a y.4 variable or w, of the IM, the normalized E[EE;] and o[EE;]
trajectories of the 7 induction machine parameters and 3 bus param-
eters as a function of time, t € [0, 1] second, using the MC Sampling
method with NN = 2,500 and o, = 0.3 in three dimensions (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . . .. ... ... ... 263

5-77 For 30 percent increase in Ly, the deterministic responses of Iy ¢, fister,

Yqds, and 4. with and without change in the Ly nominal values. . . 264

5-78 For 30 percent increase in r;., the deterministic responses of I, . fier,

Ygas, and ¥, with and without change in the 7, nominal values. . . . 264

5-79 The ES, ;) plot (Left) and 55, ;) plot (right) using the Monte Carlo
Sampling method with NN = 2,500 for ranking the input sensitivity
for o,, = 0.3 and ¢ € [0, 1] second. Note that the order of z; inputs on
the x-axis are [rs, Xis, Xmd, Xmg, T1d> Xfd> Tkds Xikds Tkq1:X1kq1:Tkq2,
Xikgz, Ts2, X152, Xm2, Xiray 712, J, Oltoad, C, R, Cy, 1, Ly] from left to
right and the order of y; states on the y-axis are [1/2,, z/;,;“;‘ll, zp,';ﬂ, (1
U Vit Yosr 0 €aas VE, Vany Vimy Ven, s ity B, Ve, Viz, Vea WG, Y1,
VS, Yof, YS,, wr] from top to bottom. . . . . ... ... 265

5-80 The ESy, ;) plot (Left) and SS ;) plot (Right) using the Monte
Carlo Sampling method with NN = 2,500 for ranking the input sen-
sitivity for 0,, = 0.3 and ¢t € [0, 1] second. Note that the order of z;
inputs on the x-axis are [ry, Xis, Xmd, Xmq» 7sdy Xsds Thas Xikd, That,
Xikq1,Tkq2s Xikg2 Ts2, Xis2y Xm2, Xir2y Tr2, J, Quoad, C, R, Cy, 15, L]
from left to right and the order of y; states or outputs on the y-axis
are [¥5,, Vi1, Viegr Yo Vi Vit Ysr 0, €xgar VFs Vans Vims Ven, s i,
ie, Va1, Ve, Va2, V.2, W Vs ¥Ss» wr] from top to bottom. . . . . 266

35



5-81 For a yi4 variable or I, fier of the harmonic filter, the normalized
E[EE,) and o|EE;] trajectories of the 7 induction machine parameters
and 3 bus parameters as a function of time, ¢ € [0, 1] second, using
the MC Sampling method with NN = 5,000 and o,, = 0.5 in three
dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the in-
puts’ interaction effect, and the Front view (Bottom-Right). . . . . . 267

5-82 For a yy4 variable or w, of the IM, the normalized E[EE;] and ¢[EE;]
trajectories of the 7 induction machine parameters and 3 bus param-
eters as a function of time, ¢ € [0,1] second, using the MC Sampling
method with NN = 5,000 and o,, = 0.5 in three dimensions (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . .. ... ... .. .. 268

5-83 The ES, ;) plot (Left) and S5, ; ;) plot (Right) using the Monte Carlo
Sampling method with NN = 5,000 for ranking the input sensitivity
for o, = 0.5 and ¢ € [0, 1] second. Note that the order of z; inputs on
the x-axis are [rs, Xis, Ximd, Xmg, T7dy Xsd> Thds Xikd, Thats Xikq1,Tkq2,
Xikgzy Ts2s Xisz) Xm2, Xirgs Tr2y J, Qoad, C, R, Cy, g, Ly] from left to
right and the order of y; states or outputs on the y-axis are [)¢,, zp,';ﬂ,
Yiipr Vo Vs Vits Y6or 0, €ngar VI, Van, Vimy Ven, fa, B, ey Ve, Ve,
Ves, W, t/);‘;, WS, UL, VS, wy] from top to bottom. . . . . . ... . .. 269
5-84 The ESy ;) plot (Left) and SS. ;) plot (Right) using the Monte
Carlo Sampling method with NN = 5,000 for ranking the input sen-
sitivity for o, = 0.5 and t € [0, 1] second. Note that the order of z;
inputs on the x-axis are [rs, Xis, Ximd; Xmgs 75d, Xsdy Tkds Xikds Tkqt,
Xikql,Tkq2> Xikq2, Ts2s Xis2, Xm2, Xir2, Tr2, J, Quoad, C, R, Cy, 15, Ly]
from left to right and the order of y; states or outputs on the y-axis
are (Y5, Vrors Yiozr Voo Vi Vit Y6s 0 €agar VE, Vany Vony Ve, s i
ies Ve, Vez, Ve, ¥, d);‘i, VS, Vs, VE,, wy) from top to bottom. . . .. 269

36



5-85 For a y;4 variable or I, fiuz.r of the harmonic filter, the normalized

E[EE;] and o[EF;] trajectories of the 7 induction machine parame-

ters and 3 bus parameters as a function of time, ¢ € [0, 12.4] seconds,

using the MC Sampling method with NN = 1,000 and o,, = 0.3 in

three dimension (Top-Left), the Side view (Top-Right) for emphasizing

the first-order effect, the Top view (Bottom-Left) for emphasizing the

inputs’ interaction effect, and the Front view (Bottom-Right). . . . . 270
5-86 For a yo4 variable or w, of the IM, the normalized E[EE;] and ¢[FE;)

trajectories of the 7 induction machine parameters and 3 bus parame-

ters as a function of time, ¢ € [0, 12.4] seconds, using the MC Sampling

method with NN = 1,000 and ¢, = 0.3 in three dimension (Top-

Left), the Side view (Top-Right) for emphasizing the first-order effect,

the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . . .. ... ... ... 271
5-87 The ES, ;) plot (Left) and S5, ;4 plot (Right) using the Monte Carlo

Sampling method for ranking the input sensitivity for o,, = 0.3 and

t € [0,12.4] seconds. Note that the order of z; inputs on the x-axis are

[rs: Xisy Xind> Xmg» T5dy Xfds Thds Xikds Thqly Xikgl,Thq2s Xikg2, Ts21 Xis2s

Xm2, Xir2, Tr2, J, 0toaas C, R, Cy, 75, Ly] from left to right and the

order of y; states on the y-axis are [%,, V&1, Vi, Ve Vs Vit Yo

8, €xtds VE, Van, Vin, Ven, fay i, i, Ver, Vea, Ve W5, s Ulr Yty Vi

wy] from top to bottom. . . . ... Lo 272
5-88 The ESy ;) plot (Left) and 5S4 plot (Right) using the Monte

Carlo Sampling method for ranking the input sensitivity for o, = 0.3

and t € {0, 12.4] seconds. Note that the order of z; inputs on the x-axis

are [rs, Xis, Xmdy Xmg> T5d> Xfds Thdy Xikd, Thal, Xikql,Tkq2y Xikg2, Ts2,

X152, Xm2, Xir2, Tr2, J, Quoad, C, R, Cf, 74, L] from left to right and

the order of y; states or outputs on the y-axis are [ngs, zp;fql, 1/),';;2, Y

Vi Uiy Yoo 0, €rsay VE, Vany Vomy Ven, Ga, B, G, Vet Via, Via WS, %ic,

Vs, W, Y, wy] from top to bottom. . . . . ... ... ... L. 273

37



5-89

5-90

5-91

A one-line diagram of the third configuration of the AC power distri-
bution with the closed-loop control of induction machine for studying

the sensitivity analysis with 31 parameters. . . . . . . .. ... .. ..

For a yy4 variable or I, fiizer of the harmonic filter, the normalized
E[EE;] and o[EE;] trajectories of the 7 induction machine parame-
ters and 3 bus parameters as a function of time, ¢ € [0,0.2] second,
using the MC Sampling method with NN = 1,000 and ¢,, = 0.1 in
three dimensions (Top-Left), the Side view (Top-Right) for emphasiz-
ing the first-order effect, the Top view (Bottom-Left) for emphasizing
the inputs’ interaction effect, and the Front view (Bottom-Right). . .

For a 125 variable or w, of the IM, the normalized E[EE;] and o[EE;]
trajectories of the 7 induction machine parameters and 3 bus parame-
ters as a function of time, ¢ € [0,0.2] second, using the MC Sampling
method with NN = 1,000 and o, = 0.1 in three dimensions (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . . ... .. ... ...

5-92 For a yi4 variable or I s, of the harmonic filter, the normalized

E[EE;] and o[EE,] trajectories of the 7 induction machine parame-
ters and 3 bus parameters as a function of time, ¢t € [0,0.2] second,
using the MC Sampling method with NN = 3,000 and o, = 0.3 in
three dimensions (Top-Left), the Side view (Top-Right) for emphasiz-
ing the first-order effect, the Top view (Bottom-Left) for emphasizing
the inputs’ interaction effect, and the Front view (Bottom-Right). . .

38

275

276

277



5-93 For a 15 variable or w, of the IM, the normalized E[EE;] and o[EEj]
trajectories of the 7 induction machine parameters and 3 bus parame-
ters as a function of time, ¢ € [0,0.2] second, using the MC Sampling
method with NN = 3,000 and o,, = 0.3 in three dimensions (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . . .. ... ... ... 278

5-94 For a yy4 variable or I fier Of the harmonic filter, the normalized
E[EE;] and o|EE;] trajectories of the 7 induction machine parame-
ters and 3 bus parameters as a function of time, ¢ € [0,0.2] second,
using the MC Sampling method with NN = 5,000 and g,, = 0.5 in
three dimensions (Top-Left), the Side view (Top-Right) for emphasiz-
ing the first-order effect, the Top view (Bottom-Left) for emphasizing
the inputs’ interaction effect, and the Front view (Bottom-Right). . . 279

5-95 For a yo5 variable or w, of the IM, the normalized E[FE;] and ¢|EE;)
trajectories of the 7 induction machine parameters and 3 bus parame-
ters as a function of time, ¢ € [0, 0.2] second, using the MC Sampling
method with NN = 5,000 and ¢, = 0.5 in three dimensions (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . . . ... ... . ... 280

5-96 The ES;(;;) plots using the Monte Carlo Sampling method for rank-
ing the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5
(Right). Note that the order of the synchronous generator’s pa-
rameters (z;) on the x-axis are [rs, Xis, Xpa, Xmq) Tdr Xsdy Thd,
Xikd,) Tkq1, Xikg1,Tkq2, Xikgz] from left to right and the order of y; out-
puts on the y-axis are [¢)¢,, zp,';;l, 1/}}52, Pe,, ¢}fl, W, Vs, 6, €, sar VF,
Vans Vo Ven, G, @, ey Ver, Vez, Ve, W5, Yor Yior Vil %65 wr) from top
tobottom. . . . . . ... L 281



5-97 The ES, ;) plots using the Monte Carlo Sampling method for rank-
ing the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5
(Right). Note that the order of the RC bus’s parameters (z;) on
the x-axis are [C, R, Cf, ry, Ly] from left to right and the order of Y;
outputs on the y-axis are [, Vi Yz Yo Vi Vi Yior 0, €rga,
VE, Van, Vins Ven, a, b, ey Ver, Veas Veaier Ui Yo Wiy 96, wr] from
top to bottom. . . . ... 282

5-98 The ES; ;) plots using the Monte Carlo Sampling method for rank-
ing the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5
(Right). Note that the order of the induction machine’s parame-
ters (z;) on the x-axis are [rs, Xis2, Xm2, Xir2, Tr2, J, Qoad] from left
to right and the order of y; outputs on the y-axis are [, 1/),;‘;’11, ¢,’§12,
Vesr Wi Vit Yesr 0, €xsar VI, Van, Vim, Vem, s B, e, Ve, Via, Vs 05,
w;‘j., Ve, Ui, Y, wy] from top to bottom. . . .. ... ... ... .. 282

5-99 The ES; ;) plots using the Monte Carlo Sampling method for rank-
ing the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5
(Right). Note that the order of the power converter’s parameters
(z;) on the x-axis are [L¢, T4e, Lae, Cacs Lyie, Tsias, Crire] from left to
right and the order of y; outputs on the y-axis are [y, w;c‘jﬂ, 1/)}5;12, ()
Vs Ui Yeor 05 €x1ar VI, Van, Viny Vens tas b, e, Ver, Ve, Vea 905, Yic,

Y5,y Uif, VE,, wy] from top to bottom. . . . .. ... L. 283

5-100For a y4 variable or I, fier of the harmonic filter, the normalized
E|EE;] and o[EE;] trajectories of the 7 induction machine parame-
ters and 3 bus parameters as a function of time, ¢ € [0, 1.62] seconds,
using the MC Sampling method with NN = 3,000 and o,, = 0.3 in
three dimension (Top-Left), the Side view (Top-Right) for emphasizing
the first-order effect, the Top view (Bottom-Left) for emphasizing the
inputs’ interaction effect, and the Front view (Bottom-Right). . ... 284

40



5-101For a y,5 variable or w, of the IM, the normalized E[{EE;] and ¢[EFE;]
trajectories of the 7 induction machine parameters and 3 bus parame-
ters as a function of time, ¢ € [0, 1.62] seconds, using the MC Sampling
method with NN = 3,000 and o,, = 0.3 in three dimension (Top-
Left), the Side view (Top-Right) for emphasizing the first-order effect,
the Top view (Bottom-Left) for emphasizing the inputs’ interaction

effect, and the Front view (Bottom-Right). . . . . .. ... ... ... 285

5-102The ES, (;,;) plots using the Monte Carlo Sampling method with NN =
3000 and o,, = 0.3 for ranking the input sensitivity within ¢ € [0,0.2]
(Left) and t € [0,1.62] (Right). Note that the order of the syn-
chronous generator’s parameters (z;) on the x-axis are [r;, Xis,
Xinds Xmags Tfdy X fds Thds Xikd,) Thats Xikq1,Tkq2s Xikgo] from left to right
and the order of y; outputs on the y-axis are [y2,, ¥,%;, ¥, Yo, Vi,
Vit Voo 0, €npas VE, Van, Vim, Ve, fas B, ey Ve, Ver, Vis ¥, ¥i, ¥
g, e, wy] from top to bottom. . . . .. ... L. 286

5-103The ES; (; iy plots using the Monte Carlo Sampling method with NN =
3000 and o, = 0.3 for ranking the input sensitivity within ¢ € [0, 0.2]
(Left) and t € [0,1.62] (Right). Note that the order of the RC bus’s
parameters (z;) on the x-axis are [C, R, Cy, ry, Ly] from left to right
and the order of y; outputs on the y-axis are [Y2,, )&, Vsn, Vi, Vs
V& Ya 0, €xsas VE, Van, Vin, Ve, fay b, e, Ve, Viz, Vea,Wler Uis, ¥
WY, Y, w,] from topto bottom. . . ... ... 287

5-104The ES, ;) plots using the Monte Carlo Sampling method with NN =
3000 and o, = 0.3 for ranking the input sensitivity within ¢ € [0,0.2]
(Left) and t € [0,1.62] (Right). Note that the order of the induction
machine’s parameters (z;) on the x-axis are [rs2, Xis2, Xm2, Xir2,
Tra, J, Qoeq] from left to right and the order of y; outputs on the y-axis
ate (Y5, Vi, Vs Yior ¥far Uit Yoo 0, €osas VI, Vany Vi, Ve i s,
ic, Var, Via, Via W2,y U2, ¥, Y ¥G,, wr] from top to bottom. . . . . 287

41



5-105The ES; (; plots using the Monte Carlo Sampling method with NN =
3000 and o,, = 0.3 for ranking the input sensitivity within ¢ € [0,0.2]
(Left) and t € [0,1.62] (Right). Note that the order of the power
converter’s parameters (z;) on the x-axis are [L., r4e, Lae, Coe,
Liater, Tfitter, Cliner] from left to right and the order of y; outputs on
the y-axis are [5,, Yig1, Vi Vo0 Y5> Vs Y 05 €gar VE, Van, Vi,
Vs Bas @b, Ge, Vet, Vea, Vea s, ¥ 2, Wosr Vift» Vs, wyr] from top to bottom.288

42



List of Tables

1.1

1.2

3.1
3.2

3.3

34

4.1

4.2

4.3

Summary of application using different stochastic algorithms on vari-
ous nonlinear (NL) SDEs with both Continuous (Cont.) and Discon-
tinuous (Discont.) stochastic solutions in Chapter 4. Note: the gPC is
applied only to the linear and quadratic 1st-order SDEs. . . . . . ..
Summary of various nonlinear (NL) SDEs with both Continuous (Cont.)

and Discontinuous (Discont.) stochastic solutions in Chapter 4.

Orthogonal polynomials and their associated probability distribution.
Comparison of the number of collocation points (N¢), corresponding
to the computing cost, between the full-grid PCM and the sparse-grid
PCM for small random dimensions d < 4 andlevels. . . . . .. . ...
Comparison of the number of collocation points (Nc¢), corresponding
to the computing cost, between the full-grid PCM and the sparse-grid
PCM for medium random dimensions 5 < d <9 and levels. . . . . . .
Comparison of the number of collocation points (N¢), corresponding
to the computing cost, between the full-grid PCM and the sparse-grid

PCM for large random dimensions d > 10 and levels. . . . . ... ..

Summary of the convergence rates for various stochastic algorithms in
the case of continuous stochastic solutions . . . . ... ... .. ...
Summary of the convergence rates for various stochastic algorithms in
the case of discontinuous stochastic solutions, where ¢ is a arbitrary
comstant . . . . . . . . . L

Parameters of a 200-hp induction machine . . . ... ... ... ...

43

54

55

91

104

138



4.4

0.1

3.2

5.3

Al
A2
A3
A4
A5

A6

B.1
B.2

B.3

B4

B.5
B.6
B.7
B.8
B.9

Summary of the accuracy and computational time of the QMC and

sparse-grid PCM . . . . . . ..o 179

The range of parameters that controls the accuracy of each sensitivity
analysis algorithm . . . . .. . ... oo oo 195

Comparison on the computational cost of all sensitivity analysis tech-

NIGUES . . . . . o 214
The values of 3 coefficients for the modified Morris functions . . . . . 215
The first few terms of the Legendre polynomials (L(£)) [1] . . . . .. 293
Summary of the properties of the Legendre polynomials [1} . . . . . . 294
The first few terms of the Jacobi polynomials (J%%(£)) [1] . . . . .. 294
Summary of the properties of the Jacobi polynomials [1] . . . . . . . 294

The first few terms of the Chebyshev polynomials of the first kind

(TE) 1] - - - o e 295
Summary of the properties of the Chebyshev polynomials [1] . . . . . 295

Parameters of the induction machines [38] in per unit with Vi.,. = 450 V297
Parameters of the 3.125 MW synchronous generator [38] in per unit
with Viese =400V . L 0 0 L 0L 298
Parameters of the IEEE type DC1A exciter/voltage regulator (Type
1) B8] inperunit . . . . ... .. 298
Parameters of the simplified gas turbine with speed governor [38] in
perunit . .o e 298
Parameters of the 50-hp induction machines [27] with Vieee = 570V . 298
Parameters of the 59 KW synchronous generator [27] with Vi, = 570 V298

Parameters of the full-brigde rectifier and DC-link filter [27] . . . . . 298
Parameters of the RC bus with the harmonic filter [27) . . . . . . .. 299
Parameters of the constant-slip current control [27] . . . . . . .. .. 299

44



Chapter 1

Introduction

The advent of modern power electronics and large scale solid-state power converters
is ushering in a new age for electric ship propulsion. This is embodied in the All
Electric Ship (AES) concept where a single set of prime movers is used to power
both propulsion and all other loads aboard the vessel [65]. This system has many
advantages over traditional mechanically driven ships, including reduced fuel usage,
reduced maintenance and greater design flexibility. Many sectors of the commercial
marine industry are adopting this new technology.

Military ships can also benefit from many of the same advantages as their com-
mercial counterparts by adopting an integrated power system (IPS) architecture. A
general diagram of the IPS in the electric ship architecture, shown in Figure 1-1, con-
sists of an interdependent connection among: (1) power-generation systems or sets
of a prime mover directly coupled with a synchronous machine (SM); (2) propulsion
systems or induction machines (IM); and (3) high-power equipment or the electromag-
netic (EM) railguns [13] and other auxillary electrical services. However, warships can
also benefit from the much larger installed generation capacity for powering advanced
electric weapons and sensors. In the future warship, the major requirements of the
IPS can be summarized as the following: 1) a capability to maintain continuity of
service with sufficient reserve margin in the presence of critical loads, component and
cascaded failures, and internal errors; 2) a fault containment ability, which leads to

an optimal dynamic reconfiguration of the zonal topology; 3) an advance intelligent
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control in both component and central levels.

Other electrical

consumptions

Figure 1-1: A general model configuration of the AES system.

In contrast, the large-grid utility power system consists of many power supplies,
branches, and switches. The reconfiguration of the utility network mainly aims to
satisfy the following criteria: 1) line loss minimization [42]; 2) load balancing and load-
ability maximization [59]; and 3) voltage stability margin maximization [5]. Moreover,
the transmission, load, and generator dynamics are neglected in most reconfiguration
problems, and thus the power flow problem needs to be solved with a system of
differential-algebraic equations (DAE). That is a more time-consuming process than
solving a system of ordinary differential equation (ODE). However, the shipboard
power systems are limited due to small numbers of generators that are closely sized
with loads, short tie line with low impedance, and a small group of loads [4], [9].
To enhance redundancy in the AES system, the electrical distribution system uses
a zonal configuration [67],[57]. Therefore, the fault propagation can be contained
within each electrical zone and the intelligent control unit is able to perform a system
reconfiguration and fault containment to further increase survivability.

The power sharing between the propulsion units and the high-power equipment,
especially under heavy propulsion demand and casualty conditions, has recently been
identified as an another important issue [16], [13], [30], [56], [67]. In a new AES config-
uration, there is an increasing demand for electric power for ship system automation,

electrical weaponry, electric propulsion, and ship service distribution. About 70% to
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90% of power from the generator units in the fully IPS is consumed in the propulsion
systems [16]. Thus, when a sudden and large power demand for periodically charging
and discharging the pulse forming network of electric guns is imposed on an electrical
bus during a mission or life critical situation, the power distribution must be optimally
modified to yield the most efficient power usage and to maintain a continuity of ser-
vice [66], [67]. Recently, a work by [30], [56] with single-generator distributed electric
power to single propulsion and pulsed power loads showed that the bus voltage drops
significantly during a charging sequence of the pulse forming network and a heavy
propulsion load. Thus, a coordinate of distributed power between the pulsed power
and propulsion load is necessary to maintain the system stability and to improve the
continuity and quality of electrical service.

The Office of Naval Research (ONR) developed a prototype IPS testbed, including
simulated and experimental systems. The ONR-IPS model and simulation separate
the AC power generation and propulsion systems into port and starboard subsystems,
and divide the DC zonal electric distribution into three main zones along the ship hull,
as shown in Figure 1-2. Each AC subsystem is composed of a 59-kW synchronous
generator, a close-loop drive of a propulsion system, and a power supply for providing
DC power to either the port or starboard bus. In DC zonal electric distribution,
there are a port bus, a starboard bus, six Ship Service Converter Modules (SSCM’s),
a Ship Service Inverter Module (SSIM), a motor controller (MC), and a constant
power load (CPL) [28]. A mathematical model of the AC subsystem is described
in more detail later in Chapter 2 of this thesis. The experimental Naval Combat
Survivability testbed [56], constructed at Purdue University, has all components and

a similar structure as that in Figure 1-2.

1.1 Problem Statement

Because of the complexity and large scale of the shipboard integrated power system,
a simulation of the AES model must be able to capture various situations for inves-

tigating the transient stability and system interaction accurately. Thus, the model
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Figure 1-2: A one-line diagram of the ONR integrated power system consisting of
port and starboard AC and DC zones [28].

of the AC power distributions with propulsion and DC power network is sufficient
for our study purpose. For example, the model developed for the ONR challenge
problem [27] has a total number of 133 state equations and 231 associated param-
eters. Only the AC power distribution and the propulsion system, one of the most

important sections of the ONR challenge problem, are the main focus in this study.

Other significant goals of future AES are to minimize the number of crew and to
increase system monitoring and control automation [67] for reduction of operational
costs and increased reliability. However, to maintain the situation awareness and
fault tolerance, a fusion of redundant sensor measurement is required to accurately
estimate the current environment and conditions. This leads to another important
issue of estimation and prediction in the uncertain situation; therefore, the dynamic
performance of single machines as well as machine interaction must be tested for
efficiency and dependability under stochastic variations.

Many research projects have been conducted on the AES system under condi-
tions of deterministic propulsion-load and electrical-load deviations [16], [56], [58].

However, a stochastic analysis of the AES system with the presence of load uncer-
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tainties has not been addressed, except in utility power systems [41]. The Monte
Carlo (MC) method and traditional stochastic processes, characterized by a joint
probability density function and analytically based on the power spectral density of
auto-correlation and cross-correlation [33], are often used in the stochastic analysis of
both discrete- and continuous-time systems. Although the Monte Carlo simulation is
easy to apply for both linear and nonlinear systems, it requires extensive computa-
tion, due to its low convergence of statistical solutions, and provides no bounds for
probability estimation - two major disadvantages. To accelerate the convergence of
the Monte Carlo method, the Quasi-Monte Carlo (QMC) method [40],{46] has been
introduced; nevetheless, the QMC still suffers the same limitations. For the tradi-
tional stochastic processes, the difficulty in analysis limits the computation only to
the Gaussian random process of linear time-invariant [33] and simple-nonlinear [26]
systems. Thus, a stochastic process using the Galerkin and Collocation techniques of
the polynomial chaos, which are applicable to various classes of random process, are
better alternatives for examining uncertainty propagation of high-order parametric

and load variations in the large-scale AES system.

The generalized Polynomial Chaos (gPC), based on the Galerkin projection and
Wiener-Askey polynomial chaos, [19], [35], [60], [62], has been successfully applied
for the stochastic analysis in various applications, such as a finite element in solid
mechanics [19], fluid dynamics [64], and electrical circuits [54]. Major advantages
of the gPC technique are that a probability density function, as well as statistical
moments of system variables, can be obtained explicitly after solving nodal system
equations and the accuracy of the gPC statistical solution converges faster than that
of the Collocation method. However, an additional computational cost is required for
the Galerkin projection. The limitations associated with the gPC are the expansion
complexity of nonlinear non-polynomial terms onto the orthogonal polynomial-chaos
basis and its trade-off between computational cost and accuracy for a large system

with many random inputs.

Uncertainty analysis using the Probabilistic Collocation Method (PCM), based on

the Collocation approach of polynomial chaos, has been used for examining the tran-
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sient behavior of utility power systems [21], [22] and ocean circulation [61]. The theory
underlying the PCM, called the full-grid PCM, is the numerical Gauss-quadrature,
which is an efficient numerical integration technique [46] for a low-dimensional prob-
lem. However, when the dimension of stochastic inputs increases as in the system with
many well-correlated inputs and in the large-scale system, the computational cost of
the full-grid PCM becomes prohibitive. Therefore, another collocation technique of
numerical integration, known as the Smolyak quadrature [63], [45], has been shown
to provide a smaller computational cost for similar accuracy. We call this technique
the sparse-grid PCM. Major advantages of full- and sparse-grid PCM are that the
modal equations of the ODE are decoupled and all statistical solutions, as well as the
probability density function, can be directly obtained from the modal solutions. Due
to the discrete nature or modal characteristics of the PCM, the accuracy of stochastic
solutions deteriorates quickly, when the integration time is prolonged or there exists
a discontinuity in statistical solutions. Moreover, sufficient collocation points must

be available to fully cover the stochastic characteristics of the system.

The sensitivity analysis is an important tool for identifying how the system re-
sponds to the input variation, such that a full understanding of the model develop-
ment and validation can be achieved and unimportant variables can be eliminated
from the parametric space or experimental tests [51], [52]. Since the inputs and
model structure are subjected to many uncertainties from sensor measurement, poor
understanding of system characteristics, and stochastic disturbance, the sensitivity
analysis must provide the model developer the key factors to fully comprehend the

system mechanism.

Sensitivity analysis techniques can be classified into two main categories - local,
and global methods [51] - according to the range of the parameter variation. The local
method [21], [48], [51], based on the computation of the partial derivative of output
with respect to input around the nominal operating point, cannot correctly predict
the sensitivity of nonlinear systems within the entire range of input uncertainty. In
the global approach, a priori knowledge or special structure of the system model are

required for each of the following three techniques:
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o The regression analysis or correlation measurement combining with the Monte

Carlo method [51], [20];
e partitioning uncertainty with Latin Hypercube Sampling [36]; and
o ANOVA-Decomposition [53].

On the contrary, the Morris method [39], which is the most efficient factor screening
technique for system with a large number of inputs, qualitatively ranks the impor-
tance and interaction of input parameters in systems without any assumption about
the system. Nevertheless, the Morris method requires intensive computation to guar-
antee the convergence of the sensitivity index. The model independence, simplicity of
implementation, and accuracy in identifying the important parameters, especially in

large-scale systems, are the key factors in developing our sensitivity analysis method.

1.2 Scope and Contributions of the Thesis

Multi-discipline areas - power systems in the AES application, numerical stochastic
analysis using both Galerkin and Collocation approaches of the polynomial chaos,
and sensitivity analysis - must be combined within this research project. For the
preliminary stochastic and sensitivity analyses of large-scale AES systems, parametric
and load uncertainties are assumed to be associated only with the uniform distribution
because of its symmetrical and bounded range. We summarize the key contributions
of this thesis in the following list below.

1) It conducts stochastic analyses of a single electric machine and of large-scale AC
power distribution and propulsion systems in a shipboard integrated power system
with high-order parametric and load uncertainties to examine the propagation of
uncertainties.

2) It develops and implements the hybrid gPC+PCM technique to extend the
capability of the gPC to handle nonlinear non-polynomial functions, for example, the

ODE with a trigonometric or step discontinuity term.
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3) It develops and implements the Multi-Element (ME) technique for both full-
and sparse-grid PCM to improve accuracy of stochastic solutions, especially in lengthy
integration problems. Generally, the MEPCM yields about an order of magnitude
faster computational time than the MEgPC [60] for the same accuracy of stochastic
solutions.

4) It examines thoroughly and systematically the convergence characteristics of
different numerical stochastic techniques - MC, QMC, gPC, MEgPC, full- and sparse-
grid PCM, full- and sparse-grid MEPCM - on various systems with both continuous
and discontinuous stochastic solutions. The convergence rate is expressed in terms of
their governing variables and the random dimension.

5) It invents four new sensitivity analysis techniques, based on the numerical
stochastic techniques, for identifying ranking and interaction of parameters. These
four techniques are applicable to static functions. We then compare the sensitivity
indices from these four methods with the existing Morris method, which reveals a good
agreement in both parameter ranking and interaction. Three of the techniques can
be successfully extended to deal with the sensitivity analysis of the ODE. Lastly, the
sensitivity analysis of the AC power distribution with open- and close-loop propulsion
drive systems, which is one of the important sections in large-scale AES systems, is

investigated.

1.3 Organization of the Thesis

This thesis is composed of five chapters and two appendices. The system modeling
of individual electric machines and propulsion drive with power converter as well as
two different interconnections of subsystems are presented in Chapter 2. All of these
component mathematical models are building blocks for the AC power distribution
and propulsion systems in the ONR challenge problem [27]. In Chapter 3 we ex-
plain the theory of numerical stochastic techniques, based on the Galerkin (gPC) and
Collocation (PCM) approaches of the polynomial chaos, the concept of the multi-
element technique, which is applicable to both gPC and PCM, and the represen-
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tation of stochastic inputs as the Random Variables (RV) or the Random Processes
(RP). Chapter 4 thoroughly examines the convergence characteristics of all stochastic
analysis techniques for solving the Stochastic Differential Equation (SDE) with both
continuous and discontinuous statistical solutions. Moreover, the stochastic analysis
of the AC power distribution with the close-loop propulsion drive is examined when
all 31 parameters become random variables. Table 1.1 summarizes various numeri-
cal stochastic algorithms that apply on different SDEs in Chapter 4. In Table 1.1,
FPCM and SPCM stand for full- and sparse-grid PCM. In Chapter 5, new sensitiv-
ity analysis techniques - the Sampling, Collocation, Variance, and Inverse Variance
methods - are first introduced for ranking inputs in their significant order as well as
identifying inputs interaction for various static functions. These results are then con-
firmed with that from the Morris method. Second, the capability of these sensitivity
analysis techniques are extended to handle the ODE system, such as Duffing’s oscil-
lator, the single induction machine, and the AC power distribution and propulsion
system. Chapter 6 then concludes the thesis and mentions future research directions.
Lastly, Appendix A and B summarize the Legendre, Jacobi, and Chebyshev polyno-
mial chaos properties and all machine parameters of all AES systems studied in this

thesis, respectively.
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Table 1.1: Summary of application using different stochastic algorithms on various
nonlinear (NL) SDEs with both Continuous (Cont.) and Discontinuous (Discont.)
stochastic solutions in Chapter 4. Note: the gPC is applied only to the linear and
quadratic 1st-order SDEs.

System MC | QMC | ME | Hybrid | FPCM | ME Adap | SPCM | ME
gPC | gPC FPCM | ME SPCM
+PCM FPCM
Linear X X X D
1st SDE
Quadratic NL X X X
1st SDE
Cubic NL X
1st SDE
Quartic NL X
1st SDE
Trigonometric x X x
NL 1st SDE
1D RV Cont. X X X X
KO system
2D RV Cont. X X X X X
KO system
3D RV Cont. X X X X X X
KO system
Step Discont. X x X
1st SDE
1D RV Dis- X X x X X
cont. KO sys.
2D RV Dis- X X X X X
cont. KO sys.
3D RV Dis- X X x X X X
cont. KO sys.
1D RVIM X X X X X X
with Inf. Bus
2D RV IM X X X X
with Inf. Bus
3D RP IM X X X X X X
with Inf. Bus
6D RV AC X b b X
power sys.
31D RV AC X X
power sys.
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Table 1.2: Summary of various nonlinear (NL) SDEs with both Continuous (Cont.)
and Discontinuous (Discont.) stochastic solutions in Chapter 4.

| System | Equation Number [ Section ]
Linear 1st SDE 4.3 4.1.1
Quadratic NL 1st SDE 4.6 4.1.2
Cubic NL 1st SDE 4.9 4.1.3
Quartic NL 1st SDE 4.13 414
Trigonometric NL 1st SDE 4.16 4.1.5
1D RV Cont. KO System 4.17-4.19 4.1.6
2D RV Cont. KO System 4.17—-4.19 4.1.7
3D RV Cont. KO System 417 - 4.19 4.1.8
Step Discont 1st SDE 4.20 4.2.1
1D RV Discont. KO System 4.17-4.19 4.2.2
2D RV Discont. KO System 4.17-4.19 4.2.3
3D RV Discont. KO System 4.17—-4.19 4.2.4
1D RV IM with Inf. Bus 4.23 — 4.29 4.3.1
2D RV IM with Inf. Bus 4.23 — 4.29 4.3.2
3D RP IM with Inf. Bus 4.23 —4.29 4.3.3
6D RV AC power sys. in Ch.2 see Figure 4-96 | 4.4.1
31D RV AC power sys. in Ch.2 see Figure 4-97 | 4.4.2
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Chapter 2

System Modeling

Many types of power system modeling have been introduced in the literature (3], [25],
[30], [42]. Because of the different time scales associated with each sub-component in
each electric machine (electrical and mechanical time constants), we must appropri-
ately select the model according to the study objective to accelerate the simulation
process. For example, to reduce a high-harmonic frequency to improve a power-
converter’s quality and efficiency, all fast transient dynamics of electrical components
must be carefully modeled and included in the systems’ mathematical model, while
only slow dynamics of electric circuits of machines are needed along with the mechan-
ical transients in the stability and load shedding of an inter-area terrestrial power
system.

Another important issue is how to connect all these electric machines, generator
and motor, together to form a power grid network and loads. In the past, most mod-
eling approaches of simulated power systems formed the Differential- Algebraic Equa-
tions (DAEs) after connecting electric machines together (2], [31] and the simulation
of these DAEs was time consuming. To avoid solving DAEs, two types of machine
connections or three-phase buses, which form the Ordinary Differential Equations
(ODEs), are considered in this study. In this chapter, a typical configuration of the
AC power distribution and propulsion systems that is one of the subsystems in Fig-
ure 1-2 is first introduced and then the mathematical model of each component is

presented in more detail.
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2.1 Components of Naval Shipboard Power Sys-

tem

A typical arrangement of the AC power distribution and propulsion systems in the
shipboard integrated power system [47], [55], shown in Figure 2-1, consists of a power
generation unit (prime mover, synchronous generator, and their controller), a AC bus
(tie line connecting to power supply), and a propulsion unit (propulsion drive and
induction motor). However, an actual configuration of this electrical network must
take into account an optimization for power flow and load shedding, a reconfiguration
of the DC zonal areas for survivability, and an efficient management of the storage
energy. Moreover, all these machines must be optimized for an installation space,
a transmission loss, and a signature noise reduction. In the following sections, the
mathematical models of each machine and a simplified power converter are introduced
along with their interconnection such that the transient dynamics of the AC power
distribution and propulsion systems can be further examined from both deterministic

and stochastic perspectives.

AC Bus

I_' : :"

Mover
Power

G..". e gt s o .\ ;
W 2 Power Supply
(PS)

Figure 2-1: An one-line diagram for the typical configuration of the AC power gen-
eration and propulsion systems.

We consider three different reference frames: the abc reference frame, the gd0 rotor
reference frame, and the gd0 synchronous reference frame, where the q- and d-axes
of the ¢d0 reference frame consequently lead and lag the a-axis frame by a constant
angle of .. All the transformations between these reference frames will be introduced

in later sections. Note, df,/dt = w.. And the synchronous speed, w,, is fixed at 60
Hz.
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2.1.1 Tie line connection and bus

To connect electric machines together, a three-phase transmission line can be modeled
as a symmetrical, three-phase, series RLC circuit. This series RLC circuit includes re-
sistor (r;), self inductance (L;) from line leakage and magnetizing inductance, mutual
inductance (M;) from coupling of each line, and capacitance (C;) for line compen-
sation. Furthermore, the line capacitance also acts as a filter between generator and

propulsion drive.

The symmetrical, three-phase resistive element, which represents the transmission
loss in the tie line, can be simply expressed in the abc or qd0 synchronous reference

frame as the following:

Vabe = Tilobe (2.1)
or

Ve = Tilgg, (2.2)

where r; is diag[r; ry 7]

For a magnetically linear circuit, the symmetrical, three-phase self and mutual

inductance can be represented by the following matrix in the abc reference frame:

Ly My M,
Labct = M Lt Mt (2.3)
M, M, L

or in the qd0 synchronous reference frame

L,— M, 0 0
quOt = 0 Lt — Mt 0 . (24)
0 0 L, + 2M,
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The rclation between voltage and current is expressed in the following form:
Vabe = Labctp iabe (25)
or

e _ re te .
Vagdot = weTqudOthdOL + qu,Otp Lidot» (26>

where the T; matrix represents speed-voltage terms, with T1(1,2) = 1 and T{(2,1) =

—1, and the p symbol denotes the derivative operation.

Similarly, the voltage-current relationship of the symmetrical, three-phase capac-
itive element can be written in the abc or qd0 synchronous reference frame as the

following:
It = CiP Vaber (2.7)
or
iZdOt = weTlCthdOt + Cip V;don (2.8)

where T matrix, which is exactly identical to that in the inductance element, repre-

sents speed-current terms.

Two types of the tie line considered later on are series RL and RC circuits. The

equation for the three-phase RL tie line is:

se - —~1 e se
Plygne = qum (quOt — Tilggor — wequOtTllqut)’ (2.9)

where vgq0; represents the voltage difference between two different buses or machines.

The equation for the three-phase RC tie line is:

P vngt = Ct‘1 (ingt - rt‘lv;dm - weCtTlvngt) (2.10)
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where i, represents the current difference between two different buses or machines.
Next, we describe several kinds of electric machines used in the propulsion and power

generation units.

2.1.2 Propulsion system

For more than a century, DC motors have been used in propulsion drives due to
the simplicity of its precise speed control and low noise generation compared to the
direct drive of combustion engines. Due to the high maintenance, low power density
of DC machines and fast advancement in power electronic technology, the AC motors,
especially the synchronous/induction machines, become a more attractive alternative
for the propulsion in electric ships. With a new development of podded propulsion
for improving maneuverability of the ship, the induction machine is an appropriate
choice because of its high power density and low maintenance. In the rest of this
section, the construction and mathematical representation of the induction machine
is introduced.

Generally, the induction machine can be considered as a system of coupled electric
and magnetic circuits and the mechanical system, the rotor inertia. Its assembly
consists of resistances, self inductances, and mutual inductances between stator and
rotor windings. The three-phase induction machines are asynchronous-type machines,
that operate below and above a synchronous speed in the motoring and generating
operations, respectively. They are less expensive compared to the synchronous or DC
machines of the equivalent size because of its simple structure. Typically, they are
rugged and reliable; thus, they become an important machine in present industry.
The main characteristics of this machine are that it requires large starting current
and yields poor lagging power factor when a light load is applied. For variable speed
drive, they are fed from a power electronic converter at variable voltage amplitudes
and frequencies.

We briefly describe the formulation of a general mathematical model for the sym-
metrical three-phase squirrel-cage induction machines with four poles and three-phase

windings in both the stator and rotor connected in a wye configuration. The governing
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equations are written in the qd0 synchronous reference frame (denoted by superscript

e). The voltage equations of the stator and rotor windings can be written as

W p
e e € € e
v = —Il + —“T]'I,/) + _¢ 2.11
gd0s 5+qd0s Wh qd0s Wh qd0s ( )
We — W p
fe __ /sle [ T 1e le
quDr - rrlqur + wh leqd()r + —u)b ’(/)qur' (212)

where Vi, 1ogs, Vigos A Vi, 1o, Ygaor are the stator and rotor variables of

. . : e __ e e e 1T
voltage, current, and flux, expressed in a vector form as {74, = [ vss Jiss f5s)" and

te _ [ e re le]T

vaor = g fivs for] 7, respectively. The resistance matrices r, and r;. are diag[rg, 75, 7]

and diaglr’,r.,r!]. w, and w;, are the rotor angular and base velocities; the syn-
chronous speed w, is the same as w; in the absence of a controller. The positive
direction of stator current is assumed to be outward from the stator winding. The
prime symbol denotes that the rotor variables are scaled by a stator to rotor turn

ratio.

The equations of flux linkage per second are

;d()s = *Xlsi;d()s—*-wfnqd (213)

(lpngr = ;ri,qedOr + 77zjrenqd‘ (214)

where the flux leakage matrices X;, and X, are diagzs, €15, 215) and diag[z),., z},., =}, ].
We write 95,,g = ~Xpiggs+Arig,, Where X, = diag[ry, 2y, 0] with 2 = (2mz},)/ (2m+
x;.), and A, = diaglz,/z},, T/ 2),,0]. 2, is the mutual inductance of the stator and

rotor.

The dynamics of the mechanical subsystem can be written as

Wy

= 57 (T~ Tu). (2.15)

P Wy

where T, = 1515, — 5,1, and T are the electromagnetic and load torques, respec-

tively. The rotor inertia (in seconds) is H.
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Let us consider a 4-pole, 200-hp induction machine connected with an infinite bus
or a constant voltage source through an RL tie line. All machine parameters can
be found in Appendix B [38]. Although the absence of a controller makes this an
idealized case (see Figure 2-2) this system shows the response of a start-up transient,
which consists of fast and slow dynamics of electrical and mechanical components,
respectively. Then, the machine is subjected to a step change in torque load from 0

to 1 p.u. after 1.5 seconds.

V0

vt

qd0s
Te3(°r

1 = ¢
Vaaot™ ™V qdo0s
—»

™M Load

200Hp T,
3-phase P

Infinite Bus radial system

Figure 2-2: A single induction machine connected with an infinite bus.

Assume that all state and output variables are described in the per unit system
of the base impedance and in the qd0 synchronous reference frame. The 0-axis vari-
ables remain constant at zero due to a balance operation of machine and a perfect
cancellation from the reference frame transformation.

From Figure 2-3, we can see a large start-up current in both g- and d-axes during
the free acceleration. After the first 0.5 second, the fast transient of the electrical
component dies out, only the slow transient of the mechanical component is dominant
up to 1 second before reaching the steady state. As the torque load changes from 0
to 1 p.u. at 1.5 seconds, both g- and d-axes tie line currents and the electromagnetic

torque increases to handle the increasing torque load, as shown in Figure 2-4.

2.1.3 Power generation system

The synchronous machines are the largest and most common electric machines that
convert energy from mechanical to electrical energy. Even though the three-phase
synchronous machines are relatively more expensive than the induction machines,

the synchronous machines provide higher efficiency at a higher power rating, which
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Figure 2-3: The flux linkages per second, 95, of induction machine (right column)
and tie line’s current, i%y,, (left column) during the start-up transient and after a step
change in the mechanical torque load at 1.5 seconds.
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Figure 2-4: The torque-speed curve during the start-up transient and after a step
change in the mechanical torque load at 1.5 seconds.

64



makes this machine suitable for generating electrical power. Generally, the rotor
of the synchronous machine is composed of a field and damper windings that have
different or unsymmetrical electrical characteristics. Therefore the generated voltage
can be compensated by an exciter/voltage regulator, if there is an increasing of the
electrical load. Unlike the rotor winding, the stator windings of this machine are

mostly identical so that the symmetrical or balance three-phase voltage is produced.

The mathematical model described here is based on the concept of a three-phase
salient-pole synchronous machine, consisting of linear magnetic circuits without any
saturation. The fields produced by the winding currents are assumed to be sinu-
soidally distributed around the airgap, which ignores the space harmonics. The rotor
windings consist of the field winding (fd) and damper windings (kq and kd), and the
stator windings (gs,ds,0s) are symmetrical. The voltage equations of the stator and

rotor windings expressed in the rotor reference frame can be written as the following:

w p
T . T T T T
quOs = _rslqdﬂs + _T1¢qd03 + &waqdos (216)
nr _ I Ir
qur - qdr + qudr (217)
where (Vigos: rdoss Yhaos) 80d (Vo 17y, ¥5s,) are the stator and rotor variables
of voltage, current, and flux, expressed in a vector form as f7,,, = [f7,, f3,, f3,]” and

1fd

oir = Utg far s T "|T, respectively. The resistance matrices r, and r’, are diag|r,, 75, 7]

and diag[ry,, 774, 714). Again, the T; matrix is used with voltage terms, induced by
the speed due to a reference frame transformation. The negative sign in the stator
voltage and flux linkage equations represent an assumption that the positive direction

of stator current is outward from the stator winding.

The equations of flux linkage per second are given below:

Yados = —Xisigaos + Winga (2.18)
gdor = Xipigaor + Totfrgy. (2.19)
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where the flux leakage matrices X,;; and X, consequently are diagfxs,zs, x;5] and

diaglz), &), 4] To is simply the selection matrix:
ST kg Lifd> Likd ply

1 00
To=]101 0 (2.20)
010
The expression of ¢, ; can be written as the following: 97,4 = =Xl s, + Ariry,,

where X, = diag[®pg, 2pa, 0] with Xy = (1/Xpmg + 1/X3,) 7" and Xpg = (1/Xpa +
VX5 + 1/ Xpa) ™

Xog/ Xig,g 0 0
0 0 0

The dynamics of the mechanical subsystem can be written as

LR
puwr= oo (Tom — Te)- (2.22)
PO =wr — We. (2.23)

where T, = vy iy, — 7 15, and T)y, are the opposing electromagnetic torque and driven
torque from the prime mover, respectively. Again, H denotes the rotor inertia (in
seconds). The angle difference between the the synchronous reference frame and the
rotor rotating frame is represented by 6. To transform the state variables from the
rotor to synchronous reference frame, the transformation matrix ("K€) can be applied
to f7,,- Due to the Hermitian property of this transformation matrix, the inverse

transformation from the synchronous to rotor reference frame is just the transpose of

TKE.

cosé sind O

K= | —sind cosd 0 (2.24)
0 0 1
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A combustion engine, either a diesel engine or gas turbine depending on the size
of the vessel, supplies the mechanical energy to the generator. The size of this com-
bustion engine in the electric-driven ship is usually smaller than that in the direct
mechanic-driven ship. For the purpose of examining the transient stability of the
power generation unit in the large-scale vessel, a simplified model of a heavy-duty
gas turbine is sufficient for this study. Based on the mathematical model of the
single-shaft gas turbine in [49], the more simplified model, found in [38], is mainly
composed of the speed governor (SG), valve positioner (VP), fuel system (FS), and

turbine (T,,). The state equation can be expressed as the following:

K. Wy K.
VP = - ypy - (SG + Wei,) (2.26)
P Tov Tov F10s .
1 1
FsS = ——FS+—VP 2.27
P Trr Tpr (2.27)
(2.28)

where the torque supplied by the turbine shaft is given by the following relation:
Tom = Crer(FS — Cogr) + C’GNGT<1 — ﬂ). All parameters of this model, given in

Wy

Appendix B, are obtained from [38] to approximate the Allison 501 gas turbine.

Furthermore, the exciter/voltage regulator, controlling the field winding of the
synchronous generator, is modeled according to a simplified model of the IEEE type
2 (23] or the IEEE type DC1A representation [24]. This type of exciter is typically
accepted in the industry due to the model’s simplicity. Three main components
of this exciter are an independent power supply, a self-excited shunt field, and a
stabilization feedback associated with gains and time constants. However, we neglect

the nonlinear saturation in the shunt field. The state equations for this type of exciter
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can be described as the following:

pVr = ‘-%;VR + %(Vref -V, - Vstab) (2.29)
pEu = _f;;r Epq+ %};VR (2.30)
pVy = %VR - TLFlVf (2.31)
P Vit = ‘“'j-,%;vstab + i; (%VR - Vf). (2.32)

(2.33)

All parameters of this exciter model, called the Type 1 exciter, are given in the per
unit system in Appendix B. In this case, Vs is fixed at a constant voltage of 1
p-u. and V; is a magnitude of the generator’s stator voltage. K; and T; respectively
represent the gain and time constant corresponding to each subcomponent.

To simplify the model of the DC1A exciter even more, we can neglect the voltage
stabilizer component such that the exciter model is left with only two states, Vz and
E4, where the state equations of these two variables are given below. We call this

exciter model the Type 2 exciter.

1 K4
-~y —(V“, —v) .
pVr T, R+ 7, \Vrer =V (2.34)
Ky 1
Eyy = —=LE+—V, .
P Lifd Ty fd+TE R (2.35)

(2.36)

In the ideal case, the 3.125 MW synchronous generator, driven by the Allison 501
gas turbine and controlled by the type DC1A exciter, supplies the electric energy to
an infinite bus as shown in Figure 2-5. In this example, we assume that the generator
initially operates close to its steady-state conditions.

From Figure 2-6 to 2-8, we can see that state variables of the synchronous machine,
exciter, and gas turbine are closely coupled and they approach steady-state values
within the first 10 seconds. Notice from the responses that the time constant associ-

ated with the exciter is the slowest one. In this case, the bus voltage is maintained
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Figure 2-5: A synchronous machine supplies the electrical power to an infinite bus.

close to 1 p.u. with a feedback correction from the exciter. In later sections, this
power generation and the propulsion units will be connected together to form the AC

power distribution and propulsion systems, which is more realistic than connecting

them to the ideal infinite bus.

-0.15 0.2
- 0.1
=1 —_
< =
& 02 & 0
o X o &
-0.1
-0.25 02
0 2 4 6 8 10 0 2 4 6 8 10
05
_. o8 04
3 )
& & 03
w2 o8
0.78 0.2
0.1
0 2 4 6 8 10 o 2 4 6 8 10
0.78 1 —

‘g
¥qlpul
o
~
<N
pul
&
(4] [=]

074 -1 —
o] 2 4 6 8 10 0 2 4 6 8 10
time [sec] time [sec]

Figure 2-6: The flux linkages per second, 954, of synchronous machine (right column)

and tie line’s current, ¢4, (left column) when the machine initially operates close to
its steady-state conditions.
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Figure 2-7: The electromagnetic torque (T, ), normalized speed (w,/wy), and power
angle (§) of the synchronous machine (left column) and the generated torque (T,)
and other two variables of the gas turbine (right column).
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Figure 2-8: All three variables of the exciter and the magnitude of bus voltage (V).
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2.1.4 Pulsed-power load

Recently, increasing demand on electric power in the Navy electric ships requires a
large supply of electricity for the high-power radar and electric weapon systems, for
example, the Free Electron Laser and the Electromagnetic Railgun system. Reduc-
tion of cost per round, of on-board storage, and of time-to-impact are some major
advantages of Railguns. However, the Pulse Forming Network (PFN), which draws
a pulsed power load from the ship integrated power distribution, is needed for op-
erating the Railgun system. At the present, two existing pulsed power supplies are
the capacitor-base and rotating machine systems [13],[37]. According to [56], the 37
kW propulsion and PFN systems consume around 63% and 22% of the generated
power at their peak load from the 59 kW synchronous generator with Vg, = 457V

therefore, power management is required in the actual integrated power system.

The pulsed power load can be modeled as a large pulsed current, supplied from
the electrical bus to the capacitor charging circuit [30],[56],[16]. This pulsed current
represents a periodically charging and discharging cycle of the capacitor-based PFN.
Figure 2-9 [56] shows the first two cycles of charging and discharging current. In
the first charging cycle, the PFN must store 200 kJ peak power and each discharging
cycle consumes about 128 kJ from the capacitor network. Due to our time constraint,
we will investigate a stochastic analysis of the pulsed power load in the AES system

in the future.

—

1 1 1 1

5 5 g 8 seod

Figure 2-9: A current waveform during the first and second charging and discharging
cycle of the Pulse Forming Network, which is drawn from the AC power distribution
bus.
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2.2 Electric Machine Drive with Power Converter

Many control strategies have been examined and implemented for the electric machine
due to the recent advancement of the power electronic technology. Typically, the
converter, consisting of a rectifier, inverter, and DC-link filter, converts the control
command into voltage supplied to the machine. In this study, a dynamic average-
value model of the 6-pulse, full-wave rectifier with the Y-connected voltage source
is examined and constructed from the equivalent circuit in Figure 2-10, similar to
those found in [29]. This rectifier is directly connected to the DC-link filter, which
supplies a DC voltage to the three-phase inverter using the hysteresis modulation
technique. To derive the equation for the rectifier average-value model, we need to
assume the following - 1) the AC source voltage has a constant rms magnitude, 2)
the DC current (/) is constant during each commuting cycle, and 3) each leg of the

three-phase diode bridge commutes one at a time.

Rectifier DC-link filter

Figure 2-10: An equivalent circuit of the three-phase rectifier.

The Vgpey and L, denote the Y-connected AC voltage source, operating with the
based frequency (w;), and the inductance associated with the source. First, we trans-
form the voltage in the abc frame to the ¢d0 synchronous reference frame and then

to a qd0 arbitrary frame, called g frame, where the rms magnitude of d- and 0-axis is
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zero using K¢ and K transformations respectively.

cos. cos(f. — %’r) cos(fe + 2?”)

2
K® = 3 sinbe sin(6. — &) sin(6. + %) |, (2.37)

1 1 1
2 2 2

COSpg  Singy

—8ing, cospy

AKE = (2.38)

where
¢y = tan™" (v /) (2.39)

and Vg is transformed to [v,0,0]. Furthermore, the average DC current over one
switching or 7/3 cycle of w, denoted by 4., can be computed from the DC RL circuit
equation, given below [29], by assuming that the variation in one switching cycle is
small compared to next cycles.

3—?vgcosa —(rge + %Lcwb)zdc =~ Vde

Plge = de T QLC (240)

where v, is the voltage across the Cy, capacitor and « is the firing angle of each diode.
We assign o = 0 such that this full-wave rectifier is ideally operated in an uncontrolled
mode. The commutation angle (u), given in the equation below [29], represents an

angle between the turn-off and turn-on times of [S1,S55] or [S3,55] diodes.

Lcwbz.'dc]

/2

u = —a + arccos [cosa - (2.41)

Next, the average qd0 current in each leg of the full-bridge rectifier can be calculated
by integrating over [a,3 + o, (£ + &, % + a], or [& + a,7 + o] interval of ws. The
average current during the conducting interval is composed of the source current and

the average DC current. During the short commutating interval, the average current

73



in each rectifier phase leg only equals the average DC current, ¢g.. Thus, in each

interval, iJ, is a sum of the conducting current (i

v cond) @nd commutating current
(ig

) [29], expressed below:

q,com
W= Tcona T TG com (2.42)
Eg = Eg,cond + gcgi,com (243)
where
- 24/ 3= 7 5
lgcond = —\/—_’idc [Sm (Oz + -g) — sin (a +u+ g)] (2.44)
com m
_ 24/3- 7 5
Udcond = _ﬂ,“\/—idc[ — Cos (a + %) + cos (a +u+ —61)} (2.45)
. 6v/3iq.v? 5 5
B = gfwiq [sin(u -0~ 7T) — sin (o~ 2] (2.46)
+a) |+ i 2 20 + 2
xcosalcos(u + o) — cosa TrLon [cos(2u) — cos(2a + 2u)]
- 6v/ 314.07 5 5
GG com = ?5% [ — €08 (u +o— %) + cos (a - —g” (2.47)
3, g 3 g
X cosafsin(u + a) — sinal + 47T£j% [sin(2u) — sin(2a + 2u)] — 2%%]::),,

Lastly, vg. and 7 can be found from the state equations of the C, capacitor and

the DC-link filter, given below.

PUi = & (tae — irc) (2.48)
de
. 1 .
pPirc = L—f(vdc — Vout — TsLfire) (2.49)

where v,,; 1s the voltage supplied to the inverter.

To summarize the derivation of the rectifier average model, the block diagram in
Figure 2-11 represents the interconnection of Equation 2.37 until 2.49. The input and
output of this block diagram are consequently (Vapeg, @, ir¢) and (iseeg, Vdc)-

To adjust the voltage magnitude and frequency to control the induction machine,
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Figure 2-11: An block diagram of the three-phase, full-wave rectifier.

the hysteresis modulation type of the three-phase inverter provides a current regula-
tor when it is combined with a motor-control technique. This modulation approach is
effective in regulating the current within the hysteresis band (h) according to the dif-
ference between the machine current and current command from the motor controller.
The hysteresis function, shown in Figure 2-12, in each phase can be approximated by

the following equation [27]:

I'—1Is L.y 1
Sa = 35075 arctan [arctan [2.1003(T) + 1.16(——h—)H +5  (250)
1
*
Ia _Ia_—’ 0 > Sa
-h'h

Figure 2-12: An hysteresis function for the a-phase hysteresis current-regulation tech-
nique.

where S, is the switching command for the a-phase leg of the inverter, I} and I, are
the a-phase current command from the controller and the a-phase stator current of

the induction machine, respectively. Using the ideal three-phase, full-bridge inverter,
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the supplied voltage to the induction machine can be obtained as the following:

[Uaa Up, vc] = [Sa; Sb7 Sc]'vdc (251)

2.2.1 Control of induction machine

Many control strategies for the induction machine have been introduced in the litera-
ture, but only four techniques are briefly mentioned here. The volts-per-hertz [29],[6],
constant-slip current [29], field-oriented [29], and passive-based [32],[43] control of the
induction machine have been extensively studied and implemented. The volts-per-
hertz control algorithm adjusts the magnitude and frequency of the applied voltage
such that the speed of the induction machine can be controlled according to the
machine torque-speed curve without any speed feedback. The constant-slip current
control, which is our main focus, can directly control the machine torque and it is
robust against the parameter variation; nevertheless, an additional feedback loop is
required for a variable speed control. Similarly, the field-oriented control directly
manipulates the machine torque, but it is sensitive to the parameter fluctuation. For
the passivity-based control of the induction machine, an accurate machine model as
well as parameters are required to rewrite the system equations into the electrical and
mechanical components; thus, this control strategy is not robust against the variation

in load or parameters.

Combined with the hysteresis modulation, the constant-slip current control method
can maximize the machine torque for a given input current by exploiting the steady-
state electromagnetic torque relation [29] as a function of the slip frequency (w,),
expressed below:

_ 2(2)w, L3 I?r,
T2+ (WL, )

(2.52)

where w, denotes a fixed slip frequency (ws = we — wy). I, and (r,, L., and Ly,)
are the magnitude of the stator current and parameters of the induction machine,

respectively. To solve for the stator-current magnitude for a given torque command,
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the following relation in Equation 2.53, expressed in terms of the estimated machine

r 14 .
parameters (r, ., and L, ), is used.

r.est

2T |(7h ot)? + (WoLiny os1)?
ISZ\/ I el(rr,est) +(w TT:ESt) (2.53)

3P|wS|Lﬁd,estr;,est

To maximize the torque per stator current, w, can be calculated by taking the deriva-
tive of % in Equation 2.52 with respect to w, and setting it equal to zero. Thus, we

obtain w}, given below, resulting in the maximum torque per stator current.

?

T
wy = 77 B (2.54)

r7,est

To avoid operating in a machine saturated regime, the torque command must be lim-
ited within a certain threshold that can be found in [29] for more detailed calculation
of T, threshotd- Therefore, we can summarize this control strategy in the block diagram
form, shown in Figure 2-13. The magnitude of the stator current (1) is arbitrarily
assigned to the q-axis current (i), while i3 and if; are set to zero to simplify the
calculation. The /2 takes into account converting the magnitude of I, into the rms

value.

T. *
° max |4l Eq. 254 V2 [ I¥qs
T ————
e,threshold ]
w*s . 0 > | ds | Os

Figure 2-13: A block diagram of the constant-slip current control of the induction
machine.
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2.3 Difference in Interconnection of Subsystems

Two types of interconnections that can connect electric machines together without
forming the differential-algebraic equations are 1) static electrical bus [38], and 2)
dynamic electrical bus [27]. Each approach is associated with benefits and limitations.
To couple electric machines on the same electrical bus in the first approach, the
causality of the voltage equations must be resolved into the root and non-root machine
models. The root machine imposes the voltage on the static bus, while the non-
root machine provides the current to the bus, which is the same as those equations
described in Section 2.1.2 and 2.1.3. Using the static bus, some of the root machine’s
state equations are combined with that of the tie line; as a result, the total numbers
of state equations are reduced. However, the machine drive technique can be applied
only to the non-root machine. In the second approach, the dynamic equations of the
three-phase RC circuit must be included along with the machine equations; however,
no transformation of the machine equations is required and the controller can be
directly coupled with the machine model.

Let us consider the first method using the static bus. The derivation of both root
and non-root models of synchronous and induction machines is given in the following

section. The state and output equations of the root induction machine are:

p dj;d()r = wbr:‘( ;r)nl("z)fnqd - ’lpngr) + (w‘l' - We)T1¢;30r (255)

. w 1 ) 1
v;dO.s = _rslngs + (:Eleng.s - uTbXsp l;dO.s + w_bATp (lﬁior (256)
The equations for the non-root induction machine are:

p ¢;d0r = wbr;(xir)_l(wfnqd - w;d()r) + (wT - we)Tld};ecl()r (257)

R . W, 1 F;
p l;dOS = biSv;dOs —Wp [Bs(rsl;dOS + Ld_:Tl ;dOS) + QTb'BTp ¢q§0r] (258)

where 954, = —Xiiy, + Ve and B, = (X, + X;) ! and B, = (Xy,)'A,, using
our previous definitions in Section 2.1.2.

Similarly, the synchronous machine can be modified to be either root or non-
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root machines such that they can be coupled together using the static bus. The
mathematical model of the root machine, which controls the voltage the machine

supplies to the bus, can be expressed in the following form:

P d)c,]’z'lr = wbr; (er)—l(Tzwrnqd - w;tir) + WbV;dr (259)
e ] r Wy r Wr — We o 1 r
quOs = ~Tslygos + ( Ke)[;;;lequS + wa XsTllqdos - w—bArp ’l,qurl2.60)
1
——("TK® Xs K™ Vp i .
Wb( ) ( )p lqdﬂs

where X, = X;, + X,.

The equations for the non-root synchronous machine can be written as follows:

PVgr = Wty (Xey) (ToWmga ~ Yar) + WV (2.61)
e TIZe r ] Wr r
PYogn, = ( K )[ - biS(quOs + rledO.s - ;;Tl'l/)qdo.s) (262)

+B.p ¢;:1r + (wr — we)i;d()s]

When M+1 machines and N loads connect together to the same static bus, Kir-
choff’s current law can be expressed to sum all currents from the root machine, the
M non-root machines, and the N RL tie lines, written below.

Toot:e —-EM nonroot:e
i=1

_ N e
Yedos = Lydos,i — Ej:llqut,j (2.63)

Next, we differentiate both sides of the above equation. Then, we substitute the
derivative currents of the non-root machines and RL tie lines from their state equa-
tions such that the derivative current of the root machine can be found and substi-
tuted into its state equations. As a result, the voltage or output equations of the root
machine are combined with the current summation of the static bus. Therefore, all

casualities of all machines and tie lines are resolved.

In the second type of system interconnection, when M machines and N loads
connect on the same dynamic bus, again all currents supplied to or drawn from the

AC bus must be summed using Kirchoff’s current law to obtain the bus current ().
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Then, igq40: can be directly substituted in the RC tie line equation, Equation 2.10, and
we integrate the RC line voltage equation such that the bus voltage can be found and
substituted back into the machine and load equations. However, when the propulsion
drive is connected onto the AC bus, the fast dynamics from the high-harmonic current
can reflect back onto the AC bus, which leads to instability of the entire interconnected
system. Therefore, the harmonic filter, represented by the low-pass filter RLC circuit,
is required to reduce the high-harmonic waveform. A simplified one-line diagram of
this three-phase AC bus connecting with 2 machines - synchronous generator and

induction motor -, harmonic filter, and power supply is illustrated in Figure 2-14.

Generator

T e
Harmonic i,
,«Flller AC B'LIS S——p

Power Supply

Yorop

Propulsion

Figure 2-14: A one-line diagram of the three-phase AC Bus [27] in the second type
of system interconnection.

2.4 Source of Uncertainties

Due to the complexity of the AES, several components and loads can contribute to
the uncertainties in the entire system. The list below includes some major sources of
uncertainties in the AES integrated power system.

1) Time-varying parameters of the electric machines [43], [6], [29] - 1.1) tempera-
ture dependent resistances and capacitances, 1.2) bearing friction, 1.3) nonlinearities

and saturations of magnetic material, inducing heat from the hysteresis loss and skin

effect.
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2) Fault or failure of components in electric machines and thermal management
systems [34] (e.g., machine’s bearing, stator, rotor, and insulation failure or piping
damage).

3) Unknown load disturbances - 3.1) fluctuation of the propeller loads due to the
unpredictable sea state, caused by wind and underwater current, 3.2) magnitude and
frequency of charging and discharging cycles of the PFN [13], [16], consisting of many
energy-storage capacitors.

4) Unreliable sensor measurement (e.g., bias or drift) or even a sensor failure [34],

which triggers an unnecessary maintenance or action of the intelligent control.

81



82



Chapter 3

Numerical Stochastic Techniques

As mentioned previously, the stochastic analysis of nonlinear systems, particularly a
network of electric machines, is too complicated to perform analytically. In the previ-
ous chapter, we have derived the deterministic model for a shipboard power system,
which consists of tens states. To predict a probabilistic outcome of system response
subject to random excitation, numerical stochastic algorithms are needed. In this
chapter, five different stochastic techniques - 1) Monte Carlo (MC), 2) generalized
Polynomial Chaos (gPC) or Galerkin approach, 3) Probabilistic Collocation Method
(PCM), 4) hybrid gPC with PCM, and 5) Multi-Element (ME) technique of the gPC,
PCM and hybrid are described from both theoretical and implementation points of
view. Even though all of these algorithms can provide the statistical moments as
well as the probability density function, the complexity of calculating statistics is
different among these methods. Note that the first and second moments are mean
and variance, respectively. In a realistic situation, uncertainty of system parameters
and load tends to vary within a specified range, and therefore the uniform and ex-
ponential distributions are more suitable to represent these uncertainties than the
Gaussian distribution. Only the uniform distribution, where the sample space (Q)
is within [-1,1], will be the main focus in this study, because both parametric and
external disturbances are often described within a known bound, which can be scaled
accordingly using the uniform distribution.

In this chapter, we describe an underlying theorem of these stochastic algorithms.
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Then, we briefly discuss the implementation techniques, which provide an insight on
algorithms’ structure, as well as their advantages and disadvantages for a practical

purpose.

3.1 Representing Stochastic Input

In an uncertainty analysis, the first step is to realize what type of probability dis-
tribution best describes the uncertainty, associated with the random input. In this
work, the stochastic response of nonlinear systems subjected to both stationary and
non-stationary stochastic inputs, which exist in external input or system parameters,
will be studied. Moreover, an uncertainty in initial condition or boundary condition
is also considered as a random parameter in the system. When the stochastic input is
fully correlated in time, known as a random variable case, this type of random input
is fixed with time or has an infinite correlation length. The magnitude of random
input is unknown and prescribed within a specified bound. On the other hand, when
the stochastic input becomes a time-dependent variable, the random input becomes
a partially correlated random process. We describe both of these random inputs

mathematically as well as their numerical implementation.

3.1.1 Random Variable

A characteristic of most parametric and load excitations of any system is often un-
known precisely. Therefore, a preliminary study of stochastic analysis can be modeled
by a stationary random variable. A random variable is a linear mapping function from
a random number (&), associated with a specific probability distribution, to outcome
(x(£)), which lies within the range space of a random experiment. The random vari-
able can be expressed in terms of mean (z9) and standard deviation (o,) from a

nominal value, as shown below.

x(¢) = %o + 0xC (3.1)
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where x(£) represents a vector of all possible random variables in the system. Note
that in this chapter, the random input (§) denotes a random number with zero mean
and variance of one. Only a continuous random variable [33] will be considered in
this study. For example, the range of uniform random variables is specified between

a and b, so a corresponding probability density function is given by 1/(b — a).

3.1.2 Random Process with Karhunen-Loeve Expansion

For a non-stationary random process, random input is fluctuating with time and can
be either partially correlated or uncorrelated in time, which is represented by a slow-
varying variable or random white noise, respectively. The Karhunen-Loeve (K-L)
Expansion is one of the approaches to model the random process with a spectral
expansion of a specified covariance function. The K-L expansion decomposes the
random processes (X (t)) into a time-dependent orthogonal basis function (¢x(t)) with
orthogonal random variable (X(w)) as coefficients. Similar to the Fourier Series, the
K-L expansion can provide various good properties, especially for a random input
that is non-periodic. For example, if X(t) is the Gaussian process, the coefficients,
& are independent Gaussian random variables with magnitude corresponding to the

eigenvalue, A\;x. The K-L expansion can be expressed as the following:
x(t,w) = X(t) + ox Z V etk (8)Ek(w), (3.2)
k=1

where %X(t) and oy consequently stand for mean and standard deviation of the ran-
dom process. And Ax and ¢(t) are the real-value eigenvalues and complex-value
eigenfunctions of the covariance function, R,.(t1,t2). The & (w) are orthogonal in-
dependent random variables. As shown later on, this modal representation of the
K-L expansion, with £¢(w), is very well suited for stochastic input of the Galerkin ap-
proach. Both eigenvalues and eigenfunctions are the solution of the following integral

equation:

/sz(t1,t2)¢k(t2)dt2 = Aer(t1) (3.3)
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Figure 3-1: Eigenfunctions f,(t) with 0 <t <1 and n = 1,2,3,4 and ¢/ = 1 from
the Exponential Covariance kernel.

Again an assumption on the covariance structure of random input must be specified
in advance. In this work, a time-dependent exponential function will be used as the

covariance function over a time interval [0, 7], expressed in the following form:

Ry(t1, t3) = o2 tatil/d (3.4)

where ¢l denotes a correlation length between ¢, and t,. From a numerical imple-
mentation aspect, the summation in equation 3.1.2 must be truncated up to an N
term such that the accuracy of the covariance characteristic is maintained. We will
show that it is possible to reconstruct this covariance kernel with this N-term de-
composition and estimate an associated error. The mean-square error of the process,
obtaining from the K-L expansion, is minimal with a finite-term expansion. We
will show how well the reconstruction of the approximated covariance kernel with N-
terms truncation becomes, as we increase the number of N. Figure 3-1 shows the first

four eigenfunctions, obtained from the exponential covariance function with ¢/ = 1.

Figures 3-2 to 3-6 consequently show the exact exponential covariance kernel, the

approximated kernel with N = 4 and N = 10, and their corresponding associated
errors. Furthermore, the convergence of eigenvalue can indicate how many term are

needed in the expansion to closely approximate the exact covariance kernel, as shown

in Figure 3-7
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Figure 3-2: Exact Covariance Surface versus ¢; and ¢, with ¢/ = 1.
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Figure 3-4: 4-term relative error surface of Covariance Approximation versus t; and
ty with ¢l = 1(MaxzError = 0.1126).
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Figure 3-6: 10-term relative error surface of Covariance Approximation versus ¢; and
ty with ¢l = 1(MaxzError = 0.0425).
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Figure 3-7: For cl=1, the eigenvalue of the exponential covariance kernel as a function
of the approximation terms (4-term : left) and (10-term : right) indicates how many
terms are required in the approximation to obtain a convergence.
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3.2 Monte Carlo method

3.2.1 Algorithmic Framework

According to the probability theory, an event is related to a set of outcomes in the
sample space and a probability of the event is associated with a ratio of a subspace or
volume and the entire sample space in d dimension (£29). Instead of calculating the
event probability as in the probability theory, the Monte Carlo (MC) method uses
a concept of sampling randomly and independently from a specific volume to obtain
the probability of the outcome. Let us consider X; to be the independent random
variable of i event in the sampling of w? and let S denote a set of the outcomes from
NN events or realizations, Syy = X1, Xa,- -+, Xyn. Thus, an estimated mean value
(fx) can be computed as the following: g =3 (X3 + X2+ -+ Xyn). The strong law
of large numbers guarantees that the estimated mean, /i, converges to an exact mean,
4, with the probability of 1 as NN approaches infinity. To calculate the variation of ji
from p or to estimate the error associated with each specific outcome, a variance can
be computed according to the central limit theorem. Several approaches have been
proposed to reduce the variation in estimating statistics, which include the stratified

sampling, the important sampling, and the latin hypercube sampling.

For the continuous random variable, the expectation, u, and variance, aﬁ, of

system output can be computed from a volume integral as the following.

b= /ﬂ f(z) dz, (3.5)
7= [ (@) - wds (36)
The sample space Q of the uniform distribution is in [-1,1]. While, in the Monte

Carlo method, the discrete random variable is employed in the uniform sampling, so

the estimated expectation, ji and variance, 012, can be computed from an averaging
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summation as the following.

1 NN
A= 2 f(@), (37)

R 1 NN .
3= (5 2o (f@) = 0)°). (38)

Note that the above volume integral and averaging summation can be extended to
the sample space in higher dimension, Q.

How accurate the statistical results are depends on several factors, i.e., the num-
ber of samplings or realizations and a randomization of a random generator. When
the pseudo-random number generator [46] is employed in the MC to generate the
uniformly independent identical random number, the accuracy of statistics improves
proportional to 1/ VNN. Thus, a large number of realizations is required in the MC
to yield the accurate statistics as well as to capture the probability density function
accurately. To overcome this limitation, the quasi-Monte Carlo (QMC) [46] can fur-
ther enhance the statistical accuracy such that its accuracy increases proportional
to 1/NN. The QMC method requires the quasi-random number generator, which
samples the sample space more evenly than those of the pseudo-random number gen-
erator. We show the characteristic of both pseudo-random and quasi-random numbers
for a two random dimensions in Figure 3-8. The major advantage of both MC and

QMC is their insensitivity of the statistical accuracy to the random dimension.

3.3 Galerkin Approach of Polynomial Chaos

According to the Cameron-Martin theorem [10], the so-called Wiener-Askey poly-
nomial chaos expansion can approximate and describe all stochastic processes with
finite second-order moment; this is satisfied for most physical systems. The Askey
scheme of polynomials contains various classes of orthogonal polynomials and their
associated weighting functions are identical to the probability density function of dif-

ferent distributions. As shown by [62], these orthogonal polynomials yield an optimal
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Figure 3-8: 1000 realizations of the pseudo-random (left) and quasi-random (right)
variable for two random dimensions.

(exponential) convergence of stochastic solutions for their corresponding probability

distribution, as shown in Table 3.1 below.

Table 3.1: Orthogonal polynomials and their associated probability distribution.

Orthogonal polynomial | Probability Distribution
Hermite Gaussian
Legendre Uniform
Laguerre Gamma

Jacobi Beta
Charlier Poisson
Meixner Negative Binomial

Krawtchouk Binomial
Hahn Hypergeometric

3.3.1 Algorithmic framework for generalized Polynomial Chaos
method

The main concept of the generalized Polynomial Chaos (gPC) is that all state vari-
ables of a random process are expanded in terms of the weighted sum of orthogonal

polynomial bases of standard random variables. A general second-order random pro-
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cess can be concisely expressed in the following form:

X(@) = Y edeilew)), (39

where ¢; denotes the polynomial basis from the Wiener-Askey polynomial chaos,
expressed as a function of a d-dimension random variable £ = (&, ...,&;). This form
of expansion optimally converges to L, random process in L, sense. w represents a
random event confined within the sample space of the particular distribution. c;(%)
is the 7’th modal coefficient, from which statistics can be directly calculated. In
numerical implementation, the expansion onto the orthogonal polynomial basis is
truncated at P terms. We have P = (d + p)!/d!p!, where d and p are the dimension
of random variable £ and the highest order of the polynomial chaos, respectively.
The accuracy of stochastic solution can be improved by increasing the polynomial
order, known as the p-type refinement. The convergence rate of p-refinement is an

exponential for a smooth and continuous solutions.

An important property of the Wiener-Askey polynomial chaos is orthogonality:

(61, 035) = (¢7) 335, (3.10)

where §;; is the Kronecker delta and (-, -) represents the inner product on the support

of random variable €. In the continuous case, the inner product is defined as:

(F(E),9(6)) = / 1(6)- 9(€) - W(E)de, (3.11)

where W (£) is the weighting function corresponding to the Wiener-Askey polynomial
chaos. In our case, we assume all the uncertainties to have uniform distribution, and
thus the Legendre polynomial chaos, which is the same as Jacobi polynomial with
a = 0 and B = 0, is the most efficient basis. The formulas and properties for the

Legendre polynomials are shown in Appendix A.
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3.3.2 Numerical Implementation

The major advantage of applying the gPC is that an SDE can be transformed into
a system of deterministic equations. To solve a particular SDE, all state variables
(z(t,w)) and random inputs (u(t,w)) must be expanded by the polynomial chaos and

by corresponding modal coefficients with the the following result:

P P
a(t,w) = ) (W) snd u(t,w) =) wt)Ew) (312

i=0 =0
A Galerkin projection is applied to this SDE for each (¢;(w)) such that the SDE can
be simplified to one of many P+1 coupled ordinary differential equations (ODE’s)
for each mode, using the orthogonality property of polynomial chaos. Then, these
deterministic modal ODE’s can be solved with any numerical method dealing with
initial-value problems, e.g., the Ruge-Kutta method. Consider now the ODE of the
induction machine mechanical subsystem. After expanding all the state variables
onto the orthogonal polynomial basis that includes the uncertainty in torque load,

the stochastic differential equation becomes

" dw W P P
T »Lh . e
WhT P P
L . .
o (S vas ) -
P
W
2H > Tuids (3.14)

1=0

Projecting the above equation onto each of the P+ 1 modes of the polynomial chaos,
using the Galerkin method, results in P + 1 deterministic ODE’s for each mode in
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the expansion:

dwr wb:rb AL
i m DD Uidagin — (3.15)
T i=0 j=0
WhTh Np Np
d):ii‘z es i€ijk
2Hz ; ;Zo bgsj€ij
“ 2
AR (3.16)

where e, denotes the triple product (¢;, ¢;, ¢x). This e, should be calculated in
advance for the system with the random dimension less than three; otherwise on-line
computing of the tensor product of one-dimensional polynomial basis results in faster
computational time for the systems with high-dimension random inputs. The rest of
the SDE’s of the system are similarly transformed into deterministic ODE’s. Once
the time integration of the modes is complete, first and second moments of each state
can be directly obtained from the zero modes and from a summation of the squared

modal amplitudes, each multiplied by (¢%), as shown below.

m(f(t€)) = oo(t), (3.17)
HAYEDPEAVICHE (3.18)

To construct a probability density function (PDF) of state or output from modal
solutions, n realizations associated with the random distribution must be generated

for P+1 polynomial bases. The range of realizations of state or output can be used

to form its PDF with a histogram function, h; for j=1,--- ,n
P
PDF(a(t, §)) = hj( D z:(t)$i(€(w))). (3.19)
=0

3.3.3 Algorithmic framework for Multi-Element gPC

According to Wan and Karniadakis [60], if the domain of random inputs (w) is sub-

divided into multiple elements, the accuracy of stochastic solutions can be improved,
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especially for cases of discontinuity in stochastic solutions or for problems of long-time
integration. As a result of the h-refinement, a local integration error at each time step
can be reduced and the domain of solutions’ discontinuity can be approximated more
accurately within a smaller decomposed domain. We will briefly explain the basic

concept of the Multi-Element gPC (MEgPC) [60] for a d-dimension random input.

First, let {(w) = [§1(w), &(w), . . ., &i(w)], which denotes a vector random input in
d dimension. Each ¢; is an identical independent distributed (IID) uniform random
variable, U[—1,1]. Second, we decompose the d-dimension domain of the random
input into N non-intersecting intervals or elements (E}). The domain of each element
is contained within a hypercube, [a¥,b%) x [af,b5) x .- x [ak,b%), where @ and b
denote a lower and upper bound of that element, respectively. We must scale the
random variable of each element (¢* = [¢F(w),F(w),...,(%(w)]) accordingly with
its conditional probability density function, pex = (b{.c_—laﬁ’ where ¢ = 1,--- ,d and
k =1,---,N. The mapping of random variables from global to local or element

domain is governed by the following relationship.

bf — ok bt + ok
(=t B (3:20)

where the global random variable, £, is ranged between [a¥, b¥). The local random
variable, ¢¥, is a uniform random variable, U[-1, 1]; therefore we can apply the gPC
with the Legendre polynomial chaos basis to solve SDE, —(t—g = f(z(t,£)), in each
local element for N times. Using Bayes’ Rule and the total probability theorem,
the global statistical moments (u,(f(£)) can be calculated from the local statistics
(um(f(€))) as shown below.

i £(€)) = [[ GOEE }:pck / "G e
~1,1)¢ “—

where p; and p1, denote mean and variance solutions. One of the numerical implemen-
tations is assigning the initial condition after splitting the random dimension into mul-

tiple elements, which has been done by solving the inverse of a linear system [60]. Let
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- - ~ P .
us denote the expansion of state variables at the upper level, 2¥(¢F) = Y"i_, 28y (¢%)
fork=1,--- N, for N elements. If we split each element into two sub-elements at the
. . ~ P .
refined level, the state-variable expansion can be expressed as Z¥(¢*) = Y, # ¢ (¢CF)
for k=1,--- ,2N. To assign the initial condition for ¥, we must solve the following

linear system:

do0 10 - Pro Ty S 2:6:(C0)
¢f)1 ¢'11 : ¢1.°1 55‘1 _ S ?z’@((l) (3.22)
dop $1p ‘- OpP Tp S o E:ii(CP)

where (bij = ¢,(C")

3.4 Collocation Approach of Polynomial Chaos

The collocation method is an alternative approach to solve stochastic random pro-
cesses with the Polynomial Chaos. Instead of projecting each state variable onto the
polynomial chaos basis, the collocation approach evaluates the function at roots of
the basis polynomials. Therefore, if the governing equations become more complex,
the simplicity of collocation framework, which is only repetition runs of deterministic
solvers, results in a faster algorithm than the gPC, particularly in high dimension
problems. In this section, two collocation techniques, full- and sparse-grid colloca-
tion methods, are explained in detail along with a framework for the multi-element

technique and an adaptive criteria.

3.4.1 Probabilistic Collocation Method (PCM)

Two underlined concepts for the PCM are the orthogonal polynomial and their asso-
ciated quadrature rule. As mentioned earlier, each class of the orthogonal polynomial
chaos has a different associated weighting function, which is identical to a different

probability distribution. Since only uniform random distribution, U[—1, 1}, is consid-
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ered here, the full-grid collocation method specifies its collocation points according
to roots of the Legendre polynomials (L(¢)) or the Jacobi polynomials (J*#(¢)) with
a = 3 = 0. Similar to the gPC approach, L(£) yields the fastest or exponential
convergent rate for the uniform process. For the sparse-grid collocation method, the
collocation points are determined from zeros of the Chebyshev polynomials of the
first kind (T(€)) or J*A(¢) with @ = B = —1/2. The domain of all these polyno-
mials are on [-1,1]. The main difference between L(§) and T'(€) are 1) roots of L(§)
do not include the end support and vice versa for T(£), and 2) roots of L(£) fully
cover the entire domain, while roots of T'(¢) form a sparse structure. All properties
of L(£), J*P(¢) and T'(€) polynomials are given in Appendix A. The highest order of

polynomials or roots of polynomials determines a number of collocation points (Nc).

Full-grid PCM

For the uniform random process, the full-grid PCM relies on the non-equidistant
abscissas of the Legendre polynomials for specifying the collocation points and the
Gauss-Legendre quadrature rule for computing statistics. Similar to the p-refinement,
the more the number of collocation points, Nc, increases, the better the accuracy
of stochastic solutions is. We call this improvement an Nc-refinement. Figure 3-9
displays an example of the non-nested collocation points’ location for Nc¢ = 10 and
Nc¢ =11 in a two random dimension.

The Gauss quadrature formula, which is a well-known numerical integration tech-
nique, yields an exact integration value for any function in a polynomial form (f(£))
of order less than or equal to 2Nc — 1. An approximation of the integration by the

Gauss quadrature rule is shown in the equation below.

| fow e =3 e (3.23)

where &;, a collocation point, is determined from the abscissas of the orthogonal
polynomials of Nc order over a domain, R, which can be found numerically using

Newton’s method [46]. f; denotes a value of the function evaluated at this collocation
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Figure 3-9: The non-equidistant and non-nested abscissas or collocation points for
Nc=10 (x) and Nc=11 (o) of the full-grid PCM in two random dimensions.

point and w; is the weight of the Gauss-Legendre formula. The analytical formula for
w; in one dimension is given below:
2(1 - &)

b (Nc+1)?[Lne+1 (&) (3.24)

For a higher dimension random process, Nc¢ equals the number of collocation points
in one dimension raised to d power. From now on, Nc¢ represents the total num-
ber of collocation points in d dimensions. The probabilistic collocation method is
simply performed by solving the deterministic solution Nc¢ times with random param-
eters specified at these collocation or nodal points. Using either the Gauss-Legendre
or Gauss-Lobatto-Jacobi (with @ = § = 0) quadrature, the statistical moments of
stochastic solution, u(t, £), in d dimension can be computed accurately and efficiently

after solving for Nc deterministic state solutions at these abscissas.

1 Ne
B= o5 Zu(t, &)wy, (3.25)
=1
1 Ne
p2 = (53 Zu%t,&)wf) St (3.26)
i=1

p1 and po are the mean and variance solutions, respectively. The factor -;— is required

owing to normalization of the one-dimensional Gauss-Legendre weight (3TN w; = 2).

=
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To construct the PDF from the nodal points of the PCM, we need to project these
nodal points onto the Lagrange interpolant basis (H;(£)). The Lagrange interpolant
polynomials are generated based on Ne collocation points at any arbitrary value, &,

where —1 < £ < 1.

> J
Hj(€) = ((1~5§-)[J,%tif“(es;-)]’—%ﬂxtif“(ej))(e—fj) (3.27)

1 otherwise

where J*?(¢) is the 7 order Jacobi polynomial. If o = 3 = 0, the Jacobi polyno-
mial becomes the Legendre polynomial. Then, the PDF can be constructed with
the following relation: PDF(z(t,§)) = hj(Z;Y:cl f(fj,t)Hj(§)>, where f(¢;,t) is the
evaluation of system equations at a specific nodal point and time and h; again denotes

a histogram function with y =1,.--  Nc.

Sparse-grid PCM

The zeros of T'(x) are sparsely distributed in the random domain and nested as the
number of collocations, known as level (I) [63], increases. With these two advantages,
the sparse-grid PCM can significantly reduce the computational cost and still main-
tain the accuracy of quadrature integration, especially in a high random dimension.
In one dimension, non-equidistant abscissas of T(z) that include the end points can
be written in an analytical form as a cosine function [63]:

(i — 1)
nj —1

&; = —cos for ¢=1,---,1, (3.28)

where n} denotes the number of collocation points in a single dimension. nj = 2141,
for I > 2. To approximate the integral of statistical moment, the sparse-grid PCM

employs the weight (w;) from the Clenshaw-Curtis formulas. The wy; is given by

(nf=1)/2 N
2 ’ 1 27"(2 - ].)] . 1
wli:ﬁ(1+2. ;:1 i - cos o ) for 2 <i<n; —13.29)
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Figure 3-10: The non-equidistant and nested abscissas or collocation points for
level=5 (x) and level=6 (o) of the sparse-grid PCM in two random dimensions.

and wn = ’wlnll - ;ll(ﬁ"ll"_z) (330)

A 37 notation denotes that the last term of the summation is divided by a factor
of two. Instead of using the Gauss quadrature, Smolyak’s quadrature, requiring
the nested collocation points, is used for calculating all statistics. We show the
characteristic of the nested collocation points of the sparse-grid PCM in two random
dimensions as shown in Figure 3-10.

Let us define a notation of the one-dimensional quadrature formula for the { level
as the following: U'f = Y7, f(&:)wyu. Then, the difference quadrature formula
(A} f) is defined as the difference of one-dimensional quadrature formula between the
current level and one lower level: Alf = (U} — UL_,)f. The d-dimension Smolyak

quadrature formula [18] can be constructed as a function of either A} f or U} f:

Ulf= ) (8h@ - ®Apf or (3.31)

|l <l+d+1

vif= Y e (T0) whe st (2)

1|l <I+d+1
The symbol, ®, represents the tensor product. From a numerical implementation
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aspect [18], expression 3.4.1 can be written explicitly in terms of nested grid points

and weights as:

Uif= Y > > wyf(&)- (3.33)

[i|<l+d+1 j1=1 Fa=1

&; denotes the d-dimension vector of (1, -+ ,21,j,)- And the nested weight can be
written as
W= ) ki Ak (3.34)
ll+k|<l+2d-1
where
wi; ifk=1
24k = 7 (335)

Wsk—1ym — Wik i k> 1L, & = Eppr—1ym = E@rr—2)n

Compared to the full-grid PCM, the computing cost grows with Nc raised to a d
power of random dimension and it can approximate precisely the integration of any
polynomial function of order < 2Nc¢ — 1. The sparse-grid PCM using the Clenshaw-
Curtis formulas can provide an accurate result for integrating polynomial functions
of order up to n] — 1. According to Table 3.2, 3.3, and 3.4, the computational cost
of the sparse-grid PCM is far less than those of the full-grid PCM for the same level
when the random dimension is greater than 5. In case of smooth and continuous

solutions, the level represents the accuracy for both the full- and sparse-grid PCM.

3.4.2 Algorithmic framework for Multi-Element PCM

Parallel to the MEgPC, a basic concept of Multi-Element PCM (MEPCM) is to divide
the random variable into multiple elements such that the degree of randomness in the
original space is reduced proportional to the number of elements. Let us consider

the orthogonal polynomial as a function of the random variable in a d-dimensional

hypercube, £ = [£1,&s, -+ ,&4], where & € U[-1,1)] with a constant PDF of 1/2. By
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Table 3.2: Comparison of the number of collocation points (N¢), corresponding to
the computing cost, between the full-grid PCM and the sparse-grid PCM for small
random dimensions d < 4 and levels.

Random dimension | Level | Ne(Full-grid PCM) | Ne(Sparse-grid PCM)

2 2 4 53
3 9 13
4 16 29
5 25 65
6 36 145
7 49 321
8 64 705
9 81 1,537
10 100

3 2 8 7
3 27 25
4 64 69
5 125 177
6 215 441
7 343 1,073
8 512 2,561
9 729 6,017
10 1,000 13,953

4 2 16 9
3 31 41
4 256 137
5) 625 401
6 1,296 1,105
7 2,401 2,929
8 4,096 7,537
9 6,561 18,945
10 10,000 46,721

102



Table 3.3: Comparison of the number of collocation points (Nc¢), corresponding to
the computing cost, between the full-grid PCM and the sparse-grid PCM for medium

random dimensions 5 < d < 9 and levels.

Random dimension | Level | Nc(Full-grid PCM) | Ne¢(Sparse-grid PCM)
) 2 32 11
3 243 61
4 1,024 241
5] 3,125 801
6 7,776 2,433
7 16,807 6,993
3 32,768 19,313
9 59,049 51,713
10 100,000 135,073
7 2 128 113
3 2,187 589
4 16,384 2,465
5 78,125 9,017
6 279,936 30,241
7 823,543 95,441
8 2,097,152 287,745
9 4,782,969 836,769
10 10,000,000 2,362,881
9 2 512 181
3 19,683 1,177
4 262,144 6,001
) 1,953,125 26,017
6 10,077,696 100,897
7 40,353,607 361,249
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Table 3.4: Comparison of the number of collocation points (N¢), corresponding to
the computing cost, between the full-grid PCM and the sparse-grid PCM for large
random dimensions d > 10 and levels.

Random dimension | Level | Ne(Full-grid PCM) | Ne(Sparse-grid PCM)
10 2 1,024 91
3 59,049 921
4 1,048,576 1,581
) 9,765,625 8,801
6 60,466,176 41,265
20 2 1,048,576 41
3 3,486,784,401 841
4 | 1,099.511,627,776 11,561
) 95,367,431,640,625 120,401

separating the random variable (¢) in the global level into N non-overlapping elements

(E*), the local element in a d-dimensional hypercube can expressed as the following:
EF = [a® b%) x [ak bE) x - x [af, b8) fori=1,--- N. (3.36)

where a; and b; are respectively lower and upper bounds in the ¢ random dimension
and E*N E7 = (. As a result, the local random variable (¢*) in each element can be

computed by the following mapping relationship.

bE — b bF + ok
k [ i ¢k i 1
A A 3.37
C‘L 2 €7, 2 ( )
And an associated conditional probability is given by pcx = —(b’.cia’?)’ fori=1,---.,d

and k = 1,---,N. The main difference between the MEgPC and MEPCM is the
method of mapping the initial condition from current-level meshes to those in a
refined level. At each time step, system solutions, f(¢;), are evaluated only at the
nodal points in the current-level meshes. If one of the elements in the current mesh is

split into two new elements at the next time step, initial conditions of new elements
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can be either assigned directly from the original element in the case of ¢F = ¢*
or derived numerically in the case of £ # ¢*. To numerically compute the initial
condition for system function at these new collocation points, we must solve the
system at these new nodal points from an initial time. As a result, the original PCM,
associated with the global random space, is decomposed into N sub-problems of the

PCM, corresponding to N local random spaces.

Then, local statistical solutions (u,,(f(¢))) in each element are computed by the
Gauss quadrature formula for the full-grid PCM and the Smolyak quadrature formula
for the sparse-grid PCM. To calculate global m-th moments (um,(f(£))), Bayes’ Rule
and the law of total probability can be applied as the following:

pnlf@) = [ mOWEE) =T ore [ W () 339

3.4.3 Adaptive Multi-Element technique

There are two approaches to determine the number of element, N, in the h-type refine-
ment: 1) uniform decomposition of the global random space into N equal elements,
and 2) adaptively splitting the global domain according to a local variance error.
For the uniform multi-element case, using a fixed number of elements can directly
reduce the local error at the initial time step, which leads to a smaller global error
for the long-time integration. The benefit of this approach is more pronounced when
a randomness is in the initial conditions or a discontinuity in stochastic solutions
occurs at the initial time step. However, an accumulative error from time integration
as well as errors from discontinuity that happens at a later time will dominate the
error reduction using the fixed number of elements. Thus, adaptively decomposing
the random space into multiple elements can identify a time step where the global
error becomes larger than a specified threshold or the discontinuity exists and further
reduces these errors. A local error of the k-element (7)) is defined as a normalized
difference of the local variance between using Nc+2 and using Nc collocation points,
TE Nera Ok Ne

which is defined as n = —=~52—==¢ An adaptive criterion for splitting into two
k,Nc+2
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equal elements is 7, > (;9:7)2, where 8, is a threshold of the specified accuracy and
pek is the conditional probability of that element. A power factor is set to be a square
such that the range of the threshold value (#,) can be adjusted in a wider accuracy
range. This adaptive multi-element technique for handling the discontinuous solu-
tions of the Kraichnan-Orszag system as well as for improving the error convergence

in a high random-dimension stochastic process will be shown in the next chapter.

3.5 Hybrid gPC + PCM approach

Because the Galerkin projection is used in the gPC for transforming the SDE to
deterministic coupled equations, the system nonlinearity is limited only to a polyno-
mial form, i.e., quadratic, cubic, quartic, etc. To be able to handle the nonlinearity
in a more general form including trigonometric and signum functions, we need to
perform additional mapping so that any function can be expanded onto the polyno-
mial chaos basis, associated with the specified distribution. Moreover, this approach
still maintains the advantages of the gPC-exponential convergence and separation of

randomness from variables.

3.5.1 Algorithmic framework

A general procedure for this technique can be applied to any SDE, @%’5—) = f(z),
as the following. First, we expand all state variables, z(t,&), onto the orthogonal
basis of the polynomial chaos, ¢(§). However, when the function, f(x), is not in a
polynomial form, consisting of state and random input, we cannot directly apply the
Galerkin projection to the SDE. Therefore, the modal coefficients of the function,
fi(z), must be calculated separately before substituting into the chaos expansion. In
the second step, we assume the function, f(x), can be expressed in the following form:
f(z,€) = ZQO fi(z)éi(€). Next, we project and compute the inner product for each

mode of the polynomial chaos as shown below:

£(2)(6?) = / £, )b, (W (€)de, (3.39)
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where W (£) is the weighting function associated with the polynomial chaos. In this
study, only random variables with the uniform distribution are considered, so ¢;(¢) is
the Legendre polynomial and D C U[-1,1]. Instead of computing the inner product
analytically, we use the Gauss-Legendre quadrature to evaluate the inner-product

integral as:

5@ = ¢2 ny z,£5)¢5(&)w; (3.40)

The larger the Nc is, the more accurate an approximation of the Gauss quadrature
becomes. An appropriate value of Nc must be chosen to trade off between accuracy
and computational efficiency. Generally, the value of Nc between 10 and 20 provides
a good accuracy for a small computational cost. Lastly, the SDE can be solved with
the normal gPC using the modal coefficients, f;. Both p- and h-type refinements can

enhance the accuracy of stochastic solutions.
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Chapter 4

Convergence Study of Various

Stochastic Algorithms

Generally, the accuracy of solution, the efficiency of computation, and the simplicity
of implementation must be considered to compare a performance of the stochastic
algorithms, outlined in Chapter 3. First, a convergence study shows how accurate
the statistical solutions become as a governing parameter of that algorithm increases.
The governing parameters of MC, QMC, gPC, full-grid PCM, sparse-grid PCM and
Multi-Element techniques consequently are a number of realizations (NN), a polyno-
mial order (p), The number of collocation points (Nc¢) for the full-grid PCM, a level
(level) for the sparse-grid PCM, and a number of elements (N). A number of opera-
tions performed at each time step or computational time can indicate the algorithm’s
efficiency. An algorithm’s structure is related to its implementation complexity, which
closely connects to the computational speed. All numerical computations in this chap-
ter are performed with the Microsoft C++ compiler on an Intel Pentium 4 3.0GHz
Processor.

To study the rate of convergence, a statistical error that will be used regularly is
defined as a L, norm difference between estimated and analytical solutions of mean
and variance, normalized by the L, norm of the analytical or reference solution. This
normalized L, norm difference is similar to that defined by Xiu and Karniadakis

[62]. The absolute and L, differences are employed in their convergence calculation

109



of gPC. Since we need to include the accumulating error, especially in a long-time
integration problem, the Ly differences is more suitable for our convergence study.
When the system is large and more complex, the analytical or exact statistical so-
lution becomes more involved and difficult to derive. Thus, the exact solution can
be replaced by a reference solution with higher accuracy than estimated solutions.
The error measurements of mean § and variance 05 solutions can be expressed as the

following:

50 = e8]l
e S @z (4.1

_ 1950 — 0 e ()2
- Hag,ea:act(t)lb ’ (42)

€’UGJ‘

According to Xiu and Karniadakis [62], the gPC with an appropriate Wiener-
Askey polynomial chaos has been shown to yield an exponential rate of convergence
as a function of polynomial order (p) for the corresponding type of random inputs.
Moreover, the empirical convergence rate of the uniform MEgPC has been estimated
to be in the order of O(N~2¢+1)) by Wan and Karniadakis [60]. However, the conver-
gence rates of the PCM as well as MEPCM have not been systematically examined for

either full- or sparse-grid collocation method in terms of a stochastic analysis aspect.

This chapter considers the convergence property of these stochastic algorithms on
four different SDEs: 1) lst-order SDEs; 2) the Kraichnan-Orszag three-mode system
with quadratic-nonlinearities, which has either continuous or discontinuous solutions
depending on the random initial condition; 3) a single induction machine; and 4)
a shipboard AC power distribution with propulsion system. And, we establish an
empirical formula for the convergence rate of these algorithms for both continuous
and discontinuous solutions. Furthermore, a relationship between gPC and PCM as
well as between MEgPC and MEPCM show how closely these algorithms are related.
Lastly, this chapter compares the algorithms’ efficiency, influence of sparse structure
of the collocation method, and effect of the random dimension on the convergence of

estimated statistics.

110



4.1 Continuous Stochastic Solutions

This section investigates the L, convergence rate of different algorithms for both
linear vs. nonlinear systems with continuity in their stochastic solutions. First, we
study the convergence characteristic of simple SDEs, since exact statistical solutions
of these systems can be derived. Second, a more complicated SDE, the Kraichnan-
Orszag system with random initial conditions, further confirms the convergence rate
of these stochastic algorithms as a function of the random dimension. Moreover, the
multi-element technique helps improve the statistical accuracy in case of a long-time
integration, particularly for the sparse-grid PCM. This section considers five types of
SDEs. Note that in this section, the PCM approach is referred to the full-grid PCM,
described in the last chapter, and the multi-element technique of the gPC and PCM

is employed only a uniform decomposition of the random dimension.

4.1.1 Linear first-order SDE

Let us first consider the simplest SDE system, the first-order linear ODE, described
by the following equation:

d

d—i’ =—ky,  withy(t=0)=yo=1andte[0,T] (4.3)
where the decay rate coefficient k is considered to be a random variable, k = k 4 0,
with constant mean (k) and standard deviation (o) in the fully correlated case.
We assume that the k random variable is associated with the uniform distribution,

U[-1,1]. The deterministic solution of the first-order ODE is y(t) = yoe~*. The

mean and variance of the stochastic solutions are given by the following:

1 (’:H-G’k)t 20kt __ 1
e €
feras®) =0 [ M f (Rl = g ) (4.4)
-1 20'kt
—2kt —20%t 20t ot —opt\2
2 _ a€ (e727kt — g2rt)  (e%Ft — e7¥)
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Considering the case where k = 2 and 0, = 1, we display the exact mean and
variance solutions in Figure 4-1, which are bounded and approach steady-state values

with an exponential decay.

§
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o 0.1 0.2 03 0.4 05 08 07 08 09 1
0.014 T T
0012 T —

s . N . L L . : N
[s] 0.1 0.2 03 0.4 05 08 07 0.8 09 1
time [sec]

Figure 4-1: The exact mean (top) and variance (bottom) solutions for y = —ky.

We can compare the convergence characteristic between the gPC with p = [1,2, 3, 4]
and the PCM with Nc = [2,3,4,5] for ¢ € [0,1]. From Figure 4-2, the gPC and the
PCM exhibit exponential convergence rates of O(e~%) and O(e~*We=1)) respectively.
Both methods exhibit the same L, convergence error, so this suggests a relationship
of p= Nc¢— 1 between gPC and PCM. An equal number of system equations in the
gPC with p polynomial order, requiring p+1 terms in the polynomial expansion, and
in the PCM with Nc collocation points or roots of Nc¢ polynomial order, requiring Nc

terms in the Gauss quadrature, uses the same highest-order Legendre chaos.

Instead of the exponential p- and Nc-convergence of the single-element gPC and
PCM, the multi-element technique provides an algebriac convergence relation. For
t € [0,1], the statistics are calculated numerically from the MEPCM with N¢ =
[2,3,4] and the MEgPC with p = [1,2, 3]. Both MEPCM and MEgPC methods with
uniformly distributed elements yield a linear L, convergence rate, as the number of
elements (N) increases. Figure 4-3 shows the convergence rates of O(N~2%¢) and

O(N—2+1) using MEPCM and MEgPC, respectively.
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Figure 4-2: The L, error convergence of mean and variance solutions as a function p
for the gPC(left) and Nc for the PCM (right) for § = —ky.

N

Figure 4-3: The convergence rates of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM (thick line) and MEgPC (thin line),

for y = —ky.
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4.1.2 Quadratic nonlinear first-order SDE

Next, the first-order SDE with a similar decay factor as in the previous system is

modified to be a quadratic nonlinear function instead of the linear function

C(li—?: = —ky?, with ¢ (t =0) =y and ¢ € [0, 7] (4.6)

and a random variable decay rate k = k401.€, where ¢ is a uniform distribution within

U[-1,1]. The deterministic solution is y(t) = yolffﬂ with yo = 1. Exact solutions of

mean and variance are:

i 1 |yot(k+op) + 1
1 exra t = l I- 4.
Yeact(t) 2tay, " Yot(k —ox) +1 0
2 1 t(k +op) + 1 ’
2 t) = = % - l Yo = Tk : 4.
Jezact( ) (1 + yokt)Q + (yOJkt)Q 4t20'i n yOt(k: — 0}@) + ]. ( 8)

Consider the case where k = 2, 0, = 2 and t € [0,5]. Figure 4-4 displays the

first and second moments, which still approach their steady-state values with an

exponential decay.

1
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% 0% 1 s 2 25 3 35 p as 5
tima {sec)
Figure 4-4: The exact mean (top) and variance (bottom) solutions of y = —ky?.

Similarly, we examine the p- and Nec-convergence of the gPC with p = [1,2, 3,4, 5]
and the PCM with Nc¢ = [2, 3,4, 5, 6] respectively, as shown in Figure 4-5. The con-
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vergence rates are still exponential in the order of O(e™?) for the gPC and O(e~(Ve-1))
for the PCM, but they decrease by a factor of 5 comparing to those of the linear sys-
tem. Again, the Nc = p + 1 relationship between gPC and PCM in terms of the

convergence accuracy still holds for this case.

10 10" g
10™" 10"
£ -2 & -2
m o 10 w10
N -
107} B Egan | 10
€oariance |1:1iiiiiiiimiiiiiiiinin Evariance SRR
e A RS S
10 ‘ 10 : . '
1 2 3 4 2 3 ¢ 5 8
p Nc

Figure 4-5: The Ly error convergence of mean and variance solutions as a function p
for the gPC(left) and Nc for the PCM (right) for y = —ky?.

For the N-convergence, the statistics are calculated numerically from MEgPC with
p=11,2,3] and MEPCM with Nc = [2, 3,4]. Notice that the L, norm error of mean
and variance does not linearly decrease as in the previous case. The error convergence
can be characterized into two regimes: the non-asymptotic and asymptotic ranges. In
the asymptotic or linear range, the convergence rates of MEgPC and MEPCM are still
approximated by O(N~2P+1) and O(N~%N9), respectively, as shown in Figure 4-6.
Again, for the same level of accuracy, Figure 4-6 also confirms that the Ne =p+1

relation holds.

4.1.3 Cubic nonlinear first-order SDE

To confirm a generality of the convergence characteristics of this multi-element tech-
nique for the nonlinear system, shown in the previous example, we consider another
first-order SDE with a cubic nonlinearity:
dy _ 3 : 0 —
== —ky with y (t =0) =y and t € [0, T} (4.9)
115



mean

& MEgPCp=1 S

© MEgPCp=2 | .

10-10 - MEGPCp=3 :
— N

- — NG

o 3 MEgPC:p=1 . T, "
10 © MEgPCp=2 |. . N .
10 > ME?PCvp=3 :
— 1N
S NG
CN?
8 MEPCM: Ne=2
MEPCMNe=3 [ ! i :
W MEPCMNe=4 | - - - - ING DI

. 1I‘NE
g MEPGM Ne=2
MEPCM:Nc=3
=M= MEPCM Nc=4

10° 10’ 10° 10° 10° 10’ 10° 10°

Figure 4-6: The convergence rate of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM (thick line) and MEgPC (thin line),
for y = —ky*.

Likewise, the coefficient, k, of SDE is assumed to be a random variable, corre-
sponding to the uniform distribution U[—1, 1]. The deterministic solution is given by
Yy = (—2;2#)1/2 Furthermore, exact mean and variance solutions can be derived as

4]

the following:

Geoatlt) = — (2 2% + o) + 1)1/2 (2 2¢(% )+1)1/2 (4.10
yexact( - 2y0 ort Yo Ok Yo Ok ’ : )
(4.11)
) 1 23tk + o) + 1
gezact(t) - 2,771,
40’kt 2y0t(k‘ - O'k) +1

1/2

St ((ngt(fc +o1) + 1)

_ 1/2
— 2 —
o (2y0t(k o) + 1) ).(4.12)

The convergence of the L, norm error is considered for a case with k=2 and
o = 2 within a time interval [0,5]. Using only MEPCM with Nc¢ = (2, 3, 4], Figure 4-
7 shows the same convergence characteristic with a convergence rate of O(N=27¢) in

the asymptotic range.

116



10
10"5 ......
S -
o ) o .
[ vErou o2 | N TR 107" | [ VEPGMNG2 |
“© MEPCM:Nc=3 }. - - \ . K = MEPCM:Nc=3 |, -
: 4= MEPCM:Nc=4 |
- 1IN [ X
- e :
N DN
107 ) o P =
10 10 10 10
N

Figure 4-7: The convergence rates of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM, for § = —ky3.

4.1.4 Quartic nonlinear first-order SDE

If we increase a nonlinearity to the fourth-order polynomial, the convergence charac-
teristic and rate of the multi-element technique must be shown not to depend on the
order of the nonlinearity. Thus, let us consider the fourth-order polynomial nonlin-

earity, expressed in the equation below, with a random variable coefficient, k.

d
d—lt/ = —ky?, with y(t =0) =y, and t € [0,T]. (4.13)

The deterministic solution is y = Then, analytical mean and variance

Yo
(Bydkt+1)1/3"

solutions can be derived as the following:

B 1 . 2/3 - 2/3
yem(t)—m((syot(km)ﬂ) ~ (34t — on) + 1) ) (4.14)

0
- 1/3 - 1//3
2 _ 3 A
) = g (BtCh + 00+ 1) ™ = (3008 - o) +1)™)
1 30T 2/3 3,7 2/3
- Toyito? ((Byot(k +03) + 1) - (3y0t(k — o) + 1) ) (4.15)

Assigning k = 2 and o} = 2 with ¢ € [0, 5], the MEPCM with Ne¢ = [2, 3,4] yields
a similar convergence characteristic, which has both non-asymptotic and asymptotic
convergence ranges, as in the previous two cases. In the asymptotic range, the con-

vergence rate of MEPCM is approximated in the order of O(N~2¥¢), as shown in
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Figure 4-8. Therefore when the stochastic solution is smooth and continuous, we can
expect a similar characteristic and rate of the statistical Ly error convergence for any

higher nonlinear SDE.

10° 10°
107 10°°
S o
£ >
10—10 £ MEPCM:Nc=2 | : 10—10 B MEPCM:Nc=2| -
MEPCM:Nc=3 [ “©- MEPCM:Nc=3 |
e MEPCM:N=4 [ = MEPCM:Nc=4 |
— 1Nt . - IN* [
C— NG <—1/NZ
RV N R _ 1N N
107° 0 1 3 3 107° 0 » 2 3
10 10 10 10 10 10 10 10
N N

Figure 4-8: The convergence rate of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM, for y = —ky*.

4.1.5 Trigonometric nonlinear first-order SDE

To demonstrate the effectiveness of the Hybrid gPC+PCM method as well as its
combination with the multi-element technique, we examine the SDE with a sine

function, given by an equation below:

% = —k - sin(3y), with y (t =0) =y and ¢ € [0, T7. (4.16)

The decay coefficient, k, again is assumed to be a random variable, associated with the
uniform distribution U[-1,1]. k = 2 and o} = 1. Instead of deriving an exact statistical
solutions, we compute the Ly error convergence using the reference solution, obtained
from the PCM with Nc¢ = 100. The reference mean and variance solutions are shown
in Figure 4-9 below for ¢ € [0, 1] second.

As shown in Figure 4-10, the Hybrid gPC+PCM exhibits a similar convergence
characteristic as that of the PCM. Despite of the trigonometric function, the con-
vergence rates of Hybrid gPC+PCM, extending the gPC capability to handle more

general nonlinearity, and PCM are still in the order of O(e %) and O(e2We=1),
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Figure 4-9: The exact mean (top) and variance (bottom) solutions for § = —k-sin(3y).

respectively. Again, the suggested relationship of p = Nc—1 between gPC and PCM

is shown here to be applicable to the other classes of nonlinearity.
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Figure 4-10: The L, error convergence of mean and variance solutions as a function p
using the Hybrid gPC+PCM (left) and Nc using the PCM (right) for y = —k- sin(3y).

Also, the multi-element technique using uniform elements provides an algebraic
convergence rate of O(N~2(+1)) for the Hybrid gPC+PCM with p = [1,2,3], N¢ = 10
and of O(N—2N¢) for the PCM with Nc¢ = [2, 3,4], which are the same as the previous
four cases. According to Figure 4-11, the asymptotic range is dominate the entire

range of the L, error convergence in this case.

119



10 - v 10 ¥
o . . - | B Hybrid MEgPC.p=1 | 45 Hybrid MEGPC:p=1
- i . . | - Hybrid MEGPCip=2 - | 9 Hybrid MEgPC:p=2
TNy e : | =M Hybrid MEQPC:p=3 ;| =M= Hybrid MEgPC.p=3
MEPCM News & VeroMNes
= IC=.
N i Tl .o | 94« MEPCMNoc=4 ) . o | 9 MEPCMNc=4
100 N ™ TR N N B 107% NGO DU AN
. : RN h S = N
& . 5 AN
@ T——
o W ™
-10 -10
10 ................. 10 ............... -4
)
N N N
: L N
1 2 1 2
10 10 10 10
N N

Figure 4-11: The convergence rate of mean (left) and variance (right) errors as a
function of number of elements, using Hybrid MEgPC+PCM and MEPCM, for y =
—k - sin(3y).

4.1.6 Kraichnan-Orszag system in one random dimension

Originally, Orszag and Bissonnette [44] employed the Wiener-Hermite expansion,
which is the same as gPC, to study the dynamics of turbulent flow. They consid-
ered Burgers’ equation, which is a simplification of a one-dimensional Navier-Stokes
equation for incompressible flow. To further simplify the problem, they neglect the
viscosity term, and thus Burgers’ equation is modified to be a three-mode dynamic
system, known as the Kraichnan-Orszag three-mode system. Moreover, Orszag and
Bissonnette discovered that there exists an instability associated with this three-mode
system using Wiener-Hermite expansion, when time approaches infinity. Recently,
Wan and Karniadakis [60] have reinvestigated and solved the instability problem cor-
responding to insuflicient numerical accuracy using the gPC alone. Therefore, only
instability induced by the system dynamics can be revealed. Also, the analytical so-
lutions of this three-mode problem have been derived for only the case of smooth and
continuous stochastic solutions. However, Wan and Karniadakis considered only the
case with discontinuous solutions in one, two, and three dimensions due to random
initial conditions.

In this section, we introduce the Kraichnan-Orszag three-mode equations, given
below, and their dynamical characteristic. The initial conditions can lead to either

continuity or discontinuity in stochastic solutions. In the rest of this chapter, we spec-
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ify initial conditions for continuous cases in one, two, and three random dimensions,
but the initial conditions that lead to discontinuous solutions are obtained from Wan
and Karniadakis. Also, we formulate the convergence rate, corresponding to the char-
acteristic of solutions—continuous vs. discontinuous—as well as the random dimension.
The integration time step of the 4-order Runge-Kutta method, associated with the

Kraichnan-Orszag system, is set to be 1073.

d

TZTI = nys (4.17)
dyz _

o = v (4.18)
dy

Ef = —yi+Z (4.19)

where y; represents an i mode. This has been shown to have a discontinuity in the
solution on the y; = 0 and y, = 0 planes by [60]. Depending on the initial condition,
the deterministic solutions can be separated into eight different groups (gl to g8)
as seen in Figure 4-12. When the initial condition becomes random, the stochastic

solution can be either continuous or discontinuous.

P S S S U S
R -t 08 -08 04 02 ©0 02 04 08 08 1
Y2 v, v,

Figure 4-12: The phase portrait of eight group deterministic solutions of the
Kraichnan-Orszag system, obtained from different initial conditions, in three dimen-
sion (left) and two dimension (right) on the yl-y2 plane.

Let us consider the case where the deterministic solution is sensitive to a small

change in the initial condition of y» around zero, when [y1, y3] are kept fixed at [1,0].
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Figure 4-13 shows how the discontinuity exists in the solution for ,(0) > 0, y2(0) = 0,
and y2(0) < 0. Moreover, the oscillating frequency of the deterministic solution varies
with random y, initial condition that has the same sign. As a result, the variance

solution of this case grows with time, as shown in Section 4.2.2.
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Figure 4-13: Various deterministic solutions of the Kraichnan-Orszag three modes for
small change in the ¥, initial condition around zero.

First, let us consider the case where the statistical solution is continuous and sub-
jected to one random initial condition. The random initial condition, [y1(0,£), y2(0, &), y3(0, )],
is set as [v2/4,v2/4,€(w)], where ¢ € U[—1,1]. The stochastic mean and variance
solutions, shown in Figure 4-14, are underdamped with a time constant of 2.5 seconds
and approach the steady-state within about 40 seconds.

For t € [0,30], we compare the convergence rate among 1) MC and QMC with
NN = [1,000,-,100,000], 2) the single element PCM with N¢ = [2,-,400], and 3)
the uniformly fixed elements of MEPCM with Nc¢ = 5 and N = [2,-,256]. Instead
of formulating the analytical solution to compute the Ly norm error, the reference
solution is numerically calculated from the MEPCM with Nc = 5 and N = 2048. The
computational time of reference solution is 383.687 seconds. As mentioned previously,
the convergence rates of MC and QMC are in the order of O(NN~1/2) and O(NN—),
respectively, as shown in Figure 4-15. Even though, for the NN-convergence, the

random number of MC and QMC in a coarse level with low value of NN are reused in
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Figure 4-14: The stochastic mean and variance solutions of three mode from the
reference solution when [y,(0, £),2(0,&), y3(0,€)] = [vV2/4, v2/4, £(w)].

a more refined level with a larger value of NN, the statistical error does not converge

smoothly.

s

L, diff of Efy, ]
)

10° 10* 10 10" 10
NN NN

Figure 4-15: The L, norm error of mean (left) and variance (right) solutions as a
function of NN exhibit the algebraic convergence rate of O(NN~'/2) using MC and
of O(NN-1) using QMC.

Figure 4-16 shows that a convergence rate of PCM, as a function of Nc¢, decreases
exponentially, which can be approximated by O(e~%3*¥¢) and a comparison on the
computational cost for a given accuracy. The computational efficiency of the single-
element PCM surpasses those of the other algorithms when the solutions are smooth

and continuous. Especially, the computational time of PCM is three orders of mag-
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nitude smaller than that of MC at low accuracy range.
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Figure 4-16: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, MEPCM with fixed element (right).

The convergence rate of MEPCM as a function of N again contains both non-
asymptotic (nonlinear) and asymptotic (linear) ranges. In the linear range, MEPCM
provides the convergence rate of O(N~2V¢), as seen in Figure 4-17. The cost to
perform MEPCM is not much different when Nc is above 5. Due to the high accu-
racy of the Nc-convergence of PCM, increasing Nc can further improve the solutions’

accuracy more than increasing N in this case.
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Figure 4-17: The L, norm error of mean (left) and variance (right) solutions as a
function of N exhibit the algebraic convergence rate of O(N~*) using MEPCM with
Nc =2, O(N~1%) using MEPCM with Nc = 5, and O(NN~?%) using MEPCM with
Nec=10.
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4.1.7 Kraichnan-Orszag system in two random dimensions

When the random dimension in the initial condition increases to two, we will show
an effect of increasing random dimension on the convergence rate of these stochastic
algorithms. To guarantee smooth statistical solutions, the two-dimensional random
initial condition is assigned as [v/2/4,v/2/4 + 0.1, (w) &2(w)] such that the determin-
istic solution is always contained within the gl group. Therefore, we obtain smooth

stochastic solutions without any discontinuity, as shown in Figure 4-18.
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Figure 4-18: The stochastic mean and variance solutions of three modes from the
reference solution when [y1(0,£),32(0,£), y3(0,€)] = [V2/4,v2/4 + 0.1, (w), & (w)].-

Again, the accuracy and computational time are compared among four algorithms:
1) MC and QMC, 2) PCM, 3) MEPCM with Nc¢ = [2,5,10], and 4) MEgPC with
p =[1,4}. The result from MEPCM with Nc=10 and N=900 is used for a reference
solution. We can see from Figure 4-19 that the convergence rate of the Monte Carlo
method, which is still slow in the order of O(NN~2) for MC and O(NN™!) for
QMC, is not affected by increasing random dimension because an implementation of
computing statistics in the Monte Carlo method, which acts like a low-pass filter,
does not depend on the random dimension.

On the other hand, the computation of statistics in PCM and MEPCM requires an
additional summation for each random dimension, resulting in higher computational
cost for a larger random dimension. Despite the additional cost, the Gauss-quadrature

provides fast convergence of an approximation of solution as we increase Nc. Asshown
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Figure 4-19: The L, norm error of mean (left) and variance (right) solutions as a
function of NN exhibit the algebraic convergence rate of O(NN~Y/?) using MC and

of O(NN~1) using QMC.
in Figure 4-20, the PCM yields the exponential convergence rate of O(e 03(Ne/d))

where N¢/d denotes the number of collocation points per random dimension. This

convergence rate of PCM is the same order as in the one-dimensional case, when Nc¢

is normalized by d random dimension.
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Figure 4-20: The Ne-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, MEPCM with fixed element (right).

Likewise, the convergence rate of MEPCM can be classified into non-asymptotic

and asymptotic regimes. Here, we focus on formulating an empirical convergence

relation for the linear range, since the convergence rate of the nonlinear range is

much slower. Using the MEPCM with Nc¢ = [2,5, 10], the convergence rate can be

expressed in terms of either total Nc in two dimension (in Figure 4-23) or Nc¢/d (in
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Figure 4-21 and 4-22). The convergence rate of MEPCM can be approximated by

(N/d)=2N¢. When we use the total Nc and the Nc/d, the convergence rates are in

the order of O(N~"¢) and O((N/d)~2"¢), respectively. The accuracy of y; statistics

using MEPCM with N¢ = [5,10] approaches the machine precision too fast before

reaching the asymptotic range. Hence, the statistical results for the third mode (y3),

shown in Figure 4-22, confirmed the convergence relation as in y; results.
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Figure 4-21: The L, norm error of y; mean (left) and variance (right) solutions as
a function of total N exhibit the algebraic convergence rate of O(N~%) for Nc = 2,
O(N~1) for N¢ =5, and O(N~%) for Nc = 10, using MEPCM.
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Figure 4-22: The L, norm error of y; mean (left) and variance (right) solutions as
a function of total N exhibit the algebraic convergence rate of O(N—*) for Nc = 2,
O(N~19) for Nc =5, and O(N~%) for Nc¢ = 10, using MEPCM.

Similarly, this per dimension convergence rate is also applicable to the MEgPC.

Figure 4-24 displays how the mean and variance errors converge as a function of
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Figure 4-23: The L, norm error of y; mean (left) and variance (right) solutions as
a function of total N exhibit the algebraic convergence rate of O(N~%) for Nc = 2,
O(N73) for Ne =5, and O(N~1) for N¢ = 10 using MEPCM.

N/d. The empirical convergence rate of MEgPC can be expressed as O((N/d)~2#+1),
Even though the accuracy of MEgPC is a bit lower than that of MEPCM, the error
convergence of MEgPC approaches the aymptotic range within a few N/d. In a later
section, only the N/d convergence results are considered in the discussion. In terms of
the computational efficiency, the PCM and MC are consequently the best and worst
approaches for the problem with continuous solutions in two random dimensions. The
slope of the computational cost vs. €eqn 0f PCM and MEPCM in two dimensions is
larger than those in one dimension, shown in Section 4.1.6. Nevertheless, the MEPCM
with higher Nc¢ and using only few elements can further decrease the computation-

time slope. This shows the advantage of Nc- and N- convergences of MEPCM.

4.1.8 Kraichnan-Orszag system in three random dimensions

Let us look at how the convergence relation and efficiency of each algorithm scale
up with the random dimension in the case when the random initial conditions of
the Kraichnan-Orszag system become three dimensions. We consider the case with
smooth and continuous solutions by assigning the following random initial condition:
[11(0,€),42(0,€),43(0,€)] = [V2/4 + 0.16:(w),v2/4 + 0.1&5(w) &3(w)]. Similar to Sec-
tion 4.1.7, the deterministic solution is in the gl group. The stochastic responses

of all three modes, shown in Figure 4-25, are underdamped. All statistics approach
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Figure 4-24: The L, norm error of y; mean (left) and variance (right) solutions as a
function of total N exhibit the algebraic convergence rate of O(N~2) for p = 1 and
O(N~19) for p = 4, using MEgPC.

their steady-state values in about 20 seconds. The range of integral time is between

0 and 15 seconds.
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Figure 4-25: The stochastic mean and variance solutions of three modes from the refer-
ence solution when [1(0, €),42(0, €),43(0, €)] =[v2/440.16(w),v2/4+0.1€2(w) E3(w))-

We investigate the relationship of the convergence rate and computational cost
as a function of the random dimension among five stochastic algorithms: 1) MC
and QMC, 2) full-grid PCM, 3) full-grid MEPCM with Nc = [2, 5, 10}, 4) sparse-grid
PCM, and 5) sparse-grid MEPCM with N¢ = 5. Owing to the inefficiency of MEgPC,
it is not included in this section. We address both issues of the sparseness of nodal

points and multi-element technique, particularly for the long-time integration. A
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reference solution is numerically computed from PCM with N¢/d = 80. As shown in
Figure 4-26, the MC and QMC convergence rates are still in the order of O(NN~1/2)
and O(NN™1), respectively, and the accuracy of both methods is closely matched
with that in Section 4.1.6 and 4.1.7. Hence, we can conclude that the convergence

rate of the Monte Carlo method does not depend on the random dimension.

L, ditof oy}

NN

Figure 4-26: The L, norm error of mean (left) and variance (right) solutions as a
function of NN exhibits the algebraic convergence rate of O(NN~'/2) using MC and
of O(NN~1) using QMC.

The Nec-convergence of the full-grid PCM, described as a function number of
Nc/d, is also insensitive to an increase of random dimension, as shown in Figure 4-
27. Moreover, the L, error convergence per dimension of the sparse-grid PCM, shown
in Figure 4-27, exhibits an exponential rate as well. Both full- and sparse-grid PCMs
yield exponential convergence rates, which are faster than O(e=04*(V¢/d))  The sparse-
grid PCM has not been considered until now because its computing cost is larger than
that of the full-grid PCM in a low-dimension problem.

Likewise, the convergence rate of uniform MEPCM can be classified into non-
asymptotic and asymptotic regimes. Again, an empirical convergence relation for the
linear range is our main interest. Using the full-grid MEPCM with N¢ = [2,5, 10], the
convergence rate can be expressed in terms of N¢/d in Figure 4-28. The convergence
rate of MEPCM is in the order of O(N~2*V¢/9)) The accuracy of y; statistics using
the full-grid MEPCM with Nc = 10 approaches the machine precision very quickly

before reaching the asymptotic range. The Ely;| error convergence of the sparse-grid
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Figure 4-27. The Nc-convergence of mean and variance solutions using Full-grid PCM
(left) and using Sparse-grid PCM (right).

MEPCM with Level = 5 as a function of N/d decreases faster than that of the full-grid
MEPCM with Nc = 5 because of two reasons: there are more collocation points in
the sparse-grid PCM than in the full-grid PCM for Level = N¢ in three-dimensional

random dimensions and there are multiple elements of sparse structure.
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Figure 4-28: The L, error convergence of y; mean (left) and variance (right) solutions
as a function of total N exhibit the algebraic convergence rate of O(N~*) for Nc = 2,
O(N~19) for Nc = 5 and O(N~%) for Nc = 10, using full- and sparse-grid MEPCM.

Even though the convergence rate per dimension of the full-grid PCM stays con-
stant, its computation time grows with a cubic power of Nc in three random di-
mensions. For the full-grid MEPCM with uniform distributed elements, the cost per
accuracy is always greater than that of the full-grid PCM, as shown in Figure 4-29.

As we mentioned in the previous chapter, the computing cost of the sparse-grid PCM
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increases even faster than N¢? in the small random dimension as we increase the level,
and therefore a slope of the cost per accuracy curve is much larger. Notice that the
multi-element technique can improve the accuracy of the sparse-grid PCM with cost
significantly less than the level refinement alone. Again, the full-grid PCM provides
us the most effective algorithm in terms of the cost per accuracy, when the stochastic

solutions are continuous and smooth.

ult-grid PCM

ull-grid MEPCM:No=2
ull-grid MEPCMiNG=S |1 13
ull-grid MEPCM:Ne=10 [0 .

107°
L, diffot Ely,]

Figure 4-29: The computational time vs. Fly;] accuracy of MC, QMC, Full-grid PCM,
Full-grid uniform-MEPCM, Sparse-grid PCM, and Sparse-grid uniform-MEPCM.

Results for a long-time integration

When the integral time, ¢ € [0,7T}], is extended to T; = 50 and Ty = 100 seconds,
we would like to examine an effect of the long-time integration on the performance of
these stochastic algorithms. Furthermore, we want to examine how both the multi-
element technique and sparse structure of collocation points influence on the solution
accuracy and computational efficiency. For the‘same random initial conditions as in
Section 4.1.8, the mean and variance solutions of the reference solution, PCM with
Nc/d = 80, are displayed in Figure 4-30.

The performance of quasi-Monte Carlo deteriorates for a long-time integration as
shown in Figure 4-32. The error convergence curves shift upward for Ty = 50 and
Ty = 100 seconds due to a propagation of numerical-integration error at an initial

time step, which leads to a large accumulating error at a later time, as shown in
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Figure 4-30: The stochastic mean and variance solutions of three modes from the refer-
ence solution when [y1(0, €),42(0, €),y5(0, £)] =[v/2/4+0.16, (w),v2/440.1&5(w) L5 (w)]-

Figure 4-31. After 50 seconds, the statistical responses already reach their steady-
state values,; therefore, an effect of accumulating error in each algorithm can be easily
distinguished. According to Figure 4-31, this error can be reduced by increasing the
number of realizations; however the Monte Carlo method converges linearly with the

rate of O(NN~1). Thus, a large value of NN is required to obtain accurate stochastic

solutions.
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Figure 4-31: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, QMC with NN = 1000, and QMC with NN = 1000.

For both full- and sparse-grid PCMs, the statistical accuracy, particularly in the
high-accuracy region, get worse very quickly as the final integration increases. The
convergence results of the full-grid PCM, shown in Figure 4-33, and of the sparse-grid

PCM, shown in Figure 4-34, respectively lose about 6 and 5 orders of magnitude in
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Figure 4-32: The L, error convergence of mean (left) and variance (right) solutions
as a function of NN and T} using QMC.

the mean accuracy when Ty increases from 15 to 100 seconds. The full-grid PCM
again yields a faster error convergence than the sparse-grid PCM. Both collocation
methods are not robust against a problem of the long-time integration because the ac-
cumulating error, contributed by each Nc deterministic run, propagates very quickly

in time.
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Figure 4-33: The Nc-convergence of mean (left) and variance (right) solutions using
Full-grid PCM as Ty increases.

To lessen the effect of accumulating error especially for the sparse-grid PCM, the
multi-element technique can be combined with both collocation methods. According
to Figure 4-36, the full-grid MEPCM with Nc¢/d = 2 exhibits an insensitivity to

increasing Ty, while the others with larger Nc/d get worse as Ty increases. With
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Figure 4-34: The Level-convergence of mean (left) and variance (right) solutions using
Sparse-grid PCM as Ty increases.

the smallest Nc¢/d = 2, the Ne-convergence of the full-grid PCM does not contribute
a lot of error in the long-time integration when it combines with the multi-element
technique; therefore, the error convergence of the full-grid uniform MEPCM with
Nc/d = 2 does not change much for Ty = 15 or 50 seconds. When T is prolonged,
the former empirical formula for the convergence rate of the full-grid uniform MEPCM
is no long satisfied. The convergence rate of the full-grid uniform MEPCM becomes

more flatter as the accumulating error dominates in the steady-state regime.
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Figure 4-35: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, full-grid PCM with N¢/d = 2, and full-grid uniform
MEPCM with N =43, N¢/d = 2.

Similarly, the multi-element technique can help improve the accuracy of the sparse-

grid PCM. Figure 4-37 shows that even though the multi-element technique can reduce
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Figure 4-36: The L, error convergence of , mean (left) and variance (right) solutions
as a function of total N exhibits the algebraic convergence rates of O(N~—*) for N¢/d =
2, O(N7%) for Nc¢/d = 5 and O(N~%) for N¢/d = 10, using full-grid uniform
MEPCM.

the L, norm statistical error of the sparse-grid uniform MEPCM with Level/d =
5, the full-grid uniform MEPCM with N¢/d = 5 can better maintain the solution
accuracy better than the sparse-grid uniform MEPCM with Level/d = 5 in the case

of continuous solutions, as Ty increases.
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Figure 4-37: The stochastic mean (left) and variance (right) solutions of three modes

from the reference solution, sparse-grid PCM with Level/d = 5, and sparse-grid
MEPCM with N = 43 Level/d = 5.

In terms of the computing cost per accuracy, the full-grid PCM is still the best
algorithm, as shown in Figure 4-39. Notice that the curves of the full-grid uniform
MEPCM collapse into the same curve for Ty = 100 seconds, since the computational

cost increases faster than the solution accuracy decreases. As a result, the h-type
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Figure 4-38: Comparison between the full-grid MEPCM with N¢/d = 5 and the
sparse-grid MEPCM with Level/d = 5 on the L, error convergence of y; mean (left)
and variance (right) solutions as a function of total N exhibits the algebraic conver-

gence rate.

refinement totally dominates the Nc-type refinement of the full-grid PCM. According
to Figure 4-39, the cost per accuracy of the sparse-grid PCM is larger than that of
QMC; nevertheless, the multi-element technique can significantly improve the sparse-
grid PCM, as seen from the much smaller slope of the sparse-grid uniform MEPCM.
In Section 4.4, when the random dimension and system equations are very large, the
computing cost per accuracy of the sparse-grid PCM will be much cheaper than those

of QMC and the full-grid PCM.

Comp time [sec)]

1w 10
L d ot Eyg

Figure 4-39: The cost per Efy;] accuracy of QMC, Full-grid PCM, Full-grid uniform-
MEPCM, Sparse-grid PCM, and Sparse-grid uniform-MEPCM for Ty = 50 sec (left)
and Ty = 100 sec (right).
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Table 4.1: Summary of the convergence rates for various stochastic algorithms in the
case of continuous stochastic solutions

| Stochastic Algorithms | Rate of convergence |
MC OINN-12)
QMC O(NN-T)
gPC O(e?/?)
full- and sparse-grid PCM O(e~We-1)/d)
MEgPC O((N/d)~2r+1))
full- and sparse-grid MEPCM O((N/d)=2)

The convergence rate of all stochastic algorithms, considered in this section, can
be summarized in Table 4.1 below. Both gPC and PCM yield the rates of convergence
that depend on the ratio of their governing parameters (p or Nc¢) and the random
dimension. Likewise, the convergence rate of the multi-element technique must be
normalized by the random dimension as well. Although the Monte Carlo method
exhibits the convergence rate that is independent of the random dimension, it is
not competitive against the full-grid PCM in small and medium random dimensions
and the sparse-grid PCM in large random dimensions because of its slow rate of
convergence. Even for the long-time integration problem, the computational efficiency

of the full-grid PCM is still the best among these stochastic algorithms.

4.2 Discontinuous Stochastic Solutions

When a system has a discontinuity either in its stochastic solutions or in its derivative
due to random initial conditions, parameters, or equations themselves, this discontinu-
ity can reduce the statistical accuracy obtained from all stochastic algorithms. Also,
this discontinuity has a direct impact on the convergence rate of both Galerkin and
Collocation approaches. However, the uniform and adaptive multi-element technique
can significantly improve the L, error convergence of statistical solutions. Similar
to the last section, the h-type refinement helps maintain the solution accuracy in a

long-time integration. This section considers two types of SDEs, step discontinuity

138



and the Kraichnan-Orszag systems. Again, the PCM denotes the full-grid PCM, if
we do not specify whether it is a full- or sparse-grid PCM.

4.2.1 Step-discontinuity first-order SDE

Let us examine a system with a discontinuity in its derivative. The first-order ODE

with a signum function is expressed as the following:

%’;ﬁ ~ _sign(y), withy(t=0) =yo and t € [0, 7] (4.20)

where ¢ € [0,1] and yg is considered to be a zero-mean and one-variance random
variable, associated with the uniform distribution U[-1,1]. Exact solutions of mean

and variance can be derived analytically as the following:

gewact(t) = 0, (421)

02 a(t) = :,1)’-(1 — 3t -3t — #3). (4.22)

First, the convergence characteristic and rate of PCM and Hybrid gPC+PCM with
Nc = 20 appears in Figure 4-40, when a discontinuity occurs on the zero axis. The
convergence rate of PCM becomes algebraic in the order of O((Nc¢ — 1)~2); how-
ever, the error convergence of Hybrid gPC+PCM, which is linearly approximated by
O(p~?), fluctuates around that of PCM. An explanation of this phenomenon is that
the even-order modes of the polynomial chaos basis do not capture the dynamic of
discontinuity at zero because they cross the zero axis at the origin. Therefore, the L,
variance difference improves only when an additional odd mode of polynomial chaos
is added. Nevertheless, the relation Nc = p + 1 is still valid between the PCM and
Hybrid gPC+PCM.
We compare the results between MEPCM with N¢ = [2, 3] and hybrid MEgPC+PCM

with p = [1,2]. The convergence rates for both MEPCM and hybrid MEgPC+PCM
do not depend on the Nc and p and they stay fixed at O(NN~3). Figure 4-41 shows
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Figure 4-40: The L, error convergence of variance solutions as a function of N¢ or
p+ 1 using the PCM or Hybrid gPC+PCM, respectively, for y = —sign(y).

that hybrid MEgPC+PCM has lower accuracy than that of MEPCM, which is con-
sistent with the accuracy of the Hybrid gPC+PCM, which is less than that of the
PCM.

- - - -[-@ Hybrid MEgPC+PCM:NG=20,p=1
- - | 9 Hybrid MEGQPC+PCM:NG=20,p=2

© 1D e MEPCM:NG=2

AR o0t 4O MEPCM:NG=3

108 g i — Nt

variance

€

Figure 4-41: The L, error convergence of variance solutions as a function of Nc¢ for
the PCM for ¢ = —sign(y).

4.2.2 Kraichnan-Orszag system in one random dimension

An initial condition of the Kraichnan-Orszag system is set as the following [y:(0, £), 42(0, £), y3(0,€)] =
[1,0.1£,0]. This random initial condition leads to the discontinuity in stochastic so-
lution on the y, plane. For ¢ € [0, 30], the convergence rate as well as computational

efficiency are compared among these four stochastic algorithms: 1) MC and QMC, 2)
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PCM, 3) uniformly MEPCM with N¢ = 5, and 4) Adaptive MEPCM with Nc = 5 and
6, = [0.1,0.05,0.01,0.005]. Using the adaptive criterion described in Section 3.4.3,
the evolution of the element mesh of random space as a function of time can reveal
how this adaptive algorithm specifies the location of discontinuity. The reference
solution is numerically computed by the quasi-Monte Carlo method with a million
realizations, which consumes 19.63 hours of the computational time. As seen in Fig-
ure 4-42, the variance solutions of three modes grow with time as Ty approaches 30
seconds due to a change in frequency of oscillation and the discontinuity on the zero
axis of the y, initial condition. As a result, the statistical solutions from both gPC
and PCM will fail to converge, particularly for the long-time integration. Figure 4-43
shows an effect of increasing p in gPC and increasing Nc in PCM to delay a diver-
gence of the statistics. With small p and Nc, the estimated variance solutions start

to diverge after a few seconds.
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Figure 4-42: The stochastic mean and variance solutions of three modes from the
reference solution when [y:(0, £), ¥2(0, €),ys(0,£)] = [1,0.16(w), 0].

To improve the accuracy of estimated statistics, we can increase either Nc or N
by a significant amount. Figures 4-45 and 4-46 show that the convergence rate of
both PCM and MEPCM with uniformly fixed elements are on the order of O(N~1);
however, the computational time of uniform MEPCM is more than two times faster

than that of PCM for the same accuracy, especially in a high-accuracy region. Also,
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Figure 4-43: The divergence of y; variance solution using gPC (left) and using PCM
(right).

notice that the convergence rate of uniform MEPCM does not depend on Ne¢, when
the solutions have a discontinuity. On the contrary, the convergence rate of both
MC and QMC are not sensitive to the discontinuity in the solution. We can see
in Figure 4-44 that the convergence rates of O(NN~1/2) using MC and O(NN—Y)
using QMC are very similar to those in the previous continuous cases. However, the
computational cost per accuracy in low dimensions of QMC is still 5 and 10 times

larger than that of PCM and MEPCM with Nc¢ = 10, respectively.

A4

L, diff of E[y,]

10* 10°
NN

Figure 4-44: The L, norm error of mean (left) and variance (right) solutions as a
function of NN exhibit the algebraic convergence rate of O(NN~'/2) using MC and
of O(NN~!) using QMC.

The convergence rate can be further decreased to O(N~3) or greater with the

adaptive MEPCM, as Figure 4-47 shows. For the same accuracy of mean solutions at
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Figure 4-45: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, and uniform MEPCM (right).
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Figure 4-46: The Ly norm error of mean (left) and variance (right) solutions as a
function of N exhibit the algebraic convergence rate of O(N~!) using MEPCM with

Nc=2, Nc=5, and Nc=10.
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1074, the computational efficiency of the adaptive MEPCM is about 10 and 5 times
higher than that of the normal PCM, and of the MEPCM with uniform elements,
respectively. With the threshold, ¢; = [0.1, 0.05, 0.01, 0.005, 0.004, 0.003, 0.002,
0.001, 0.0005], the corresponding numbers of the element are [10, 14, 22, 26, 30, 32,
34, 63, 78]. The progression of new elements generated in time, shown in Figure 4-
48, reveals how the adaptive criterion decomposes the random space to capture the
location where discontinuity occurs. For §; = 0.1, the random space is gradually
divided in time to decrease the error from the discontinuity at zero. With 6; = 0.01,
the decomposition occurs very fast within the first 10 seconds near the zero to reduce
the error from the discontinuity. After 10 seconds, the h-type refinement also captures

the error due to a long-time integration.

B Emean[y1]
FI - £

variance[y1 ]

L, diff of Y,
5

10 20 30 40 506070
N

Figure 4-47: Using the adaptive MEPCM, the error convergence of mean and variance
solutions are shown as a function of N.

4.2.3 Kraichnan-Orszag system in two random dimensions

When a discontinuity of stochastic solutions occurs in two random dimensions, the
accuracy and efficiency again are compared among these stochastic algorithms: MC,
QMC, PCM, uniform MEPCM, and uniform MEgPC. For these initial conditions,
[1,0.1&;(w), &(w)], the Kraichnan-Orszag system exhibits a discontinuity on the 3,
plane such that the stochastic solutions in three dimenstons can fall into gl, g4, or

g8 groups. The reference mean and variance solutions, obtained from the QMC with

144



08}

1] 8

oAk

o8l

o4t

0.2p o2

02t 0.2+

o4l 04}
08! 08 =
-08 08
-1 - L L. L -1 L L L - -
° s 10 16 E) 25 30 ] s 10 15 20 25 %0

time [sac] time (2ac]

Figure 4-48: Adaptive meshes of the random space for 6; = 0.1 (left) and 6; = 0.01
(right) splitting into multiple elements as time evolves.

NN = 1,000,000 for ¢t € [0,15], are shown in Figure 4-49.

10 16 ) 5 10 15
time {sec] time [sec]

Figure 4-49: The stochastic mean and variance solutions of three modes from the
reference solution when [y1(0, &), ¥2(0,€), ¥3(0,€)] = [1,0.1& (w), &2(w)].

The performance and rate of convergence are compared among four stochastic
algorithms: 1) MC and QMC, 2) PCM , 3) MEPCM with N¢ = [2,5,10], and 4)
MEgPC with p = [1,4]. As shown in Figure 4-50 below, the L, error convergence
of MC and QMC are consequently on the order of O(NN~!/?) and O(NN~!). In-
sensitivity of the convergence rate to both random dimension and discontinuity in
stochastic solutions makes the Monte Carlo method more competitive against PCM
and gPC in large dimensions of random inputs.

Similar to the discontinuity of solutions in one random dimension of the Kraichnan-
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L, diff of E[y,]

Figure 4-50: The L, norm error of mean (left) and variance (right) solutions as a
function of NN exhibits the algebraic convergence rate of O(NN~'/2) using MC and
that of O(NN~1) using QMC.

Orszag system, the error convergence rates of PCM and MEPCM are in the order
of O((N¢/d)*3) and O((N/d)*), respectively. The computing cost per accuracy in
Figure 4-51 reveals that the single-element PCM cannot handle the discontinuity in
stochastic solutions as efficiently as the uniform MEPCM with large Nc. On the
other hand, the cost per accuracy of MEgPC increases as the polynomial order, p,
increases. Without the p-type refinement, MEgPC with p = 1 can also yield a good
computing efficiency, which is more than an order of magnitude better than that of

MC for the same accuracy.
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Figure 4-51: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, and MEPCM with uniform element
(right).
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Even though the convergence rate of uniform MEPCM is independent of N¢, a
linear improvement in both Nc- and h-type refinements can be seen in Figure 4-52.
The convergence rate of the statistical moments, particularly of y;, is not smooth;
therefore, we also show the statistical convergence of ys, which is much smoother, to
confirm the convergence rate of O((N/d)'?), as shown in Figure 4-53. The error of
state y3 converges much more smoothly because the discontinuity occurs directly on

the 3, plane and the statistical response of ys just oscillates around zero.
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Figure 4-52: The L, norm error of mean (left) and variance (right) solutions as a
function of N/d exhibits the algebraic convergence rate of O(N ') using the uniform

MEPCM with Nc = [2,5, 10].
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Figure 4-53: The L, norm error of mean (left) and variance (right) solutions as a
function of N/d exhibits the algebraic convergence rate of O(N ') using the uniform

MEPCM with Nc = [2, 5, 10].

In spite of the large computational cost per accuracy of uniform MEgPC, the
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uniform MEgPC exhibits an algebraic error convergence rate of O((N/d)?), which is
about an order faster that of the uniform MEPCM. As shown in Figure 4-54, the p-
type convergence of uniform MEgPC exhibits smaller improvement than the Nc-type

convergence of uniform MEPCM in the presence of the discontinuous solutions.
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Figure 4-54: The L, norm error of mean (left) and variance (right) solutions as a
function of N/d exhibits the algebraic convergence rate of O(N~2) using the uniform
MEgPC with p=1 and p = 4.

4.2.4 Kraichnan-Orszag system in three random dimensions

With three random initial conditions of [{(w),0.1€2(w),&3(w)] for the Kraichnan-
Orszag system, the discontinuity occurs on both the y; and y» planes; thus the
stochastic solutions can occur in any one of the eight groups. As a result, the time
constants of mean and variance are longer than in previous discontinuous cases. The
statistical results from the QMC with NN = 1,000,000, shown in Figure 4-55 for
t € [0, 15], are used as a reference solution to compute the error convergence.

We compare the performance among these five stochastic algorithms: 1) MC
and QMC, 2) full-grid PCM , 3) full-grid MEPCM with Nc¢ = [2,5,10], 4) sparse-
grid PCM, and 5) sparse-grid MEPCM with Level = 5. Hence, both effects of the
sparseness of collocation points and uniform decomposition of random space are our
main focuses in this section. As illustrated in Figure 4-56, the MC and QMC again
yield the convergence rate of O(NN~'/2) and O(NN~1), respectively.
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Figure 4-55: The stochastic mean and variance solutions of three modes from the
reference solution when [y;(0,£),12(0, £),y3(0, )] =[& (w),0.1&(w) &3 (w)]-

Figure 4-56: The L, norm error of mean (left) and variance (right) solutions as a
function of NN exhibits the algebraic convergence rate of O(NN~1/2) using MC and
of O(NN~1) using QMC.
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According to Figure 4-57, the algebraic convergence rate of full-grid PCM is still
in the order of O((Nc/d)?); however, the sparse-grid PCM yields an exponential con-
vergence rate faster than O(e=0-3(Leve//d)) which results in a more efficient algorithm
for discontinuous stochastic solutions. The results using the sparse-grid collocation
method have not been considered in one- and two-dimensional cases because its com-
puting cost per accuracy is not competitive against the full-grid PCM. In Section 4.4,
the advantage of the sparse-grid PCM will be more pronouced for a large integrated

power system with high random dimensions.

- il
O EpancelVs
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L difot v,

Ne/d Levald

Figure 4-57: The Nc-convergence of mean and variance solutions using full-grid PCM
(left) and using sparse-grid PCM (right).

Both Nc- and N-type refinements of full- and sparse-grid uniform MEPCM are
shown in Figure 4-58. The full-grid MEPCM exhibits an algebraic convergence as
a function of both N/d and N¢, and the multi-element technique alone yields the
convergence rate per random dimension of O((N/d)~!). In this case, the sparse-
grid uniform MEPCM provides more than three orders of magnitude in algebraic
convergence faster than the full-grid uniform MEPCM. One explanation of this faster
convergence characteristic is that the sparse collocation points as a function of either
level or element number are distributed close to the boundary and the zero-axis of
the hypercube, where the planes of discontinuity occur.

In terms of the cost per accuracy, even though the QMC seems to be the most
efficient, the sparse-grid uniform MEPCM with a larger level can easily provide better

accuracy than the QMC with a smaller computing cost. As shown in Figure 4-59, the
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Figure 4-58: The Ly norm error of 4, mean (left) and variance (right) solutions as a
function of total N exhibit the algebraic convergence rate of O(N~!) for Nc = 2 and
Nc¢ =5, using MEPCM.

cost per accuracy of full-grid uniform MEPCM, which is lower than that of the single-
element full-grid PCM, tends to improve slower than those of QMC and sparse-grid
uniform MEPCM for the short-time integration problem. If the random dimension
increases further, the computational efficiency of the sparse-grid MEPCM will become

more distinguished in the system with discontinuity in stochastic solutions.

H H
107 w0
L2 diff of Ey,]

Figure 4-59: The computational time of MC, QMC, full- and sparse-grid PCM, full-
and sparse-grid MEPCM with uniform element.
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Results for a long-time integration

This section discusses and compares the performance of stochastic algorithms when
the final time of integration (77) increases to 50 and 100 seconds. Figure 4-60 shows
mean and variance solutions of the reference solutions, obtained from QMC with a
million realizations, similar to Section 4.2.4. These reference solutions approach their
steady-state values within the first 30 seconds. Thus, using Ty = 100 seconds em-
phasizes the propagation of accumulating error in the long-time integration problem.
Therefore, we can see the effectiveness of the multi-element technique to decrease the

global integration error, specifically with a discontinuity in stochastic solutions.
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Figure 4-60: The stochastic mean and variance solutions of three modes from the
reference solution when [y1<07 £)>y2(0a f)?yi’)(oa &)] :[ 1(&)),0.152(0}),63((4))].

The averaging characteristic of the Monte Carlo technique requires a large num-
ber of NN to approximate the statistical moment accurately in the presence of the
accumulating error in each realization, as shown in Figure 4-61. The accuracy of error
convergence using QMC becomes worse as the integration time lengthen; nonetheless,
the rate of convergence is still in the order of O(NN7!). As a result, the L, error
convergence of moments is shifted upward for Ty = 50 and 100 seconds, shown in
Figure 4-62.

Similarly, the error convergence of the single-element full-grid PCM and sparse-
grid PCM becomes worse as we increase the final integration time. Figure 4-63 shows

that the error convergence of full-grid PCM still has the algebraic rate of O((Ne¢/d)!?)
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Figure 4-61: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, QMC with NN = 1,000, and QMC with NN = 10, 000.
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Figure 4-62: The L, error convergence of mean (left) and variance (right) solutions
as a function of NN and Ty using the QMC.
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for Ty = [15,50,100]. For the sparse-grid PCM, the L, exponential convergence of
error becomes much worse when T increases, as seen in Figure 4-64. Closely related to
Section 4.1.8, both of these collocation techniques are sensitive to the final integration
time because of a fast propagation of accumulating error, associated with each run of

the deterministic solver.
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Figure 4-63: The Nc-convergence of mean (left) and variance (right) solutions using
the full-grid PCM as T} increases.
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Figure 4-64: The Level-convergence of mean (left) and variance (right) solutions using
the sparse-grid PCM as T increases.

When the multi-element technique is combined with the full-grid PCM, the global
accumulating error can be decreased significantly because of the reduction of accumu-
lating error in each local element. As shown in Figure 4-65, with only a few elements

in the h-type refinement, the full-grid MEPCM significantly delays the divergence of

154



statistical solutions. The full-grid PCM with only two collocation points per ran-
dom dimension cannot handle the discontinuity around the zero axis, which leads to
oscillatory responses of the first and second moments. Figure 4-66 shows the linear
convergence using the full-grid uniform MEPCM as a function of both N/d and Nec.

The linear-convergence characteristic of full-grid uniform MEPCM does not change

as T increases.

15 r - r 0.5 — ——
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Figure 4-65: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, full-grid PCM with Nc¢/d = 2, and full-grid uniform
MEPCM with N =43 Nc¢/d = 2.
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Figure 4-66: The L, error convergence of y3 mean (left) and variance (right) solutions
as a function of total N exhibits the algebraic convergence rate of O(N—*) for Nc = 2,
O(N~19) for Nc =5 and O(N~2) for Nc¢ = 10, using the full-grid uniform MEPCM.

Similar to the full-grid uniform MEPCM, the sparse-grid uniform MEPCM could

also delay the divergence, resulting from the accumulating error of integration, as
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shown in Figure 4-67. Although the sparse-grid uniform MEPCM provides a better
convergence rate than the full-grid uniform MEPCM for a short-time integration
(Ty = 15), the sparse-grid uniform MEPCM loses its accuracy quickly due to the
deterioration of the performance of the sparse-grid PCM, as shown in Figure 4-68.
However, the multi-element technique helps maintain the linear convergence rate in

the long-time integration.
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Figure 4-67: The stochastic mean (left) and variance (right) solutions of three modes

from the reference solution, sparse-grid PCM with Level/d = 5, and sparse-grid
uniform MEPCM with N = 43, Level/d = 5.
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Figure 4-68: Comparison between the full-grid uniform MEPCM with N¢ = 5 and
the sparse-grid uniform MEPCM with Level = 5 on the L, error convergence of y,
mean (left) and variance (right) solutions as a function of N/d exhibits the algebraic
convergence rate.

To compare the computational performance of these stochastic algorithms, the

computing cost per mean accuracy in Figure 4-69 shows that the full-grid uniform
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MEPCM becomes more effective over the QMC, while the performance of the sparse-
grid uniform MEPCM degrades. Similar to Section 4.1.8, in the long-time integration,
all the cost-per-accuracy curves of the full-grid uniform MEPCM with any Nc¢ merge
into a single curve, aligning with that of QMC. One explanation for this characteristic
is that once the statistical solutions approach their steady-state values after a few
oscillations, the accumulating error becomes a random fluctuation in the case of
evenly sampling the random space using the QMC or full-grid uniform MEPCM. With
unevenly distributed collocation points of the sparse-grid PCM, the accumulating
error grows much quicker. In summary, the full-grid PCM maintains its accuracy
better than the sparse-grid PCM, and the multi-element technique can delay the
divergence for a long-time integration, when there is a discontinuity in stochastic
solutions. Next, we will consider a small system of a single induction machine, which

has more oscillatory stochastic responses.

Ful-grid MEPCM:Nc=10
- Sparse~grid PCM
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Figure 4-69: The cost per E[ys] accuracy of QMC, full-grid PCM, full-grid uniform
MEPCM, sparse-grid PCM, and sparse-grid uniform MEPCM for T; = 50 sec (left)
and Ty = 100 sec (right).

Table 4.2 summarizes all convergence rates of various stochastic algorithms, when
the stochastic solutions contain a discontinuity either in derivative or solutions them-
selves. We describe the convergence rates of all algorithms, except that of the Monte
Carlo method, with an arbitrary constant (c), because the ¢ value can vary depending
on the severity of solutions’ discontinuity. Similar to the continuous case, the rate

of convergence of Galerkin, Collocation, and multi-element techniques must be nor-
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Table 4.2: Summary of the convergence rates for various stochastic algorithms in the
case of discontinuous stochastic solutions, where c is a arbitrary constant

I Stochastic Algorithms [ Rate of convergence ]

MC O(NN-1/72)

QMC O(NN7Y)

gPC O((p/d)~)

full- PCM O(((Ne—1)/d)™9)
sparse-grid PCM O(gcxllevel)/d)

MEgPC O((N/d)™°)

full- and sparse-grid MEPCM O((N/d)~)

malized by the random dimension, while the convergence rate of the Monte Carlo is
independent of the random dimension. As shown in this section, the cost per accu-
racy of the Monte Carlo method is still large compared to either full- or sparse-grid
MEPCM even in the long-time integration problem, even though the slow convergence

rate of the Monte Carlo method is independent of the random dimension.

4.3 An open-loop induction machine with the in-

finite bus

The parametric uncertainty in a single induction machine directly connected to an
infinite bus is considered in this section from both error convergence and uncertainty
propagation aspects. The configuration of this system is shown in Figure 4-70. The
machine equations are expressed in a qd0-synchronous reference frame. These equa-
tions of this three-phase system with quadratic nonlinearities consist of seven state
variables: three rotor reactances [¥.2, ¥, 1], the rotor’s angular velocity [w,], and
three stator or tie-line currents [if;,15,15,] (see Equation 4-23 to 4-29). Two states,
Y& and i, are uncoupled from the others. All parameters, given in Table 4.3, are
lumped into «; variables for a simplification of state equations. The detailed deriva-
tion of system modeling can be found in Section ?7. The start-up dynamics of a

200-hp induction machine in an open-loop configuration, considered here for ¢ € [0, 3]
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seconds, includes fast transient dynamics from electrical components, stator and rotor

windings, and slow dynamics of a mechanical subsystem, a rotor inertia.

The uncertainty in a rotor resistance (r.) can be modeled with two types of
stochastic inputs - random variable in Section 4.3.1 and random process in Sec-
tion 4.3.3. In the random variable case, the value of the rotor resistance ,r.(w) =
v/ + 0,&(w), is assumed to be unknown, but it is described by the mean value (r’)
and bounded within the specified range (¢,). In a more realistic situation, the rotor
resistance, which normally fluctuates with an operating temperature, is modeled by
a time-varying parameter. Thus, in the random process case, this time-dependent
parameter (R'r) can be represented by the Karhunen-Loeve (K-L) expansion [33],
described in the following form: r.(t,w) = 7. + 0, Yon= /Ati(t)€i(w), where 7. and
o, are consequently the mean and standard deviation of rotor resistance. A; and ¥;
are an eigenvalue and an eigenfunction associated with ¢ term from the expansion,
truncated at KL random dimensions. The £(w) is the random variable as a function of
random space, w. For this process, the ¢; and ); are determined from an exponential
covariance function: K(t,t2) = afe__lté‘z—tﬂ, governed by the correlation length (CL)
of a time difference. In both cases, the values of r_; and o, are 0.0261 p.u. and 0.01.

Three realizations from the K-L expansion of r. are shown in Figure 4-70.

dipf / / ’ e
_dtg = oW, — Py + Wiy + asig, (4.23)
d"/}’e ’e ’E Ie e
2 =
d¢'i ‘e
L —— (4.25)
dwr Te -e ‘e
7 = —as’l/)qudt + a5¢di2;t - Qg, (426)
dit / , ) )
d‘tlt = o7ty — 0gWr4 — Qely — Onoly + o, (427)
die , ' : .
—(;‘—tii = oW + oy + Quoly — Qoly, (4.28)
di e
d;)t = —012%y- (429)
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Table 4.3: Parameters of a 200-hp induction machine

[ Parameters | r, | Xiy | X | X | . | H |

r

| in[pu] [0.01]0.0655 | 3.225 | 0.0655 | 0.0261 | 0.922 |

where
!’
T '
T
oy = “wb-@(xlr - xb): Qg = We, (430)
Ly
’
+ T T
a3 = Wyl ~, 04 = Wy, (4.31)
Liy Ly
Wy Ty Wy
Qg = ———, 0 = ——1 Joad 4.32
2H azgr’ 2H ( )
I3 !
1 (7. xp T, — Ty 1 Ty 1
o= (T (T o LD , (4.33)
aa\ ;2 )\ L — M, aa \ wp,, / \ Lt — M,
2
’
Ts+ 7 +7 |
o= <T’ o we( Yo T T +w) (4.34)
= — w=—\—7m—7= b .
aa Ly — M, ’ aa \wy(Ly — My) ’
1 1 1 ro+1 (4.35)
a1 = — 57,02 = ;7 -
aaLt—-Mt’ bbLt—]M-t7
Tis + T Ty
ao=1+-—2120 =gy (4.36)
wb(Lt - Mt) u)b(Lt + 2Mt)
0.028 ; ;
M=~ — 1* realization
N - - 2™ realization
o027y N — 3" realization | |
0.026}
— ooz}
e =t
a0 Vs T oo}
Load 0023}
o022}
200Hp T,
fiite B 3-phase . . ) . .
Infinite Bus radial system o0z 05 1 15 2 25 3

time [sec]

Figure 4-70: A one-line diagram of the induction machine connected to the infinite
bus through a RL tie line (Left). Three realizations of the rotor resistance modeled
by the three-term K-L expansion with CL = 10 second (Right).
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4.3.1 One-dimensional random variable as the stochastic in-
put

An evolution of the probability density function caused by a propagation of 7, un-
certainty can be constructed as described in Section 3.4.1 using the solutions at the
nodal points of the PCM with N¢ = 100. As shown in Figure 4-71, the peak of the

g-axis rotor reactance, 't,b;‘;, and the d-axis stator or tie-line current, ig,, shift rapidly
between top and bottom of the sinusoidal transient dynamics during the first second,
when the rotor resistance is a uniform stochastic input. For ¢ € [1,2] seconds, the
PDFs of both states spread out over a wide range before reaching steady state con-
ditions. In the steady state, all states’ PDFs form a prominent peak around their

steady state deterministic solutions.

A 02
04
708

J [
3 08 magleg] pu)

Figure 4-71: The PDFs of the g-axis rotor reactance, v'(e),,, (left) and the d-axis
stator or tie-line current, i, (right) evolve with time due to the propagation of the
rotor resistance uncertainty.

When the rotor resistance is modeled by the one dimensional random variable
with ¢t € [0,3] seconds, the convergence rate of statistical errors can be compared
among five different stochastic algorithms: MC, QMC, MEgPC, uniform MEPCM,
and adaptive MEPCM. Due to the complexity of the machine’s analytical solution,
the reference solution from the PCM with Ne = 2000 is used in the L, error con-
vergence computation. In this section, PCM refers to only the full-grid collocation
technique. According to Figure 4-73, the MC and QMC methods respectively yield
algebraic convergence rates of O(NN~1/2) and O(NN 1) as a function of the number

161



.,
et}
Lo

@
n
w
a
n
@

e
L e
Ll
o o
P

o
»
©
=)
»
@

Elw/o,)

~
°
n
w

=)
™
@

i3l

£
o . B o w B L o .
s
a0
o o B o 4 wn.o

s
2o

a

1 2 3 o 1 2 3
time [sec] time fsec]

Figure 4-72: The reference stochastic mean (left column) and variance (right column)
solutions of five state variables in per unit of the 200-hp induction machine, obtained
from PCM with Nc¢ = 2000.

of realizations, NN, similar to those obtained in Section 4.1. With NN = [103,10%],
the accuracy stays within a {1072, 107°] range. The L, norm difference of statistics
needs a substantially large NN to further increase the accuracy. Compared to the
MEPCM and MEgPC results shown in Figure 4-74 and 4-75, a characteristic of the
convergence rate again can be classified into two ranges: non-asymptotic (nonlinear)
range with small N, and asymptotic (linear) range with large N. The larger the value
of Nc in MEPCM and p in MEgPC is, the wider the nonlinear range becomes. This
trend occurs when all solutions of coupled nonlinear equations are smooth and contin-
uous, like those of the Kraichnan-Orszag system with the continuous solutions. The
convergence rates as a function of N in the linear range are in the order of O(N™*),
ON" O(N~) for [Nc=2orp=1], [Ne=borp=4], and [Ne=10or p=19],
consequently. These convergence rates also follow the approximation of the conver-
gence relation of O(N~2P+1) for MEgPC and O(N~2"¢) for MEPCM, mentioned in
Section 4.1.

Furthermore, the adaptive MEPCM with N¢ =5 and 6,=[0.1, 0.01, 0.005, 0.001,
0.0005, 0.0001] yields a minor improvement in the error convergence over the MEPCM
with uniformly distributed elements, as shown in Figure 4-76, since the solutions
of this system are smooth and continuous. In the low accuracy region, adaptively

dividing the random space into multiple elements can reduce the error much faster
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L, ditfof ox,]

l.\z diff of Elx,)

Figure 4-73: The L, norm error of mean (left) and variance (right) solutions as a
function of realization (NN) exhibit the algebraic convergence rate of O(NN~1/2)
using pseudo-Monte Carlo and of O(NN~!) using quasi-Monte Carlo.

L, dit of o¥ix,}

L, o of Efx )

Figure 4-74: The L, norm error of mean (left) and variance (right) solutions as a
function of N, using the MEPCM, exhibit the algebraic convergence rate of O(N %)
for Nc =2, O(N~') for Nc = 5, and O(N~2) for Nc = 10.
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L, diff of Efx,}

Figure 4-75: The L, norm error of mean (left) and variance (right) solutions as a
function of N, using the MEgPC, exhibit the algebraic convergence rate of O(N—%)
forp=1, O(N7°) for p =4, and O(N~%) for p= 9.

than employing equally distributed elements. However, in the high accuracy region,
uniformly decomposing the random space into large numbers can eliminate the error
in an initial time step very quickly such that its performance is as good as that of

adaptively decomposing the random space as time progresses.

: : Adaptive MEPCM: Ne=5
: -8 MEPCM: No=5

F ‘Adaptive MEFCM: Nc=5
i1 |8 MEPCM: NesS

L, difof E[x,]

Wk k

Figure 4-76: The comparison of the convergence rate of the mean (left) and variance
(right) solutions between MEPCM with fixed and uniformly distributed elements and
adaptive MEPCM.

In terms of the computational efficiency, we compare the computational time vs.
accuracy among these four algorithms, as shown in Figure 4-77. To obtain a solution
with high accuracy, the MC and QMC require a huge computational effort, and thus
these two algorithms are not competitive against MEPCM and MEgPC in the one
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random dimension. Also, Figure 4-77 shows a tremendous advantage of MEPCM
over MEgPC for the entire range of accuracy, especially in the high accuracy region
near a machine precision of 107'*. The computational time of uniform MEPCM
with Nc¢ = 5 and 10 is about two orders of magnitude less than that of uniform
MEgPC with p = 4 and 9. For MEPCM with Nc¢ = 2 and MEgPC with p = 1,
there is only linear improvement in accuracy as a function of the computational time
because only linear polynomial chaos is used in the projection in the MEgPC, and
linear approximation of uniform distribution by two collocation points is used in the
MEPCM. The computational time per accuracy of the adaptive MEPCM with N¢ = 5
is equivalent to that of the non-adaptive MEPCM with N¢ = 5, shown in Figure 4-77.

I S

H
0 10 w0 w0 0 w°
L., 6 of Efx,|

L
-1

Figure 4-77: The computational time as a function of the mean error accuracy using
MC, QMC, MEPCM and MEgPC with fixed element, and Adaptive MEPCM.

4.3.2 Two-dimensional random variables as stochastic inputs

Both the rotor resistance (r,) and load torque (Tjeq) become a random variable,
described by 7.(w) = 7. + 0,£(w) and Tipea(w) = Tioed + 07€(w). The 7.’s mean and
variance are assumed to have the same values as in the previous case. The Tj,qq is set
at 50 percent of the machine base torque (Tzoad = 0.5) with 30 percent variation (o7 =
0.3). Applying both parametric and load uncertainties to this induction machine
during its start-up transient dynamics, statistical responses take a longer time to

reach their final values, as shown in Figure 4-78. The transient responses of electrical
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components, which causes fast oscillatory behavior in the first second, quickly die

out, and after that the mechanical transient governs a slow response of all states.
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Figure 4-78: The stochastic mean (left column) and variance (right column) solutions
of five state variables in per unit of the 200-hp induction machine, obtained from the
reference solution using uniform MEPCM with Nc = 10 and N = 902.

Again, we compare the performance among MC, QMC, PCM, and uniform MEPCM
techniques for these two random dimensions. The MC and QMC again converge
linearly with a rate of O(NN~1/2) and O(NN™!), respectively. As seen in Fig-
ure 4-79, the accuracy of error convergence is contained within a range of magnitude,

[10~2,107®), similar to the previous section with the one random variable.

L, diff of Elx,]

i

10° 10 1° 10° 10 10°
NN NN

Figure 4-79: The L, error convergence of mean (left) and variance (right) solutions as
a function of realization (NN) exhibit the algebraic convergence rate of O(NN~/2)
using pseudo-Monte Carlo method and of O(NVN~!) using quasi-Monte Carlo method.

For the uniform MEPCM, the convergence relation of O((N/d)~29) is still ap-
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plied to this system, similar to that of Section 4.1.7. For the fixed elements, we
obtained the convergence rates of the uniform MEPCM with N¢ = [2,5,10] on the
order of O((N/d)™*), O((N/d)™'°), and O((N/d)~?°), consequently. However, the
non-asymptotic convergence range is extended longer, as shown in Figure 4-80, due
to a combined effect from the large variation of two random variables and the fast

transient in the first second.

L ditfaf Eje,|

L, oift of o¥[x,|

Figure 4-80: The L; norm error of mean (left) and variance (right) solutions as
a function of N/d, using the MEPCM, exhibit the algebraic convergence rate of
O((N/d)™*) for Nc =2, O((N/d)~*°) for Nc = 5, and O({N/d)?°) for Nc = 10.

Owing to the smoothness and continuity of system solutions, the Nc-convergence

—0.03(Ne/d)) " a5 shown in Fig-

of PCM exhibits an exponential convergence rate of O(e
ure 4-81 below. The computational cost per mean accuracy is a measurement of the
efficiency of these stochastic algorithms. The PCM yields the smallest computing
time per accuracy. In this case, the N-convergence of the multi-element technique
can improve the accuracy of the solution significantly, but we need a large Nc to see

a faster computational time in the uniform MEPCM.

4.3.3 For the three dimensional random process as the stochas-
tic input

Figure 4-82 shows the stochastic responses of all coupled states in the case when a

parametric uncertainty in the rotor resistance becomes a time-dependent variable,
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Figure 4-81: The Ne-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, uniform MEPCM (right).

which is correlated in time. With a slow varying r,, statistical responses are not

much different from those in Figure 4-72.
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Figure 4-82: The reference stochastic mean (left column) and variance (right column)
soluttons of five state variables in per unit of the 200-hp induction machine, obtained
from MEgPC with p =1 and N/d = 70.

In the case of a three dimensional random process (with d=KL=3) with ¢ € [0, 3]
seconds, the accuracy and efficiency are also examined and compared among these
stochastic algorithms: 1) MC and QMC, 2) full-grid uniform and adaptive MEPCM,
and 3) uniform MEgPC. The reference solution in this case is obtained from the
MEgPC with p=1 and total N of 343,000. According to Figure 4-83, the MC and
QMC with NN=[10%, - - ,8x10%] still yield the linear convergence rates of O(NN~%/2)
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and O(NN™') within the accuracy range of [1072,1079] similar to those with one
random dimension. This confirms an advantage of the Monte Carlo method that it is
insensitive to the random dimension, but its convergence rate is linear and limited to
a power factor up to 1. Figure 4-84 and 4-85 show the results of the uniform MEPCM
and uniform MEgPC with N=[8,...,1000]. The convergence rates of O((N/d)~*) for
[Ne=2or p=1] and O((N/d)™"°) for [Nc = 5 or p = 4], also agree with the N/d
convergence relation, found in the Kraichnan-Orszag Sections 4.1.8 with continuity

in stochastic solutions and those in Sections 4.3.1 and 4.3.2.

Figure 4-83: The L, norm error of mean (left) and variance (right) solutions as a
function of realization (NN) exhibit the algebraic convergence rate of O(NN—1/2)
using pseudo-Monte Carlo and of O(NN~1) using quasi-Monte Carlo.

Again, the multi-element technique of gPC and PCM with uniformly distributed
elements exhibits both asymptotic and non-asymptotic convergence ranges, as shown
in Figure 4-84 and 4-85. The rates of convergence for the uniform MEgPC and
MEPCM are respectively on the order of O((N/d)~#P*1) and O((N/d)~?N°) with a
non-stationary random input. Note that both p and Nc in the uniform MEgPC and
MEPCM are normalized by the random dimension. Likewise, the Nc-convergence of
the PCM in Figure 4-86 yields an exponential convergence rate of O(e~05(N¢/d),

The convergence rate of MEPCM can be further improved by using the adaptive
criterion to decompose the random space in three dimensions. Figure 4-86 shows that
the adaptive MEPCM with Nc = 5 and 6;= [0.5, 0.05, 0.01, 0.001, 0.0005, 0.0001,
0.00005] yields the Ly error convergence rate of O(N~2), as shown in Figure 4-86. As
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Figure 4-84: The L, norm errors of mean (left) and variance (right) solutions as a
function of N/d, using the uniform MEPCM, exhibit the algebraic convergence rate

of O(N™*) for Nc = 2 and O(N~1°) for Nc = 5.
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Figure 4-85: The L, norm errors of mean (left) and variance (right) solutions as a
function of N/d, using the uniform MEgPC, exhibit the algebraic convergence rate of
O(N~) for p=1and O(N~1%) for p = 4.
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a result, the computational efficiency of the adaptive MEPCM surpasses that of the
uniform MEPCM and approaches that of the single-element PCM, which is the best

algorithm in terms of the numerical efficiency per accuracy.

8- L, A cF{x| - Adapive MEPCM: No=
-0~ L, AT Ex,| - MEPCM: N5
& L, dfo¥[x | - MEPCM: Ne=5

Figure 4-86: The comparison of the convergence rate of mean and variance solutions
between the adaptive MEPCM and uniform MEPCM (left) and the exponential Nc-
convergence of the single-element PCM.

For a random multi-dimension, the computational costs of PCM and gPC in-
crease proportional to Nc? nodal points and (p + d)!/pld! modes, respectively. Since
the accuracy of the PCM and gPC is consequently governed by Nc and p and the
relationship of N¢ = p+ 1 for the same level of accuracy is still held in the larger
dimension, the computational cost of gPC grows much faster than that of PCM as
we require the higher accuracy of solutions. If N¢ = 5 and p = 4, the PCM and
gPC require a calculation of the solution at 125 nodal points and from 56 modes in
three dimensions. However, the gPC needs to compute the Galerkin projection of
polynomial chaos basis, consuming more computing time. With this reasoning, the
computational cost of the uniform MEgPC with p = [1,4] is even larger than that of
the uniform MEPCM with N¢ = [2,5], as illustrated in Figure 4-87

4.4 AC power distribution with propulsion drive

When the system becomes more complex as in the shipboard power system, the order

of the mathematical model increases tremendously. We will investigate the perfor-
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Figure 4-87: The computing time versus z; mean accuracy using MC, QMC, PCM,
uniform MEPCM with Nc¢ = [2, 3,4, 5], uniform MEgPC with p = [1,4], and adaptive
MEPCM with N¢ = 5.

mance of the best stochastic algorithms from Monte Carlo and Collocation approaches
with a large-scale system. This section considers two different configurations of the
shipboard power system. In the first configuration, the AC power generation system is
connected to a main three-phase radial bus, which supplies the electrical power to two
induction motors. This configuration in Figure 4-88, representing the power distribu-
tion system of a DDG-51 Navy destroyer [38], uses the first type of interconnection,
discussed in Section 2.3. The entire system consists of a 3.125MW Synchronous Ma-
chine (SM) driven by a simplified version of the Allison 501 gas turbine/governor,
the IEEE Type 2 voltage regulator and exciter for controlling generated voltage from
the generator, an RL tie-line, and 200-hp and 150-hp Induction Machines (IM). Con-
taining the nonlinearity in both polynomial and trigonometric forms, this model is

composed of 26-order ODEs.

In the second configuration, the second type of interconnection, explained in Sec-
tion 2.3, is considered because an average model of power converter can be included
for the induction machine drive. Figure 5-89 displays a one-line diagram of all com-
ponents: a 59 MW synchronous generator driven by ideal or constant-speed prime
mover, a simplified voltage regulator/exciter, and a 50-hp induction machine with
power converter drive using the constant torque technique. A mechanical torque load

applied on the motor shaft is proportional to motor speed squared to mimic the load
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(Gas Turbine)
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3.125 MVA Bus#1

Figure 4-88: A one-line diagram of the first configuration of the AC power distribution
with two open-loop induction machines for studying the stochastic analysis with 6
dimensional random variables.

characteristic of propellers. This model, obtained from the detail model in the 2003
ONR challenge problem [27], represents the Naval Combat Survivability testbeds lo-
cated at Purdue and University of Missouri at Rolla. Including both continuous and

discontinuous nonlinearities, the total number of states in this configuration is 30.

T's—{ Torque Control

Y ‘abel

= A R

Vp, =570V Rectifier ~ LC-fiter  Inverter 50 hp

Figure 4-89: A one-line diagram of the second configuration of the AC power distri-
bution with the closed-loop induction machine for studying the stochastic analysis
with 31 dimensional random variables.

4.4.1 Results for Six stochastic inputs

In this case, six independent random variables in the system of Figure 4-88 include
["kq» T5a> Tkal Of SM, 7, of both IM1 and IM2, and r, of tie line. All of these random
variables, associated with the uniform distribution, are assumed to vary within plus
and minus 10 percent of their nominal values. For this system simulation, the gen-
erator is assumed to be initially in its steady-state condition and then suddenly two

induction machines start from rest at zero second. Therefore, a start-up transient of
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two motors, similar to the previous section, as well as an interaction among electric
machines can be seen in Figure 4-90 for ¢ € [0,3] seconds. At first, the speed of
the SM drops and then the exciter compensates for an error in the bus voltage by
speeding up the generator before bringing the SM’s speed back to its steady-state
operation of 1 per unit. In the first second, the start-up transient of both IMs dies
out. After that the interactions between SM and IMs are illustrated in the responses
of the g-axis stator flux linkage of all machines. The variance of all states of both
IMs contains a high peak right before reaching the steady state. This characteristic
implies that the open-loop response, especially right after the start-up transient, is
sensitive to the parameter variation. With the closed-loop control of the exciter, the

responses of SM’s variance have a smaller peak magnitude compared to those of IMs.
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Figure 4-90: The reference stochastic mean (first two columns) and variance (third
and fourth columns) solutions of the g-axis stator flux linkage and normalized rotor
speed of SM, IM1, and IM2 in per unit, obtained from QMC with NN = 1, 200, 000.

To study the numerical performance of stochastic algorithms-QMC, full- and
sparse-grid PCM, and sparse-grid uniform MEPCM-with this large-scale system in
the first configuration, the convergence rate and computational efficiency are again
considered. In this case, the reference solution for the L, error computation is ob-
tained from the QMC with NN = 1,200, 000, which requires 13,736 seconds of the
computational time. With NN between 10% and 6x10%, the QMC yields an algebraic

convergence rate of the SM q-axis stator flux linkage (¥7,) mean and variance so-
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lutions on the order of O(NN~!), shown in Figure 4-91. The error convergences of
the same state using the full- and sparse-grid PCMs are shown in Figure 4-92. The
rate of convergence per random dimension using both PCMs is still exponential on
the order of O(e~13(Ve/d)) or O(e~15(Level/d)) Notice that the Ly error of the sparse-
grid PCM starts to saturated at Level/d = 7 because the accuracy limitation of the
reference solution has been reached. From the efficiency aspect, the computing time
per variance accuracy of all algorithms, illustrated in Figure 4-91, can be used for
the performance comparison among these stochastic algorithms. For this large-scale
system, the computational cost of the sparse-grid PCM is an order of magnitude less
than that of the full-grid PCM for the same accuracy. Furthermore, the sparse-grid
PCM becomes more efficient than the QMC in the high-accuracy region. Unlike the
results with the small model in the last section, the sparse-grid uniform MEPCM
with Level = [2,3] improves the accuracy with a much higher computational cost

than the single-element sparse-grid PCM.

Figure 4-91: For six-dimensional random dimensions, the z; or ¢, statistical error
convergence rates as a function of NN are in the order of O(NN1!) using QMC (left)
and The computational time per accuracy of these stochastic algorithms (right).

4.4.2 Results for thirty-one stochastic inputs

To demonstrate the capability of the sparse-grid PCM for handling a large random-
dimension problem, all twenty nine parameters in SM, IM, RC bus, and Rectifier,
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Figure 4-92: For six-dimensional random dimensions, the xy or ¥ statistical error

convergence rates as a function of Nc¢ are in the order of O(e 32(N¢/9) ysing the

full-grid PCM (left) and ofO(e~13{evel/9)) ysing the sparse-grid PCM (right).

LC-filter, and Inverter and a mechanical torque load in the system of Figure 5-89 are
assumed to be independent uniform random variables with 1 percent variation from
their mean values, which are the nominal values. All the nominal values of these
thirty parameters can be found in Appendix B. Furthermore, the performance of the
sparse-grid PCM can be compared with that of the quasi-Monte Carlo method in
the large dimension. The scenario of this simulation is that initially the synchronous
generator is operating near its steady-state value and the induction machine and
its torque controller is disconnected from the inverter with a switch, then at 0.35
seconds we suddenly turn on the switch to connect the induction machine and its
controller with the power converter with a ramp torque command. However, with
this constant-slip torque controller, we no longer experience a large start-up current
from the induction machine as in the previous configuration without the propulsion
drive, which can be indirectly observed from no large fluctuation in the statistical
values of both current and voltage of the power converter in Figure 4-94. Due to a
time limitation, the stochastic response of this system is considered between [0,0.5]

seconds.

Figure 4-93 and 4-94 show the stochastic responses of the synchronous generator
and the power converter, respectively. From these two figures, both the quasi-Monte

Carlo with NN = 1,000 and sparse-grid PCM with level = 3 can accurately capture
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the dynamics of the stochastic responses comparing to a reference solution, which
obtained from the quasi-Monte Carlo with NN = 10,000. However, the enlarge-
ment of the generator’s stochastic response, 15, reveals a minor discrepancy of the

sparse-grid PCM’s results from the quasi-Monte Carlo results, because of the small

magnitude of o?[y¢,].
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Figure 4-93: Comparison of the stochastic mean and variance solutions of the g-axis
stator flux linkage (¥¢,) and d-axis field-winding rotor flux linkage (¢5,) of SM-(First
and Second Columns) and their enlargements-(Third and Fourth Columns), among
from QMC with NN = 10,000 (Reference Solution), QMC with NN = 1,000, and
sparse-grid PCM with Level = 3.
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Figure 4-94: Comparison of the stochastic mean and variance solutions of the dc
current in the rectifier (14.) and the capacitor voltage in the LC-link filter (V,,;)-(First
and Second Columns) and their enlargements-(Third and Fourth Columns), among
from QMC with NN = 10,000 (Reference Solution), QMC with NN = 1,000, and
sparse-grid PCM with Level = 3.

To directly compare the accuracy of the solution from these two methods, Figure 4-
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95 shows the €., and €, of all state variables for the results from QMC with
NN = 1,000 and sparse-grid PCM with Level = [2,3]. The €peqn, obtained from
the sparse-grid PCM with Level = 3 is more accurate than that from QMC with
NN = 1,000 and vice versa for the €,,.. Notice the large €, are from the first
seven states, corresponding to the variables of the synchronous generator. All state
variables of SM exhibit a fast transient dynamics within the first fraction of a second
and their variance has a small magnitude. These two reason causes the sparse-grid
to quickly lost its accuracy to capture a small variation precisely and to handle a
large number of oscillation in the function, as time progresses. While the variance
magnitude of other state variables are about the same order of magnitude as their
mean values. We summarize the accuracy (Z?il(eme(m, €var)) and computational time
of the QMC and sparse-grid PCM. Note that for a comparison, the computing time

for the reference solution is 347,700 seconds.

x 10
3 0.5
—6— MC:NN=1000 —6— MC:NN=1000
—x— SPCM:Level=2 0.4 —%— SPCM:Level=2
2 —+— SPCM:Level=3 —+— SPCM:Level=3
=4 —
g 2
w

i input i input

Figure 4-95: For thirty-dimensional random dimensions, the statistical error
(€mean, €var) for all thirty state variables from the results of the QMC and sparse-
grid PCM, comparing with the reference solution.
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Table 4.4: Summary of the accuracy and computational time of the QMC and sparse-
grid PCM

| Method | €mean | €wor | Computing time [sec] |
QMC:NN=1,000 0.0037 | 0.1367 36,717
Sparse-grid PCM:Level=2 | 0.0053 | 0.7698 87,554
Sparse-grid PCM:Level=3 | 0.0011 | 0.6907 1,355,700
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Chapter 5
Sensitivity Analysis

Studying how the uncertainties of parameters, external disturbances, and inputs prop-
agate through to the outputs of a system is known as sensitivity or uncertainty anal-
ysis. Sensitivity analysis is valuable especially for examining the extreme or worst
case in a complex system and estimating the robustness and reliability of the sys-
tem against uncertainties. To reduce the risk of equipment damage and the time-
consuming nature of experimental set-up, we can perform sensitivity analysis on
mathematical models, which can closely match the characteristics of physical sys-
tems.

In the literature, sensitivity analysis has been studied from two different perspec-
tives — ranking the inputs’ significance or evaluating the outputs’ tolerance limit —,
when the inputs are known to vary within a specified range. In the first approach,
sensitivity analysis provides information on which inputs have more influence on the
system outputs and on how strong is the coupling or interaction among inputs. Two
main classes of techniques for ranking these inputs in sensitivity studies are local and
global methods. The local approach [21], [48], which relies on a partial derivative of
output with respect to input, is used to measure the sensitivity around a local op-
erating point. When the system has strong nonlinearity and the input uncertainties
are contained within a wide range, the local sensitivity does not provide full informa-
tion to the system operators. On the other hand, the global approach examines the

sensitivity from the entire range of the parameter variations. The screening methods,
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which are included in the global methods, rank the important factors and their inter-
action among a large number of system parameters. These screening techniques are
based on ”One-at-A-Time” (OAT) perturbation of parameters, which directly yields
the main input effect without input interaction. Several screening methods have
been proposed in the literature, for example, the Morris method [39], [51], Cotter’s
method [17], factorial experimentation (7], and iterated fractional factorial design [50].
Different techniques have their strengths and weaknesses. The Morris method can ef-
ficiently identify the sensitive parameters when a system has a large number of inputs
or parameters. Only the worst-case analysis of a system is examined for the upper
and lower bounds of system variables in Cotter’s method. In factorial experimenta-
tion, all combinations of inputs’ interactions as well as the main effects are evaluated
at the same time, which requires intensive computation. Iterated fractional factor
design reduces this large input-combination computation by evaluating only impor-
tant combinations. As a result, the sensitivity indices might be biased. Other global
sensitivity analysis techniques are regression analysis [51}, and ANOVA decomposi-
tion [53], etc. All of these techniques rank the importance of each input uncertainty
to the system outputs. The regression analysis is limited because of the required prior
knowledge about the structure of the system. Similarly, the ANOVA decomposition
requires the system to be expressed in an orthogonal decomposition, which is not

applicable to general functions or systems.

The second category of sensitivity analysis is tolerance analysis. In contrast to
ranking the significance of inputs, this kind of sensitivity analysis works in terms
of the tolerance limit or probability of failure when one or more inputs are known
to fluctuate within a specific range due to environment variation or random noise.
Using a mathematical model of the system, the tolerance limit has been examined
using worst-case analysis and root-sum-square analysis [8]. However, most systems
are nonlinear; therefore, the maximum and minimum of worst cases cannot truly
capture the tolerance limits of the system. Boyd [8] used the Monte Carlo method
to specify the tolerance limits of linear electronic circuits, while Hockenberry [21]

studied tolerance limits using the full-grid PCM with only a single random variable.
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In this chapter, four new sensitivity analysis techniques for ranking the inputs’ sig-
nificance and the nonlinear and coupling effects of inputs are introduced and then the
performance and limitations of each approach are investigated with both static func-
tions and systems of differential equations. Two different approaches - 1) gradient-
based sensitivity and 2) variance-based sensitivity - are developed in this section.
Then, sensitivity results from both approaches are compared against that of the Mor-
ris method. Section 5.1 briefly explains the concept and advantages of the Morris
method [39]. Next, the Monte Carlo Sampling and Collocation methods, based on an
”One-At-a-Time” (OAT) randomized gradient approximation, are explained in detail.
Furthermore, two new techniques - variance and inverse variance methods - based on
an OAT variance calculation are introduced and applied to the problem of parameter
screening as well. All sensitivity algorithms developed here are based on stochastic
solutions with inputs and parameters varying with their random space; thus, these
algorithms can be further applied with correlated random inputs or parameters as

well.

5.1 Parameter Screening

Practically, when the system has hundreds or thousands of input parameters [z1, ..., zx],
it is almost impossible to fully investigate all combinations of input parameters.
Therefore, parameter screening is needed to examine which inputs have the most
effect on the output and to rank those inputs accordingly, so that the smallest num-
ber of further experimental designs can focus only on the sensitive set of parameters.
To investigate the One-At-a-Time (OAT) global sensitivity, an elementary effect of
i input on j output (EE?) is defined as the approximated gradient. Basically, EE!
is a ratio of the difference in outputs y;(x) over A when only ¢ input deviates from

its nominal value with A magnitude. This definition of EE/ is identical to that of

Morris [39]. The EE? can be formulated as the following:

(1,22, .. .,z + A, zk) — Y21, T2, -, Tiy -, Tk)
A ?
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where z; with i = 1,...,k is contained within a domain of variation. For y; outputs
with j = 1,...,n, we need a total of n x k computations of EEf . Using the local
gradient computation, when 8y;/0x; is equal to 1) zero, 2) a non-zero constant, or 3)
a non-constant function of input parameter/s, the effects of z; on y; are 1) negligible,
2) linear and additive, or 3) nonlinear and coupled, respectively. The numerically
approximated gradient can capture all the above effects, called the elementary or
first-order effect. If all 2 except x; are fixed at their nominal values, the EE? can
only rank the input parameter according to the first-order or elementary effect without
specifying any influence of the interaction among inputs. By randomizing all values of
x in computing EE?, the interaction effects can be discovered from the variation of the
EE{ distribution. With this concept in mind, we present the gradient-based methods
- Morris, Monte Carlo Sampling, and Collocation methods - and the variance-based

method, then compare their accuracy and efficiency among these approaches.

5.1.1 Morris Method

The Morris method considers the OAT EE! to identify the significant first-order and
interaction effects of input parameters with only a few evaluations of EE;, which is
proportional to k& input. The basic methodology of this approach is to randomly select
an initial condition and construct a randomized trajectory in a high-dimension input
space for r trials. Thus, the mean and standard deviation of EE‘Z resulting from 3
input dimension consequently represent the first-order effect of 7 input and interaction
of other inputs with the ¢ input. Originally, all input parameters in the Morris
method [39] are assumed to be independent uniformly distributed; nevertheless, the
normal distribution can be applicable to parameters in this method as well [12].
Unlike the regression analysis, the input interaction requires a high-order polynomial
approximation in the input-output relation, which leads to more computational cost
for better accuracy. However, the Morris method becomes more efficient when &k > n.

The procedure to construct the OAT randomized trajectory can be described as
the following. First, each input dimension of the k-dimensional hypercube is divided

into a grid with p uniform space, [0,1/(p — 1),2/(p — 1), ..., 1], such that the initial
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condition, x*, can be randomly assigned to one of these grid points. According to
Morris, the value of A is set as p/(2(p— 1)) using an even p value and p > 2 such that
A optimally covers the k-dimensional p-level random space with an equal probability.

And the randomized trajectory is contained within the range of input variation.

Second, a (k + 1) X k B matrix, a lower-triangular matrix, is expressed in the

following form:

0 fori<j
B;; = (5.2)

1 fori>j
Each row of the B matrix is different from its adjacent row by only one element;
therefore, the row difference of the B matrix times A, called AB, forms the deter-
ministic trajectory of the elementary effect, as shown in Figure 5-1. To construct

an OAT randomized matrix, B*, from B matrix, Morris [39] proposed the following

formulation:

B* = (Je1,1x" + (A/2)[(2B — Jp114)D* + Jep1 1)) P, (5.3)

where x* is the random initial vector in a k dimension, D* is a k-dimensional diagonal
matrix with each element equal to either +1 or -1 with equal probability, P* isa k x k
random permutation of an identity matrix, and J is a matrix with all elements equal
to 1. The role of P* matrix is to guarantee an equal probability of the random
elementary effect in each input direction. The last step is to construct r trials of this
randomized B* matrix such that the r random trajectories can be obtained from the
row difference of B*, called AB* matrix. To distinguish between the row difference
of B, AB, and the row difference of B*, AB*, we show one of the r trajectories from

AB and AB” for p = 4 in Figure 5-1. In this case, AB* is
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Figure 5-1: The trajectories from AB and AB* for p =4

The total computational cost consists of two parts: generating the randomized
trajectory in the order of O(r x k) and evaluating the FE; for one output using
the randomized trajectories in the order of O(r x (k + 1)). The computing cost of
the randomized trajectories is shown in Figure 5-2 as a function of the number of
realizations (NN) and the input dimensions (k). This plot reveals the exponential

cost of forming the randomized trajectories as the number of inputs increases.

Note that, as we increase the p-level in this £ dimensional space, the value of
A approaches 1/2. This minimum A of 1/2 seems to constrain the randomized
trajectory on the boundary more than in the interior of the input domain. Thus,
the approximated gradient in the Morris method is described in the global sense,
which cannot be compared with the partial derivative around the operating point
in the local sense. To avoid averaging out the effects from the i input in the EE?

computation, we use the absolute difference of the j output, as shown below.

186



588 3

Comp Time [sec]
g 8

g

So
"

Figure 5-2: The computational cost of generating randomized trajectories as a func-
tion of NN and k.
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The Morris method was first developed for ranking the sensitivity of a multi-input
function, called a static function. To extend the capability of the Morris method for
solving Ordinary Differential Equations (ODE), we can view the computation of the
elementary effect at each time step as a random perturbation in each input dimension
with fixed length A. Due to the requirement of random trajectory generated in this
approach, (k+1)xr deterministic ODE must be solved at the random initial condition.

Then, at each time step we can compute the statistics of EEf as in the static function.

5.1.2 Monte Carlo Sampling Method

Instead of computing the statistics of the F'E; from the randomized trajectories on
the p-level grid in the Morris method, the Monte Carlo Sampling method can be used
to randomly generate the NN initial conditions in the k-dimensional inputs, and
then the elementary effect in each direction can be computed at these NN random
initial points. The mean of each i elementary effect or E[EE?] can be directly used
to rank input parameters. In addition, o[EE!] can specify the respective influences
of inputs’ interaction and nonlinearity on the output. To obtain smooth convergence

in the result, the same random realizations in the small NN case are reused in the
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large NN case. The main advantage of this approach is that the EF; computation is
not constrained on the p-level grid location as it is in the Morris method. Therefore,
in a system with large inputs, this approach should be more efficient than the Morris
method because no construction of the randomized trajectories is required and the
input domain is covered more thoroughly to examine the input interaction. However,
a large number of realizations (INN) is needed to guarantee the convergence of the
EF! statistics.

To demonstrate this methodology, Figure 5-3 shows 9 realizations of a random
initial condition and direction in the FE; computation with fixed A in a three-
dimensional input space. The total evaluation of output for k elementary effects
is on the order of O(NN x k) for the k inputs; therefore, the accuracy of E[EE]]
and o[EE!] depends on the convergence characteristic of the Monte Carlo method,

1/VNN and 1/NN for pseudo- and quasi-random sampling techniques, respectively.

P
!

X3 -
5 "xz l -"_,-"'
Xy

0

Figure 5-3: With 9 realizations, the random direction and initial condition in each
direction of a three-dimensional input space are used for computing the FE; for
1=1,2,3 with a fixed A.

Because of the simple structure of this technique, the sensitivity analysis of any
static function can be easily implemented. Furthermore, applying this technique to
analyze the sensitivity of ODE requires solving only NN ODE problems. At each
time step, we perturb the system inputs one at a time with a fixed A. Similar to
a maximum limit of the A magnitude in the Morris method, which equals % for an

input range between [0, 1], we assign the A magnitude to be half of the input range.
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If A is greater than 1 of the input range, the distribution of EFE? might be misleading
due to possible strong nonlinearity present in the system, and the value of z; + A in
E'Ef computation can exceed the input range. If z; & A is outside the inputs’ range,
the perturbation direction with A must be reversed such that the input variation is

confined within the specified range.

5.1.3 Collocation Method

To further improve the accuracy and efficiency of this parameter screening technique,
the initial condition of the EE! computation can be selected at the collocation points
instead of at the random sampling points; thus, the PCM technique should give us
an advantage in computing the statistics of E'Ef The procedure for this approach
is similar to the Monte Carlo Sampling method. First, we specify a distance of A
in computing the EEf and the level of accuracy or the number of collocation points,
using either the full-grid or sparse-grid PCM. Second, the elementary effect in each
t-input direction is calculated at the collocation point with a random direction of
A. Lastly, the mean and standard deviation of EE; are found from the quadrature,
as described in Section 3.4. Again, E[EE!] and ¢[EE?] consequently represent the
first-order effect and the nonlinear and coupling effect of inputs. As shown in Sec-
tion 4.1, when all parameters in the system are deterministic and only external input
or systems’ parameter is stochastic, we can expect an exponential convergence rate
in statistical results. On the other hand, with random direction of A in the gradient
computation of EE{, the convergence rate of the EEz’ statistics is not necessary an
exponential when a function is non-monotonic. As shown in the next section, the
statistical convergence becomes algebraic, but the rate is still faster than that of the
Monte Carlo Sampling method.

To illustrate the concept of this method, Figure 5-4 shows how we combined the
approximated gradient calculation with the full-grid collocation method. The com-
putational cost of using the PCM depends on the input dimension, which is described
by O(N¥ x k) for the full-grid PCM where N, is a number of collocation points per
random dimension and by O(n(L, k) x k) for the sparse-grid PCM where n(L, k) is
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a number of collocation points at level, L, in k£ input dimensions. Similar to the
constraint in the Morris method, most of the collocation points are on the boundary
of the input domain; therefore, using the sparse-grid PCM with this technique can-
not thoroughly explore an input interaction. To extend this technique to study the

sensitivity of ODE, we need to solve N* ODEs at each time step.

[

Figure 5-4: With 8 collocation points or N, = 2 of the full-grid PCM, the approx-
imated gradient, FE; for i = 1,2,3, with a fixed A is computed at the collocation
points with a random direction along each dimension in a three-dimensional input
space.

5.1.4 Variance Method

The Variance method introduced here directly takes advantage of the efficiency and
accuracy of the PCM to identify each input sensitivity and input interaction. This
method relies on a variation of the output when only one input is a random variable
instead of using the approximated gradient to measure the sensitivity of each input.
Note that here we use the standard deviation as a sensitivity index when we refer to
the Variance method. First, let us define the variance effect (V EE;), closely related to
the EE;, of each input on the output, y/(z1,...,zx) for j = 1,...,n, as the following:

VEEf = Ey loz, [y (x) (5.6)

= / / / / 0-.1'@ ]dxl dmi——ldxi+1 P d.’zk’
Tit+1
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where o, denotes the standard deviation of the j output (y?(x)) when only z; input
is a random variable and the other inputs are fixed at the collocation points in the
k — 1 input dimension. E_ [ ] represents an expectation of all other inputs except
the z; input. Formulating an OAT variation of each input in this way, the interaction

of the z; input with the others, called I E'E;, can be described by

IEE! = o, ,[0..[y (x)] (5.7)

= J/ / / / 0'1 yJ ]-— VEE,; )2d.’IJ1 dm'z—-ldxz-}-l d
Ti+1

Again, 0., ,,[ | denotes a standard deviation of all other inputs except the z; input.

The magnitude of TEE; can only specify the coupling of the ¢ parameters without
taking into account the nonlinearity of the z; term. Therefore, an exponential con-
vergence of both VEE; and IEE; can be exbected with use of the full-grid PCM
in each dimension for low and medium input dimensions when the system responses
are smooth and continuous. However, the efficiency of the sparse-grid PCM is not
applicable to this method, especially for computing o[ ], because the collocation
points of the sparse-grid PCM are not distributed evenly per direction in the input
domain. The evenly distributed collocation points of the full-grid PCM allow for a

thorough exploration of the interaction of the z; input with the other inputs.

Figure 5-5 demonstrates how to obtain the elementary and coupling effects from
the standard deviation of each z; input in the case of three input parameters. The
computational cost to obtain V EE; is approximately O(N* x k), which is the same
order of magnitude as that of the Collocation method. Nevertheless, this Variance
method yields a more accurate sensitivity solution than the two previous methods for
the low input dimensions due to error only in its stochastic solution.

This technique can be further applied to compute the sensitivity of input param-
eters in a system of ODEs by solving N, ODEs for one input at each time step; thus,
with k inputs, we need to solve the total ODEs of N¥ for the OAT sensitivity as
well as parameter interaction. Similar to a static function case, we compute the stan-

dard deviation of the system integration with respect to the z; using one-dimensional
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Figure 5-5: With N, = 4 in the full-grid PCM, the standard deviation of the z; input
is computed at the full-grid collocation points, where z, and z3 are assumed to be
independent random variables, such that the elementary effect and interaction of z;
with the other inputs can be uncovered.

full-grid PCM, while all other inputs are fixed at the collocation points of the k& — 1-
dimensional full-grid PCM. Then, we compute the standard deviation of o, with

respect to z;z; for measuring the parameter interaction.

5.1.5 Inverse Variance Method

Consider a dual concept of the Variance method just described. This technique
examines the inverse of how unimportant each input parameter is in the system
output, y¥(z1,...,zx), which is related to the first-order effect. Let us define the
first-order effect of the z; input as IV EE;, described in the following equation:

i 1
IVEE, = gl (58)

where the denominator is defined as

Ez,(\// "'/ / "'-/ (y(xlxl)"'7m’i-17$‘i+1)"'7xk66)
31 Ti-1 v Tt Tn

"B,y 0)) - didaig - da),

where o, [y?(x)] is the standard deviation of the output when all inputs except the

7 input are random variables, which is described as the negligible effect of the x; input
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on the output. Eg[ ] represents the expectation of the i input. An inverse of the
Ey[0z,,;[f(x)]] specifies the important effect of the z; input. Likewise the coupling
effect of the 7 input with the other inputs can be examined from the /T FE;, defined

below:
IIEEij = Oy [Uwi;éj [y’(x)]], (5'9)

where o,,[ | stands for the standard deviation of the i input. Likewise, the IIEFE;
can only capture the coupling effect of ¢ input with the others, not the nonlinearity
associated with z;. According to these definitions, the sparse-grid PCM can be di-
rectly employed for computing o, #[ |, especially for large input dimensions. Owing
to the efficiency of the full-grid PCM in a small input dimension, F,,[ | and o] ]
can be computed with the Gauss quadrature. Therefore, this technique can provide
a fast convergence of IV EE; and I EE; accuracy with less computational cost, par-
ticularly in the high input dimension. The total computational cost is in the order of
O(n(L,k — 1) x Ne x k), where n{L, k — 1) is a number of collocation point at level,
L, in k — 1 input dimension. Thus, the computational cost of this method should
be several orders of magnitude smaller than that of the Variance method when k is

large.

To explain the concept of this method in a three-dimensional input space, Figure 5-
6 shows how to obtain the effect of excluding the xz; input by considering the standard
deviation of z, and z3 with fixed z; at the full-grid collocation points. The inverse of
the mean of o,, ., [f(x/2; is fixed, z, = &, 3 = &;)] with respect to z; can be used
to rank the significance of the z; input. Moreover, the standard deviation of this

quantity with respect to z; identifies the coupling effect of z; with the other inputs.

Because of the indirect measurement of the input sensitivity in this technique, the
input sensitivity of the dynamical system, particularly the input interaction, cannot
be captured accurately, if we consider the entire length of time. Nevertheless, at each
time step, this technique still can provide the ranking of the input’s influence. Thus,

this technique is more suitable for the sensitivity analysis of static functions than the
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Figure 5-6: For the full-grid PCM with Nc = 4 in the first direction, the standard
deviation of z3 and z3 inputs is computed at the sparse-grid collocation points, where
the z; is assumed to be fixed at the full-grid collocation point. The inverse of the
mean of o,, », with respect to z; can identify the elementary effect of z,, while the
standard deviation of o, ;, With respect to x, specifies the coupling effect of z; with
the others.

ODE.

5.2 Comparison of Sensitivity Analysis on Static

Functions

In this section, let us consider examples of 8 static functions and a complex function
with 12 input parameters, modified from the Morris paper. In all static function
examples, the accuracy of each algorithm is improved by increasing the governing

parameter, as shown in Table 5.1.

5.2.1 Linear Static Function

The first linear static function is

1 = 63z, — 70z2 + 1523 for 0 < z; < 1. (5.10)
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Table 5.1: The range of parameters that controls the accuracy of each sensitivity
analysis algorithm

| Method r Range of the governing parameter
Morris with p = 16 r=[50, 102, 52102, 103, 52103, 10%, 3210%,
or A= % 8z10%,10%, 3210°%, 8210°]
MC Sampling with A = 1 | NN=[10, 10%,5210?, 103, 5210°,10¢, 5210%, 10°, 5210°, 10°]
Collocation with A = 2 Nc¢/d=[2,8,10,20,30,40,50,60,70,80,100,120]
Variance Nc¢/d=][2,6,10, 14,20,30,40,50,60,80,100,120]
Inverse Variance Nc¢ =8 and Level=[2,3,4,5,6,7,8,9]

Due to the linearity of this function, the E'E;, which approximates the gradient com-
putation in the global domain, should yield the same result as the local method,
which computes the sensitivity index from the partial derivative of y with respect
to z;. For this function, [E| %%1; ], E[[gx% 1, E“g_ﬁ””zicU[O,l] = [63,—70,15] using the
Monte Carlo method with a million realizations. As mentioned earlier, the estimated
mean and standard deviation of EE; can consequently rank the importance of each
input to the output and identify both a nonlinearity of the ¢ input and an interac-
tion of that input with the others, respectively. Therefore, the plot of o[EE;] versus
E[EE;] can capture both of these effects. The bottom-right and top-left corners of
this plot consequently represent the linear and additive effects as well as the nonlinear
and coupling effects, while the origin of this plot denotes negligible or no interaction
effects. Using the gradient approximation methods, Morris method with p = 16 or
A = £ and Monte Carlo Sampling and Collocation method with A = 1, the magni-
tudes of E[EE,, FE,, EE3)] are [63, 70, 15], which agrees with the first-order derivative
of the function, as shown in Figure 5-7. The lines, linked between results with two
different accuracy levels, show some variation when we increase the number of trials,
realizations, and collocation points. The standard deviations of FE; are very small
because of the linearity of the function. The results from the Variance and Inverse
Variance methods with Nc¢ = 8, shown in Figure 5-8, provide the same input ranking

according to the relative magnitude of VEE; and IVEE; and identify no coupling
effect because the magnitude of IEE; and IIEE; is so small.
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Figure 5-7: Function (y;): the mean and standard deviation of EE; from the Morris
method with p = 16 and r = 50 to 100 (top-left), from the Monte Carlo Sampling with
A =1/2 and NN = 50 to 100 (top-right), the Collocation method with A = 1/2 and
Nc =10 to 20 (bottom-left), and from the statistics of the absolute partial derivative
(|0y/0x;|) (bottom-right).
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Figure 5-8: Function (y;): the mean and standard deviation of E'E; from the Variance
method with Ne¢/d = 10 to 20 (left) and from the Inverse Variance method with
Nc =8 and Level = 4 to 5 (right).

5.2.2 Nonlinear Static Function without Parameters’ Inter-

action

The second static function is used to test these algorithms for the input nonlinearity
without any coupling. Consider the nonlinear polynomial function expressed in the

following form:
yp = 6327 — 7023 + 1523 for 0 < z; < 1. (5.11)

Figure 5-9 illustrates that the techniques based on the approximated gradient, Mor-
ris method with p = 16 or A = 1;35, and Monte Carlo Sampling and Collocation

methods with A = %, rank the elementary effect of inputs in the following order:
2,1,3. This order also agrees with the mean value of the first-order derivative evalu-
ated within the random uniform range, U[0,1], [E[| 22 52|l B2 =21, E| 61:3”]|miCU[O =
(63.17,69.91, 15.00]. [C’“az, 1], a[lam2 ], ov[lam3 |Me:cvpa) = [71.57,62.58,0], which rank
the nonlinearity of inputs in the same order of ¢[FE;] for ¢ = 1,2,3 in the Mor-
ris, Monte Carlo sampling, and Collocation methods. o[EE;] is slightly higher than

a[EE,}; this relation implies that the distribution of F'E; can capture the nonlinear

characteristics of inputs. All results in Figure 5-9 converge to correct positions for
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given parameters, (r, NN, (Nc¢/d)). Without using the approximated gradient, both
Variance and Inverse Variance methods can also identify the important ranking of
inputs in the same order: 2,1,3; however, IEE; and ITEE; do not capture the input

nonlinearity effect, which is shown by their very small magnitude in Figure 5-10.

a0t| % Morris:p=16,r=80000 ] 40| * MC:A=1/2,NN=50000
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Figure 5-9: Function (y»): the mean and standard deviation of EFE; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 50,000 to 100,000 (top-right), the Collocation
method with A = 1/2 and Nc¢ = 10 to 20 (bottom-left), and from the statistics of
the absolute partial derivative (|0y/0z;|) (bottom-right).

Moreover, to show the convergence characteristics of all these sensitivity analysis
techniques, we need to define a difference in the results between using low and high
accuracy levels - r, NN, or (N¢/d) - in each technique. With n multiple inputs, the
RMS values of the difference in E[EFE;] and o[EE;] at different level (L) are defined
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Figure 5-10: Function (y»): the mean and standard deviation of EE; from the Vari-
ance method with Nc¢/d = 10 to 20 (left) and from the Inverse Variance method with
Nc =8 and Level = 4 to 5 (right).

as the following:

RMS(AE|EE)) = Zn: (EX[EE] — EL-1[EE))’, (5.12)

i=1

RMS(Ac|EE)]) = zn: (0L[EE)] - oL-1[EE))’ (5.13)
i=1

where EL[EE;] and EL~![EE;] are the mean of the i elementary effect of the high and
low accuracy level, respectively. This definition can be applicable for the variance and
inverse variance methods by replacing (E[EE;], o[ EE;]) with either (VEE;, IEE;) or
(IVEE;, IIEE;). The smaller value of these RMS differences indicates a convergence
of our sensitivity indices in each technique. Thus, we can plot the RMS difference
versus the computing cost, which reflects a total number of the function evaluations
as well as the simplicity of the algorithms’ structure. In Figure 5-11, we compare
the convergence performance among Morris, Monte Carlo Sampling, and Collocation
methods. The Collocation method yields the best result convergence among these
three techniques, while the convergence of the Monte Carlo Sampling and Morris
methods is comparable, except that an additional computing cost is needed for gen-

erating the random trajectories in the Morris method. As expected, the convergence
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characteristics of both Variance and Inverse Variance methods, as shown in Figure 5-
12, are extremely fast due to the exponential convergence rate of the PCM. The
sensitivity indices of these variance methods approach their final values by using only

a few collocation points.
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Figure 5-11: Function (y;): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ac[EE;)), using the Morris, Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.
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Figure 5-12: Function (y;): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.
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5.2.3 Nonlinear Static Function with Parameters’ Interac-
tion

Let us consider the case where the inputs are strongly coupled and have only quadratic

nonlinearity, which is expressed in the third static function below:
Yz = mf + :vg +4xoxz + 123 for 0 < z; < 1. (5.14)

Using the approximated gradient, Morris with p = 16, Monte Carlo Sampling
and Collocation methods with A = 2 rank the significance of these 3 inputs in the
following order: 23,1, as 1llustrated in Figure 5-13, because of a large coefficient
in the third term. This ranking can also be easily discovered from the first-order
partial derivative. The mean and standard deviation of the |0ys3/dz;| are shown
in Figure 5-13 as well. [E[|22]], E[132(}, E[| 22 (lleicuioy = [1.50,3.00,2.50] and
o] s ol o [lale] a[lam3 Nzcvppq = [0.65,1.29,1.19]. The '7“5%” captures the nonlin-
earity effect of inputs, but not the coupling effect. The coupling effect is as important
as the inputs’ nonlinearity in this function; therefore, the o[| 32 Ou3 2|} for i = 1,2,3 fail to
identify this coupling effect as effectively as the o[EE;] of the Morris, Sampling, and
Collocation methods. In Figure 5-14, both variance and inverse variance methods
correctly rank the inputs’ significance and the interaction among them. Notice that
the IIEE; tends to separate the input coupling more clearly than the IEE;.

To compare the convergence performance of the algorithms based on the approxi-
mated gradient, the RMS differences of mean and standard deviation of EE; are plot-
ted versus the computational time, as shown in Figure 5-15. In this three-dimensional
problem, the convergence rate of RMS(AE[EE;]) using the Collocation method is
about an order of magnitude faster than those of Morris and Monte Carlo Sampling
methods. Due to the monotonicity and smoothness of this function, the E[EE;] from
the Collocation method converges to [1.5,3,2.5] up to the machine precision within a
fraction of a second. Similar to the previous example, the results of both Variance and
Inverse Variance methods converge extremely fast using only Nc = 14 and Level = 4,

respectively, as illustrated in Figure 5-16. Again, a reason for this fast convergence
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Figure 5-13: Function (y3): the mean and standard deviation of FF; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 50,000 to 100,000 (top-right), the Collocation
method with A = 1/2 and Ne = 10 to 20 (bottom-left), and from the statistics of
the absolute partial derivative (|0y/0xz;|) (bottom-right).
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Figure 5-14: Function (ys): the mean and standard deviation of EE; from the Vari-
ance method with N¢/d = 10 to 20 (left) and from the Inverse Variance method with
Nc =8 and Level =4 to 5 (right).

depends on the exponential convergence rate of both full- and sparse-grid PCMs.
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Figure 5-15: Function (y3): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ac[EE;)), using the Morris, Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.

When the function is no longer monotonic and has the same coupling as the last
function, we again examine the convergence performance as well as the ranking of
sensitivity indices among these algorithms. The fourth static nonlinear function (y,)

is given by the equation below:

Ya = xf + xg —dx1z9 + 1123 for 0 < z; < 1. (5.15)
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Figure 5-16: Function (y3): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

All techniques based on the approximated gradient calculation yield the same rank-
ing of input significance (E[FE;]) and of inputs’ interaction and nonlinearity effect
(0c[FE;]), as shown in Figure 5-17. z; is the most sensitive parameter because of a
large coefficient in the third term and there is no cancellation from the fourth term.
For x,, there is a cancellation between the third and fourth terms, which make the
output less sensitive to x;. With the same quadratic nonlinearity and no cancellation
of the coupling effect in the third and fourth terms as in z,, x5 is ranked the first
for the input interaction and then z; and z3. Also, the mean and standard devia-
tion of the absolute value of the partial derivative can rank both the significance and
interaction of inputs as well. Using the magnitude of OAT variance, the variance
method yields the same ranking of the inputs’ sensitivity and interaction. However,
the inverse variance fails to identify the coupling effect, owing to the cancellation of

the coupling effect in x5 input.

From the convergence performance aspect, the sensitivity index of the Collocation
method gains about an order of magnitude in accuracy better than those results
of the Morris and Monte Carlo Sampling methods, as shown in Figure 5-19. For
this nonmonotonic function, the convergence characteristic of the Variance method
is degraded; however, an exponential convergence rate using the full-grid PCM is

applicable, as illustrated in Figure 5-20. The rapid convergence characteristics of
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Figure 5-17: Function (y4): the mean and standard deviation of EE; from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 50,000 to 100,000 (top-right), the Collocation
method with A = 1/2 and Ne¢ = 10 to 20 (bottom-left), and from the statistics of
the absolute partial derivative (J0y/0z;|) (bottom-right).
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Figure 5-18: Function (y4): the mean and standard deviation of EFE; from the Vari-
ance method with N¢/d = 10 to 20 (left) and from the Inverse Variance method with
Ne¢ =8 and Level =4 to 5 (right).

the Inverse Variance method are not affected by this nonmonotonic property of the

function.
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Figure 5-19: Function (y4): the convergence characteristic of RMS{AE[EE;]) and
RMS(Ac[EE;]), using the Morris,Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.

In the fifth example, we increase the coefficients of only the nonlinear terms in

the static nonlinear function (ys), as expressed by the equation below:
ys = 1027 + 2025 + 42,20 + 2123 for 0 < z; < 1. (5.16)

The techniques, relying on the gradient computation, rank z; as the most sensitive
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Figure 5-20: Function (y,): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

and coupled parameter, as expected. The results from the Morris method with p = 16,
Monte Carlo Sampling and Collocation methods with A = %, shown in Figure 5-21,
agree with one another as well as with the E{[|0y/dz;|] and o[|0y/0z;|]. Both Variance
and Inverse Variance methods provide the same ranking of the input sensitivity;
nevertheless, these two approaches do not emphasize the nonlinearity of the inputs,
like that in the y, function. Thus, IEE and IIEE exhibit that the z, input has the
largest interaction among inputs, which can be observed directly from the function.
Then, the 2, and 3 are ranked the second and third in the coupling effect, according

to the Variance and Inverse Variance methods.

In terms of the numerical performance, the convergence results of all algorithms
are the same as those in the third example with y3. The results from the Collocation
method converge faster than those from the Morris and Monte Carlo Sampling meth-
ods by approximately an order of magnitude. Both Variance and Inverse Variance

methods provide a rapid convergence of the results up to the machine precision.

In the sixth function below, both the nonlinearity and coupling of inputs become

prominent:

ys = 63x5Ty — 702322 + 15717923 for 0 < z; < 1, (5.17)
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Figure 5-21: Function (ys): the mean and standard deviation of E'E; from the Morris
method with p = 16 and » = 80,000 to 100,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 50,000 to 100,000 (top-right), the Collocation
method with A = 1/2 and Ne¢ = 10 to 20 (bottom-left), and from the statistics of
the absolute partial derivative (|0y/dz;|) (bottom-right).
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Figure 5-22: Function (ys): the mean and standard deviation of EE; from the Vari-
ance method with Ne¢/d = 10 to 20 (left) and from the Inverse Variance method with
Nc¢ =8 and Level = 4 to 5 (right).
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Figure 5-23: Function (ys): the convergence characteristic of RMS(AE[EFE;]) and
RMS(Ac[EE]), using the Morris,Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.
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Figure 5-24: Function (ys): the convergence characteristic of RMS(AV EE;) and
RMS(AIEE;) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

All the gradient computing algorithms, Morris with p = 16, Monte Carlo Sam-
pling and Collocation methods with A = £, provide the same ranking for the sig-
nificance of the inputs’ influence on the output as well as inputs’ interaction, as
shown in Figure 5-25. The first input (z;) is the most sensitive due to the fifth
order polynomial, while the sensitivities of x5 and z3 are ranked second and third.
Again, the mean and standard deviation of the first-order derivatives with respect
to each input of this function evaluated within the random uniform range, U[0,1],
[E1521), E[1 221, E(1 52 N)lrcup., are [35.30,24.65,14.85]. The magnitude of the lo-
cal derivative fails to correctly rank the importance of input due to a strong coupling of
inputs. Nevertheless, [o]| 24 1], o[| 2], o[l 2% |]]lsscuto.) are [52.67,30.50,22.96], which
yield the relative magnitude similar to the distribution of E'E; using the approximated
gradient method. The standard deviation of FE; is larger than those of FE; and
E E5 due to the higher order polynomials. The coupling effect of the second and third
inputs in the second term gives a comparable importance in the distribution of EFF,

and EE;.

Due to the high-order polynomial nonlinearity and nonmonotonicity of this func-
tion, the results from all algorithms based on the gradient computation converge more
slowly than those in the previous three examples of static function with only quadratic

nonlinearity, as seen from the upward shift of RMS(AFE[EE;]) and RMS(Ac[EE,])
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Figure 5-25: Function (ys): the mean and standard deviation of EE; from the Morris
method with p = 16 and » = 80,000 to 100,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 50,000 to 100,000 (top-right), the Collocation
method with A = 1/2 and Nc¢ = 10 to 20 (bottom-left), and from the absolute partial
derivative (|0y/0x;|) (bottom-right).
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Figure 5-26: Function (ys): the mean and standard deviation of EE; from the Vari-
ance method with Ne/d = 10 to 20 (left) and from the Inverse Variance method with
Nc =8 and Level =4 to 5 (right).

curves in Figure 5-27. In Figure 5-28, the variance method also exhibits a slower
convergence characteristic, which is still an exponential rate; however, the rapid con-
vergence of the results using the inverse variance method is insensitive to the strong

nonlinearity and nonmonotonicity.

; 10 -
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Figure 5-27: Function (yg): the convergence characteristic of RMS(AE[EE;]) and
RMS(Ac[EE;]), using the Morris,Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.

Before considering the performance and characteristics of these sensitivity analysis

algorithms with more complex functions, the key properties of each algorithm are
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Figure 5-28: Function (yg): the convergence characteristic of RMS(AV EE;) and
RMS(AIFEE;) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

summarized in the following list:

e Morris and Monte Carlo Sampling Methods: E[EE;] and ¢[EE;] can correctly
rank the sensitivity of the input parameters and rank the influence of the nonlin-
earity and coupling effect in each input, respectively, for any type of nonlinear and
non/monotonic functions. The sensitivity indices converge slowly with an algebraic
rate; however, this algebraic rate is applicable for any kind of function.

e Collocation Methods: E[EE;] and o|EE;] can rank the inputs’ sensitivity as well
as the effect of nonlinearity and coupling of inputs, which closely match the sensitivity
index of the Morris and Sampling methods quantitatively. The algebraic convergence
of its sensitivity index is superior than those of Morris and Sampling methods in a
small input-dimension problem and is not sensitive to strong nonlinearity or coupling
effect.

¢ Variance Methods: The relative magnitude of V E'E; can rank the sensitivity of
inputs. The magnitude of IEE; captures only the coupling of inputs. It does not
include the inputs’ nonlinearity because of the OAT variance measurement of a single
random variable. Using the efficiency of the full-grid PCM, the convergence rate of
the sensitivity index is exponential in a small dimension problem; nevertheless, this
rate is sensitive to the function’s monotonicity.

o Inverse Variance Methods: The relative magnitude of IV EE; can correctly rank

213



Table 5.2: Comparison on the computational cost of all sensitivity analysis techniques

| Method | Computing Cost |
Morris O(r x (k+ 1))+c(r x k)
Monte Carlo Sampling O(NN x k)
Collocation O(NF x k),
Variance O(NF x k),
Inverse Variance O(n(L,k —1) x N. x k),

the sensitivity of inputs as well. Similar to the variance method, the magnitude
of IIEFE; can capture only the coupling of inputs, but not the inputs’ nonlinearity.
Furthermore, the value of IIE'E; is also sensitive to the function’s monotonicity due
to the possibility of cancellation effect in computing the standard deviation of the
n — 1 inputs in the n-dimensional problem. The main advantage of this technique is
its rapid convergence rate of the sensitivity index and its independence in convergence
characteristic from any kind of the inputs’ nonlinearity.

The computational costs of all sensitivity analysis algorithms are summarized in
Table 5.2 below. The Morris and Monte Carlo Sampling methods require about
the same order of magnitude in the computing cost, except that an additional cost,
¢(), for generating randomized trajectories in the Morris method. Similarly, the
computational cost of the Collocation and Variance methods is identical; however,
the accuracy of sensitivity indices is different because of their measured sensitivity

characteristics.

5.2.4 Modified Morris’s Function

In a more complex system, the last static function considered in this section, a mod-
ified function from the original test problem with 20 inputs in the Morris paper [39]
is considered only for 6 and 12 inputs because the other 8 inputs (z11,. .., Z2) have
a negligible effect, as mentioned by Morris [39]. This modified Morris function is
suitable for testing the sensitivity of large-dimensional inputs with strong coupling

among the inputs. The modified Morris function with n inputs is given in the equation
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Table 5.3: The values of 3 coefficients for the modified Morris functions

l 3 coeflicients for n = 6 inputs | 3 coefficients for n = 12 inputs
160 = 11 ,80 = 1,
G = 20,fori=1,2,3 B; = 20,fori=1,---,10
161,,3 - - 15, forz,] = 1,2, /B’L,] = —_ 157 fori’] - 1, P ,6’
Bijx = —10,fori, j k=1, Bijx = —10,fori,j,k=1,---,5,
below:
y=0o+ Zﬁiwi + Z Bi jwiw; + Z Bi j kWi W Wy (5.18)
i i<j i<j<k

where w; € [0,1] or w; € [—1,1]. The values of (3) coefficients are given in Table 5.3.

The rest of §; and §;; are assigned zero-mean unit-variance random numbers,
associated with the normal distribution. The other coefficients of f3; ;1 are set to

be zero. For the case when w; € [0,1], the Morris method with p = 16 or A =

8

15, and Monte Carlo Sampling and Collocation methods with A = % can classify

the sensitivity of inputs according to E[EE;] and o[EE;] into three distinct groups:
(1,2,3);(4);(5,6), as shown in Figure 5-29. The quantitative results from these three
techniques agree with one another. The second group of inputs, (4), exhibits only a
strong elementary effect with a minor interaction with the other inputs. In contrast,
the first group, (1,2,3), shows a strong coupling and a small sensitivity on the output.
Lastly, the (5,6) group has a small effect on the output. In Figure 5-30, the magnitude
of VEFE; and IEE; of the Variance method also relatively ranks the significance of
inputs to the output as well as their coupling effect in the same order as those of
the Morris, Sampling and Collocation methods. In the case of the Inverse Variance
method, the magnitude of IVEE;, [0.1366, 0.1393, 0.1377, 0.2781, 0.1343, 0.1342],
can rank the elementary effect of inputs correctly as well; however, the magnitude of
ITEE; does not yield the same order of inputs’ coupling effect as those of the other

techniques. Because of the nonmonotonicity of this modified Morris function, we can
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expect the results from I7EE; to be different, as we show in those three-dimensional

static functions.

6 : 6 :
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Figure 5-29: For the modified Morris function with 6 inputs and w; € [0,1]: the mean
and standard deviation of E'E; from the Morris method with p = 16 and r = 8000
to 10,000 (top-left), from the Monte Carlo Sampling with A = 1/2 and NN = 8000
to 10,000 (top-right), and the Collocation method with A = 1/2 and Nc = 12 to 14
(bottom).

In terms of the convergence performance, all methods based on the gradient com-
putation exhibit the same order of magnitude in the convergence of the sensitivity
results, as shown in Figure 5-31. Because of the dimension dependence of the full-
grid PCM, the fast convergence performance of the Collocation method, shown in
the previous three-dimensional static function, is degraded as the input dimension
increases to 6. In the presence of the nonmonotonic and large-dimension inputs, the

convergence of sensitivity results in the Variance method becomes comparable with
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Figure 5-30: For the modified Morris function with 6 inputs and w; € [0, 1]: the mean
and standard deviation of E'E; from the Variance method with Nc¢/d = 12 to 14 (left)
and from the Inverse Variance method with Nc = 12 and Level = 4 to 5 (right).

those of the gradient computation. On the other hand, the superior performance in
convergence of the Inverse Variance methods is still held for this function.

When w; € [-1, 1], the sensitivity index from the 6 inputs again clusters into three
groups in the E[EE;] versus o[EE;] plots, shown in Figure 5-32 using the Morris
method with p = 16 as well as the Monte Carlo Sampling and Collocation methods
with A = % However, the (1,2,3) group now becomes more sensitive than the 4
input and has a stronger interaction with the other inputs, which are located on the
top right of the E[EE;] versus ¢[EE;] plot. Moreover, the magnitude of E[EE;] also
switches between the 5 and 6 inputs. The change of the sensitivity index establishes
that the inputs’ range is another important factor when there are strong coupling
effects among inputs, as in this modified Morris function. A similar ranking of the
inputs’ influence on the output as well as of the coupling effect can be obtained using
either Variance or Inverse Variance methods, as illustrated in Figure 5-33. Note that
the results from the Variance method closely match those of the technique using the
gradient; however, the relative distance between (1,2,3) and 4 input groups using the
Inverse Variance method differs slightly from the other methods.

Similar to the previous example, the sensitivity indices of all methods based on
the gradient computation converge at about the same order of magnitude, as shown

in Figure 5-34. The convergence performance of the variance method is also compa-
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Figure 5-31: For the modified Morris function with 6 inputs and w; € [0, 1]: the con-
vergence characteristics, plotted versus the computational time, for RMS(AE[EE;))
(Top-Left) and RM S(Ao[EE;]) (Top-Right) using the Morris, Monte Carlo Sampling,
and Collocation methods and RMS(AVEE;) (Bottom-Left) and RMS(AIFE;)
(Bottom-Right) using the Variance and Inverse Variance methods.
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Figure 5-32: For the modified Morris function with 6 inputs and w; € [-1,1]: the
mean and standard deviation of E'E; from the Morris method with p = 16 and
r = 8000 to 10,000 (top-left), from the Monte Carlo Sampling with A = 1/2 and
NN = 8000 to 10,000 (top-right), and the Collocation method with A = 1/2 and

Nc =12 to 14 (bottom).
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Figure 5-33: For the modified Morris function with 6 inputs and w; € [-1,1]: the
mean and standard deviation of EE; from the Variance method with Nc¢/d = 12 to
14 (left) and from the Inverse Variance method with N¢ = 12 and Level = 4 to 5
(right).

rable with those using the gradient when the function consists of the nonmonotonic
terms and large-input dimensions. Again, the inverse variance method still provides
superior performance in the convergence of results. Consequently, the convergence of

all algorithms is not affected by varying the input range.

Lastly, when we increase the random dimension of inputs in the modified Morris
function to 12, the inputs are clustered into four distinct groups: (1,2,3,4,5),(6),(7,8,9,10),
and (11,12) according to their sensitivity to the output and coupling. With this more
complicated function, the three methods we are now considering - the Morris method
with p = 16, Monte Carlo Sampling, and Collocation methods with A = % (see Fig-
ure 5-35) consequently rank the first-order effect (E[EE;]) and the input coupling
effect (o[ EE;]) of all inputs in the same order as the VEE; and IEE; of the Variance
and Inverse Variance methods (see Figure 5-36). Although the magnitudes of ITEE;
are closely packed together, the IIEE;, [4.20, 4,27, 4.29, 4.16, 4.17, 2.22, 0.06, 0.031,
0.034, 0.005, 0.046, 0.022], is still able to rank the coupling effects of inputs correctly.
Thus, these results exhibit that all algorithms can identify the inputs’ sensitivity
accurately for any static function.

In terms of the convergence performance for the 12-dimensional input problem,

the Morris, Monte Carlo Sampling, and Collocation methods provide the same order
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Figure 5-34: For the modified Morris function with 6 inputs and w; € [—1, 1]: the con-
vergence characteristics, plotted versus the computational time, for RM S(AE[EE;])
(Top-Left) and RM S(Ac|EE;]) (Top-Right) using the Morris, Monte Carlo Sampling,
and Collocation methods and RMS(AV EE;) (Bottom-Left) and RMS(AIEE;)
(Bottom-Right) using the Variance and Inverse Variance methods.
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Figure 5-35: For the modified Morris function with 12 inputs and w; € [0, 1]: the mean
and standard deviation of FE; from the Morris method with p = 16 and r = 8000
to 10,000 (top-left), from the Monte Carlo Sampling with A = 1/2 and NN = 8000
to 10,000 (top-right), and the Collocation method with A =1/2 and Nc =12 to 14
(bottom).
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Figure 5-36: For the modified Morris function with 12 inputs and w; € [0,1]: the
mean and standard deviation of E'E; from the Variance method with N¢/d = 12 to
14 (left) and from the Inverse Variance method with N¢ = 12 and Level = 4 to 5
(right).

of magnitude in their convergence accuracy, as shown in Figure 5-37. Owing to an
increase of the input dimension, the Collocation method using the full-grid PCM is
computed with (Nc/d)=[2,3,4,5] such that the computing time is contained within a
range similar to those of the Morris and Monte Carlo Sampling methods. The results
from the Variance method with (Nc¢/d)=[2,3,4,5] shows a similar convergence, parallel
with the Collocation method, which is related to the convergence characteristic of
the full-grid PCM. Despite the large input dimension, the results using the Inverse
Variance method still converge to the machine precision within a fraction of a second.
In the next few sections, we extend the capability of these algorithms to analyze the

input sensitivity of the ODE systems within a given time interval.

5.3 Comparison of Sensitivity Analysis on ODE

To demonstrate that these sensitivity algorithms can be applicable to the ODEs, we
systematically tested the parametric sensitivity and interaction of the system on var-
ious linear and nonlinear ODEs, including the first-order ODE , Duffing’s oscillator
with a constant forcing, open-loop induction machine with the infinite bus in Sec-

tion 4.3, and the AC power distribution with open- and close-loop propulsion drive.
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Figure 5-37: For the modified Morris function with 12 inputs and w; € [0, 1]: the con-
vergence characteristics, plotted versus the computational time, for RMS(AE[EE;])
(Top-Left) and RMS(Ac[EE;]) (Top-Right) using the Morris, Monte Carlo Sampling,
and Collocation methods and RMS(AV EE;) (Bottom-Left) and RMS(AIEE;)
(Bottom-Right) using the Variance and Inverse Variance methods.
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Due to the time dependency of the systems’ response, we show that the sensitivity
of one parameter can dominate that of the other parameters only within a certain
time interval. In addition, the convergence characteristics of these algorithms are
evaluated and compared against one another. First, we define the sensitivity index
as F[EE;] using the Morris, Sampling, and Collocation methods or VEE; using the
Variance method. The interaction index, denoted by D, , is defined as a time-average
distance between the origin to the curve of o[EE;] versus E[FE;] or of V EE; versus
IEE;. Note that the original Morris method is designed for testing the parameters’
sensitivity of the static function only, and thus we also extend the capability of the

Morris method to handle ODE systems.

5.3.1 Linear first-order ODE

First, we consider the simplest ODE, which is identical to that in Section 4.1.1 of
Chapter 4, again written below. This equation is used as a reference for a compar-
ison of the sensitivity indices’ magnitude between the deterministic gradient-based

methods and the stochastic variance-based method.

d
d_i’ = —ky with y(0) = yo = 2 (5.19)

where the decay coefficient k assumes to be a uniform random variable with & = 5
and o; = 0.4. The deterministic solution of this equation is y(t) = yoe ™. As a

result, the local derivative of y(t) with respect to k is expressed as the following:
—Z = —ygte R (5.20)

The closed-form statistical solution of the ratio of o, over oy, which derived in Section

4.1.1., is again rewritten below.

(5.21)

= +
Tk 2 20’kt 20’,3t2

9y _ Yoe M ((e~20kt — e2okt) (et — e_"kt)Q)
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The deterministic sensitivity index, E[E Ey], from the gradient-based methods is plot-
ted overlaying the local derivative, %, shown on the left of Figure ?7. Similarly, the
stochastic sensitivity index, Z—z, from the Variance method is directly superimposed
on the closed-form statistical solution, Z—:, shown on the right of Figure 77. Both
the gradient-based and Variance methods well agree with their analytical solutions.
Notice that a scaling factor between the absolute local derivative and the statistical
solution at the initial point or zero second is /3. This scaling factor can be dis-
covered analytically from the ratio of | dkl over 2 by using an approximation of the

exponential series.

2 _ Aowt)" (5.22)
% \/O-kt(emykt — 20k} — (eokt — e—akt)z’

_ 2(oxt)’

B \/2 + ezc’kt(akt — 1) - 6_2”’°t(1 + kat)

—~ 2(0’kt)2

V2 T, 0 (gt — 1) — o, 2 (1 4 g1)
o 2(oxt)?
T Z(owt)?

However, the absolute ratio of the local derivative over the statistical solution varies
as time progresses, as shown in Figure 5-39. The bigger the magnitude of oy is, the
larger the deviation of |(%)/ (32)] as a function of time becomes. Nevertheless, the

Z—Z curve changes slightly as the o increase.

The multiplicative uncertainty in k also induces the interaction with the state
variable, which can be captured by the variation of the gradient in the Morris, MC
Sampling, and Collocation methods in Figure 5-40. The interaction of k with y is
evolved with time, as shown in the o[E E] versus E[E Ey] plot. However, the Variance

method cannot identify the parameter’s interaction in a one-dimensional problem.

Second, we consider another simple first-order ODE with an exponential decay

rate (k) and a constant forcing function (c), as expressed below:

% = —ky+cwithy(0)=yo =2 (5.23)
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Figure 5-38: For the linear ODE dy/dt = —ky: the mean of FE}, (left) from the Morris
with p = 16 and r = 50000, Monte Carlo Sampling with A = 1 and NN = 50000,
and Collocation with A =1 and N¢ = 30 method with o = 0.4 are compared with
the absolute local derivative of y with respect to k£ and the VEE; (right) from the
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Figure 5-40: For the linear ODE dy/dt = —ky: the o[EEy] as a function of time (left)
and the plot of o[EEy] versus E[EEy]| (right), using the Morris method with p = 16
and r = 50000 (solid-line), the Monte Carlo Sampling with A =  and NN = 50000
(dash-line), and Collocation method with A = 1 and Nc/d = 30 (dot-line).

With this ODE, two different conditions — 1) k is a fixed constant of 5 and ¢ is an
uniform random variable with ¢ = 2 and o, = 0.4 and 2) both k and ¢ are independent
uniform random variables with £ = 5, € = 2, and o}, and o, are 0.4 — are considered
in this system. The first condition is for studying the sensitivity and interaction
effects of the additive uncertainty, c, alone, while the second condition shows how the
multiplicative uncertainty, k£, induces the interaction effect in the additive term. The
deterministic solution and its local derivatives with respect to k& and ¢ can be derived
as the following equations below, which can be used as the reference solutions of the

time-dependent sensitivity indices.

y=10- (- 1-e™) (5.24)
%’é - %(1 — e M), (5.25)

For the first condition, the closed-form statistical solution of the ratio of o, over o,

can be derived as the following:

%i—’ = 7%—,;(1 - 6_kt). (526)

Due to the linearity and additive uncertainty of this system, the absolute ratio of the
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local derivative and statistical solution is just v/3; however, this ratio is not always
constant as in the case of nonlinear systems and other types of uncertainties, e.g.

multiplicative and rational functions. For this linear system, Figure 5-41 shows that

Sy

5. is exactly identical to F [E'E.| from the Morris method, Sampling, and Collocation

methods. Moreover, Z—Z from the Variance method is also precisely matched with the

closed-form statistical solution, illustrated in Figure 5-41.
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0.15}
0.08
o1l I 006
o >
~—— |dy/dc} 0.04
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Figure 5-41: For the linear ODE dy/dt = —ky + ¢ with only ¢ as a uniform random
variable: the mean of EE, (left) from the Morris with p = 16 and r = 50000, Monte
Carlo Sampling with A = 1 and NN = 50000, and Collocation with A = 1 and
Nc¢ = 30 method with o, = 0.4 are compared with the absolute local derivative of y
with respect to ¢ and the V EFE, (right) from the Variance method are compared with
the statistical solution |Z¥.

Since the additive uncertainty is not directly coupled with other parameter and
state; thus, there is no interaction from c, as shown in the o[EE,] of Figure 5-42 using

the Morris, Sampling, and Collocation methods.

For the second condition, when both k£ and ¢ are independently uniform random

Ty

variables, the closed-form statistical solution of Z* and ';—’c' become very complex, as

ok
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Figure 5-42: For the linear ODE dy/dt = —ky: the o[EFEj] as a function of time (left)
and the plot of o[EEy] versus E[EFEy] (right), using the Morris method with p = 16
and r = 50000 (solid-line), the Monte Carlo Sampling with A =  and NN = 50000

(dash-line), and Collocation method with A = 7 and Nc¢/d = 30 (dot-line).

shown below:

- L goer om0 4 (1 ooy (5.27)
Ok 12 k+ ok .
—kt 1.
Y ot oty € ko
+20'kt (e € ) 20’k nl]—{:——Ukl
Coit [0 ™ 1Y de, ana
+=-€e" = ) ,an
2° /;1k+<7k< <) &
1
v = (11— R, (5.28)

Oc V3k

Using the gradient-based sensitivity algorithms, the E[FE;] and ¢[FE;] curves as a
function of time are plotted overlaying the local derivatives, as shown in Figure 5-43.
The parametric sensitivity of the decay rate, k, and forcing function, ¢, from the Mor-
ris, Sampling, and Collocation methods is closely matched with the local derivatives
for this linear system. The magnitude of k¥ and c sensitivity curves indicates that if
there is one percent change in these parameters, the output’s peaks are 0.17 and 0.2
percent, respectively. Moreover, the sensitivity curves of E[ff:] from the Variance
method, illustrated in Figure 5-44, yields similar characteristics as its local deriva-

tives, except that the magnitude of these curves are again scaled down. The absolute
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ratio of the local derivatives over the solution from the Variance method for k£ and
¢ are exponential decreasing, shown in Figure 5-45. Furthermore, when we decrease
the range of variation in k£ and ¢ to 20 percent or when o and o, are 0.2, all these
sensitivity algorithms still provide slightly different sensitivity curves because of the

linearity of this system.

0.2 r , 0.25
0.15
o
w 01
m‘ .
— |0 y/lo K — |gy/ac|
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- FPCM:A=1 -+ FPCM:A=1
0 - - 0 . *
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time [sec] time [sec]

Figure 5-43: For the linear ODE dy/dt = —ky + c: the mean of EF} (left) and
EE, (right) from the Morris with p = 16, Monte Carlo Sampling with A = 1, and
Collocation with A = 1 method with o}, = 0, = 0.2 are compared with the absolute
local derivative of y with respect to k£ and c.

— |0 y/o K|
— - Variance

/
/ — |9yl
/ — ~ Variance
0 i 2 . 2 O r " i
0 0.2 04 0.6 08 1 0] 0.2 04 0.6 08 1
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Figure 5-44: For the linear ODE dy/dt = —ky + c: the mean of %t (left) and 2t

(right) from the Variance method with o = o, = 0.2 are compared with the absolute
local derivative of y with respect to & and c.

However, the sensitivity of the multiplicative term, k, should have a larger influ-

ence on the system output than that of the additive term, ¢. To correctly rank the
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Figure 5-45: For the linear ODE dy/dt = —ky + c: the absolute ratio of the local
derivative over the solution from the Variance method for k (left) and ¢ (right) for
various o}, and o..

parameters’ sensitivity, the approximated gradient must be normalized by &/||y|| e or
¢/|lyllo to avoid including the parameters’ scaling. Figure 5-46 shows the normal-
ized E[EE;] and o[EE;], which represent the parameters’ sensitivity and interaction
ranking, using the Morris, MC Sampling, and Collocation methods. Notice that the
normalized E{EE;] rank k to be more important than c and the peak magnitude of
E[EEy] is 2.14 times larger than that of E[EE,| within 0 to 1 second. From Fig-
ure 5-46, the parameter interaction with other parameters and output can be seen
from the plot of o[EE;] versus E[EE;]. The D,, and D,, are respectively 0.321 and
0.164 for o = 0. = 0.2. When o} and o, are increased to 0.4, only the o[EE;] curve
is affected by this increase in the parameter variation. Therefore, D,, and D,, are
consequently 0.344 and 0.170 for o, = 0. = 0.4. Also, the mean values of o,/0,
need to be normalized by z;/||y||e to correctly identify the parameters’ significance,
as shown in Figure 5-47. Notice that JEFE; and IEE, are exactly on top of each
other; however, the plot of IEE; versus V EE; shows a larger interaction effect of &k
than that of ¢. The [D,,,D,.] are [0.185,0.094] for o,, = 0.2 and [0.198,0.097] for
oz, = 0.4. In the presence of the multiplicative uncertainty, the interaction effect of

the additive uncertainty is non-zero.
Third, let us further investigate another first-order ODE without an interaction
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Figure 5-46: For the linear ODE dy/dt = —ky + ¢ the normalized E[EE;] and
o|EE;] of k and ¢ as a function of time, ¢ € [0, 1] second, using the Morris method
with p = 16 and r = 50000 (solid-line), the Monte Carlo Sampling with A = 1 and
NN = 50000 (dash-line), and Collocation method with A = 1 and Nc¢/d = 10 (dot-
line) in three dimension (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’ interaction
effect, and the Front view (Bottom-Right).
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Figure 5-47: For the linear ODE dy/dt = —~ky+c: the normalized E[Z%] and o[2%] of
k and c as a function of time, ¢ € [0, 1] second, using the Variance method with N c/ d=
20 in three dimension (Top-Left), the Side view (Top-Right) for emphasizing the first-
order effect, the Top view (Bottom-Left) for emphasizing the inputs’ interaction effect,
and the Front view (Bottom-Right).
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between state and parameters, as written in the following equation:

dy _ —k —b— ¢ with y(0) = 2 (5.29)

dt

where k, b, and c are random variables with mean values of 4, 2, and 3, respectively.
This ODE is for testing the base-line reference of the interaction index using the Mor-
ris method and our sensitivity algorithms. Using the Morris method in Figure 5-48,
the significance of parameters is ranked according to this order (k,b,c), corresponding
to the magnitude of each parameter. Since there is no interaction in each parameter,
the magnitudes of o[EFE;] are very small. Similarly, the ranking of parameters’ im-
portance using the Variance method, shown in Figure 5-49, provides the same relative
order in the normalized V E'E; and no interaction among parameters can be seen from
a small magnitude of the normalized JE'E;. This again confirms that in the absent

of the multiplicative uncertainty, the additive uncertainty leads to zero interaction.

E[EE]

0 02 04 06 08 1 0 05 1 15 2
time [sec] E[EEi]

Figure 5-48: For the linear ODE dy/dt = —k — b — ¢ the normalized E[EE;] and
o|EE;] of k, b, and c as a function of time, t € [0, 1] second, using the Morris method
with p = 16 and r = 80000 to emphasize the first-order effect (Left) and to emphasize
the inputs’ interaction effect (Right).

Fourth, to evaluate the effectiveness of the interaction index using the Morris
method and our sensitivity algorithms, we look at another first-order ODE, shown
below:

dy

i —kecy + ¢ with y(0) = 2 (5.30)
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Figure 5-49: For the linear ODE dy/dt = —k — b — c: the normalized E[*] and
o[;*] or VEE; and IEE; of k, b, and c as a function of time, ¢ € [0, 1] second, using

the Variance method with Nc¢/d = 30 to emphasize the first-order effect (Left) and
to emphasize the inputs’ interaction effect (Right).

where k£ and c are random variables with mean values of 5 and 2, respectively. oy, is
set to be 0.4. From Figure 5-50, £ has a larger influence on the output than ¢, which
is unexpected because there are two terms of ¢ in the above equation. However, the
cancellation of the multiplicative and additive terms ¢ decreases its sensitivity index.
Similarly, the interaction index also indicates that & has a stronger coupling effect than
¢ with y(t). The [D,,,D,,] are [0.210,0.114] for o, = 0.4. Using the Variance method,
we obtain similar sensitivity characteristics and parameters’ coupling effect, as shown
in Figure 5-51. Notice that the plot of normalized V EE; versus I EE; contains more
curvature than that of E[FE;] versus o[EE;|; nevertheless, the interaction index of
the Variance method yields the same relative magnitude of k and ¢, where [D,,,D, ]

are [0.120,0.065] for o, = 0.4.

5.3.2 Duffing’s oscillator

Now, let us consider a nonlinear Duffing’s oscillator with a constant forcing function,
which consists of two state variables: position (y) and velocity ( %’ti) as expressed in

the equation below,
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Figure 5-50: For the linear ODE dy/dt = —kcy + ¢: the normalized E[EE;] and
o|EE;] of k and ¢ as a function of time, t € [0, 1] second, using the Morris method
with p = 16 and r = 80000 to emphasize the first-order effect (Left) and to emphasize
the inputs’ interaction effect (Right).
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Figure 5-51: For the linear ODE dy/dt = ~kcy + c: the normalized E[]*] and o[ %]

or VEE; and IEE; of k and ¢ as a function of time, ¢ € [0,1] second, using the
Variance method with N¢/d = 30 to emphasize the first-order effect (Left) and to
emphasize the inputs’ interaction effect (Right).
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dy2
— 4+ 2
7 + Znw

dy(0
+ Wy + ew?y® = 1.0, with i’ci(t—) = 0;5(0) = 2, (5.31)

dy
dt
where 7, w, and ¢ are a damping coeflicient, a natural frequency, and a coefficient of
the cubic nonlinearity, which can represent a hardening nonlinear spring. All n, w,
and € are assumed to be independent uniform random variables with mean of 2 and
standard deviation of 0.2 for unbiased weighting of this nonlinear ODE. From this
nonlinear system, w is the most influential parameter due to the quadratic nonlinearity
and strong couplings with the other two parameters and the output. However, this
might not be the case for all times between [0,1] second. As shown in Figure 5-52, the
trajectories of normalized E[EE;] and o[EE;] for these three parameters are plotted
as a function of time using the Morris method with p = 16, the Monte Carlo Sampling
and Collocation methods with A = %, which are based on the gradient computation.
Note that the normalized E[EE;| and ¢[EE;] trajectories from the Monte Carlo and
Collocation methods are identical, and also closely match with that of the Morris
method. From the plot of normalized E[FE;] versus time, the sensitivity effect of w
is dominant at the first quarter of a second and again after 0.6 second; the damping
effect of n surpasses that of w only between 0.35 and 0.6 second. These characteristics
occur because of the cubic nonlinearity in the last term of the equation. As expected,
the coupling effect of w is stronger than those of the n and ¢ for the entire range
of time, illustrated in the plots of o[FE,;] versus time and o[EE;] versus E[EE;].
The [D,,,D,,,Ds,] are [0.472,0.285,0.235] using the Morris method with o,, = 0.2,
which is similar to the interaction indices obtained from the Sampling and Collocation
methods. The interaction of w is twice as that of € on average. In addition, we can
consider the ranking of inputs’ first-order and coupling effects at a specified time,
as shown in Figure 5-53 for t:[%, %] second. The results using the MC Sampling
and Collocation methods precisely overlay each other, while their relative magnitude

matches that of the Morris method.

Now, the VEE, and IEFE; trajectories of 1, w, and ¢ are plotted in Figure 5-

54 using the Variance method. These trajectories resemble those in Figure 5-52,
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Figure 5-52: For a 2 variable, the E[EE;] and o[EE;] of n, w, and € as a function of
time, ¢t € [0, 1] second, using the Morris method with p = 16 and r = 5,000 (solid-
line), the Monte Carlo Sampling with A = é— (dash-line), and Collocation method
with A = £ (dot-line) in three dimensions (Top-Left), the Side view (Top-Right) for
emphasizing the first-order effect, the Top view (Bottom-Left) for emphasizing the
inputs’ interaction effect, and the Front view (Bottom-Right).
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Figure 5-53: The mean and standard deviation of EE; from the Morris method, the
Monte Carlo Sampling and, the Collocation method in the last figure, when time is
fixed at % and % second.

obtained using the gradient-based sensitivity. In particular, the relative magnitude of
the first-order effect, V EE;, is the same as that of E[EE;]. However, the trajectories
of IEE, and o[EE,)] are slightly different during [0,0.5] second since the IEE; of the
Variance method does not include the nonlinear effect. As seen in Figure 5-52, the
trajectory of o[EE,)] is larger than those of o[EFE, ] at all times due to the quadratic
nonlinearity of w and the coupling with the cubic nonlinearity output. After 0.5
second, when the system reaches its steady state, the characteristics of the I EFE; and
o[EE;] trajectories become very similar. The plots of o[FE;] versus E[EE;] and of
IEE; and VEE; reveal another perspective. The o[EE;] versus E[EE;] plot shows
that the interaction and nonlinear effects of w dominate those of n and ¢, while the
IEFE; and VEE,; plot, which emphasizes the interaction effect more, shows that n can
be more important in certain time ranges than w because of its direct interaction with
the 'f—# state variable. The [D,,,,D,,, Ds,] are [0.360,0.173,0.159] using the Variance
method with o,, = 0.2. These interaction indices show that the coupling effect of
w is almost two times larger than that of ¢. Likewise, the plot of VEE; and IEFE;
can be taken from the slice of the trajectory plot at a particular time, as shown in
Figure 5-57 for t=[3, 2] second. The relative magnitude of VEE; and IEE; plots at
these two time slices are identical to those of E[FE;] and ¢[EE;] plots.

From the convergence performance aspect, we need to redefine the RM S(AE[EE;))
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Figure 5-54: For a %’ti variable, the VEE; and IEFE; of n, w, and € as a function of time,
t € [0,1] second, using the Variance method with (Ne/d) = 20 in three dimensions
(Top-Left), the Side view (Top-Right) for emphasizing the first-order effect, the Top
view (Bottom-Left) for emphasizing the inputs’ interaction effect, and the Front view
(Bottom-Right).
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Figure 5-55: The mean and standard deviation of FE; from the Variance method in
the last figure, when time is fixed at  and 2 second.
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and RMS(Ac|EE;]) to take into account the third dimension of time. The L, norm
is employed in RMS(|AE[EE;]|]2) and RMS([|Ac[EE;]||2) to sum the AE[EE;] and

Ac[EE;] over time as shown in the equations below:

RMS(|AE[EE]|L) = | > (IE*EE] - EXEE]],), (5.32)

i=1

n

RMS(|AG[EE]|2) = \| Y (IeHBE] ~ o+ [EE]|2)" (5.33)

i=1

For this Duffing’s oscillator with three input parameters, the convergence of the Morris
and Sampling methods, measured by RMS(||AE[EE]||2) and RMS(||Ac[EE]|2),
is comparable in both accuracy and computing cost, while the results’ convergence
using the Collocation method is about an order of magnitude faster than those of the
Morris and Sampling methods, as shown in Figure 5-56. Similar to the example of the
monotonic static function, the Variance method exhibits an exponential convergence
of RMS(|AVEE;||s) and RMS(|AIEE;|2). Similar to the convergence study in
Chapter 4, the exponential convergence rate of the full-grid collocation is faster than
the algebraic convergence rate of the Monte Carlo method for the same computing

cost in low- and medium-dimensional problems.

Let us consider Duffing’s oscillator with a sinusoidal forcing function, described
below, from the stochastic analysis perspective. In this case, the phase of the forcing
function is assumed to be a uniform random variable, ¢ = ¢ + ,¢, where ¢ = 0 and
¢ e-1,1].

dy? d dy(0)

’r + 2nwd—i’ + Wy + ewy® = Asin(2n ft + ¢), with T 0;y(0) =2, (5.34)

where 77, w, and € are just constants of 2, the magnitude and frequency of the forcing
function are 2 and 1, respectively. The four different ranges of random phase shift,
oy = 0,7/4,7/2, and 7, are considered for the stochastic analysis using the full-grid
PCM with Ne = 100. Figure 5-57 shows the statistical results with the random phase

shift. Surprisingly, as the fluctuation of random phase shift approaches 7, the mean
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Figure 5-56: The convergence characteristics of RMS(||AE[EE;}|l2) (Top-Left)
and RMS(||Ac[EEi]|2) (Top-Right) using the Morris, Monte Carlo Sampling, and
Collocation methods and RMS(||AV EE;||;) (Bottom-Left) and RMS(J|AIEE;||5)
(Bottom-Right) using the Variance methods are plotted versus the computational

time.
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solutions of both y and dy/dt become zero. Nevertheless, the variance solutions of

both y and dy/dt in the transient region become larger as o, increases.
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Figure 5-57: The stochastic solutions of the position and velocity of Duffing’s oscillator
with the four different variations of random phase shift, o, = 0,7/4,7/2, and .

5.3.3 An open-loop induction machine with an infinite bus

In this section, we investigate how these three sensitivity algorithms rank the signifi-
cance and interaction of inputs and what effects a large number of inputs and states
have on the convergence performance of these algorithms, when the system of ODEs
and number of input parameters are increased and all input parameters are strongly
coupled with other inputs as well as state variables of the induction machine with
an infinite bus (see Figure 4-70 in Chapter 4.3). Because of the five coupled out-
put variables, [w;i,wrdf,,wr,i;i,z’:;], the trajectories of 10 input parameters, including
[Tsy T1sy T, x;T, r;, ¢, L, My, Tioad, H], are shown only for the d-axis tie line current or
i;ﬁ state, using the Morris method with p = 16, shown in Figure 5-58. All these inputs

are assumed to be independent random variables with 10 percent variation from their
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mean or nominal values. These results have the same relative magnitude of E[EFE;]
and o[ EE;] as those obtained from the Monte Carlo sampling and Collocation meth-
ods with A = %, which are omitted. As seen in the E[EE;] versus time plot below,
the i:ft is very sensitive to multiple inputs, especially z;, and z,, in the first second and
r.. right before reaching the synchronous speed. These sensitivity indices agree with
multiple time constants associated with the induction machine. In the first second,
the stator and rotor windings attempt to accelerate the rotor up to speed; therefore,
the reactance of these windings, z;, and z;,, should be the most sensitive parameters
during the electrical transient regime. After the electrical transient dies out, the rotor
inertia, H, and mechanical torque load, Tj,.4, also have significant influence on the
tie line or stator current during [1,2] seconds, where the mechanical time constant
dominates, as we can see from the 1.2 and 0.6 magnitude of E[EE;]. In terms of
input coupling, all these five parameters (r;,ms,x;r, H,Tjoqq) exhibit strong interac-
tion with other inputs. Again, at each time step, the o[EE;] versus E[EE;] plot can
be used to directly rank the inputs’ sensitivity as well as interaction, as shown in
Figure 5-59. Notice that r;, L;, and M; from the tie line and z,, from the induction
machine have almost a negligible effect on this i output because the infinite bus
absorbs all variations in the tie line’s parameters. The mutual flux leakage, ., is
usually about 100 times larger than the flux leakage of the stator and rotor windings;
thus, with the same percentage of fluctuation, x,, is less sensitive than x;, and a:}r.
Moreover, the coupling effect of some inputs using the Monte Carlo and Collocation

methods is slightly different from o[EF;| of the Morris method.

Using the Variance method, the normalized sensitivity trajectories of these 10
inputs can also indicate which inputs have larger impact on the output, such as z':l‘;,
as shown in Figure 5-60. Both plots of VEE; and [EE; versus time yield the same
relative magnitude and ranking of all inputs as those using the Morris methods in
Figure 5-58; the sensitivity from the stochastic results can be used to confirm the sen-
sitivity from the deterministic result, using the gradient computation. The dynamic
ODEs of this electric machine are mostly composed of quadratic nonlinearities and

rational functions. Thus, the propagation of uncertainty in complicated ODEs can
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Figure 5-58: For the ys or i, state variable, the E [EE;] and o[EE;] trajectories of all
10 input parameters as a function of time, ¢ € [0, 3] second, using the Morris method
with p = 16 and r = 80, 000 in three dimension (Top-Left), the Side view (Top-Right)
for emphasizing the first-order effect, the Top view (Bottom-Left) for emphasizing the
inputs’ interaction effect, and the Front view (Bottom-Right).
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Figure 5-59: The mean and standard deviation of EF; from the Morris method, the
Monte Carlo Sampling, and the Collocation method in the last figure, when time is
fixed at 0.3 and 1.5 seconds, where the electrical and mechanical transients dominate,
respectively.

be used for detecting the parameters’ sensitivity as well. Furthermore, the slices of
the TE'E; versus V E'E; plot from the sensitivity trajectories (see Figure 5-61) at the
particular times of 0.3 and 1.5 seconds can be precisely compared with those from the
gradient-based sensitivity algorithms, in Figure 5-59. Again, the relative magnitude
of parameters in the [ F'F; versus V EE; plots agrees well with that of parameters in
the o[EI;] versus E[EE;] plots.

Figure 5-62 reveals the convergence performance of all techniques based on the

gradient computation. Again, using the RMS(||AE[EF;]||2) and RMS(||Ac[EE]||2)

as the convergence measurement, the convergence rates of both Morris and Monte
Carlo Sampling methods are in the same order of magnitude. The convergence per-
formance of the Collocation method is still much better than those two methods in
this system with a large-input dimension because the faster convergence rate of the
full-grid PCM. However, the standard deviation of the outputs’ stochastic variation of
the Variance method does not converge as quickly as that of the Collocation method,
as shown in Figure 5-63 because of different characteristics of the Variance method.
To summarize the ¢ input sensitivity on all j system outputs over the entire time
interval in a two-dimensional figure, we need to define an average sensitivity index as

the (ES5;4)) and an average interaction index as the (SSs;,)), using the Ly norm
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Figure 5-60: For a y; variable or i, the VEE; and IEF; trajectories of all 10
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Figure 5-62:  The convergence characteristic of RMS(||AE[EE;]|2) and
RMS(||Ac[EE;]||2) using the Morris, Monte Carlo Sampling, and Collocation meth-
ods based on the approximated gradient computation is plotted versus the computa-
tional time.
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the statistical computation, is plotted versus the computational time.

as the following:

ESQ'(J'.,',} = ”E[EE;]”z and SS-_::.(J",‘) = |I\/E[EE;]2 + 0’[EE¢]2||2. (535)

Nevertheless, because some parameters might have strong influences only within
a specified time interval, the peak sensitivity ((FS,))) and interaction indices

((SSx.j.i))), defined below, must be considered along with the (ESy (;;)) and (SSz,(;,4))-

ESw i) = |E[EEi]||lx and SSw. i) = |V E[EE]? + 0[EEi]?||«. (5.36)

Therefore, all the normalized sensitivity trajectories of the induction machines
with 5 coupled outputs and 10 input parameters can be summed up in the following
plot of ES, ;) for ranking the input sensitivity and of 5SSy (;; for ranking the in-
put interaction. All algorithms exhibit the same order of magnitude of ES, ;) and
SS.,j.4) on average between 0 and 3 seconds, as shown in Figures 5-64 and 5-65,
respectively. Notice that the y» or w:f;_ output is the most sensitive, particularly to
the electrical parameters, among all the outputs. The peak magnitude of ES ;) is
about 2.6 times that of ES, ;) and both interaction indices, 55 ;4 and SSy (ji),

exhibit a similar ranking to their sensitivity indices.
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Morris Method:p=16

FPCM:A=1

Figure 5-64: The E'S, ;. plots using Morris, MC Sampling, Collocation, and Variance
methods for ranking the input sensitivity. Note that the order of z; inputs on the

. r ’ . . . .
X-axis are [y, Tis, Tm, Ly Ty Tty Ly My, Tioq, H) from left to right and the order of y;
. 1te  gla N W
outputs on the y-axis are [1/., ¥4, wr, 4,44 from top to bottom.
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Morris Method:p=16 MC:A=1

FPCM:A=1 Variance

Figure 5-65: The S5, (; ;) plots using Morris, MC Sampling, Collocation, and Variance
methods for ranking the input coupling or interaction. Note that the order of x; inputs
on the x-axis are [ry, r)y, T,,, ;rzr. r: Tty Ly My, Tioaq, I from left to right and the order
of y; outputs on the y-axis are [-z,/);ﬁ.,'d;;g,.w-,-.. z:f, i.¢] from top to bottom.
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Morris Method:p=16

Figure 5-66: The FSy ;i plots using Morris, MC Sampling, Collocation, and Vari-
ance methods for ranking tho mput sensitivity. Note that the order of x; inputs on
the x-axis are [ry, Ti5, T, rir ST L, U,, Tioaas H| from left to right and the order of

y; outputs on the y-axis are [t*q; Vo wr, 5. 1] from top to bottom.
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Morris Method:p=16 MC:A=1

Figure 5-67: The SS ;) plots using Morris, MC Sampling, Collocation, and Vari-
ance methods for ranking the input couphng or interaction. Note that the order of
r; inputs on the x-axis are [r, 1y, T,,. T;T.’ T L, M,, 1 load> ] from left to right and
the order of y; outputs on the y-axis are [aq, UL, wr, zq,, i.¢] from top to bottom.
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5.3.4 AC power distribution with open-loop propulsion sys-

tem

We can extend the ability of these four sensitivity algorithms further to deal with a
large-scale complex system of the power distribution and propulsion units in the in-
tegrated electric ship system. Actually, this system is similar to the system described
in Figure 5-89 of Section 4.4, except that the power converter and the constant-slip
current controller of the induction are removed to simplify the system in an open-loop

configuration. The one-line diagram of this system is shown in Figure 5-68 below,

25-order ODE
(ONR 2003)

Prime Mover
(Ideal)

Proportional
Load to w?,

V, =570V RC bus with harmonic filter

Figure 5-68: A one-line diagram of the second configuration of the AC power dis-
tribution with the open-loop induction machine for studying the sensitivity analysis
with 24 parameters.

where the mechanical torque load is modeled as a proportional torque load to the
square of the motor speed with .4 coefficient, which is similar to the propeller load.
The scenario of this simulation is that the 59 kW generator is initially operated around
its steady-state condition and then the 50-hp induction motor is suddenly turned on
at zero second; thus, the start-up transient dynamics of the induction motor must
be taken into account. Also, both electrical and mechanical time constants of the
synchronous generator and the induction motor are the focus in this sensitivity study.
With this particular proportional torque load, the electrical transient responses die
out within the first second, while the mechanical time constant is about 6 seconds
before approaching steady-state values. There are a total of 24 parameters (12 in
the 59 kW synchronous generator and exciter, 7 in the 50-hp induction motor, and 5

in the RC bus connecting between the generator and motor) and 25 state variables.
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The nominal values of all parameters are given in Appendix B. These parameters are
assumed to be random variables with o, as the percent variation from their mean or

nominal values of each parameter.

To study the parametric sensitivity for all state variables, we employ only the
Monte Carlo Sampling methods with A = 1 to perform the sensitivity analysis for
t € [0,1] and ¢ € [0,12.4] scconds, where the electrical and mechanical time constants
dominate, respectively. All parameters are assumed to be independent uniform ran-
dom variables, X; = #; + 0,,§, where £ € [-1,1]. Morcover, three different ranges of
the parameter variation, o,, = 0.1, 0.3, and 0.5, are compared against one another in
this study because the sensitivity and interaction effects of this nonlinear system do

not scale up linearly.

For t € [0,1] second and o,, = 0.1, Figure 5-69 and 5-70 show the normalized
sensitivity time traces of the a-phase current of the harmonic filter(, fiper) or Y14
state and the IM’s rotor angular velocity (w,) or y»y4 state, respectively. These two
plots consider only the sensitivity time traces of I, fiper and w, to the the 7 induction
machine’s and 3 bus’s parameters. Each input parameter influences each state variable
differently. The I, fiser is highly sensitive to only the harmonic filter capacitor, Cy,
as seen from a large gradient magnitude within the first fraction of second. This peak
gradient of I, i, to Cy approaches a small steady-state value very quickly. The
large and sudden peak of [, fier sensitivity occurs because of two reasons: 1) a large
three-phase current from the bus is required to start the induction machine from rest
and 2) C is directly influence a change in power drawn from the RC bus. However,
w, is sensitive to both electrical parameters: stator and rotor resistances (ry,r,) and
mechanical parameter: rotor inertia (.J).

To see how L of the harmonic filter and 7. of the IM’s rotor windings influence
the three-phase RC-bus current (L, picer) and the magnetic flux linkage of the IM’s
stator and rotor windings (4445 and z/);dT), Ly and 7). are varied by £ 10 percent from
their nominal values in a deterministic simulation. Then, we compare thesc responses
with the deterministic responses when L and 7 are at their maximum and minimum

bounds, as shown in Figure 5-71 and 5-72. Figure 5-71 shows that the increase in
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Figure 5-69: For a y;, variable or [, fiyer of the harmonic filter, the normalized
E|EE;] and o[EE;] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, t € [0, 1] second, using the MC Sampling method
with NN = 1,000 and o,, = 0.1 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).
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trajectories of the 7 induction machine parameters and 3 bus parameters as a function
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0.1 in three dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’ interaction
effect, and the Front view (Bottom-Right).
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Ly leads to a slower response of the I, rirer and vice versa, which further induces
a phase shift in I, . fiirer, especially in the high-frequency region in the first fraction
of a second. On the other hand, the change in 7/ only increases or decreases the

magnitude of the IM’s ¢gqs and ¢, as shown in Figure 5-72,
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Figure 5-71: For 10 percent increase in L, the deterministic responses of [, T
5 I ab.e filter;
Uqas, and ¢, with and without change in the L; nominal values.
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Figure 5-72: For 10 percent increase in ry, the deterministic responses of I, Fitters
Uyas, and ¥, with and without change in the ) nominal values.

Due to a large number of inputs and outputs, we can summarize all these results in
the plots of £S5 (; jy and S5 ;) (See Figure 5-73) for examining the average sensitiv-
ity and interaction effects over a specified time interval, respectively. To capture the
maximum magnitude of the sensitivity and interaction effects, ESy ;) and SS. (.

(See Figure 5-74) must be considered along with S, ) and 585,4. The ES, ; j)
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reveals that the three-phase currents (7, I, I.) of the harmonic filter in the RC bus
are the most sensitive variables among all 25 states and they are very sensitive to C';
and Ly because the harmonic filter is tuned to reduce high harmonic frequency and
the RC bus subjects to large high-frequency start-up current of the IM. Moreover,
most state variables are sensitive to the IM’s parameters, which implies a direct in-
teraction among the SM, IM, and RC bus. Similarly, IS, (; ;) or the peak sensitivity
indices show the same agreement that [, . fiter are the three most sensitive state
variables to Ly and 'y with large maximum gradient as well as average gradient.

MC:A=1 MC:a=1

. i
2
X

Figure 5-73: The ESy ;) plot (Left) and S5, ;) plot (Right) using the Monte Carlo
Sampling method with NN = 1,000 for ranking the input sensitivity for o,, = 0.1
and ¢ € [0, 1] second. Note that the order of z; inputs on the x-axis are [ry. X5, Xng,
Xmgs Tidy Xfdy Thds Xikds Thaly Xikql:Tkq2s Xikg2s Ts2y Xis2, Xm2y Xip2s Tray Iy Qoaas C,
R, Cy. ry, Ly from left to right and the order of y; states or outputs on the y-axis
are [, 1_,‘{’;:;1. L,:’.’;F;l-u,, e u‘ir}-‘;i. Vg, UE,, 6, p.’nfd‘ VE, Vi, Vim, Vens tay B, e, Vi, Vea,

T [e e [ (e I e
Va3 Wsss Ygrs Visr U Ui, wy] from top to bottom.

“ds»

The normalized sensitivity time traces of w, for ¢ € [0,1] and o, = 0.3 in Figure 5-
76 is slightly larger than those for o,, = 0.1 in Figure 5-70. Even though, there is a
small increase in the E[FFEy] magnitude, the peak magnitude of o[E Eyy] grows by
three times. Little change in the w, sensitivity occurs because the transient dynamics
of the mechanical component still gradually increase within this time range. While
the fast dynamics of the electrical transient, such as in 4 or Io fitter, are strongly
dominated during the IM’s start-up acceleration, the frequency of the normalized

sensitivity trajectories of I, siu., becomes higher and its peak magnitude drops more
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MC:A=1

Figure 5-74: The ESx (i) plot (Left) and 5SS ;) plot (right) using the Monte Carlo
Sampling method with NN = 1,000 for ranking the input sensitivity for o,, = 0.1
and t € [0, 1] second. Note that the order of x; inputs on the x-axis are [rs, X5, Xind.
Xongs Trds Xgds Thds Xikds Tha1s Xikgl:Tkqzs Xikg2s Ts2y Xis2y Xm2y Xur2s T2y Jy Qoaas C,
R, Cf, ry, L] from left to right and the order of y; states or outputs on the y-axis
are (g, Vi Yigay Voo Ve Vit Yoor 05 €xpas VI Vany Vin, Ven, ta v, e, Ve, Ve,

! i Fy .
Vs WS, Ugs Vs, Uirs UG, wr] from top to bottom.

quickly as o, increases from 0.1 to 0.3, as shown in Figure 5-75. This reduction
of the mean value as the percent variation increases is caused by the cancellation
of the response ensembles due to the phase shift in the dynamic responses, which
is explained in Section 5.3.2. The magnitude of o|EFE)4| also decreases; this phase
shifting of I, fier must be caused by the interaction with other states or parameters.
Unlike, the random phase shift in the inputs of the duffing’s oscillator does not cause

a reduction in the variance magnitude.

Similarly, we again change the nominal values of both L of the harmonic filter
and r. of the IM by + 30 percent and then investigate the difference between the
deterministic minimum- and maximum-bound responses of the three-phase RC-bus

current ([, pe siter) and the magnetic flux linkage of the IM’s stator and rotor windings

(1qds and -u’.f; ar)> as illustrated in Figure 5-77 and 5-78. With 30 percent variation in L
from its nominal value, /, ¢ fiier are even slower than those with 10 percent variation
in Ly; thus, the phase shift of the high-frequency 1,4 fiter become more significant.

On the contrary, the 30 percent increase in ). only enlarges the magnitude of the IM’s
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Figure 5-75: For a y;, variable or [, ., of the harmonic filter, the normalized
E[EE;] and o[EE;| trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, ¢t € [0, 1] second, using the MC Sampling method
with NN = 2,500 and o,, = 0.3 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).
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Figure 5-76: For a yo, variable or w, of the IM, the normalized E[FF;| and o|EE;]
trajectories of the 7 induction machine parameters and 3 bus parameters as a function
of time, ¢ € [0, 1] second, using the MC Sampling method with NN = 2,500 and o, =
0.3 in three dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’ interaction
effect, and the Front view (Bottom-Right).
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Vgas and v, without any phase shifting, which directly leads to an increase in the

magnitude of w, sensitivity.
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Figure 5-7T7: For 30 percent increase in Ly, the deterministic responses of I, ¢ fitter,

Yqds, and qu,';,,l.,. with and without change in the L; nominal values.
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Figure 5-78: For 30 percent increase in ry, the deterministic responses of I, pc rirrer
Yqds, and ¢y, with and without change in the 7 nominal values.

Again, to summarize all sensitivity and interaction of all states to all input pa-
rameters in one plot, both (ESs i), 552 ;4) and (ESx i) SSx.j.:)) plots reveal
the overall picture of both of these effects over the time range of [0,1] second and
at a specified peak location, respectively. As the percent variation of parameters
increases, both (Xi.rsq) of the SM’s parameters and (rg, Xm2,r2,.J) of the IM’s pa-
rameters consequently exhibit large influences on (¢q,¢774) of the SM’s states and

(Vg ‘aj;;‘f,, P w;f,) of the IM’s states, seen Figure 5-79. Notice that on average, all
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state variables of this system become more sensitive to the large parameter variation
and the variation of IM’s parameters can have some effect on the generator states
and vice versa. Thus, the overall sensitivity plots imply direct machine interactions
between the generator and the motor. Note that all state variables in this system
with the open-loop propulsion are not sensitive to the load coeflicient, ayy.q. within
this time frame. However, the peak sensitivity and interaction indices in Figure 5-80
show only a slight difference in the parameter ranking from those in Figure 5-74,

except the higher peak magnitude of I, 4. fiter-

MC a=1

Figure 5-79: The I)S; ;) plot (Left) and SSs ;) plot (right) using the Monte Carlo
Sampling method with NN = 2,500 for ranking the input sensitivity for o,, = 0.3
and ¢ € [0, 1] second. Note that the order of z; inputs on the x-axis are [ry, X;5, Xna.
.qu. Tfd, .de. Tkd- 1Ytkd- r‘kql.ngql.T'kqg. ‘X“L-q-z. T'so. 4)(!32‘ vag. 1-\’;,-2. o, J, Yoad (_'.

€

- . . . - | C‘,
R, C's, rs, L¢] from left to right and the order of y; states on the y-axis are [¢¢.. .5, .
f .vr f O )’j i qs ,(.ql
' ; ' it ' - , - , 4 . - e e e
Vig2r Visr Vi Yiear Wis» 9, €z fd> VF, Vau, Vi Ve, ta, t, te, Var, Vea, VesWss: Vgrr Voo
Vg, U, wy] from top to bottom.

As we further increase the percent variation of all parameters’ fluctuation to 50
percent to examine the free acceleration of the induction machine, the sensitivity
of the mechanical state, w,, becomes larger as time progresses (see Figure 5-82),
while the sensitivity of the electrical state, I, fiser, to C is even more sudden with a
smaller gradient magnitude than that with o,, = 0.3 occurring within 0.1 second (see
Figure 5-81). Again, the cancellation of the phase shift responses due to variations in
'y and Ly leads to decrease in the magnitude of the sensitivity time traces. However,

the magnitude of F[EF,] to other parameters remains constant.
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MC:A=1 MGC:A=1

Figure 5-80: The ESy ;i plot (Left) and SS4 ;. plot (Right) using the Monte Carlo
Sampling method with NN = 2,500 for ranking the input sensitivity for o,, = 0.3
and t € [0,1] second. Note that the order of z; inputs on the x-axis are [ry, X5, X,nd.
Xongs Tids Xydy Tkds Xikds Thqrs Xikq1:Tkq2s Xikg2s Ts20 Xis2e X2, Xir2, Tr2, J, Qoads C,
R, Cy, ry, Lf] trom left to, 110ht and the ordm of y; states or outputs on the y-axis
are [L‘qs Z‘kql quz- Vi U fd' (0l kd Vis 0, F’Jfah VF, Van, Vin, Vens tas o, ter Ve, Veg,
Vea Uy, U8, U5, Ui, 1,, wy] from top to bottom.

As the peak magnitude of the I, fie, sensitivity drops, the plots of (ESs ), SSa,;.1)
with o,,=0.5 (see Figure 5-83) are closely matched with those with ¢,,=0.3. Similarly,
the peak sensitivity and interaction indices, (ESx (ji), SSx.(j.i)) (see Figure 5-84) re-
veal that there is strong coupling between the SM, IM, and RC bus. Particularly,
some SM’s and IM’s parameters have a significant impact on all state variables of the
entire system, while all RC bus’s parameters only affect its state variables.

For t € [0,12.4] second where the mechanical time constant is dominated, the
normalized sensitivity trajectories of I, sy, of the harmonic filter and w, of the IM
in Figure 5-85 and 5-86 are compared to those with ¢ € [0,1] second in Figure 5-
75 and 5-76. We can see that C;, r,, and J have the strongest influence on the
Lo pilter and the interaction index of r‘; and J overwhelms that of other parameters.

The sensitivity of 1, fiyer to r

» and J, particularly after 2 seconds, confirms directly

interaction between the RC bus and induction motor even more. The sensitivity time
! - . . . .

traces of w, to r, and .J reach a peak gradient magnitude of 0.7, which is almost 7 time

larger than that in the short time frame, then approach zero steady-state values within

three times of the mechanical time constant. Moreover, the rotor speed also becomes
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Figure 5-81: For a y;, variable or I, sy, of the harmonic filter, the normalized
F[EE;] and o[EFE;] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, ¢ € [0, 1] second, using the MC Sampling method
with NNV = 5,000 and o,, = 0.5 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).
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Figure 5-82: For a y»y variable or w, of the IM, the normalized E[EE;] and o[EE)]
trajectories of the 7 induction machine parameters and 3 bus parameters as a function
of time, ¢ € [0, 1] second, using the MC Sampling method with NN = 5,000 and o, =
0.5 in three dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’ interaction
effect, and the Front view (Bottom-Right).
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MC:A=1 MC:A=1

Figure 5-83: The S, (;;) plot (Left) and S5, ;) plot (Right) using the Monte Carlo
Sampling method with NN = 5,000 for ranking the input sensitivity for o,, = 0.5
and t € [0, 1] second. Note that the order of z; inputs on the x-axis are [ry, X5, Xpna,
Xmg> Tfdy Xfds Thdy Xikds Thaly Xikq1 The2s Xikg2s Ts22 Xis2e Xm2, Xir2, T2, J, Qoad, C,
B, Gy, 73, LJr] fmm left to nvht and the 01(101 of y; states or outputs on the y-axis
are [z,qg l.-,‘q] l"f»f/’ e, U 'fr! I;M Usr 0, rlf”. VFE, Vi, Yo Vi, 85, B, 4, 'L-c.l. Voo,

VesWasr Yorr Yisr Vi Yoo wy| from top to bottom.

MC.a=1 MC.a=1

Figure 5-84: The ES, ) plot (Left) and SS4 ;.1 plot (Right) using the Monte Carlo
Sampling method with NN = 5,000 for mnkmg the input sensitivity for o,, = 0.5
and t € [0,1] second. Note that the order of x; inputs on the x-axis are [r,. X5, Xna.
)(mq Tfds de Tkd, XU.(! I'kq1, XU.q] Tkq2, /‘(!Aq- Ig2, Xl‘fZ sz- X!r‘) I'ra, j Xoad, ('
R, Cy, 1y, L f] from left to right and the 01d01 of y; states or outputs on the y-axis
are [is,, ckql ‘kq’ Vs zfd V&, UE,, 0, PLM VF, Vi Vais Vens Tas B ey Vo Vias
Ve, ¥z u,q,.. WS, U, U, wy] from top to bottom.
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more sensitive to the load coefficient, a,qq. after 2 seconds. This phenomenon implies

that each parameter can have a different influence according to the time scale.
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Figure 5-85: For a y4 variable or I, gier of the harmonic filter, the normalized E[EE;)
and o[ EE;] trajectories of the 7 induction machine parameters and 3 bus parameters
as a function of time, ¢t € [0,12.4] seconds, using the MC Sampling method with
NN = 1,000 and o, = 0.3 in three dimension (Top-Left), the Side view (Top-Right)
for emphasizing the first-order effect, the Top view (Bottom-Left) for emphasizing
the inputs’ interaction effect, and the Front view (Bottom-Right).

A large number of parameters’ sensitivity to these systems with o,, = 0.3 can be
summarized in the plots of (ESz (j),552,.4)) and (ESx (.i),SSx,.5))- From ES, ;4
and SS ;4 plots in Figure 5-87, only three parameters - ryyq of the SM and 7, and
J of the IM - have distinct impacts on all state variables of this system. The reasons
that these three parameters are more sensitive than other parameters are: 1) the
rotor inertia directly governs the mechanical time constant, 2) the rotor resistance

of IM has a direct influence on the generated rotor flux and the motor operation, 3)
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Figure 5-86: For a o4 variable or w, of the IM, the normalized F[EFE;] and o[FFE;]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, ¢ € [0, 12.4] seconds, using the MC Sampling method with NN = 1,000
and o,, = 0.3 in three dimension (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’
interaction effect, and the Front view (Bottom-Right).
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the rotor field winding of SM, which is connected to the voltage feedback from the
exciter/voltage regulator, can amplify the propagation of uncertainties. Therefore, a
small variation in rgq of the SM can lead to a large fluctuation in the bus voltage.
However, if we consider only the peak magnitude of the sensitivity and interaction
indices, ESy (ji) and SSy (j), in Figure 5-88 within ¢ € [0,12.4] seconds, the sud-
den peak gradients of Ly and C'y are still much larger than the gradually increasing
gradient of ryy, 7, and J. Thus, the peak sensitivity of electrical transient is very
important, especially for the high-frequency transient like in the start-up dynamics
of the electric machine.

MC.a=1 MC:a=1

Figure 5-87: The FS, ;) plot (Left) and SS, ;) plot (Right) using the Monte Carlo
Sampling method for ranking the input sensitivity for o,, = 0.3 and ¢t € [0, 12.4]
seconds. Note that the order of x; inputs on the x-axis are [rs, Xis, Ximd, Ximgs 7fd,
KXy Thds Xikds Thyly XikgliThoss Xikgs Tty Xisas Xmay Xugs Tray Lo Qaad; C, R; Cf, 7y,
Ly] from left to right and the order of y; states on the y-axis are [¢,, -qb;cf'} s d’;ﬁ;zv Vs
Vs Vs Voo 0, €par VE, Van, Vin, Vens Tas b, ey Ver, Ver, Vea s, U ¥, ¥, Ui
wy] from top to bottom.

5.3.5 AC power distribution with closed-loop propulsion sys-

tem

Instead of the free acceleration of the induction machine as in the previous example,
the power converter and constant-slip current control, in Section 2.2.1, controls the

electromagnetic torque of the 50-hp induction machine, connected to the same 59

22



MC:A=1 MC:a=1

Figure 5-88: The ESx (. plot (Left) and SS (i plot (Right) using the Monte
Carlo Sampling method for ranking the input sensitivity for o,, = 0.3 and ¢ € [0, 12.4]
seconds. Note that the order of x; inputs on the x-axis are [ry, Xis, Xma, Xmg: T1d-
Xf,]. IR X“i:,,g. Tleq1s ‘\’“.ql.f';‘:,ﬂ. /\’,(,;1,12, T'so, X—[H-_g. ,Y,,,g. Xtr'z- Tra, J, Qloads C, R, (,'f, Ty
L] from left to right and the order of y; states or outputs on the y-axis are [¢1,, a}\‘q 11

-‘u’ﬂ /y -'1,? ‘\" 1< i 3 / 7 / ] ] 3 / 4 g /€ ,‘|’1 €
Q".‘.fq'&‘ C’Zs' b‘frd‘ ("A:Eri‘ l?)((;s‘ 0, '?.rfri‘ ViF, L(m- ‘/b"n- Lcn- las Uy ey Lc'I- "c"_% Vc'S-L"qs‘ u qfr’ (¥

‘ds
U s, wy] from top to bottom.

kW synchronous machine through the three-phase RC bus, as shown in Figure 5-89
below. The high-dimensional stochastic analysis of this system has been demonstrated

in Section 4.4.2.

T —> Torque Control

o
Tabes

1

Prime Mover —

(Ideal) * | 3 | 'l M
RC bus =
with filter
Vp, =570V Rectifier ~ LC-fiter  Inverter S0 hp

Figure 5-89: A one-line diagram of the third configuration of the AC power distri-
bution with the closed-loop control of induction machine for studying the sensitivity
analysis with 31 parameters.

In this study, we assume that the generator initially operates at its rated speed
in its steady-state condition and then at zero seconds the induction machine with
the controller is suddenly turned on. The torque command to the controller is kept

constant at 2 N-m during ¢ € [0,1.62] seconds. In this system, there are 30 state
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variables and 31 parameters, which include 7 additional parameters: (L., R4, L,
Clyc) of the 6-pulse full-wave rectifier and (R, Ly, Cr) of the DC-link filter. Similarly,
in this complex nonlinear system, three different ranges of parameters’ variations, o,
= 0.1, 0.3, and 0.5, are also considered in the sensitivity analysis to investigate the
influence of each parameter at different fluctuation levels and to compare with the

sensitivity results in the previous section.

First, let us consider the case with o,, = 0.1 and ¢ € [0,0.2] second, where the
electrical time constant is dominated. Using the Monte Carlo Sampling method with
A = 1 to perform the sensitivity analysis, Figure 5-90 shows the normalized sensitivity
trajectories of the IM’s w, and the RC bus’s I fiier to 7 parameters of the induction
machine and 3 parameters of the RC bus. I, fiser i8 very sensitive to both C' of
the RC bus and to C} of the harmonic filter. The controller draws more power to
maintain a constant torque of the IM, while the exciter/voltage regulator attempts
to keep the bus voltage at a rated voltage; thus, a small change in the bus’s and
harmonic filter’s capacitors, governing the bus voltage, has a significant impact on
the entire system. The interaction of C' and Cy with state variables is strong during
the start-up transient of this system and then becomes weaker, approaching 0.05, as
the electrical transient dies out within 0.2 second. Furthermore, only J and ayuug
have a strong influence on the normalized sensitivity trajectories of the induction
machine’s w,, while other parameters have negligible effect, as shown in Figure 5-91.
The constant-slip current controller makes the propulsion system sensitive only to its
mechanical component; thus, the performance of the closed-loop propulsion is much
better than that of the open-loop propulsion in terms of the sensitivity to electrical
components of the SM, bus, and IM itself. These characteristics confirm that the
controller becomes very active in controlling the generated magnetic flux in the IM

and its interaction.

Second, when the parameters’ variation increases to 30 percent from their nominal
values or o, = 0.3, the sensitivity of I, fiser in Figure 5-92 to C slightly decreases,
while the sensitivity of this state to C' and R of the RC bus increases at least 50 percent

as time progresses. This decrease in the peak magnitude of the I, fiyer sensitivity
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Figure 5-90: For a y14 variable or I, figer of the harmonic filter, the normalized
E[EE;] and o[EE;] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, ¢ € [0,0.2] second, using the MC Sampling method
with NV = 1,000 and o,, = 0.1 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).
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Figure 5-91: For a yo5 variable or w, of the IM, the normalized E[F'F;] and o[F E]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, ¢t € [0,0.2] second, using the MC Sampling method with NN = 1,000
and o,, = 0.1 in three dimensions (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’
interaction effect, and the Front view (Bottom-Right).
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index is again caused by the phase shift of the responses due to a variation in C'y. For
the sensitivity of w, in Figure 5-93, only J and «,,4 still have a strong influence with
only a minor increase in the magnitude of sensitivity; however, the interaction indices
of J and ypeq 0N w, grow by three times compared to the case with ¢,, = 0.1. This
implies that the feedback controller performs very well so that electromechanical
torque, controlled by induced electromagnetic flux of stator and rotor windings, is

almost insensitive to any electrical parameters.
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Figure 5-92: For a y4 variable or [, figer of the harmonic filter, the normalized
E[EE;] and o[EE;] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, ¢ € [0,0.2] second, using the MC Sampling method
with NN = 3,000 and o,, = 0.3 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).

Third, parameters’ variation of 50 percent from their nominal values or o,, = 0.5,

the normalized sensitivity trajectories of /, piyer and w, are again shown in Figure 5-94
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Figure 5-93: For a ys5 variable or w, of the IM, the normalized E[EE;] and o[EF;]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, ¢ € [0,0.2] second, using the MC Sampling method with NN = 3,000
and o,, = 0.3 in three dimensions (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’
interaction effect, and the Front view (Bottom-Right).
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and 5-95, respectively. The peak magnitude of I, fiye, sensitivity to C'; drops slightly,
while the steady-state magnitude of its sensitivity to 'y is about the same as in the
previous two cases. On the other hand. both sensitivity and interaction indices of
Lo fitter to Other parameters significantly increase, particularly to €' and R of the RC
bus. The sensitivity trajectories of w, to J and «,.g again increase somewhat, while

J and «y,.q exhibit stronger interaction with w, and other states.
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Figure 5-94: For a y;, variable or I, jiye, of the harmonic filter, the normalized
L[EE;] and o[EE;| trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, ¢ € [0,0.2] second, using the MC Sampling method
with NN = 5,000 and o,, = 0.5 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).

‘To summarize the ranking of parameters’ sensitivity with increasing percent vari-
ation of parameters, o,, = 0.1, 0.3, and 0.5, ES, ;) is plotted versus parameters of

the synchronous generator (see Figure 5-96), the induction machine (see Figure 5-98),
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Figure 5-95: For a yo5 variable or w, of the IM, the normalized E[EFE;] and o[EE;]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, ¢t € [0,0.2] second, using the MC Sampling method with NN = 5,000
and o, = 0.5 in three dimensions (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’
interaction effect, and the Front view (Bottom-Right).
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the RC bus (see Figure 5-97), and the power converter (see Figure 5-99). Figure 5-96
shows that the peak sensitivity of 9§, to X, dominates the entire sensitivity domain
due to the SM’s parameters and this peak sensitivity of ¢f, to X;s decreases as the
percent variation of parameters increases. This phenomenon again occurs because of
the phase shifting in the large start-up transient response of ¥5,. This phase shifting
in the 1§, response implies that the average ¥, can be amplified or cancelled each
other out, particularly during the first fraction of a second. The 9§, represents a
balancing operation of the generator; thus, there are a lot of change in the balancing
operation as the percent variation increases. Similarly, the average sensitivity of all
state variables to the RC bus’s parameter is dominated by the sensitivity of ¢, to
C, (¢, and Ly and becomes smaller as the percent variation increases. The phase

shifting in the ¢/f, response causes by the same reason as in the previous situation.

Figure 5-96: The ES, (; ;) plots using the Monte Carlo Sampling method for ranking
the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the synchronous generator’s parameters (r;) on the x-axis are [ry,
X'H. de, qu, Tfds de, Tkds thd ) Tkql, Xlkql I"kqg X,gkq_g] fI'OI"Il left to I'lo"ht and the
order of y; outputs on the y-axis are [c./qb qul um Y, Lfri‘ v, UE., 8, e, efr VE,

Finy. Vot Vi Bay By bey Vet, Vi, Vag ah® Vs, Ugns VG wy| from top to bottom.

gs? '*m

For the average sensitivity to the IM’s parameters in Figure 5-98, we can see a
substantial increase in the sensitivity of the controller’s state variables as the percent
rariation becomes larger. This increase in the controller’s sensitivity means that the
controller’s variables become more active to correct any discrepancy in the IM’s out-
put torque from the commanded torque. The maximum magnitude in the controller’s
sensitivity is 24 percent variation in the voltage across the rectifier’s capacitor due

to 50 percent increase in either X,,» or r’r of the induction machine. Likewise, the
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Figure 5-97: The FS, ;) plots using the Monte Carlo Sampling method for ranking
the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the RC bus’s parameters (r;) on the x-axis are [C', R, Cf, ry, Ly]
from left to right and the order of y; outputs on the y-axis are [t,j)é’s. ‘d);c"ql. d';‘(’ﬂ. (1
t}'} v, e, 9, e, far VEs Van, Vins Ven, ta, 9, te; Ver, Voo, Ves 05, tg’ii;i. Vs Yoy Vs
w,| from top to bottom.

larger the percent variation is, the greater the average sensitivity indices of all states
to the power converter’s parameters (see Figure 5-99) become, especially to L. of the
tie line, Cy. of the rectifier, and (Ly,C'y) of the DC-link filter. Again, this increase in
the controller’s sensitivity indices confirms the effectiveness of the controllers in the

presence of the parameter fluctuation.
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Figure 5-98: The ES, ;) plots using the Monte Carlo Sampling method for ranking
the input sensitivity with o,, = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the induction machine’s parameters (r;) on the x-axis are [ro, X0,
Xmz: Xip2, Tr2, J, Qoad) from left to right and the order of y; outputs on the y-axis
are [Y5,, V&1, Ui Vo Vi Uit Yo 0, €xrar VF, Van, Vin, Veny fay 36y s Vor, Vig,
Vs, 08 -z;);f,’_. UG, U, Vs, w,] from top to bottom.

' qs?

When the simulation time is lengthened to 1.62 seconds, where the mechanical
time constant is dominated, the sensitivity trajectories of I, fiser to C'y are still much
larger than other parameters as they approach steady-state oscillation, as shown in

Figure 5-100. Nevertheless, the sensitivity index of C' on [, fie. diminishes very
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Figure 5-99: The ES5 ;) plots using the Monte Carlo Sampling method for ranking
the input sensitivity with o, = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the power converter’s parameters (r;) on the x-axis are [L., ry., Ly,
Caes Lyae, 7riat, C'tin] from left to right and the order of y; outputs on the y-axis are
(V5 Yins Vigar Yiisr Vi Ui Vs 05 €xgar VE Van, Vons Vens Tas B, Tes Ver, Vea, Ve ¥gss
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e ohe .ie 5 1 Fi
S, Vb, Uhs. wy] from top to bottom.

quickly as time approaches 0.4 second. The interaction index of (' persists in time
up to 0.4 second, similar to that of (. For the sensitivity of w,, both .J and @aq.
exhibiting the same order of the sensitivity magnitude, become even more dominant
than other parameters, as shown in Figure 5-101. Again, J interacts with other
parameters and states more than y,,q and the sensitivity and interaction indices of
wyr to X0, governing the interaction between stator and rotor windings of the IM,
increase as time reaches 1.62 seconds. These characteristics show that the constant-
slip controller well controls the induction motor and the controller’s action increases

sensitivity to the mutual reactance, which is directly used in the maximum torque

per current calculation of the constant-slip controller.

To make a comparison on a different time scale, the overall view can be examined
from the ES, ;) plots with ¢ € [0,0.2] for electrical time constant and ¢ € [0, 1.62]
for mechanical time constant. The average sensitivity to the generator’s parameters
in Figure 5-102 and to the bus’s parameters in Figure 5-103 are very similar between
these two different time scales. Figure 5-105 shows the average sensitivity indices
of all state variables to only the power converter parameters. Only currents are
sensitive to both capacitors and inductors of the rectifier and the DC-link filter (L.

Clcs Litter, Criiter) when both electrical and mechanical time constants are dominated.

However, in a short time frame, the currents of the power converter are more sensitive
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Figure 5-100: For a yy4 variable or [, fiye, of the harmonic filter, the normalized
E[EE;] and o[EFE;| trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, ¢ € [0,1.62] seconds, using the MC Sampling
method with NNV = 3,000 and o,, = 0.3 in three dimension (Top-Left), the Side
view (Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left)
for emphasizing the inputs’ interaction effect, and the Front view (Bottom-Right).
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Figure 5-101: For a y5 variable or w, of the IM, the normalized E[EE;] and o[FE}]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, ¢ € [0, 1.62] seconds, using the MC Sampling method with NN = 3,000
and o,, = 0.3 in three dimension (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs’
interaction effect, and the Front view (Bottom-Right).




because the controller needs to compensate for a large torque error during the IM’s
acceleration. Only the state variables of the RC bus and the power converter are
sensitive to the power converter’'s parameters, which implies that the controller can
separate the interaction between the generator and the induction motor. In Figure 5-
104, when the electrical time constant is dominated, most of the IM state variables
are sensitive to its electrical and mechanical parameters, including X,,, r,, J, and
Qoaqd- However, when the mechanical time constant dominates, the IM’s states are
sensitive only to two mechanical parameters, J and ,qq with a large average gradient
magnitude. Notice that the IM’s parameters only affect its own states. This again
implies that the controller is very active to compensate for any variation of the IM’s
parameters.

MC:a=1

x of SM

Figure 5-102: The ES, ; ;) plots using the Monte Carlo Sampling method with NN =
3000 and ., = 0.3 for ranking the input sensitivity within ¢ € [0,0.2] (Left) and ¢ €
[0, 1.62] (Right). Note that the order of the synchronous generator’s parameters
( ) on the x-axis are [rs ng de, qu, Tfd, /de Tkds Xékd) Tkql, X;kql,rqu, X;qu]
from left to right and the order of y; outputs on the y-axis are [qu d’kqb t,;)qu Vs

er. Ufkd. Ugs 9 F’[fd VF V;:m- Lfm I/cn ta, by, Le, V;‘ls LC.Z! I/ci Uq;. “q'r* () n!s Udr’ UUS
w.,..] from top to bottom.

The sensitivity analysis of the AC power distribution with both open- and closed-
loop control of the propulsion system shows us that this integrated power system with-
out any controller reveals very strong parameter coupling between the synchronous
generator and the induction machine. For this integrated power system with the

constant-slip current control, the controller can isolate the interaction between the
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Figure 5-103: The E'S, ;) plots using the Monte Carlo Sampling method with NN =
3000 and o,, = 0.3 for ranking the input sensitivity within ¢ € [0,0.2] (Left) and
t € [0,1.62] (Right). Note that the order of the RC bus’s parameters (z;) on the
x-axis are [C, R, Cy, ry, Ly] from left to right and the order of y; outputs on the
y-axis are [WS,, Y&y, Viar Ve Vit Vi ¥8ss B, €xpas VF, Vin, Vons Vs Gy 85, ey Vet

r 7 e Ile e e
Vi, Vsl sr YVgr» Viss U

by WS, wy] from top to bottom.
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x of IM x of IM

Figure 5-104: The ES, ;) plots using the Monte Carlo Sampling method with NN =
3000 and o,, = 0.3 for ranking the input sensitivity within ¢ € [0,0.2] (Left) and
t € [0,1.62] (Right). Note that the order of the induction machine’s parameters
(x;) on the x-axis are [rs2, X2, Xm2, Xir2, 72, J, Quoaq] from left to right and the
order of y; outputs on the y-axis are [Vg,, U35, Vs, Vs Uy Uil Visr 0, €4pgn VIF,

/o r i o r r 7 o€ e
V;m,* L.')n.- I/r:ﬂ'- tas Thy Tes Lr:l- Vrﬂ* I/(:g.l;. qs® Y Jr;y

e /

Uy, Ui, U, wy] from top to bottom.
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Figure 5-105: The FS, (; ;) plots using the Monte Carlo Sampling method with NN =
3000 and o,, = 0.3 for ranking the input sensitivity within ¢ € [0,0.2] (Left) and
€ [0,1.62] (Right). Note that the order of the power converter’s parameters
(x;) on the x-axis are [Lc, Tde, Lae, Caes me J’j,,gr{, i fattcr] fl()IIl left to 11()ht and the
order of y; outputs on the y-axis are [¢), Aql 0l Aq, Vs Lfd S, UL, 8, rlfd VF,

Vi Vine Vens tas ipy tey Vor, Vio, l-(\_g‘uqs. u“-'q”,'.. 19 .Jd',’,. Us,, wy] from top to bottom.

synchronous generator and the induction machine. Moreover, as the percent variation
of parameters increases, all parameters have a stronger impact on the system with
the open-loop propulsion, while the system with the closed-loop propulsion becomes
more sensitive only to the motor’s and the controller’s parameters. Therefore, these
sensitivity techniques can be used to examine the robustness of the controller against
the load and parametric uncertainties. In addition, when the magnitude of parame-
ter fluctuation becomes larger, the characteristics of the system response can either

increase the output magnitude or cause the phase shift in the output response.



Chapter 6

Conclusions and Future Work

In this last chapter, we would like to summarize all the key contributions of this
thesis. In addition, some possible research directions continuing from this work will
be discussed. In the first chapter, we introduced the concept of the All-Electric-
Ship (AES) and its associated challenges, especially in the integrated power system,
such as power sharing or load shedding and performance prediction under uncertain
conditions. Moreover, the problems associated with the Galerkin and Collocation
techniques in stochastic analysis as well as the sensitivity analysis were presented.
Next, we described our primary contributions in the integration of multiple discipline
areas (power system, numerical stochastic analysis, and sensitivity analysis), and the
development of numerical techniques, as well as the demonstration of feasibility in
extending these numerical techniques for the large-scale shipboard integrated power
system. Chapter 2 presented the modeling of electric machines, the transmission line,
the pulsed-power load, and their interconnection, which are bases for constructing the
entire AES model. We identified possible sources of uncertainties in the AES system
for further stochastic analysis.

In Chapter 3, various numerical stochastic algorithms - the Monte Carlo method,
the Galerkin (gPC) and Collocation (PCM) approaches of the polynomial chaos -
were introduced along with their underlying theories and implementation techniques.
The representation of stochastic inputs as random variables or processes was briefly

introduced. A new approach to combining the multi-element technique with the
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collocation provides an improvement on accuracy and efficient convergence, when the
long-time integration is required or the statistical solutions are discontinued. Also, the
possibility of adaptive multi-element PCM was discussed. For the Galerkin approach,
the ability of the gPC to deal with non-polynomial nonlinearity is extended by using
the Hybrid gPC+PCM technique.

A thorough convergence study of all stochastic techniques was demonstrated in
Chapter 4 on several simple systems with both continuous and discontinuous stochas-
tic solutions, on electric machines, as well as on the AC power system section of the
AES. For the system with the continuous stochastic solution, gPC, PCM, and Hybrid
gPC+PCM yield the exponential convergence rate as a function of the polynomial
order (p) or the number of collocation points (Nc) per random dimension (d). Their
Multi-Element technique has the algebraic convergence rate as a function of the ele-
ment number per d raised to the power p+ 1 or N¢, while the Monte Carlo approach
exhibits only the algebraic convergence as a function of random realization (NN).
When the stochastic solutions become discontinuous, the convergence rate of the
Monte Carlo, gPC, PCM, Hybrid gPC+PCM, and their Multi-Element technique be-
came algebraic as functions of NN, p/d, (Nc—1)/d, and N/d. For a small random
dimension (d < 10), the full-grid PCM is the most efficient algorithm for the same
accuracy with reduced computational cost. As the random dimension of inputs in-
creases, particularly in the AES system, the sparse-grid PCM seems to be competitive
against the Monte Carlo method, the convergence rate of which did not scale with
the random dimension. The adaptive MEPCM has shown a promising result of faster
convergence than MEPCM alone, when a system has the discontinuity in its solu-
tion. In the long-time integration problem, the full-grid PCM still yields the fastest
convergence rate for systems with continuous solutions and the full-grid MEPCM is
competitive against QMC for systems with discontinuous solutions. Moreover, when
the integration is prolonged, the sparse-grid PCM loses its efficiency quickly and all
the convergence curves of MEPCM with any Nc¢ merge together and align with that
of QMC.

Chapter 5 introduced four new techniques - Monte Carlo Sampling, Collocation,
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Variance, and Inverse Variance - for analyzing the system sensitivity, both ranking
the importance of inputs on the output variation and capturing the nonlinear and
coupling effects of inputs. Then, the accuracy and efficiency of these sensitivity anal-
ysis techniques were compared with those of the Morris method. All four sensitivity
analysis techniques ranked the input significance correctly for multiple input or static
functions. Using the advantage of the full-grid PCM, the Collocation and Variance
methods provided faster convergence of sensitivity indices compared to the Morris and
Sampling methods. Both IEE and IIEE indices of the Variance and Inverse Variance
Methods give more weight to the coupling effect than to the high-order nonlinearity,
while o[FE] in the gradient methods weight both effects equally. Only three tech-
niques - Sampling, Collocation, and Variance methods - are successfully extended to
study sensitivity of the ODE systems with a small number of inputs, e.g., the Duff-
ing’s oscillator, and a large number of inputs, e.g., the induction machine and the AC
power distribution and propulsion system. As a result, these techniques can identify

when certain inputs become dominant as a function of the system response.

6.1 Future Work

We list below some possible directions for future research.

1) A thorough and systematic study of the shipboard AC and DC power systems,
particularly with the pulse power load in the DC zone, requires a further investigation
with stochastic disturbances and situations, since the future requirement on Navy
warships will demand more electrical power to support more advanced high-power
equipment. The power and thermal management are another significant topic in the
AES system, and sensor diagnostics could be combined with stochastic prediction
from the system model to validate system performance and increase the situation
awareness.

2) An adaptive multi-element technique using a combination of full- and sparse-
grid PCM can be further developed for better accuracy with smaller computational

cost. Moreover, a stochastic technique with knowledge from the random process
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might improve the convergence characteristics of the collocation technique due to the

limitation in random dimension dependency.
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Appendix A

Polynomial Chaos

In this section, we briefly include the properties of various types of orthogonal poly-

nomials: Legendre, Jacobi, and Chebyshev.

Table A.1: The first few terms of the Legendre polynomials (L(£)) [1]

| (5) |

Ly (¢ ) = (352 1)

Ls(§) = (563 - 3¢)

Li(§) = 8(3554 — 30€° + 3)
Ls(§) = 5(636° — 70¢° 4 15¢)
Lg(€) = -(231€° — 3156* + 105¢€7 — 5)
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Table A.2: Summary of the properties of the Legendre polynomials [1]

| Relation | Legendre Chaos |
Weight function W(z)=1
Recurrence (7 + D Lja(z) = (2§ + D)zLj(z) — jL;—1(x)
Orthogonal [Y Lon(@) Lo (€)W (2)dz = 527 Omn

Table A.3: The first few terms of the Jacobi polynomials (J*#(¢)) [1]

w

Ji (€

I =0
JSPE) =1

J2PE) =12+ 1)+ (a+B+2)(¢ = 1)]

J5PE) =Lt4ala+ D)a+2)+4a+B8+3)(a+2)(E 1)+ (a+8+3)(a+ B+ 4) (- 1)

Table A.4: Summary of the properties of the Jacobi polynomials [1]

| Relation | Jacobi Chaos |
Weight function W(z)=(1-2z)*(1+2)"
Recurrence a; J;ﬂ(m) = (a2 + a3x) J;”ﬂ (z) - a;?J;-"_’/i(x)

Al =20+ 1)(i+a+B+1)2ji+a+p)
a?=(2j +a+ B+ 1)(a® - p?)
ad=2+a+f)n+a+B+1)(2+a+B+2)
i =2G+a)i+B)2+a+p+2)

Derivative b L I (z) = B33P (z) + b3JA (x)
by =(2n+a+6)(1-2?)
B2 = jloa— B - (2n+ o+ B)z]
B = 20+ a)(n + 6)
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Table A.5: The first few terms of the Chebyshev polynomials of the first kind (7°(¢)) [1]

[ T:(§) ]
)

T3(¢) = 48° — 3¢
Ty(€) =86 — 88 +1
T5(€) = 166° — 20£% + B¢
Ts(€) = 3265 — 4861 + 1867 — 1

Table A.6: Summary of the properties of the Chebyshev polynomials [1]

| Relation —[ Chebyshev Chaos I
Weight function W(z)=(1-2?)"1/2
Recurrence Tia(z) = 22Ti(x) — Tjy ()
1 . -
1 _ §m5ij for ¢ 76 O, J ;é 0
Orthogonal J2, Tn(2) T (2)W (z)de = { k fori— =0
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Appendix B

Machine Parameters

There are two set of machine parameters. The first set, which is from [38], expresses
all parameters in per unit system, while the parameters of in the ONR challenge

problem [27] in the second set are described in the volt-amperes unit.

Table B.1: Parameters of the induction machines [38] in per unit with Viese = 450 V

l Hp Ts X, Xm X, l T, H |
200 { 0.01 | 0.0655 | 3.225 | 0.0655 | 0.0261 | 0.922
150 | 0.0051 | 0.00553 | 2.678 | 0.0553 | 0.0165 | 1.524
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Table B.2: Parameters of the 3.125 MW synchronous generator [38] in per unit with
VEmse =450V

rs =0.00515 7, =0.0613  rg;=0.00111 7, =0.02397
X, =08 X, =03298 X/, =013683 X,,=0.33383
Xmg=10 X,g=1768  H=2137

Table B.3: Parameters of the IEEE type DCIA exciter/voltage regulator (Type 1) [38]
in per unit

Th=0 Veer =1 Ko,=400 T4 =001
VRMAX - 84 VRMIN = 0 KF = 001 Tpl = 015
Try = 0.06 Kp=1 T =01

Table B.4: Parameters of the simplified gas turbine with speed governor [38] in per
unit

K,=225 T. = 0.55 Tpy =001 Trp = 0.05
Weis = 0.23 Chor = 0.251 Chor = 1.3523 Conar = 0.5

Table B.5: Parameters of the 50-hp induction machines [27] with Vi, = 570 V

| Hp | (@) | Xis(H/s) | Xen(H[s) | X[, (H/s) | r1(Q) [ J(kg - m?) ]
150 |0.087] 0302 | 13.08 | 0302 ]0.228] 1.662 |

Table B.6: Parameters of the 59 KW synchronous generator [27] with Vj,. = 570 V

rs =0.0286 71 =00170 7, =0.0802 7, =0.0089 ., =0.1272
Xis=18122 Xy, =77496 X, =08956 X, =13487 X, =0.7750
Xomg = 153562 X0 = 15.3562 J=25 P=4

Table B.7: Parameters of the full-brigde rectifier and DC-link filter [27]

L.=0001 H R4=001%0 Lie=0H Cg. =500 x 107¢ F
7 =0056Q L;=00114H C;=1988x10"*F
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Table B.8: Parameters of the RC bus with the harmonic filter [27]

R =500 2 C=4x10"°F
Rfilter =0.039 Q Lfilter = (0.00561 H Cfilter =4975x 107° F

Table B.9: Parameters of the constant-slip current control [27]

r..=02280 L., =35406x102H Ly=34695x102H P=4

T,est TrT,€eS
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