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Abstract

The integrated power system has become increasingly important in electric ships due
to the integrated capability of high-power equipment, for example, electromagnetic
rail guns, advance radar system, etc. Several parameters of the shipboard power
system are uncertain, caused by a measurement difficulty, a temperature dependency,
and random fluctuation of its environment. To date, there has been little if any
studies which account for these stochastic effects in the large and complex shipboard
power system from either an analytical or a numerical perspective. Furthermore,
all insensitive parameters must be identified so that the stochastic analysis with the
reduced dimensional parameters can accelerate the process. Therefore, this thesis is
focused on two main issues - stochastic and sensitivity analysis - on the shipboard
power system.

The stochastic analysis of the large and complex nonlinear systems with the non-
Gaussian random variables or processes, in their initial states or parameters, are
prohibited analytically and very time consuming using the brute force Monte Carlo
method. As a result, numerical stochastic solutions of these systems can be effi-
ciently solved by the generalized Polynomial Chaos (gPC) and Probabilistic Colloca-
tion Method (PCM). In the case of the long-time integration and discontinuity in the
stochastic solutions, the multi-element technique of PCM, which refines the solution
in random space, can significantly improve the solutions' accuracy. Furthermore, the
hybrid gPC+PCM is developed to extend the gPC ability to handle a system with
nonlinear non-polynomial functions. Then, we systematically establish the conver-
gence rate and compare the convergence performance among all numerical stochastic
algorithms on various systems with both continuous and discontinuous solutions as a
function of random dimension and the algorithms' accuracy governing parameters.

To identify the most significant parameter in the large-scale complex systems,
we propose new sensitivity analysis techniques - Monte Carlo Sampling, Collocation,
Variance, and Inverse Variance methods - for static functions and show that they agree
well with Morris method, which is one of the existing sensitivity analysis techniques
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for a function with large input dimensions. In addition, we extend the capability
of the Sampling, Collocation, Variance, and the Morris methods to study both the
parameters' sensitivity and the interaction of the ordinary differential equations. In

each approach, both strength and limitations of the sensitivity ranking accuracy and
the convergence performance are emphasized. The convergence rate of the Collocation

and Variance methods are more than an order of magnitude faster than that of Morris

and Sampling methods for low and medium parameters' dimensions.
At last, we successfully apply both stochastic and sensitivity analysis techniques

to the integrated shipboard power system, with both open-and close-loop control of
the propulsion system, to study a propagation of uncertainties and rank parameters
in the order of their importance, respectively.

Thesis Supervisor: Michael S. Triantafyllou
Title: Professor of Mechanical and Ocean Engineering
Director, Center for Ocean Engineering
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ERRATA

In Chapter 5, the convergence formulation in Equation 5.11 and 5.12, defined as a dif-

ference between low and high accuracy solutions for each sensitivity analysis method,

does not represent true convergence characteristics of each technique. The correct

approach to measure and compare the convergence characteristics among these tech-

niques is to compute the absolute difference between estimated and reference solutions

that has a higher accuracy and to normalize with the absolute value of the reference

solution. Similar to Equation 5.11 and 5.12, the RMS values of the normalized ab-

solute difference must be considered for a function or system with n inputs as shown

below (also see two references below)

- E[EE (t)] - E[EEipe (t)]1
(i,mean =E[EE ref(t)1

Ei . v j-[EE (t)] - o-[EEjref (t)]1 (2)
1 a-[EEjref (t)]

RMS(mean) ((i,mean3)

RMIS(cjv,) (Ec, )2 (4)
n ivar



These convergence formula can be applied to the variance method by replacing

(E[EEj], o[EEf]) with (VEEj, IEEj). The Morris method required to use its own

solution with highest accuracy as the reference solution because the solution from the

finite difference depends on A. The other gradient-methods can used the solution

from Monte Carlo Sampling and Collocation methods with highest accuracy as the

reference solution. The more accurate convergence results of all methods, particu-

larly for the modified Morris's function (in Section 5.2.4) and an open-loop induction

machine with an infinite bus (in Section 5.3.3), exhibit faster convergence rates (see

two reference below).

In addition, the references below give the quasi-Monte Carlo Sampling method

and a combined Variance with quasi-Monte Carlo method that provides the fastest

convergence among all sensitivity analysis techniques.
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Chapter 1

Introduction

The advent of modern power electronics and large scale solid-state power converters

is ushering in a new age for electric ship propulsion. This is embodied in the All

Electric Ship (AES) concept where a single set of prime movers is used to power

both propulsion and all other loads aboard the vessel [65]. This system has many

advantages over traditional mechanically driven ships, including reduced fuel usage,

reduced maintenance and greater design flexibility. Many sectors of the commercial

marine industry are adopting this new technology.

Military ships can also benefit from many of the same advantages as their com-

mercial counterparts by adopting an integrated power system (IPS) architecture. A

general diagram of the IPS in the electric ship architecture, shown in Figure 1-1, con-

sists of an interdependent connection among: (1) power-generation systems or sets

of a prime mover directly coupled with a synchronous machine (SM); (2) propulsion

systems or induction machines (IM); and (3) high-power equipment or the electromag-

netic (EM) railguns [13] and other auxillary electrical services. However, warships can

also benefit from the much larger installed generation capacity for powering advanced

electric weapons and sensors. In the future warship, the major requirements of the

IPS can be summarized as the following: 1) a capability to maintain continuity of

service with sufficient reserve margin in the presence of critical loads, component and

cascaded failures, and internal errors; 2) a fault containment ability, which leads to

an optimal dynamic reconfiguration of the zonal topology; 3) an advance intelligent
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control in both component and central levels.

nM Controller

Other electrical

Contrllerconsumptions

SM

Figure 1-1: A general model configuration of the AES system.

In contrast, the large-grid utility power system consists of many power supplies,

branches, and switches. The reconfiguration of the utility network mainly aims to

satisfy the following criteria: 1) line loss minimization [42]; 2) load balancing and load-

ability maximization [59]; and 3) voltage stability margin maximization [5]. Moreover,

the transmission, load, and generator dynamics are neglected in most reconfiguration

problems, and thus the power flow problem needs to be solved with a system of

differential-algebraic equations (DAE). That is a more time-consuming process than

solving a system of ordinary differential equation (ODE). However, the shipboard

power systems are limited due to small numbers of generators that are closely sized

with loads, short tie line with low impedance, and a small group of loads [4], [9].

To enhance redundancy in the AES system, the electrical distribution system uses

a zonal configuration [67],[57]. Therefore, the fault propagation can be contained

within each electrical zone and the intelligent control unit is able to perform a system

reconfiguration and fault containment to further increase survivability.

The power sharing between the propulsion units and the high-power equipment,

especially under heavy propulsion demand and casualty conditions, has recently been

identified as an another important issue [16], [13], [30], [56], [67]. In a new AES config-

uration, there is an increasing demand for electric power for ship system automation,

electrical weaponry, electric propulsion, and ship service distribution. About 70% to
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90% of power from the generator units in the fully IPS is consumed in the propulsion

systems [16]. Thus, when a sudden and large power demand for periodically charging

and discharging the pulse forming network of electric guns is imposed on an electrical

bus during a mission or life critical situation, the power distribution must be optimally

modified to yield the most efficient power usage and to maintain a continuity of ser-

vice [66], [67]. Recently, a work by [30], [56] with single-generator distributed electric

power to single propulsion and pulsed power loads showed that the bus voltage drops

significantly during a charging sequence of the pulse forming network and a heavy

propulsion load. Thus, a coordinate of distributed power between the pulsed power

and propulsion load is necessary to maintain the system stability and to improve the

continuity and quality of electrical service.

The Office of Naval Research (ONR) developed a prototype IPS testbed, including

simulated and experimental systems. The ONR-IPS model and simulation separate

the AC power generation and propulsion systems into port and starboard subsystems,

and divide the DC zonal electric distribution into three main zones along the ship hull,

as shown in Figure 1-2. Each AC subsystem is composed of a 59-kW synchronous

generator, a close-loop drive of a propulsion system, and a power supply for providing

DC power to either the port or starboard bus. In DC zonal electric distribution,

there are a port bus, a starboard bus, six Ship Service Converter Modules (SSCM's),

a Ship Service Inverter Module (SSIM), a motor controller (MC), and a constant

power load (CPL) [28]. A mathematical model of the AC subsystem is described

in more detail later in Chapter 2 of this thesis. The experimental Naval Combat

Survivability testbed [56], constructed at Purdue University, has all components and

a similar structure as that in Figure 1-2.

1.1 Problem Statement

Because of the complexity and large scale of the shipboard integrated power system,

a simulation of the AES model must be able to capture various situations for inves-

tigating the transient stability and system interaction accurately. Thus, the model
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Figure 1-2: A one-line diagram of the ONR integrated power system consisting of
port and starboard AC and DC zones [28].

of the AC power distributions with propulsion and DC power network is sufficient

for our study purpose. For example, the model developed for the ONR challenge

problem [27] has a total number of 133 state equations and 231 associated param-

eters. Only the AC power distribution and the propulsion system, one of the most

important sections of the ONR challenge problem, are the main focus in this study.

Other significant goals of future AES are to minimize the number of crew and to

increase system monitoring and control automation [67] for reduction of operational

costs and increased reliability. However, to maintain the situation awareness and

fault tolerance, a fusion of redundant sensor measurement is required to accurately

estimate the current environment and conditions. This leads to another important

issue of estimation and prediction in the uncertain situation; therefore, the dynamic

performance of single machines as well as machine interaction must be tested for

efficiency and dependability under stochastic variations.

Many research projects have been conducted on the AES system under condi-

tions of deterministic propulsion-load and electrical-load deviations [16], [56], [58].

However, a stochastic analysis of the AES system with the presence of load uncer-
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tainties has not been addressed, except in utility power systems [41]. The Monte

Carlo (MC) method and traditional stochastic processes, characterized by a joint

probability density function and analytically based on the power spectral density of

auto-correlation and cross-correlation [33], are often used in the stochastic analysis of

both discrete- and continuous-time systems. Although the Monte Carlo simulation is

easy to apply for both linear and nonlinear systems, it requires extensive computa-

tion, due to its low convergence of statistical solutions, and provides no bounds for

probability estimation - two major disadvantages. To accelerate the convergence of

the Monte Carlo method, the Quasi-Monte Carlo (QMC) method [40],[46] has been

introduced; nevetheless, the QMC still suffers the same limitations. For the tradi-

tional stochastic processes, the difficulty in analysis limits the computation only to

the Gaussian random process of linear time-invariant [33] and simple-nonlinear [26]

systems. Thus, a stochastic process using the Galerkin and Collocation techniques of

the polynomial chaos, which are applicable to various classes of random process, are

better alternatives for examining uncertainty propagation of high-order parametric

and load variations in the large-scale AES system.

The generalized Polynomial Chaos (gPC), based on the Galerkin projection and

Wiener-Askey polynomial chaos, [19], [35], [60], [62], has been successfully applied

for the stochastic analysis in various applications, such as a finite element in solid

mechanics [19], fluid dynamics [64], and electrical circuits [54]. Major advantages

of the gPC technique are that a probability density function, as well as statistical

moments of system variables, can be obtained explicitly after solving nodal system

equations and the accuracy of the gPC statistical solution converges faster than that

of the Collocation method. However, an additional computational cost is required for

the Galerkin projection. The limitations associated with the gPC are the expansion

complexity of nonlinear non-polynomial terms onto the orthogonal polynomial-chaos

basis and its trade-off between computational cost and accuracy for a large system

with many random inputs.

Uncertainty analysis using the Probabilistic Collocation Method (PCM), based on

the Collocation approach of polynomial chaos, has been used for examining the tran-
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sient behavior of utility power systems [21], [22] and ocean circulation [611. The theory

underlying the PCM, called the full-grid PCM, is the numerical Gauss-quadrature,

which is an efficient numerical integration technique [46] for a low-dimensional prob-

lem. However, when the dimension of stochastic inputs increases as in the system with

many well-correlated inputs and in the large-scale system, the computational cost of

the full-grid PCM becomes prohibitive. Therefore, another collocation technique of

numerical integration, known as the Smolyak quadrature [63], [45], has been shown

to provide a smaller computational cost for similar accuracy. We call this technique

the sparse-grid PCM. Major advantages of full- and sparse-grid PCM are that the

modal equations of the ODE are decoupled and all statistical solutions, as well as the

probability density function, can be directly obtained from the modal solutions. Due

to the discrete nature or modal characteristics of the PCM, the accuracy of stochastic

solutions deteriorates quickly, when the integration time is prolonged or there exists

a discontinuity in statistical solutions. Moreover, sufficient collocation points must

be available to fully cover the stochastic characteristics of the system.

The sensitivity analysis is an important tool for identifying how the system re-

sponds to the input variation, such that a full understanding of the model develop-

ment and validation can be achieved and unimportant variables can be eliminated

from the parametric space or experimental tests [51], [52]. Since the inputs and

model structure are subjected to many uncertainties from sensor measurement, poor

understanding of system characteristics, and stochastic disturbance, the sensitivity

analysis must provide the model developer the key factors to fully comprehend the

system mechanism.

Sensitivity analysis techniques can be classified into two main categories - local,

and global methods [51] - according to the range of the parameter variation. The local

method [21], [48], [51], based on the computation of the partial derivative of output

with respect to input around the nominal operating point, cannot correctly predict

the sensitivity of nonlinear systems within the entire range of input uncertainty. In

the global approach, a priori knowledge or special structure of the system model are

required for each of the following three techniques:
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" The regression analysis or correlation measurement combining with the Monte

Carlo method [51], [20];

" partitioning uncertainty with Latin Hypercube Sampling [36]; and

" ANOVA-Decomposition [53].

On the contrary, the Morris method [39], which is the most efficient factor screening

technique for system with a large number of inputs, qualitatively ranks the impor-

tance and interaction of input parameters in systems without any assumption about

the system. Nevertheless, the Morris method requires intensive computation to guar-

antee the convergence of the sensitivity index. The model independence, simplicity of

implementation, and accuracy in identifying the important parameters, especially in

large-scale systems, are the key factors in developing our sensitivity analysis method.

1.2 Scope and Contributions of the Thesis

Multi-discipline areas - power systems in the AES application, numerical stochastic

analysis using both Galerkin and Collocation approaches of the polynomial chaos,

and sensitivity analysis - must be combined within this research project. For the

preliminary stochastic and sensitivity analyses of large-scale AES systems, parametric

and load uncertainties are assumed to be associated only with the uniform distribution

because of its symmetrical and bounded range. We summarize the key contributions

of this thesis in the following list below.

1) It conducts stochastic analyses of a single electric machine and of large-scale AC

power distribution and propulsion systems in a shipboard integrated power system

with high-order parametric and load uncertainties to examine the propagation of

uncertainties.

2) It develops and implements the hybrid gPC+PCM technique to extend the

capability of the gPC to handle nonlinear non-polynomial functions, for example, the

ODE with a trigonometric or step discontinuity term.
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3) It develops and implements the Multi-Element (ME) technique for both full-

and sparse-grid PCM to improve accuracy of stochastic solutions, especially in lengthy

integration problems. Generally, the MEPCM yields about an order of magnitude

faster computational time than the MEgPC [60] for the same accuracy of stochastic

solutions.

4) It examines thoroughly and systematically the convergence characteristics of

different numerical stochastic techniques - MC, QMC, gPC, MEgPC, full- and sparse-

grid PCM, full- and sparse-grid MEPCM - on various systems with both continuous

and discontinuous stochastic solutions. The convergence rate is expressed in terms of

their governing variables and the random dimension.

5) It invents four new sensitivity analysis techniques, based on the numerical

stochastic techniques, for identifying ranking and interaction of parameters. These

four techniques are applicable to static functions. We then compare the sensitivity

indices from these four methods with the existing Morris method, which reveals a good

agreement in both parameter ranking and interaction. Three of the techniques can

be successfully extended to deal with the sensitivity analysis of the ODE. Lastly, the

sensitivity analysis of the AC power distribution with open- and close-loop propulsion

drive systems, which is one of the important sections in large-scale AES systems, is

investigated.

1.3 Organization of the Thesis

This thesis is composed of five chapters and two appendices. The system modeling

of individual electric machines and propulsion drive with power converter as well as

two different interconnections of subsystems are presented in Chapter 2. All of these

component mathematical models are building blocks for the AC power distribution

and propulsion systems in the ONR challenge problem [27]. In Chapter 3 we ex-

plain the theory of numerical stochastic techniques, based on the Galerkin (gPC) and

Collocation (PCM) approaches of the polynomial chaos, the concept of the multi-

element technique, which is applicable to both gPC and PCM, and the represen-
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tation of stochastic inputs as the Random Variables (RV) or the Random Processes

(RP). Chapter 4 thoroughly examines the convergence characteristics of all stochastic

analysis techniques for solving the Stochastic Differential Equation (SDE) with both

continuous and discontinuous statistical solutions. Moreover, the stochastic analysis

of the AC power distribution with the close-loop propulsion drive is examined when

all 31 parameters become random variables. Table 1.1 summarizes various numeri-

cal stochastic algorithms that apply on different SDEs in Chapter 4. In Table 1.1,

FPCM and SPCM stand for full- and sparse-grid PCM. In Chapter 5, new sensitiv-

ity analysis techniques - the Sampling, Collocation, Variance, and Inverse Variance

methods - are first introduced for ranking inputs in their significant order as well as

identifying inputs interaction for various static functions. These results are then con-

firmed with that from the Morris method. Second, the capability of these sensitivity

analysis techniques are extended to handle the ODE system, such as Duffing's oscil-

lator, the single induction machine, and the AC power distribution and propulsion

system. Chapter 6 then concludes the thesis and mentions future research directions.

Lastly, Appendix A and B summarize the Legendre, Jacobi, and Chebyshev polyno-

mial chaos properties and all machine parameters of all AES systems studied in this

thesis, respectively.
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Table 1.1: Summary of application using different stochastic algorithms
nonlinear (NL) SDEs with both Continuous (Cont.) and Discontinuous
stochastic solutions in Chapter 4. Note: the gPC is applied only to the
quadratic 1st-order SDEs.

on various
(Discont.)
linear and

System MC QMC ME Hybrid FPCM ME Adap SPCM ME
gPC gPC FPCM ME SPCM

+PCM FPCM
Linear x x x

1st SDE
Quadratic NL x x x

1st SDE
Cubic NL x
1st SDE

Quartic NL x
1st SDE

Trigonometric x x x
NL 1st SDE
1D RV Cont. x x x x
KO system

2D RV Cont. x x x x x
KO system

3D RV Cont. x x x x x x
KO system

Step Discont. x x x
1st SDE

1D RV Dis- x x x x x
cont. KO sys.

2D RV Dis- x x x x x
cont. KO sys.

3D RV Dis- x x x x x x
cont. KO sys.

1D RV IM x x x x x x
with Inf. Bus

2D RV IM x x x x
with Inf. Bus

3D RP IM x x x x x x
with Inf. Bus

6D RV AC x x x x
power sys.

31D RV AC x x
power sys.
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Table 1.2: Summary of various nonlinear (NL) SDEs with both Continuous (Cont.)
and Discontinuous (Discont.) stochastic solutions in Chapter 4.

System Equation Number Section
Linear 1st SDE 4.3 4.1.1

Quadratic NL 1st SDE 4.6 4.1.2
Cubic NL 1st SDE 4.9 4.1.3

Quartic NL 1st SDE 4.13 4.1.4
Trigonometric NL 1st SDE 4.16 4.1.5
1D RV Cont. KO System 4.17- 4.19 4.1.6
2D RV Cont. KO System 4.17-4.19 4.1.7
3D RV Cont. KO System 4.17 - 4.19 4.1.8

Step Discont 1st SDE 4.20 4.2.1
1D RV Discont. KO System 4.17 - 4.19 4.2.2
2D RV Discont. KO System 4.17 - 4.19 4.2.3
3D RV Discont. KO System 4.17 - 4.19 4.2.4

1D RV IM with Inf. Bus 4.23 - 4.29 4.3.1
2D RV IM with Inf. Bus 4.23 - 4.29 4.3.2
3D RP IM with Inf. Bus 4.23 - 4.29 4.3.3

6D RV AC power sys. in Ch.2 see Figure 4-96 4.4.1
31D RV AC power sys. in Ch.2 see Figure 4-97 4.4.2
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Chapter 2

System Modeling

Many types of power system modeling have been introduced in the literature [3], [25],

[30], [42]. Because of the different time scales associated with each sub-component in

each electric machine (electrical and mechanical time constants), we must appropri-

ately select the model according to the study objective to accelerate the simulation

process. For example, to reduce a high-harmonic frequency to improve a power-

converter's quality and efficiency, all fast transient dynamics of electrical components

must be carefully modeled and included in the systems' mathematical model, while

only slow dynamics of electric circuits of machines are needed along with the mechan-

ical transients in the stability and load shedding of an inter-area terrestrial power

system.

Another important issue is how to connect all these electric machines, generator

and motor, together to form a power grid network and loads. In the past, most mod-

eling approaches of simulated power systems formed the Differential-Algebraic Equa-

tions (DAEs) after connecting electric machines together [2], [31] and the simulation

of these DAEs was time consuming. To avoid solving DAEs, two types of machine

connections or three-phase buses, which form the Ordinary Differential Equations

(ODEs), are considered in this study. In this chapter, a typical configuration of the

AC power distribution and propulsion systems that is one of the subsystems in Fig-

ure 1-2 is first introduced and then the mathematical model of each component is

presented in more detail.
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2.1 Components of Naval Shipboard Power Sys-

tem

A typical arrangement of the AC power distribution and propulsion systems in the

shipboard integrated power system [47], [55], shown in Figure 2-1, consists of a power

generation unit (prime mover, synchronous generator, and their controller), a AC bus

(tie line connecting to power supply), and a propulsion unit (propulsion drive and

induction motor). However, an actual configuration of this electrical network must

take into account an optimization for power flow and load shedding, a reconfiguration

of the DC zonal areas for survivability, and an efficient management of the storage

energy. Moreover, all these machines must be optimized for an installation space,

a transmission loss, and a signature noise reduction. In the following sections, the

mathematical models of each machine and a simplified power converter are introduced

along with their interconnection such that the transient dynamics of the AC power

distribution and propulsion systems can be further examined from both deterministic

and stochastic perspectives.

eration and propulsion systems.

We consider three different reference frames: the abc reference frame, the qdO rotor

reference frame, and the qdO synchronous reference frame, where the q- and d-axes

of the qdO reference frame consequently lead and lag the a-axis frame by a constant

angle of 0 .. All the transformations between these reference frames will be introduced

in later sections. Note, dOe/dt = we. And the synchronous speed, we, is fixed at 60

Hz.
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2.1.1 Tie line connection and bus

To connect electric machines together, a three-phase transmission line can be modeled

as a symmetrical, three-phase, series RLC circuit. This series RLC circuit includes re-

sistor (rt), self inductance (Lt) from line leakage and magnetizing inductance, mutual

inductance (Me) from coupling of each line, and capacitance (Ce) for line compen-

sation. Furthermore, the line capacitance also acts as a filter between generator and

propulsion drive.

The symmetrical, three-phase resistive element, which represents the transmission

loss in the tie line, can be simply expressed in the abc or qdO synchronous reference

frame as the following:

Vab= rtiabc (2.1)

or

V~do = rtio, (2.2)

where rt is diag[rt rt rt].

For a magnetically linear circuit, the symmetrical, three-phase self and mutual

inductance can be represented by the following matrix in the abc reference frame:

FL t Mt Mt

Labd[ Mt Lt Mt (2.3)

Mt Mt L t

or in the qdO synchronous reference frame

LS - A 0 0

LqdOt = 0 Lt - Mt 0 .(2.4)

0 0 Lt + 2Mtj
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The relation between voltage and current is expressed in the following form:

or

Vdt

(2.5)Vabc = LabetP iabc

= weT1Lqdot1e 0dt + LqdOtP iqdOt, (2.6)

where the T1 matrix represents speed-voltage terms, with T1 (1, 2) = 1 and T 1 (2, 1) =

-1, and the p symbol denotes the derivative operation.

Similarly, the voltage-current relationship of the symmetrical, three-phase capac-

itive element can be written in the abc or qdO synchronous reference frame as the

following:

iabct = CtP Vabct (2.7)

or

ie = WeT1CtVqdOt + CtP V, (2.8)

where T1 matrix, which is exactly identical to that in the inductance element, repre-

sents speed-current terms.

Two types of the tie line considered later on are series RL and RC circuits. The

equation for the three-phase RL tie line is:

P 'qdOt = L-10 VdOt - rtiedot - weLqdotT1 idot), (2.9)

where vqdot represents the voltage difference between two different buses or machines.

The equation for the three-phase RC tie line is:

p V eot SC- 1 iqdot - r-Vq1ot - WeCtTiv'dOt) (2.10)
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where iqot represents the current difference between two different buses or machines.

Next, we describe several kinds of electric machines used in the propulsion and power

generation units.

2.1.2 Propulsion system

For more than a century, DC motors have been used in propulsion drives due to

the simplicity of its precise speed control and low noise generation compared to the

direct drive of combustion engines. Due to the high maintenance, low power density

of DC machines and fast advancement in power electronic technology, the AC motors,

especially the synchronous/induction machines, become a more attractive alternative

for the propulsion in electric ships. With a new development of podded propulsion

for improving maneuverability of the ship, the induction machine is an appropriate

choice because of its high power density and low maintenance. In the rest of this

section, the construction and mathematical representation of the induction machine

is introduced.

Generally, the induction machine can be considered as a system of coupled electric

and magnetic circuits and the mechanical system, the rotor inertia. Its assembly

consists of resistances, self inductances, and mutual inductances between stator and

rotor windings. The three-phase induction machines are asynchronous-type machines,

that operate below and above a synchronous speed in the motoring and generating

operations, respectively. They are less expensive compared to the synchronous or DC

machines of the equivalent size because of its simple structure. Typically, they are

rugged and reliable; thus, they become an important machine in present industry.

The main characteristics of this machine are that it requires large starting current

and yields poor lagging power factor when a light load is applied. For variable speed

drive, they are fed from a power electronic converter at variable voltage amplitudes

and frequencies.

We briefly describe the formulation of a general mathematical model for the sym-

metrical three-phase squirrel-cage induction machines with four poles and three-phase

windings in both the stator and rotor connected in a wye configuration. The governing

61



equations are written in the qd0 synchronous reference frame (denoted by superscript

e). The voltage equations of the stator and rotor windings can be written as

W Le P Pe
Vqdos -rsiqdos + 1 V)qdOs + U$ qdOs (2.11)

LOb LOb

le - ri bLeb. + Ti V)Ie
V'dor = r + e - T1o + (2.12)qddr Wb Wb q r

where vedo, je, OeyO, and V'', '04< r are the stator and rotor variables of

voltage, current, and flux, expressed in a vector form as feO= [fes, fde, fe&]T and

ffe, [f'e, f/r f0.]T, respectively. The resistance matrices r, and r' are diag[rs, r]
qdOr rffo],rsetvl.Terssar

and diag[r,, r., r,]. Or and Wb are the rotor angular and base velocities; the syn-

chronous speed we is the same as Wb in the absence of a controller. The positive

direction of stator current is assumed to be outward from the stator winding. The

prime symbol denotes that the rotor variables are scaled by a stator to rotor turn

ratio.

The equations of flux linkage per second are

4'qdOs ~ -Xi 8 Vdos + 4'nq ( 2.13)

peo =r X1,i'e +en. (2.14)V>qdr 1 ridOr + 4 'rqd-(.4

where the flux leakage matrices Xjs and X', are diag[x1 8 , x, 8] and diag[x,, Xr, Xr].

We write q Xiedgs+A@/)gO, where Xb = diag[xb, Xb, 0] with Xb = (XmXr)/(Xm+

X1,), and Ar = diag[xb/x,, Xb/Xr, 01. xm is the mutual inductance of the stator and

rotor.

The dynamics of the mechanical subsystem can be written as

LOb
PWr = 2 (T TL)- (2.15)

where Te = i- and TL are the electromagnetic and load torques, respec-

tively. The rotor inertia (in seconds) is H.
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Let us consider a 4-pole, 200-hp induction machine connected with an infinite bus

or a constant voltage source through an RL tie line. All machine parameters can

be found in Appendix B [38]. Although the absence of a controller makes this an

idealized case (see Figure 2-2) this system shows the response of a start-up transient,

which consists of fast and slow dynamics of electrical and mechanical components,

respectively. Then, the machine is subjected to a step change in torque load from 0

to 1 p.u. after 1.5 seconds.

V"Oqdo

'eVe~t S

IM Load

3-phase 200 Hp TL
Infinite Bus radial system

Figure 2-2: A single induction machine connected with an infinite bus.

Assume that all state and output variables are described in the per unit system

of the base impedance and in the qd0 synchronous reference frame. The 0-axis vari-

ables remain constant at zero due to a balance operation of machine and a perfect

cancellation from the reference frame transformation.

From Figure 2-3, we can see a large start-up current in both q- and d-axes during

the free acceleration. After the first 0.5 second, the fast transient of the electrical

component dies out, only the slow transient of the mechanical component is dominant

up to 1 second before reaching the steady state. As the torque load changes from 0

to 1 p.u. at 1.5 seconds, both q- and d-axes tie line currents and the electromagnetic

torque increases to handle the increasing torque load, as shown in Figure 2-4.

2.1.3 Power generation system

The synchronous machines are the largest and most common electric machines that

convert energy from mechanical to electrical energy. Even though the three-phase

synchronous machines are relatively more expensive than the induction machines,

the synchronous machines provide higher efficiency at a higher power rating, which
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makes this machine suitable for generating electrical power. Generally, the rotor

of the synchronous machine is composed of a field and damper windings that have

different or unsymmetrical electrical characteristics. Therefore the generated voltage

can be compensated by an exciter/voltage regulator, if there is an increasing of the

electrical load. Unlike the rotor winding, the stator windings of this machine are

mostly identical so that the symmetrical or balance three-phase voltage is produced.

The mathematical model described here is based on the concept of a three-phase

salient-pole synchronous machine, consisting of linear magnetic circuits without any

saturation. The fields produced by the winding currents are assumed to be sinu-

soidally distributed around the airgap, which ignores the space harmonics. The rotor

windings consist of the field winding (fd) and damper windings (kq and kd), and the

stator windings (qs,ds,Os) are symmetrical. The voltage equations of the stator and

rotor windings expressed in the rotor reference frame can be written as the following:

Vdos = -riqdos + -'TiVdO. + -- qdb a (2.16)Ob Wb

V'r = r',q'T + -'/r. (2.17)
Wb

where (vrdo8, rs'o, 'Iqrdo,) and (v ,, i'dr,, ?Pq,) are the stator and rotor variables

of voltage, current, and flux, expressed in a vector form asfO = [f, f, f&]T and

qr = [fir, ]rdIT, respectively. The resistance matrices r, and rr are diag[r8, r,, r8

and diag[rkq, rfd, rid]. Again, the T1 matrix is used with voltage terms, induced by

the speed due to a reference frame transformation. The negative sign in the stator

voltage and flux linkage equations represent an assumption that the positive direction

of stator current is outward from the stator winding.

The equations of flux linkage per second are given below:

qdOs = X18 qds + 4 rq (2.18)

Or = .itroT + T2/qd. (2.19)
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where the flux leakage matrices X, and X', consequently are diagxi5 , x18 , x18] and

diag[xI q, X/I , xkd ]. T 2 is simply the selection matrix:

1 0 0

T 2 = 0 1 0 (2.20)

0 1 0

The expression of mcan be written as the following: V/r = XbirdO5 +A, sr,

where Xb = diag[xbq, Xbd, 0] with Xbq = (1/Xq + 1/X'k- 1 and Xbd = (1/Xmd +

1/XIfd + 1+X-kd 1 .

Xbq/XI'kq 0 0

Ar 0 XbdlX'fd XbdlX'k ( 2.21)

0 0 0

The dynamics of the mechanical subsystem can be written as

LOb
pW= (T Te). (2.22)

2H m

P =Wr - we. (2.23)

where Te = or,,,,- Vsrira, and Tpm are the opposing electromagnetic torque and driven

torque from the prime mover, respectively. Again, H denotes the rotor inertia (in

seconds). The angle difference between the the synchronous reference frame and the

rotor rotating frame is represented by 6. To transform the state variables from the

rotor to synchronous reference frame, the transformation matrix ('K') can be applied

to fqdOs* Due to the Hermitian property of this transformation matrix, the inverse

transformation from the synchronous to rotor reference frame is just the transpose of

,Ke.

cos6 sinj 0
rKe = -sin 6 cos6 0 (2.24)

0 0 1
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A combustion engine, either a diesel engine or gas turbine depending on the size

of the vessel, supplies the mechanical energy to the generator. The size of this com-

bustion engine in the electric-driven ship is usually smaller than that in the direct

mechanic-driven ship. For the purpose of examining the transient stability of the

power generation unit in the large-scale vessel, a simplified model of a heavy-duty

gas turbine is sufficient for this study. Based on the mathematical model of the

single-shaft gas turbine in [49], the more simplified model, found in [38], is mainly

composed of the speed governor (SG), valve positioner (VP), fuel system (FS), and

turbine (Tpm). The state equation can be expressed as the following:

pSG = - -- PW (2.25)
Tc Wb Wb

1 1
P VP = VP+ (SG+WFOs (2.26)

TFV TFV
1 1

p FS = FS+ 1 VP (2.27)
TFT TFT

(2.28)

where the torque supplied by the turbine shaft is given by the following relation:

Tm = C1GT(FS - C2GT) + CGNGT (1 - er). All parameters of this model, given in

Appendix B, are obtained from [38] to approximate the Allison 501 gas turbine.

Furthermore, the exciter/voltage regulator, controlling the field winding of the

synchronous generator, is modeled according to a simplified model of the IEEE type

2 [23] or the IEEE type DC1A representation [24]. This type of exciter is typically

accepted in the industry due to the model's simplicity. Three main components

of this exciter are an independent power supply, a self-excited shunt field, and a

stabilization feedback associated with gains and time constants. However, we neglect

the nonlinear saturation in the shunt field. The state equations for this type of exciter
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can be described as the following:

1 KA{
P VR1 - - 1 VR + K Vref - Vt - Vstab (2.29)

TA TA

p Efd - KE + 1V (2.30)
TE TE

KF 1
P Vf = F VR - T1Vf ( 2.31)

TF1 RT~F
1 1 KF

P Vstab - Vstab + - VR - . ( 2.32)
TF2 TF2 TF1

(2.33)

All parameters of this exciter model, called the Type 1 exciter, are given in the per

unit system in Appendix B. In this case, Vref is fixed at a constant voltage of 1

p.u. and V is a magnitude of the generator's stator voltage. Ki and T respectively

represent the gain and time constant corresponding to each subcomponent.

To simplify the model of the DC1A exciter even more, we can neglect the voltage

stabilizer component such that the exciter model is left with only two states, VR and

Efd, where the state equations of these two variables are given below. We call this

exciter model the Type 2 exciter.

1 V KAV
PVR = V - A(Vref -Vt (2.34)

TA TA(3

pEfd KE 1
T ra= Erfd-ThVR (2.35)TE TE

(2.36)

In the ideal case, the 3.125 MW synchronous generator, driven by the Allison 501

gas turbine and controlled by the type DC1A exciter, supplies the electric energy to

an infinite bus as shown in Figure 2-5. In this example, we assume that the generator

initially operates close to its steady-state conditions.

From Figure 2-6 to 2-8, we can see that state variables of the synchronous machine,

exciter, and gas turbine are closely coupled and they approach steady-state values

within the first 10 seconds. Notice from the responses that the time constant associ-

ated with the exciter is the slowest one. In this case, the bus voltage is maintained
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Wr Vt i1 qdot
Governor Exciter

Prime Mover SMr
(Gas Turbine) 3-phase

AC bus Infinite Bus
Tpm qdos

Figure 2-5: A synchronous machine supplies the electrical power to an infinite bus.

close to 1 p.u. with a feedback correction from the exciter. In later sections, this

power generation and the propulsion units will be connected together to form the AC

power distribution and propulsion systems, which is more realistic than connecting

them to the ideal infinite bus.
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2.1.4 Pulsed-power load

Recently, increasing demand on electric power in the Navy electric ships requires a

large supply of electricity for the high-power radar and electric weapon systems, for

example, the Free Electron Laser and the Electromagnetic Railgun system. Reduc-

tion of cost per round, of on-board storage, and of time-to-impact are some major

advantages of Railguns. However, the Pulse Forming Network (PFN), which draws

a pulsed power load from the ship integrated power distribution, is needed for op-

erating the Railgun system. At the present, two existing pulsed power supplies are

the capacitor-base and rotating machine systems [13],[37]. According to [56], the 37

kW propulsion and PFN systems consume around 63% and 22% of the generated

power at their peak load from the 59 kW synchronous generator with Vbse = 457V;

therefore, power management is required in the actual integrated power system.

The pulsed power load can be modeled as a large pulsed current, supplied from

the electrical bus to the capacitor charging circuit [30],[56],[16]. This pulsed current

represents a periodically charging and discharging cycle of the capacitor-based PFN.

Figure 2-9 [56] shows the first two cycles of charging and discharging current. In

the first charging cycle, the PFN must store 200 kJ peak power and each discharging

cycle consumes about 128 kJ from the capacitor network. Due to our time constraint,

we will investigate a stochastic analysis of the pulsed power load in the AES system

in the future.

0

5 5 a 5 seod

Figure 2-9: A current waveform during the first and second charging and discharging
cycle of the Pulse Forming Network, which is drawn from the AC power distribution
bus.
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2.2 Electric Machine Drive with Power Converter

Many control strategies have been examined and implemented for the electric machine

due to the recent advancement of the power electronic technology. Typically, the

converter, consisting of a rectifier, inverter, and DC-link filter, converts the control

command into voltage supplied to the machine. In this study, a dynamic average-

value model of the 6-pulse, full-wave rectifier with the Y-connected voltage source

is examined and constructed from the equivalent circuit in Figure 2-10, similar to

those found in [29]. This rectifier is directly connected to the DC-link filter, which

supplies a DC voltage to the three-phase inverter using the hysteresis modulation

technique. To derive the equation for the rectifier average-value model, we need to

assume the following - 1) the AC source voltage has a constant rms magnitude, 2)

the DC current (Id,) is constant during each commuting cycle, and 3) each leg of the

three-phase diode bridge commutes one at a time.

Rectifier DC-link filter

pr L rf L

s s s + + +
vS, L, S dc filter

V. + LC

L Vd Vd --- _Vl

+

S4 s s2

n

Figure 2-10: An equivalent circuit of the three-phase rectifier.

The Vabog and L, denote the Y-connected AC voltage source, operating with the

based frequency (wb), and the inductance associated with the source. First, we trans-

form the voltage in the abc frame to the qdO synchronous reference frame and then

to a qd0 arbitrary frame, called g frame, where the rms magnitude of d- and 0-axis is
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zero using K' and 'K9 transformations respectively.

COSOe COS(e -C) cos(6e + 23)

= 2 sin~e sin(Oe- T) sin(Oe + Z) (2.37)
3 3

L 2 2 2

aKg = cos/g sing 1 (2.38)
L -sin#g cos#g

where

q t -1 (vd/vj) (2.39)

and Vabcg is transformed to [v, 0,0. Furthermore, the average DC current over one

switching or ir/3 cycle of Wb, denoted by idc, can be computed from the DC RL circuit

equation, given below [29], by assuming that the variation in one switching cycle is

small compared to next cycles.

-. Av9cosa - (rd, + !Lew~a a33 q SO - Vd

P +dc (2.40)Ldc + 2Lc

where vdc is the voltage across the Cc capacitor and a is the firing angle of each diode.

We assign a = 0 such that this full-wave rectifier is ideally operated in an uncontrolled

mode. The commutation angle (u), given in the equation below [29], represents an

angle between the turn-off and turn-on times of [S1,53] or [53,S5] diodes.

u = -a + arccos cosa - LcWbtdC (2.41)

Next, the average qdO current in each leg of the full-bridge rectifier can be calculated

by integrating over [a,T + a], [5 + a,2 + a], or [P + a,7r + a] interval of Wb. The

average current during the conducting interval is composed of the source current and

the average DC current. During the short commutating interval, the average current
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in each rectifier phase leg only equals the average DC current, 2 dc. Thus, in each

interval, i is a sum of the conducting current (Igcon) and commutating current

(igcom) [29], expressed below:

q =q cond + q,com (2.42)

d dcond + '"d,com (2.43)

where

ig,2V c sin a+ 7 sina+U+ 5 (2.44)qcond 7F ~ 61) 6i

- 2 /f- 7r 57
S Cosa+ 6 +Cos a+u+ ) (2.45)

6-\/53ideV 57r 57r-iq,com = dvsin u + a - -sin 0a -- ) (2.46)
7Tr2Lewb 6 6

3vg
xcosa[cos(u + a) - cosa] + q [cos(2u) - cos(2a + 2u)]

47rLewb

6v\/5idcog 57r 57r-
6 9 - Cos U + a - ) cos a - --) (2.47)d,com ,w2Lewb 6 6

3vg 3vgu
x cosa[sin(u + a) - sina] + v [sin(2u) - sin(2a + 2u)] - q

47rLewb 27LcWb

Lastly, Vdc and iLC can be found from the state equations of the Cdc capacitor and

the DC-link filter, given below.

1
P Vdc = idc --iLC) (2.48)

1
P ILC (vdc - Vo - T f LfiLC) (2.49)

Lf

where vot is the voltage supplied to the inverter.

To summarize the derivation of the rectifier average model, the block diagram in

Figure 2-11 represents the interconnection of Equation 2.37 until 2.49. The input and

output of this block diagram are consequently (Vabcg, a, iLC) and (iabcg, Vdc).

To adjust the voltage magnitude and frequency to control the induction machine,
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Figure 2-11: An block diagram of the three-phase, full-wave rectifier.

the hysteresis modulation type of the three-phase inverter provides a current regula-

tor when it is combined with a motor-control technique. This modulation approach is

effective in regulating the current within the hysteresis band (h) according to the dif-

ference between the machine current and current command from the motor controller.

The hysteresis function, shown in Figure 2-12, in each phase can be approximated by

the following equation [27]:

1 1* Ia *-I
Sa- arctan arctan 2.1003(h 'a)+1.16( a ) + - (2.50)

2.0078 h h 2

I* -I Sa,a -a HO

-h Ih

Figure 2-12: An hysteresis function for the a-phase hysteresis current-regulation tech-
nique.

where Sa is the switching command for the a-phase leg of the inverter, I* and 1 , are

the a-phase current command from the controller and the a-phase stator current of

the induction machine, respectively. Using the ideal three-phase, full-bridge inverter,
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the supplied voltage to the induction machine can be obtained as the following:

[VaVbVc] = [Sa, Sb, Sc] Vdc (2.51)

2.2.1 Control of induction machine

Many control strategies for the induction machine have been introduced in the litera-

ture, but only four techniques are briefly mentioned here. The volts-per-hertz [29],[6],

constant-slip current [29], field-oriented [29], and passive-based [32], [43] control of the

induction machine have been extensively studied and implemented. The volts-per-

hertz control algorithm adjusts the magnitude and frequency of the applied voltage

such that the speed of the induction machine can be controlled according to the

machine torque-speed curve without any speed feedback. The constant-slip current

control, which is our main focus, can directly control the machine torque and it is

robust against the parameter variation; nevertheless, an additional feedback loop is

required for a variable speed control. Similarly, the field-oriented control directly

manipulates the machine torque, but it is sensitive to the parameter fluctuation. For

the passivity-based control of the induction machine, an accurate machine model as

well as parameters are required to rewrite the system equations into the electrical and

mechanical components; thus, this control strategy is not robust against the variation

in load or parameters.

Combined with the hysteresis modulation, the constant-slip current control method

can maximize the machine torque for a given input current by exploiting the steady-

state electromagnetic torque relation [29] as a function of the slip frequency (w,),

expressed below:

2(:)wL2Ir'T = (2-52)
'(r)2 + (w8L,.) 2  -

where 8, denotes a fixed slip frequency (w, = We - wr). I, and (r', L.,, and LM)

are the magnitude of the stator current and parameters of the induction machine,

respectively. To solve for the stator-current magnitude for a given torque command,
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the following relation in Equation 2.53, expressed in terms of the estimated machine

parameters (rest and Lest), is used.

2|T*|rr..)2 + (WSL,, ,2
is = (2.53)

rL 3PIw s L ,esrr,es,

To maximize the torque per stator current, w, can be calculated by taking the deriva-

tive of e in Equation 2.52 with respect to w, and setting it equal to zero. Thus, we

obtain w,*, given below, resulting in the maximum torque per stator current.

W* rr,est (2.54)
8 Lrr,est

To avoid operating in a machine saturated regime, the torque command must be lim-

ited within a certain threshold that can be found in [29] for more detailed calculation

of Te,threshold. Therefore, we can summarize this control strategy in the block diagram

form, shown in Figure 2-13. The magnitude of the stator current (1,) is arbitrarily

assigned to the q-axis current (i*e), while i*, and ie are set to zero to simplify the

calculation. The v/2 takes into account converting the magnitude of I, into the rms

value.

e 'max - Eq. 2.54 Hqs
Tethreshold , . 0

Wr 1pG

Figure 2-13: A block diagram of the constant-slip current control of the induction
machine.
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2.3 Difference in Interconnection of Subsystems

Two types of interconnections that can connect electric machines together without

forming the differential-algebraic equations are 1) static electrical bus [38], and 2)

dynamic electrical bus [27]. Each approach is associated with benefits and limitations.

To couple electric machines on the same electrical bus in the first approach, the

causality of the voltage equations must be resolved into the root and non-root machine

models. The root machine imposes the voltage on the static bus, while the non-

root machine provides the current to the bus, which is the same as those equations

described in Section 2.1.2 and 2.1.3. Using the static bus, some of the root machine's

state equations are combined with that of the tie line; as a result, the total numbers

of state equations are reduced. However, the machine drive technique can be applied

only to the non-root machine. In the second approach, the dynamic equations of the

three-phase RC circuit must be included along with the machine equations; however,

no transformation of the machine equations is required and the controller can be

directly coupled with the machine model.

Let us consider the first method using the static bus. The derivation of both root

and non-root models of synchronous and induction machines is given in the following

section. The state and output equations of the root induction machine are:

P 4 'qd0, = Wbr',.( Xi,)-("P r - "/ d0r) + (Wr - We)T 1Z)4 0, ( 2.55)

Vido, = -rsiqdO + -T 1e TO, 1 Xp i* dos + -Ap q , (2.56)
Wb W b Wb

The equations for the non-root induction machine are:

P qdOr = Wbrr(Xj,)-("/rq - "*qO,) + (Wr - We )T 1 @ie, (2.57)

P iqdos = WbBvs~qo, - wb[B,(ri",, + *T1jOedOs) + Brp e 43I,] (2.58)
Wb q O Wb

where e= X + and B, = (X1 , + Xb)- 1 and Br = (XA)-A, using

our previous definitions in Section 2.1.2.

Similarly, the synchronous machine can be modified to be either root or non-
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root machines such that they can be coupled together using the static bus. The

mathematical model of the root machine, which controls the voltage the machine

supplies to the bus, can be expressed in the following form:

O',.= wbr,(Xir) (T24'gd--'I'd)+WbVdr (2.59)

V-dS = rsidse + (rKe) [-'T19dor + Wr XWeXT1 i, - -- ArP br'd ,2.60)
Wb Wb Wb

1
(rKe)X,(eKr)p ieqO.

Wb

where X, = Xls + Xb.

The equations for the non-root synchronous machine can be written as follows:

P4 qdr = wr(X) (J2 Vrnqd - /d) + WbV~r(.1

p o = (rK*)[ - wbB,(vd o + r.i'do8  TiT14,o) (2.62)
OWb

+BrP qd, + (Wr - We )q I,]

When M+1 machines and N loads connect together to the same static bus, Kir-

choff's current law can be expressed to sum all currents from the root machine, the

M non-root machines, and the N RL tie lines, written below.

root e - - M nonrootie _ EN ie
'qdOs ~~ i=1 qdas,i j=1 qdet,j (2.63)

Next, we differentiate both sides of the above equation. Then, we substitute the

derivative currents of the non-root machines and RL tie lines from their state equa-

tions such that the derivative current of the root machine can be found and substi-

tuted into its state equations. As a result, the voltage or output equations of the root

machine are combined with the current summation of the static bus. Therefore, all

casualities of all machines and tie lines are resolved.

In the second type of system interconnection, when M machines and N loads

connect on the same dynamic bus, again all currents supplied to or drawn from the

AC bus must be summed using Kirchoff's current law to obtain the bus current (it).
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Then, iqdot can be directly substituted in the RC tie line equation, Equation 2.10, and

we integrate the RC line voltage equation such that the bus voltage can be found and

substituted back into the machine and load equations. However, when the propulsion

drive is connected onto the AC bus, the fast dynamics from the high-harmonic current

can reflect back onto the AC bus, which leads to instability of the entire interconnected

system. Therefore, the harmonic filter, represented by the low-pass filter RLC circuit,

is required to reduce the high-harmonic waveform. A simplified one-line diagram of

this three-phase AC bus connecting with 2 machines - synchronous generator and

induction motor -, harmonic filter, and power supply is illustrated in Figure 2-14.

Generator

1
gen

Harmonic ips
Filter AC Bus P S

rfPower 
Supply

Lr f--

C R

-- prop

Propulsion

Figure 2-14: A one-line diagram of the three-phase AC Bus [27] in the second type

of system interconnection.

2.4 Source of Uncertainties

Due to the complexity of the AES, several components and loads can contribute to

the uncertainties in the entire system. The list below includes some major sources of

uncertainties in the AES integrated power system.

1) Time-varying parameters of the electric machines [43], [6], [29] - 1.1) tempera-

ture dependent resistances and capacitances, 1.2) bearing friction, 1.3) nonlinearities

and saturations of magnetic material, inducing heat from the hysteresis loss and skin

effect.
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2) Fault or failure of components in electric machines and thermal management

systems [34] (e.g., machine's bearing, stator, rotor, and insulation failure or piping

damage).

3) Unknown load disturbances - 3.1) fluctuation of the propeller loads due to the

unpredictable sea state, caused by wind and underwater current, 3.2) magnitude and

frequency of charging and discharging cycles of the PFN [13], [16], consisting of many

energy-storage capacitors.

4) Unreliable sensor measurement (e.g., bias or drift) or even a sensor failure [34],

which triggers an unnecessary maintenance or action of the intelligent control.
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Chapter 3

Numerical Stochastic Techniques

As mentioned previously, the stochastic analysis of nonlinear systems, particularly a

network of electric machines, is too complicated to perform analytically. In the previ-

ous chapter, we have derived the deterministic model for a shipboard power system,

which consists of tens states. To predict a probabilistic outcome of system response

subject to random excitation, numerical stochastic algorithms are needed. In this

chapter, five different stochastic techniques - 1) Monte Carlo (MC), 2) generalized

Polynomial Chaos (gPC) or Galerkin approach, 3) Probabilistic Collocation Method

(PCM), 4) hybrid gPC with PCM, and 5) Multi-Element (ME) technique of the gPC,

PCM and hybrid are described from both theoretical and implementation points of

view. Even though all of these algorithms can provide the statistical moments as

well as the probability density function, the complexity of calculating statistics is

different among these methods. Note that the first and second moments are mean

and variance, respectively. In a realistic situation, uncertainty of system parameters

and load tends to vary within a specified range, and therefore the uniform and ex-

ponential distributions are more suitable to represent these uncertainties than the

Gaussian distribution. Only the uniform distribution, where the sample space (0)

is within [-1,1], will be the main focus in this study, because both parametric and

external disturbances are often described within a known bound, which can be scaled

accordingly using the uniform distribution.

In this chapter, we describe an underlying theorem of these stochastic algorithms.
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Then, we briefly discuss the implementation techniques, which provide an insight on

algorithms' structure, as well as their advantages and disadvantages for a practical

purpose.

3.1 Representing Stochastic Input

In an uncertainty analysis, the first step is to realize what type of probability dis-

tribution best describes the uncertainty, associated with the random input. In this

work, the stochastic response of nonlinear systems subjected to both stationary and

non-stationary stochastic inputs, which exist in external input or system parameters,

will be studied. Moreover, an uncertainty in initial condition or boundary condition

is also considered as a random parameter in the system. When the stochastic input is

fully correlated in time, known as a random variable case, this type of random input

is fixed with time or has an infinite correlation length. The magnitude of random

input is unknown and prescribed within a specified bound. On the other hand, when

the stochastic input becomes a time-dependent variable, the random input becomes

a partially correlated random process. We describe both of these random inputs

mathematically as well as their numerical implementation.

3.1.1 Random Variable

A characteristic of most parametric and load excitations of any system is often un-

known precisely. Therefore, a preliminary study of stochastic analysis can be modeled

by a stationary random variable. A random variable is a linear mapping function from

a random number (i), associated with a specific probability distribution, to outcome

(x( )), which lies within the range space of a random experiment. The random vari-

able can be expressed in terms of mean (xo) and standard deviation (oX) from a

nominal value, as shown below.

x(() = XO + Uo( (3.1)

84



where x( ) represents a vector of all possible random variables in the system. Note

that in this chapter, the random input ( ) denotes a random number with zero mean

and variance of one. Only a continuous random variable [33] will be considered in

this study. For example, the range of uniform random variables is specified between

a and b, so a corresponding probability density function is given by 1/(b - a).

3.1.2 Random Process with Karhunen-Loeve Expansion

For a non-stationary random process, random input is fluctuating with time and can

be either partially correlated or uncorrelated in time, which is represented by a slow-

varying variable or random white noise, respectively. The Karhunen-Loeve (K-L)

Expansion is one of the approaches to model the random process with a spectral

expansion of a specified covariance function. The K-L expansion decomposes the

random processes (X(t)) into a time-dependent orthogonal basis function (#k(t)) with

orthogonal random variable (Xk(w)) as coefficients. Similar to the Fourier Series, the

K-L expansion can provide various good properties, especially for a random input

that is non-periodic. For example, if X(t) is the Gaussian process, the coefficients,

'k are independent Gaussian random variables with magnitude corresponding to the

eigenvalue, Ak. The K-L expansion can be expressed as the following:

cc

x(t, w) = k(t) + O- 13 Vlk(t)(k (W), (3.2)
k=1

where R(t) and a- consequently stand for mean and standard deviation of the ran-

dom process. And Ak and 4k(t) are the real-value eigenvalues and complex-value

eigenfunctions of the covariance function, R.2(ti, t 2 ). The 4k(w) are orthogonal in-

dependent random variables. As shown later on, this modal representation of the

K-L expansion, with M(W), is very well suited for stochastic input of the Galerkin ap-

proach. Both eigenvalues and eigenfunctions are the solution of the following integral

equation:

fRxx(tl, t2)#k(t2)dt2 = Ak~k(tl) (3.3)
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Figure 3-1: Eigenfunctions f,(t) with 0 < t < 1 and n= 1, 2, 3, 4 and cl = 1 from
the Exponential Covariance kernel.

Again an assumption on the covariance structure of random input must be specified

in advance. In this work, a time-dependent exponential function will be used as the

covariance function over a time interval [0, T], expressed in the following form:

Rox(tit 2) = o 2C-t2t Il (3.4)

where cl denotes a correlation length between t1 and t2 . From a numerical imple-

mentation aspect, the summation in equation 3.1.2 must be truncated up to an N

term such that the accuracy of the covariance characteristic is maintained. We will

show that it is possible to reconstruct this covariance kernel with this N-term de-

composition and estimate an associated error. The mean-square error of the process,

obtaining from the K-L expansion, is minimal with a finite-term expansion. We

will show how well the reconstruction of the approximated covariance kernel with N-

terms truncation becomes, as we increase the number of N. Figure 3-1 shows the first

four eigenfunctions, obtained from the exponential covariance function with cl = 1.

Figures 3-2 to 3-6 consequently show the exact exponential covariance kernel, the

approximated kernel with N = 4 and N = 10, and their corresponding associated

errors. Furthermore, the convergence of eigenvalue can indicate how many term are

needed in the expansion to closely approximate the exact covariance kernel, as shown

in Figure 3-7
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Figure 3-2: Exact Covariance Surface versus t1 and t2 with cl = 1.
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Figure 3-3: 4-term approximation of Covariance Surface versus ti and t 2 with cl = 1.
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t2 with cl 1(MaxError = 0.1126).
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Figure 3-5: 10-term approximation of Covariance Surface versus t1 and t2 with cl 1.
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3-6: 10-term relative error surface of Covariance Approximation versus t1 and

cl = 1(MaxError = 0.0425).
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Figure 3-7: For cl= 1, the eigenvalue of the exponential covariance kernel as a function

of the approximation terms (4-term : left) and (10-term : right) indicates how many

terms are required in the approximation to obtain a convergence.
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3.2 Monte Carlo method

3.2.1 Algorithmic Framework

According to the probability theory, an event is related to a set of outcomes in the

sample space and a probability of the event is associated with a ratio of a subspace or

volume and the entire sample space in d dimension (Qd). Instead of calculating the

event probability as in the probability theory, the Monte Carlo (MC) method uses

a concept of sampling randomly and independently from a specific volume to obtain

the probability of the outcome. Let us consider Xi to be the independent random

variable of i event in the sampling of wd and let S denote a set of the outcomes from

NN events or realizations, SNN = X 1, X 2 , - - - , XNN- Thus, an estimated mean value

(A) can be computed as the following: pI = Z(X 1 + X 2 + - --+XNN). The strong law

of large numbers guarantees that the estimated mean, M^, converges to an exact mean,

[L, with the probability of 1 as NN approaches infinity. To calculate the variation of A
from I or to estimate the error associated with each specific outcome, a variance can

be computed according to the central limit theorem. Several approaches have been

proposed to reduce the variation in estimating statistics, which include the stratified

sampling, the important sampling, and the latin hypercube sampling.

For the continuous random variable, the expectation, p, and variance, o- , of

system output can be computed from a volume integral as the following.

IL= jf(x) dx, (3.5)

a j(f(x) ,)2 dx. (3.6)

The sample space Q of the uniform distribution is in [-1,1]. While, in the Monte

Carlo method, the discrete random variable is employed in the uniform sampling, so

the estimated expectation, A and variance, Uf can be computed from an averaging
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summation as the following.

1NN

P NN f(xi), (3.7)
NN

Uf = (NN (3.8)

i=1

Note that the above volume integral and averaging summation can be extended to

the sample space in higher dimension, £d.

How accurate the statistical results are depends on several factors, i.e., the num-

ber of samplings or realizations and a randomization of a random generator. When

the pseudo-random number generator [46] is employed in the MC to generate the

uniformly independent identical random number, the accuracy of statistics improves

proportional to 1/v/NN. Thus, a large number of realizations is required in the MC

to yield the accurate statistics as well as to capture the probability density function

accurately. To overcome this limitation, the quasi-Monte Carlo (QMC) [46] can fur-

ther enhance the statistical accuracy such that its accuracy increases proportional

to 1/NN. The QMC method requires the quasi-random number generator, which

samples the sample space more evenly than those of the pseudo-random number gen-

erator. We show the characteristic of both pseudo-random and quasi-random numbers

for a two random dimensions in Figure 3-8. The major advantage of both MC and

QMC is their insensitivity of the statistical accuracy to the random dimension.

3.3 Galerkin Approach of Polynomial Chaos

According to the Cameron-Martin theorem [10], the so-called Wiener-Askey poly-

nomial chaos expansion can approximate and describe all stochastic processes with

finite second-order moment; this is satisfied for most physical systems. The Askey

scheme of polynomials contains various classes of orthogonal polynomials and their

associated weighting functions are identical to the probability density function of dif-

ferent distributions. As shown by [62], these orthogonal polynomials yield an optimal
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Figure 3-8: 1000 realizations of the pseudo-random (left) and quasi-random (right)
variable for two random dimensions.

(exponential) convergence of stochastic solutions for their corresponding probability

distribution, as shown in Table 3.1 below.

Table 3.1: Orthogonal polynomials and their associated probability distribution.

Orthogonal polynomial j Probability Distribution

Hermite Gaussian

Legendre Uniform

Laguerre Gamma

Jacobi Beta

Charlier Poisson

Meixner Negative Binomial

Krawtchouk Binomial

Hahn Hypergeometric

3.3.1 Algorithmic framework for generalized Polynomial Chaos

method

The main concept of the generalized Polynomial Chaos (gPC) is that all state vari-

ables of a random process are expanded in terms of the weighted sum of orthogonal

polynomial bases of standard random variables. A general second-order random pro-
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cess can be concisely expressed in the following form:

00

X(w) = ci(((w)), (3.9)
i=0

where #i denotes the polynomial basis from the Wiener-Askey polynomial chaos,

expressed as a function of a d-dimension random variable = ( 1, ..., d). This form

of expansion optimally converges to L2 random process in L2 sense. w represents a

random event confined within the sample space of the particular distribution. ci(t)

is the i'th modal coefficient, from which statistics can be directly calculated. In

numerical implementation, the expansion onto the orthogonal polynomial basis is

truncated at P terms. We have P = (d + p)!/d!p!, where d and p are the dimension

of random variable and the highest order of the polynomial chaos, respectively.

The accuracy of stochastic solution can be improved by increasing the polynomial

order, known as the p-type refinement. The convergence rate of p-refinement is an

exponential for a smooth and continuous solutions.

An important property of the Wiener-Askey polynomial chaos is orthogonality:

( = (0) 64, (3.10)

where 6ij is the Kronecker delta and (-,-) represents the inner product on the support

of random variable 6. In the continuous case, the inner product is defined as:

(f(), g()) = f(6) -g() -W( )d, (3.11)

where W( ) is the weighting function corresponding to the Wiener-Askey polynomial

chaos. In our case, we assume all the uncertainties to have uniform distribution, and

thus the Legendre polynomial chaos, which is the same as Jacobi polynomial with

a = 0 and 3 = 0, is the most efficient basis. The formulas and properties for the

Legendre polynomials are shown in Appendix A.
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3.3.2 Numerical Implementation

The major advantage of applying the gPC is that an SDE can be transformed into

a system of deterministic equations. To solve a particular SDE, all state variables

(x(t, w)) and random inputs (u(t, w)) must be expanded by the polynomial chaos and

by corresponding modal coefficients with the the following result:

P P

x(t,w) = xi(t)#i((w)) and u(t,w) = ui(t)#i((w)) (3.12)
i=O i=O

A Galerkin projection is applied to this SDE for each (# (w)) such that the SDE can

be simplified to one of many P+1 coupled ordinary differential equations (ODE's)

for each mode, using the orthogonality property of polynomial chaos. Then, these

deterministic modal ODE's can be solved with any numerical method dealing with

initial-value problems, e.g., the Ruge-Kutta method. Consider now the ODE of the

induction machine mechanical subsystem. After expanding all the state variables

onto the orthogonal polynomial basis that includes the uncertainty in torque load,

the stochastic differential equation becomes

P P P

i=0H i=O j=0
P P

Ir i=0 j=0

P
Wb 1:

T2H Li. (3.14)
i=O

Projecting the above equation onto each of the P +1 modes of the polynomial chaos,

using the Galerkin method, results in P + 1 deterministic ODE's for each mode in
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the expansion:

dWrk (Np Npe

dtk x E E )qri dsjeijk - (3.15)
I i=0 j=0

Np Np
WbXb E \7~ *eiie

2H' Ydriiqsjeiik -
1r i=0 j=0

Wb (2
TH(T ) . (3.16)

where eijk denotes the triple product (#i, j, #k). This eijk should be calculated in

advance for the system with the random dimension less than three; otherwise on-line

computing of the tensor product of one-dimensional polynomial basis results in faster

computational time for the systems with high-dimension random inputs. The rest of

the SDE's of the system are similarly transformed into deterministic ODE's. Once

the time integration of the modes is complete, first and second moments of each state

can be directly obtained from the zero modes and from a summation of the squared

modal amplitudes, each multiplied by (#2), as shown below.

P1(f, ) = x0(t), (3.17)
P

A2= (t)(#). (3.18)

To construct a probability density function (PDF) of state or output from modal

solutions, n realizations associated with the random distribution must be generated

for P+1 polynomial bases. The range of realizations of state or output can be used

to form its PDF with a histogram function, hj for j = 1,- ,n.

P
PDF(x(t, )) = hj ( Ex(t)4 2 ( (w))). (3.19)

3.3.3 Algorithmic framework for Multi-Element gPC

According to Wan and Karniadakis [60], if the domain of random inputs (w) is sub-

divided into multiple elements, the accuracy of stochastic solutions can be improved,
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especially for cases of discontinuity in stochastic solutions or for problems of long-time

integration. As a result of the h-refinement, a local integration error at each time step

can be reduced and the domain of solutions' discontinuity can be approximated more

accurately within a smaller decomposed domain. We will briefly explain the basic

concept of the Multi-Element gPC (MEgPC) [60] for a d-dimension random input.

First, let 6(w) = [(1(w), 2 (w), ... , 6(w)], which denotes a vector random input in

d dimension. Each j is an identical independent distributed (IID) uniform random

variable, U[-1, 1]. Second, we decompose the d-dimension domain of the random

input into N non-intersecting intervals or elements (Ek). The domain of each element

is contained within a hypercube, [ak, bk) x [ak, bk) x . x [a , bk), where a and b

denote a lower and upper bound of that element, respectively. We must scale the

random variable of each element ((k = [((w), (2(w),... , Qk(w)]) accordingly with

its conditional probability density function, pgk = _' 1 , where i = 1, ... , d and

k = 1, ... , N. The mapping of random variables from global to local or element

domain is governed by the following relationship.

(k _b ak bkI
2 - + af , (3.20)

where the global random variable, 6f, is ranged between [at, by). The local random

variable, Q, is a uniform random variable, U[-1, 1]; therefore we can apply the gPC

with the Legendre polynomial chaos basis to solve SDE, dx(',) = f(x(t, 6)), in eachdt

local element for N times. Using Bayes' Rule and the total probability theorem,

the global statistical moments (pm(f( )) can be calculated from the local statistics

(pm(f(())) as shown below.

Am (f(0)= fm(6)(1)dd = p fm ((k)( ddk, (3.21)
1,1]d 2 k=1 _1,d2

where p1, and A2 denote mean and variance solutions. One of the numerical implemen-

tations is assigning the initial condition after splitting the random dimension into mul-

tiple elements, which has been done by solving the inverse of a linear system [60]. Let
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us denote the expansion of state variables at the upper level, Xk(Rk) - Zso a ,4k()

for k = 1, ... , N, for N elements. If we split each element into two sub-elements at the

refined level, the state-variable expansion can be expressed as ik(k) = E,0 ((ki )
for k = 1,--- , 2N. To assign the initial condition for i#, we must solve the following

linear system:

00 10 '' ... '= 0  5 0)

.01 .1l ... .Pl 1 = Z=0 I.4i(c1) (3.22)

OOP qOp OPP ii. qip \ 0P = P)

where Oij = ((i).

3.4 Collocation Approach of Polynomial Chaos

The collocation method is an alternative approach to solve stochastic random pro-

cesses with the Polynomial Chaos. Instead of projecting each state variable onto the

polynomial chaos basis, the collocation approach evaluates the function at roots of

the basis polynomials. Therefore, if the governing equations become more complex,

the simplicity of collocation framework, which is only repetition runs of deterministic

solvers, results in a faster algorithm than the gPC, particularly in high dimension

problems. In this section, two collocation techniques, full- and sparse-grid colloca-

tion methods, are explained in detail along with a framework for the multi-element

technique and an adaptive criteria.

3.4.1 Probabilistic Collocation Method (PCM)

Two underlined concepts for the PCM are the orthogonal polynomial and their asso-

ciated quadrature rule. As mentioned earlier, each class of the orthogonal polynomial

chaos has a different associated weighting function, which is identical to a different

probability distribution. Since only uniform random distribution, U[-1, 1], is consid-
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ered here, the full-grid collocation method specifies its collocation points according

to roots of the Legendre polynomials (L(6)) or the Jacobi polynomials (JCa(6)) with

a = 3 = 0. Similar to the gPC approach, L(6) yields the fastest or exponential

convergent rate for the uniform process. For the sparse-grid collocation method, the

collocation points are determined from zeros of the Chebyshev polynomials of the

first kind (T( )) or Ja,,3 (6) with a = 3 = -1/2. The domain of all these polyno-

mials are on [-1,1]. The main difference between L(6) and T(6) are 1) roots of L(6)

do not include the end support and vice versa for T( ), and 2) roots of L(6) fully

cover the entire domain, while roots of T( ) form a sparse structure. All properties

of L(6), Jt1f(6) and T(6) polynomials are given in Appendix A. The highest order of

polynomials or roots of polynomials determines a number of collocation points (Nc).

Full-grid PCM

For the uniform random process, the full-grid PCM relies on the non-equidistant

abscissas of the Legendre polynomials for specifying the collocation points and the

Gauss-Legendre quadrature rule for computing statistics. Similar to the p-refinement,

the more the number of collocation points, Nc, increases, the better the accuracy

of stochastic solutions is. We call this improvement an Nc-refinement. Figure 3-9

displays an example of the non-nested collocation points' location for Nc = 10 and

Nc = 11 in a two random dimension.

The Gauss quadrature formula, which is a well-known numerical integration tech-

nique, yields an exact integration value for any function in a polynomial form (f(6))

of order less than or equal to 2Nc - 1. An approximation of the integration by the

Gauss quadrature rule is shown in the equation below.

Nc

fR ()W(6)dx= f(6j)wi, (3.23)

where 6j, a collocation point, is determined from the abscissas of the orthogonal

polynomials of Nc order over a domain, R, which can be found numerically using

Newton's method [46]. fi denotes a value of the function evaluated at this collocation

97



90. 0 x 0 x 0 x 0 x 0 ,0 ,o 0

0.8
00 0 0 0 0 0 0 0 0 0

0.6-
o 0 0 0 0 0 0 0 0 0

0.4 x x x-

0 0 0 0 0 0 0 0 0 00

0.2 -

x 0 0 0 0 0 0 0 0 0 0

-0.20 - x

00 0 0 0 0 0 0 0 00

-0.4

0 0 0 0 0 0 0 0 0 0 0
-0.6C

0 0 0 0 0 0 0 0 0 0 0
-0.6 6dA 01 0a' 0 X0 x0 . 0 '0 '06,! CI O O O O

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x I

Figure 3-9: The non-equidistant and non-nested abscissas or collocation points for
Nc=10 (x) and Nc=11 (o) of the full-grid PCM in two random dimensions.

point and wi is the weight of the Gauss-Legendre formula. The analytical formula for

wi in one dimension is given below:

2(1 - )
Wi= (3.24)

{ NC + 1)2 [LNc+1lip

For a higher dimension random process, Nc equals the number of collocation points

in one dimension raised to d power. From now on, Nc represents the total num-

ber of collocation points in d dimensions. The probabilistic collocation method is

simply performed by solving the deterministic solution Nc times with random param-

eters specified at these collocation or nodal points. Using either the Gauss-Legendre

or Gauss-Lobatto-Jacobi (with a = 0 = 0) quadrature, the statistical moments of

stochastic solution, u(t, ), in d dimension can be computed accurately and efficiently

after solving for Nc deterministic state solutions at these abscissas.

1Nc
Al = 2d u(t, i)wi, (3.25)

i=1
/12 = (T U(, A)f l. (3.26)

1 and p2 are the mean and variance solutions, respectively. The factor 1 is required

owing to normalization of the one-dimensional Gauss-Legendre weight ( _" wi = 2).
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To construct the PDF from the nodal points of the PCM, we need to project these

nodal points onto the Lagrange interpolant basis (H ()). The Lagrange interpolant

polynomials are generated based on Nc collocation points at any arbitrary value, (,

where -1 < < 1.

{j Nc-2 2 (3.27)
otherwise

where J ("3 (Q) is the i order Jacobi polynomial. If a =3 = 0, the Jacobi polyno-

mial becomes the Legendre polynomial. Then, the PDF can be constructed with

the following relation: PDF(x(t,)) = hj ( f((j, t)H,(()), where f((, t) is the

evaluation of system equations at a specific nodal point and time and hi again denotes

a histogram function with j 1,- , Nc.

Sparse-grid PCM

The zeros of T(x) are sparsely distributed in the random domain and nested as the

number of collocations, known as level (1) [63], increases. With these two advantages,

the sparse-grid PCM can significantly reduce the computational cost and still main-

tain the accuracy of quadrature integration, especially in a high random dimension.

In one dimension, non-equidistant abscissas of T(x) that include the end points can

be written in an analytical form as a cosine function [63]:

Tr(i - 1)
-COS T1 for i=1,-- ,l, (3.28)

where n denotes the number of collocation points in a single dimension. n = 21-1 + 1,

for 1 > 2. To approximate the integral of statistical moment, the sparse-grid PCM

employs the weight (wi) from the Clenshaw-Curtis formulas. The wh is given by

(n' -1)/2
2( / 1 2ir(i - 1)j

wi ri - 1 +2 S 1-4j 2 - cos n 1 for 2 < i < n' - (3.29)
j=1
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Figure 3-10: The non-equidistant and nested abscissas or collocation points for

level=5 (x) and level=6 (o) of the sparse-grid PCM in two random dimensions.

and W1
1 

= Wln =_- (3.30)

A Z' notation denotes that the last term of the summation is divided by a factor

of two. Instead of using the Gauss quadrature, Smolyak's quadrature, requiring

the nested collocation points, is used for calculating all statistics. We show the

characteristic of the nested collocation points of the sparse-grid PCM in two random

dimensions as shown in Figure 3-10.

Let us define a notation of the one-dimensional quadrature formula for the 1 level

as the following: Ullf = Eil f( jj)wj. Then, the difference quadrature formula

(A'f) is defined as the difference of one-dimensional quadrature formula between the

current level and one lower level: Alf = (Ul - Ul_)f. The d-dimension Smolyak

quadrature formula [181 can be constructed as a function of either Alf or Ulf:

U = (A?, 1 -- A' )f, or (3.31)
liIl+d+1

Uf= (-1)l+d-Ili-1 ( ) (U' ® - 0 UdA-f (3.32)
|IIli|l +d+1

The symbol, 0, represents the tensor product. From a numerical implementation
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aspect (18], expression 3.4.1 can be written explicitly in terms of nested grid points

and weights as:

Udf= ---wu f(j). (3.33)
IliI:l+d+1 j1=1 jd=1

'gj denotes the d-dimension vector of (x1 1,,... , xidjd). And the nested weight can be

written as

Wj = Z(11+kl)j . Z(ld+kd)jd, (3.34)
l+kl<1+2d-1

where { i ifk=1 (
z(l+kyj, = l f (3.35)

W(l+k-1)m - W(l+k-2)n if k > 1, lj = '(l+k-1)m = '(1+k-2)n

Compared to the full-grid PCM, the computing cost grows with Nc raised to a d

power of random dimension and it can approximate precisely the integration of any

polynomial function of order < 2Nc - 1. The sparse-grid PCM using the Clenshaw-

Curtis formulas can provide an accurate result for integrating polynomial functions

of order up to nrl - 1. According to Table 3.2, 3.3, and 3.4, the computational cost

of the sparse-grid PCM is far less than those of the full-grid PCM for the same level

when the random dimension is greater than 5. In case of smooth and continuous

solutions, the level represents the accuracy for both the full- and sparse-grid PCM.

3.4.2 Algorithmic framework for Multi-Element PCM

Parallel to the MEgPC, a basic concept of Multi-Element PCM (MEPCM) is to divide

the random variable into multiple elements such that the degree of randomness in the

original space is reduced proportional to the number of elements. Let us consider

the orthogonal polynomial as a function of the random variable in a d-dimensional

hypercube, = [6, 62, - - - , d], where ci E U[-1, 1] with a constant PDF of 1/2. By
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Table 3.2: Comparison of the number of collocation points (Nc), corresponding to
the computing cost, between the full-grid PCM and the sparse-grid PCM for small
random dimensions d < 4 and levels.

Random dimension Level Nc(Full-grid PCM) Nc(Sparse-grid PCM)

2 2 4 5

3 9 13

4 16 29

5 25 65

6 36 145

7 49 321

8 64 705

9 81 1,537

10 100

3 2 8 7

3 27 25

4 64 69

5 125 177

6 215 441

7 343 1,073

8 512 2,561

9 729 6,017

10 1,000 13,953

4 2 16 9

3 81 41

4 256 137

5 625 401

6 1,296 1,105

7 2,401 2,929

8 4,096 7,537

9 6,561 18,945

10 10,000 46,721

102



Table 3.3: Comparison of the number of collocation points (Nc), corresponding to
the computing cost, between the full-grid PCM and the sparse-grid PCM for medium
random dimensions 5 < d < 9 and levels.

Random dimension Level Nc(Full-grid PCM) Nc(Sparse-grid PCM)

5 2 32 11

3 243 61

4 1,024 241

5 3,125 801

6 7,776 2,433

7 16,807 6,993

8 32,768 19,313

9 59,049 51,713

10 100,000 135,073

7 2 128 113

3 2,187 589

4 16,384 2,465

5 78,125 9,017

6 279,936 30,241

7 823,543 95,441

8 2,097,152 287,745

9 4,782,969 836,769

10 10,000,000 2,362,881

9 2 512 181

3 19,683 1,177

4 262,144 6,001

5 1,953,125 26,017

6 10,077,696 100,897

7 40,353,607 361,249
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Table 3.4: Comparison of the number of collocation points (Nc), corresponding to
the computing cost, between the full-grid PCM and the sparse-grid PCM for large
random dimensions d > 10 and levels.

Random dimension I Level I Nc(Full-grid PCM) Nc(Sparse-grid PCM)

10 2 1,024 21

3 59,049 221

4 1,048,576 1,581

5 9,765,625 8,801

6 60,466,176 41,265

20 2 1,048,576 41

3 3,486,784,401 841

4 1,099,511,627,776 11,561

5 95,367,431,640,625 120,401

separating the random variable ( ) in the global level into N non-overlapping elements

(Ek), the local element in a d-dimensional hypercube can expressed as the following:

Ek [ak, bk) x [a, b k) x - x [a , bk) for i = 1,.- ,N. (3.36)

where a2 and bi are respectively lower and upper bounds in the i random dimension

and Ei f Ej = 0. As a result, the local random variable ((k) in each element can be

computed by the following mapping relationship.

bik ak b +a
2 2

(3.37)

And an associated conditional probability is given by pgk = (b , for i = 1, -- , d

and k = 1,. , N. The main difference between the MEgPC and MEPCM is the

method of mapping the initial condition from current-level meshes to those in a

refined level. At each time step, system solutions, f( j), are evaluated only at the

nodal points in the current-level meshes. If one of the elements in the current mesh is

split into two new elements at the next time step, initial conditions of new elements
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can be either assigned directly from the original element in the case of (k =k

or derived numerically in the case of (k $ (k. To numerically compute the initial

condition for system function at these new collocation points, we must solve the

system at these new nodal points from an initial time. As a result, the original PCM,

associated with the global random space, is decomposed into N sub-problems of the

PCM, corresponding to N local random spaces.

Then, local statistical solutions (plm(f (())) in each element are computed by the

Gauss quadrature formula for the full-grid PCM and the Smolyak quadrature formula

for the sparse-grid PCM. To calculate global m-th moments (Pm(f ())), Bayes' Rule

and the law of total probability can be applied as the following:

p- = f "fm(f)W(m)(W)dd{ = f(kf fm((k)W((k)( ()dCk.(3.38)
J[-1, 11d k=1 ~ 'lI2

3.4.3 Adaptive Multi-Element technique

There are two approaches to determine the number of element, N, in the h-type refine-

ment: 1) uniform decomposition of the global random space into N equal elements,

and 2) adaptively splitting the global domain according to a local variance error.

For the uniform multi-element case, using a fixed number of elements can directly

reduce the local error at the initial time step, which leads to a smaller global error

for the long-time integration. The benefit of this approach is more pronounced when

a randomness is in the initial conditions or a discontinuity in stochastic solutions

occurs at the initial time step. However, an accumulative error from time integration

as well as errors from discontinuity that happens at a later time will dominate the

error reduction using the fixed number of elements. Thus, adaptively decomposing

the random space into multiple elements can identify a time step where the global

error becomes larger than a specified threshold or the discontinuity exists and further

reduces these errors. A local error of the k-element (nk) is defined as a normalized

difference of the local variance between using Nc+2 and using Nc collocation points,
O2 a2

which is defined as 7k = k+2--,Nc . An adaptive criterion for splitting into two
kNc+2
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equal elements is rqk > ( )2, where 01 is a threshold of the specified accuracy and
P~k

pck is the conditional probability of that element. A power factor is set to be a square

such that the range of the threshold value (01) can be adjusted in a wider accuracy

range. This adaptive multi-element technique for handling the discontinuous solu-

tions of the Kraichnan-Orszag system as well as for improving the error convergence

in a high random-dimension stochastic process will be shown in the next chapter.

3.5 Hybrid gPC + PCM approach

Because the Galerkin projection is used in the gPC for transforming the SDE to

deterministic coupled equations, the system nonlinearity is limited only to a polyno-

mial form, i.e., quadratic, cubic, quartic, etc. To be able to handle the nonlinearity

in a more general form including trigonometric and signum functions, we need to

perform additional mapping so that any function can be expanded onto the polyno-

mial chaos basis, associated with the specified distribution. Moreover, this approach

still maintains the advantages of the gPC-exponential convergence and separation of

randomness from variables.

3.5.1 Algorithmic framework

A general procedure for this technique can be applied to any SDE, dx(t, ) = f(x)

as the following. First, we expand all state variables, x(t, ), onto the orthogonal

basis of the polynomial chaos, #( ). However, when the function, f(x), is not in a

polynomial form, consisting of state and random input, we cannot directly apply the

Galerkin projection to the SDE. Therefore, the modal coefficients of the function,

fi(x), must be calculated separately before substituting into the chaos expansion. In

the second step, we assume the function, f(x), can be expressed in the following form:

f(X, ) = ENi=0 fi(x)oi( ). Next, we project and compute the inner product for each

mode of the polynomial chaos as shown below:

fj (X)(2 ) = f ( ( )(W (3.39)

106



where W( ) is the weighting function associated with the polynomial chaos. In this

study, only random variables with the uniform distribution are considered, so #j(4) is

the Legendre polynomial and D C U[-1, 1]. Instead of computing the inner product

analytically, we use the Gauss-Legendre quadrature to evaluate the inner-product

integral as:

Nc

fj (W = fj (X, )#O3(6y)Wy. (3.40)

The larger the Nc is, the more accurate an approximation of the Gauss quadrature

becomes. An appropriate value of Nc must be chosen to trade off between accuracy

and computational efficiency. Generally, the value of Nc between 10 and 20 provides

a good accuracy for a small computational cost. Lastly, the SDE can be solved with

the normal gPC using the modal coefficients, f3. Both p- and h-type refinements can

enhance the accuracy of stochastic solutions.
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Chapter 4

Convergence Study of Various

Stochastic Algorithms

Generally, the accuracy of solution, the efficiency of computation, and the simplicity

of implementation must be considered to compare a performance of the stochastic

algorithms, outlined in Chapter 3. First, a convergence study shows how accurate

the statistical solutions become as a governing parameter of that algorithm increases.

The governing parameters of MC, QMC, gPC, full-grid PCM, sparse-grid PCM and

Multi-Element techniques consequently are a number of realizations (NN), a polyno-

mial order (p), The number of collocation points (Nc) for the full-grid PCM, a level

(level) for the sparse-grid PCM, and a number of elements (N). A number of opera-

tions performed at each time step or computational time can indicate the algorithm's

efficiency. An algorithm's structure is related to its implementation complexity, which

closely connects to the computational speed. All numerical computations in this chap-

ter are performed with the Microsoft C++ compiler on an Intel Pentium 4 3.0GHz

Processor.

To study the rate of convergence, a statistical error that will be used regularly is

defined as a L2 norm difference between estimated and analytical solutions of mean

and variance, normalized by the L 2 norm of the analytical or reference solution. This

normalized L 2 norm difference is similar to that defined by Xiu and Karniadakis

162). The absolute and L,, differences are employed in their convergence calculation
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of gPC. Since we need to include the accumulating error, especially in a long-time

integration problem, the L 2 differences is more suitable for our convergence study.

When the system is large and more complex, the analytical or exact statistical so-

lution becomes more involved and difficult to derive. Thus, the exact solution can

be replaced by a reference solution with higher accuracy than estimated solutions.

The error measurements of mean y and variance a solutions can be expressed as the

following:

__ )- Pexact(t)||2
Emean = (jexact(t) (4.1)

|o (t) - J exact (t) ||2
Evar = 12 ,,exact 2  (4.2)

Yo exact (t) 112

According to Xiu and Karniadakis [62], the gPC with an appropriate Wiener-

Askey polynomial chaos has been shown to yield an exponential rate of convergence

as a function of polynomial order (p) for the corresponding type of random inputs.

Moreover, the empirical convergence rate of the uniform MEgPC has been estimated

to be in the order of O(N+2(p0)) by Wan and Karniadakis [60]. However, the conver-

gence rates of the PCM as well as MEPCM have not been systematically examined for

either full- or sparse-grid collocation method in terms of a stochastic analysis aspect.

This chapter considers the convergence property of these stochastic algorithms on

four different SDEs: 1) 1st-order SDEs; 2) the Kraichnan-Orszag three-mode system

with quadratic-nonlinearities, which has either continuous or discontinuous solutions

depending on the random initial condition; 3) a single induction machine; and 4)

a shipboard AC power distribution with propulsion system. And, we establish an

empirical formula for the convergence rate of these algorithms for both continuous

and discontinuous solutions. Furthermore, a relationship between gPC and PCM as

well as between MEgPC and MEPCM show how closely these algorithms are related.

Lastly, this chapter compares the algorithms' efficiency, influence of sparse structure

of the collocation method, and effect of the random dimension on the convergence of

estimated statistics.
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4.1 Continuous Stochastic Solutions

This section investigates the L2 convergence rate of different algorithms for both

linear vs. nonlinear systems with continuity in their stochastic solutions. First, we

study the convergence characteristic of simple SDEs, since exact statistical solutions

of these systems can be derived. Second, a more complicated SDE, the Kraichnan-

Orszag system with random initial conditions, further confirms the convergence rate

of these stochastic algorithms as a function of the random dimension. Moreover, the

multi-element technique helps improve the statistical accuracy in case of a long-time

integration, particularly for the sparse-grid PCM. This section considers five types of

SDEs. Note that in this section, the PCM approach is referred to the full-grid PCM,

described in the last chapter, and the multi-element technique of the gPC and PCM

is employed only a uniform decomposition of the random dimension.

4.1.1 Linear first-order SDE

Let us first consider the simplest SDE system, the first-order linear ODE, described

by the following equation:

dy- = -ky, with y(t=O) =yo= 1 andtE [0,T] (4.3)
dt

where the decay rate coefficient k is considered to be a random variable, k =k + Okc,

with constant mean (k) and standard deviation (Uk) in the fully correlated case.

We assume that the k random variable is associated with the uniform distribution,

U[-1, 1]. The deterministic solution of the first-order ODE is y(t) = yoe-k. The

mean and variance of the stochastic solutions are given by the following:

j/Y e6+±Uk)t(e2eki -_1)

Yexac(t) = yo e-ktf(k)dk = yo , (4.4)
2Ukt

2- (t) = Y2 e2 (e-2akt - + 2t)2 (4.5)Uexat)Y 2
2corkt 2u2t2 )45
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Considering the case where k = 2 and ak = 1, we display the exact mean and

variance solutions in Figure 4-1, which are bounded and approach steady-state values

with an exponential decay.
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Figure 4-1: The exact mean (top) and variance (bottom) solutions for y -ky.

We can compare the convergence characteristic between the gPC with p = [1, 2, 3, 4]

and the PCM with Nc = [2, 3,4,5] for t E [0, 1]. From Figure 4-2, the gPC and the

PCM exhibit exponential convergence rates of O(e-5 p) and O(e-5(Nc-1)), respectively.

Both methods exhibit the same L2 convergence error, so this suggests a relationship

of p = Nc - 1 between gPC and PCM. An equal number of system equations in the

gPC with p polynomial order, requiring p+1 terms in the polynomial expansion, and

in the PCM with Nc collocation points or roots of Nc polynomial order, requiring Nc

terms in the Gauss quadrature, uses the same highest-order Legendre chaos.

Instead of the exponential p- and Nc-convergence of the single-element gPC and

PCM, the multi-element technique provides an algebriac convergence relation. For

t E [0, 1], the statistics are calculated numerically from the MEPCM with Nc =

[2,3, 4] and the MEgPC with p = [1, 2,3]. Both MEPCM and MEgPC methods with

uniformly distributed elements yield a linear L 2 convergence rate, as the number of

elements (N) increases. Figure 4-3 shows the convergence rates of O(N-2(Nc)) and

O(N~ 2 (p+l)), using MEPCM and MEgPC, respectively.
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4.1.2 Quadratic nonlinear first-order SDE

Next, the first-order SDE with a similar decay factor as in the previous system is

modified to be a quadratic nonlinear function instead of the linear function

dy = ky 2,
dt

with y(t 0) =yo and t c [0,T]

and a random variable decay rate k = k+k , where is a uniform distribution within

U[-1,1]. The deterministic solution is y(t) = with yo - 1. Exact solutions of

mean and variance are:

1 yot(k + Uk) +1
Yexact(t) = In

2tok yot j - 90) + I

2c
OexactM

2
yo2

(1 + yokt)2 + (yoo-kt) 2

(4.7)

(4.8)

Consider the case where k = 2, Uk = 2 and t E [0, 5]. Figure 4-4 displays the

first and second moments, which still approach their steady-state values with an

exponential decay.

0.8

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

. 0.02

0,0

>0.01

0 05 1 15 2 25 3 35 4 45 5

Figure 4-4: The exact mean (top) and variance (bottom) solutions of p = -ky 2

Similarly, we examine the p- and Nc-convergence of the gPC with p = [1, 2, 3,4, 5]

and the PCM with Nc = [2, 3,4, 5,6] respectively, as shown in Figure 4-5. The con-
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vergence rates are still exponential in the order of O(e-P) for the gPC and O(e-(Nc- 1))

for the PCM, but they decrease by a factor of 5 comparing to those of the linear sys-

tem. Again, the Nc = p + 1 relationship between gPC and PCM in terms of the

convergence accuracy still holds for this case.

100- 100
S ........... ........................--..

10 10~

-3 2-3-4 -2 3-4-

10men .. 10 mean..

1F 2_ 3 423 4 5 6

p Nc

Figure 4-5: The L2 error convergence of mean and variance solutions as a function p
for the gPC(left) and Nc for the PCM (right) for yi = -ky 2 .

For the N-convergence, the statistics are calculated numerically from MEgPC with

p = [1, 2, 3] and MEPCM with Nc = [2, 3, 4]. Notice that the L2 norm error of mean

and variance does not linearly decrease as in the previous case. The error convergence

can be characterized into two regimes: the non-asymptotic and asymptotic ranges. In

the asymptotic or linear range, the convergence rates of MEgPC and MEPCM are still

approximated by O(N-2 (P) and O(N-2(Nc)), respectively, as shown in Figure 4-6.

Again, for the same level of accuracy, Figure 4-6 also confirms that the Nc = p + 1

relation holds.

4.1.3 Cubic nonlinear first-order SDE

To confirm a generality of the convergence characteristics of this multi-element tech-

nique for the nonlinear system, shown in the previous example, we consider another

first-order SDE with a cubic nonlinearity:

dy -ky 3  with y(t = 0) = yo and t E [OT] (4.9)
dt
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Figure 4-6: The convergence rate of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM (thick line) and MEgPC (thin line),
for y -ky 2

Likewise, the coefficient, k, of SDE is assumed to be a random variable, corre-

sponding to the uniform distribution U[-1, 1]. The deterministic solution is given by

y = YO Furthermore, exact mean and variance solutions can be derived as

the following:

= ((2y2t(I
2yogkt 0

+ 9k) + 1)1/2
- (2y2t(I - 9k) +1 )1/2, (4.10)

(4.11)

1 2ygt(k+Ok)+1
=in
4 9kt 2y2t (k - u) + 1

-y o~(2y2t(I + 9k) +4y 2t2U2

)1/2
1 - (2yot(I - Ok) + 1)12) .(4.12)

The convergence of the L2 norm error is considered for a case with Ik = 2 and

9k= 2 within a time interval [0,5]. Using only MEPCM with Nc = [2,3,4], Figure 4-

7 shows the same convergence characteristic with a convergence rate of O(N- 2 Nc) in

the asymptotic range.
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Figure 4-7: The convergence rates of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM, for y = -ky.

4.1.4 Quartic nonlinear first-order SDE

If we increase a nonlinearity to the fourth-order polynomial, the convergence charac-

teristic and rate of the multi-element technique must be shown not to depend on the

order of the nonlinearity. Thus, let us consider the fourth-order polynomial nonlin-

earity, expressed in the equation below, with a random variable coefficient, k.

with y (t = 0) = Yo and t E [0, T]. (4.13)

The deterministic solution is y = (3yk .1)1/3 Then, analytical mean and variance

solutions can be derived as the following:

Pexac(t) = 43yyt(I + 'k)

2y 3
Or2xat) = (3y6 t(I + Uk)

2youkt

16y t2 r (

2/3j (
- 3ygt(k - Uk) +

1/3 3+ 1) - (3ygt(k - 'k) +

2/3 
-+ 1) -3ylt(Ik- Uk) +

Assigning k = 2 and ok = 2 with t E [0, 5], the MEPCM with Nc = [2, 3,4] yields

a similar convergence characteristic, which has both non-asymptotic and asymptotic

convergence ranges, as in the previous two cases. In the asymptotic range, the con-

vergence rate of MEPCM is approximated in the order of O(N-2Nc), as shown in
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Figure 4-8. Therefore when the stochastic solution is smooth and continuous, we can

expect a similar characteristic and rate of the statistical L2 error convergence for any

higher nonlinear SDE.
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Figure 4-8: The convergence rate of mean (left) and variance (right) errors as a
function of number of elements, using MEPCM, for y = -ky 4 .

4.1.5 Trigonometric nonlinear first-order SDE

To demonstrate the effectiveness of the Hybrid gPC+PCM method as well as its

combination with the multi-element technique, we examine the SDE with a sine

function, given by an equation below:

dy = -k -sin(3y),
dt

with y (t = 0) = yo and t c [0, T].

The decay coefficient, k, again is assumed to be a random variable, associated with the

uniform distribution U [-1,1]. k = 2 and 0, = 1. Instead of deriving an exact statistical

solutions, we compute the L2 error convergence using the reference solution, obtained

from the PCM with Nc = 100. The reference mean and variance solutions are shown

in Figure 4-9 below for t C [0, 1] second.

As shown in Figure 4-10, the Hybrid gPC+PCM exhibits a similar convergence

characteristic as that of the PCM. Despite of the trigonometric function, the con-

vergence rates of Hybrid gPC+PCM, extending the gPC capability to handle more

general nonlinearity, and PCM are still in the order of O(e-2p) and O(e- 2(Nc- 1)),
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Figure 4-9: The exact mean (top) and variance (bottom) solutions for y = -k-sin(3y).

respectively. Again, the suggested relationship of p = Nc - 1 between gPC and PCM

is shown here to be applicable to the other classes of nonlinearity.

0
0
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V
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-J

100
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p
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Figure 4-10: The L2 error convergence of mean and variance solutions as a function p
using the Hybrid gPC+PCM (left) and Nc using the PCM (right) for i = -k -sin(3y).

Also, the multi-element technique using uniform elements provides an algebraic

convergence rate of O(N-2p+)) for the Hybrid gPC+PCM with p = [1, 2,3], Nc = 10

and of O(N- 2Nc) for the PCM with Nc = [2,3,4], which are the same as the previous

four cases. According to Figure 4-11, the asymptotic range is dominate the entire

range of the L2 error convergence in this case.
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Figure 4-11: The convergence rate of mean (left) and variance (right) errors as a
function of number of elements, using Hybrid MEgPC+PCM and MEPCM, for y =

-k -sin(3y).

4.1.6 Kraichnan-Orszag system in one random dimension

Originally, Orszag and Bissonnette [44] employed the Wiener-Hermite expansion,

which is the same as gPC, to study the dynamics of turbulent flow. They consid-

ered Burgers' equation, which is a simplification of a one-dimensional Navier-Stokes

equation for incompressible flow. To further simplify the problem, they neglect the

viscosity term, and thus Burgers' equation is modified to be a three-mode dynamic

system, known as the Kraichnan-Orszag three-mode system. Moreover, Orszag and

Bissonnette discovered that there exists an instability associated with this three-mode

system using Wiener-Hermite expansion, when time approaches infinity. Recently,

Wan and Karniadakis [60] have reinvestigated and solved the instability problem cor-

responding to insufficient numerical accuracy using the gPC alone. Therefore, only

instability induced by the system dynamics can be revealed. Also, the analytical so-

lutions of this three-mode problem have been derived for only the case of smooth and

continuous stochastic solutions. However, Wan and Karniadakis considered only the

case with discontinuous solutions in one, two, and three dimensions due to random

initial conditions.

In this section, we introduce the Kraichnan-Orszag three-mode equations, given

below, and their dynamical characteristic. The initial conditions can lead to either

continuity or discontinuity in stochastic solutions. In the rest of this chapter, we spec-
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ify initial conditions for continuous cases in one, two, and three random dimensions,

but the initial conditions that lead to discontinuous solutions are obtained from Wan

and Karniadakis. Also, we formulate the convergence rate, corresponding to the char-

acteristic of solutions-continuous vs. discontinuous-as well as the random dimension.

The integration time step of the 4-order Runge-Kutta method, associated with the

Kraichnan-Orszag system, is set to be 10-'.

dy1
-- = Y1Y3

dy2

dy3  2 + 2
dt

(4.17)

(4.18)

(4.19)

where yi represents an i mode. This has been shown to have a discontinuity in the

solution on the yi = 0 and y2 = 0 planes by [60]. Depending on the initial condition,

the deterministic solutions can be separated into eight different groups (gl to g8)

as seen in Figure 4-12. When the initial condition becomes random, the stochastic

solution can be either continuous or discontinuous.
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Figure 4-12: The phase portrait of eight group deterministic solutions of the
Kraichnan-Orszag system, obtained from different initial conditions, in three dimen-
sion (left) and two dimension (right) on the yl-y2 plane.

Let us consider the case where the deterministic solution is sensitive to a small

change in the initial condition of Y2 around zero, when [yi, y3J are kept fixed at 11, 0].
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Figure 4-13 shows how the discontinuity exists in the solution for Y2(0) > 0, y2(0) = 0,

and Y2(0) < 0. Moreover, the oscillating frequency of the deterministic solution varies

with random Y2 initial condition that has the same sign. As a result, the variance

solution of this case grows with time, as shown in Section 4.2.2.
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Figure 4-13: Various deterministic solutions of the Kraichnan-Orszag
small change in the Y2 initial condition around zero.

three modes for

First, let us consider the case where the statistical solution is continuous and sub-

jected to one random initial condition. The random initial condition, [Y1 (0, ), y2(0, ), y3(0, )],

is set as [v/2/4, v2/4, (w)], where c c U[-1, 1]. The stochastic mean and variance

solutions, shown in Figure 4-14, are underdamped with a time constant of 2.5 seconds

and approach the steady-state within about 40 seconds.

For t E [0, 30], we compare the convergence rate among 1) MC and QMC with

NN = [1,000, -, 100, 000], 2) the single element PCM with Nc = [2,-,400], and 3)

the uniformly fixed elements of MEPCM with Nc = 5 and N [2, -, 256]. Instead

of formulating the analytical solution to compute the L 2 norm error, the reference

solution is numerically calculated from the MEPCM with Nc = 5 and N = 2048. The

computational time of reference solution is 383.687 seconds. As mentioned previously,

the convergence rates of MC and QMC are in the order of O(NN- 1/2 ) and O(NN 1 ),

respectively, as shown in Figure 4-15. Even though, for the NN-convergence, the

random number of MC and QMC in a coarse level with low value of NN are reused in
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Figure 4-14: The stochastic mean and variance solutions of three mode from the
reference solution when [y1(, ),y2(,(),y3(0,) = [V/F/4, V/2/4, (w)J.

a more refined level with a larger value of NN, the statistical error does not converge

smoothly.
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Figure 4-15: The L2 norm error of mean (left) and variance (right)
function of NN exhibit the algebraic convergence rate of O(NN- 1/2)
of O(NN-') using QMC.

solutions as a
using MC and

Figure 4-16 shows that a convergence rate of PCM, as a function of Nc, decreases

exponentially, which can be approximated by O(e-0.3*Nc) and a comparison on the

computational cost for a given accuracy. The computational efficiency of the single-

element PCM surpasses those of the other algorithms when the solutions are smooth

and continuous. Especially, the computational time of PCM is three orders of mag-
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nitude smaller than that of MC at low accuracy range.
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Figure 4-16: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, MEPCM with fixed element (right).

The convergence rate of MEPCM as a function of N again contains both non-

asymptotic (nonlinear) and asymptotic (linear) ranges. In the linear range, MEPCM

provides the convergence rate of O(N- 2Nc), as seen in Figure 4-17. The cost to

perform MEPCM is not much different when Nc is above 5. Due to the high accu-

racy of the Nc-convergence of PCM, increasing Nc can further improve the solutions'

accuracy more than increasing N in this case.
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Figure 4-17: The L 2 norm error of mean (left) and variance (right) solutions as a
function of N exhibit the algebraic convergence rate of O(N- 4 ) using MEPCM with
Nc = 2, O(N- 1 0) using MEPCM with Nc = 5, and O(NN- 20 ) using MEPCM with
Nc = 10.
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4.1.7 Kraichnan-Orszag system in two random dimensions

When the random dimension in the initial condition increases to two, we will show

an effect of increasing random dimension on the convergence rate of these stochastic

algorithms. To guarantee smooth statistical solutions, the two-dimensional random

initial condition is assigned as [vf2/4,V/f/4 + 0.161(w),4 2 (w)] such that the determin-

istic solution is always contained within the gi group. Therefore, we obtain smooth

stochastic solutions without any discontinuity, as shown in Figure 4-18.
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Figure 4-18: The stochastic mean and variance solutions of three modes from the
reference solution when [y1(0, '), y2(0, ), y3(0, )] = [V2/4, y/2/4 + 0.1 1(w), 2(w)].

Again, the accuracy and computational time are compared among four algorithms:

1) MC and QMC, 2) PCM, 3) MEPCM with Nc = [2,5,10], and 4) MEgPC with

p = [1, 4]. The result from MEPCM with Nc=10 and N=900 is used for a reference

solution. We can see from Figure 4-19 that the convergence rate of the Monte Carlo

method, which is still slow in the order of O(NN'/ 2) for MC and O(NN-') for

QMC, is not affected by increasing random dimension because an implementation of

computing statistics in the Monte Carlo method, which acts like a low-pass filter,

does not depend on the random dimension.

On the other hand, the computation of statistics in PCM and MEPCM requires an

additional summation for each random dimension, resulting in higher computational

cost for a larger random dimension. Despite the additional cost, the Gauss-quadrature

provides fast convergence of an approximation of solution as we increase Nc. As shown
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Figure 4-19: The L 2 norm error of mean (left) and variance (right) solutions as a
function of NN exhibit the algebraic convergence rate of O(NN-I/ 2 ) using MC and
of O(NN-i) using QMC.

in Figure 4-20, the PCM yields the exponential convergence rate of O(e- 0.3 (Nc/d)

where Nc/d denotes the number of collocation points per random dimension. This

convergence rate of PCM is the same order as in the one-dimensional case, when Nc

is normalized by d random dimension.
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Figure 4-20: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, MEPCM with fixed element (right).

Likewise, the convergence rate of MEPCM can be classified into non-asymptotic

and asymptotic regimes. Here, we focus on formulating an empirical convergence

relation for the linear range, since the convergence rate of the nonlinear range is

much slower. Using the MEPCM with Nc = [2,5,10], the convergence rate can be

expressed in terms of either total Nc in two dimension (in Figure 4-23) or Nc/d (in
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Figure 4-21 and 4-22). The convergence rate of MEPCM can be approximated by

(N/d) 2 Nc. When we use the total Nc and the Nc/d, the convergence rates are in

the order of O(N-Nc) and O((N/d)- 2 Nc), respectively. The accuracy of y1 statistics

using MEPCM with Nc = [5,10] approaches the machine precision too fast before

reaching the asymptotic range. Hence, the statistical results for the third mode (y3),

shown in Figure 4-22, confirmed the convergence relation as in yi results.
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Figure 4-21: The L2 norm error of yi mean (left) and variance (right)
a function of total N exhibit the algebraic convergence rate of O(N- 4 )
O(N-1 0) for Nc = 5, and O(N- 2 0) for Nc = 10, using MEPCM.
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Figure 4-22: The L 2 norm error of ya mean (left) and variance (right) solutions as
a function of total N exhibit the algebraic convergence rate of O(N- 4 ) for Nc = 2,
O(N- 10 ) for Nc = 5, and O(N- 2 0) for Nc = 10, using MEPCM.

Similarly, this per dimension convergence rate is also applicable to the MEgPC.

Figure 4-24 displays how the mean and variance errors converge as a function of
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Figure 4-23: The L2 norm error of yi mean (left) and variance (right) solutions as
a function of total N exhibit the algebraic convergence rate of O(N- 2) for Nc = 2,
O(N- 5 ) for Nc = 5, and O(N-l 0 ) for Nc = 10 using MEPCM.

N/d. The empirical convergence rate of MEgPC can be expressed as O((N/d)- 2 (p+)).

Even though the accuracy of MEgPC is a bit lower than that of MEPCM, the error

convergence of MEgPC approaches the aymptotic range within a few N/d. In a later

section, only the N/d convergence results are considered in the discussion. In terms of

the computational efficiency, the PCM and MC are consequently the best and worst

approaches for the problem with continuous solutions in two random dimensions. The

slope of the computational cost vs. emean of PCM and MEPCM in two dimensions is

larger than those in one dimension, shown in Section 4.1.6. Nevertheless, the MEPCM

with higher Nc and using only few elements can further decrease the computation-

time slope. This shows the advantage of Nc- and N- convergences of MEPCM.

4.1.8 Kraichnan-Orszag system in three random dimensions

Let us look at how the convergence relation and efficiency of each algorithm scale

up with the random dimension in the case when the random initial conditions of

the Kraichnan-Orszag system become three dimensions. We consider the case with

smooth and continuous solutions by assigning the following random initial condition:

[yi(O, ),y2(0, ),y(O, )] = [v2/4 + 0.1&1(w),V'_/4 + 0.1 2 (w), 3 (w)]. Similar to Sec-

tion 4.1.7, the deterministic solution is in the gi group. The stochastic responses

of all three modes, shown in Figure 4-25, are underdamped. All statistics approach

128

10' 10".-



---- -----------

-e- MEgPC:p=1
-j3- MEgPC:p=4 -
- - 1/(N/d)

--- 1/(N/d) -s

101
N/d

100

10-5

0

3=

-9- MEgPC:p 4
...9_ MEgPC:p=4-
- - 1/(N/d)

--- 1/(N/d)l-

10
N/d

Figure 4-24: The L 2 norm error of yi mean (left) and variance (right) solutions as a
function of total N exhibit the algebraic convergence rate of O(N- 2 ) for p = 1 and
O(N- 0 ) for p = 4, using MEgPC.

their steady-state values in about 20 seconds. The range of integral time is between

0 and 15 seconds.
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Figure 4-25: The stochastic mean and variance solutions of three modes from the refer-
ence solution when [y1(0, ),y2(0, ),ys(0, )] =[v/4+0.1 1(w),2/4+0.1 2(w), 3(w) -

We investigate the relationship of the convergence rate and computational cost

as a function of the random dimension among five stochastic algorithms: 1) MC

and QMC, 2) full-grid PCM, 3) full-grid MEPCM with Nc = [2,5,101, 4) sparse-grid

PCM, and 5) sparse-grid MEPCM with Nc = 5. Owing to the inefficiency of MEgPC,

it is not included in this section. We address both issues of the sparseness of nodal

points and multi-element technique, particularly for the long-time integration. A
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reference solution is numerically computed from PCM with Nc/d = 80. As shown in

Figure 4-26, the MC and QMC convergence rates are still in the order of O(NN- 1/2)

and O(NN- 1), respectively, and the accuracy of both methods is closely matched

with that in Section 4.1.6 and 4.1.7. Hence, we can conclude that the convergence

rate of the Monte Carlo method does not depend on the random dimension.

10 10.0 10 -

10 10--

NN 10NN

Figure 4-26: The L 2 norm error of mean (left) and variance (right) solutions as a
function of NN exhibits the algebraic convergence rate of O(NN- 1/ 2) using MC and
of O(NN- 1 ) using QMC.

The Nc-convergence of the full-grid PCM, described as a function number of

Nc/d, is also insensitive to an increase of random dimension, as shown in Figure 4-

27. Moreover, the L2 error convergence per dimension of the sparse-grid PCM, shown

in Figure 4-27, exhibits an exponential rate as well. Both full- and sparse-grid PCMs

yield exponential convergence rates, which are faster than O(e-0 4 *(Nc/d)). The sparse-

grid PCM has not been considered until now because its computing cost is larger than

that of the full-grid PCM in a low-dimension problem.

Likewise, the convergence rate of uniform MEPCM can be classified into non-

asymptotic and asymptotic regimes. Again, an empirical convergence relation for the

linear range is our main interest. Using the full-grid MEPCM with Nc = [2, 5, 10], the

convergence rate can be expressed in terms of Nc/d in Figure 4-28. The convergence

rate of MEPCM is in the order of O(N~2*(Nc/d)). The accuracy of yi statistics using

the full-grid MEPCM with Nc = 10 approaches the machine precision very quickly

before reaching the asymptotic range. The E[y1 ] error convergence of the sparse-grid

130



10* 10

1xx(N0d LLevld 1)

sxp(04L(Ne/d))

Figure 4-27: The Nc-convergence of mean and variance solutions using Full-grid PCM
(left) and using Sparse-grid PCM (right).

MEPCM with Level = 5 as a function of N/d decreases faster than that of the full-grid

MEPCM with Nc = 5 because of two reasons: there are more collocation points in

the sparse-grid PCM than in the full-grid PCM for Level = Nc in three-dimensional

random dimensions and there are multiple elements of sparse structure.

10 10"

Sp go MEPCMN-S.Sp.grdilCNe5

110

101- 10

Figure 4-28: The L2 error convergence of yi mean (left) and variance (right) solutions
as a function of total N exhibit the algebraic convergence rate of O(N-4 ) for Nc = 2,
O(N-'0 ) for Nc = 5 and O(N 2 0 ) for Nc = 10, using full- and sparse-grid MEPCM.

Even though the convergence rate per dimension of the full-grid PCM stays con-

stant, its computation time grows with a cubic power of Nc in three random di-

mensions. For the full-grid MEPCM with uniform distributed elements, the cost per

accuracy is always greater than that of the full-grid PCM, as shown in Figure 4-29.

As we mentioned in the previous chapter, the computing cost of the sparse-grid PCM
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increases even faster than Ncd in the small random dimension as we increase the level,

and therefore a slope of the cost per accuracy curve is much larger. Notice that the

multi-element technique can improve the accuracy of the sparse-grid PCM with cost

significantly less than the level refinement alone. Again, the full-grid PCM provides

us the most effective algorithm in terms of the cost per accuracy, when the stochastic

solutions are continuous and smooth.

10' EN Flg O

. ....M.PCM:N

* Sprse-grid MPCM :N=

B poo 03OM O ~ 10 1

1o to 10-'" 10-L diff ol E[y 1~,J02

Figure 4-29: The computational time vs. E[y1] accuracy of MC, QMC, Full-grid PCM,
Full-grid uniform-MEPCM, Sparse-grid PCM, and Sparse-grid uniform-MEPCM.

Results for a long-time integration

When the integral time, t E [0, Tf], is extended to Tf = 50 and TJ = 100 seconds,

we would like to examine an effect of the long-time integration on the performance of

these stochastic algorithms. Furthermore, we want to examine how both the multi-

element technique and sparse structure of collocation points influence on the solution

accuracy and computational efficiency. For the same random initial conditions as in

Section 4.1.8, the mean and variance solutions of the reference solution, PCM with

Nc/d = 80, are displayed in Figure 4-30.

The performance of quasi-Monte Carlo deteriorates for a long-time integration as

shown in Figure 4-32. The error convergence curves shift upward for TF = 50 and

T = 100 seconds due to a propagation of numerical-integration error at an initial

time step, which leads to a large accumulating error at a later time, as shown in
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Figure 4-30: The stochastic mean and variance solutions of three modes from the refer-
ence solution when [y1 (0, N),y2(0, ) ,y3(0, 1)] =[V/_/4+0.o (w),x/1/4+0.162 (w)7, 3 (W)].

Figure 4-31. After 50 seconds, the statistical responses already reach their steady-

state values,; therefore, an effect of accumulating error in each algorithm can be easily

distinguished. According to Figure 4-31, this error can be reduced by increasing the

number of realizations; however the Monte Carlo method converges linearly with the

rate of O(NN-'). Thus, a large value of NN is required to obtain accurate stochastic

solutions.

0.46 '0.1
-.-.-. Reference Solution

0.44 - QMC:NN=1000
- QMC:NN=10000 0.08

0.42
, 0.06

2 0.4
0.04

0.38

0.36 0.02

0.34 0
0 20 40 60 80 100 0 20 40 60 80 100

time [sec] time [sec]

Figure 4-31: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, QMC with NN = 1000, and QMC with NN = 1000.

For both full- and sparse-grid PCMs, the statistical accuracy, particularly in the

high-accuracy region, get worse very quickly as the final integration increases. The

convergence results of the full-grid PCM, shown in Figure 4-33, and of the sparse-grid

PCM, shown in Figure 4-34, respectively lose about 6 and 5 orders of magnitude in
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Figure 4-32: The L2 error convergence of mean (left) and variance (right) solutions
as a function of NN and Tf using QMC.

the mean accuracy when Tf increases from 15 to 100 seconds. The full-grid PCM

again yields a faster error convergence than the sparse-grid PCM. Both collocation

methods are not robust against a problem of the long-time integration because the ac-

cumulating error, contributed by each Nc deterministic run, propagates very quickly

in time.

A PCM:TioooI- PCM:T,100

eXP(-0N3(Nfdd

Nodd

.-.... .... ......-

I-U- PCM: =05
SPC:T 5a

I PCM:T100

Iexp(0.(Nld))1

.... xp(-.410

No/d

Nc-convergence of mean (left) and variance (right) solutions using
Tf increases.

To lessen the effect of accumulating error especially for the sparse-grid PCM, the

multi-element technique can be combined with both collocation methods. According

to Figure 4-36, the full-grid MEPCM with Nc/d = 2 exhibits an insensitivity to

increasing Tf, while the others with larger Nc/d get worse as Tf increases. With
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Figure 4-34: The Level-convergence of mean (left) and variance (right) solutions using
Sparse-grid PCM as Tf increases.

the smallest Nc/d = 2, the Nc-convergence of the full-grid PCM does not contribute

a lot of error in the long-time integration when it combines with the multi-element

technique; therefore, the error convergence of the full-grid uniform MEPCM with

Nc/d = 2 does not change much for Tf = 15 or 50 seconds. When Tf is prolonged,

the former empirical formula for the convergence rate of the full-grid uniform MEPCM

is no long satisfied. The convergence rate of the full-grid uniform MEPCM becomes

more flatter as the accumulating error dominates in the steady-state regime.
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0.04

0.02
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Figure 4-35: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, full-grid PCM with Nc/d = 2, and full-grid uniform
MEPCM with N = 43, Nc/d = 2.

Similarly, the multi-element technique can help improve the accuracy of the sparse-

grid PCM. Figure 4-37 shows that even though the multi-element technique can reduce
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Figure 4-36: The L2 error convergence of yi mean (left) and variance (right) solutions
as a function of total N exhibits the algebraic convergence rates of O(N- 4) for Nc/d =
2, O(N- 10) for Nc/d = 5 and O(N- 20 ) for Nc/d = 10, using full-grid uniform
MEPCM.

the L 2 norm statistical error of the sparse-grid uniform MEPCM with Level/d =

5, the full-grid uniform MEPCM with Nc/d = 5 can better maintain the solution

accuracy better than the sparse-grid uniform MEPCM with Level/d = 5 in the case

of continuous solutions, as Tf increases.

Reference Solution
Sparse-grid PCM:Level/d=5

- Sparse-grid MEPCM:N=43,Level/d=5
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Figure 4-37: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, sparse-grid PCM with Level/d = 5, and sparse-grid
MEPCM with N = 43, Level/d = 5.

In terms of the computing cost per accuracy, the full-grid PCM is still the best

algorithm, as shown in Figure 4-39. Notice that the curves of the full-grid uniform

MEPCM collapse into the same curve for Tf = 100 seconds, since the computational

cost increases faster than the solution accuracy decreases. As a result, the h-type
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Figure 4-38: Comparison between the full-grid MEPCM with Nc/d = 5 and the
sparse-grid MEPCM with Level/d = 5 on the L 2 error convergence of y1 mean (left)
and variance (right) solutions as a function of total N exhibits the algebraic conver-
gence rate.

refinement totally dominates the Nc-type refinement of the full-grid PCM. According

to Figure 4-39, the cost per accuracy of the sparse-grid PCM is larger than that of

QMC; nevertheless, the multi-element technique can significantly improve the sparse-

grid PCM, as seen from the much smaller slope of the sparse-grid uniform MEPCM.

In Section 4.4, when the random dimension and system equations are very large, the

computing cost per accuracy of the sparse-grid PCM will be much cheaper than those

of QMC and the full-grid PCM.

1L2 l0 o 10
L2 dhIlcOlEy 1

10 10 10 10 10' 10 10 10 10 10 7 10
Ldiff of Ely3

Figure 4-39: The cost per E[y1] accuracy of QMC, Full-grid PCM, Full-grid uniform-
MEPCM, Sparse-grid PCM, and Sparse-grid uniform-MEPCM for Tf = 50 sec (left)
and Tf = 100 sec (right).
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Table 4.1: Summary of the convergence rates for various stochastic algorithms in the
case of continuous stochastic solutions

Stochastic Algorithms Rate of convergence

MC O(NN-1/2)
QMC O(NN- 1)
gPC O(e-P/d)

full- and sparse-grid PCM O(e-(Nc-1)/d)
MEgPC O((N/d)-(P+l))

full- and sparse-grid MEPCM O((N/d)- 2Nc)

The convergence rate of all stochastic algorithms, considered in this section, can

be summarized in Table 4.1 below. Both gPC and PCM yield the rates of convergence

that depend on the ratio of their governing parameters (p or Nc) and the random

dimension. Likewise, the convergence rate of the multi-element technique must be

normalized by the random dimension as well. Although the Monte Carlo method

exhibits the convergence rate that is independent of the random dimension, it is

not competitive against the full-grid PCM in small and medium random dimensions

and the sparse-grid PCM in large random dimensions because of its slow rate of

convergence. Even for the long-time integration problem, the computational efficiency

of the full-grid PCM is still the best among these stochastic algorithms.

4.2 Discontinuous Stochastic Solutions

When a system has a discontinuity either in its stochastic solutions or in its derivative

due to random initial conditions, parameters, or equations themselves, this discontinu-

ity can reduce the statistical accuracy obtained from all stochastic algorithms. Also,

this discontinuity has a direct impact on the convergence rate of both Galerkin and

Collocation approaches. However, the uniform and adaptive multi-element technique

can significantly improve the L2 error convergence of statistical solutions. Similar

to the last section, the h-type refinement helps maintain the solution accuracy in a

long-time integration. This section considers two types of SDEs, step discontinuity
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and the Kraichnan-Orszag systems. Again, the PCM denotes the full-grid PCM, if

we do not specify whether it is a full- or sparse-grid PCM.

4.2.1 Step-discontinuity first-order SDE

Let us examine a system with a discontinuity in its derivative. The first-order ODE

with a signum function is expressed as the following:

dy = -sign(y), with y (t = 0) = yo and t E [0, T] (4.20)
dt

where t E [0,1] and yo is considered to be a zero-mean and one-variance random

variable, associated with the uniform distribution U[-1, 1]. Exact solutions of mean

and variance can be derived analytically as the following:

9exaci(t) = 0, (4.21)

-exac(t) = -(1 - 3t - 3t 2 - t3 ). (4.22)
3

First, the convergence characteristic and rate of PCM and Hybrid gPC+PCM with

Nc = 20 appears in Figure 4-40, when a discontinuity occurs on the zero axis. The

convergence rate of PCM becomes algebraic in the order of O((Nc - 1)-2); how-

ever, the error convergence of Hybrid gPC+PCM, which is linearly approximated by

O(p- 2), fluctuates around that of PCM. An explanation of this phenomenon is that

the even-order modes of the polynomial chaos basis do not capture the dynamic of

discontinuity at zero because they cross the zero axis at the origin. Therefore, the L 2

variance difference improves only when an additional odd mode of polynomial chaos

is added. Nevertheless, the relation Nc = p + 1 is still valid between the PCM and

Hybrid gPC+PCM.

We compare the results between MEPCM with Nc = [2,3] and hybrid MEgPC+PCM

with p = [1, 2]. The convergence rates for both MEPCM and hybrid MEgPC+PCM

do not depend on the Nc and p and they stay fixed at O(NN- 3 ). Figure 4-41 shows
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Figure 4-40: The L 2 error convergence of variance solutions as a function of Nc or
p + 1 using the PCM or Hybrid gPC+PCM, respectively, for y = -sign(y).

that hybrid MEgPC+PCM has lower accuracy than that of MEPCM, which is con-

sistent with the accuracy of the Hybrid gPC+PCM, which is less than that of the

PCM.
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Figure 4-41: The L 2 error convergence of variance solutions as a function of Nc for
the PCM for y = -sign(y).

4.2.2 Kraichnan-Orszag system in one random dimension

An initial condition of the Kraichnan-Orszag system is set as the following [y1(0, ), y2(0, (), y3(O, ()] =

[1, 0.1 , 0]. This random initial condition leads to the discontinuity in stochastic so-

lution on the Y2 plane. For t E [0, 30], the convergence rate as well as computational

efficiency are compared among these four stochastic algorithms: 1) MC and QMC, 2)
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PCM, 3) uniformly MEPCM with Nc = 5, and 4) Adaptive MEPCM with Nc = 5 and

01 = [0.1,0.05,0.01,0.005]. Using the adaptive criterion described in Section 3.4.3,

the evolution of the element mesh of random space as a function of time can reveal

how this adaptive algorithm specifies the location of discontinuity. The reference

solution is numerically computed by the quasi-Monte Carlo method with a million

realizations, which consumes 19.63 hours of the computational time. As seen in Fig-

ure 4-42, the variance solutions of three modes grow with time as Tf approaches 30

seconds due to a change in frequency of oscillation and the discontinuity on the zero

axis of the Y2 initial condition. As a result, the statistical solutions from both gPC

and PCM will fail to converge, particularly for the long-time integration. Figure 4-43

shows an effect of increasing p in gPC and increasing Nc in PCM to delay a diver-

gence of the statistics. With small p and

to diverge after a few seconds.
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Figure 4-42: The stochastic mean and variance solutions of three
reference solution when [y(O, )7y2(0, ), y3(0, )] = [1, 0.16(W), 0].

To improve the accuracy of estimated statistics, we can increase either Nc or N

by a significant amount. Figures 4-45 and 4-46 show that the convergence rate of

both PCM and MEPCM with uniformly fixed elements are on the order of O(N- 1);

however, the computational time of uniform MEPCM is more than two times faster

than that of PCM for the same accuracy, especially in a high-accuracy region. Also,
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Figure 4-43: The divergence of yi variance solution using gPC (left) and using PCM
(right).

notice that the convergence rate of uniform MEPCM does not depend on Nc, when

the solutions have a discontinuity. On the contrary, the convergence rate of both

MC and QMC are not sensitive to the discontinuity in the solution. We can see

in Figure 4-44 that the convergence rates of O(NN- 1/2 ) using MC and O(NN- 1)

using QMC are very similar to those in the previous continuous cases. However, the

computational cost per accuracy in low dimensions of QMC is still 5 and 10 times

larger than that of PCM and MEPCM with Nc = 10, respectively.
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Figure 4-44: The L 2 norm error of mean (left) and variance (right)
function of NN exhibit the algebraic convergence rate of O(NN- 1/2 )
of O(NN- 1 ) using QMC.

solutions as a
using MC and

The convergence rate can be further decreased to O(N- 3 ) or greater with the

adaptive MEPCM, as Figure 4-47 shows. For the same accuracy of mean solutions at
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Figure 4-45: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, and uniform MEPCM (right).
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10-4, the computational efficiency of the adaptive MEPCM is about 10 and 5 times

higher than that of the normal PCM, and of the MEPCM with uniform elements,

respectively. With the threshold, 01 = [0.1, 0.05, 0.01, 0.005, 0.004, 0.003, 0.002,

0.001, 0.0005], the corresponding numbers of the element are [10, 14, 22, 26, 30, 32,

34, 63, 78]. The progression of new elements generated in time, shown in Figure 4-

48, reveals how the adaptive criterion decomposes the random space to capture the

location where discontinuity occurs. For 01 = 0.1, the random space is gradually

divided in time to decrease the error from the discontinuity at zero. With 01 = 0.01,

the decomposition occurs very fast within the first 10 seconds near the zero to reduce

the error from the discontinuity. After 10 seconds, the h-type refinement also captures

the error due to a long-time integration.

10
..... .... -.. - meanly1

10 variance 1

>-.--.- 1/N3

10

10 .. . . . .

10 20 30 40 506070
N

Figure 4-47: Using the adaptive MEPCM, the error convergence of mean and variance
solutions are shown as a function of N.

4.2.3 Kraichnan-Orszag system in two random dimensions

When a discontinuity of stochastic solutions occurs in two random dimensions, the

accuracy and efficiency again are compared among these stochastic algorithms: MC,

QMC, PCM, uniform MEPCM, and uniform MEgPC. For these initial conditions,

[1, 0.1( 1 (w), ( 2(w)], the Kraichnan-Orszag system exhibits a discontinuity on the y2

plane such that the stochastic solutions in three dimensions can fall into gi, g4, or

g8 groups. The reference mean and variance solutions, obtained from the QMC with
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NN = 1, 000, 000 for t E [0, 15], are shown in Figure 4-49.
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Figure 4-49: The stochastic mean and variance solutions of three modes from the
reference solution when [y1(O, ), Y2(0, ), y3(0, )] = [1, 0.161(w), 2 (W)j.

The performance and rate of convergence are compared among four stochastic

algorithms: 1) MC and QMC, 2) PCM , 3) MEPCM with Nc = [2,5, 101, and 4)

MEgPC with p = [1,4]. As shown in Figure 4-50 below, the L2 error convergence

of MC and QMC are consequently on the order of O(NN- 1/ 2) and O(NN- 1). In-

sensitivity of the convergence rate to both random dimension and discontinuity in

stochastic solutions makes the Monte Carlo method more competitive against PCM

and gPC in large dimensions of random inputs.

Similar to the discontinuity of solutions in one random dimension of the Kraichnan-
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Figure 4-50: The L2 norm error of mean (left) and variance (right) solutions as a
function of NN exhibits the algebraic convergence rate of O(NN'/ 2 ) using MC and
that of O(NN-1 ) using QMC.

Orszag system, the error convergence rates of PCM and MEPCM are in the order

of O((Nc/d)2/3 ) and O((N/d)1 "), respectively. The computing cost per accuracy in

Figure 4-51 reveals that the single-element PCM cannot handle the discontinuity in

stochastic solutions as efficiently as the uniform MEPCM with large Nc. On the

other hand, the cost per accuracy of MEgPC increases as the polynomial order, p,

increases. Without the p-type refinement, MEgPC with p = 1 can also yield a good

computing efficiency, which is more than an order of magnitude better than that of

MC for the same accuracy.
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Figure 4-51: The Nc convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, and MEPCM with uniform element
(right).
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Even though the convergence rate of uniform MEPCM is independent of Nc, a

linear improvement in both Nc- and h-type refinements can be seen in Figure 4-52.

The convergence rate of the statistical moments, particularly of yi, is not smooth;

therefore, we also show the statistical convergence of y3, which is much smoother, to

confirm the convergence rate of O((N/d) 1 2 ), as shown in Figure 4-53. The error of

state y3 converges much more smoothly because the discontinuity occurs directly on

the yi plane and the statistical response of y3 just oscillates around zero.
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Figure 4-52: The L2 norm error of mean (left) and variance (right) solutions as a
function of N/d exhibits the algebraic convergence rate of O(N- 4 ) using the uniform
MEPCM with Nc = [2,5,10].
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Figure 4-53: The L 2 norm error of mean (left) and variance (right) solutions as a
function of N/d exhibits the algebraic convergence rate of O(N- 1 2 ) using the uniform
MEPCM with Nc = [2,5, 101.

In spite of the large computational cost per accuracy of uniform MEgPC, the
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uniform MEgPC exhibits an algebraic error convergence rate of O((N/d) 2 ), which is

about an order faster that of the uniform MEPCM. As shown in Figure 4-54, the p-

type convergence of uniform MEgPC exhibits smaller improvement than the Nc-type

convergence of uniform MEPCM in the presence of the discontinuous solutions.

-e- MEgPCp=1 -e- MEgPCp=1
-s- MEgPCp=4 -u- MEgPCp=4:
- - 1/(N/d) 2  

- - 1 /)
1O0 10 --

101 10'
N/d N/d

Figure 4-54: The L2 norm error of mean (left) and variance (right) solutions as a
function of N/d exhibits the algebraic convergence rate of O(N-2 ) using the uniform
MEgPC with p= 1 and p= 4.

4.2.4 Kraichnan-Orszag system in three random dimensions

With three random initial conditions of [(1 (w) ,0. 1(2(w) ,63(w)] for the Kraichnan-

Orszag system, the discontinuity occurs on both the Yi and y2 planes; thus the

stochastic solutions can occur in any one of the eight groups. As a result, the time

constants of mean and variance are longer than in previous discontinuous cases. The

statistical results from the QMC with NN = 1, 000, 000, shown in Figure 4-55 for

t E [0, 151, are used as a reference solution to compute the error convergence.

We compare the performance among these five stochastic algorithms: 1) MC

and QMC, 2) full-grid PCM , 3) full-grid MEPCM with Nc = [2, 5, 10], 4) sparse-

grid PCM, and 5) sparse-grid MEPCM with Level = 5. Hence, both effects of the

sparseness of collocation points and uniform decomposition of random space are our

main focuses in this section. As illustrated in Figure 4-56, the MC and QMC again

yield the convergence rate of O(NN--/ 2 ) and O(NN-'), respectively.
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According to Figure 4-57, the algebraic convergence rate of full-grid PCM is still

in the order of O((Nc/d)'"); however, the sparse-grid PCM yields an exponential con-

vergence rate faster than O(e-03(Level/d)), which results in a more efficient algorithm

for discontinuous stochastic solutions. The results using the sparse-grid collocation

method have not been considered in one- and two-dimensional cases because its com-

puting cost per accuracy is not competitive against the full-grid PCM. In Section 4.4,

the advantage of the sparse-grid PCM will be more pronouced for a large integrated

power system with high random dimensions.

1010

1 10

10

110

10 0 -

N~d LeLev

Figure 4-57: The Nc-convergence of mean and variance solutions using full-grid PCM
(left) and using sparse-grid PCM (right).

Both Nc- and N-type refinements of full- and sparse-grid uniform MEPCM are

shown in Figure 4-58. The full-grid MEPCM exhibits an algebraic convergence as

a function of both N/d and Nc, and the multi-element technique alone yields the

convergence rate per random dimension of O((N/d)i). In this case, the sparse-

grid uniform MEPCM provides more than three orders of magnitude in algebraic

convergence faster than the full-grid uniform MEPCM. One explanation of this faster

convergence characteristic is that the sparse collocation points as a function of either

level or element number are distributed close to the boundary and the zero-axis of

the hypercube, where the planes of discontinuity occur.

In terms of the cost per accuracy, even though the QMC seems to be the most

efficient, the sparse-grid uniform MEPCM with a larger level can easily provide better

accuracy than the QMC with a smaller computing cost. As shown in Figure 4-59, the
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Figure 4-58: The L2norm. error of yj mean (left) and variance (right) solutions as a
function of total N exhibit the algebraic convergence rate of O(N-1) for Nc = 2 and
Nc = 5, using MEPCM.

cost per accuracy of full-grid uniform MEPCM, which is lower than that of the single-

element full-grid PCM, tends to improve slower than those of QMC and sparse-grid

uniform MEPCM for the short-time integration problem. If the random dimension

increases further, the computational efficiency of the sparse-grid MEPCM will become

more distinguished in the system with discontinuity in stochastic solutions.
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Figure 4-59: The computational time of MC, QMC, full- and sparse-grid PCM, full-
and sparse-grid MEPCM with uniform element.
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Results for a long-time integration

This section discusses and compares the performance of stochastic algorithms when

the final time of integration (Tf) increases to 50 and 100 seconds. Figure 4-60 shows

mean and variance solutions of the reference solutions, obtained from QMC with a

million realizations, similar to Section 4.2.4. These reference solutions approach their

steady-state values within the first 30 seconds. Thus, using Tf = 100 seconds em-

phasizes the propagation of accumulating error in the long-time integration problem.

Therefore, we can see the effectiveness of the multi-element technique to decrease the

global integration error, specifically with a discontinuity in stochastic solutions.
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Figure 4-60: The stochastic mean and variance solutions of three modes from the
reference solution when [yi(O, ),y2 (0, ),y3(0, )] =[((),0.1 2 (w), 3(w)1.

The averaging characteristic of the Monte Carlo technique requires a large num-

ber of NN to approximate the statistical moment accurately in the presence of the

accumulating error in each realization, as shown in Figure 4-61. The accuracy of error

convergence using QMC becomes worse as the integration time lengthen; nonetheless,

the rate of convergence is still in the order of O(NN~ 1). As a result, the L 2 error

convergence of moments is shifted upward for Tf = 50 and 100 seconds, shown in

Figure 4-62.

Similarly, the error convergence of the single-element full-grid PCM and sparse-

grid PCM becomes worse as we increase the final integration time. Figure 4-63 shows

that the error convergence of full-grid PCM still has the algebraic rate of O((Nc/d)2)
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as a function of NN and Tf using the QMC.
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from the reference solution, QMC with NN = 1, 000, and QMC with NN = 10, 000.
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for Tf = [15,50, 1001. For the sparse-grid PCM, the L2 exponential convergence of

error becomes much worse when Tf increases, as seen in Figure 4-64. Closely related to

Section 4.1-8, both of these collocation techniques are sensitive to the final integration

time because of a fast propagation of accumulating error, associated with each run of

the deterministic solver.

Figure 4-63: The Nc-convergence of mean (left) and variance (right) solutions using
the full-grid PCM as Tf increases.

Figure 4-64: The Level-convergence of mean (left) and variance (right) solutions using
the sparse-grid PCM as Tf increases.

When the multi-element technique is combined with the full-grid PCM, the global

accumulating error can be decreased significantly because of the reduction of accumu-

lating error in each local element. As shown in Figure 4-65, with only a few elements

in the h-type refinement, the full-grid MEPCM significantly delays the divergence of
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statistical solutions. The full-grid PCM with only two collocation points per ran-

dom dimension cannot handle the discontinuity around the zero axis, which leads to

oscillatory responses of the first and second moments. Figure 4-66 shows the linear

convergence using the full-grid uniform MEPCM as a function of both N/d and Nc.

The linear-convergence characteristic of full-grid uniform MEPCM does not change

as Tf increases.
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Figure 4-65: The stochastic mean (left) and variance
from the reference solution, full-grid PCM with N
MEPCM with N = 43, Nc/d = 2.

10'
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(right) solutions of three modes
c/d = 2, and full-grid uniform
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Figure 4-66: The L 2 error convergence of y3 mean (left) and variance (right) solutions
as a function of total N exhibits the algebraic convergence rate of O(N 4 ) for Nc = 2,
O(N' 0 ) for Nc = 5 and O(N- 20) for Nc = 10, using the full-grid uniform MEPCM.

Similar to the full-grid uniform MEPCM, the sparse-grid uniform MEPCM could

also delay the divergence, resulting from the accumulating error of integration, as
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shown in Figure 4-67. Although the sparse-grid uniform MEPCM provides a better

convergence rate than the full-grid uniform MEPCM for a short-time integration

(Tf = 15), the sparse-grid uniform MEPCM loses its accuracy quickly due to the

deterioration of the performance of the sparse-grid PCM, as shown in Figure 4-68.

However, the multi-element technique helps maintain the linear convergence rate in

the long-time integration.
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Figure 4-67: The stochastic mean (left) and variance (right) solutions of three modes
from the reference solution, sparse-grid PCM with Level/d = 5, and sparse-grid
uniform MEPCM with N = 43, Level/d = 5.
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Figure 4-68: Comparison between the full-grid uniform MEPCM with Nc = 5 and
the sparse-grid uniform MEPCM with Level = 5 on the L 2 error convergence of yi
mean (left) and variance (right) solutions as a function of N/d exhibits the algebraic
convergence rate.

To compare the computational performance of these stochastic algorithms, the

computing cost per mean accuracy in Figure 4-69 shows that the full-grid uniform
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MEPCM becomes more effective over the QMC, while the performance of the sparse-

grid uniform MEPCM degrades. Similar to Section 4.1.8, in the long-time integration,

all the cost-per-accuracy curves of the full-grid uniform MEPCM with any Nc merge

into a single curve, aligning with that of QMC. One explanation for this characteristic

is that once the statistical solutions approach their steady-state values after a few

oscillations, the accumulating error becomes a random fluctuation in the case of

evenly sampling the random space using the QMC or full-grid uniform MEPCM. With

unevenly distributed collocation points of the sparse-grid PCM, the accumulating

error grows much quicker. In summary, the full-grid PCM maintains its accuracy

better than the sparse-grid PCM, and the multi-element technique can delay the

divergence for a long-time integration, when there is a discontinuity in stochastic

solutions. Next, we will consider a small system of a single induction machine, which

has more oscillatory stochastic responses.

10........... 10 -
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-8- Fri-gMi MEPOlKW4... .... ... ..... ....
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Table 4.2 summarizes all convergence rates of various stochastic algorithms, when

the stochastic solutions contain a discontinuity either in derivative or solutions them-

selves. We describe the convergence rates of all algorithms, except that of the Monte

Carlo method, with an arbitrary constant (c), because the c value can vary depending

on the severity of solutions' discontinuity. Similar to the continuous case, the rate

of convergence of Galerkin, Collocation, and multi-element techniques must be nor-
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Table 4.2: Summary of the convergence rates for various stochastic algorithms in the
case of discontinuous stochastic solutions, where c is a arbitrary constant

Stochastic Algorithms Rate of convergence

MC O(NN-_/2)_
QMC O(NN- 1)
gPC O((p/d)-c)

full- PCM O(((Nc - 1)/d)-c)
sparse-grid PCM O(e-c*(evel)/d)

MEgPC O((N/d)-c)
full- and sparse-grid MEPCM O((N/d)-c)

malized by the random dimension, while the convergence rate of the Monte Carlo is

independent of the random dimension. As shown in this section, the cost per accu-

racy of the Monte Carlo method is still large compared to either full- or sparse-grid

MEPCM even in the long-time integration problem, even though the slow convergence

rate of the Monte Carlo method is independent of the random dimension.

4.3 An open-loop induction machine with the in-

finite bus

The parametric uncertainty in a single induction machine directly connected to an

infinite bus is considered in this section from both error convergence and uncertainty

propagation aspects. The configuration of this system is shown in Figure 4-70. The

machine equations are expressed in a qd0-synchronous reference frame. These equa-

tions of this three-phase system with quadratic nonlinearities consist of seven state

variables: three rotor reactances [',', , le], the rotor's angular velocity [Wr], and

three stator or tie-line currents [iet, i, ie,] (see Equation 4-23 to 4-29). Two states,

Ve and i' are uncoupled from the others. All parameters, given in Table 4.3, are

lumped into as variables for a simplification of state equations. The detailed deriva-

tion of system modeling can be found in Section ??. The start-up dynamics of a

200-hp induction machine in an open-loop configuration, considered here for t E [0, 3]
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seconds, includes fast transient dynamics from electrical components, stator and rotor

windings, and slow dynamics of a mechanical subsystem, a rotor inertia.

The uncertainty in a rotor resistance (r,.) can be modeled with two types of

stochastic inputs - random variable in Section 4.3.1 and random process in Sec-

tion 4.3.3. In the random variable case, the value of the rotor resistance ,r'(w) =

r. + ar-(w), is assumed to be unknown, but it is described by the mean value (r')

and bounded within the specified range (oir). In a more realistic situation, the rotor

resistance, which normally fluctuates with an operating temperature, is modeled by

a time-varying parameter. Thus, in the random process case, this time-dependent

parameter (R'r) can be represented by the Karhunen-Loeve (K-L) expansion [33],

described in the following form: '(t, w) = ' + 0-r Z) VX~i(t)(i(w), where r' and

or are consequently the mean and standard deviation of rotor resistance. Ai and ?P/

are an eigenvalue and an eigenfunction associated with i term from the expansion,

truncated at KL random dimensions. The (w) is the random variable as a function of

random space, w. For this process, the /i and Ai are determined from an exponential

covariance function: K(ti, t2 ) = a2e CL, governed by the correlation length (CL)

of a time difference. In both cases, the values of r' and u- are 0.0261 p.u. and 0.01.

Three realizations from the K-L expansion of r are shown in Figure 4-70.

d 'e

dtr = lO / )- 2 ,+ Wr .+ O j,, (4.23)

= 2 94 ", + 1 ' , . -W r 'V . + a s' i t , ( 4 .2 4 )

dt' =-0490.,.,(4.25)

dit

dt 5'/qr d +t -

dt = a!,qr - aWPdr, -- io + 03, (4.27)
di*

dtr 05 Oeie + C,7'eie +0 1 O~ - (4.28)

-t a7bqr CW4t. d

die
=t -a12iet. (4.29)
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Table 4.3: Parameters of a 200-hp induction machine

Parameters r, X X, XI rI H

in [p.u.] 0.01 0.0655 3.225 0.0655 0.0261 0.922

where

r,
a 1  -Wb T2 (xl,

1r
- Xb), a 2 = We, (4.30)

(4.31)

(4.32)

(4.33)

(4-34)

(4.35)

(4.36)

We xis +xb
'eo: aa (Wb( Lt - Mt)+

1 1 1 Fs + rt
OZ11 = _ _ IO12 = -

aa Lt - Mt bb Lt - Mt'
xls + Xb xis

aa =1 + + bb = 1+
Wb(Lt - Me)' wb(Lt + 2Me)

0.028

0.027

qd

je4 0  
.. eqdOs T

IM _ Load

200 Hp TL
a-phase

radial system

CI

0.026-
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Figure 4-70: A one-line diagram of the induction machine connected to the infinite
bus through a RL tie line (Left). Three realizations of the rotor resistance modeled
by the three-term K-L expansion with CL = 10 second (Right).
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4.3.1 One-dimensional random variable as the stochastic in-

put

An evolution of the probability density function caused by a propagation of r' un-

certainty can be constructed as described in Section 3.4.1 using the solutions at the

nodal points of the PCM with Nc = 100. As shown in Figure 4-71, the peak of the

q-axis rotor reactance, 0'., and the d-axis stator or tie-line current, ie, shift rapidly

between top and bottom of the sinusoidal transient dynamics during the first second,

when the rotor resistance is a uniform stochastic input. For t E [1, 2] seconds, the

PDFs of both states spread out over a wide range before reaching steady state con-

ditions. In the steady state, all states' PDFs form a prominent peak around their

steady state deterministic solutions.

0.7 0.09

-. 0.06

- -0.07

S. 060.06
*,0.4 006 0.05

0. 0.04
S 0.2 000.3 02 04

00 0o:03

0 00202

-0.4 0.1 14001

2 -0.6 3 m1gp fpuI

Figure 4-71: The PDFs of the q-axis rotor reactance, 0'(e),,., (left) and the d-axis
stator or tie-line current, i', (right) evolve with time due to the propagation of the
rotor resistance uncertainty.

When the rotor resistance is modeled by the one dimensional random variable

with t E [0,31 seconds, the convergence rate of statistical errors can be compared

among five different stochastic algorithms: MC, QMC, MEgPC, uniform MEPCM,

and adaptive MEPCM. Due to the complexity of the machine's analytical solution,

the reference solution from the PCM with Nc = 2000 is used in the L 2 error con-

vergence computation. In this section, PCM refers to only the full-grid collocation

technique. According to Figure 4-73, the MC and QMC methods respectively yield

algebraic convergence rates of O(NN- 1 2) and O(NN') as a function of the number
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Figure 4-72: The reference stochastic mean (left column) and variance (right column)
solutions of five state variables in per unit of the 200-hp induction machine, obtained
from PCM with Nc = 2000.

of realizations, NN, similar to those obtained in Section 4.1. With NN = [103,105],

the accuracy stays within a [10-2, 105] range. The L 2 norm difference of statistics

needs a substantially large NN to further increase the accuracy. Compared to the

MEPCM and MEgPC results shown in Figure 4-74 and 4-75, a characteristic of the

convergence rate again can be classified into two ranges: non-asymptotic (nonlinear)

range with small N, and asymptotic (linear) range with large N. The larger the value

of Nc in MEPCM and p in MEgPC is, the wider the nonlinear range becomes. This

trend occurs when all solutions of coupled nonlinear equations are smooth and contin-

uous, like those of the Kraichnan-Orszag system with the continuous solutions. The

convergence rates as a function of N in the linear range are in the order of O(N- 4),

O(N- 10), O(N 2 0 ) for [Nc = 2 or p = 1], [Nc = 5 or p = 41, and [Nc = 10 or p =9,

consequently. These convergence rates also follow the approximation of the conver-

gence relation of O(N+2 (pl)) for MEgPC and O(N- 2 Nc) for MEPCM, mentioned in

Section 4.1.

Furthermore, the adaptive MEPCM with Nc = 5 and 01=[0.1, 0.01, 0.005, 0.001,

0.0005, 0.0001] yields a minor improvement in the error convergence over the MEPCM

with uniformly distributed elements, as shown in Figure 4-76, since the solutions

of this system are smooth and continuous. In the low accuracy region, adaptively

dividing the random space into multiple elements can reduce the error much faster
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tv

Figure 4-73: The L2 norm error of mean (left) and variance (right) solutions as a
function of realization (NN) exhibit the algebraic convergence rate of O(NN-112)
using pseudo-Monte Carlo and of O(NN-1) using quasi-Monte Carlo.

Figure 4-74: The L2 norm error of mean (left) and variance (right) solutions as a
function of N, using the MEPCM, exhibit the algebraic convergence rate of O(N-4)
for Nc = 2, O(N-") for Nc = 5, and O(N 20) for Nc = 10.
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Figure 4-75: The L2 norm error of mean (left) and variance (right) solutions as a
function of N, using the MEgPC, exhibit the algebraic convergence rate of O(N- 4)
for p = 1, O(N-') for p = 4, and O(N- 20 ) for p = 9.

than employing equally distributed elements. However, in the high accuracy region,

uniformly decomposing the random space into large numbers can eliminate the error

in an initial time step very quickly such that its performance is as good as that of

adaptively decomposing the random space as time progresses.
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Figure 4-76: The comparison of the convergence rate of the mean (left) and variance
(right) solutions between MEPCM with fixed and uniformly distributed elements and
adaptive MEPCM.

In terms of the computational efficiency, we compare the computational time vs.

accuracy among these four algorithms, as shown in Figure 4-77. To obtain a solution

with high accuracy, the MC and QMC require a huge computational effort, and thus

these two algorithms are not competitive against MEPCM and MEgPC in the one
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random dimension. Also, Figure 4-77 shows a tremendous advantage of MEPCM

over MEgPC for the entire range of accuracy, especially in the high accuracy region

near a machine precision of 10~-4. The computational time of uniform MEPCM

with Nc = 5 and 10 is about two orders of magnitude less than that of uniform

MEgPC with p = 4 and 9. For MEPCM with Nc = 2 and MEgPC with p = 1,

there is only linear improvement in accuracy as a function of the computational time

because only linear polynomial chaos is used in the projection in the MEgPC, and

linear approximation of uniform distribution by two collocation points is used in the

MEPCM. The computational time per accuracy of the adaptive MEPCM with Nc = 5

is equivalent to that of the non-adaptive MEPCM with Nc = 5, shown in Figure 4-77.

, PCMg .. t

4.3.2ECM. Tw.-.meni.na rand.... . ariab.e .ss.hstcipt

variancei ...s..dt....hes..vle a nth rviu as.T e la i e

-0. Amec ap.1 a

A WCOM NS .

106

MC, QMC, MEPCM 4Pand MEPC. with fie.eeenad. dptv.MPM

4.3.2 ~. Twodimnsina random. variable as stchstc.npt
Both the rotor reistance (4) andla torque. (T .. beom. aradm.arabe
descrbed y 4() = + ~(W)a T... (W . T..a +.... ...... Th..s.manan

varince re asume tohavethe ame alus asin te prviou cae..Te.T.a..i.se
at... 50 percent.. of the machine.. base... toqu.T.a..0.)wih30pecntvritin(.
0.3).1 Aplyn both .... parametric an load:: uncrtItie to thsidcio7ahn

during ~ ~ ~ ~ ~ ...... its. stat-u transient dyamcs sttsiclrsone.ae.ogriet
reach their inal values as shown.i.Figure.47. The.. trnset.eposs.felcria

...... ....... .. 1 6 5 ......



components, which causes fast oscillatory behavior in the first second, quickly die

out, and after that the mechanical transient governs a slow response of all states.

S0 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4
10

0 1 2 3 4
thme [Sa]

0.05

0 1 2 3 4

0 1 22

0

0 1 2 3 4
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0
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Figure 4-78: The stochastic mean (left column) and variance (right column) solutions
of five state variables in per unit of the 200-hp induction machine, obtained from the
reference solution using uniform MEPCM with Nc = 10 and N = 902.

Again, we compare the performance among MC, QMC, PCM, and uniform MEPCM

techniques for these two random dimensions. The MC and QMC again converge

linearly with a rate of O(NN 1/2 ) and O(NN'), respectively. As seen in Fig-

ure 4-79, the accuracy of error convergence is contained within a range of magnitude,

[10-2, 10-5], similar to the previous section with the one random variable.

10'

1010-

tW
NN

1d, 10'

Figure 4-79: The L 2 error convergence of mean (left) and variance (right) solutions as
a function of realization (NN) exhibit the algebraic convergence rate of O(NN-12 )
using pseudo-Monte Carlo method and of O(NN- 1 ) using quasi-Monte Carlo method.

For the uniform MEPCM, the convergence relation of O((N/d)- 2 (N)) is still ap-

166

.............. ......... ...... ....... ..:.::.:: ....................... 1 -0 - M C... .... .. . .. .... .... .. .... ... . .. ... .... .. .. .: ... .. ..... .. ..
....... ... ............... I .... ...... .. ... ...........

1 ....... ....... - ..................
.......... .... .... .... ... : : . -... ............................. 7 IN N

. ... .... ..... ... ... .... ..... .

.................
......... . ........... ... .... .

.. ......... .. ... .
......................

.. .. ...... .. .. .. .... ....... .. .. .... . .. .. . .. .... ..
...... .... . .... . . 7 ... 7 ............... ..........

.................... ...... ... Z:

E ..... . ...... . ... . ............

............ .. .......... ... ... ................. . .
................. .... ....

...........

...... .. ... . ............. :N ........ . .. .......... ..

..... ... ... .. .. .. ..
.. .. ..... ... .. . .. .. .. ... ... .. .... .. .. .... .. ..... .

.. ........ .. .. . .... .. .. .... ... .. .. .. . . M.

... ...... ... . .... .. .. . ... ..

.... ...... .... ...... .. ...... ...... .. ...... ......

1:., .......................10 ' ;:., . .. ..... ... .. ... ...
:: ::::::: C..... . ...... ......... C.... .... ..... ........ ......

.... .... ......... .. .... " I
........... W ........ ........ VMNN

I/NN
................. . .... .. ............ .......... .. ... .... ......

............... ...... ........ ................. ..... .. . .. ... .
..... ...... . ...... ...... ..... .. .... ... .. .. .. ... ... .... .... .... ... .. .... ..
............. .... ...... ... ............ .. .......

.............. ...... .... .... ............... .......

-6 ................ .........................
.. ....................

........... ... . ....... ........
..........

................. ...... ........... . . ......
. ... . . .. ... .. .. ... . . .... . . .... .. . . .. ... .. ..... . .

............... ........... ..

107'
.. . .. ..... .. .. .

... ... .. ... ... .. ..
...........

............ ...... .........

... .. ... ... ... ... ... .. .. .. ... ..

.. .... .. .... ... .... .. ... .. ..

.. ..................... ......... ...... ................... ......... ......

10 to
1le 1le 1ce



plied to this system, similar to that of Section 4.1.7. For the fixed elements, we

obtained the convergence rates of the uniform MEPCM with Nc = [2,5,10] on the

order of O((N/d)- 4 ), O((N/d)- 10), and O((N/d)--20 ), consequently. However, the

non-asymptotic convergence range is extended longer, as shown in Figure 4-80, due

to a combined effect from the large variation of two random variables and the fast

transient in the first second.

10 10
MEPCM: N.1 - - ,G MEP :Nc1

10 10
10 10 1N 10

.... Wd)2

Figure 4-80: The L2 norm error of mean (left) and variance (right) solutions as
a function of N/d, using the MEPCM, exhibit the algebraic convergence rate of
O((N/d)-4 ) for Nc = 2, O((N/d)-' 0) for Nc = 5, and O((N/d)-20 ) for Nc = 10.

Owing to the smoothness and continuity of system solutions, the Nc-convergence

of PCM exhibits an exponential convergence rate of O(e-003(NC/d)), as shown in Fig-

ure 4-81 below. The computational cost per mean accuracy is a measurement of the

efficiency of these stochastic algorithms. The PCM yields the smallest computing

time per accuracy. In this case, the N-convergence of the multi-element technique

can improve the accuracy of the solution significantly, but we need a large Nc to see

a faster computational time in the uniform MEPCM.

4.3.3 For the three dimensional random process as the stochas-

tic input

Figure 4-82 shows the stochastic responses of all coupled states in the case when a

parametric uncertainty in the rotor resistance becomes a time-dependent variable,
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Figure 4-81: The Nc-convergence of mean and variance solutions using PCM (left)
and the computational time of MC, QMC, PCM, uniform MEPCM (right).

which is correlated in time. With a slow varying r', statistical responses are not

much different from those in Figure 4-72.
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Figure 4-82: The reference stochastic mean (left column) and variance (right column)
solutions of five state variables in per unit of the 200-hp induction machine, obtained
from MEgPC with p = 1 and N/d = 70.

In the case of a three dimensional random process (with d=KL=3) with t c [0, 3

seconds, the accuracy and efficiency are also examined and compared among these

stochastic algorithms: 1) MC and QMC, 2) full-grid uniform and adaptive MEPCM,

and 3) uniform MEgPC. The reference solution in this case is obtained from the

MEgPC with p=1 and total N of 343,000. According to Figure 4-83, the MC and

QMC with NN=[10 3 ,. ,8x10 4 ] still yield the linear convergence rates of O(NN- 1/2 )
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and O(NN- 1 ) within the accuracy range of [10-2,10-51 similar to those with one

random dimension. This confirms an advantage of the Monte Carlo method that it is

insensitive to the random dimension, but its convergence rate is linear and limited to

a power factor up to 1. Figure 4-84 and 4-85 show the results of the uniform MEPCM

and uniform MEgPC with N=[8,...,10001. The convergence rates of O((N/d)- 4 ) for

[Nc = 2 or p = 1] and O((N/d)- 10 ) for [Nc = 5 or p = 4], also agree with the N/d

convergence relation, found in the Kraichnan-Orszag Sections 4.1.8 with continuity

in stochastic solutions and those in Sections 4.3.1 and 4.3.2.

10..... . ... 10-

.. . .. .. ..0.. . .. 10

Figure 4-83: The L2 norm error of mean (left) and variance (right) solutions as a
function of realization (NN) exhibit the algebraic convergence rate of O(NN-1/2 )
using pseudo-Monte Carlo and of O(NN-') using quasi-Monte Carlo.

Again, the multi-element technique of gPC and PCM with uniformly distributed

elements exhibits both asymptotic and non-asymptotic convergence ranges, as shown

in Figure 4-84 and 4-85. The rates of convergence for the uniform MEgPC and

MEPCM are respectively on the order of O((N/d) 2P+1 ) and O((N/d)-2Nc) with a

non-stationary random input. Note that both p and Nc in the uniform MEgPC and

MEPCM are normalized by the random dimension. Likewise, the Nc-convergence of

the PCM in Figure 4-86 yields an exponential convergence rate of O(e-0.5 (Nc/d))

The convergence rate of MEPCM can be further improved by using the adaptive

criterion to decompose the random space in three dimensions. Figure 4-86 shows that

the adaptive MEPCM with Nc = 5 and G1= [0.5, 0.05, 0.01, 0.001, 0.0005, 0.0001,

0.00005] yields the L2 error convergence rate of O(N-2 ), as shown in Figure 4-86. As
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Figure 4-84: The L2 norm errors of mean (left) and
function of N/d, using the uniform MEPCM, exhibit
of O(N- 4) for Nc = 2 and O(N-") for Nc = 5.
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Figure 4-85: The L 2 norm errors of mean (left) and variance (right) solutions as a
function of N/d, using the uniform MEgPC, exhibit the algebraic convergence rate of
O(N- 4) for p = 1 and O(N-') for p = 4.
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a result, the computational efficiency of the adaptive MEPCM surpasses that of the

uniform MEPCM and approaches that of the single-element PCM, which is the best

algorithm in terms of the numerical efficiency per accuracy.

to .. .. ... . .
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Figure 4-86: The comparison of the convergence rate of mean and variance solutions
between the adaptive MEPCM and uniform MEPCM (left) and the exponential Nc-
convergence of the single-element PCM.

For a random multi-dimension, the computational costs of PCM and gPC in-

crease proportional to Ncd nodal points and (p + d)!/p!d! modes, respectively. Since

the accuracy of the PCM and gPC is consequently governed by Nc and p and the

relationship of Nc = p + 1 for the same level of accuracy is still held in the larger

dimension, the computational cost of gPC grows much faster than that of PCM as

we require the higher accuracy of solutions. If Nc = 5 and p = 4, the PCM and

gPC require a calculation of the solution at 125 nodal points and from 56 modes in

three dimensions. However, the gPC needs to compute the Galerkin projection of

polynomial chaos basis, consuming more computing time. With this reasoning, the

computational cost of the uniform MEgPC with p = [1, 4] is even larger than that of

the uniform MEPCM with Nc = [2, 51, as illustrated in Figure 4-87

4.4 AC power distribution with propulsion drive

When the system becomes more complex as in the shipboard power system, the order

of the mathematical model increases tremendously. We will investigate the perfor-
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Figure 4-87: The computing time versus x1 mean accuracy using MC, QMC, PCM,
uniform MEPCM with Nc = [2, 3,4, 5], uniform MEgPC with p = [1, 4], and adaptive
MEPCM with Nc =.5.

mance of the best stochastic algorithms from Monte Carlo and Collocation approaches

with a large-scale system. This section considers two different configurations of the

shipboard power system. In the first configuration, the AC power generation system is

connected to a main three-phase radial bus, which supplies the electrical power to two

induction motors. This configuration in Figure 4-88, representing the power distribu-

tion system of a DDG-51 Navy destroyer [38], uses the first type of interconnection,

discussed in Section 2.3. The entire system consists of a 3.125MW Synchronous Ma-

chine (SM) driven by a simplified version of the Allison 501 gas turbine/governor,

the IEEE Type 2 voltage regulator and exciter for controlling generated voltage from

the generator, an RL tie-line, and 200-hp and 150-hp Induction Machines (IM). Con-

taining the nonlinearity in both polynomial and trigonometric forms, this model is

composed of 26-order ODEs.

In the second configuration, the second type of interconnection, explained in Sec-

tion 2.3, is considered because an average model of power converter can be included

for the induction machine drive. Figure 5-89 displays a one-line diagram of all com-

ponents: a 59 MW synchronous generator driven by ideal or constant-speed prime

mover, a simplified voltage regulator/exciter, and a 50-hp induction machine with

power converter drive using the constant torque technique. A mechanical torque load

applied on the motor shaft is proportional to motor speed squared to mimic the load
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Governor Exciter im]

I 150HP
Prime Mover I
(Gas Turbine) sm.] 3-phase tie line 2

3.125 MVA Bus#I Vbaw :450 V Bus#2

Figure 4-88: A one-line diagram of the first configuration of the AC power distribution
with two open-loop induction machines for studying the stochastic analysis with 6
dimensional random variables.

characteristic of propellers. This model, obtained from the detail model in the 2003

ONR challenge problem [27], represents the Naval Combat Survivability testbeds lo-

cated at Purdue and University of Missouri at Rolla. Including both continuous and

discontinuous nonlinearities, the total number of states in this configuration is 30.

Exciter T*9 Torque Control wo

59 KW b

PrmeMver sm- -- IM

Vb = 570 V Rectifier IC-filter Inverter 50 hp

Figure 4-89: A one-line diagram of the second configuration of the AC power distri-
bution with the closed-loop induction machine for studying the stochastic analysis
with 31 dimensional random variables.

4.4.1 Results for Six stochastic inputs

In this case, six independent random variables in the system of Figure 4-88 include

[r I, r'/, r'I of SM, r, of both IM1 and IM2, and rt of tie line. All of these random

variables, associated with the uniform distribution, are assumed to vary within plus

and minus 10 percent of their nominal values. For this system simulation, the gen-

erator is assumed to be initially in its steady-state condition and then suddenly two

induction machines start from rest at zero second. Therefore, a start-up transient of
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two motors, similar to the previous section, as well as an interaction among electric

machines can be seen in Figure 4-90 for t E [0, 3] seconds. At first, the speed of

the SM drops and then the exciter compensates for an error in the bus voltage by

speeding up the generator before bringing the SM's speed back to its steady-state

operation of 1 per unit. In the first second, the start-up transient of both IMs dies

out. After that the interactions between SM and IMs are illustrated in the responses

of the q-axis stator flux linkage of all machines. The variance of all states of both

IMs contains a high peak right before reaching the steady state. This characteristic

implies that the open-loop response, especially right after the start-up transient, is

sensitive to the parameter variation. With the closed-loop control of the exciter, the

responses of SM's variance have a smaller peak magnitude compared to those of IMs.
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Figure 4-90: The reference stochastic mean (first two columns) and variance (third
and fourth columns) solutions of the q-axis stator flux linkage and normalized rotor
speed of SM, IM1, and IM2 in per unit, obtained from QMC with NN = 1, 200, 000.

To study the numerical performance of stochastic algorithms-QMC, full- and

sparse-grid PCM, and sparse-grid uniform MEPCM-with this large-scale system in

the first configuration, the convergence rate and computational efficiency are again

considered. In this case, the reference solution for the L2 error computation is ob-

tained from the QMC with NN = 1, 200, 000, which requires 13, 736 seconds of the

computational time. With NN between 101 and 6x104 , the QMC yields an algebraic

convergence rate of the SM q-axis stator flux linkage (',) mean and variance so-
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lutions on the order of O(NN-), shown in Figure 4-91. The error convergences of

the same state using the full- and sparse-grid PCMs are shown in Figure 4-92. The

rate of convergence per random dimension using both PCMs is still exponential on

the order of O(e~1 5(Nc/d)) or O(e-1.5(Level/d)). Notice that the L2 error of the sparse-

grid PCM starts to saturated at Level/d = 7 because the accuracy limitation of the

reference solution has been reached. From the efficiency aspect, the computing time

per variance accuracy of all algorithms, illustrated in Figure 4-91, can be used for

the performance comparison among these stochastic algorithms. For this large-scale

system, the computational cost of the sparse-grid PCM is an order of magnitude less

than that of the full-grid PCM for the same accuracy. Furthermore, the sparse-grid

PCM becomes more efficient than the QMC in the high-accuracy region. Unlike the

results with the small model in the last section, the sparse-grid uniform MEPCM

with Level = [2, 31 improves the accuracy with a much higher computational cost

than the single-element sparse-grid PCM.
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.1 .... .. ... ...

10 de+srt h aaiiyo h spare-gild PCM frhnln ag adm
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Figure 4-92: For six-dimensional random dimensions, the x1 or Oq statistical error

convergence rates as a function of Nc are in the order of O(e-3.2(Nc/d)) using the
full-grid PCM (left) and ofO(e-1.5 (Level/d)) using the sparse-grid PCM (right).

LC-filter, and Inverter and a mechanical torque load in the system of Figure 5-89 are

assumed to be independent uniform random variables with 1 percent variation from

their mean values, which are the nominal values. All the nominal values of these

thirty parameters can be found in Appendix B. Furthermore, the performance of the

sparse-grid PCM can be compared with that of the quasi-Monte Carlo method in

the large dimension. The scenario of this simulation is that initially the synchronous

generator is operating near its steady-state value and the induction machine and

its torque controller is disconnected from the inverter with a switch, then at 0.35

seconds we suddenly turn on the switch to connect the induction machine and its

controller with the power converter with a ramp torque command. However, with

this constant-slip torque controller, we no longer experience a large start-up current

from the induction machine as in the previous configuration without the propulsion

drive, which can be indirectly observed from no large fluctuation in the statistical

values of both current and voltage of the power converter in Figure 4-94. Due to a

time limitation, the stochastic response of this system is considered between [0,0.5]

seconds.

Figure 4-93 and 4-94 show the stochastic responses of the synchronous generator

and the power converter, respectively. From these two figures, both the quasi-Monte

Carlo with NN = 1, 000 and sparse-grid PCM with level = 3 can accurately capture
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the dynamics of the stochastic responses comparing to a reference solution, which

obtained from the quasi-Monte Carlo with NN = 10,000. However, the enlarge-

ment of the generator's stochastic response, 0', reveals a minor discrepancy of the

sparse-grid PCM's results from the quasi-Monte Carlo results, because of the small

magnitude of or2 [V ].
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Figure 4-93: Comparison of the stochastic mean and variance solutions of the q-axis
stator flux linkage (0e ) and d-axis field-winding rotor flux linkage (,e) of SM-(First
and Second Columns) and their enlargements-(Third and Fourth Columns), among
from QMC with NN = 10,000 (Reference Solution), QMC with NN = 1,000, and
sparse-grid PCM with Level = 3.
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Figure 4-94: Comparison of the stochastic mean and variance solutions of the dc
current in the rectifier (Idc) and the capacitor voltage in the LC-link filter (Vt)-(First
and Second Columns) and their enlargements-(Third and Fourth Columns), among
from QMC with NN = 10, 000 (Reference Solution), QMC with NN = 1, 000, and
sparse-grid PCM with Level = 3.

To directly compare the accuracy of the solution from these two methods, Figure 4-
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95 shows the 6 mean and cvr of all state variables for the results from QMC with

NN = 1,000 and sparse-grid PCM with Level = [2,3]. The 6mean, obtained from

the sparse-grid PCM with Level = 3 is more accurate than that from QMC with

NN = 1, 000 and vice versa for the 6 var. Notice the large Evar are from the first

seven states, corresponding to the variables of the synchronous generator. All state

variables of SM exhibit a fast transient dynamics within the first fraction of a second

and their variance has a small magnitude. These two reason causes the sparse-grid

to quickly lost its accuracy to capture a small variation precisely and to handle a

large number of oscillation in the function, as time progresses. While the variance

magnitude of other state variables are about the same order of magnitude as their

mean values. We summarize the accuracy (ZQi(Emean, Evar)) and computational time

of the QMC and sparse-grid PCM. Note that for a comparison, the computing time

for the reference solution is 347,700 seconds.
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Figure 4-95: For thirty-dimensional random dimensions, the statistical error

(6mean, Evar) for all thirty state variables from the results of the QMC and sparse-
grid PCM, comparing with the reference solution.
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Table 4.4: Summary of the accuracy and computational time of the QMC and sparse-
grid PCM

Method Emean Evar Computing time [sec]

QMC:NN=1,000 0.0037 0.1367 36,717
Sparse-grid PCM:Level=2 0.0053 0.7698 87,554
Sparse-grid PCM:Level=3 0.0011 0.6907 1,355,700
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Chapter 5

Sensitivity Analysis

Studying how the uncertainties of parameters, external disturbances, and inputs prop-

agate through to the outputs of a system is known as sensitivity or uncertainty anal-

ysis. Sensitivity analysis is valuable especially for examining the extreme or worst

case in a complex system and estimating the robustness and reliability of the sys-

tem against uncertainties. To reduce the risk of equipment damage and the time-

consuming nature of experimental set-up, we can perform sensitivity analysis on

mathematical models, which can closely match the characteristics of physical sys-

tems.

In the literature, sensitivity analysis has been studied from two different perspec-

tives - ranking the inputs' significance or evaluating the outputs' tolerance limit -,

when the inputs are known to vary within a specified range. In the first approach,

sensitivity analysis provides information on which inputs have more influence on the

system outputs and on how strong is the coupling or interaction among inputs. Two

main classes of techniques for ranking these inputs in sensitivity studies are local and

global methods. The local approach [21], [48], which relies on a partial derivative of

output with respect to input, is used to measure the sensitivity around a local op-

erating point. When the system has strong nonlinearity and the input uncertainties

are contained within a wide range, the local sensitivity does not provide full informa-

tion to the system operators. On the other hand, the global approach examines the

sensitivity from the entire range of the parameter variations. The screening methods,
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which are included in the global methods, rank the important factors and their inter-

action among a large number of system parameters. These screening techniques are

based on "One-at-A-Time" (OAT) perturbation of parameters, which directly yields

the main input effect without input interaction. Several screening methods have

been proposed in the literature, for example, the Morris method [39], [51], Cotter's

method [171, factorial experimentation [7], and iterated fractional factorial design [50].

Different techniques have their strengths and weaknesses. The Morris method can ef-

ficiently identify the sensitive parameters when a system has a large number of inputs

or parameters. Only the worst-case analysis of a system is examined for the upper

and lower bounds of system variables in Cotter's method. In factorial experimenta-

tion, all combinations of inputs' interactions as well as the main effects are evaluated

at the same time, which requires intensive computation. Iterated fractional factor

design reduces this large input-combination computation by evaluating only impor-

tant combinations. As a result, the sensitivity indices might be biased. Other global

sensitivity analysis techniques are regression analysis [51], and ANOVA decomposi-

tion [53], etc. All of these techniques rank the importance of each input uncertainty

to the system outputs. The regression analysis is limited because of the required prior

knowledge about the structure of the system. Similarly, the ANOVA decomposition

requires the system to be expressed in an orthogonal decomposition, which is not

applicable to general functions or systems.

The second category of sensitivity analysis is tolerance analysis. In contrast to

ranking the significance of inputs, this kind of sensitivity analysis works in terms

of the tolerance limit or probability of failure when one or more inputs are known

to fluctuate within a specific range due to environment variation or random noise.

Using a mathematical model of the system, the tolerance limit has been examined

using worst-case analysis and root-sum-square analysis [8]. However, most systems

are nonlinear; therefore, the maximum and minimum of worst cases cannot truly

capture the tolerance limits of the system. Boyd [8] used the Monte Carlo method

to specify the tolerance limits of linear electronic circuits, while Hockenberry [21]

studied tolerance limits using the full-grid PCM with only a single random variable.

182



In this chapter, four new sensitivity analysis techniques for ranking the inputs' sig-

nificance and the nonlinear and coupling effects of inputs are introduced and then the

performance and limitations of each approach are investigated with both static func-

tions and systems of differential equations. Two different approaches - 1) gradient-

based sensitivity and 2) variance-based sensitivity - are developed in this section.

Then, sensitivity results from both approaches are compared against that of the Mor-

ris method. Section 5.1 briefly explains the concept and advantages of the Morris

method [39]. Next, the Monte Carlo Sampling and Collocation methods, based on an

"One-At-a-Time" (OAT) randomized gradient approximation, are explained in detail.

Furthermore, two new techniques - variance and inverse variance methods - based on

an OAT variance calculation are introduced and applied to the problem of parameter

screening as well. All sensitivity algorithms developed here are based on stochastic

solutions with inputs and parameters varying with their random space; thus, these

algorithms can be further applied with correlated random inputs or parameters as

well.

5.1 Parameter Screening

Practically, when the system has hundreds or thousands of input parameters [x 1 ,.. ., x],

it is almost impossible to fully investigate all combinations of input parameters.

Therefore, parameter screening is needed to examine which inputs have the most

effect on the output and to rank those inputs accordingly, so that the smallest num-

ber of further experimental designs can focus only on the sensitive set of parameters.

To investigate the One-At-a-Time (OAT) global sensitivity, an elementary effect of

i input on j output (EEj) is defined as the approximated gradient. Basically, EEj

is a ratio of the difference in outputs y3 (x) over A when only i input deviates from

its nominal value with A magnitude. This definition of EEj is identical to that of

Morris [39]. The EEf can be formulated as the following:

EE - (X1,X2,...,X+ A,...,xk) -yj(x,x 2,--,xi,---,Xk) 51E Ej3 = A 7 (51
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where xi with i = 1, ... , k is contained within a domain of variation. For yj outputs

with j = 1,... , n, we need a total of n x k computations of EEf. Using the local

gradient computation, when Oyj/Oxi is equal to 1) zero, 2) a non-zero constant, or 3)

a non-constant function of input parameter/s, the effects of xi on yj are 1) negligible,

2) linear and additive, or 3) nonlinear and coupled, respectively. The numerically

approximated gradient can capture all the above effects, called the elementary or

first-order effect. If all x except xi are fixed at their nominal values, the EEj can

only rank the input parameter according to the first-order or elementary effect without

specifying any influence of the interaction among inputs. By randomizing all values of

x in computing EEj, the interaction effects can be discovered from the variation of the

EEj distribution. With this concept in mind, we present the gradient-based methods

- Morris, Monte Carlo Sampling, and Collocation methods - and the variance-based

method, then compare their accuracy and efficiency among these approaches.

5.1.1 Morris Method

The Morris method considers the OAT EEj to identify the significant first-order and

interaction effects of input parameters with only a few evaluations of EEi, which is

proportional to k input. The basic methodology of this approach is to randomly select

an initial condition and construct a randomized trajectory in a high-dimension input

space for r trials. Thus, the mean and standard deviation of EE' resulting from i

input dimension consequently represent the first-order effect of i input and interaction

of other inputs with the i input. Originally, all input parameters in the Morris

method [39] are assumed to be independent uniformly distributed; nevertheless, the

normal distribution can be applicable to parameters in this method as well [12].

Unlike the regression analysis, the input interaction requires a high-order polynomial

approximation in the input-output relation, which leads to more computational cost

for better accuracy. However, the Morris method becomes more efficient when k > n.

The procedure to construct the OAT randomized trajectory can be described as

the following. First, each input dimension of the k-dimensional hypercube is divided

into a grid with p uniform space, [0, 1/(p - 1), 2/(p - 1), ... , 1], such that the initial
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condition, x*, can be randomly assigned to one of these grid points. According to

Morris, the value of A is set as p/(2(p - 1)) using an even p value and p > 2 such that

A optimally covers the k-dimensional p-level random space with an equal probability.

And the randomized trajectory is contained within the range of input variation.

Second, a (k + 1) x k B matrix, a lower-triangular matrix, is expressed in the

following form:

0 for i < j (5.2)
1 for i > j

Each row of the B matrix is different from its adjacent row by only one element;

therefore, the row difference of the B matrix times A, called AB, forms the deter-

ministic trajectory of the elementary effect, as shown in Figure 5-1. To construct

an OAT randomized matrix, B*, from B matrix, Morris [39] proposed the following

formulation:

B* = (Jk+l,lx* + (A/2)[(2B - Jk+l,k)D* + Jk+1,k])P*, (5.3)

where x* is the random initial vector in a k dimension, D* is a k-dimensional diagonal

matrix with each element equal to either +1 or -1 with equal probability, P* is a k x k

random permutation of an identity matrix, and J is a matrix with all elements equal

to 1. The role of P* matrix is to guarantee an equal probability of the random

elementary effect in each input direction. The last step is to construct r trials of this

randomized B* matrix such that the r random trajectories can be obtained from the

row difference of B*, called AB* matrix. To distinguish between the row difference

of B, AB, and the row difference of B*, AB*, we show one of the r trajectories from

AB and AB* for p = 4 in Figure 5-1. In this case, AB* is
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Figure 5-1: The trajectories from AB and AB* for p = 4

The total computational cost consists of two parts: generating the randomized

trajectory in the order of O(r x k) and evaluating the EEi for one output using

the randomized trajectories in the order of O(r x (k + 1)). The computing cost of

the randomized trajectories is shown in Figure 5-2 as a function of the number of

realizations (NN) and the input dimensions (k). This plot reveals the exponential

cost of forming the randomized trajectories as the number of inputs increases.

Note that, as we increase the p-level in this k dimensional space, the value of

A approaches 1/2. This minimum A of 1/2 seems to constrain the randomized

trajectory on the boundary more than in the interior of the input domain. Thus,

the approximated gradient in the Morris method is described in the global sense,

which cannot be compared with the partial derivative around the operating point

in the local sense. To avoid averaging out the effects from the i input in the EEj

computation, we use the absolute difference of the j output, as shown below.
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Figure 5-2: The computational cost of generating randomized trajectories as a func-
tion of NN and k.

EEi - Yj(X1, X2,.. .,X + A,...,Xk) - Yj(X,X2, -,xi,..., xk) (55)
A

The Morris method was first developed for ranking the sensitivity of a multi-input

function, called a static function. To extend the capability of the Morris method for

solving Ordinary Differential Equations (ODE), we can view the computation of the

elementary effect at each time step as a random perturbation in each input dimension

with fixed length A. Due to the requirement of random trajectory generated in this

approach, (k+1) x r deterministic ODE must be solved at the random initial condition.

Then, at each time step we can compute the statistics of EE' as in the static function.

5.1.2 Monte Carlo Sampling Method

Instead of computing the statistics of the EE from the randomized trajectories on

the p-level grid in the Morris method, the Monte Carlo Sampling method can be used

to randomly generate the NN initial conditions in the k-dimensional inputs, and

then the elementary effect in each direction can be computed at these NN random

initial points. The mean of each i elementary effect or E[EEi] can be directly used

to rank input parameters. In addition, oJEE/] can specify the respective influences

of inputs' interaction and nonlinearity on the output. To obtain smooth convergence

in the result, the same random realizations in the small NN case are reused in the
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large NN case. The main advantage of this approach is that the EE computation is

not constrained on the p-level grid location as it is in the Morris method. Therefore,

in a system with large inputs, this approach should be more efficient than the Morris

method because no construction of the randomized trajectories is required and the

input domain is covered more thoroughly to examine the input interaction. However,

a large number of realizations (NN) is needed to guarantee the convergence of the

EEj statistics.

To demonstrate this methodology, Figure 5-3 shows 9 realizations of a random

initial condition and direction in the EE computation with fixed A in a three-

dimensional input space. The total evaluation of output for k elementary effects

is on the order of O(NN x k) for the k inputs; therefore, the accuracy of E[EEj]

and a[EEf] depends on the convergence characteristic of the Monte Carlo method,

1/x/NN and 1/NN for pseudo- and quasi-random sampling techniques, respectively.

0 1

Figure 5-3: With 9 realizations, the random direction and initial condition in each
direction of a three-dimensional input space are used for computing the EEi for
i = 1, 2, 3 with a fixed A.

Because of the simple structure of this technique, the sensitivity analysis of any

static function can be easily implemented. Furthermore, applying this technique to

analyze the sensitivity of ODE requires solving only NN ODE problems. At each

time step, we perturb the system inputs one at a time with a fixed A. Similar to

a maximum limit of the A magnitude in the Morris method, which equals I for an2

input range between [0, 11, we assign the A magnitude to be half of the input range.
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If A is greater than 1 of the input range, the distribution of EEj might be misleading

due to possible strong nonlinearity present in the system, and the value of xi + A in

EEj computation can exceed the input range. If xi ± A is outside the inputs' range,

the perturbation direction with A must be reversed such that the input variation is

confined within the specified range.

5.1.3 Collocation Method

To further improve the accuracy and efficiency of this parameter screening technique,

the initial condition of the EEj computation can be selected at the collocation points

instead of at the random sampling points; thus, the PCM technique should give us

an advantage in computing the statistics of EEl. The procedure for this approach

is similar to the Monte Carlo Sampling method. First, we specify a distance of A

in computing the EEj and the level of accuracy or the number of collocation points,

using either the full-grid or sparse-grid PCM. Second, the elementary effect in each

i-input direction is calculated at the collocation point with a random direction of

A. Lastly, the mean and standard deviation of EEj are found from the quadrature,

as described in Section 3.4. Again, E[EEj] and -[EEij] consequently represent the

first-order effect and the nonlinear and coupling effect of inputs. As shown in Sec-

tion 4.1, when all parameters in the system are deterministic and only external input

or systems' parameter is stochastic, we can expect an exponential convergence rate

in statistical results. On the other hand, with random direction of A in the gradient

computation of EEj, the convergence rate of the EEj statistics is not necessary an

exponential when a function is non-monotonic. As shown in the next section, the

statistical convergence becomes algebraic, but the rate is still faster than that of the

Monte Carlo Sampling method.

To illustrate the concept of this method, Figure 5-4 shows how we combined the

approximated gradient calculation with the full-grid collocation method. The com-

putational cost of using the PCM depends on the input dimension, which is described

by O(Nk x k) for the full-grid PCM where N, is a number of collocation points per

random dimension and by O(n(L, k) x k) for the sparse-grid PCM where n(L, k) is
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a number of collocation points at level, L, in k input dimensions. Similar to the

constraint in the Morris method, most of the collocation points are on the boundary

of the input domain; therefore, using the sparse-grid PCM with this technique can-

not thoroughly explore an input interaction. To extend this technique to study the

sensitivity of ODE, we need to solve Nek ODEs at each time step.

xi

Figure 5-4: With 8 collocation points or N, = 2 of the full-grid PCM, the approx-
imated gradient, EEj for i = 1, 2, 3, with a fixed A is computed at the collocation
points with a random direction along each dimension in a three-dimensional input
space.

5.1.4 Variance Method

The Variance method introduced here directly takes advantage of the efficiency and

accuracy of the PCM to identify each input sensitivity and input interaction. This

method relies on a variation of the output when only one input is a random variable

instead of using the approximated gradient to measure the sensitivity of each input.

Note that here we use the standard deviation as a sensitivity index when we refer to

the Variance method. First, let us define the variance effect (VEE), closely related to

the EE, of each input on the output, yj(xI, ... , Xk) for j = 1, ... , n, as the following:

VEE' = Ex, 3 [a-[y3 (x)]] (5.6)

- .. ... L- J j [yj(x)]dx 1 dx+1 ... dxk,
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where -, denotes the standard deviation of the j output (y'(x)) when only xi input

is a random variable and the other inputs are fixed at the collocation points in the

k - 1 input dimension. Ex,{ ] represents an expectation of all other inputs except

the xi input. Formulating an OAT variation of each input in this way, the interaction

of the xi input with the others, called IEEj, can be described by

IEEj = Oxt#[orx[y'(x)]] (5.7)

= / . - 1 -- ( -xi [y(x)] - V E Ei)2 dx1  ... dxi- dx gi - dXk.

Again, o-2o{ ] denotes a standard deviation of all other inputs except the xi input.

The magnitude of IEEj can only specify the coupling of the i parameters without

taking into account the nonlinearity of the xi term. Therefore, an exponential con-

vergence of both VEEj and IEEj can be expected with use of the full-grid PCM

in each dimension for low and medium input dimensions when the system responses

are smooth and continuous. However, the efficiency of the sparse-grid PCM is not

applicable to this method, especially for computing o-,j[ ], because the collocation

points of the sparse-grid PCM are not distributed evenly per direction in the input

domain. The evenly distributed collocation points of the full-grid PCM allow for a

thorough exploration of the interaction of the xi input with the other inputs.

Figure 5-5 demonstrates how to obtain the elementary and coupling effects from

the standard deviation of each xi input in the case of three input parameters. The

computational cost to obtain VEE is approximately O(Nk x k), which is the same

order of magnitude as that of the Collocation method. Nevertheless, this Variance

method yields a more accurate sensitivity solution than the two previous methods for

the low input dimensions due to error only in its stochastic solution.

This technique can be further applied to compute the sensitivity of input param-

eters in a system of ODEs by solving N, ODEs for one input at each time step; thus,

with k inputs, we need to solve the total ODEs of Nk for the OAT sensitivity as

well as parameter interaction. Similar to a static function case, we compute the stan-

dard deviation of the system integration with respect to the xi using one-dimensional
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Figure 5-5: With N, = 4 in the full-grid PCM, the standard deviation of the x1 input
is computed at the full-grid collocation points, where X2 and x3 are assumed to be
independent random variables, such that the elementary effect and interaction of x1

with the other inputs can be uncovered.

full-grid PCM, while all other inputs are fixed at the collocation points of the k - 1-

dimensional full-grid PCM. Then, we compute the standard deviation of a-, with

respect to xioj for measuring the parameter interaction.

5.1.5 Inverse Variance Method

Consider a dual concept of the Variance method just described. This technique

examines the inverse of how unimportant each input parameter is in the system

output, yj (x 1 ,... , xi), which is related to the first-order effect. Let us define the

first-order effect of the xi input as IVEEi, described in the following equation:

IVEE = (5.8)
Exi [o-x,[yj (x)]]

where the denominator is defined as

Ex --- l --- (y(xIX1,..., 7Xi-1, Xi+1,---, Xk E

-Ej [y(x)]) 2dx -.. -dxi_1 dxi+1 .. -dxk) ,

where u- [yi (x)] is the standard deviation of the output when all inputs except the

i input are random variables, which is described as the negligible effect of the xi input
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on the output. E,[ ] represents the expectation of the i input. An inverse of the

E. [-. [f(x)]] specifies the important effect of the xi input. Likewise the coupling

effect of the i input with the other inputs can be examined from the IIEEj, defined

below:

IIEEj = oxux0[y'(x)]I, (5.9)

where Oua[ ] stands for the standard deviation of the i input. Likewise, the IIEEj

can only capture the coupling effect of i input with the others, not the nonlinearity

associated with xi. According to these definitions, the sparse-grid PCM can be di-

rectly employed for computing ,[ [], especially for large input dimensions. Owing

to the efficiency of the full-grid PCM in a small input dimension, Ex[ ] and oa [ I
can be computed with the Gauss quadrature. Therefore, this technique can provide

a fast convergence of IVEEj and IIEE accuracy with less computational cost, par-

ticularly in the high input dimension. The total computational cost is in the order of

O(n(L, k - 1) x Nc x k), where n(L, k - 1) is a number of collocation point at level,

L, in k - 1 input dimension. Thus, the computational cost of this method should

be several orders of magnitude smaller than that of the Variance method when k is

large.

To explain the concept of this method in a three-dimensional input space, Figure 5-

6 shows how to obtain the effect of excluding the x1 input by considering the standard

deviation of x2 and X3 with fixed x1 at the full-grid collocation points. The inverse of

the mean of ux, [f(x/xl is fixed, x2 = 6, x 3 = 2)] with respect to x1 can be used

to rank the significance of the x1 input. Moreover, the standard deviation of this

quantity with respect to x1 identifies the coupling effect of x1 with the other inputs.

Because of the indirect measurement of the input sensitivity in this technique, the

input sensitivity of the dynamical system, particularly the input interaction, cannot

be captured accurately, if we consider the entire length of time. Nevertheless, at each

time step, this technique still can provide the ranking of the input's influence. Thus,

this technique is more suitable for the sensitivity analysis of static functions than the
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Figure 5-6: For the full-grid PCM with Nc = 4 in the first direction, the standard
deviation of x2 and x3 inputs is computed at the sparse-grid collocation points, where
the x1 is assumed to be fixed at the full-grid collocation point. The inverse of the
mean of o-x2 ,X3 with respect to x1 can identify the elementary effect of x1 , while the
standard deviation of o-X2,X3 with respect to x1 specifies the coupling effect of x1 with
the others.

ODE.

5.2 Comparison of Sensitivity Analysis on Static

Functions

In this section, let us consider examples of 8 static functions and a complex function

with 12 input parameters, modified from the Morris paper. In all static function

examples, the accuracy of each algorithm is improved by increasing the governing

parameter, as shown in Table 5.1.

5.2.1 Linear Static Function

The first linear static function is

y1 = 63x1 - 70x 2 +15x 3 for 0 < xi < 1. (5.10)
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Table 5.1: The range of parameters that controls the accuracy of each sensitivity
analysis algorithm

Method Range of the governing parameter
Morris with p = 16 r=[50, 102, 5x10 2, 103, 5x10 3, 104, 3x10 4,

or A= 8 8x10 4, 10 5, 3x10 5, 8x10 5]
MC Sampling with A = l NN=[10, 102, 5x10 2, 103, 5x10 3, 104 , 5x104 , 0, 5x10 5, 106

Collocation with A = Nc/d=[2,8,10,20,30,40,50,60,70,80,100,120]
Variance Nc/d=[2,6,10, 14,20,30,40,50,60,80,100,120]

Inverse Variance Nc = 8 and Level=[2,3,4,5,6,7,8,9]

Due to the linearity of this function, the EEj, which approximates the gradient com-

putation in the global domain, should yield the same result as the local method,

which computes the sensitivity index from the partial derivative of y with respect

to xi. For this function, [E[ 2'], E[lY ], E[2-1]]|xco, = [63,-70,15] using the

Monte Carlo method with a million realizations. As mentioned earlier, the estimated

mean and standard deviation of EE can consequently rank the importance of each

input to the output and identify both a nonlinearity of the i input and an interac-

tion of that input with the others, respectively. Therefore, the plot of o-EEj] versus

E[EE] can capture both of these effects. The bottom-right and top-left corners of

this plot consequently represent the linear and additive effects as well as the nonlinear

and coupling effects, while the origin of this plot denotes negligible or no interaction

effects. Using the gradient approximation methods, Morris method with p = 16 or

A = -L and Monte Carlo Sampling and Collocation method with A = 1, the magni-15' 2'emgi

tudes of E[EE1 , EE2 , EE] are [63, 70, 15], which agrees with the first-order derivative

of the function, as shown in Figure 5-7. The lines, linked between results with two

different accuracy levels, show some variation when we increase the number of trials,

realizations, and collocation points. The standard deviations of EEj are very small

because of the linearity of the function. The results from the Variance and Inverse

Variance methods with Nc = 8, shown in Figure 5-8, provide the same input ranking

according to the relative magnitude of VEE and IVEEj and identify no coupling

effect because the magnitude of IEEj and IIEEj is so small.
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Figure 5-7: Function (yi): the mean and standard deviation of EEj from the Morris
method with p = 16 and r = 50 to 100 (top-left), from the Monte Carlo Sampling with
A = 1/2 and NN = 50 to 100 (top-right), the Collocation method with A = 1/2 and
Nc = 10 to 20 (bottom-left), and from the statistics of the absolute partial derivative
(Iay/ax I) (bottom-right).
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Figure 5-8: Function (y1): the mean and standard deviation of EEj from the Variance
method with Nc/d = 10 to 20 (left) and from the Inverse Variance method with
Nc = 8 and Level = 4 to 5 (right).

5.2.2 Nonlinear Static Function without Parameters' Inter-

action

The second static function is used to test these algorithms for the input nonlinearity

without any coupling. Consider the nonlinear polynomial function expressed in the

following form:

Y2 = 63x4 - 70x3 + 15x 3 for 0 < xi < 1. (5.11)

Figure 5-9 illustrates that the techniques based on the approximated gradient, Mor-

ris method with p = 16 or A = -, and Monte Carlo Sampling and Collocation15'

methods with A = , rank the elementary effect of inputs in the following order:2'

2,1,3. This order also agrees with the mean value of the first-order derivative evalu-

ated within the random uniform range, U[0,1], [E[gy 11, E[y 11, E[122IIicu[O,1] =

[63.17,69.91, 15.00]. [o[l | 1], oI lb1], |,[12 I]Ixicu[o,1I = [71.57,62.58,0], which rank

the nonlinearity of inputs in the same order of a[EE] for i = 1, 2, 3 in the Mor-

ris, Monte Carlo sampling, and Collocation methods. o[EE] is slightly higher than

a[EE2]; this relation implies that the distribution of EE can capture the nonlinear

characteristics of inputs. All results in Figure 5-9 converge to correct positions for

197

2

1.5

W 1

0.5

n



given parameters, (r, NN, (Nc/d)). Without using the approximated gradient, both

Variance and Inverse Variance methods can also identify the important ranking of

inputs in the same order: 2,1,3; however, IEEj and IIEEj do not capture the input

nonlinearity effect, which is shown by their very small magnitude in Figure 5-10.
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Figure 5-9: Function (y2): the mean and standard deviation of EEj from the Morris
method with p = 16 and r = 80,000 to 100,000 (top-left), from the Monte Carlo
Sampling with A = 1/2 and NN = 50, 000 to 100, 000 (top-right), the Collocation
method with A = 1/2 and Nc = 10 to 20 (bottom-left), and from the statistics of
the absolute partial derivative (jI y/i9xjj) (bottom-right).

Moreover, to show the convergence characteristics of all these sensitivity analysis

techniques, we need to define a difference in the results between using low and high

accuracy levels - r, NN, or (Nc/d) - in each technique. With n multiple inputs, the

RMS values of the difference in E[EEI} and o[EEj] at different level (L) are defined
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Figure 5-10: Function (y2): the mean and standard deviation of EEi from the Vari-
ance method with Nc/d = 10 to 20 (left) and from the Inverse Variance method with
Nc = 8 and Level = 4 to 5 (right).

as the following:

RMS(AE[EEi]) = (EL[EEi] - EL-1[EEi]) 2 , (5.12)

RMS(Ao[EEi]) = (o*[EEi] - o-L-1[EEi])2 (5.13)

where EL [EEi] and EL-1 [EEi] are the mean of the i elementary effect of the high and

low accuracy level, respectively. This definition can be applicable for the variance and

inverse variance methods by replacing (E[EEi], o[EEi]) with either (VEEi, IEE) or

(IVEEi, IIEE). The smaller value of these RMS differences indicates a convergence

of our sensitivity indices in each technique. Thus, we can plot the RMS difference

versus the computing cost, which reflects a total number of the function evaluations

as well as the simplicity of the algorithms' structure. In Figure 5-11, we compare

the convergence performance among Morris, Monte Carlo Sampling, and Collocation

methods. The Collocation method yields the best result convergence among these

three techniques, while the convergence of the Monte Carlo Sampling and Morris

methods is comparable, except that an additional computing cost is needed for gen-

erating the random trajectories in the Morris method. As expected, the convergence
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characteristics of both Variance and Inverse Variance methods, as shown in Figure 5-

12, are extremely fast due to the exponential convergence rate of the PCM. The

sensitivity indices of these variance methods approach their final values by using only

a few collocation points.
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Figure 5-11: Function (Y2): the convergence characteristic of RMS(AE[EEJ]) and
RMS(Ao-[EEj]), using the Morris, Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.
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Figure 5-12: Function (y2): the convergence characteristic of RMS(AVEE ) and
RMS(AIEE ) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.
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5.2.3 Nonlinear Static Function with Parameters' Interac-

tion

Let us consider the case where the inputs are strongly coupled and have only quadratic

nonlinearity, which is expressed in the third static function below:

y 3 = x1 +X2 +4x 2x 3 + x 1 x 3 for 0 < xi <1 (5.14)

Using the approximated gradient, Morris with p = 16, Monte Carlo Sampling

and Collocation methods with A = 1 rank the significance of these 3 inputs in the2

following order: 2,3,1, as illustrated in Figure 5-13, because of a large coefficient

in the third term. This ranking can also be easily discovered from the first-order

partial derivative. The mean and standard deviation of the IOyh/OxiI are shown

in Figure 5-13 as well. [E[I1], E[| 1], E[|2Y-3]]IxcUlo,1] = [1.50,3.00,2.50] and

[[ [ 0, [ c,1 = [0.65,1.29,1.19. The u[1'93 1 captures the nonlin-
aoI xi II OIX2 II a 1 X3 I]Iuo1 - 0u.,ix .1j TI ~

earity effect of inputs, but not the coupling effect. The coupling effect is as important

as the inputs' nonlinearity in this function; therefore, the oj- ] for i = 1, 2, 3 fail to

identify this coupling effect as effectively as the o-[EEiJ of the Morris, Sampling, and

Collocation methods. In Figure 5-14, both variance and inverse variance methods

correctly rank the inputs' significance and the interaction among them. Notice that

the IIEEj tends to separate the input coupling more clearly than the IEEj.

To compare the convergence performance of the algorithms based on the approxi-

mated gradient, the RMS differences of mean and standard deviation of EE are plot-

ted versus the computational time, as shown in Figure 5-15. In this three-dimensional

problem, the convergence rate of RMS(AE[EEJ) using the Collocation method is

about an order of magnitude faster than those of Morris and Monte Carlo Sampling

methods. Due to the monotonicity and smoothness of this function, the E[EEj] from

the Collocation method converges to [1.5,3, 2.5] up to the machine precision within a

fraction of a second. Similar to the previous example, the results of both Variance and

Inverse Variance methods converge extremely fast using only Nc = 14 and Level = 4,

respectively, as illustrated in Figure 5-16. Again, a reason for this fast convergence
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Figure 5-13: Function (y3): the mean and standard deviation of EEj from the Morris
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Sampling with A = 1/2 and NN = 50, 000 to 100, 000 (top-right), the Collocation
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Nc = 8 and Level = 4 to 5 (right).

depends on the exponential convergence rate of both full- and sparse-grid PCMs.
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Figure 5-15: Function (y3): the convergence characteristic of RMS(AE[EE]) and
RMS(A-[EEi]), using the Morris, Monte Carlo Sampling, and Collocation methods
based on the approximated gradient computation, is plotted versus the computational
time.

When the function is no longer monotonic and has the same coupling as the last

function, we again examine the convergence performance as well as the ranking of

sensitivity indices among these algorithms. The fourth static nonlinear function (y4)

is given by the equation below:

y4 = x1 + x2 -4x 1x 2 + x 1x 3 for 0 < xi <1. (5.15)
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Figure 5-16: Function (y3): the convergence characteristic of RMS(AVEEj) and

RMS(AIEE ) using the Variance and Inverse Variance based on the statistical com-

putation is plotted versus the computational time.

All techniques based on the approximated gradient calculation yield the same rank-

ing of input significance (E[EEi]) and of inputs' interaction and nonlinearity effect

(r[EEi]), as shown in Figure 5-17. x 2 is the most sensitive parameter because of a

large coefficient in the third term and there is no cancellation from the fourth term.

For x1 , there is a cancellation between the third and fourth terms, which make the

output less sensitive to x1 . With the same quadratic nonlinearity and no cancellation

of the coupling effect in the third and fourth terms as in xj, x 2 is ranked the first

for the input interaction and then x1 and x3 . Also, the mean and standard devia-

tion of the absolute value of the partial derivative can rank both the significance and

interaction of inputs as well. Using the magnitude of OAT variance, the variance

method yields the same ranking of the inputs' sensitivity and interaction. However,

the inverse variance fails to identify the coupling effect, owing to the cancellation of

the coupling effect in x 2 input.

From the convergence performance aspect, the sensitivity index of the Collocation

method gains about an order of magnitude in accuracy better than those results

of the Morris and Monte Carlo Sampling methods, as shown in Figure 5-19. For

this nonmonotonic function, the convergence characteristic of the Variance method

is degraded; however, an exponential convergence rate using the full-grid PCM is

applicable, as illustrated in Figure 5-20. The rapid convergence characteristics of
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the absolute partial derivative (|ay/axi|) (bottom-right).
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Figure 5-18: Function (y4): the mean and standard deviation of EEj from the Vari-
ance method with Nc/d = 10 to 20 (left) and from the Inverse Variance method with
Nc = 8 and Level = 4 to 5 (right).

the Inverse Variance method are not affected by this nonmonotonic property of the

function.
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Figure 5-19: Function (y4): the convergence characteristic of RMS(AE[EE]) and
RMS(A-[EEj]), using the Morris,Monte Carlo Sampling, and Collocation methods

based on the approximated gradient computation, is plotted versus the computational
time.

In the fifth example, we increase the coefficients of only the nonlinear terms in

the static nonlinear function (y5), as expressed by the equation below:

Y5 = 10x1 + 20x + 4x 1 x 2 + XiX 3 for 0 < xi < 1. (5.16)

The techniques, relying on the gradient computation, rank x2 as the most sensitive
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Figure 5-20: Function (y4): the convergence characteristic of RMS(AVEEi) and
RMS(AIEEi) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

and coupled parameter, as expected. The results from the Morris method with p = 16,

Monte Carlo Sampling and Collocation methods with A = j, shown in Figure 5-21,

agree with one another as well as with the E[ji9y/eaxjI and o-[|y/OxilI. Both Variance

and Inverse Variance methods provide the same ranking of the input sensitivity;

nevertheless, these two approaches do not emphasize the nonlinearity of the inputs,

like that in the Y2 function. Thus, IEE and IIEE exhibit that the x1 input has the

largest interaction among inputs, which can be observed directly from the function.

Then, the x2 and x3 are ranked the second and third in the coupling effect, according

to the Variance and Inverse Variance methods.

In terms of the numerical performance, the convergence results of all algorithms

are the same as those in the third example with y3. The results from the Collocation

method converge faster than those from the Morris and Monte Carlo Sampling meth-

ods by approximately an order of magnitude. Both Variance and Inverse Variance

methods provide a rapid convergence of the results up to the machine precision.

In the sixth function below, both the nonlinearity and coupling of inputs become

prominent:

y6 = 63xjx 2 - 70x2x3 + 15x 1x 2x 3 for 0 < xi < 1, (5.17)
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Figure 5-24: Function (y5): the convergence characteristic of RMS(AVEE ) and
RMS(AIEE ) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

All the gradient computing algorithms, Morris with p = 16, Monte Carlo Sam-

pling and Collocation methods with A =, provide the same ranking for the sig-

nificance of the inputs' influence on the output as well as inputs' interaction, as

shown in Figure 5-25. The first input (xi) is the most sensitive due to the fifth

order polynomial, while the sensitivities of x 2 and x3 are ranked second and third.

Again, the mean and standard deviation of the first-order derivatives with respect

to each input of this function evaluated within the random uniform range, U[0,1],

[E[LI1], E[O62 1], E[L11]]e xcu[o,1], are [35.30, 24.65, 14.85]. The magnitude of the lo-

cal derivative fails to correctly rank the importance of input due to a strong coupling of

inputs. Nevertheless, [or[I - 1], o7 [y], a I 2]] x~cU[o,i] are [52.67, 30.50, 22.96], which

yield the relative magnitude similar to the distribution of EEj using the approximated

gradient method. The standard deviation of EE1 is larger than those of EE2 and

EE3 due to the higher order polynomials. The coupling effect of the second and third

inputs in the second term gives a comparable importance in the distribution of EE2

and EE3.

Due to the high-order polynomial nonlinearity and nonmonotonicity of this func-

tion, the results from all algorithms based on the gradient computation converge more

slowly than those in the previous three examples of static function with only quadratic

nonlinearity, as seen from the upward shift of RMS(AE[EEi]) and RMS(Ao[EEi])
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curves in Figure 5-27. In Figure 5-28, the variance method also exhibits a slower

convergence characteristic, which is still an exponential rate; however, the rapid con-

vergence of the results using the inverse variance method is insensitive to the strong

nonlinearity and nonmonotonicity.
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Figure 5-27: Function (y6): the convergence characteristic of RMS(AE[EE ]) and

RMS(Ao-[EEi]), using the Morris,Monte Carlo Sampling, and Collocation methods

based on the approximated gradient computation, is plotted versus the computational

time.

Before considering the performance and characteristics of these sensitivity analysis

algorithms with more complex functions, the key properties of each algorithm are
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Figure 5-28: Function (y6): the convergence characteristic of RMS(AVEE ) and
RMS(AIEE ) using the Variance and Inverse Variance based on the statistical com-
putation is plotted versus the computational time.

summarized in the following list:

* Morris and Monte Carlo Sampling Methods: E[EEj] and u[EEj] can correctly

rank the sensitivity of the input parameters and rank the influence of the nonlin-

earity and coupling effect in each input, respectively, for any type of nonlinear and

non/monotonic functions. The sensitivity indices converge slowly with an algebraic

rate; however, this algebraic rate is applicable for any kind of function.

* Collocation Methods: E[EE] and 4-EE] can rank the inputs' sensitivity as well

as the effect of nonlinearity and coupling of inputs, which closely match the sensitivity

index of the Morris and Sampling methods quantitatively. The algebraic convergence

of its sensitivity index is superior than those of Morris and Sampling methods in a

small input-dimension problem and is not sensitive to strong nonlinearity or coupling

effect.

* Variance Methods: The relative magnitude of VEEj can rank the sensitivity of

inputs. The magnitude of IEE captures only the coupling of inputs. It does not

include the inputs' nonlinearity because of the OAT variance measurement of a single

random variable. Using the efficiency of the full-grid PCM, the convergence rate of

the sensitivity index is exponential in a small dimension problem; nevertheless, this

rate is sensitive to the function's monotonicity.

o Inverse Variance Methods: The relative magnitude of IVEEj can correctly rank
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Table 5.2: Comparison on the computational cost of all sensitivity analysis techniques

Method Computing Cost
Morris O(r x (k + 1))+c(r x k)

Monte Carlo Sampling O(NN x k)
Collocation O(Nk x k),

Variance O(Nk x k),
Inverse Variance O(n(L, k - 1) x N, x k),

the sensitivity of inputs as well. Similar to the variance method, the magnitude

of IJEEi can capture only the coupling of inputs, but not the inputs' nonlinearity.

Furthermore, the value of IIEEi is also sensitive to the function's monotonicity due

to the possibility of cancellation effect in computing the standard deviation of the

n - 1 inputs in the n-dimensional problem. The main advantage of this technique is

its rapid convergence rate of the sensitivity index and its independence in convergence

characteristic from any kind of the inputs' nonlinearity.

The computational costs of all sensitivity analysis algorithms are summarized in

Table 5.2 below. The Morris and Monte Carlo Sampling methods require about

the same order of magnitude in the computing cost, except that an additional cost,

co, for generating randomized trajectories in the Morris method. Similarly, the

computational cost of the Collocation and Variance methods is identical; however,

the accuracy of sensitivity indices is different because of their measured sensitivity

characteristics.

5.2.4 Modified Morris's Function

In a more complex system, the last static function considered in this section, a mod-

ified function from the original test problem with 20 inputs in the Morris paper [39]

is considered only for 6 and 12 inputs because the other 8 inputs (x11 , . . ,x 20) have

a negligible effect, as mentioned by Morris [39]. This modified Morris function is

suitable for testing the sensitivity of large-dimensional inputs with strong coupling

among the inputs. The modified Morris function with n inputs is given in the equation
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Table 5.3: The values of # coefficients for the modified Morris functions

( coefficients for n = 6 inputs / coefficients for n = 12 inputs

0 = 1, /30 = 1,
= 20, fori = 1, 2, 3 #3 = 20, fori = 1, -- ,10

i= - 15, fori, j = 1,2, = - 15, fori, j = 1, - - ,6,
/i,j,k = - 10, fori, j, k = 1, i,, = - 10, fori, j, k = 1, -. ,5,

below:

n n n

y = 30 + E /iwi + E #,jWi + E #i,,kwiwjwk (5.18)
i i<j i<j<k

where wi E [0, 1] or wi E [-1, 1]. The values of (/) coefficients are given in Table 5.3.

The rest of /i and /ij are assigned zero-mean unit-variance random numbers,

associated with the normal distribution. The other coefficients of 3i,kk are set to

be zero. For the case when wi E [0, 1], the Morris method with p = 16 or A =

81
T, and Monte Carlo Sampling and Collocation methods with A = can classify

the sensitivity of inputs according to E[EEJ and u[EEj] into three distinct groups:

(1,2,3);(4);(5,6), as shown in Figure 5-29. The quantitative results from these three

techniques agree with one another. The second group of inputs, (4), exhibits only a

strong elementary effect with a minor interaction with the other inputs. In contrast,

the first group, (1,2,3), shows a strong coupling and a small sensitivity on the output.

Lastly, the (5,6) group has a small effect on the output. In Figure 5-30, the magnitude

of VEE and IEEj of the Variance method also relatively ranks the significance of

inputs to the output as well as their coupling effect in the same order as those of

the Morris, Sampling and Collocation methods. In the case of the Inverse Variance

method, the magnitude of IVEEj, [0.1366, 0.1393, 0.1377, 0.2781, 0.1343, 0.1342],

can rank the elementary effect of inputs correctly as well; however, the magnitude of

IIEE does not yield the same order of inputs' coupling effect as those of the other

techniques. Because of the nonmonotonicity of this modified Morris function, we can
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expect the results from IIEE to be different,

static functions.
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Figure 5-29: For the modified Morris function with 6 inputs and wi E [0, 1]: the mean
and standard deviation of EE from the Morris method with p = 16 and r = 8000
to 10, 000 (top-left), from the Monte Carlo Sampling with A = 1/2 and NN = 8000
to 10, 000 (top-right), and the Collocation method with A = 1/2 and Nc = 12 to 14
(bottom).

In terms of the convergence performance, all methods based on the gradient com-

putation exhibit the same order of magnitude in the convergence of the sensitivity

results, as shown in Figure 5-31. Because of the dimension dependence of the full-

grid PCM, the fast convergence performance of the Collocation method, shown in

the previous three-dimensional static function, is degraded as the input dimension

increases to 6. In the presence of the nonmonotonic and large-dimension inputs, the

convergence of sensitivity results in the Variance method becomes comparable with
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Figure 5-30: For the modified Morris function with 6 inputs and wi E [0, 1]: the mean
and standard deviation of EEj from the Variance method with Nc/d = 12 to 14 (left)
and from the Inverse Variance method with Nc = 12 and Level = 4 to 5 (right).

those of the gradient computation. On the other hand, the superior performance in

convergence of the Inverse Variance methods is still held for this function.

When wi E [-1, 1], the sensitivity index from the 6 inputs again clusters into three

groups in the E[EEj] versus o-[EEi] plots, shown in Figure 5-32 using the Morris

method with p = 16 as well as the Monte Carlo Sampling and Collocation methods

with A = j. However, the (1,2,3) group now becomes more sensitive than the 4

input and has a stronger interaction with the other inputs, which are located on the

top right of the E[EEj] versus u[EEi] plot. Moreover, the magnitude of E[EEj] also

switches between the 5 and 6 inputs. The change of the sensitivity index establishes

that the inputs' range is another important factor when there are strong coupling

effects among inputs, as in this modified Morris function. A similar ranking of the

inputs' influence on the output as well as of the coupling effect can be obtained using

either Variance or Inverse Variance methods, as illustrated in Figure 5-33. Note that

the results from the Variance method closely match those of the technique using the

gradient; however, the relative distance between (1,2,3) and 4 input groups using the

Inverse Variance method differs slightly from the other methods.

Similar to the previous example, the sensitivity indices of all methods based on

the gradient computation converge at about the same order of magnitude, as shown

in Figure 5-34. The convergence performance of the variance method is also compa-
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Figure 5-31: For the modified Morris function with 6 inputs and wi E [0, 1]: the con-
vergence characteristics, plotted versus the computational time, for RMS(AE[EE])
(Top-Left) and RMS(Ao-[EEj]) (Top-Right) using the Morris, Monte Carlo Sampling,
and Collocation methods and RMS(AVEEi) (Bottom-Left) and RMS(AIEEi)
(Bottom-Right) using the Variance and Inverse Variance methods.
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Figure 5-33: For the modified Morris function with 6 inputs and wi E [-1,1]: the
mean and standard deviation of EE from the Variance method with Nc/d = 12 to
14 (left) and from the Inverse Variance method with Nc = 12 and Level = 4 to 5
(right).

rable with those using the gradient when the function consists of the nonmonotonic

terms and large-input dimensions. Again, the inverse variance method still provides

superior performance in the convergence of results. Consequently, the convergence of

all algorithms is not affected by varying the input range.

Lastly, when we increase the random dimension of inputs in the modified Morris

function to 12, the inputs are clustered into four distinct groups: (1,2,3,4,5),(6),(7,8,9,10),

and (11,12) according to their sensitivity to the output and coupling. With this more

complicated function, the three methods we are now considering - the Morris method

with p = 16, Monte Carlo Sampling, and Collocation methods with A = 1 (see Fig-

ure 5-35) consequently rank the first-order effect (E[EEi]) and the input coupling

effect (u[EEi]) of all inputs in the same order as the VEEj and IEEj of the Variance

and Inverse Variance methods (see Figure 5-36). Although the magnitudes of IIEE

are closely packed together, the IIEEj, [4.20, 4,27, 4.29, 4.16, 4.17, 2.22, 0.06, 0.031,

0.034, 0.005, 0.046, 0.022], is still able to rank the coupling effects of inputs correctly.

Thus, these results exhibit that all algorithms can identify the inputs' sensitivity

accurately for any static function.

In terms of the convergence performance for the 12-dimensional input problem,

the Morris, Monte Carlo Sampling, and Collocation methods provide the same order
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Figure 5-34: For the modified Morris function with 6 inputs and wi E [-1, 1]: the con-
vergence characteristics, plotted versus the computational time, for RMS(AE[EE4])
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and Collocation methods and RMS(AVEEi) (Bottom-Left) and RMS(AIEE)
(Bottom-Right) using the Variance and Inverse Variance methods.
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Figure 5-36: For the modified Morris function with 12 inputs and wi E [0, 1]: the
mean and standard deviation of EEj from the Variance method with Nc/d = 12 to
14 (left) and from the Inverse Variance method with Nc = 12 and Level = 4 to 5
(right).

of magnitude in their convergence accuracy, as shown in Figure 5-37. Owing to an

increase of the input dimension, the Collocation method using the full-grid PCM is

computed with (Nc/d)=[2,3,4,5] such that the computing time is contained within a

range similar to those of the Morris and Monte Carlo Sampling methods. The results

from the Variance method with (Nc/d)=[2,3,4,5] shows a similar convergence, parallel

with the Collocation method, which is related to the convergence characteristic of

the full-grid PCM. Despite the large input dimension, the results using the Inverse

Variance method still converge to the machine precision within a fraction of a second.

In the next few sections, we extend the capability of these algorithms to analyze the

input sensitivity of the ODE systems within a given time interval.

5.3 Comparison of Sensitivity Analysis on ODE

To demonstrate that these sensitivity algorithms can be applicable to the ODEs, we

systematically tested the parametric sensitivity and interaction of the system on var-

ious linear and nonlinear ODEs, including the first-order ODE , Duffing's oscillator

with a constant forcing, open-loop induction machine with the infinite bus in Sec-

tion 4.3, and the AC power distribution with open- and close-loop propulsion drive.
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Due to the time dependency of the systems' response, we show that the sensitivity

of one parameter can dominate that of the other parameters only within a certain

time interval. In addition, the convergence characteristics of these algorithms are

evaluated and compared against one another. First, we define the sensitivity index

as E[EEj] using the Morris, Sampling, and Collocation methods or VEE using the

Variance method. The interaction index, denoted by Dai, is defined as a time-average

distance between the origin to the curve of a[EEi] versus E[EEj] or of VEEj versus

1EE. Note that the original Morris method is designed for testing the parameters'

sensitivity of the static function only, and thus we also extend the capability of the

Morris method to handle ODE systems.

5.3.1 Linear first-order ODE

First, we consider the simplest ODE, which is identical to that in Section 4.1.1 of

Chapter 4, again written below. This equation is used as a reference for a compar-

ison of the sensitivity indices' magnitude between the deterministic gradient-based

methods and the stochastic variance-based method.

dy k
d= -ky with y(O) = yo = 2 (5.19)dt

where the decay coefficient k assumes to be a uniform random variable with k = 5

and Uk = 0.4. The deterministic solution of this equation is y(t) = yoe-kt. As a

result, the local derivative of y(t) with respect to k is expressed as the following:

dy _ H

dk = -yote-. (5.20)

The closed-form statistical solution of the ratio of ay over Ok, which derived in Section

4.1.1., is again rewritten below.

c y 2e-2kt ((e-2akt - e 2
ukt ) (eakt - e-Ukt )2

2 (5.21)
Uk 2 2rk t 2ak(

225



The deterministic sensitivity index, E[EEk], from the gradient-based methods is plot-

ted overlaying the local derivative, 4, shown on the left of Figure ??. Similarly, the

stochastic sensitivity index, _, from the Variance method is directly superimposed

on the closed-form statistical solution, -, shown on the right of Figure ??. Both

the gradient-based and Variance methods well agree with their analytical solutions.

Notice that a scaling factor between the absolute local derivative and the statistical

solution at the initial point or zero second is v'5. This scaling factor can be dis-

covered analytically from the ratio of I I over a by using an approximation of the

exponential series.

| I 2(Ukt) 2

ay ( -(5.22)

2 (okt)2

2 + e2e(okt -- 1 -e-
2 et(1 + -kt)

2(aVt)2

± = (oi) (Urkt - 1) - = (-ikj (1 + arkt)

2(Orkt)
2

2 ~k)2*

However, the absolute ratio of the local derivative over the statistical solution varies

as time progresses, as shown in Figure 5-39. The bigger the magnitude of 0 k is, the

larger the deviation of |(L)/(Z)| as a function of time becomes. Nevertheless, the

curve changes slightly as the Uk increase.

The multiplicative uncertainty in k also induces the interaction with the state

variable, which can be captured by the variation of the gradient in the Morris, MC

Sampling, and Collocation methods in Figure 5-40. The interaction of k with y is

evolved with time, as shown in the u[EEk] versus E[EE] plot. However, the Variance

method cannot identify the parameter's interaction in a one-dimensional problem.

Second, we consider another simple first-order ODE with an exponential decay

rate (k) and a constant forcing function (c), as expressed below:

dy = -ky + c with y(0) = yo = 2 (5.23)
dt
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Figure 5-40: For the linear ODE dy/dt = -ky: the a[EE] as a function of time (left)
and the plot of -[EEk] versus E[EEk] (right), using the Morris method with p = 16
and r = 50000 (solid-line), the Monte Carlo Sampling with A = 1 and NN = 500002
(dash-line), and Collocation method with A = . and Nc/d = 30 (dot-line).2

With this ODE, two different conditions - 1) k is a fixed constant of 5 and c is an

uniform random variable with e= 2 and o- = 0.4 and 2) both k and c are independent

uniform random variables with I = 5, E = 2, and 0 k and a- are 0.4 - are considered

in this system. The first condition is for studying the sensitivity and interaction

effects of the additive uncertainty, c, alone, while the second condition shows how the

multiplicative uncertainty, k, induces the interaction effect in the additive term. The

deterministic solution and its local derivatives with respect to k and c can be derived

as the following equations below, which can be used as the reference solutions of the

time-dependent sensitivity indices.

Y = Yo - (Yo -- )(1 - e--k), (5.24)

= 1(1 - e-kt). (5.25)
ac k

For the first condition, the closed-form statistical solution of the ratio of ay over o-,

can be derived as the following:

= V (1 - e-kt). (5.26)
a c tk

Due to the linearity and additive uncertainty of this system, the absolute ratio of the
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local derivative and statistical solution is just v'5; however, this ratio is not always

constant as in the case of nonlinear systems and other types of uncertainties, e.g.

multiplicative and rational functions. For this linear system, Figure 5-41 shows that

is exactly identical to E[EE] from the Morris method, Sampling, and Collocation

methods. Moreover, C from the Variance method is also precisely matched with the

closed-form statistical solution, illustrated in Figure 5-41.
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Figure 5-41: For the linear ODE dy/dt = -ky + c with only c as a uniform random
variable: the mean of EE, (left) from the Morris with p = 16 and r = 50000, Monte
Carlo Sampling with A = 1 and NN = 50000, and Collocation with A = 1 and
Nc = 30 method with o- = 0.4 are compared with the absolute local derivative of y
with respect to c and the VEE (right) from the Variance method are compared with
the statistical solution I .

Since the additive uncertainty is not directly coupled with other parameter and

state; thus, there is no interaction from c, as shown in the -[EEc] of Figure 5-42 using

the Morris, Sampling, and Collocation methods.

For the second condition, when both k and c are independently uniform random

variables, the closed-form statistical solution of 1-y- and ' become very complex, as
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and the plot of o[EEk] versus E[EEk] (right), using the Morris method with p = 16
and r = 50000 (solid-line), the Monte Carlo Sampling with A = 1 and NN = 50000

2

(dash-line), and Collocation method with A = and Nc/d = 30 (dot-line).2

shown below:

a =ye- (k+k0t + c 1 ( -(k+kt) (5.27)
Ork -2 kC+ O-k

yoe-t(eaktakt c Ik +UkI
2 Ukt 22'k k - k

C ea-ktC \2
+-e- t  - do d, and

2 _-1 Ik + Uk(
_ (1- e-kt).le 3k(5.28)

Using the gradient-based sensitivity algorithms, the E[EEj] and o-EEj] curves as a

function of time are plotted overlaying the local derivatives, as shown in Figure 5-43.

The parametric sensitivity of the decay rate, k, and forcing function, c, from the Mor-

ris, Sampling, and Collocation methods is closely matched with the local derivatives

for this linear system. The magnitude of k and c sensitivity curves indicates that if

there is one percent change in these parameters, the output's peaks are 0.17 and 0.2

percent, respectively. Moreover, the sensitivity curves of E[-"I] from the Variance

method, illustrated in Figure 5-44, yields similar characteristics as its local deriva-

tives, except that the magnitude of these curves are again scaled down. The absolute
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ratio of the local derivatives over the solution from the Variance method for k and

c are exponential decreasing, shown in Figure 5-45. Furthermore, when we decrease

the range of variation in k and c to 20 percent or when a1 and o- are 0.2, all these

sensitivity algorithms still provide slightly different sensitivity curves because of the

linearity of this system.
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Figure 5-43: For the linear ODE dy/dt = -ky + c: the mean of EEk (left) and
EE (right) from the Morris with p = 16, Monte Carlo Sampling with A = 1, and
Collocation with A = 1 method with a-k = ac = 0.2 are compared with the absolute
local derivative of y with respect to k and c.
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Figure 5-44: For the linear ODE dy/dt = -ky + c: the mean of 'Y (left) and ZR
O'k ac

(right) from the Variance method with =Cc = 0.2 are compared with the absolute
local derivative of y with respect to k and c.

However, the sensitivity of the multiplicative term, k, should have a larger influ-

ence on the system output than that of the additive term, c. To correctly rank the
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Figure 5-45: For the linear ODE dy/dt = -ky + c: the absolute ratio of the local
derivative over the solution from the Variance method for k (left) and c (right) for
various ck and o.

parameters' sensitivity, the approximated gradient must be normalized by k/iyIIoo or

c/I|yIIo, to avoid including the parameters' scaling. Figure 5-46 shows the normal-

ized E[EEj] and o[EEi], which represent the parameters' sensitivity and interaction

ranking, using the Morris, MC Sampling, and Collocation methods. Notice that the

normalized E[EEj] rank k to be more important than c and the peak magnitude of

E[EEk] is 2.14 times larger than that of E[EECI within 0 to 1 second. From Fig-

ure 5-46, the parameter interaction with other parameters and output can be seen

from the plot of o[EEi] versus E[EE]. The D,, and D, are respectively 0.321 and

0.164 for O7k = a, = 0.2. When Uk and o- are increased to 0.4, only the -[EEj] curve

is affected by this increase in the parameter variation. Therefore, D 1 and D,, are

consequently 0.344 and 0.170 for Uk = a, = 0.4. Also, the mean values of ay/-,

need to be normalized by xj/ y|IIo to correctly identify the parameters' significance,

as shown in Figure 5-47. Notice that IEEk and IEEc are exactly on top of each

other; however, the plot of IEEj versus VEEj shows a larger interaction effect of k

than that of c. The [D,,,D,,] are [0.185,0.094] for u., = 0.2 and [0.198,0.097 for

U, = 0.4. In the presence of the multiplicative uncertainty, the interaction effect of

the additive uncertainty is non-zero.

Third, let us further investigate another first-order ODE without an interaction
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Figure 5-46: For the linear ODE dy/dt = -ky + c: the normalized E[EEj] and
o[EEi] of k and c as a function of time, t E [0,1] second, using the Morris method
with p = 16 and r = 50000 (solid-line), the Monte Carlo Sampling with A = ! and2
NN = 50000 (dash-line), and Collocation method with A = and Nc/d = 10 (dot-2
line) in three dimension (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the inputs' interaction
effect, and the Front view (Bottom-Right).

233

wjwU5

-*- Morris:k
- Morris:c

-X MC:k
MC:c
FPCMk

-- FPCM:c

w

-4 Morris:k
Morris:c

-X MC:k
MC:c
FPCM:k

- FPCM:c

__

-- Morris: k
- Morris:c

-x MC:k
- MC:c
X- FPCM:k
- FPCM:c

u.



-x- Variance*k

0.015 -- Variance:c

0.01-

LU0.005.-

1
0.2 0.5

VEE 0 0 time [sec]

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6

time [sec]
0.8

wj-

0.014.

0.012-

0.01

0.008

0.006

0.004

0.002

0 0.05 0.1 0.15
VEE.

0.014

0.012

0.01

u. 0.008

~ 0.006

0.004

0.002

0.2 0.4 0.6
time [seC]

Figure 5-47: For the linear ODE dy/dt = -ky+c: the normalized E[-] and a-2] of
k and c as a function of time, t E [0, 1] second, using the Variance method with Nc/d =
20 in three dimension (Top-Left), the Side view (Top-Right) for emphasizing the first-
order effect, the Top view (Bottom-Left) for emphasizing the inputs' interaction effect,
and the Front view (Bottom-Right).

234

-Variance*
Variance:c

w_

0.2

0.8

0.25

1

+ Variance*
-- Variance:c

- Variance:k
-- Variancew

0

1



between state and parameters, as written in the following equation:

dy= -k - b - c with y(0) = 2 (5.29)
dt

where k, b, and c are random variables with mean values of 4, 2, and 3, respectively.

This ODE is for testing the base-line reference of the interaction index using the Mor-

ris method and our sensitivity algorithms. Using the Morris method in Figure 5-48,

the significance of parameters is ranked according to this order (k,b,c), corresponding

to the magnitude of each parameter. Since there is no interaction in each parameter,

the magnitudes of o[EEi] are very small. Similarly, the ranking of parameters' im-

portance using the Variance method, shown in Figure 5-49, provides the same relative

order in the normalized VEEj and no interaction among parameters can be seen from

a small magnitude of the normalized IEE. This again confirms that in the absent

of the multiplicative uncertainty, the additive uncertainty leads to zero interaction.

x 10'
4

2

1.51-

.1

0.5

0 , , ,. , 1.
0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2

time [sec] E[EE]

Figure 5-48: For the linear ODE dy/dt = -k - b - c: the normalized E[EE] and
o[EEj] of k, b, and c as a function of time, t E [0, 11 second, using the Morris method
with p = 16 and r = 80000 to emphasize the first-order effect (Left) and to emphasize
the inputs' interaction effect (Right).

Fourth, to evaluate the effectiveness of the interaction index using the Morris

method and our sensitivity algorithms, we look at another first-order ODE, shown

below:

= -kcy + c with y(0) = 2 (5.30)
dt
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Figure 5-49: For the linear ODE dy/dt = -k - b - c: the normalized E[2-] and

o-[-] or VEEj and IEEj of k, b, and c as a function of time, t E [0, 1] second, using
the Variance method with Nc/d = 30 to emphasize the first-order effect (Left) and
to emphasize the inputs' interaction effect (Right).

where k and c are random variables with mean values of 5 and 2, respectively. u-2 is

set to be 0.4. From Figure 5-50, k has a larger influence on the output than c, which

is unexpected because there are two terms of c in the above equation. However, the

cancellation of the multiplicative and additive terms c decreases its sensitivity index.

Similarly, the interaction index also indicates that k has a stronger coupling effect than

c with y(t). The [D,,,D,,] are [0.210,0.114] for c-x, = 0.4. Using the Variance method,

we obtain similar sensitivity characteristics and parameters' coupling effect, as shown

in Figure 5-51. Notice that the plot of normalized VEEj versus IEEj contains more

curvature than that of E[EEj] versus o[EEi]; nevertheless, the interaction index of

the Variance method yields the same relative magnitude of k and c, where [D,,,D,]

are [0.120,0.065] for o-, = 0.4.

5.3.2 Duffing's oscillator

Now, let us consider a nonlinear Duffing's oscillator with a constant forcing function,

which consists of two state variables: position (y) and velocity (1) as expressed in

the equation below,
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dy 2  dy 2 23 ., dy( 0; y(O) 2, (5.31)
dt + 2 qy + wy + W , with dt 0

where q, w, and c are a damping coefficient, a natural frequency, and a coefficient of

the cubic nonlinearity, which can represent a hardening nonlinear spring. All q, W,

and e are assumed to be independent uniform random variables with mean of 2 and

standard deviation of 0.2 for unbiased weighting of this nonlinear ODE. From this

nonlinear system, w is the most influential parameter due to the quadratic nonlinearity

and strong couplings with the other two parameters and the output. However, this

might not be the case for all times between [0,1] second. As shown in Figure 5-52, the

trajectories of normalized E[EEi] and a[EEi] for these three parameters are plotted

as a function of time using the Morris method with p = 16, the Monte Carlo Sampling

and Collocation methods with A = 1, which are based on the gradient computation.

Note that the normalized E[EEi] and a[EEi] trajectories from the Monte Carlo and

Collocation methods are identical, and also closely match with that of the Morris

method. From the plot of normalized E[EEi] versus time, the sensitivity effect of w

is dominant at the first quarter of a second and again after 0.6 second; the damping

effect of 71 surpasses that of w only between 0.35 and 0.6 second. These characteristics

occur because of the cubic nonlinearity in the last term of the equation. As expected,

the coupling effect of w is stronger than those of the q and c for the entire range

of time, illustrated in the plots of a[EEi] versus time and a[EEi] versus E[EEi].

The [Da,DJDJ are [0.472,0.285,0.235] using the Morris method with o, = 0.2,

which is similar to the interaction indices obtained from the Sampling and Collocation

methods. The interaction of w is twice as that of E on average. In addition, we can

consider the ranking of inputs' first-order and coupling effects at a specified time,

as shown in Figure 5-53 for t=[j, f] second. The results using the MC Sampling

and Collocation methods precisely overlay each other, while their relative magnitude

matches that of the Morris method.

Now, the VEEi and IEE trajectories of 1, w, and c are plotted in Figure 5-

54 using the Variance method. These trajectories resemble those in Figure 5-52,
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Figure 5-52: For a L variable, the E{EEJ] and o-[EEj] of r1, w, and c as a function of

time, t E [0, 11 second, using the Morris method with p = 16 and r = 5, 000 (solid-
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3 3

obtained using the gradient-based sensitivity. In particular, the relative magnitude of

the first-order effect, VEEi, is the same as that of E[EEi]. However, the trajectories

of IEE, and -[EE,] are slightly different during [0,0.5] second since the IEEi of the

Variance method does not include the nonlinear effect. As seen in Figure 5-52, the

trajectory of -[EE.] is larger than those of -[EEyE] at all times due to the quadratic

nonlinearity of w and the coupling with the cubic nonlinearity output. After 0.5

second, when the system reaches its steady state, the characteristics of the IEEi and

c[EEi] trajectories become very similar. The plots of o[EEi] versus E[EEi] and of

IEEi and VEEi reveal another perspective. The a[EEi] versus E[EEi] plot shows

that the interaction and nonlinear effects of w dominate those of 71 and c, while the

IEEi and VEEi plot, which emphasizes the interaction effect more, shows that ?7 can

be more important in certain time ranges than w because of its direct interaction with

the ! state variable. The [D 0., ,D,,,, D,] are [0.360,0.173,0.159] using the Variancedt

method with o, = 0.2. These interaction indices show that the coupling effect of

w is almost two times larger than that of e. Likewise, the plot of VEEi and IEEi

can be taken from the slice of the trajectory plot at a particular time, as shown in

Figure 5-57 for t=[}, 2] second. The relative magnitude of VEEi and IEEi plots at

these two time slices are identical to those of E[EEi] and o[EEi] plots.

From the convergence performance aspect, we need to redefine the RMS(AE[EEil)
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and RMS(Ao[EEi]) to take into account the third dimension of time. The L 2 norm

is employed in RMS(lI/AE[EEi]|12 ) and RMS(J|Ao-[EEi]112 ) to sum the AE[EEi] and

Ao[EEi] over time as shown in the equations below:

RMS(JJAE[EEi] 12) = (IEL[EEil - EL1[EEi]112 ) 2 , (5.32)

RMS(lAor[EEi] 12) (j jL[EEi] - oL-l[EEi] 12)2 (5.33)

For this Duffing's oscillator with three input parameters, the convergence of the Morris

and Sampling methods, measured by RMS(I|AE[EEi]|12 ) and RMS(JJAo[EEi]|12 ),

is comparable in both accuracy and computing cost, while the results' convergence

using the Collocation method is about an order of magnitude faster than those of the

Morris and Sampling methods, as shown in Figure 5-56. Similar to the example of the

monotonic static function, the Variance method exhibits an exponential convergence

of RMS(1|AVEEil12) and RMS(IlAIEEi112 ). Similar to the convergence study in

Chapter 4, the exponential convergence rate of the full-grid collocation is faster than

the algebraic convergence rate of the Monte Carlo method for the same computing

cost in low- and medium-dimensional problems.

Let us consider Duffing's oscillator with a sinusoidal forcing function, described

below, from the stochastic analysis perspective. In this case, the phase of the forcing

function is assumed to be a uniform random variable, # = + ±ou, where q = 0 and

SE [-1, 1].

dy 2  dy 2 dy(0)
dt + 2qw - + w y + Ew 2 y3 = Asin(27rft + #), with dt= 0; y() = 2, (5.34)

where 77, w, and E are just constants of 2, the magnitude and frequency of the forcing

function are 2 and 1, respectively. The four different ranges of random phase shift,

-= 0, 7r/4, r/2, and 7, are considered for the stochastic analysis using the full-grid

PCM with Nc = 100. Figure 5-57 shows the statistical results with the random phase

shift. Surprisingly, as the fluctuation of random phase shift approaches r, the mean
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solutions of both y and dy/dt become zero. Nevertheless, the variance solutions of

both y and dy/dt in the transient region become larger as ao increases.
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Figure 5-57: The stochastic solutions of the position and velocity of Duffing's oscillator
with the four different variations of random phase shift, o-o = 0, 7r/4, r/2, and 7r.

5.3.3 An open-loop induction machine with an infinite bus

In this section, we investigate how these three sensitivity algorithms rank the signifi-

cance and interaction of inputs and what effects a large number of inputs and states

have on the convergence performance of these algorithms, when the system of ODEs

and number of input parameters are increased and all input parameters are strongly

coupled with other inputs as well as state variables of the induction machine with

an infinite bus (see Figure 4-70 in Chapter 4.3). Because of the five coupled out-

put variables, [). , b'e , ", ij ', the trajectories of 10 input parameters, including

[rS, I X, Xm, X'lr, r, T, Lt, MI, Toad, H], are shown only for the d-axis tie line current or

id state, using the Morris method with p = 16, shown in Figure 5-58. All these inputs

are assumed to be independent random variables with 10 percent variation from their
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mean or nominal values. These results have the same relative magnitude of E[EEi]

and o[EEi] as those obtained from the Monte Carlo sampling and Collocation meth-

ods with A = 1, which are omitted. As seen in the E[EEi] versus time plot below,2'

the i" is very sensitive to multiple inputs, especially x1, and x', in the first second and

r,. right before reaching the synchronous speed. These sensitivity indices agree with

multiple time constants associated with the induction machine. In the first second,

the stator and rotor windings attempt to accelerate the rotor up to speed; therefore,

the reactance of these windings, xi, and t, should be the most sensitive parameters

during the electrical transient regime. After the electrical transient dies out, the rotor

inertia, H, and mechanical torque load, Tload, also have significant influence on the

tie line or stator current during [1,2] seconds, where the mechanical time constant

dominates, as we can see from the 1.2 and 0.6 magnitude of E[EEi]. In terms of

input coupling, all these five parameters (r', s15, ' ., H, Tad) exhibit strong interac-

tion with other inputs. Again, at each time step, the -[EEi] versus E[EEi] plot can

be used to directly rank the inputs' sensitivity as well as interaction, as shown in

Figure 5-59. Notice that rt, Lt, and 1t from the tie line and xm from the induction

machine have almost a negligible effect on this i' output because the infinite bus

absorbs all variations in the tie line's parameters. The mutual flux leakage, xm, is

usually about 100 times larger than the flux leakage of the stator and rotor windings;

thus, with the same percentage of fluctuation, x, is less sensitive than xi, and xr.

Moreover, the coupling effect of some inputs using the Monte Carlo and Collocation

methods is slightly different from o[EEi] of the Morris method.

Using the Variance method, the normalized sensitivity trajectories of these 10

inputs can also indicate which inputs have larger impact on the output, such as i' ,

as shown in Figure 5-60. Both plots of VEEi and [EEi versus time yield the same

relative magnitude and ranking of all inputs as those using the Morris methods in

Figure 5-58; the sensitivity from the stochastic results can be used to confirm the sen-

sitivity from the deterministic result, using the gradient computation. The dynamic

ODEs of this electric machine are mostly composed of quadratic nonlinearities and

rational functions. Thus, the propagation of uncertainty in complicated ODEs can
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Figure 5-59: The mean and standard deviation of EEi from the Morris method, the
Monte Carlo Sampling, and the Collocation method in the last figure, when time is
fixed at 0.3 and 1.5 seconds, where the electrical and mechanical transients dominate,
respectively.

be used for detecting the parameters' sensitivity as well. Furthermore, the slices of

the IEE; versus VEEi plot from the sensitivity trajectories (see Figure 5-61) at the

particular times of 0.3 and 1.5 seconds can be precisely compared with those from the

gradient-based sensitivity algorithms, in Figure 5-59. Again, the relative magnitude

of parameters in the IEEi versus VEEi plots agrees well with that of parameters in

the o[EEi] versus E[EEi] plots.

Figure 5-62 reveals the convergence performance of all techniques based on the

gradient computation. Again, using the RMS(I AE[EEi] 12) and RMS(IJAo-[EEi]|12)

as the convergence measurement, the convergence rates of both Morris and Monte

Carlo Sampling methods are in the same order of magnitude. The convergence per-

formance of the Collocation method is still much better than those two methods in

this system with a large-input dimension because the faster convergence rate of the

full-grid PCM. However, the standard deviation of the outputs' stochastic variation of

the Variance method does not converge as quickly as that of the Collocation method,

as shown in Figure 5-63 because of different characteristics of the Variance method.

To summarize the i input sensitivity on all j system outputs over the entire time

interval in a two-dimensional figure, we need to define an average sensitivity index as

the (ES2,(j,i)) and an average interaction index as the (SS 2,(,i)), using the L2 norm
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Figure 5-63: The convergence characteristics of RMS(IJAVEE 12) and
RAIS(IAIEEil2) using the Variance and Inverse Variance methods, based on
the statistical computation, is plotted versus the computational time.

as the following:

ES2,(j,il= E[EEi] 112 and SS2,(,i=) v/E[EEi]2 + U[EEi] 2 112. (5.35)

Nevertheless, because some parameters might have strong influences only within

a specified time interval, the peak sensitivity ((ES,,(j,i))) and interaction indices

((SS,,'(,3i))), defined below, must be considered along with the (ES2,(j,i)) and (SS2 ,(j,i)).

ESo,(j,i) = IIE[EEi]I|K and SS.,(j,i) = I|V/E[EEi]2 + o-[EEi]2 |I.. (5.36)

Therefore, all the normalized sensitivity trajectories of the induction machines

with 5 coupled outputs and 10 input parameters can be summed up in the following

plot of ES2.(j,i) for ranking the input sensitivity and of SS2,(j,i) for ranking the in-

put interaction. All algorithms exhibit the same order of magnitude of ES2,(J,i) and

SS2,(j,i) on average between 0 and 3 seconds, as shown in Figures 5-64 and 5-65,

respectively. Notice that the y2 or O|| output is the most sensitive, particularly to

the electrical parameters, among all the outputs. The peak magnitude of ESo,(j,i) is

about 2.6 times that of ES2,(j,i) and both interaction indices, SS 2,(j,i) and SS,,(j,i),

exhibit a similar ranking to their sensitivity indices.
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Figure 5-64: The ES2 ,(ji) plots using Morris, MC Sampling, Collocation, and Variance
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Figure 5-65: The SS2 ,(jj) plots using Morris, MC Sampling, Collocation, and Variance
methods for ranking the input coupling or interaction. Note that the order of xi inputs
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5.3.4 AC power distribution with open-loop propulsion sys-

tem

We can extend the ability of these four sensitivity algorithms further to deal with a

large-scale complex system of the power distribution and propulsion units in the in-

tegrated electric ship system. Actually, this system is similar to the system described

in Figure 5-89 of Section 4.4, except that the power converter and the constant-slip

current controller of the induction are removed to simplify the system in an open-loop

configuration. The one-line diagram of this system is shown in Figure 5-68 below,

25-order ODE Exciter,

(ONR 20.03) 59 KW50p

Prime Mover M MProportional
(ideal) S Load to w2

Vb = 570 V RC bus with harmonic filter

Figure 5-68: A one-line diagram of the second configuration of the AC power dis-
tribution with the open-loop induction machine for studying the sensitivity analysis
with 24 parameters.

where the mechanical torque load is modeled as a proportional torque load to the

square of the motor speed with aload coefficient, which is similar to the propeller load.

The scenario of this simulation is that the 59 kW generator is initially operated around

its steady-state condition and then the 50-hp induction motor is suddenly turned on

at zero second; thus, the start-up transient dynamics of the induction motor must

be taken into account. Also, both electrical and mechanical time constants of the

synchronous generator and the induction motor are the focus in this sensitivity study.

With this particular proportional torque load, the electrical transient responses die

out within the first second, while the mechanical time constant is about 6 seconds

before approaching steady-state values. There are a total of 24 parameters (12 in

the 59 kW synchronous generator and exciter, 7 in the 50-hp induction motor, and 5

in the RC bus connecting between the generator and motor) and 25 state variables.
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The nominal values of all parameters are given in Appendix B. These parameters are

assumed to be random variables with u. . as the percent variation from their mean or

nominal values of each parameter.

To study the parametric sensitivity for all state variables, we employ only the

Monte Carlo Sampling methods with A 1 to perform the sensitivity analysis for

t E [0, 1] and t E [0, 12.4] seconds, where the electrical and mechanical time constants

dominate, respectively. All parameters are assumed to be independent uniform ran-

dom variables, Xi = tj + ao(, where E [-1, 1]. Moreover, three different ranges of

the parameter variation, ax = 0.1, 0.3, and 0.5, are compared against one another in

this study because the sensitivity and interaction effects of this nonlinear system do

not scale up linearly.

For t E [0, 1] second and or = 0.1, Figure 5-69 and 5-70 show the normalized

sensitivity time traces of the a-phase current of the harmonic filter(Ia jiter) or y1

state and the IM's rotor angular velocity (w,) or Y24 state, respectively. These two

plots consider only the sensitivity time traces of la,filter and Wr to the the 7 induction

machine's and 3 bus's parameters. Each input parameter influences each state variable

differently. The Iailter is highly sensitive to only the harmonic filter capacitor, Cf,

as seen from a large gradient magnitude within the first fraction of second. This peak

gradient of hI,fjlie, to C approaches a small steady-state value very quickly. The

large and sudden peak of Iaftite, sensitivity occurs because of two reasons: 1) a large

three-phase current from the bus is required to start the induction machine from rest

and 2) Cf is directly influence a change in power drawn from the RC bus. However,

Lt, is sensitive to both electrical parameters: stator and rotor resistances (rj.,) and

mechanical parameter: rotor inertia (J).

To see how Lf of the harmonic filter and r' of the IM's rotor windings influence

the three-phase RC-bus current (Ia,b,c,fiiter) and the magnetic flux linkage of the IM's

stator and rotor windings ('/qd, and 4 {dr), Lf and r' are varied by + 10 percent from

their nominal values in a deterministic simulation. Then, we compare these responses

with the deterministic responses when Lf and r' are at their maximnum and minimum

bounds, as shown in Figure 5-71 and 5-72. Figure 5-71 shows that the increase in
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Figure 5-69: For a Y14 variable or 'afilte of the harmonic filter, the normalized
E[EEi] and o-[EEi] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, t E [0, 1] second, using the MC Sampling method
with NN = 1, 000 and -, = 0.1 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs' interaction effect, and the Front view (Bottom-Right).
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Lf leads to a slower response of the Ia,b,cfilter and vice versa, which further induces

a phase shift in Ia,b,cfilter, especially in the high-frequency region in the first fraction

of a second. On the other hand, the change in r, only increases or decreases the

magnitude of the IM's 'Oqds and 'd,, as shown in Figure 5-72.
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Figure 5-71: For 10 percent increase in Lf, the deterministic responses of 'a,b,cfilter,
4'qds, and '0q dr with and without change in the Lf nominal values.
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Figure 5-72: For 10 percent increase in r', the deterministic responses of -'a,b,cfilter,
4'qds, and 'qdr with and without change in the r' nominal values.

Due to a large number of inputs and outputs, we can summarize all these results in

the plots of ES2 ,(ij,) and SS2,(j,i) (See Figure 5-73) for examining the average sensitiv-

ity and interaction effects over a specified time interval, respectively. To capture the

maximum magnitude of the sensitivity and interaction effects, ES,,(i,j) and SS.,(j,i)

(See Figure 5-74) must be considered along with ES2,(ij) and SS2,(j.i). The ES2 ,(i,j)
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reveals that the three-phase currents (Ia, Ib, Ic) of the harmonic filter in the RC bus

are the most sensitive variables among all 25 states and they are very sensitive to Cf
and Lf because the harmonic filter is tuned to reduce high harmonic frequency and

the RC bus subjects to large high-frequency start-up current of the IM. Moreover,

most state variables are sensitive to the IM's parameters, which implies a direct in-

teraction among the SM, IM, and RC bus. Similarly, ESo,(i,) or the peak sensitivity

indices show the same agreement that Ia,b,cf ilter are the three most sensitive state

variables to Lf and Cf with large maximum gradient as well as average gradient.
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Figure 5-73: The ES2,(j,i) plot (Left) and SS 2,(j,i) plot (Right) using the Monte Carlo
Sampling method with NN = 1, 000 for ranking the input sensitivity for o, = 0.1
and t E [0, 1] second. Note that the order of xi inputs on the x-axis are [r 8, Xl,, Xmd,
Xmq, rfd, Xfd, rkd, XIkd, rkql, Xlkql,rkq2, Xlkq2, rs2, Xls2, Xm2, Xlr2, 'rr2, J, aload, C,
R, Cf, rf, Lf] from left to right and the order of yj states or outputs on the y-axis
are [06eS, ?/A1, ?kq2, V)s' 'Vfd e 1, )eI , fd' , VF, K(I, Vl, K,, i, i', t c, Ki, 1'2,

Vc, 4q's, 4 , d.9, 4'r, O, ,r] from top to bottom.

The normalized sensitivity time traces of Wr for t E [0, 1] and o = 0.3 in Figure 5-

76 is slightly larger than those for ax = 0.1 in Figure 5-70. Even though, there is a

small increase in the E[EE24] magnitude, the peak magnitude of o[EE24] grows by

three times. Little change in the Wr sensitivity occurs because the transient dynamics

of the mechanical component still gradually increase within this time range. While

the fast dynamics of the electrical transient, such as in Y14 or a.filter, are strongly

dominated during the IM's start-up acceleration, the frequency of the normalized

sensitivity trajectories of Ia,filte, becomes higher and its peak magnitude drops more
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quickly as cxs increases from 0.1 to 0.3, as shown in Figure 5-75. This reduction

of the mean value as the percent variation increases is caused by the cancellation

of the response ensembles due to the phase shift in the dynamic responses, which

is explained in Section 5.3.2. The magnitude of o-[EE14 ] also decreases; this phase

shifting of a,ilter must be caused by the interaction with other states or parameters.

Unlike, the random phase shift in the inputs of the duffing's oscillator does not cause

a reduction in the variance magnitude.

Similarly, we again change the nominal values of both Lf of the harmonic filter

and r' of the IM by t 30 percent and then investigate the difference between the

deterministic minimum- and maximum-bound responses of the three-phase RC-bus

current (Ia,b,cfiuer) and the magnetic flux linkage of the IM's stator and rotor windings

(/)qds and 'dr), as illustrated in Figure 5-77 and 5-78. With 30 percent variation in Lf

from its nominal value, Ia,b,cfilter are even slower than those with 10 percent variation

in Lf; thus, the phase shift of the high-frequency 'a,b,cilter become more significant.

On the contrary, the 30 percent increase in r' only enlarges the magnitude of the IM's
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Figure 5-75: For a Y14 variable or Ia, ilte of the harmonic filter, the normalized
E[EEi] and o-[EEi] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, t E [0, 11 second, using the MC Sampling method
with NN = 2, 500 and a, = 0.3 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs' interaction effect, and the Front view (Bottom-Right).

262

I

0

0



YSs2

r2

0.025 J03

0.01s C002. ea
R

0.2

0.2

0E 0
time [sec]

0.12

r2

0 r2

tlO ad

0.16

0.04 - 20.06

0 0 0. 0. 0.4 05 0.6 0.7 0.8 0.9
time [sec]

C

0.035

0.03

0.025

0.02r.

0.015 -cxm 2

Y) r2 01

rr

0 002 0.04 0.06 00 .

0.031

CC

0.035 'S

R

0.035

0.0..43..3 0. 0.7 08 09

tim.[2c

Figure 5-76: For a Y24 variable or W. of the IM, the normalized E[EEi] and o-[EEi]
trajectories of the 7 induction machine parameters and 3 bus parameters as a function
of time, t E [0, 1] second, using the MC Sampling method with NN = 2, 500 and a, =
0.3 in three dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
first-order effect, the Top view (Bottom-Left) for emphasizing the inputs' interaction
effect, and the Front view (Bottom-Right).

263

1 0



#qds and d'r, without any phase shifting, which directly leads to an increase in the

magnitude of wr sensitivity.
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Figure 5-77: For 30 percent increase in Lf, the deterministic responses of ab,c,f ilter,

<bqds, and ''dr with and without change in the Lf nominal values.

10 300 300

200 200

100 100

-10 - i 0
0 0.02 0.04 0.06 0.00 0.1 0.12 0.14 0.16 0.18 0.2 -100 -100

_ _ _ _ _ _ _ _ _ _ _-200 -200 m

10 - -300 -300 -

0 0.05 01 0.15 0.2 0 0.05 0A 015 0"2

-10

-1_ 300 300
0 0.02 004 0 006 0.00 0.1 0.12 0.14 0 16 0.18 0.2 200 200

100 100

10

-0 0-
-0 -100 00

-200 -200
-10 

-300 -300

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
0im0(s301 tim0(01 ,tim(s3CJ

Figure 5-78: For 30 percent increase in r', the deterministic responses of Iaecfiter,
'qds, and l'dr with and without change in the r' nominal values.

Again, to summarize all sensitivity and interaction of all states to all input pa-

rameters in one plot, both (ES 2,(j,i), SS2,(j,i)) and (ES,(.j), SSy,(j,i)) plots reveal

the overall picture of both of these effects over the time range of [0, 1] second and

at a specified peak location, respectively. As the percent variation of parameters

increases, both (X1,rfd) of the SM's parameters and (rs2,Xm2,,rr2,J) of the IM's pa-

rameters consequently exhibit large influences on ('Okd,'Ofd) of the SM's states and

(4qs, <, /' 'KV ) of the IM's states, seen Figure 5-79. Notice that on average, all
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state variables of this system become more sensitive to the large parameter variation

and the variation of IM's parameters can have some effect on the generator states

and vice versa. Thus, the overall sensitivity plots imply direct machine interactions

between the generator and the motor. Note that all state variables in this system

with the open-loop propulsion are not sensitive to the load coefficient, aload, within

this time frame. However, the peak sensitivity and interaction indices in Figure 5-80

show only a slight difference in the parameter ranking from those in Figure 5-74,

except the higher peak magnitude of Ia,b,c,filter.

MC A=1 MC:A=1
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0.350.
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0.0.0
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Figure 5-79: The ES2,(j) plot (Left) and SS2 j,i) plot (right) using the Monte Carlo
Sampling method with NN = 2, 500 for ranking the input sensitivity for o, = 0.3
and t E [0, 1] second. Note that the order of xi inputs on the x-axis are [r,, Xis, Xmd,

Xmq, '-fd, Xfd, rkd, XIkd, 'rkql,XIkql,rkq2, Xlkq2, rs2 , Xis 2 , Xm2, Xlr 2 , 'rr2, J, oload, C,
R, Cf, rf, Lf] from left to right and the order of yj states on the y-axis are [V) eS l 1 ,

Ykq2' 4, '< V' , < 9, e ya, VF, Van, Vn, Vn, ia, iq, ic, Vej, Ve2, Vc,,/qs, d 4s,
i ,, <8o, Wr] from top to bottom.

As we further increase the percent variation of all parameters' fluctuation to 50

percent to examine the free acceleration of the induction machine, the sensitivity

of the mechanical state, Wr, becomes larger as time progresses (see Figure 5-82),

while the sensitivity of the electrical state, Ia,filter, to Cf is even more sudden with a

smaller gradient magnitude than that with axi = 0.3 occurring within 0.1 second (see

Figure 5-81). Again, the cancellation of the phase shift responses due to variations in

C0 and Lf leads to decrease in the magnitude of the sensitivity time traces. However,

the magnitude of E[EE1] to other parameters remains constant.
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Figure 5-80: The ESo,(j,i) plot (Left) and SS,,(,i) plot (Right) using the Monte Carlo
Sampling method with NN = 2,500 for ranking the input sensitivity for og = 0.3
and t E [0, 1] second. Note that the order of xi inputs on the x-axis are [rs, X18, Xmd,
Xrnq, rfd, Xfd, rkd, Xlkd, 'rkql, Xkql,rkq2, Xlkq2, rs2 , Xls2, Xm2, Xr2, rr2, J, &load, C,
R, Cf, rf, Lf] from left to right and the order of yj states or outputs on the y-axis
are [0es' #$ek1, ?/'q2, V)ds Yfds 1kd, Yo, 0, urfd, V F, Van, Vn, V, ia, Vb, ic, V, V 2 ,

Vc3 ,?q/, /qr, 'l4, dr 05, Wr] from top to bottom.

As the peak magnitude of the Ia,filter sensitivity drops, the plots of (ES2,(ji), SS 2,(j,i))

with u=0.5 (see Figure 5-83) are closely matched with those with onx=0.3. Similarly,

the peak sensitivity and interaction indices, (ES(J~), SS,,(ji)) (see Figure 5-84) re-

veal that there is strong coupling between the SM, IM, and RC bus. Particularly,

some SM's and IM's parameters have a significant impact on all state variables of the

entire system, while all RC bus's parameters only affect its state variables.

For t E [0, 12.4] second where the mechanical time constant is dominated, the

normalized sensitivity trajectories of ailter of the harmonic filter and Wr of the IM

in Figure 5-85 and 5-86 are compared to those with t E [0, 1] second in Figure 5-

75 and 5-76. We can see that C, r., and J have the strongest influence on the

Iailter and the interaction index of r' and J overwhelms that of other parameters.

The sensitivity of Ia, ilter to r and J, particularly after 2 seconds, confirms directly

interaction between the RC bus and induction motor even more. The sensitivity time

traces of Wr to r and J reach a peak gradient magnitude of 0.7, which is almost 7 time

larger than that in the short time frame, then approach zero steady-state values within

three times of the mechanical time constant. Moreover, the rotor speed also becomes
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trajectories of the 7 induction machine parameters and 3 bus parameters as a function
of time, t E [0, 1] second, using the MC Sampling method with NN = 5, 000 and a, =
0.5 in three dimensions (Top-Left), the Side view (Top-Right) for emphasizing the
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Figure 5-83: The ES2,(j,i) plot (Left) and SS2,(j,j) plot (Right) using the Monte Carlo
Sampling method with NN = 5, 000 for ranking the input sensitivity for o-,, = 0.5
and t E [0, 1] second. Note that the order of xi inputs on the x-axis are [r8 , Xis, Xmd,
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more sensitive to the load coefficient, eload, after 2 seconds. This phenomenon implies

that each parameter can have a different influence according to the time scale.
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Figure 5-85: For a Y14 variable or Ia,filter of the harmonic filter, the normalized E[EEi]
and o[EEi] trajectories of the 7 induction machine parameters and 3 bus parameters
as a function of time, t E [0, 12.4] seconds, using the MC Sampling method with
NN = 1, 000 and a, = 0.3 in three dimension (Top-Left), the Side view (Top-Right)
for emphasizing the first-order effect, the Top view (Bottom-Left) for emphasizing
the inputs' interaction effect, and the Front view (Bottom-Right).

A large number of parameters' sensitivity to these systems with o = 0.3 can be

summarized in the plots of (ES2,(j,i),SS 2,(j,i)) and (ES,( SS,,(j,i)). From ES2,(Ji)

and SS 2,(j,i) plots in Figure 5-87, only three parameters - rfd of the SM and r, and

J of the IM - have distinct impacts on all state variables of this system. The reasons

that these three parameters are more sensitive than other parameters are: 1) the

rotor inertia directly governs the mechanical time constant, 2) the rotor resistance

of IM has a direct influence on the generated rotor flux and the motor operation, 3)
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Figure 5-86: For a Y24 variable or c,. of the IM, the normalized E[EEi] and o[EEi]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, t E [0, 12.4] seconds, using the MC Sampling method with NN = 1, 000
and a, = 0.3 in three dimension (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs'
interaction effect, and the Front view (Bottom-Right).
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the rotor field winding of SM, which is connected to the voltage feedback from the

exciter/voltage regulator, can amplify the propagation of uncertainties. Therefore, a

small variation in rfd of the SM can lead to a large fluctuation in the bus voltage.

However, if we consider only the peak magnitude of the sensitivity and interaction

indices, ESo,(,j) and SS.,j,i), in Figure 5-88 within t E [0, 12.4] seconds, the sud-

den peak gradients of Lf and Cf are still much larger than the gradually increasing

gradient of rfd, r and J. Thus, the peak sensitivity of electrical transient is very

important, especially for the high-frequency transient like in the start-up dynamics

of the electric machine.
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Figure 5-87: The ES2,(j,j) plot (Left) and SS 2,(j,i) plot (Right) using the Monte Carlo
Sampling method for ranking the input sensitivity for o, = 0.3 and t E [0, 12.4]
seconds. Note that the order of xi inputs on the x-axis are [rs, X 1s, Xmd, Xmq, rfd,

Xfd, rkd, Xkd, rkql, Xkql,rkq2, Xlkq2, rs2 , X 1s2, Xm2, Xr2, rr2, J, cOload, C, R, Cf, 'P,
e f

Lf] from left to right and the order of yj states on the y-axis are [V ', e7 Okq2' Odes,

O'fd, @,kd <, 6, exfd, VF, Van, Vn, Vcn, ia, 'b, ic, Ve1 , Vc2 , V 3,*es, q, d, r, Os,
Wr] from top to bottom.

5.3.5 AC power distribution with closed-loop propulsion sys-

tem

Instead of the free acceleration of the induction machine as in the previous example,

the power converter and constant-slip current control, in Section 2.2.1, controls the

electromagnetic torque of the 50-hp induction machine, connected to the same 59
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Figure 5-88: The ES,,(jj) plot (Left) and SSm,,ji) plot (Right) using the Monte
Carlo Sampling method for ranking the input sensitivity for a, = 0.3 and t E [0, 12.4]
seconds. Note that the order of xi inputs on the x-axis are [r., Xsi, Xnd, Xrnq, rfd,

Xf(,I rAd, Xkd, rkql, Xkq1,'rkq2, XIkq2, r, 2 , Xs 2 , Xrn2, Xlr2 , rr2, Ji aload, C, R, Cf, r,
Lf ] from left to right and the order of yj states or outputs on the y-axis are [,(,, 'O1,
Ok'q 2, d #f d, k d ~ 0, ex f d, V F, Va Ti, Vn , Vc n, i a, i b, i c, Vc, Vc 2, Vc 3, )qe, , r- ,

I'f, ' 89, Wr] from top to bottom.

kW synchronous machine through the three-phase RC bus, as shown in Figure 5-89

below. The high-dimensional stochastic analysis of this system has been demonstrated

in Section 4.4.2.

Exciter T*e Torque Control r

59 KW iba

Prim Mver SMus- -M

with filter
Vb = 570 V Rectifier LC-filter Inverter 50 hp

Figure 5-89: A one-line diagram of the third configuration of the AC power distri-
bution with the closed-loop control of induction machine for studying the sensitivity
analysis with 31 parameters.

In this study, we assume that the generator initially operates at its rated speed

in its steady-state condition and then at zero seconds the induction machine with

the controller is suddenly turned on. The torque command to the controller is kept

constant at 2 N-m during t E [0, 1.62] seconds. In this system, there are 30 state
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variables and 31 parameters, which include 7 additional parameters: (LC, R&c, Ldc,

Cc) of the 6-pulse full-wave rectifier and (RL, LL, CL) of the DC-link filter. Similarly,

in this complex nonlinear system, three different ranges of parameters' variations, o

= 0.1, 0.3, and 0.5, are also considered in the sensitivity analysis to investigate the

influence of each parameter at different fluctuation levels and to compare with the

sensitivity results in the previous section.

First, let us consider the case with ax = 0.1 and t E [0, 0.2] second, where the

electrical time constant is dominated. Using the Monte Carlo Sampling method with

A = 1 to perform the sensitivity analysis, Figure 5-90 shows the normalized sensitivity

trajectories of the IM's wr and the RC bus's ,.fite, to 7 parameters of the induction

machine and 3 parameters of the RC bus. I,filter is very sensitive to both C of

the RC bus and to Cf of the harmonic filter. The controller draws more power to

maintain a constant torque of the IM, while the exciter/voltage regulator attempts

to keep the bus voltage at a rated voltage; thus, a small change in the bus's and

harmonic filter's capacitors, governing the bus voltage, has a significant impact on

the entire system. The interaction of C and C with state variables is strong during

the start-up transient of this system and then becomes weaker, approaching 0.05, as

the electrical transient dies out within 0.2 second. Furthermore, only J and alad

have a strong influence on the normalized sensitivity trajectories of the induction

machine's wr, while other parameters have negligible effect, as shown in Figure 5-91.

The constant-slip current controller makes the propulsion system sensitive only to its

mechanical component; thus, the performance of the closed-loop propulsion is much

better than that of the open-loop propulsion in terms of the sensitivity to electrical

components of the SM, bus, and IM itself. These characteristics confirm that the

controller becomes very active in controlling the generated magnetic flux in the IM

and its interaction.

Second, when the parameters' variation increases to 30 percent from their nominal

values or a, = 0.3, the sensitivity of I,filte in Figure 5-92 to Cf slightly decreases,

while the sensitivity of this state to C and R of the RC bus increases at least 50 percent

as time progresses. This decrease in the peak magnitude of the Ifilte sensitivity
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Figure 5-90: For a Y14 variable or ailter of the harmonic filter, the normalized
E[EEi] and o[EEi] trajectories of the 7 induction machine parameters and 3 bus
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tion of time, t E [0, 0.2] second, using the MC Sampling method with NN = 1, 000
and o = 0.1 in three dimensions (Top-Left), the Side view (Top-Right) for emipha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs'
interaction effect, and the Front view (Bottom-Right).

276

10

5 - 'r2

r2

E3 'C

CR
Cf

5 -

0 0.02 0.04 0.06

i

2

LU I



index is again caused by the phase shift of the responses due to a variation in Cf. For

the sensitivity of w, in Figure 5-93, only J and aIoda still have a strong influence with

only a minor increase in the magnitude of sensitivity; however, the interaction indices

of J and aload On Wr grow by three times compared to the case with o = 0.1. This

implies that the feedback controller performs very well so that electromechanical

torque, controlled by induced electromagnetic flux of stator and rotor windings, is

almost insensitive to any electrical parameters.
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Figure 5-92: For a Y14 variable or afilte, of the harmonic filter, the normalized
E[EE ] and -[EEi] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, t E [0, 0.2] second, using the MC Sampling method
with NN = 3, 000 and or = 0.3 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs' interaction effect, and the Front view (Bottom-Right).

Third, parameters' variation of 50 percent from their nominal values or o, = 0.5,

the normalized sensitivity trajectories of lhjilter and Wr are again shown in Figure 5-94
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Figure 5-93: For a Y25 variable or W, of the IM, the normalized E[EEi] and U[EEi]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, t - [0, 0.2] second, using the MC Sampling method with NN = 3, 000
and a, = 0.3 in three dimensions (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs'
interaction effect, and the Front view (Bottom-Right).
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and 5-95, respectively. The peak magnitude of Ia,fite, sensitivity to Cf drops slightly,

while the steady-state magnitude of its sensitivity to Cf is about the same as in the

previous two cases. On the other hand, both sensitivity and interaction indices of

la,fitter to other parameters significantly increase, particularly to C and R of the RC

bus. The sensitivity trajectories of Wr to J and alIa again increase somewhat, while

J and aload exhibit stronger interaction with w, and other states.
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Figure 5-94: For a yi_ variable or Ia titer of the harmonic filter, the normalized
E[EE] and o[EEi] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, t E [0, 0.2] second, using the MC Sampling method
with NN = 5, 000 and 7, = 0.5 in three dimensions (Top-Left), the Side view
(Top-Right) for emphasizing the first-order effect, the Top view (Bottom-Left) for
emphasizing the inputs' interaction effect, and the Front view (Bottom-Right).

To summarize the ranking of parameters' sensitivity with increasing percent vari-

ation of parameters, o, = 0.1, 0.3, and 0.5, ES2 ,(ji) is plotted versus parameters of

the synchronous generator (see Figure 5-96), the induction machine (see Figure 5-98),
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the RC bus (see Figure 5-97), and the power converter (see Figure 5-99). Figure 5-96

shows that the peak sensitivity of V)', to X1, dominates the entire sensitivity domain

due to the SM's parameters and this peak sensitivity of 0', to X1, decreases as the

percent variation of parameters increases. This phenomenon again occurs because of

the phase shifting in the large start-up transient response of ',. This phase shifting

in the ', response implies that the average Oe, can be amplified or cancelled each

other out, particularly during the first fraction of a second. The V), represents a

balancing operation of the generator; thus, there are a lot of change in the balancing

operation as the percent variation increases. Similarly, the average sensitivity of all

state variables to the RC bus's parameter is dominated by the sensitivity of 0', to

C, Cf, and Lf and becomes smaller as the percent variation increases. The phase

shifting in the 0', response causes by the same reason as in the previous situation.

Figure 5-96: The ES2,(j) plots using the Monte Carlo Sampling method for ranking
the input sensitivity with o = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the synchronous generator's parameters (xi) on the x-axis are [r,
X1S, Xmd, Xmq, rfd, Xfd, rkd, XIkd,) rkql, Xkql,rkq2, Xkq2] from left to right and the
order of yj outputs on the y-axis are [10e V4% , O 02, J ,/, 0, Cxfd, VF,

Van, Vbn, Vn, isa, ib, ic, Vci, Vc2, Vc,4'q'S. V)'r, ?/,, , ?fIo, Wr] from top to bottom.

For the average sensitivity to the IM's parameters in Figure 5-98, we can see a

substantial increase in the sensitivity of the controller's state variables as the percent

variation becomes larger. This increase in the controller's sensitivity means that the

controller's variables become more active to correct any discrepancy in the IM's out-

put torque from the commanded torque. The maximum magnitude in the controller's

sensitivity is 24 percent variation in the voltage across the rectifier's capacitor due

to 50 percent increase in either X,2 or r of the induction machine. Likewise, the
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Figure 5-97: The ES2 (ji) plots using the Monte Carlo Sampling method for ranking

the input sensitivity with o7 = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the RC bus's parameters (xi) on the x-axis are [C, R, Cf, rj, Lf]
from left to right and the order of yj outputs on the y-axis are [Oe/, @beq1 , 4'q2, V'd8

'/~ ~ 0, eeV V V, 3 <,' e OdriO' sfd d 0 Xfd, VF, V(an, Vb'n, V a, i ic, ei, V 2 , c3,qs, 'r, dr

Wr] from top to bottom.

larger the percent variation is, the greater the average sensitivity indices of all states

to the power converter's parameters (see Figure 5-99) become, especially to L, of the

tie line, Cdc of the rectifier, and (Lf,Cf) of the DC-link filter. Again, this increase in

the controller's sensitivity indices confirms the effectiveness of the controllers in the

presence of the parameter fluctuation.

the input sensitivity with ou = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the induction machine's parameters (xi) onl the x-axis are [,r, 2, X~s2,
Xm2, Xlr2, Ty.2, J, Oaload] from left to right and the order of yj outputs on the y-axis

areL~q' kql Vkq2' /"s +fd' 'kd' 0Ps f'VF Van, Vbfl, Vcn ia, bi ci cl Vc 27

Vc3*q's, Oqr, ds, Odr 08' Wr] from top to bottom.

When the simulation time is lengthened to 1.62 seconds, where the mechanical

time constant is dominated, the sensitivity trajectories of 'ajfater to Cf are still much

larger than other parameters as they approach steady-state oscillation, as shown in

Figure 5-100. Nevertheless, the sensitivity index of C on a,filter diminishes very
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Figure 5-99: The ES2,(jj) plots using the Monte Carlo Sampling method for ranking
the input sensitivity with T, = 0.1 (Left), 0.3 (Middle), and 0.5 (Right). Note that
the order of the power converter's parameters (xi) on the x-axis are [L,, rde, Lde,

d Lfilt, rfilt, Cfilt] from left to right and the order of yj outputs on the y-axis are

10,kql 1 'f21 ,e ~el VSked '00e 0, CX fd, VF, K(,,, Vj, Ven, ia, i4, i4, Vei, 2 qs,

4r s, 10'4, 40s, wr] from top to bottom.

quickly as time approaches 0.4 second. The interaction index of C persists in time

up to 0.4 second, similar to that of Cf. For the sensitivity of Wr, both J and aload,

exhibiting the same order of the sensitivity magnitude, become even more dominant

than other parameters, as shown in Figure 5-101. Again, J interacts with other

parameters and states more than aload and the sensitivity and interaction indices of

Wr to Xm2, governing the interaction between stator and rotor windings of the IM,

increase as time reaches 1.62 seconds. These characteristics show that the constant-

slip controller well controls the induction motor and the controller's action increases

sensitivity to the mutual reactance, which is directly used in the maximum torque

per current calculation of the constant-slip controller.

To make a comparison on a different time scale, the overall view can be examined

from the ES2,(~u) plots with t E [0, 0.2] for electrical time constant and t E [0, 1.62]

for mechanical time constant. The average sensitivity to the generator's parameters

in Figure 5-102 and to the bus's parameters in Figure 5-103 are very similar between

these two different time scales. Figure 5-105 shows the average sensitivity indices

of all state variables to only the power converter parameters. Only currents are

sensitive to both capacitors and inductors of the rectifier and the DC-link filter (Lc,

Cdc, L -iIter, Cfilter) when both electrical and mechanical time constants are dominated.

However, in a short time frame, the currents of the power converter are more sensitive
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Figure 5-100: For a Y14 variable or 'afilte, of the harmonic filter, the normalized
E[EE ] and o-[EEi] trajectories of the 7 induction machine parameters and 3 bus
parameters as a function of time, t E [0, 1.62] seconds, using the MC Sampling
method with NN = 3,000 and a, = 0.3 in three dimension (Top-Left), the Side
view (Top-R.ight) for emphasizing the first-order effect, the Top view (Bottom-Left)
for emphasizing the inputs' interaction effect, and the Front view (Bottom-Right).
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Figure 5-101: For a Y25 variable or w, of the IM, the normalized E[EE ] and o[EEi]
trajectories of the 7 induction machine parameters and 3 bus parameters as a func-
tion of time, t E [0, 1.62] seconds, using the MC Sampling method with NN = 3, 000
and or = 0.3 in three dimension (Top-Left), the Side view (Top-Right) for empha-
sizing the first-order effect, the Top view (Bottom-Left) for emphasizing the inputs'
interaction effect, and the Front view (Bottom-Right).
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because the controller needs to compensate for a large torque error during the IM's

acceleration. Only the state variables of the RC bus and the power converter are

sensitive to the power converter's parameters, which implies that the controller can

separate the interaction between the generator and the induction motor. In Figure 5-

104, when the electrical time constant is dominated, most of the IM state variables

are sensitive to its electrical and mechanical parameters, including Xm, rr, J, and

aload. However, when the mechanical time constant dominates, the IM's states are

sensitive only to two mechanical parameters, J and aload with a large average gradient

magnitude. Notice that the IM's parameters only affect its own states. This again

implies that the controller is very active to compensate for any variation of the IM's

parameters.

MCA=1 MC5=1

2.5 2.5

2 2

1.5 1.5

1 1

0.5 0.5

0 0
X, of SM X, of SM

Figure 5-102: The ES2,j,j) plots using the Monte Carlo Sampling method with NN =

3000 and o = 0.3 for ranking the input sensitivity within t E [0, 0.2] (Left) and t E
[0, 1.62] (Right). Note that the order of the synchronous generator's parameters
(xi) on the x-axis are [r,, Xi,, Xd, Xq,, rfd, Xfd, rkd, XIkd,) r71m, XIkql,rkq2, XIkq2]
from left to right and the order of yj outputs on the y-axis are [qves, kq e2l2, "des,

10f, kd08, el f, VF, Van, Vn, Ven, ia, *i, ic, Vei, Kc2, VcM,*'8 0,#,,#3
Wr] from top to bottom.

The sensitivity analysis of the AC power distribution with both open- and closed-

loop control of the propulsion system shows us that this integrated power system with-

out any controller reveals very strong parameter coupling between the synchronous

generator and the induction machine. For this integrated power system with the

constant-slip current control, the controller can isolate the interaction between the
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Figure 5-103: The ES2,(j,i) plots using the Monte Carlo Sampling method with NN =
3000 and a, = 0.3 for ranking the input sensitivity within t E [0,0.2] (Left) and
t E [0,1.62] (Right). Note that the order of the RC bus's parameters (xi) on the
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Figure 5-104: The ES2,(j,i) plots using the Monte Carlo Sampling method with NN =
3000 and ox = 0.3 for ranking the input sensitivity within t E [0, 0.2] (Left) and
t E [0, 1.62] (Right). Note that the order of the induction machine's parameters

(xi) on the x-axis are [r 2 , Xs 2 , Xm2, Xlr2, 'rr2 , J, aload] from left to right and the
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Figure 5-105: The ES2 ,(ji) plots using the Monte Carlo Sampling method with NN
3000 and a,, = 0.3 for ranking the input sensitivity within t E [0, 0.2] (Left) and
t E [0, 1.62] (Right). Note that the order of the power converter's parameters
(xi) on the x-axis are [Lc, rdc, Ldc, Cdc, Lfilter, r'filter, CiUter] from left to right and the
order of yj outputs on the y-axis are [10q, q 44q2, d/, fj, k 4's, 9, e d7 VF,

Van, Vn , Vn, ia, ib, 'e, Vi, V 2 , Vc3,q, 'v4, 4';, '4, , 'r] from top to bottom.

synchronous generator and the induction machine. Moreover, as the percent variation

of parameters increases, all parameters have a stronger impact on the system with

the open-loop propulsion, while the system with the closed-loop propulsion becomes

more sensitive only to the motor's and the controller's parameters. Therefore, these

sensitivity techniques can be used to examine the robustness of the controller against

the load and parametric uncertainties. In addition, when the magnitude of parame-

ter fluctuation becomes larger, the characteristics of the system response can either

increase the output magnitude or cause the phase shift in the output response.
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Chapter 6

Conclusions and Future Work

In this last chapter, we would like to summarize all the key contributions of this

thesis. In addition, some possible research directions continuing from this work will

be discussed. In the first chapter, we introduced the concept of the All-Electric-

Ship (AES) and its associated challenges, especially in the integrated power system,

such as power sharing or load shedding and performance prediction under uncertain

conditions. Moreover, the problems associated with the Galerkin and Collocation

techniques in stochastic analysis as well as the sensitivity analysis were presented.

Next, we described our primary contributions in the integration of multiple discipline

areas (power system, numerical stochastic analysis, and sensitivity analysis), and the

development of numerical techniques, as well as the demonstration of feasibility in

extending these numerical techniques for the large-scale shipboard integrated power

system. Chapter 2 presented the modeling of electric machines, the transmission line,

the pulsed-power load, and their interconnection, which are bases for constructing the

entire AES model. We identified possible sources of uncertainties in the AES system

for further stochastic analysis.

In Chapter 3, various numerical stochastic algorithms - the Monte Carlo method,

the Galerkin (gPC) and Collocation (PCM) approaches of the polynomial chaos -

were introduced along with their underlying theories and implementation techniques.

The representation of stochastic inputs as random variables or processes was briefly

introduced. A new approach to combining the multi-element technique with the
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collocation provides an improvement on accuracy and efficient convergence, when the

long-time integration is required or the statistical solutions are discontinued. Also, the

possibility of adaptive multi-element PCM was discussed. For the Galerkin approach,

the ability of the gPC to deal with non-polynomial nonlinearity is extended by using

the Hybrid gPC+PCM technique.

A thorough convergence study of all stochastic techniques was demonstrated in

Chapter 4 on several simple systems with both continuous and discontinuous stochas-

tic solutions, on electric machines, as well as on the AC power system section of the

AES. For the system with the continuous stochastic solution, gPC, PCM, and Hybrid

gPC+PCM yield the exponential convergence rate as a function of the polynomial

order (p) or the number of collocation points (Nc) per random dimension (d). Their

Multi-Element technique has the algebraic convergence rate as a function of the ele-

ment number per d raised to the power p + 1 or Nc, while the Monte Carlo approach

exhibits only the algebraic convergence as a function of random realization (NN).

When the stochastic solutions become discontinuous, the convergence rate of the

Monte Carlo, gPC, PCM, Hybrid gPC+PCM, and their Multi-Element technique be-

came algebraic as functions of NN, p/d, (Nc - 1)/d, and N/d. For a small random

dimension (d < 10), the full-grid PCM is the most efficient algorithm for the same

accuracy with reduced computational cost. As the random dimension of inputs in-

creases, particularly in the AES system, the sparse-grid PCM seems to be competitive

against the Monte Carlo method, the convergence rate of which did not scale with

the random dimension. The adaptive MEPCM has shown a promising result of faster

convergence than MEPCM alone, when a system has the discontinuity in its solu-

tion. In the long-time integration problem, the full-grid PCM still yields the fastest

convergence rate for systems with continuous solutions and the full-grid MEPCM is

competitive against QMC for systems with discontinuous solutions. Moreover, when

the integration is prolonged, the sparse-grid PCM loses its efficiency quickly and all

the convergence curves of MEPCM with any Nc merge together and align with that

of QMC.

Chapter 5 introduced four new techniques - Monte Carlo Sampling, Collocation,
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Variance, and Inverse Variance - for analyzing the system sensitivity, both ranking

the importance of inputs on the output variation and capturing the nonlinear and

coupling effects of inputs. Then, the accuracy and efficiency of these sensitivity anal-

ysis techniques were compared with those of the Morris method. All four sensitivity

analysis techniques ranked the input significance correctly for multiple input or static

functions. Using the advantage of the full-grid PCM, the Collocation and Variance

methods provided faster convergence of sensitivity indices compared to the Morris and

Sampling methods. Both IEE and IIEE indices of the Variance and Inverse Variance

Methods give more weight to the coupling effect than to the high-order nonlinearity,

while -[EE] in the gradient methods weight both effects equally. Only three tech-

niques - Sampling, Collocation, and Variance methods - are successfully extended to

study sensitivity of the ODE systems with a small number of inputs, e.g., the Duff-

ing's oscillator, and a large number of inputs, e.g., the induction machine and the AC

power distribution and propulsion system. As a result, these techniques can identify

when certain inputs become dominant as a function of the system response.

6.1 Future Work

We list below some possible directions for future research.

1) A thorough and systematic study of the shipboard AC and DC power systems,

particularly with the pulse power load in the DC zone, requires a further investigation

with stochastic disturbances and situations, since the future requirement on Navy

warships will demand more electrical power to support more advanced high-power

equipment. The power and thermal management are another significant topic in the

AES system, and sensor diagnostics could be combined with stochastic prediction

from the system model to validate system performance and increase the situation

awareness.

2) An adaptive multi-element technique using a combination of full- and sparse-

grid PCM can be further developed for better accuracy with smaller computational

cost. Moreover, a stochastic technique with knowledge from the random process
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might improve the convergence characteristics of the collocation technique due to the

limitation in random dimension dependency.
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Appendix A

Polynomial Chaos

In this section, we briefly include the properties of various types of orthogonal poly-

nomials: Legendre, Jacobi, and Chebyshev.

Table A.1: The first few terms of the Legendre polynomials (L( )) [1]

Li ( )
L -1 0

Lo(( 1
L1 (() =2

L2( 1(3(2 _ 1)

L3( (5 3 - 3 )
L4 () = }(35 4 - 30 2 + 3)
L5( ) = -(63 ' - 70 3 + 15 )

L6( ) = -(231 6 - 315 4 + 105 2 - 5)

293



Table A.2: Summary of the properties of the Legendre polynomials [1]

Relation Legendre Chaos
Weight function W(x) = 1

Recurrence (j + 1)Lj+1 (x) = (2j + 1)xLj(x) - jL_ 1 (x)

Orthogonal f Lm(x)Ln(X)W(X)d = 2n± 6mn

Table A.3: The first few terms of the Jacobi polynomials (Ja,()) [1]

J! '(1)= 1
= [2(a + 1) + (a + 3 + 2)( - 1)]

J2" () [4(a + 1)(a + 2) + 4(a + + 3)(a + 2)( - 1) + (a + + 3)(a + + 4)( - 1)2

Table A.4: Summary of the properties of the Jacobi polynomials [1]
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Relation Jacobi Chaos
Weight function W(x) = (1 - x)0(1 + X)o

Recurrence a!J (x) = (a" + a"x)J/'3(x) - ajJf'i(x)
a, = 2(j+ 1)(j+ a + + 1)(2j+ a +)

a = (2j + a + ±+ 1)(a2 - 3 2)
aj = (2j + a + 0)(2n + a + + 1)(2j+ a +3 + 2)

a4= 2(j+a)(j+ 0)(2j+ a+f3+2)

Derivative bjy Ji (x) = bJn(x) n'(X)

bj = (2n + a + 0)(1 - x2 )
bj = j[a - # - (2n + a +)x]

b = 2(n + a)(n + 0)



Table A.5: The first few terms of the Chebyshev polynomials of the first kind (T( )) [1]

Ti (0
T_1( ) = 0

T,(W = 1

T2( ) = 2 2 _ I

T3(Q) = 4 3 - 3
T4( ) = 8 4 - 8 2 + 1

T5( ) = 16 5- 203 + 5

T6( ) -= 32 6 - 48(4 + 182 - I

Table A.6: Summary of the properties of the Chebyshev polynomials [1]

Relation Chebyshev Chaos
Weight function W(x) = (1 - X2)-1/2

Recurrence T 1 i(x) = 2xT (x) - T -I(x)

1a T = for #0, j# 0
Ortogoal ~ T(XTn()W(~dX '~m for i =j = 0
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Appendix B

Machine Parameters

There are two set of machine parameters. The first set, which is from [38], expresses

all parameters in per unit system, while the parameters of in the ONR challenge

problem (27] in the second set are described in the volt-amperes unit.

Table B.1: Parameters of the induction machines [38] in per unit with Vbase = 450 V

297

Hp r XI, Xm Xj',I r H
200 0.01 0.0655 3.225 0.0655 0.0261 0.922
150 0.0051 0.00553 2.678 0.0553 0.0165 1.524



Table B.2: Parameters of the 3.125 MW synchronous generator [38] in per unit with
Vbase= 450 V

rS = 0.00515
Xi = 0.8

Xmq = 1.0

rkq =0.0613
Xkq = 0.3298
Xmd =1.768

rfd = 0.00111
XIfd - 0.13683

H = 2.137

rkd = 0.02397
X1kd = 0.33383

Table B.3: Parameters of the IEEE type DC1A exciter/voltage regulator (Type 1) [38]
in per unit

TR = 0

VRMAX = 8.4
TF2 = 0.06

I
VREF = KA= 400

VRMIN = 0 KF = 0-01
KE = 1 TE 0-1

Table B.4: Parameters of the simplified gas turbine with speed governor [38] in per
unit

K, = 22.5
WF1os = 0.23

Tc = 0.55
C2GT = 0.251

TFV 0.01
C1GT= 1.3523

TFT = 0.05
CGNGT = 0.5

Table B.5: Parameters of the 50-hp induction machines [27] with Vasc = 570 V

Hp r,(Q) Xis(H/s) Xm(H/s) Xl',(H/s) I r'(Q) J(kg -m2)
I 50 I 0.087 I 0.302 1 13.08 1 0.302 1 0.228 1 1.662-

I I I I I I I

Table B.6: Parameters of the 59 KW synchronous generator [27] with Vase = 570 V

rs = 0.0286

Xis = 1.8122
Xmq = 15.3562

rkql = 0.0170
X 1  = 7.7496
Xmd =15.3562

rkq2 = 0.0802

X1 kq2 = 0.8956
J = 2.5

rfd = 0.0089
X1fd = 1.3487

P = 4

/kd = 0.1272

X 'k = 0.7750

Table B.7: Parameters of the full-brigde rectifier and DC-link filter [27]

L_ = 0.001 H
rf = 0.056 Q

Rde = 0.01 Q
Lf = 0.0114 H

Ld= 0 H
Cf = 1.988 x 10- 3 F

Cde = 500 x 10-6 F
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TA = 0.01
TF1 = 0.15

I



Table B.8: Parameters of the RC bus with the harmonic filter [27]

R = 500 Q C = 4 x 10-5 F
Rfiter = 0.039 Q Lfilter = 0.00561 H Cfilter= 4.975 x 10-5 F

Table B.9: Parameters of the constant-slip current control [27]

r, est =0.228 Q L.,,es= 3.5496 x 10 2 H Lm = 3.4695 x 10 2 H P = 4
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